Minerální biotechnologie

Vendula Spálovská
Univerzita Tomáše Bati ve Zlíně
Fakulta technologická
Ústav inženýrství ochrany životního prostředí
akademický rok: 2011/2012

ZADÁNÍ DIPLOMOVÉ PRÁCE
(PROJEKTU, UMĚLECKÉHO DÍLA, UMĚLECKÉHO VÝKONU)

Jméno a příjmení: Vendula SPÁLOVSKÁ
Osobní číslo: T09729
Studijní program: B 2B08 Chemie a technologie materiálů
Studijní obor: Inženýrství ochrany životního prostředí
Téma práce: Minerální biotechnologie

Zásady pro vypracování:

1. Provedte literární průzkum na dané téma bakalářské práce podle pokynů vedoucího práce.
2. Sestavte osnovu bakalářské práce podle pravidel UTB ve Zlíně platných pro danou publikaci a uspořádejte ji do logického celku.
3. Výsledky literárního průzkumu kriticky zhodnotte a sestavte do konečné formy bakalářské práce dle vzoru (pravidel) uvedeného v předešlém odstavci.
Rozsah diplomové práce:
Rozsah příloh:
Forma zpracování diplomové práce: tištěná/elektronická

Seznam odborné literatury:
Primární parametry podle dispozic vedoucího práce.
Vybrané dostupné databáze.

Vedoucí diplomové práce: prof. Ing. Jan Kupec, CSc.
Ústav inženýrství ochrany životního prostředí
Datum zadání diplomové práce: 13. února 2012
Termín odevzdání diplomové práce: 18. května 2012

Ve Zlíně dne 13. února 2012

Románek, Ph.D.
děkan

Koutrý, Ph.D.
ředitel ústavu
Příjmení a jméno: SPALOVA KENDRA

Obor: CHIMI

PROHLÁŠENÍ

Prohlášuji, že

- beru na vědomí, že odevzdáním diplomové/bakalářské práce souhlasím se zveřejněním své práce podle zákona č. 111/1998 Sb. o vysokých školách a o změně a doplnění dalších zákonů (zákon o vysokých školách), ve znění pozdějších právních předpisů, bez ohledu na výsledek obhajoby;
- beru na vědomí, že diplomová/bakalářská práce bude uložena v elektronické podobě v univerzitním informačním systému dostupná k nahlédnutí, že jeden výtisk diplomové/bakalářské práce bude uložen na příslušném ústavu Fakulty technologické UTB ve Zlíně a jeden výtisk bude uložen u vedoucího práce;
- byl/a jsem seznámen/a s tím, že na moji diplomovou/bakalářskou práci se plně vztahuje zákon č. 121/2000 Sb. o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon) ve znění pozdějších právních předpisů, zejm. § 35 odst. 3;
- beru na vědomí, že podle § 60 odst. 1 autorského zákona má UTB ve Zlíně právo na uzavření licenční smlouvy o užití školního díla v rozsahu § 12 odst. 4 autorského zákona;
- beru na vědomí, že podle § 60 odst. 2 a 3 mohu užít své dílo – diplomovou/bakalářskou práci nebo poskytnout licenci k jejímu využití jen s předchozím písemným souhlasem Univerzity Tomáše Bati ve Zlíně, která je oprávněna v takovém případě ode mne požadovat přiměřený příspěvek na úhradu nákladů, které byly Univerzitou Tomáše Bati ve Zlíně na vytvoření díla vynaloženy (až do jejich skutečné výše);
- beru na vědomí, že pokud bylo k vypracování diplomové/bakalářské práce využito softwaru poskytnutého Univerzitou Tomáše Bati ve Zlíně nebo jinými subjekty pouze ke studijním a výzkumným účelům (tedy pouze k nekomerčnímu využití), nelze výsledky diplomové/bakalářské práce využit ke komerčním účelům;
- beru na vědomí, že pokud je výstupem diplomové/bakalářské práce jakýkoliv softwarový produkt, považuji se za součást práce rovněž i zdrojové kódy, popř. soubory, ze kterých se projekt skládá. Neodezvzdání této součásti může být důvodem k neobhajování práce.

Ve Zlíně 14. 6. 2012

[Podpis] SPALOVA KENDRA
§ 111/2006 Sb. o vysokých školách o změně a doplnění dalších zákonů (zákona o vysokých školách), ve znění pozdějších právních předpisů, § 87 Zveřejňování zákonných průběhů,

(1) Vysoká škola nevydává zveřejnění zveřejňující disertační, diplomové, bakalářské a otevřené práce, v kterých probíhá obhajoba, včetně posudků o jejich průběhu, vzniklého pro připravení a obhajobu práce, které poskytuje všechny schválené informační služby, které provozuje vysoká škola.

(2) Oproti tomu, diplomové, bakalářské a otevřené práce, otevřená vzniklá uchazečem o obhajobu práce, kterému bývá teď nejmeně pět pracovních dnů před vyložením obhajoby zveřejněna k nakládání Českého vědecko-technického listy nebo není-li tak určeno v místě pracovního oddělení, kde je toto úkona práce položena na své náklady výjimky, opty nebo nezaměstnanecký případ.

(3) Platí, že otevřené práce autor souhlasí se zveřejněním své práce podle tohoto zákona, bez ohledu na výsledky obhajoby.

§ 121/2000 Sb. o právu autorském, o právách souvisejících s právem autorským a o změně některých zákonů (autorský zákon) ve znění pozdějších právních předpisů, § 35 odst. 3,

(1) Od práva autorského také nesnahuje škola nebo školní či vzdělávání zařízení, učilištěm, učilišťem, učilištěm o výkonu práva na zveřejnění licencí, která je takto určena v úvěru předmětu obhajoby práce, která je zveřejněna v učilišti učilištěm nebo učilišti.
ABSTRAKT

Minerální biotechnologie slouží k získávání potřebných kovů z chudých rud, nebo odstraňování toxických kovů z průmyslových odpadních vod pomocí mikroorganismů, nebo látek z jejich metabolismu. Využívají se především v důlním a metalurgickém průmyslu, kde je potřeba maximální výtěžek a odstranění toxických kovů z odpadních vod za příznivých ekonomických podmínek. Působením mikroorganismů získáváme různé kovy především měď, pak uran, mangan, nikl a další. Mikrobiální úprava rudních koncentrátů se také využívá k předúpravě zlatonosných koncentrátů z těžko použitelných rud. Minerální biotechnologie se dále využívají ke zpracování průmyslových odpadů obsahujících sulfidický i nesulfidický materiál. Nejpoužívanějším mikroorganismem v minerálních biotechnologiích je bakterie druhu *Thiobacillus ferrooxidans*, ale významnými jsou i další. Použití určitého druhu mikroorganismu závisí na prvku, který chceme z rudy, vody nebo půdy odstranit. Každý mikroorganismus má své specifické vlastnosti a vyžití. Využití biotechnologií se neustále rozvíjí a studuje.

Klíčová slova: Minerální biotechnologie, biotechnologie, mikrobiologie, *Thiobacillus ferrooxidans*, oxidace.

ABSTRACT

Mineral biotechnology are used to obtain the necessary metals from poor ores, or removal of toxic metals from industrial wastewater using microorganisms, or substances from their metabolism. They are used primarily in mining and metallurgical industry, where the need for maximum yield and removal of toxic metals from waste water under favorable economic conditions. By microorganisms gain various metals especially copper, then uranium, manganese, nickel and others. Microbial treatment of ore concentrates are also used for pretreatment of gold-bearing concentrates from hardly applicable ores. Mineral biotechnology is also used for processing industrial wastes containing sulphide material. The most commonly used in mineral biotechnology microorganism is a bakterium *Thiobacillus ferrooxidans* species, but are more significant. The use of a particular type of organism depends on the element you want from the ore, water or soil removed. Each organism has
its specific features and facilities. The use of biotechnology is continually evolving and studies.

Keywords: Mineral biotechnology, biotechnology, mikrobiology, *Thiobacillus ferrooxidans*, oxidation.
Děkuji svému vedoucímu práce za trpělivost a vedení při psaní této práce. Děkuji svým rodičům a rodině za podporu ve studiu. Děkuji přednášejícím a vyučujícím za získané informace.

Prohlašuji, že odevzdaná verze bakalářské práce a verze elektronická nahrána do IS/STAG jsou totožné.

Motto: Účelem vzdělání není zaplnit mysl, ale ověřit ji. Čím více poznatků si osvojíme, tím více si uvědomíme, co ještě neznáme.
OBSAH

ÚVOD ... 10

I TEORETICKÁ ČÁST ... 11

1 BIOTECHNOLOGIE, JEJICH VÝVOJ A ZÁKLADNÍ POJMY 12

1.1 Historie a vývoj biotechnologií .. 12

1.2 Mikroorganismy ... 12

1.2.1 Rozdělení mikroorganismů podle fyziologických vlastností 13

1.2.2 Všeobecná charakteristika mikrobiálního metabolismu 14

1.3 Minerální biotechnologie ... 14

2 CHARAKTERISTIKA MIKROORGANISMŮ VYUŽÍVANÝCH V MINERÁLNÍCH TECHNOLOGIích ... 16

2.1 Charakteristika rodu *Thiobacillus* .. 16

2.1.1 Inhibiční vlivy ovlivňující aktivitu a růst bakterií *Thiobacillus ferrooxidans* ... 17

2.2 Sírany redukující bakterie ... 17

3 TECHNOLOGIE BAKTERIÁLNÍHO LOUŽENÍ A JEHO VYUŽITÍ 19

3.1 Biologicko-chemická oxidace sulfidů ... 19

3.2 Mechanismus bakteriálního loužení rud bakteriemi 20

3.3 Loužení rud ... 21

3.3.1 Technika loužení rud .. 23

3.4 Současně využití minerálních biotechnologií 24

3.4.1 Bioloužení mědi ... 24

3.4.2 Biologické loužení ostatních kovů ... 24

3.4.3 Úprava nerudních surovin .. 25

3.4.4 Bioakumulace prvků a dočišťování vod 25

3.4.5 Odsiřování uhli ... 27

3.4.6 Využití síran redukujících bakterií 27

3.4.7 Biologický rozklad uhlovodíků pomocí mikroorganismů 28

3.4.8 Mikrobiální degradace PCB .. 28

ZÁVĚR .. 29

SEZNAM POUŽITÉ LITERATURY ... 30

SEZNAM POUŽITÝCH SYMBOLŮ A ZKRATEK 32

SEZNAM OBRÁZKŮ .. 33
ÚVOD

Některé kovy v životním prostředí představují vážná environmentální a zdravotní rizika. Tyto kovy můžeme nalézt v odpadech z důlní a metalurgické činnosti a také v průmyslových odpadních vodách. Využití biotechnologií se stále rozšiřuje o nové poznatky a metody. Minerální biotechnologie se zabývají získáváním a odstraňováním kovů z nerostných surovin pomocí mikroorganismů, nebo produktů jejich metabolizmu. Jsou ekonomicky a ekologicky výhodnější, ale časově náročnější než jiné technologie. Pomocí minerálních biotechnologií získáváme z méně kvalitních rud, odvalů a hald dané kovy těchto sekundárních zdrojů. Biotechnologie se také využívají k odstraňování toxických kovů z některých typů průmyslových odpadních vod; lze je také využít při odstraňování uhlovodíkového znečištění zejména v půdách. Vlastní minerální biotechnologie jsou poměrně málo známé; jejich stručný nástin podává tato studie.
I. TEORETICKÁ ČÁST
1 BIOTECHNOLOGIE, JEJICH VÝVOJ A ZÁKLADNÍ POJMY

Mezi dnes hojně využívané technologické postupy patří tzv. environmentální nebo také minerální biotechnologie. Na základě Evropské federace pro biotechnologii z roku 1981 byly biotechnologie definovány jako soubor postupů, které jsou založeny na technologickém využití látkové přeměny mikroorganismů [1].

1.1 Historie a vývoj biotechnologií

Vývoj biotechnologií lze rozdělit do několika etap. Jako první etapu lze považovat období od starověku do roku 1886. Vlastností mikroorganismů se ve starověku využívalo hlavně v postupech výroby potravin, jako byla například výroba chleba, piva či vina [10].

V první etapě je zahrnuto objevení bakterie (1676, Antonius von Leeuwenhoek), vydání spisu o taxonomii (1838, Christian Gottfried Ehrenberg) a kultivace Bacillus anthracis (1876-1882, Robert Koch). Přelomovým datem první a druhé etapy označujeme rok 1886, kdy Luis Pasteur dokázal, že ethanolové a mléčné kvašení je způsobeno mikroorganismy a určil je jako původce infekčních chorob [10].

Druhou etapou označujeme období v létech 1886-1940 kdy se začaly vyvíjet konkrétní biotechnologie [2].

Třetí etapa by se mohla nazvat další přelomovou etapou. Je to období od roku 1940-1960, kdy byl objeven penicilin [1].

Poslední pátá etapa probíhá od roku 1975 až doposud. Zahrnujeme zde rozvoj genetického inženýrství dále také nové poznatky z enzymové a proteinové chemie [2].

1.2 Mikroorganismy

Studiem vlastností a činností mikroorganismů se zabývá mikrobiologie. Mikroorganismy jsou jednobuněčné nebo vícebuněčné organismy, které nemají schopnost tvořit tkáně nebo pletiva. Jejich rozměry se pohybují od několika desetin μm do několika desetin mm. Patří sem viry, bakterie, cyanobakterie (sinice), archea, prvoci, některé houby a řasy. Jedinými nebuněčnými mikroorganismy jsou viry; obsahují pouze genetický materiál ohraničený
obalovou strukturu. Bakterie, archa a sinice mají prokaryotický typ buňky. Houby, řasy a prvci mají eukaryotický typ buněk \cite{8}. Prokaryotní organismy mají materiál rozptýlený v cytoplasmě, jsou to především bakterie a cyanobakterie. Eukaryotní organismy mají své jádro odděleny od cytoplasmy jadernou blanou. Do skupiny eukaryotních organismů řadíme řasy, houby, kvasinky, plísně a protozoa \cite{2}.

1.2.1 Rozdělení mikroorganismů podle fyziologických vlastností

Mikroorganismy můžeme dělit i podle jejich fyziologických vlastností; významným požadavkem je dostatek živin \cite{6}. Podle nároků na výživu rozděluje mikroorganismy na autotrofní a heterotrofní. Autotrofním mikroorganismům stačí k výživě pouze anorganické sloučeniny; přítomnost organismických sloučenin zpomaluje jejich rozmnožování. Mezi autotrofní organismy patří řasy a některé bakterie. Heterotrofní mikroorganismy vyžadují přítomnost organismických sloučenin jako zdroj uhlíku a vodíku \cite{2}.

Podle nároků na kyslík rozdělujeme mikroorganismy na aerobní, anaerobní, mikroaerobní a fakultativně aerobní. Aerobní organismy potřebují vzdušný kyslík, anaerobní ho nesnášejí. Mikroaerobní organismy vyžadují pouze malé množství vzdušného kyslíku. Mikroaerobní mikroorganismy jsou např. mléčné bakterie. Fakultativně aerobní organismy mají schopnost aerobního i anaerobního metabolismu \cite{2}.

Posledním fyziologickým rozdělením organismů je podle způsobu získávání energie (fototrofní a chemotrofní). Fototrofní mikroorganismy mají jako zdroj energie přeměnu světelné energie na energii chemickou. Chemotrofní mikroorganismy získávají svou energii oxidací různých chemických sloučenin; jsou to především sirné bakterie, které získávají energii oxidací síry a jejich sloučenin, nitrifikáční bakterie získávající energii oxidací dusíku a železité bakterie využívající energii oxidací železnatých iontů na ionty železité \cite{9}.

Z hlediska úpravy nerostných surovin pomocí biotechnologických procesů jsou nejdůležitější chemolitotrofní bakterie využívající jako zdroj energie anorganické látky (nerosty), které přitom oxidují. Podle povahy oxidované látky dělíme chemolitotrofní bakterie na bakterie oxidující sloučeniny dusíku (\textit{Nitrosomonas}), bakterie oxidující síru a její sloučeniny, bakterie oxidující sloučeniny železa a mangany, bakterie oxidující elementární vodík a bakterie oxidující oxid uhelnatý a methan \cite{6}.

Železité bakterie produkují oxidy železa nebo mangany, které ukládají do buněčného pouzdra nebo je vylučují do okolního prostředí \cite{6}.
Sirné bakterie získávají energii pro své životní pochody oxidací redukovaných sloučenin síry a oxidací Fe$^{2+}$. Zástupcem těchto bakterií je rod *Thiobacillus*. Konečným produktem oxidace bývá SO$_4^{2-}$. Sirné bakterie nacházíme v půdě, ve sladkých i slaných vodách, v důlních vodách a na lokalitách, kde se vyskytuje sulfan [6].

1.2.2 Všeobecná charakteristika mikrobiálního metabolismu

Metabolismus zahrnuje procesy látkové přeměny sloužící k získání stavebního materiálu a energie pro životní pochody organismů. V mikroorganismech probíhá neustálá přeměna látek zajišťující buňkám dostatečně množství energie a materiálu pro životní procesy buňky. Intenzita metabolismu je u mikroorganismů silně ovlivněna vnějším prostředím. Aktivita mikroorganismů je zapříčiněna řadou faktorů. Nejdůležitější jsou přijímání živin celým povrchem těla, bohatě vyvinutý aparát syntézy bílkovin a velmi aktivní katabolický metabolizmus. Při nedostatku živin se buňky mikroorganismů nerozmnožují, jejich metabolizmus se zpomaluje a může dojít až ke smrti buňky [8].

1.3 Minerální biotechnologie

Minerální biotechnologie nebo také environmentální biotechnologie vyvíjela ve své podstatě příroda sama. Cílený rozvoj této oblasti zařazujeme do třetí vývojové etapy biotechnologií (od roku 1947), kdy byly poprvé z důlních vod vyizolovány thionové bakterie [1]. Všeobecně lze označit minerální biotechnologie jako technologické postupy těžební, úpravnické a zpracovatelské, ve kterých se pro dosáhnutí kvalitativní změny nerostných surovin a jejich odpadů využívají mikroorganismy nebo produkty metabolismu mikroorganismů. Kasický trojsložkový systém pevná-kapalná-plynná fáze je zde rozšířen o čtvrtou tzv. biofázi. Tento čtyřsložkový systém na Zemi funguje již miliardy let a je významným článkem koloběhu prvků v litosféře, jako součást biosféry. Thionové bakterie se zúčastňují koloběhu síry v biosféře a spolu se sulfátredukujícími bakteriemi katalyzují oxidačně zvětrávací procesy sulfidů a následně redukční procesy vzniku sekundárních sulfidů a elementární síry [1].

Biotechnologie nerostných surovin jsou významnou součástí hydrometalurgických procesů při extrakci kovů z chudých rud či rudních koncentrátů. Rostoucí zájem o tyto postupy je dán tím, že při aplikaci biologického loužení nedochází ke znečišťování půdy, vody a ovzduší [6].
Minerální biotechnologie na základě působení thionových bakterií jsou využívány při těžbě a zpracování sulfidů aplikované jako metoda těžby, respektive dotěžby užitkového kovu z ložisk. Jde tedy o metody aplikace bakteriálních kultur in-situ. Dalšími aplikacemi je metoda získávání užitkového kovu na uměle navršených haldách z důlní činnosti a extrakční metoda pro biologicko-chemické loužení sulfidů. Thionové bakterie lze využít i jako sorbent některých kovových iontů při čištění průmyslových odpadních vod. Bakteriálním loužením lze získávat různé kovy, jako jsou Cu, Zn, nebo U. Například v USA se bioloužením in-situ získalo přes 30% celkové produkce mědi [1].

Hydrometalurgie studuje a následně aplikuje procesy rozpouštění kovů z nerostů za získání požadovaných prvků. Biometalurgie je průmyslově realizovatelný mikrobní proces zpracovávající drcené horniny, zaměřený na extrakci kovů (Cu, U, Co, Zn, Pb, Au a další) z chudých odpadových nerostných surovin [11]. Pozornost je také věnována zákonitostem mezi řízeným bakteriálním loužením rud a geochemickými aspekty migrace prvků v životním prostředí. Loužení rud pomocí bakterií spočívá v biokatalytickém urychlování oxidačních nebo redukčních procesů; v důsledku toho se minerály ve vodě nerozpustně stávají snadno rozpustnými. V biotechnologii nerostných surovin je také důležitý i vznik kyseliny sírové jako produktu oxidace sulfidů [6].

Výhodou využití biotechnologických postupů je nízká energetická nákladnost, nízké investiční a operativní náklady i získávání užitečných složek z chudých rud a odpadů. Podstatnou nevýhodou je nízká rychlost extrakce, která může trvat až několik měsíců [1].
2 CHARAKTERISTIKA MIKROORGANISMŮ VYUŽÍVAJÍCÍCH V MINERÁLNÍCH TECHNOLOGIÍCH

2.1 Charakteristika rodu *Thiobacillus*

Rod *Thiobacillus* patří do čeledi *Thiobacteriaceae*, která patří do rodu *Pseudomonales*. Jsou to většinou drobné tyčinky o rozměrech 0,5x1-1,5μm se zaoblenými konci, opatřené jedním spirálovitým bičíkem [1]. *Thiobacillus ferrooxidans*, jsou pohyblivé, nesporující, gramnegativní bakterie. Všechny druhy *Thiobacillus* jsou schopny využít jako energetický substrát síru a její redukované anorganické sloučeniny [2].

Thiobacillus ferrooxidans je striktně aerobní chemolitotrofní mikroorganismus [6]. Energii získávají oxidací anorganických sloučenin a jako konečný akceptor elektronů mu slouží atmosférický kyslík. *Thiobacillus ferrooxidans* je jediný, který je schopen získávat energii oxidací Fe$^{2+}$ na Fe$^{3+}$; Fe je v podobě FeSO$_4$ nebo vázané v sírnících; jako zdroj C využívá atmosférický CO$_2$. K jeho asimilaci se využívá energie z oxidačních reakcí; energie získaná z oxidačních reakcí je pomocí ATP přenášena do míst fixace CO$_2$. V Calvinově cyklu se pak sloučí ribuoso-1,5-dífosfát s CO$_2$ a vytváří tak hexodifosfát (6 uhlikatý cukr) [2].

Thiobacillus ferrooxidans jako zdroj N využívá pouze amonné soli. Fosfor využívá tento mikroorganismus pouze v malém množství; vysoká koncentrace P zpomaluje oxidační reakce [2].
Metabolismus bakterií *Thiobacillus ferrooxidans* je realizován ve dvou procesech: oxidace anorganických látek za vzniku energie a fixace CO₂ [1].

Thiobacillus ferrooxidans jsou aktivní v rozmezí teplot 2-40°C (optimální 28-30°C). Optimální pH při kultivaci s Fe²⁺ substrátem se nachází v rozmezí 2-3; při kultivaci na sirných látkách je pH okolo 4 [1].

Thiobacillus thiooxidans byl izolován již v roce 1922. Jeho buňky si jsou morfologicky podobné s druhem *Thiobacillus ferrooxidans*. Od druhu *Thiobacillus ferrooxidans* se liší tím, že oxiduje elementární síru a sirné sloučeniny [1].

2.1.1 Inhibiční vlivy ovlivňující aktivitu a růst bakterií *Thiobacillus ferrooxidans*

I když se dodržují optimální podmínky pro existenci *Thiobacillus ferrooxidans* jako je optimální pH, teplota, výživné látky a dostatek substrátu, mohou na buňky inhibičně působit toxické kovy a také abrazivní účinek pevné fáze [1].

Toxicita některých iontů kovů (Cu, Fe, Pb, Hg, Ag, Au, As) na organismy je všeobecně známa. U autotrofních bakterií je tolerance koncentrace těžkých kovů podstatně vyšší oproti heterotrofním. Uváděně rezistence pro *Thiobacillus ferrooxidans*: As - 1,0 g.l⁻¹, Cu - 1,5 g.l⁻¹, Zn - 2,0 g.l⁻¹. Jednotlivé koncentrace souvisejí s primárními životními podmínkami na ložisku, ze kterého byly dané buňky vyizolovány. Toxicita jednotlivých kovů závisí na jejich mocenství, rozpustnosti ve vodě a typu vazby ve sloučeninách. Například u arzenu se nejvyšší toxicitou vyznačují ionty As³⁺, které jsou ve vyšších koncentracích přítomné jen ve velmi kyselých roztocích. V podmínkách reálného bakteriálního loužení arzenopyritu koncentrace arzenu ve výluhu několikrát převyšuje hranici přirozené tolerance As bakteriemi *Thiobacillus ferrooxidans*. Účinek této zvýšené koncentrace má za následek zastavení některých životně důležitých funkcí mikroorganismů [1].

Dalším inhibičním vlivem je otěr pevné fáze, kdy částice pevné fáze svým abrazivním účinkem narušují buněčnou stěnu bakterií, a v důsledku tohoto poškození značná část populace odumírá a tím dochází i ke snížení rychlosti oxidace Fe²⁺ [1].

2.2 Sírany redukující bakterie

V minerálních biotechnologiích jsou také využívány síran redukující bakterie; první písemná zmínka o jejich existenci se objevila už v roce 1895 (M.W. Beijerick). Tyto bakterie byly o několik let později popsány jako rod *Desulfovibrio* jako síran-redukující bakterie.
Výzkum v oblasti sírany redukujících bakterii se stále vyvíjí, což dokazuje objevení nového druhu *Desulfovibrio mexicans* sp. nov., který se dnes využívá na zpracování odpadních vod při výrobě sýrů v Mexiku [2].

Síran redukující bakterie se vyskytují převážně v anaerobních podmínkách a to v půdě, sedimentech stojatých vod sladkovodních řek a nádrží, sirných pramenech, důlních vodách sulfidických ložisk, ložiskách ropy a zemního plynu, nádrží na naftu a benzin, mořích a oceánech, bahně vyhnivacích nádržích, průmyslových odpadních vodách a i ve střevech hmyzu a člověka [13].

Síran redukující bakterie mají velmi rozmanitý tvar buněk, který může být v podobě koků, oválných tyčinek, vibrií, velkých tyčinek a další. Až na vyjimky jsou to gramnegativní, chemoorganotrofní, striktně anaerobní bakterie [2].

Základním metabolickým procesem sírany redukujících bakterii jsou bioenergetické procesy související s anaerobním dýcháním. V tomto procesu dochází k oxidaci organického substrátu přenosem vodíku a elektronů na kyslík vázaný v molekule organické látky. Akceptorem elektronů jsou většinou sírany. Existují dva typy anaerobní respirace síranů. Autotrofní redukce síranů, při níž je energetickým zdrojem plynný vodík a heterotrofní redukce síranů, ve které jsou energetickým zdrojem jednoduché organické látky. Sírany redukující bakterie v procesu anaerobní respirace síranů produkují velké množství plynného sulfanu, jenž ve vodním prostředí reaguje s kationty toxických kovů za vzniku málo rozpustných sulfidů [2].

Síran redukující bakterie se v důlní a metalurgické výrobě využívají k detoxikaci odpadních vod z této činnosti a k znovuuzískání kovových prvků (Ag, Sb, Cu, Zn) ve formě málo rozpustných sulfidů kovů [13].
3 TECHNOLOGIE BAKTERIÁLNÍHO LOUŽENÍ A JEHO VYUŽITÍ

3.1 Biologicko-chemická oxidace sulfidů

Do skupiny sulfidů jsou zařazeny sirné, selenové, telurové, arzenové a antimonové sloučeniny kovů. Nejrozšířenější z nich a průmyslově nejvýznamnější jsou sirné sloučeniny, které jsou důležitými rudnými minerály neželezných kovů. Z mineralogického hlediska patří sulfidické rudy k významným kolektorům řady stopových prvků a drahých kovů [1].

Oxidace nerostů obsahujících sulfidy probíhá za katalytického působení thionových bakterií podle obecných chemických rovnic:

Sulfidy kovů:

\[2 \text{MS}_2 + 7 \text{O}_2 + 2 \text{H}_2\text{O} \rightarrow 2 \text{MSO}_4 + 2 \text{H}_2\text{SO}_4 \]

Thiosulfáty:

\[\text{S}_2\text{O}_3^{2-} + 2 \text{O}_2 + \text{H}_2\text{O} \rightarrow 2 \text{SO}_4^{2-} + 2 \text{H}^+ \]

Síra:

\[2 \text{S}^0 + 3 \text{O}_2 + 2 \text{H}_2\text{O} \rightarrow 2 \text{SO}_4^{2-} + 4 \text{H}^+ \]

Kde \(\text{MS}_2 \) značí sulfid kovu M, \(\text{MSO}_4 \) je síran [6].

Energie, která je získána těmito oxidacemi se využívá k realizaci životních funkcí mikroorganismu. Jelikož jde o chemolitotrofní bakterie, je uvolněná energie využita hlavně k fixaci a redukci \(\text{CO}_2 \) a na stavbu organických látek v Calvinově cyklu.

Druh \textit{Thiobacillus ferrooxidans} je schopen získávat energii nejen oxidací redukovaných sloučnin síry, ale také z oxidace sloučenin dvojmocného železa:

\[\text{Fe}^{2+} \rightarrow \text{Fe}^{3+} + e^- \]

Mikroorganismus \textit{Thiobacillus ferrooxidans} oxiduje sloučeniny síry jako je například: \(\text{S}^0 \), \(\text{S}^2- \), \(\text{S}_2\text{O}_3^{2-} \), \(\text{S}_4\text{O}_6^{2-} \), \(\text{SO}_3^{2-} \) [6].

Biologicko-chemické loužení probíhá u řady sulfidických minerálů. Příkladem může být pyrit nebo arzenopyrit. Produktem oxidace arzenopyritu mohou být ionty \(\text{Fe}^{2+} \), \(\text{Fe}^{3+} \), \(\text{As}^{3+} \), \(\text{As}^{5+} \) a také síra. Biologicko-chemicky můžeme loužit i Cu sulfidy [9].
3.2 Mechanismus bakteriálního loužení rud bakteriemi

V řízeném procesu loužení rud bakterie degradují minerály třemi mechanismy:

1. Přímo - specifickými bakteriálními enzymy
2. Nepřímo – produkty metabolismu bakterií, kyselinou sirovou a síranem železitým
3. Galvanickým rozpouštěním nerostů

K nepřímé cestě nebo také k nepřímému loužení dochází při vzájemném působení minerálu a produkty metabolismu mikroorganismů. Podstatou nepřímé cesty je oxidace substrátu síranu železitýho vznikajícího z oxidace substrátu síranu železnatého a u sulfidů síry. Thiothracillus ferrooxidans oxidují opakovaně Fe^{2+} na Fe^{3+} při aerobních i anerobních podmínkách v prostředí kyseliny sirové, kdy se H_2SO_4 zároveň spotřebovává. Sraženiny trojmocného železa avšak zabránit kontaktu loužícího roztoku s povrchem minerálu a tím se snižuje aktivita bakterií. Tento jev je důležitý hlavně při loužení hald in-situ, kdy se snižuje propustnost horniny a následně výtěžek kovu. Tovarbytě vhodné jsou udržování nízkého pH a při loužení tancích nebo nádržích se používá minerál jarozit jako nosič bakterií, které na něm rostou rychleji než v samotném roztoku. Tento princip je využíván v postupu BACFOX (Bacterial Film Oxidation) v Jihoafrické republice k předúpravě zlata.

Galvanické rozpouštění je v podstatě nepřímé loužení, kdy se při přímém kontaktu dvou různých sulfidických minerálů v elektrolytu vytvoří galvanický článek. Elektrický proud pak prochází z minerálu s vyšším potenciálem k minerálu s nižším potenciálem. Ze sulfidů
má nejvyšší potenciál v prostředí kyseliny sírové pyrit; proto bývá většinou katodou. Anodou jsou minerály s nižším potenciálem, jako je například chalkopyrit nebo sfalerit. Povrch „anodových“ minerálů je disociován a do roztoku jsou uvolněny měďnaté nebo železnaté ionty a elementární síra, kterou *Thiobacillus ferrooxidans* dále oxidují na síranový anion a tím zabraňují usazování síry na elektrodě a tím zabraňují zpomalení galvanického rozpouštění [9].

Aby bylo loužení co nejefektivnější, je nutné zajistit optimální podmínky. Optimální pH je od 1,7 do 2,5, proto se většinou louží v roztoku kyseliny sírové. Optimální teplota se pohybuje okolo 28-30°C a optimální koncentrace kyslíku je 2mg.l⁻¹. Dále činnost bakterií *Thiobacillus ferrooxidans* ovlivňuje přítomnost CO₂ jako zdroj uhlíku, nebo přítomnost bakterií *Bacillus prodigiosum* a *Bacillus subtilis* které *Thiobacillus ferrooxidans* inaktivují [2].

3.3 Loužení rud

Bakteriální loužení měděných sulfidických rud je založeno na schopnosti bakterie *Thiobacillus ferrooxidans* oxidovat v kyselém prostředí síru, sulfidy a železo. Oxidaci je kov převeden z formy nerozpustného sirníku na ve vodě rozpustný síran, který je následně vyplavován z louženého materiálu. Z vodních roztoků je kov získáván v technologické části provozu různými metodami, jako je například cementace, elektrolýza či extrakce [5]. Loužení rud s pomocí živých organismů jako jsou thionové bakterie rozdělujeme do tří fází:

a) **Vlastní loužení**

Realizace se provádí zkráplěním louženého materiálu buď in situ v rudném ložisku, nebo ex situ na haldách a odvalech [14]. Ve fázi při vlastním loužení je použit extrakční roztok o pH 2,3-2,5, který obsahuje bakteriální kulturu ve fázi růstu, síran železnatý a kyselinu sírovou. V loužícím roztoku dochází k oxidaci sulfidických minerálů bakteriemi a síranem železitým za přítomnosti velkého množství loužícího roztoku a vzduchu [9].

b) **Získávání kovů z výluhu**

Výluhy obsahují síran extrahovaného kovu, síran železnatý, síran železitý a bakteriální populace. Extrahovaný kov se získá z roztoku v technologické části provozu různými metodami jako je cementace, elektrolýza, extrakce, srážení a jiné [2]. Výluh i odpad po získání kovu jsou z vodohospodářského hlediska klasifikovány jako vody znečištěné a proto je výhodnější provádět loužení v uzavřeném cyklu [5].
c) Regenerace loužícího roztoku

Loužení se provádí v uzavřeném cyklu, jelikož roztok po oddělení kovů obsahuje toxické koncentrace kovů. Po získání předmětného kovu z výluhu se provádí regenerace loužícího roztoku, který se využije v dalším cyklu loužení. Do regenerovaného roztoku se přidá ještě kyselina sírová pro dosažení požadovaného pH. Pomocí bakterií se dvojmocné železo oxiduje na trojmocné a celý cyklus loužení se opakuje [9].

Technologie postupu bakteriálního loužení rozdělujeme do šesti kroků:

1. Příprava rudného materiálu drcením nebo mletím
2. Bakteriální loužení
3. Oddělení tuhé fáze od kapalné fáze
4. Příprava roztoků k oddělení čisté sloučeniny a kovů
5. Oddělení čistých kovů a sloučenin
6. Regenerace vratných roztoků

Technologie postupu bakteriálního loužení je popsána na obr.1

![Obr. 1: Schéma bakteriálního loužení [1]](image-url)
3.3.1 Technika loužení rud

Loužení se provádí nejprve v laboratorních podmínkách za účelem získání konkrétních informací o vlastnostech mikroorganismů a jejich schopnosti oxidovat rudy [2].

Prvním laboratorním postupem je loužení v baňkách za stacionárních podmínek. Rozemleťá ruda je ve styku s médím a bakteriemi v baňkách za volného přístupu vzduchu v klidu po dobu několika týdnů až měsíců [9].

Druhým krokem je loužení v baňkách za neustálého míchání. Větší nasycení roztoku vzduchem zvyšuje aktivitu bakterií [9].

Třetím nejčastějším zařízením pro studium loužení v laboratoři jsou tzv. perkolátory (v podstatě extraktory). Loužící kolony jsou základním průmyslově využívaným zařízením. Jsou to i několik metrů vysoké válce obsahující rozemleté rudu. Vyrobeny jsou ze skla, plastů nebo oceli; jejich princip je shodný s perkolátory [12].

Druhým průmyslově využívaným postupem je loužení odvalů a hald. Na haldy se ukládá hlušina, která vždy obsahuje zbytkovou koncentraci kovu. V období hledání dalších zdrojů kovů se stavají významným sekundárním zdrojem surovin [12]. Haldy rozdrcené rudy jsou zkrápěny loužícím roztokem pomocí perforovaných trubek. Ve spodní části haldy se proteklý roztok odvádí k extrakci a do oxidační nádrže kde se za přítomnosti bakterie *Thiobacillus ferroxidans* oxiduje dvojmocné železo na trojmocné. Tento zregenerovaný roztok se zpět odvádí na povrch haldy; je to tedy kontinuální proces [9].

Loužení hald je proces obtížně regulovatelný; proto se v některých případech louží rozemletá ruda v cylindrokónických reaktorech [12]. Loužení v nádržích tedy probíhá podobným způsobem jako loužení hald, avšak do loužicích nádrží je vháněn pod tlakem vzduchu, který udržuje suspenzi ve vznosu [6].

Posledním typem průmyslového postupu je loužení in-situ. Provádí se také v důlních dílech nětěžených klasickým způsobem a to především v zavalených nebo zatopených uranových a měděných dolech [12]. Na povrchu důlních děl je vyvrtán hlavní vrt, který prochází horizontálními chodbami naplněnými rudným materiálem. Do důlního díla jsou vedeny ještě zavlažovací sondy pro dávkování loužicího roztoku. Roztok, který prošel rudným tělesem se pak vyčerpá ze dna hlavního nejhlubšího vrtu [2].
3.4 Současné využití minerálních biotechnologií

3.4.1 Bioloužení mědi

Biohydrometalurgie se používá k bioloužení mědi z podřadného vytěženého materiálu. Tento postup vyhovovala firma Kennecott Copper Corporation již v 50. letech minulého století. Získávání mědi z hornin je ekonomicky nenáročný proces ve srovnání s dalšími metodami. V polovině 80. let dvacátého století se začalo loužení rud používat i na předúpravu zlatonosného koncentrátu [2].

Bioloužení mědi se využívá hlavně v Jižní Americe. Jako příklad slouží závod Quebrada Blanca v severní Chile, který denně podtrží přes 17 000 tun sulfidické rudy. Vzniklé haldy jsou provzdušňovány a jsou do nich přidávány živné látky pro růst a vývoj bakterií. Loužení mědi na biohaldách se využívá hlavně v Chile a Austrálii, až do 16 000 tun ročně na biohaldách, tedy ex-situ nebo přímo v důlním tělese tedy in-situ až 1,2 miliony tun [2].

Měď je možné loužit i působením komplexotvorných metabolitů mikroskopických hub. Tímto způsobem je vhodné získávat měď z karbonátových a lidických rud. K tomuto loužení se využívají mikroskopické houby rodu Penicillium a Aspergillus [9].

3.4.2 Biologické loužení ostatních kovů

Bakterie *Thiobacillus ferrooxidans* se uplatňují i při loužení jiných kovů ze sulfidických minerálů. Příkladem může být loužení uranu, které se provádí hlavně ve Spojených státech a Kanadě. Dalším příkladem je loužení manganu, niklu a zinku [5].

Biooxidace se využívá také k předúpravě zlatého koncentrátu z méně kvalitní rudy. Od roku 1990 bylo uvedeno do provozu šest závodů, které používají michaně provzdušněné reaktory na biooxidaci zlatonosných pyritů a arzenopyritů. Tyto závody jsou v Austrálii, Africe a Brazílii [2].

Při hydrometalurgické úpravě uranových rud se do loužícího média často přidávají oxidační činidla (*MnO*₂, *NaClO*₃), která mají oxidovat nerozpustné minerály uranu na ve vodě rozpustné sloučeniny šestimocného uranu. Oxidace probíhá mechanismem nepřímého loužení za přítomnosti některých sirných bakterií. Uran se louží z povrchových hald i přímo z rudního tělesa (in-situ). Uran je z obohacených roztoků získáván iontovou výměnou, po které následuje další úprava roztoků jako je neutralizace, odstranění *²²⁶Ra*, oxidace Fe²⁺ na
Fe$^{3+}$ a recyklace roztoků. Doba loužení jedné haldy se pohybuje okolo 20 měsíců s výtěžností 60-85% [9].

3.4.3 Úprava nerudních surovin

Při úpravě nerudních surovin jsou nejúčinnější tzv. silikátové bakterie náležející k určitým druhům Bacillus. Mikrobiologická úprava je zaměřena na selektivní extrakci křemíku a hliníku, odstranění nežádoucích barvících komponent ze surovin a zlepšení technologických vlastností některých nerudních surovin. Cílem je ekonomické zhodnocení nekvalitních, chudých, nebo odpadních surovin a zavedení nových postupů úpravy pro metalurgický a keramický průmysl. Na chemickém rozkladu nerostů a hornin se mikroorganismy podílejí prostřednictvím enzymů, produktů jejich metabolismu, acidolýzou, alkalolýzou a tvorbou komplexů [6].

Při acidolýze mikrobiální oxidací sulfidů, elementární síry, amoniaku nebo organických sloučenin vznikají kyseliny, které tvoří s kovy slabé komplexy. Vznikají hlavně kyselina sírová, dusičná, octová, mravenčí a další, které mohou rozkládat řadu silikátů a alumosilikátů. Acidolýzou můžeme extrahovat křemík z různých nerostů [6].

Při alkalolýze v anaerobním prostředí za přítomnosti organických látek dochází účinkem heterotrofních bakterií k redukci dusíkatých sloučenin na dusitany, dusík nebo na amoniak. Působením amoniaku produkovaného bakteriemi Sarcina urea dochází k rozpuštění křemene a extrakci křemíku ze silikátů a alumosilikátů [6].

Při tvorbě komplexů produkty metabolismu mikroorganismů uvolňují z nerostů prvky, s nimiž tvoří komplexy. Při loužení jílů bakteriemi jsou loužicími složkami metabolické produkty bakterií, hlavně různé aminokyseliny, jejichž složení a koncentrace se mění během loužení. Rychlost degradace nerostů je přímo úměrná rychlosti růstu a množství bakterií v daném loužicím systému [6].

3.4.4 Bioakumulace prvků a dočišťování vod

Buněčná stěna mikrobiálních buněk obsahuje negativně nabité skupiny, na které se mohou vázat kationty kovů. Mnohé mikroorganismy také využívají do prostředí polymerní látky polysacharidového charakteru, které srážejí z prostředí ionty kovů a vážou je do své struktury [12]. Některé mikroorganismy a některé vyšší rostliny mají schopnost akumulovat z roztoku velké množství kovů toxických pro lidský organismus, nebo majících komerční
či ekonomický význam. Akumulace kovů je závislá na typu organismu, chemickém stavu kovu a na vlastnostech prostředí. Existuje několik mechanismů, při nichž dochází k akumulaci kovů z roztoků. Při mimobuněčném (extracelulárním) srážení dojde na metabo-
lických produktech mikroorganismů ke srážení volných nebo sorbovaných kationtů za vzniku ve vodě nerozpustných sloučenin. Dochází také k vazbě kovů na povrchu buňky v důsledku elektrostatického přitahování iontů kovů negativně nabitými místy buněčné stěny. Na odumřelých buňkách se ve většině případů koncentruje větší množství kovů než na živých buňkách [6].

Akumulace kovů se využívá i při získávání zlata pomocí řas. Buněčná stěna řasy druhu Chlorella vulgaris akumuluje rozpuštěné zlato z roztoku a redukuje ho na kovovou formu ve tvaru šupinek. Tato metoda se používá v roztocích obsahujících zlato vázané v kyanido-
vém komplexu [2].

Některé mikroskopické houby druhů Aspergillus a Penicillium jsou schopny také sorbovat na svou buněčnou hmotu uran. Větší část uranu je vázána povrchem buňky, kde tvoří komplexy uranu s proteiny, menší množství uranu pak tvoří komplexy s organickými dusíkatými metabolismy buňky. Vedlejším produktem bioakumulace při odstraňování uranu bývá přebytek bakterií v reaktoru, které jsou dále převedeny do denitrifikačního reaktoru, kde dochází za přítomnosti bakterií druhu Bacterium denitrificans a Bacillus nitroxs k redukci dusičnanů na plynný dusík [2].

Další využití mikroorganismů je v jaderném průmyslu, kde se využívají cyanobakterie, mikroskopické houby a řasy k dekontaminaci vod od jaderných prvků. Například řasy rodu Chlorella absorbuji 226Ra na povrch buňky a vážou jej na specifických místech uvnitř buňky [2].

Z průmyslových odpadních vod se také odstraňuje arzen, který je odpadní složkou při zpracování pyritu, měděných, olovnatých a zinečnatých rud. Arzen je při zhutňování rud oxidován na oxid arzenitý, který je kondenzován v odprašovacích zařízeních a tak se do-
stává do popílků. Hydrometalurgickou úpravou popílků zamezujeme znečištění životního prostředí toxickými látkami za současného získání mědi, železy, olova, stříbra síry a dalších. Arzen je získáván z roztoků sorpčí na řasách druhu Ceratophyllum demursum a Largosiphon major. Voda znečištěná arzenem se zavede do reaktorů obsahujících příslušné řasy a vodu, po odvodnění je biomasa vysušena a spálena za přístupu vzduchu. Vzniklý
oxid arzenitý spolu s horkým plynem a popílkem pak prochází výměníky, kde se získaný arzen kondenzuje [2].

3.4.5 Odsiřování uhlí

Odsiřování neboli desulfurizace uhlí je závažný problém pro vývoj civilizace, která je závislá na výrobě energie a tepla z fosilních paliv. V současné době je věnována pozornost účinnému spalování, které minimálně zatěžuje životní prostředí. Proto se vyvíjejí technologie minimalizující znečištění ovzduší při spalování, tím že se před spalováním odstraní síra [9]. Odsiřování síry lze i metodou bakteriálního loužení. Veškeré uhlí obsahuje organicky a anorganicky vázanou síru; nejdůležitější příměsí jsou železité disulfidy. Odsiřování uhlí probíhá pomocí bakterie *Thiobacillus ferrooxidans* bakteriální oxidací. Bakteriálním loužením se snižuje obsah síry jak v černém uhlí, tak v uhlí hnědém. Eliminace sulfidických minerálů z uhlí není kvůli energetickým nárokovům reakčního systému ekonomicky příznivá. V současné době nebyla prokázána významná eliminace organické síry z uhlí a výzkumy v této oblasti nejsou v budoucnosti realizovatelné [2].

3.4.6 Využití síran redukujících bakterií

Výzkum v oblasti síran-redukujících bakterií jde neustále dopředu. Síran redukující bakterie se využívají k eliminaci negativních vlivů průmyslové výroby a to hlavně k čištění průmyslových odpadních vod [2].

Aplikací síran redukujících bakterií do odpadních vod z důlní a metalurgické činnosti dochází k detoxikaci těchto odpadních vod od těžkých kovů a také k znovuzískání některých kovových prvků jako je stříbro, antimon, měď, zinek a další. V hydrometalurgii se síran redukující bakterie využívají k zpracování sulfidických rud a koncentrátů obsahujících kationty toxických kovů a síranů [2].

Síran redukující bakterie se využívají jako jedna z metod k odstraňování síranů z odpadních vod, vyskytujících se ve formě jednoduchého aniontu SO₄²⁻. Vysoké koncentrace síranů mohou ovlivňovat chuť vody a v průmyslových vodách mohou být příčinou agresivního chování vod vůči betonu, čímž dochází k destrukci potrubí a betonových nádrží. V průmyslových odpadních vodách může být zdrojem síranů kyselina sirová, sádrovec, vedlejší produkty po desulfurizaci uhlí a jiné síranové poluanty z chemických, textilních, metalurgických, farmaceutických, papírenských a důlních činností.
Síran redukující bakterie se mohou také využívat při výrobě elementární síra a kyseliny sírové z kalu odpadních vod. Jsou to například komunální odpadní vody, vody z výroby kvasnic, z masokombinátů a mlékáren.

Sírany redukující bakterie mají i některé negativní vlivy. Je to biokoroze kovových potrubí a zařízení, biokoroze betonů a stavebních materiálů a znehodnocování leteckých paliv [2].

3.4.7 Biologický rozklad uhlovodíků pomocí mikroorganismů

Využití mikroorganismů pro odstranění znečištění uhlovodíky v životním prostředí lze rozdělit do několika skupin. První předpokládá, že na místě znečištění jsou již přítomny mikroorganismy schopné odbourávat kontaminanty. Jsou zde dodávány dusíkaté a fosforečné živiny, které napomáhají růstu a množení bakterií a tím podpoří účinnost biodegradace. V druhé skupině se dodávají samotné mikroorganismy schopné degradovat kontaminanty. Mikroorganismy jsou schopny odbourávat uhlovodíky za aerobních i anaerobních podmínek, kdy aerobní metoda je rychlejší a účinnější, avšak při ní se obtížně rozkládají polycyklické aromatické uhlovodíky. Biologický způsob degradace uhlovodíků je účinná a ekonomicky výhodná metoda, která nemá nepříznivé vlivy na životní prostředí [2].

3.4.8 Mikrobiální degradace PCB

Některé mikroorganismy jsou schopny odstraňovat z ekosystémů i polychlorované bifenly. Za aerobních i anaerobních podmínek rozkládají mikroorganismy PCB na CO₂, chlor a vodu. Mezi bakterie schopny degradovat PCB řadíme bakterie rodu Acinetobacter, Alcaligenes, Bacillus, Pseudomonas a Strepococcus. Samotná degradace je závislá na počtu chlorů v kongeneru, čím více je v kongeneru obsaženo chlorů tím méně je bifenyl biodegradovatelný [2].

Degradovat PCB jsou schopny i některé houby; druh Aspergillus niger je schopen degradovat nižší chlorované bifenly. Dřevokazná houba druhu Phanerochaete chrysosporium je schopna kompletně degradovat vyšší chlorované bifenly [2].
ZÁVĚR

Biotechnologie lidstvo využívalo už od pradávna jako součásti výroby potravin a nápojů. Bohatá historie biotechnologií dokazuje jejich neustálý vývoj a využití. Minerální biotechnologie se vědomě začaly využívat v průmyslu až ve 20. století. Podstatou minerálních biotechnologií je získávání kovů pomocí mikroorganismů a produktů jejich metabolismu. Tyto biotechnologie se využívají především k získávání mědi a jiných důležitých kovů z především sulfidických minerálů, k předúpravě zlatonosných koncentrátů a čištění průmyslových odpadních vod od toxických kovů. Z ekonomického hlediska jsou pro průmysl a životní prostředí tyto technologie výhodnější. Tyto technologie jsou důležité nejen pro maximální výtěžek významných kovů, ale také pro odstraňování toxických kovů z odpadních vod. Využití minerálních biotechnologií se neustále rozvíjí a v budoucnosti by mohly zaujmout významnější postavení v průmyslu a zpracování odpadů.
SEZNAM POUŽITÉ LITERATURY

[13] FEČKO, Peter, ed. a ČABLÍK, Vladimír, ed. Možnosti zpracování odpadů po

[14] HORÁK, Petr. Mechanismy biodegradací kontaminantů a bioasanační tech
niky, Vyd.1. Ústí nad Labem: Fakulta životního prostředí UJEP, 2006, 201 s.
SEZNAM POUŽITÝCH SYMBOLŮ A ZKRATEK

PCB Polychlorované bifenyly
SEZNAM OBRÁZKŮ

Obr. 1: Schéma bakteriálního loužení [1].. 22
EVIDENČNÍ LIST BAKALÁŘSKÉ PRÁCE

<table>
<thead>
<tr>
<th>Sigla</th>
</tr>
</thead>
<tbody>
<tr>
<td>(místo uložení bakalářské práce)</td>
</tr>
<tr>
<td>Univerzitní knihovna UTB ve Zlíně</td>
</tr>
</tbody>
</table>

| Název bakalářské práce | Minerální biotechnologie |

| Autor bakalářské práce | Vendula Spálovská |

| Vedoucí bakalářské práce | prof. Ing. Jan Kupec, Csc. |

| Vysoká škola | Univerzita Tomáše Bati ve Zlíně |

| Adresa vysoké školy | Univerzita Tomáše Bati ve Zlíně, nám. T. G. Masaryka 5555, 760 01, Zlín |

<table>
<thead>
<tr>
<th>Fakulta</th>
</tr>
</thead>
<tbody>
<tr>
<td>(adresa, pokud je adresa jiná než adresa VŠ)</td>
</tr>
<tr>
<td>Fakulta technologická, nám. T. G. Masaryka 275, 762 72 Zlín</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Katedra</th>
</tr>
</thead>
<tbody>
<tr>
<td>(adresa, pokud je adresa jiná než adresa VŠ)</td>
</tr>
<tr>
<td>Ústav inženýrství ochrany životního prostředí</td>
</tr>
</tbody>
</table>

| Rok obhájení BP | 2012 |

| Počet stran | 33 |

| Počet svazků | 3 |

| Vybavení (obrázky, tabulky…) | 1,0 |

<table>
<thead>
<tr>
<th>Klíčová slova</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minerální biotechnologie, biotechnologie, mikrobiologie, Thiobacillus ferrooxidans, oxidace.</td>
</tr>
</tbody>
</table>