Možnosti využití ABTS metody v oblasti cereálních technologií

Gabriela Kufová
ZADÁNÍ BAKALÁŘSKÉ PRÁCE
(PROJEKTU, UMĚLECKÉHO DÍLA, UMĚLECKÉHO VÝKONU)

Jméno a příjmení: Gabriela KUFOVÁ
Osobní číslo: T08336
Studijní program: B 2901 Chemie a technologie potravin
Studijní obor: Chemie a technologie potravin
Téma práce: Možnost využití ABTS metody v oblasti cereálních technologií

Zásady pro vypracování:

1. Charakterizace a princip ABTS metody pro stanovení antioxidační aktivity.
2. Další možnosti stanovení antioxidační aktivity v potravinách.
3. Využití ABTS metody v oblasti potravinářství, cereálií a cereálních technologií.
Rozsah bakalářské práce:
Rozsah přílohy:
Forma zpracování bakalářské práce: tiskněné/elektronická

Seznam odborné literatury:

Vedoucí bakalářské práce: Ing. Daniela Sumczynski, Ph.D.
Datum zadání bakalářské práce: 11. února 2011
Termín odevzdání bakalářské práce: 30. května 2011

Ve Zlíně dne 12. dubna 2011

[signature]

doc. Ing. Petr Hlaváček, CSc. dekan

[signature]

doc. Ing. Jan Hrabá, Ph.D. -ředitel ústavu
Příjmení a jméno: KUDEROVÁ, CAROLINA
Obor: BĚŽNÉ A TECHNICKÉ FUNKCE

PROHLÁŠENÍ

Prohlašuji, že

- beru na vědomí, že odevzdáním diplomové/bakalářské práce souhlasím se zveřejněním své práce podle zákona č. 111/1998 Sb. o vysokých školách a o změně a doplnění dalších zákonů (zákon o vysokých školách), ve znění pozdějších právních předpisů, bez ohledu na výsledek obhajoby;
- beru na vědomí, že diplomová/bakalářská práce bude uložena v elektronické podobě v univerzitním informačním systému dostupná k nahlédnutí, že jeden výtisk diplomové/bakalářské práce bude uložen na příslušném ústavu Fakulty technologické UTB ve Zlíně a jeden výtisk bude uložen u vedoucího práce;
- byl/a jsem seznaměn/a s tím, že na moji diplomovou/bakalářskou práci se plně vztahuje zákon č. 121/2000 Sb. o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon) ve znění pozdějších právních předpisů, zejm. § 35 odst. 3);
- beru na vědomí, že podle § 60) odst. 1 autorského zákona má UTB ve Zlíně právo na uzavření licenční smlouvy o užití školního díla v rozsahu § 12 odst. 4 autorského zákona;
- beru na vědomí, že podle § 60 odst. 2 a 3 mohu užít své dílo – diplomovou/bakalářskou práci nebo poskytnout licenci k jejímu využití jen s předchozím písemným souhlasem Univerzity Tomáše Bati ve Zlíně, která je oprávněna v takovém případě ode mne požadovat přiměřený příspěvek na úhradu nákladů, které byly Univerzitou Tomáše Bati ve Zlíně na vytvoření díla vynaloženy (až do jejich skutečné výše);
- beru na vědomí, že pokud bylo k vypracování diplomové/bakalářské práce využito softwaru poskytnutého Univerzitou Tomáše Bati ve Zlíně nebo jinými subjekty pouze ke studijním a výzkumným účelům (tedy pouze k nekomerčnímu využití), nelze výsledky diplomové/bakalářské práce využít ke komerčním účelům;
- beru na vědomí, že pokud je výstupem diplomové/bakalářské práce jakýkoliv softwarový produkt, považuji se za součást práce rovněž i zdrojové kódy, popř. soubory, ze kterých se projekt skládá. Neoddevzdaní této součásti může být důvodem k neobtěžení práce.

Ve Zlíně

..

..
(1) Vysoká škola nevyžaduje zveřejňování disertační, diplomové, bakalářské ani rozhodující práce, u kterých probíhá obhajoba, včetně poukazů upomínajících na výsledky trestních procedur, které mohou zvětšit těžkosti práce.

(2) Odezvárné, diplomové, bakalářské a rozhodující práce odevzdané uchazečům k obhajobě musí být těž nejméně pět pracovních dnů před konáním obhajoby zveřejňovány k nahlédnutí veřejnosti v místě určeném vnitřním předpisem vysoké školy nebo není-li tak určeno, v místě prokázat vysoké školy, kde se může konat obhajoba práce. Kolaj se může na zveřejněné práce píslivat na své náklady výjevy, dopisy nebo rozmaňoviny.

(3) Právo na uvedování práce autor souhlasí s zveřejněním své práce podle tohoto zákona, bez ohledu na výsledek obhajoby.

1) zákon č. 121/2000 Sb. o právu autorů, o právách sovětských s právem autorským a o změně některých zákonů (autorský zákon) ve znění pozdějších právních předpisů, § 35 odst. 8.

(1) Do práva autorského zahrnuje Školou nebo školské či zveřejňovací zařízení, užívajícího za účelem příjměho nebo nepríjměho hospodářského nebo osobního účelu, náklad ze soudního nebo za účelem příjměho nebo nepríjměho hospodářského nebo osobního účelu v rámci, v jehož rámci je autor právně povinný k příjmu nebo za účelem příjměho nebo nepríjměho hospodářského nebo osobního účelu.

2) zákon č. 121/2000 Sb. o právu autorském, o právech sovětských s právem autorským a o změně některých zákonů (autorský zákon) ve znění pozdějších právních předpisů, § 60 Školní dílo.

(1) Školní nebo školské či zveřejňovací zařízení mají na uvedování licencní antény a užití školního díla (§ 35 odst. 1). Odpovídají-li autor takového díla ustanovením bez vzníceného důvodu, mohou se tato osoby dělit až do úhodného návodu jeho vůči v soudě. Ustanovení § 35 odst. 3 zvláštně neodporučeno.

(2) Není-li uvedeno jiné, může autor školního díla své dílo užít či poskytnout jinému licencii, není-li to v rozporu s oprávněnými zájmy školy nebo školského či zveřejňovacího zařízení.

(1) Školní nebo školské či zveřejňovací zařízení jsou oprávněny požadovat, aby jim autor školního díla z výdělu jím dosáhnutého v souvislosti s užíváním díla či poskytnutím licence podle odstavec 2 předložil příspěvek na úhradu nákladů, které na vytvoření díla vyvinuly, a to podle okolností až do jejich skutečné výše; případně se příslušné výdělky využívá k výdělu dosáhnutého dílu nebo školského či zveřejňovacího zařízení a uživateli školního díla podle odstavec 1.
ABSTRAKT

Bakalářská práce se zabývá cereáliemi, jejich složením a nejvýznamnějšími obilovinami. Dále je pozornost věnována možnostem stanovení jejich antioxidační aktivity se zaměřením na metodu ABTS, uvedeno je i stanovení antioxidační aktivity v oblasti cereálních a potravinářských technologií.

Klíčová slova: cereálie, antioxidační aktivita, ABTS

ABSTRACT

This bachelor thesis deals with cereals, their structure and the best known kinds of cereals. It is focused mainly on their antioxidant activity, especially the ABTS method. It also indicates the appropriate antioxidant activity in the field of cereal and food industry technologies.

Keywords: cereals, antioxidant activity, ABTS
Poděkování

Ráda bych poděkovala své vedoucí bakalářské práce paní Ing. Daniele Sumczynski, Ph.D. za odborné rady a trpělivost při kompletaci mé bakalářské práce. Také děkuji své rodině a přítelům za podporu při studiu.

Prohlašuji, že odevzdaná verze bakalářské práce a verze elektronická nahrána do IS/STAG jsou totožné

Ve Zlíně

…………………………………
podpis studenta
OBSAH

ÚVOD ... 10

1 TEORETICKÁ ČÁST .. 11

1 CEREÁLIE ... 12

 1.1 SLOŽENÍ A ANATOMICKÁ STAVBA OBILKY ... 12

 1.2 CHEMICKÉ SLOŽENÍ OBILNÉHO ZRNA .. 13

 1.2.1 Významné antioxidanty obilného zrna .. 14

 1.2.1.1 Flavonoidy .. 15

 1.2.1.2 Vitamin E ... 15

 1.2.1.3 Vitamin C .. 15

 1.2.1.4 β-karoten .. 15

 1.3 VÝZNAMNÉ OBILOVINY .. 15

 1.3.1 Pšenice ... 16

 1.3.2 Ječmen ... 17

 1.3.3 Oves ... 17

 1.3.4 Kukuřice .. 18

 1.3.5 Rýže .. 19

 1.3.6 Pohanka .. 19

2 ANTIOXIDAČNÍ AKTIVITY .. 20

 2.1 ANTIOXIDANTY ... 20

 2.2 ANTIOXIDAČNÍ AKTIVITY ... 20

 2.3 NEJČASTĚJŠÍ METODY STANOVENÍ ANTIOXIDAČNÍ AKTIVITY .. 21

 2.3.1 Metody založené na eliminaci radikálů .. 22

 2.3.1.1 Metoda ABTS ... 22

 2.3.1.2 Metoda DPPH .. 23

 2.3.2 Metody založené na hodnocení redoxních vlastností látek ... 23

 2.3.3 Chemické metody ... 23

 2.3.3.1 Metoda FRAP (Ferric Reduction Antioxidant Power) ... 23

 2.3.3.2 Metoda ORAC (Oxygen Radical Absorbance Capacity) ... 24

3 METODA ABTS .. 25

4 VYUŽITÍ METODY ABTS V OBLASTI CEREÁLNÍCH TECHNOLÓGIÍ ... 27

 4.1 STANOVENÍ ANTIOXIDAČNÍ AKTIVITY OBILNÝCH PRODUKTŮ ... 27

 4.2 STANOVENÍ ANTIOXIDAČNÍ AKTIVITY JEČMENE, PROSA, ŽITA A ČIROKU 29

 4.3 ANTIOXIDAČNÍ AKTIVITA V RÝŽOVÉM ZRNU A JEJÍ VZTAH K BARVĚ, VELIKOSTI A HMOTNOSTI ZRNA ... 30

 4.4 STANOVENÍ ANTIOXIDAČNÍ AKTIVITY RÝŽOVÝCH OTRUB .. 31

 4.5 STANOVENÍ ANTIOXIDAČNÍ AKTIVITY PŠENICNÝCH KLÍČKŮ .. 33

 4.6 STANOVENÍ ANTIOXIDAČNÍ AKTIVITY V KUKUŘICI .. 34
5 VYUŽITÍ METODY ABTS V POTRAVINÁŘSKÉ OBLASTI.........................35
 5.1 Antioxidantní aktivita několika druhů káv35
 5.2 Antioxidantní aktivita kakaových výrobků36
 5.3 Stanovení antioxidantní aktivity vín ..37
 5.4 Celková antioxidantní aktivita chleba38
 5.5 Stanovení antioxidantní aktivity ve vybraných ovocných semenech ...39
ZÁVĚR ...40
SEZNAM POUŽITÉ LITERATURY ..41
SEZNAM POUŽITÝCH SYMBOLŮ A ZKRATEK45
SEZNAM OBRÁZKŮ ...46
SEZNAM TABULEK ..47
ÚVOD

Obiloviny jsou rostliny, které ve svých semenech obsahují důležité živiny. Už v dávné minulosti lidé vnímali jejich pozitivní účinek na organizmus. Dnes představují pro větší část lidstva základní a nejdůležitější potravinu, která je zdrojem sacharidů, bílkovin, minerálních látek, vitaminů a také vlákniny. Obilná zrna jsou konzumována přímo nebo mleta na mouku, většinou se používají celá zrna. Po odstranění vnějších vrstev získáme jemnou mouku, která ovšem nemá tak pozitivní vliv na naše zdraví. Právě proto je doporučováno konzumovat výrobky obsahující celá zrna, klíčky a otryby, také měsíčky a ovesné vločky. Obiloviny by měly tvořit více než 50 % celého jídelníčku, a to v co nejvíce v přirozené podobě.

Mezi nejznámější obiloviny patří pšenice, žito, oves a ječmen, které jsou zpracovávány především na mouku. V dnešní době si můžeme vybírat z nejrůznějších druhů cereálních výrobků. Do popředí se dostávají také pseudocereálie jako jsou pohanka, amarant. Tyto jsou označovány jako nepravé obiloviny, nahrazují a doplňují sortiment běžných obilovin. Jelikož neobsahují lepek, používají se také jako součást racionální výživy a léčebných diet. Cereálie jsou významnými antioxidanty a chrání tělo před vnějšími vlivy. Antioxydační aktivitu lze stanovit několika metodami. Nejčastěji se jedná o přímou reakci s radikály, zhášení nebo o reakci s přechodnými kovy.

Bakalářská práce je zaměřena na popis metody ABTS v oblasti cereálních a potravinářských technologií. Tato metoda testuje schopnost vzorku či látek zhášet kation-radikál ABTS•+. Zhášení radikálu ABTS•+ antioxidanty se sleduje spektrofotometricky na základě změn absorpčního spektra ABTS•+ a poté je měřena absorbance.
I. TEORETICKÁ ČÁST
1 CEREÁLIE

Cereálie neboli obilniny doprovázejí naši společnost už od nepaměti. Patří botanicky mezi traviny (latinsky *Gramineae*). Mezi nejznámější a nejvyužívanější patří pšenice, žito, ječmen, oves, rýže, kukuřice, proso a další. Viceleté trávy se pro pěstování neprosadily [1].

Mezi cereálie řadíme také pohanku z čeledi rdesnovité (*Polygonaceae*) a z nových plodin také Merlík čilský a laskavec. Tyto cereálie řadíme do zvláštní skupiny, která se nazývá pseudocereálie. To jsou plodiny, které nepatří botanicky do čeledi lipnicovitých (*Potaceae*) jako obiloviny. Pěstují se, využívají a zpracovávají se však podobným způsobem.

Vhodně zpracované obiloviny jsou v celosvětovém měřítku nejvýznamnějším přínosem energie ve formě sacharidů. Kromě sacharidů jsou však zdrojem mnoha dalších životně důležitých látek, které jsou v jiných potravinách obsaženy třeba i ve vyšších koncentracích, ale spotřebou se obilovinám nevyrovnají [2].

1.1 Složení a anatomická stavba obilky

Základní části každé obilky jsou endosperm, klíček a obalové vrstvy. Vlivem vnitřních a hlavně vnějších faktorů jako je druh, vlastnosti půdy, hnojení a klimatické podmínky, je velice ovlivňován hmotnostní podíl obilky.

Endosperm zaujímá největší hmotnostní podíl. Je v něm uložen především škrob a bílkoviny. Od obalových vrstev je oddělen řadou aleuronových buněk, které jsou bohaté na bílkoviny, minerální látky, vitaminy a tuky. Endosperm tvoří největší zastoupení ve finálním výrobku a zajišťuje výživu zárodku.

Klíček obsahuje mnoho živin, potřebných pro vyklíčení nové rostliny. V obilce však zaujímá nejmenší hmotnostní podíl, především u pšenice. Kromě jednoduchých cukrů obsahuje klíček také bílkoviny, aminokyseliny, vitaminy rozpustné a vodě a velké
množství vitaminu E. Aby se zabránilo žluklé chuti, musí být klíček při výrobě odstraňován, kvůli značnému množství tuku, který obsahuje.

Obalové vrstvy jsou tvořeny několika vrstvami, které chrání před mechanickým poškozením a vysycháním. Obalové vrstvy se skládají z oplodí a osemení [4].

![Diagram obilného zrna](image)

Obrázek 1 Anatomická stavba obilného zrna [4]

1.2 Chemické složení obilného zrna

méně lepkových bílkovin a více škrobu. Mouky obvodových částí jsou tmavší, obsahují mnohem více lepkových bílkovin. Podobně je tomu i s obsahem tuku. Jeho soustředění je vyšší na obvodu než uvnitř obilky. Endosperm obsahuje také albuminy a globuliny [5].

Tabulka 1 Chemické složení obilovin [%][4]

<table>
<thead>
<tr>
<th></th>
<th>voda</th>
<th>škrob</th>
<th>bílkoviny</th>
<th>tuky</th>
<th>celulóza</th>
<th>popeloviny</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pšenice</td>
<td>14,6</td>
<td>65,3</td>
<td>12,4</td>
<td>1,7</td>
<td>2,7</td>
<td>1,8</td>
</tr>
<tr>
<td>Žito</td>
<td>15,3</td>
<td>62,0</td>
<td>11,4</td>
<td>1,7</td>
<td>2,0</td>
<td>1,8</td>
</tr>
<tr>
<td>Ječmen</td>
<td>13,8</td>
<td>66,0</td>
<td>10,5</td>
<td>2,1</td>
<td>4,8</td>
<td>2,7</td>
</tr>
<tr>
<td>Oves</td>
<td>12,0</td>
<td>54,5</td>
<td>11,7</td>
<td>6,0</td>
<td>10,8</td>
<td>3,0</td>
</tr>
<tr>
<td>Kukuřice</td>
<td>10,5</td>
<td>69,0</td>
<td>10,0</td>
<td>4,8</td>
<td>2,8</td>
<td>1,7</td>
</tr>
<tr>
<td>Proso</td>
<td>12,5</td>
<td>61,1</td>
<td>10,6</td>
<td>3,9</td>
<td>8,1</td>
<td>2,8</td>
</tr>
</tbody>
</table>

Klíček obsahuje od 0,5 – 5 % tuku ve vztahu k celé obilce v závislosti na druhu obilovin. Samotný klíček obsahuje 10 – 15 % tuku. Nejvíce jsou zde zastoupeny kyselina palmitová a stearová. U ovsu je to také kyselina eruková. Především z klíčku pšenice se získává kvalitní olej. V klíčku se také nalézají bílkoviny, jednoduché cukry, minerální látky a vitamin E. V klíčku není obsažen škrob [6].

1.2.1 Významné antioxidanty obilného zrna

Obiloviny obsahují několik typů sloučenin, které jsou schopné minimalizovat škodlivé účinky oxidačních reakcí. Patří mezi ně např. tokoferoly, flavonoidy, vitamin C, které jsou přítomny v klíčku a β-karoten přítomný v obalových vrstvách. Zrna obsahují významnou koncentraci antioxidačních látek, které by mohly významně přispět i ke snížení oxidačního stresu, pokud jsou tyto antioxidanty přítomné v aktivních formách [7].
1.2.1.1 **Flavonoidy**

Flavonoidy se nacházejí v oplodí zrna všech cereálií. Největší zastoupení různých druhů flavonoidů je v čírku. Flavonoidy jsou sloučeniny složené z C6-C3-C6 skeletu, který je tvořen ze dvou aromatických kruhů spojených tři uhlíkovým řetězcem, někdy se nazývá jako flavonový skelet. Patří k nim kaťanylny, antokyanidy, leukantokyanidy, flavonoly, flavanony. Přírodní flavonoidy mohou významným způsobem působit při prevenci chorob majících svůj původ v oxidačním poškození biologických struktur. Mezi tato onemocnění patří ateroskleróza a kardiovaskulární onemocnění [8,9].

1.2.1.2 **Vitamin E**

Vitamin E se nachází v klíčku obilného zrna a představují ho veškeré tokoferoly a deriváty tokoatrienolů, z nichž nejúčinnější je α-tokoatrienol. Jsou to hlavní lipofilní antioxidační látky, které chrání buněčné membrány před oxidačním působením. Spolupodílí se na prevenci aterosklerózy. Je prokázáno snížení rizika kardiovaskulárních chorob. Vitamin E chrání ukládání tuků v období vegetačního klidu a klíčení [10,11].

1.2.1.3 **Vitamin C**

Vitamin C nacházející se v klíčku obilovin se vyskytuje ve dvou aktivních formách, a to jako kyselina ascorbová a dehydroascorbová, které vytvářejí reverzibilní oxidačně-redukční systém. Podílí se na resorpci železa z trávicího traktu, má antioxidační vlastnosti a obnovuje oxidovaný tokoferol a jeho aktivní, redukovanou formu [10].

1.2.1.4 **β-karoten**

Nebo také provitamin A se nachází v obalových vrstvách. Raffinované moučné výrobky mají proto mnohem nižší antioxidační aktivitu než produkty celozrnných obilovin [12].

1.3 **Významné obiloviny**

Mlýnský průmysl zpracovává ve specializovaných provozech obiloviny a zrniny, kterými jsou mimo nejvýznamnější pšenice a žita, také ječmen, oves a další cereálie, které se využívají k lidské výživě [5].
1.3.1 Pšenice

Pšenice tvrdá (*Triticum durum*) je považována za obilovinu především pro výrobu těstovin, používá se také k výrobě bulguru, kuskusu, pufovaných cereálií, snídaňových cereálií, dezertů či různých druhů speciálních chlebů. Tvdá pšenice se od dalších druhů pšenice liší v řadě ukazatelů. Vykazuje vyšší objemovou hmotnost a hmotnost tisíce zrn, zrna jsou v porovnání s pšenicí obecnou (*Triticum aestivum*) větší, jsou jantarově zbarvená, mají mnohem tvrdší endosperm a vyšší obsah bílkovin (minimálně 14 %). Těstoviny vyrobené z mouky získané semletím tvrdé pšenice (semoliny) mají vynikající vařivé vlastnosti, nejsou lepivé a po uvaření si uchovávají původní tvar. Mouka z tvrdé pšenice má ale řadu předností i pro výrobu chleba. Chléb z této mouky má delší trvanlivost než odpovídající tradiční výrobek a mouka se může rovněž používat k výrobě speciálních chlebů, včetně výrobků pro osoby s glutenovou (lepkovou) intolerancí. Od dvacátých let minulého století byla uskutečněna řada studií zaměřená na využití pšenice tvrdé pro výrobu chleba, která by rozšířila možnosti jejího využití a zvýšila podíl mouky z tvrdé pšenice na trhu. V předchozích výzkumech byla používána konvenční mouka z tvrdé pšenice (se slabým lepkom) a výsledky obecně naznačovaly, že tato mouka není pro výrobu chleba vhodná. V některých studiích byla zaznamena lepší schopnost udržení kvality chleba z pšenice durum.

V roce 2010 došlo ke snížení výroby pšenice a na tomto se podílí především meziroční pokles průměrového hектarového výnosu ozimí pšenice, ale také pokles osevních ploch. Přesto pšenice i nadále zůstává na našem trhu s obilovinami zcela dominantní plodinou, která tvoří 60,1 % nabídky všech obilovin [3,13].

Obrázek 2 Pšenice ozimá - květenství, začátek tvorby zrna [3]
1.3.2 Ječmen

Ječmen se zpracovává hlavně na kroupy, krupky, ječnou mouku, ječnou krupici a ječné vločky. Tyto výrobky byly významnou složkou potravy. V současné době význam těchto výrobků poklesl, ale je snaha zvýšit zájem o jejich konzum pro jejich obsah β-glukanů (rozpustná složka vlákniny). Odhad celkové sklizně za rok 2010 je na úrovni 1617,5 tis. tun. Z celkového sklizeného množství je 497,4 tis. tun (tj. 30,8 %) ječmene ozimého a 1120,1 tis. tun (tj. 69,2 %) ječmene jarního. Celková výroba ječmene opětovně poklesla proti roku 2009 o 385,5 tis. tun. Na významném snížení produkce má podíl jak nízká výroba ozimého ječmene, tak také výrazný propad produkce u jarního ječmene [3,5].

Obrázek 3 Ječmen jarní [3]

1.3.3 Oves

Oves má ve srovnání s ostatními obilovinami nejvyšší obsah tuku (až do 7 %) s vysokým podílem nenasycených mastných kyselin, dále vysoký obsah bílkovin, minerálních látek. Oves obsahuje sedm esenciálních aminokyselin z devíti. Zpracovává se na ovesné vločky, ovesné vločky drcené s ovesnou moukou. Produkce za rok 2010 je na výši 148,2 tis. tun. Tento údaj je ve srovnání se sklizně roku 2009 nižší o 17,8 tis. tun. Po mírném navýšení ovsu v roce 2009 dochází v roce 2010 opět k jejímu poklesu, a to cca na úroveň roku 2005 [3,5].
1.3.4 Kukuřice

Pro mlýnské zpracování a následně pro lidskou výživu je žádána kukuřice s vysokým obsahem bílkovin. Pro mlýnské zpracování je důležitém technologickým ukazatelem sklovitost. Endosperm kukuřice má rohovité povrchové vrstvy, které obsahují hodně bílkovin, vnitřní vrstvy jsou moučnaté. Poměr sklovité a moučnaté části zrna ovlivňuje výtěžnost krupic. Zrno kukuřice má klíček, který obsahuje až 35 % tuku a je potřeba ho před vlastním mletím odstranit. Z kukuřičných klíčků se lisuje jakostní olej a zbylé pokrutiny nebo extrahované šroty se využívají jako bílkovinné krmivo. Dále se kukuřice zpracovává mletím na kukuřičnou krupici, méně na mouku. Podle odhadu ČSÚ (Český statistický úřad) byla v roce 2010 snížena produkce kukuřice o 17,9% na 730,6 tis. tun. V dlouhodobém srovnání se přesto tato sklizeň stane třetí nejvyšší sklizní kukuřice na zrno v ČR [3,5].
1.3.5 Rýže

Rýže jsou zrna získávaná z kulturní rostliny rýže seté (*Oryza sativa*) a jejich odrůd. Obchodně se rýže nerozlišuje podle odrůd, ale podle tvaru a velikosti zrna. Jsou rozlišovány tyto druhy: bílá- white (oloupaný, obroušený a leštěný endosperm rýžového zrna) či červená brown, red, cargo (jen oloupaný nebo ještě částečně obroušený endosperm s podobalovými vrstvami), zlomková a poškozená paddy (zlomky bílých zrn, částečně obroušované), parboiled speciální tradičním postupem upravená a pak oloupaná a obroušená zrna. Podle tvaru a délky zrna se rozlišuje rýže na dlouhozrnnou délka průměrně 6 mm, poměr délky a šířky je zpravidla více než 3, středně zrnou délka mezi 5,2 − 6 mm, poměr délky a šířky zrna je nižší než 3 a kulatozrnnou, kde délka je menší než 5,2 mm, poměr délky a šířky zrna je méně než 2 [5].

1.3.6 Pohanka

V současné době představuje pohanka atraktivní plodinu pro své nutriční a diabetické vlastnosti. Vzhledem k velmi příznivému složení - bílkoviny, sacharidy, tuky, vláknina i minerální látky, které se nachází ve vhodném poměru, má pozitivní vliv na lidský organizmus, posiluje imunitní systém. Loupaná pohanka je lehce stravitelná, vhodná k diabetickým účelům, zvláště při cévních obtížích, zvyšuje pružnost cévních stěn, reguluje srážlivost krve a obsah cholesterolu. Obsahuje rutin, který je považován za významný antiaterosklerotický faktor. Je vhodná pro bezlepkovou dietu, doporučuje se i u vředových onemocnění [3].
2 ANTIOXIDAČNÍ AKТИVITA

2.1 Antioxidanty

Za poslední desetiletí se zvyšuje množství poznatků a úroveň vědomostí o úloze volných radikálů u živých organizmů. Tyto radikály působí na biologicky významné sloučeniny, a to hlavně na lipidy, bílkoviny a nukleové kyseliny. Pozměňují jejich strukturu, a tím dochází k modifikaci jejich funkce. Reakce, které jsou iniciovány radikály, vedou ke změnám ve struktuře buňky, k poškození celých tkání, orgánů a důležitých funkcí v organismu. Významnou roli při ochraně před volnými radikály hraje prevence, tedy redukce příčin jejich vzniku. Jelikož reparativní procesy v organismu nejsou schopny plně eliminovat poškození molekul, je jednak z možností na ochranu organismu před vlivem volných radikálů působení antioxidantů. Antioxidanty prodlužují trvanlivost potravin, které chrání před oxidací, redukují vzniklé hydroperoxide, váží do komplexů katalyticky působící kovy a eliminují přítomný kyslík. Mnoho látek přírodního původu, které se do lidského organismu dostávají spolu s potravou, mají antioxidační účinky. Antioxidanty jsou molekuly, které jsou-li přítomny i v malých koncentracích, chrání organismus. Mohou zabraňovat, eventuálně omezovat, oxidační destrukci tkání a buněk. Klinické a epidemiologické studie prokazují souvztažnost mezi antioxidační aktivitou látek přijímaných v potravě a prevenci některých onemocnění, jako jsou například kardiovaskulární choroby, neurologické poruchy či procesy stárnutí. Mezi antioxidačně nejaktivnější látky v potravinách patří jednoduché fenoly a furany, složené fenolové látky (např. lignany), flavonoidy včetně katechinů a antokyaninů, alkylsulfidy, indoly, a také některé vitamíny a karotenoidy [15,16].

2.2 Antioxidácní aktivita

Z výše uvedených důvodů vzrůstá zájem stanovit antioxidační aktivitu různých látek, především rostlinného původu. Antioxidácní aktivita je definována jako schopnost antioxidantu inhibovat oxidační degradaci různých sloučenin (např. zabraňovat peroxidaci lipidů). Je vhodné rozlišovat dva pojmy, a to antioxidační kapacita a reaktivita. Antioxidácní kapacita poskytuje informaci o délce trvání antioxidačního účinku, reaktivita antioxidantu. V oblasti chemické analýzy a biologického hodnocení jakosti rostlinných produktů byly v posledních letech vypracovány četné metody, které umožňují stanovit tzv. celkovou antioxidační aktivitu vzorku (TAC, Total Antioxidant Capacity).

2.3 Nejčastější metody stanovení antioxidační aktivity

Nejčastěji používanou metodou je TEAC (Trolox Equivalent Antioxidant Capacity). Jedná se o metodu, která vyjadřuje antioxidační kapacitu vzorku ekvivalentní určitému množství standardu Troloxu (6-hydroxy-2,5,7,8-tetramethylchroman-2-dikarboxylová kyselina). TEAC je většinou definována jako milimolární koncentrace Troloxu odpovídající antioxidační aktivitě testované látky o koncentraci 1 mmol.dm⁻³ pro čisté látky. Pro směsné
vzorky se jedná o látkové množství Troloxu, které odpovídá aktivitě 1 g nebo 1 ml vzorku. Metoda je použitelná pro měření čistých látek, vodných roztoků i nápojů [21].

2.3.1 Metody založené na eliminaci radikálů

Princip této metody spočívá v hodnocení schopnosti vzorku vychytávat volné radikály. Radikály mohou být v reakční směsi vytvářeny nebo do reakční směsi přidávány. Z chemického hlediska jsou to radikály kyslíkové, např. hydroxyl, superoxidový anion-radikál. Z hlediska syntetického pak syntetické stabilní radikály, a to DPPH (1,1-difenyl-2-(2,4,6-trinitrofenyl)hydrazyl) a ABTS. Zvláštní skupinou jsou pak metody testující schopnost inhibovat nebo zpomalovat lipidovou peroxidaci [15].

2.3.1.1 Metoda ABTS

Je jednou ze základních a nejpoužívanějších metod pro stanovení celkové antioxidační aktivity TAA. Tato metoda testuje schopnost látek nebo vzorku zhasť kation-radikál ABTS$^{+}$ (2,2-azinobis(3-ethyl-2,3-dihydrobenzotiazol-6-sulfonát)) [15].
2.3.1.2 Metoda DPPH

Metoda používající DPPH je pokládána za jednu ze základních metodik pro posouzení antiradikálové aktivity čistých látek i různých směsů vzorků. DPPH test je založen na schopnosti stabilního volného radikálu 1,1-difenyl-2-pikrylhidrazylu reagovat s donory vodíku. DPPH test je při reakci s donory vodíku selektivnější než ABTS•+. U většiny testů se využívá sloučenina DPPH, která je v metanolovém roztoku v barevné radikálové formě DPPH a vykazuje silnou absorpci v UV/VIS spektru. Redukce DPPH antioxidantem nebo radikálem se projevuje odbarvením roztoku, které se měří spektrofotometricky [15,17].

\[\text{DPPH} \]

2.3.2 Metody založené na hodnocení redoxních vlastností látek

Jako redukční činidla mohou být charakterizovány neenzymové antioxidanty, které reagují s oxidanty, redukují je a tím je aktivují. Z tohoto pohledu je možno antioxidační aktivitu posuzovat na základě redukční schopnosti látky [15].

2.3.3 Chemické metody

2.3.3.1 Metoda FRAP (Ferric Reduction Antioxidant Power)

Metoda FRAP je založena na redukci železitého komplexu TPTZ (2,4,6-tripyridyl-S-triazin) s hexokyanatanem draselným nebo chloridem železitým, které jsou téměř bezbarvé a po redukcii, eventuálně po reakci s dalším činidlem vytváří barevné, modré zbarvené železnaté komplexy, kterými může být např. berlínská modř. Tyto komplexy jsou měřitelné spektrofotometricky. Jako standard lze použít roztok kyseliny gallové, epikatechinu nebo troloxu. Výsledky se vyjadřují ekvivalentním množstvím standardu, odpovídajícího 1 g nebo 1 ml vzorku se stejnou redukční aktivitou [17,20].
2.3.3.2 Metoda ORAC (Oxygen Radical Absorbance Capacity)

Metoda ORAC spočívá ve vytvoření peroxylového radikálu β-lykoeritrinu, který se kvantitativně stanovuje fluorimetricky, a to jeho oxidací činidlem ABAP (2,2'-azobis-2-methyl-propionamidin). Radikál je určován kvantitativně fluorimetricky a hodnotí se rychlost úbytku signálu po přidání testovaného vzorku. Hodnotí se rychlost úbytku fluorescne po přidání testovaného vzorku [16,20].
3 METODA ABTS

2,2′-azinobis(3-etyl-2,3-dihydrobenzotiazol-6-sulfonová kyselina) neboli ABTS je chemická sloučenina, sloužící pro stanovení celkové antioxidační aktivity. Bezbarvá molekula ABTS je převáděna na modro-zelený radikál ABTS•+ (2,2′-azinobis(3-etyl-2,3-dihydrobenzotiazol-6-sulfonát)) oxidací jednoho elektronu.

Test ABTS je velmi podobný metodě DPPH v tom, že obě metody používají silně zbarvené stabilní radikální směsi. Na rozdíl od metody DPPH, v níž je radikálová forma DPPH již vytvořena a komerčně k dispozici, musí být ABTS oxidováno do své radikální podoby kationtu na začátku každé zkoušky. Toto je obyčejně dosaženo inkubací ABTS s metmyoglobinem a peroxidem vodíku. Reakce jsou pak prováděny podobným způsobem jako v testu DPPH v tom, že schopnost zkušebních materiálů k navození odbarvení z kationtů ABTS se měří spektrofotometricky. ABTS má výhodu oproti ostatním antioxidačním systémům, že je snadno rozpustný v organických a vodních rozpouštědlech [23].

Metoda ABTS testuje schopnost vzorku či látek zhabát kation-radikál ABTS•+. Je také mnohdy prohlašována za metodu TEAC, vzhledem k tomu, že výsledná antiradikálová aktivita vzorku je srovnávána s antiradikálovou aktivitou syntetické látky Troloxu. Zhabení radikálu ABTS•+ antioxidanty, které se chovají jako donory vodíku, se sleduje

Obrázek 6 Oxidace ABTS na ABTS•+ [22]
spektrofotometricky na základě změn absorpčního spektra ABTS•++. Absorbance se nejčastěji měří při 734 nm. V reakční směsi se kation-radikál ABTS•++ generuje oxidací ABTS.

Jsou také i možnosti chemické oxidace ABTS, např. peroxodisíranem draselným nebo oxidem manganičitým. Při vlastním experimentálním měření se užívají dva postupy. U prvního pokusu se antioxidant přidává do reakční směsi, ve které byl již vytvořen radikál ABTS•+. U druhého postupu je antioxidant v reakční směsi přítomen při generování radikálu ABTS•+. Častěji se užívá uspořádání, při němž se antioxidant přidává k radikálu ABTS•+ již vyprodukovanému pomocí peroxidázy. Stanovení celkové antioxidační aktivity je možno provádět i komerčně vyráběnými sety (např. Randox Laboratories Ltd.). Používá se i sériově vyrobených mikrotitračních destiček. Pro spektrofotometrickou metodu stanovení celkové antioxidační aktivity s ABTS jsou popsány aplikace měření v hydrofilním i lipofilním prostředí. Metoda stanovení TAA vzorků pomocí ABTS je jednoduchá, rychlá v provedení a má široké uplatnění, od hodnocení antioxidační aktivity látek různého původu a také pro směsné vzorky [21].
4 VYUŽITÍ METODY ABTS V OBLASTI CEREÁLNÍCH
TECHNOLOGIÍ

4.1 Stanovení antioxidační aktivity obilných produktů

Epidemiologické studie ukazují, že spotřeba obilných produktů se vztahuje ke snížení celkové úmrtnosti, ischémické choroby srdeční, diabetu a výskytu rakoviny. Tyto přínosy pro zdraví jsou částečně připsány k širokému spektru chemopreventivních látek, tzv. fytochemikálií, včetně antioxidantů, které jsou v obilných produktech hojně zastoupeny. Obilná zrna obsahují v tuku rozpustné antioxidany, jako jsou např. tokoly, karotenoidy a ve vodě rozpustné antioxidany, jejichž zástupci jsou fenolové kyseliny a flavonoidy. V poslední době je velký zájem o stanovení antioxidační kapacity potravin, kvůli prevenci degenerativních onemocnění. Stanovení celkové antioxidační aktivity je docela komplikované vzhledem k široké škále polarity použitých extrakčních rozpouštědel a také skutečnosti, že většina antioxidantů je kovalentně vázána na buněčnou stěnu. Nejvyužívanějšími rozpouštědly je voda, etanol, metanol a aceton a jsou používány samostatně nebo ve kombinaci pro dosažení maximalizace výnosu. Byly vybrány obilné vzorky, podle jejich největšího využití v lidské stravě. Zrna byla získána z lokálních trhů a byla použita loupaná zrna ovsu, prosa, pšenice dvouzrnky a ječmene a poté nahá zrna rýže, žita, pšenice a kukurice. Navíc byly použity dvě frakce otrub tvrdé pšenice. Vzorky byly pomlety a prosety k získání velkých, středních a malých částiček. Pro stanovení celkové antioxidační kapacity produktů z obilovin byly použity dva postupy. Prvním postupem bylo přímé měření celkové antioxidační kapacity z různých vzorků obilovin. Pro měření průměrný postup bylo použito 10 mg mletého vzorku obiloviny a vzorek byl převeden do zkumavky. Ke vzorku bylo poté přidáno 6 ml ABTS⁺⁺. Došlo k rozpuštění ve 100% etanolu nebo ve směsi etanol:voda v poměru 50:50, byl také testován vliv rozpouštědla na měření antioxidační aktivity. Zkumavka byla protřepána na třepačce k usnadnění reakci mezi částicemi a ABTS⁺⁺. Absorbance byla měřena při 734 nm, a to přesně po 6, 15, 30 a 60 min. Za účelem zjištění vlivu různých rozpouštědel byly vzorky postupně extrahovány vodou, etanolem, metanolem, pH směsi upraveno na 3,5, a to přidáním 3 mol.dm⁻³ kyseliny citronové. Vzorek byl rozpuštěn ve směsi metanol:voda v poměru 50:50 a ponechán ve tmě při teplotě 4 °C. 100 ml extraktu bylo smícháno s 1,7 ml ABTS⁺⁺ a rozpuštěno ve 100% etanolu. Směs byla promíchána a měření absorbance bylo provedeno přesně po 6 min při 734 nm [24,25,26].

Obrázek 7 Porovnání hodnot antioxidační aktivity

Antioxidační aktivita měřená po přímém zpracování - černé sloupce, antioxidační aktivita měřená v extraktech - bílé sloupce [24]
4.2 Stanovení antioxidační aktivity ječmene, prosa, žita a čiroku

Celozrnné výrobky jsou vhodné pro zdravou stravu a jsou uznávaným zdrojem vlákniny a antioxidačních látek. Antioxidační účinky byly hodnoceny u čtyř obilovin, a to ječmene, prosa, žita a čiroku. Tyto cereálie byly přizpůsobeny pěstitelským podmínkám ve Spojených arabských emirátech (SAE). Ve vývoji a zavádění těchto plodin do SAE je potřeba vyhodnotit jejich nutriční kvalitu. Tato studie byla zaměřena na porovnání antioxidační aktivity celých zrn s pšeničnou moukou. Čirok (*Sorghum bicolor*) měl mimořádně vysokou antioxidační aktivitu, následně proso (*Pennisetum glaucum*) a ječmen (*Hordeum vulgare*). Antioxidační vlastnosti téhoto tří zrn byly srovnatelné s butylhydroxytoluenem. Nutriční údaje naznačují, že vybraná zrna, především ječmene a čiroku, jsou opravdu nutričně bohaté složky potravin.

5 g rozemletého zrna bylo smícháno s 50 ml 80% metanolu. Směs byla propláchnuta proudem dusíku a důkladně promíchána na třepačce po dobu 30 min. Poté byla směs odstředěna, propláchnuta proudem dusíku a uložena v chladničce až do analýzy.

Byla měřena kapacita radikálového kationtu ABTS•+. Trolox byl v testu používán jako standard. Antioxidační aktivita byla vypočtena jako µmol ABTS na g vzorku v různých časových intervalech. Celá analýza byla provedena ve třech vyhotoveních a údaj byl hlášen jako průměr těchto stanovení. Test ABTS je založen na tvorbě ABTS•+ tím, že reaguje s ABTS metmyoglobinem a peroxidem vodíku při 37 °C. ABTS•+ má relativně stabilní modro-zelenou barvu, která je měřena při 600 nm. V přítomnosti antioxidantu troloxu nebo potenciálních antioxidantů v materiálu extraktů byla produkce barvy do určité míry potlačena měrnou koncentrací antioxidantů.
Zrno čiroku mělo nejvyšší kapacitu zhášení ABTS•⁺, následovalo proso a ječmen. Celozrnné žitné a pšeničné mouky prokázaly relativně nízké zhášení kationtu ABTS•⁺ [27].

4.3 Antioxidační aktivita v rýžovém zrnu a její vztah k barvě, velikosti a hmotnosti zrn

Rýže je základní potravinou, která je konzumována téměř polovinou obyvatelstva na světě. Nutriční kvalita rýže získala větší pozornost v rozvojových zemích, kde nízká spotřeba rýže může vést k nedostatku důležitých vitaminů, minerálů a ostatních složek obsažených v rýžovém zrnu. Frézováním hnědé rýže se odstraní otruby, které jsou bohaté na bílkoviny, vlákninu, oleje, minerální látky, vitaminy a další fytochemikálie. To vede ke ztrátě většiny nutričních složek. Při studování genotypů rýže Goffmanem a Bergmanem bylo zjištěno, že barva otrub byla vysoce významná v souvislosti s obsahem fenolických látek v otrubách. V obilných zrnech lze široce identifikovat a charakterizovat antokyany se skupinou načervenalých až fialových ve vodě rozpustných flavonoidů, které jsou primárními pigmenty v červených a černých zrnech. Fenolické sloučeniny jsou známé jako antioxidanty spolu s dalšími fotochemikáliemi jako jsou karotenoidy, tokoly, oryzanoly atd. Cílem této studie bylo stanovit celkové řízny, flavonoidy a antioxidační kapacitu
a analyzovat jejich vztahy k barvě, velikosti a hmotnosti zrna, jelikož tyto výsledky mohou být důležité pro šlechtitele rýže.

Pro tuto studii bylo použito celkem 481 druhů rýže. Z toho 423 druhů bílé rýže, 52 červené a 6 druhů rýže černé. Zrna rýže byla sušena vzduchem a skladována při pokojové teplotě po dobu tří měsíců. Celková antioxidační kapacita z extraktů rýže byla stanovena spektrofotometricky pomocí ABTS testu. 3,9 ml roztoku ABTS o absorbanci 0,700 bylo přidáno do 0,1 ml extraktů a řádně promícháno. Reakční směs byla uchovávána po dobu 6 minut při pokojové teplotě a poté byla okamžitě změřena absorbance při 734 nm.

Byly naměřeny hodnoty v rozmezí 0,012 – 5,533 mmol·dm⁻³ TEAC z celkového množství vzorků rýže. U bílé rýže byly hodnoty ABTS 0,196 mmol·dm⁻³ TEAC v rozmezí 0,012 – 0,413 mmol·dm⁻³ TEAC. U rýže červené to bylo průměrně 1,705 mmol·dm⁻³ TEAC, v rozmezí mezi 0,291 až 2,963 mmol·dm⁻³ TEAC. U šesti vzorků černé rýže byla průměrná antioxidační kapacita 4,484 mmol·dm⁻³ TEAC. Obsah fenolických látek byl pozitivní s antioxidační kapacitou mezi všemi druhy rýže. Bylo prokázáno, že co se týče antioxidační aktivity, nebyla projevena žádná závislost na délce zrna ani na jeho hmotnosti. Na výsledné hodnotě antioxidační kapacity zrna se podílely nejen fenolické sloučeniny, ale i další fotochemikálie, jako jsou karotenoidy a tokoly. Antioxidační kapacita se liší především u bílé rýže, proto je úsilí o pěstování nutričně kvalitnější rýže. Tato studie ukázala širokou rozmanitost v obsahu fenolů, flavonoidů a antioxidační kapacity v celém rýžovém zrnu a proto tyto údaje poskytují příležitost k dalšímu zvýšení jejich obsahu, a to zejména v bílé rýži [28,29].

4.4 Stanovení antioxidační aktivity rýžových otrub

Rýžové otruby jsou jedním z nejrozšířenějších produktů, které jsou bohatým zdrojem vitaminů a minerálů. Běžně jsou používány pro lidskou výživu, ale jsou také přidávány do krmiv pro zvířata. Výzkumy prováděné v posledních dvou desetiletích ukazují, že rýžové otruby obsahují unikátní komplex přirozeně se vyskytujících antioxidantů. Současný výzkum ukázal, že mohou obsahovat až 100 různých antioxidantů a mezi nejsilnější z nich patří tokoferoly, tokotrienoly a oryzanol. Antioxidační sloučeniny z rýžových otrub nebo rýžového oleje jsou karakteristické pro zlepšení skladovatelnosti potravin a mají mnoho zdravotních výhod jako je např. snížení hladiny cholesterolu. Oryzanol se využívá k léčbě nervové nervové, nerovnováhy u mnohot v menopauzy. Surový rýžový olej může obsahovat až 62 % oryzanolu. Bylo provedeno stanovování antioxidační
aktivitu u pěti odrůd rýžových otrub. Byly použity tyto odrůdy rýže: Super (RB-kr), Super 2000 (RB-S2), Super Basmati (RB-bm), Super-386 (RB-86) a Super jemné (RB-sf). Tato studie popisuje antioxidační aktivitu různých odrůd rýžových otrub, jakožto i stanovení jejich hlavních složek zodpovědných za antioxidační aktivitu. Stanovení antioxidační aktivity bylo prováděno metodami ABTS a DPPH. Bylo taktéž provedeno stanovení hlavních složek rýžových otrub, tokoferolů, toko trienolů a oryzanolu pomocí reverzní HPLC.

Vzorky byly uchovány ve vzduchotěsných obalech a skladovány v chladničce při teplotě 4 °C. Stabilizace rýžových otrub byla provedena na základě metody Malekian et al. 100 g každého vzorku bylo zabaleno do polyetylenového vaku a sušeno v mikrovlnné troubě po dobu 3 min při teplotě 120 °C. Vzorek byl ochlazen na pokojovou teplotu a celý postup byl opakován třikrát pro zajištění optimální stability. Poté byly vzorky uchovávány týden při 4 °C až do provedení analýzy. Extrakce vzorků byla provedena na základě metody podle Zua et al. 5 g vzorku bylo extrahováno 25 ml 80% metanolu po dobu 3 hodin v elektrické třepačce při pokojové teplotě. Vzorky byly dále dvakrát extrahovány 20 ml 80% metanolu obsahujícího 0,15 % HCl. Extrakty byly zfiltrovány přes membránové filtry a odpařeny do sucha za sníženého tlaku. Extrakty byly uloženy v mrazáku při teplotě –18 °C. Pro stanovení antioxidační aktivity byla použita metoda ABTS podle Re et al. Byl připraven vodný roztok ABTS⁺⁺ s přídavkem oxidačního činidla oxidu manganičitého. Pro odstranění přebytku oxidu manganičitého byl roztok zfiltrován membránovým filtrem. Do extraktů byl přidán fosfátový pufr o pH 7,4, aby naměřená absorbance při vlnové délce 734 nm činila 0,700 (± 0,200). Do extraktů bylo přidáno 5 ml roztoku ABTS⁺⁺. Absorbance byla měřena po 10 minutách od promíchání proti slepému roztoku obsahujícího pouze fosfátový pufr. Antioxidační aktivita extraktů z otrub byla vyjádřena jako ekvivalentní množství Troloxu vztaženého na 1 g extraktu [30,31,32,33].
Nejvyšší antioxidační aktivita byla pozorována u odrůdy RB-kr, dále následovala RB-s2, RB-BM, RB-86 a nejnižší antioxidační aktivitu vykazovala odrůda RB-sf. Díky obsahu silných antioxidantů jsou tyto cereálie doporučovány jako prevence kardiovaskulárních onemocnění a rakoviny [30].

4.5 Stanovení antioxidační aktivity pšeničných klíčků

Extrakty bohaté na antioxidanty byly získány z pšenice pomocí různých rozpouštědel včetně vody, etanolu, metanolu, vodného roztoku metanolu a etanolu. Odtučněné pšeničné klíčky obsahují mnoho nutičních složek, jako jsou bílkoviny, sacharidy, komplex vitaminu B, minerální látky apod. Antioxidační aktivita byla měřena radikálovým testem ATBS. Radikál ABTS byl vytvořen oxidací ABTS s peroxosíranem draselným. Radikálový kationt ABTS byl připraven smícháním 5 ml ABTS s 88 μl peroxosíranu draselného a směs byla inkubována ve tmě při pokojové teplotě po dobu 12 – 16 hod. Poté byl roztok zředěn roztokem fosfátového pufru, dokud absorbance při 734 nm nebyla 0,70 ± 0,02. Roztok byl ponechán ve tmě po dobu 30 min před jeho použitím. Posléze bylo 150 μl každého vzorku smícháno s 2,85 ml roztoku obsahujícího ABTS a směs byla důkladně protřepána a nechána stát 10 min při pokojové teplotě. Absorbance reakční směsi byla měřena při 734 nm. Schopnost zhášení radikálového kationtu ABTS byl vypočten v % dle vzorce:
Vodný roztok ukázal nejnižší schopnost zhášet radikál ABTS. Výtažky při nízkých koncentracích 5,0 a 7,5 mg.ml\(^{-1}\) měly schopnost zhášet radikálový kationt ABTS v pořadí: 100% etanolový extrakt > 30% etanolový extrakt > 50% etanolový extrakt a vodný extrakt. V jiných koncentracích byl rozdíl mezi činnostmi extraktů nevýrazný, kromě vodného roztoku. Výnosy z vodného extraktu a extraktu etanolu jsou přijatelné, i přestože antioxidační aktivita vodného extraktu byla nízká. Pšeničné klíčky mohou sloužit jako dobrý zdroj antioxidantů a nutraceutik [33,34,35].

4.6 Stanovení antioxidační aktivity v kukuřici

V této studii byla zjišťována antioxidační aktivita u 18 různých, většinou pigmentovaných, fenotypů mexické kukuřice. Získaná jádra kukuřičného klasu byla sušena na slunci, aby jejich obsah vody byl 20 %. Všechny vzorky byly potom rozmělněny do podoby celozrnné mouky, důkladně promíchány a uloženy při 20 °C po dobu delší než dva dny před analýzou. 5 ml roztoku ABTS\(^{•+}\) bylo smícháno s 88 ml peroxidisíranem draselným a ponecháno ve tmě po dobu 6 – 12 hod do vytvoření tmavě zeleného roztoku. Roztok se poté zředil metanolem do absorbance 0,70 při 734 nm. Výtažek kukuřičného zrna byl smíchán s 1 ml ABTS\(^{•+}\) a po 10 min byla měřena absorbance při 734 nm. Nejvyšší schopnost zhášet ABTS\(^{•+}\) měly fialové, černé a červené fenotypy. Schopnost žlutého fenotypu kukuřice byla 89,4 % [36,37,38].
5 VYUŽITÍ METODY ABTS V POTRAVINÁŘSKÉ OBLASTI

5.1 Antioxidační aktivita několika druhů káv

Káva patří mezi nejoblíbenější nápoje na světě a až 75 % pravidelně spotřebovaných nealkoholických nápojů tvoří právě káva. Kávovník patří do rodu *Coffea* čeledi *Rubiaceae*, je to stále zelená dřevina. Nejznámější druhy jsou *Coffea arabica* a *Coffea canephora*. Další známé druhy jsou *Coffea exelsa* a *Coffea liberica*. Ve složení zelené kávy dominují sacharidy, včetně polysacharidů (celulóza, glukomanany), disacharidů (sacharóza) a monosacharidů (glukóza, galaktóza, arabinóza, fruktóza, manóza, manitol, xylóza a ribóza). Také jsou zde obsaženy lipidy (ze 75 % triglyceridy), dále steroly, mastné kyseliny (linolová, lenolenová, olejová, palmitová, stearová) a cyklické diterpeny. Káva obsahuje několik druhů xantinů jako je kofein, teobromin a teofylin. V kávových zrnech naleznete také draslík, hořčík, vápník, fosfor, síru, chrom, zinek, měď, nikl a železo. Obsah fenolických látek se pohybuje v množství od 200 do 550 mg na jeden šálek kávy.

Procesem pražení však dochází k hlubokým změnám v chemickém složení a biologické aktivitě kávy v důsledku vzniku sloučenin odvozených od Maillardových reakcí a organické sloučeniny, které vznikají při pyrolyze. Ke změnám sloučenin síry dochází oxidací a tepelnou degradací [39,40].

Káva zvyšuje žaludeční sekreci a tvorbu moči, může také snižovat sérové koncentrace kyseliny močové a snižuje riziko vzniku žlučových kamenů, vzniku astma a různých alergických reakcí. Hlavní využití kávy bylo použití pro obsah kofeinu a tedy pro snížení ospalosti a únavy, pro zlepšení výkonu a vnímání. V poslední době se zvyšuje zájem o kávu především díky její antioxidační aktivitě. Cílem této studie bylo vyhodnotit činnost volných radikálů a antioxidační kapacitu u 14 druhů káv. Antioxidační kapacita byla zkoumána u kávy Arabica a Robusta získaných z 12 různých míst původu (Uganda, Papua, Jamajka, Etiopie, Kena, dvě oblasti Portorika, Nikuragua, Kolumbie, Vietnam, Brazílie a Guatemala) a poté dvě kávy bez kofeinu z Kolumbie a Brazílie. Kávy byly připraveny třemi běžně používanými způsoby, a to espresso, italská káva a filtrovaná káva. Výsledky byly vyhodnoceny a porovnány s antioxidačními normami a obsahem fenolických látek, které byly popsány v kávě.

Měření celkové antioxidační aktivity TEAC bylo měřeno testem ABTS⁺. Byla použita činidla 2,5 mmol·dm⁻³ ABAP a 20 mmol·dm⁻³ ABTS⁻² v roztoku fosfátorvého pufru (PBS) obsahujícího 100 mmol·dm⁻³ fosfátu a 150 mmol·dm⁻³ NaCl, pH bylo 7,4. Vše bylo
Inkubováno při 60 °C po dobu 12 min, chráněno před světlem a skladováno při pokojové teplotě. Absorbance byla měřena při 734 nm a kontrolována s ABTS−, její výsledky musely být v rozmezí 0,35 – 0,45. Antioxidáční aktivita analyzovaných vzorků, které se skládaly ze 40 µl směsi a 1960 µl radikáловého roztoku, byly měřeny při 734 nm a úbytek absorbance byl proměřen po 6 min. Naměřené hodnoty prokázaly, že kávy bez obsahu kofeinu mají nižší hodnoty antioxidáční aktivity než kávy s kofeinem. Nicméně, všechny vzorky kávy analyzované po 24 hod vykazovaly vyšší TEAC hodnoty, než vzorky kávy měřené po 6 min. Dále bylo zjištěno, že filtrovaná a italská káva analyzovaná po 6 min vykazovala vyšší TEAC než káva espresso. Když byly vzorky kávy analyzovány po 24 hod, rozdíly mezi třemi typy kávových nápojů se zvýšily v sestupném pořadí filtrovaná káva poté italská a espresso. Hlavním důvodem změn u speciálně upravovaných káv je ztráta asi 10 – 20 % antioxidáční aktivity během ošetření parou.

Hodnota TEAC podle antioxidáční kapacity po 6 min byla stanovena v sestupném pořadí dle vzorků káv dle původu takto: Vietnam, Uganda, Nikaragua, Kolumbie, Brazilie, Portoriko, Guatemala, Keňa, Papua a u káv bez kofeinu: Kolumbie, Etiopie, Jamajka a Brazilie. Všechny sledované kávy jsou dobrými antioxidanty bez ohledu na jejich cenu, původ a způsob úpravy, jakým se vaří [40].

5.2 Antibioaxidáční aktivita kakaových výrobků

Čokoládové a kakaové rozpustné potravinářské prášky jsou zdrojem antioxidantů. Přírodní rostlinné antioxidanty jsou běžnými sloučeninami, které mají potenciální zdravotní výhody. Kakao obsahuje celou řadu řad antioxidantů, rozpustné fenolické sloučeniny, nerozpustné polymerní fenoly. Pro tuto studii byly použity obchodní rozpustné kakaové prášky a čokolády, které jsou široce konzumovány ve Španělsku. Byly použity tmavé a mléčné čokolády s 52% a 34% obsahem kakaa. Čokoláda a kakaová hmota byly před použitím pomlety a prosety do určité velikosti. 1 g vzorku byl smíchán se 40 ml okyseleného metanolu smíchaného s vodou v poměru 50:50 o pH 2,0. Posléze byly vzorky důkladně promíchány a ponechány po dobu 1 hod při pokojové teplotě. Po uplynutí daného času byl separát oddělen a k němu znovu přidáno 40 ml roztoku vody v acetonu v poměru 30:70 a bylo protřepáno. Výtažky byly použity pro stanovení antioxidáční aktivity. Radikálový kationt ABTS++ byl produkován reakcí ABTS s 10 ml 2,45 mmol.dm−3 síranu draselného a směs byla ponechána ve tmě při pokojové teplotě po dobu 12 – 16 hod před použitím. ABTS++ byl zředěn s metanolem na absorbanci 0,70 ± 0,02 při 730 nm. Po
přidání 0,1 ml vzorku k 3,9 ml zředěného ABTS$^{++}$ byla každých 20 s měřena absorbance na spektrofotometru. Reakce byla sledována po dobu 6 min.

Ve zmiňované studii byly použity tři metody pro stanovení antioxidační aktivity: FRAP, ABTS a DPPH. Kakao je hlavní složka kakaových výrobků pro stanovování antioxidační aktivity. Přítomnost mléka v mléčné čokoládě částečně odpovídá za to, že obsah antioxidační aktivity je až o 50 % nižší než u hořké čokolády. Stejně tak to bylo v případě kakaových prášků. Antioxidační aktivita po rozpuštění v mléce byla o 35 % nižší než po rozpuštění ve vodě.

Průměrná spotřeba kakaových výrobků je 8,6 g na osobu na den. Z toho tvoří 75 % čokoláda a 25 % rozpustné kakaové prášky. Tyto údaje jsou reprezentativní na vnitrostátní úrovni, ale spotřeba čokolády není obyvatelstvem rovnoměrně spotřebována. Mnoho studií uvádí, že přítomnost flavonoidů z kakaa se předchází chronickým chorobám a především kardiovaskulárním onemocněním [41].

5.3 Stanovení antioxidační aktivity vín

Víno je obecně známo, pro svůj ochranný proces organizmu proti kardiovaskulárním a degenerativním onemocněním. Některé z účinků vína přímo souvisí s jejich schopností zhasť volné radikály, tato schopnost závisí na jejich chemické struktuře. Nejčastější metoda pro zjištění antioxidační aktivity je ABTS, test radikálním kationtem ABTS$^{++}$. Tento test používá pro nápoje a potravina, ale také v biologických tekutinách. Bylo zkoumáno 42 druhů vín z různých ročníků a původů zakoupených v supermarketech.

Vzorků bílého vína bylo 17, Sherry 9 a červeného 16. Vzorky byly otevřeny, chráněny před sluncem a skladovány při teplotě 4 °C. Analýza vzorků byla provedena během několika dnů. Antioxidační aktivita byla stanovena pomocí ABTS$^{++}$ metody popsané Cenem et al. pro ovocné šťávy. Radikál vznikl reakcí mezi 1,5 mmol·dm$^{-3}$ ABTS, 15 µl peroxidu vodíku a 0,25 mmol·dm$^{-3}$ peroxidázy v 50 mmol·dm$^{-3}$ glycin-HCl pufřu o pH 4,5. Ke 100 µl byly přidány 2 ml ABTS$^{++}$ a absorbance byla měřena při 414 nm po uplynutí 2, 6, 10 a 15 min. Pro každý vzorek vína bylo připraveno 5 – 6 různých ředění. Vzorky byly připraveny ve vodném roztoku etanolu a analyzovány. Všechna měření byla provedena ve dvou stanoveních. Víno je komplexní směs fenolických sloučenin s rozmanitými chemickými strukturami, které dávají vínu zvláštní vlastnosti. Hodnoty TEAC odrážejí relativní schopnost zhasť radikální kationt ABTS$^{++}$ v porovnání s Troloxem. Červená vína prokázala vysokou antioxidační aktivitu s hodnotami TEAC
až 10krát vyššími než u bílého a Sherry vína. To souvisí s vyšším obsahem fenolických látek v červeném vinu. Žádné významné rozdíly mezi bílými víny a viny Sherry nebyly pozorovány. Srovnáním TEAC s jinými potravinami při využití metody ABTS jsou podle literatury takové, že jedna sklenka červeného vína (125 ml) má stejné antioxidační vlastnosti jako 212 ml hroznové šťávy, 190 ml pomarančové šťávy, 225 ml černého čaje, 286 g čerstvého špenátu nebo 926 g rajčat [42].

Obrázek 10 Průměrné TEAC hodnoty pro červená, bílá a Sherry vína [42]

5.4 Celková antioxidační aktivita chleba

Během pečení chleba dochází k různým chemickým změnám ve složení a také vlastností, což vede ke změnám nutričních hodnot konečného výrobku. Maillardovy reakce se přímo podílejí na těchto změnách, produkují nově vytvořené sloučeniny a na druhou stranu zlepšují organoleptické vlastnosti chleba jako je vzhled a chuť. Mezi nejzajímavější biologické aktivity spojené s těmito vzniklými sloučeninami jsou jejich antioxidační vlastnosti. Ostatní komponenty jako jsou fenolické sloučeniny, tokoly a vláknina, které jsou obsaženy v chlebové mouce, mohou také přispět k celkové antioxidační aktivitě. Byly analyzovány vzorky chlebů z pšenice a pšeničných otrub, které už byly předpečeny, aby mohlo dojít, pouze ke konečnému pečení v domácích v horkovzdušných sušárnách. Vzorky byly dopékány při 200 °C po dobu 0, 12, 20 a 30 min. Chleby pečené po dobu 20 min byly vybrány i pro studium vlivu stravitelnosti chleba pomocí pepsínu a pankreatinu. Stanovení antioxidační aktivity bylo provedeno metodou ABTS, která byla provedena dle H.R. Andradeho. ABTS⁺⁺ byl produkován smícháním 7 mmol·dm⁻³
zásobního roztoku ABTS s 2,4 mmol dm⁻³ peroxodisíranu draselného a směs byla ponechána ve tmě a pokojové teplotě po dobu 12 – 16 hod před použitím. Stabilní roztok ABTS⁺⁺ se zřízení směsi etanol:voda v poměru 50:50, aby absorbance při 730 nm byla 0,70 ± 0,02. Po přidání 100 ml vzorku k 1 ml zředěného ABTS⁺⁺ byly absorbance odečítány po 20 min. Pro kalibraci přístroje byly použity vodné roztoky Troloxu. Je známo, že pepsin hydrolyzuje pšeničný lepek a dochází tedy ke vzniku různých peptidů s vysokým stupněm antioxidační aktivity. Antioxidační aktivita se však nijak výrazně neměnila působením pankreatinu a žlučových solí, což potvrzuje zásadní úlohu pepsinu v uvolňování antioxidantů [43,44].

5.5 Stanovení antioxidační aktivity ve vybraných ovocných semenech

ZÁVĚR

Cereálie neboli obilniny doprovázejí naší společnost už od nepaměti. Jsou to vyšlechtěné jednoleté trávy řadící se botanicky mezi čeledí Gramineae. Vhodně zpracované obiloviny jsou v celosvětovém měřítku nejvýznamnějším přínosem energie ve formě sacharidů. Kromě sacharidů jsou však zdrojem mnoha dalších životně důležitých látek, které jsou v jiných potravinách obsaženy třeba i ve vyšších koncentracích, ale spotřebou se obilovinám nevyrovnají.

Obiloviny obsahují několik typů sloučenin, které jsou schopné minimalizovat škodlivé účinky oxidativních reakcí a mají významnou roli při ochraně před volnými radikály. Studie prokazují souvztažnost mezi antioxiidální aktivitou látek přijímaných v potravě a prevenci některých onemocnění, jako jsou například kardiovaskulární choroby, neurologické poruchy či procesy stárnutí.

Existuje velký počet metod používaných pro stanovení antioxiidální aktivity. Rozličnost metod vyplývá ze skutečnosti, že nízkomolekulární antioxidanty mohou působit různými mechanizmy. Nejčastěji se jedná o přímou reakci s radikály, zhášení, nebo o reakci s přechodnými kovy.

Bakalářská práce se zabývá metodou ABTS a jejím využitím v oblasti cereálních a potravinářských technologií. ABTS je chemická sloučenina, sloužící pro stanovení celkové antioxiidální aktivity, kdy bezbarvá molekula ABTS je převáděna na modro-zelený radikál ABTS•+ oxidací jednoho elektrony. Metoda ABTS testuje schopnost vzorku či látek zhášet kation-radikál ABTS•+ a toto zhášení se sleduje spektrofotometricky na základě změn absorpčního spektra ABTS•+. Absorbance se nejčastěji měří při 734 nm. Jsou také i možnosti chemické oxidace ABTS, např. peroxidisíranem draselným nebo oxidem manganičitým.

Bakalářská práce slouží jako podklad pro následnou diplomovou práci, která se bude věnovat izolaci antioxiidálních látek z obilovin a cereálních výrobků a jejímu následnému stanovení.
SEZNAM POUŽITÉ LITERATURY

http://dspace.upce.cz/handle/10195/34585

SEZNAM POUŽITÝCH SYMBOLŮ A ZKRATEK

ABAP 2,2'-azobis-2-metyl-propionamidin
ABTS 2,2'-azinobis(3-etyl-2,3-dihydrobenzotiazol-6-sulfonová kyselina)
ABTS'' 2,2-azinobis(3-etyl-2,3-dihydro-benzotiazol-6-sulfonát)
DPPH 2,2-difenyl-1-(2,4,6-trinitrofenyl)hydrazyl
FRAP Ferric Reduction Antioxidant Power (metoda založená na redukci železitého komplexu)
ORAC Oxygen Radical Absorbance Capacity (metoda, kdy dochází k vytvoření peroxylového radikálu β-fykoeritrinu)
SAE Spojené arabské emiráty
TAA Total antioxidant activity (celková antioxidační aktivita)
TEAC Trolox Equivalent Antioxidant Capacity (metoda, která vyjadřuje antioxidační kapacitu vzorku ekvivalentní určitému množství standardu Troloxu)
TEC Total antioxidant capacity (celková antioxidační kapacita)
TPTZ 2,4,6-tripyridyl-S-triazin
SEZNAM OBRÁZKŮ

Obrázek 1 Anatomická stavba obilného zrna ... 13
Obrázek 2 Pšenice ozimá - květenství, začátek tvorby zrna.. 16
Obrázek 3 Ječmen jarní .. 17
Obrázek 4 Oves bezpluchý ... 18
Obrázek 5 Kukuřice .. 18
Obrázek 6 Oxidace ABTS na ABTS$^+$.. 25
Obrázek 7 Porovnání hodnot antioxidační aktivity ... 28
Obrázek 8 Porovnání antioxidační aktivity (míry schopnosti zhášení radikálu ABTS) u pšeničné mouky a testovaných cereálií ... 30
Obrázek 9 Stanovení antioxidační aktivity pomocí ABTS .. 33
Obrázek 10 Průměrné TEAC hodnoty pro červená, bílá a Sherry vína................................. 38
SEZNAM TABULEK

Tabulka 1 Chemické složení obilovin [%] .. 14