Rozdělení kmenů *Escherichia coli* izolovaných z potravin do fylogenetických skupin

Bc. Zuzana Tomášová
Univerzita Tomáše Bati ve Zlíně
Fakulta technologická
Ústav technologie a mikrobiologie potravin
akademický rok: 2011/2012

ZADÁNÍ DIPLOMOVÉ PRÁCE
(PROJEKTU, UMĚLECKÉHO DÍLA, UMĚLECKÉHO VÝKONU)

Jméno a příjmení: Bc. Zuzana TOMÁŠOVÁ
Osobní číslo: T10562
Studijní program: N 2901 Chemie a technologie potravin
Studijní obor: Technologie, hygiena a ekonomika výroby potravin
Téma práce: Rozdělení kmenů Escherichia coli izolovaných z potravin do fylogenetických skupin

Zásady pro vypracování:

I. Teoretická část
1. Zpracujte literární rešerši zaměřenou na charakteristiku E. coli z hlediska vlastností, výskytu, diagnostiky, patogenity a rozdělení do fylogenetických skupin

II. Praktická část
1. Izolujte bakterie E. coli z potravin a provedte u nich testy na ATB rezistenti a produkci količinů
2. Zařaďte izolované kmeny E. coli do fylogenetických skupin metodou PCR
Rozsah diplomové práce:
Rozsah přílohy:
Forma zpracování diplomové práce: tiskněná/elektronická

Seznam odborné literatury:

2. DONNENBERG, Michael S. Escherichia coli: virulence mechanisms of a versatile pathogen. DOI: 0–12–220751–3.

Vedoucí diplomové práce: Mgr. Magda Doležalová, Ph.D.
Ústav technologie a mikrobiologie potravin

Datum zadání diplomové práce: 1. února 2012
Termín odevzdání diplomové práce: 2. května 2012

Ve Zlíně dne 10. února 2012

doc. Ing. Roman Čermák, Ph.D.
děkan

doc. Ing. František Buňka, Ph.D.
ředitel ústavu
PROHLÁŠENÍ

Prohlašuji, že

- beru na vědomí, že odezvaním diplomové/bakalářské práce souhlasím se zveřejněním své práce podle zákona č. 111/1998 Sb. o vysokých školách a o změně a doplňení dalších zákonů (zákon o vysokých školách), ve znění pozdějších právních předpisů, bez ohledu na výsledek obhajoby;
- beru na vědomí, že diplomová/bakalářská práce bude uložena v elektronické podobě v univerzitním informačním systému dostupná k nahlédnutí, že jeden výtisk diplomové/bakalářské práce bude uložen na příslušném ústavu Fakulty technologické UTB ve Zlíně a jeden výtisk bude uložen u vedoucího práce;
- byl/a jsem seznámen/a s tím, že na moji diplomovou/bakalářskou práci se plně vzťahuje zákon č. 121/2000 Sb. o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon) ve znění pozdějších právních předpisů, zejm. § 35 odst. 3;
- beru na vědomí, že podle § 60 odst. 1 autorského zákona má UTB ve Zlíně právo na uzavření licenční smlouvy o užití školního díla v rozsahu § 12 odst. 4 autorského zákona;
- beru na vědomí, že podle § 60 odst. 2 a 3 mohu užít své dílo – diplomovou/bakalářskou práci nebo poskytnout licenci k jejímu využití jen s předchozím písemným souhlasem Univerzity Tomáše Bati ve Zlíně, která je oprávněna v takovém případě ode mne požadovat přiměřený příspěvek na úhradu nákladů, které byly Univerzitou Tomáše Bati ve Zlíně na vytvoření díla vynaloženy (až do jejich skutečné výše);
- beru na vědomí, že pokud bylo k vypracování diplomové/bakalářské práce využito softwaru poskytnutého Univerzitou Tomáše Bati ve Zlíně nebo jinými subjekty pouze ke studijním a výzkumným účelům (tedy pouze k nekomerčnímu využití), nelze výsledky diplomové/bakalářské práce využít ke komerčním účelům;
- beru na vědomí, že pokud je výstupem diplomové/bakalářské práce jakýkoliv softwarový produkt, považuji se za součást práce rovněž i zdrojové kódy, popř. soubory, ze kterých se projekt skládá. Neodestvzdání této součásti může být důvodem k neobhájení práce.

Ve Zlíně

[Podpis]

51 zákon č. 111/1998 Sb. o vysokých školách a o změně a doplňení dalších zákonů (zákon o vysokých školách), ve znění pozdějších právních předpisů, § 47 zveřejňování zveřejněných prací:
(1) Vysoká škola nevyučeně zveřejňuje disertační, diplomové, bakalářské a rigorózní práce, u kterých proběhla obhajoba, včetně posudků oponentů a výsledku obhajoby prostřednictvím databáze kvalifikačních prací, kterou spravuje. Způsob zveřejnění stanoví vnitřní předpis vysoké školy.
(2) Disertační, diplomové, bakalářské a rigordání práce odevzdané uchazečem k obhajobě musí být též nejméně pět pracovních dnů před konáním obhajoby zveřejněny k nahlížení veřejnosti v místě určeném vnitřním předpisem vysoké školy nebo není-li tak určeno, v místě provozu vysoké školy, kde se má konat obhajoba práce. Každý si může ze zveřejněné práce pořízet na své náklady výpisy, opisy nebo rozmnouženiny.

(3) Platí, že odevzdaním práce autor souhlasí se zveřejněním své práce podle tohoto zákona, bez ohledu na výsledek obhajoby.

§ zákon č. 121/2000 Sb., o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon) ve znění pozdějších právních předpisů, § 35 odst. 3:

(3) Do práva autorského také nezasažuje škola nebo školské či vzdělávací zařízení, užije-li nikoli za účelem přímého nebo nepřímého hospodářského nebo obchodního prospěchu k výuce nebo k vlastní potřebě dílo vytvořené žákem nebo studentem ke splnění školních nebo studijních povinností vyplývajících z jeho právního vztahu ke škole nebo školskému či vzdělávacímu zařízení (školní dílo).

§ zákon č. 121/2000 Sb., o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon) ve znění pozdějších právních předpisů, § 60 Školní dílo:

(1) Škola nebo školské či vzdělávací zařízení mají za obvyklých podmínek právo na uzavření licenční smlouvy o užití školního díla (§ 35 odst. 9). Odporučí-li autor takového díla užít v souladu s važného důvodu, mohou se tyto osoby domáhat nahrazení chybějícího projevu jeho vůle v souladu s ustanovení § 35 odst. 3 zůstává nedotčeno.

(2) Není-li sjednáno jinak, může autor školního díla své dílo užít či poskytnout jinému licenci, není-li to v rozporu s oprávněnými zájmou školy nebo školského či vzdělávacího zařízení.

(3) Škola nebo školské či vzdělávací zařízení jsou oprávněny požadovat, aby jím autor školního díla z výdělu jím dosaženého v souvislosti s užitím díla či poskytnutím licence podle odstavce 2 příměřeně přispěl na úhradu nákladů, které na vytvoření díla vynaložily, a to podle okolností až do jejich skutečné výše; přitom se přihlédne k výši výdělu dosaženého školou nebo školským či vzdělávacím zařízením z užití školního díla podle odstavce 1.
ABSTRAKT

Escherichia coli se taxonomicky řadí do čeledi Enterobacteriaceae, jedná se o fakultativně anaerobní, gramnegativní tyčinky. E. coli slouží jako modelový mikroorganismus pro biochemické, genetické a fyziologické studie, je také důležitým indexovým a indikátorovým mikroorganismem. Hraje velmi důležitou roli v molekulární biologii, byly na ní objasněny základní aspekty regulace genově exprese. Cílem praktické části práce bylo izolovat bakteriální kmeny z potravin a u kmenů určených jako E. coli stanovit citlivost na antibiotika, produkcí kolinů a provést rozřazení do fylogenetických skupin (A, B1, B2, D). Z celkem 78 zkoumaných vzorků potravin bylo izolováno celkem 21 kmenů E. coli. Výsledky fylogenetické analýzy ukázaly, že 50 % kmenů patřilo do fylogenetické skupiny A, 45 % do skupiny B1, 5% do skupiny B2 a do skupiny D nebyl zařazen žádný kmen. Při vyšetření citlivosti na antibiotika bylo zjištěno, že všechny kmeny byly odolné alespoň vůči jednomu antibiotiku, v 84 % případů se dokonce jednalo o multirezistenci. Produkce kolinů byla prokázána u dvou kmenů.

Klíčová slova: Escherichia coli, fylogenetické skupiny, PCR, antibiotická rezistence, kolin

ABSTRACT

Escherichia coli taxonomically belongs to the family Enterobacteriaceae, it is an anaerobe facultative, Gram-negative, rod-shaped bacterium. E. coli is a model organism for biochemical, genetic and physiological studies, and it is also an important index and indicator microorganism. It plays a very important role in molecular biology - the basic aspects of gene regulation have been elucidated on E. coli. The aim this work was to isolate bacterial strains from food. Among determined E. coli strains assess the sensitivity to antibiotics, colicin production and classiry them into phylogenetic groups (A, B1, B2, D). From a total of 78 food samples examined were gained a total of 21 E. coli. Results of phylogenetic analysis showed that 50% of strains belonged to phylogenetic group A, 45% to group B1, 5% to group B2, and none to group D. Antibiotic susceptibility testing revealed that all strains were resistant to at least one antibiotic, while 84.2% of all cases were multi-drug resistant. Production of colicin was demonstrated in two strains.

Keywords: Escherichia coli, phylogenetic groups, PCR, antibiotic resistance, colicins
Na tomto místě bych chtěla poděkovat především vedoucí své diplomové práce Mgr. Mag.
dě Doležalové, Ph.D. za odborné vedení, pomoc, cenné rady, připomínky a poskytnutí uži-
tečné literatury.

Prohlašuji, že odevzdaná verze bakalářské/diplomové práce a verze elektronická nahaná do
IS/STAG jsou totožné.
OBSAH

ÚVOD .. 11
1 TEORETICKÁ ČÁST ... 13
1 OBECNÁ CHARAKTERISTIKA BAKTERIE ESCHERICHIA COLI .. 14
 1.1 ŠELEĎ ENTEROBACTERIACEAE .. 14
 1.2 ROD ESCHERICHIA .. 14
 1.3 ESCHERICHIA COLI .. 14
2 ROZDĚLENÍ BAKTERIE ESCHERICHIA COLI ... 17
 2.1 APATOGENNÍ ESCHERICHIA COLI ... 17
 2.2 PATOGENNÍ ESCHERICHIA COLI ... 17
 2.2.1 Intestinální kmeny ... 17
 2.2.2 Extraintestinální kmeny ... 18
 2.3 ROZDĚLENÍ E. COLI DO FYLOGENETICKÝCH SKUPIN .. 18
3 VLASTNOSTI BAKTERIE ESCHERICHIA COLI ... 22
 3.1 FAKTORY PATOGENITY A VIRULENCE E. COLI ... 22
 3.1.1 Přenosnost a invazivita jako součást virulence a patogenity ... 22
 3.1.2 Tři základní typy antígenů ... 24
 3.1.3 Toxicita jako součást virulence a patogenity ... 24
 3.1.4 Mechanismus translokace u Escherichia coli ... 24
 3.1.5 Hemolysiny, intimin, Shiga-like toxiny, ostrovy patogenity, extracelulární serinové proteasy 25
 3.2 ANTIBIOTICKÁ REZISTENČE E. COLI .. 26
 3.2.1 Stručná charakteristika antimikrobiálních látek ... 27
 3.2.2 Mechanismy získané rezistence ... 27
 3.2.3 Mar operon E. coli ... 27
 3.2.4 Případy rezistence na antimikrobiální látky u bakterie E. coli .. 28
 3.2.5 Vyšetření cítivosti na antibiotika ... 28
 3.3 PRODUKCE BAKTERIOCINŮ E. COLI ... 29
4 VÝZNAM BAKTERIE ESCHERICHIA COLI .. 30
 4.1 ESCHERICHIA COLI JAKO MODELOVÝ MIKROORGANISMUS .. 30
 4.2 ESCHERICHIA COLI JAKO INDIKÁTOROVÝ A INDEXOVÝ MIKROORGANISMUS 30
 4.2.1 Osidlení trávicího traktu .. 31
 4.3 ESCHERICHIA COLI JAKO PATOGEN ... 31
 4.4 ESCHERICHIA COLI A JEJÍ PROBIOTICKÁ AKTIVITA .. 34
5 VÝSKYT BAKTERIE ESCHERICHIA COLI ... 35
5.1 VÝSKYT E. coli U ZVÍŘAT .. 35
5.2 VÝSKYT E. coli U ČLOVĚKA .. 37
5.3 VÝSKYT E. coli V SUROVINÁCH A POTRAVINÁCH ROSTLINNÉHO PŮVODU 37
5.4 VÝSKYT E. coli V SUROVINÁCH A POTRAVINÁCH ŽIVOČIŠNÉHO PŮVODU 39
6 DIAGNOSTIKA BAKTERIE ESCHERICHIA coli 42
6.1 MIKROBIOLOGICKÁ DIAGNOSTIKA E. coli 42
6.1.1 MacConkey agar ... 42
6.1.2 Endo agar ... 43
6.1.3 Enterotest .. 43
6.1.4 Barvení dle Grama .. 44
6.1.5 Sklíčková aglutinace .. 44
6.1.6 Pokus na zvířeti .. 44
6.1.7 PYR-test .. 44
6.1.8 Testy pro patogenní kmeny E. coli .. 44
6.2 MOLEKULÁRNĚ BIOLOGICKÁ DIAGNOSTIKA E. coli 45
6.2.1 Průkaz bakteriálních nukleových kyselin 45
6.2.2 Elektroforéza nukleových kyselin ... 46
6.3 OSTATNÍ DIAGNOSTIKA E. coli ... 46
II PRAKTICKÁ ČÁST ... 47
7 CÍL PRÁCE .. 48
8 MATERIÁL .. 49
8.1 PŘÍSTROJOVÁ TECHNIKA .. 49
8.2 KULTIVAČNÍ MÉDIA .. 50
8.3 CHEMIKÁLIE ... 51
8.4 POUŽITÉ BAKTERIÁLNÍ KMENY ... 52
9 METODY .. 58
9.1 IZOLACE KMENŮ E. coli .. 58
9.2 IDENTIFIKACE E. coli POMOCÍ BIOCHEMICKÝCH MIKROTESTŮ 58
9.3 ANTIBIOTICKÁ REZISTENCE .. 58
9.4 KVANTITATIVNÍ STANOVENÍ Produkce BAKTERIOČINŮ 60
9.5 PCR REAKCE ... 60
9.5.1 Příprava bakteriálního lzyálu .. 61
9.5.2 Složení amplifikační směsi pro detekci genů dle standardního protokolu 61
9.5.3 Složení amplifikační směsi pro detekci genů podle metody Triplex PCR 62
9.5.4 Podmínky PCR reakce dle standardního protokolu 62
9.5.5 Podmínky PCR reakce dle metody Triplex PCR 63
9.5.6 Detekce produktů PCR reakce .. 63
10 VÝSLEDKY A DISKUSE .. 64
10.1 IDENTIFIKACE BAKTERIÁLNÍCH IZOLÁTŮ .. 64
10.2 STANOVENÍ CITLIVOSTI NA ANTIBIOTIKA DISKOVOU DIFÚZNÍ METODOU 66
10.3 KOLICINOGENIE KMNŮ ESCHERICHIA COLI .. 73
10.4 FYLOGENETICKÁ ANALÝZA DLE STANDARDNÍHO PROTOKOLU A TRIPLEX
 PCR ... 77
 10.4.1 Detekce produktů PCR reakce ... 77
 10.4.2 Vyhodnocení výsledků fylogenetické analýzy 79
ZÁVĚR ... 84
SEZNAM POUŽITÉ LITERATURY .. 86
SEZNAM POUŽITÝCH SYMBOLŮ A ZKRATEK ... 93
SEZNAM OBRÁZKŮ ... 94
SEZNAM TABULEK .. 95
ÚVOD

Bakterie *Escherichia coli* patří do čeledi *Enterobacteriaceae*, jedná se o gramnegativní rovné tyčinky, je oxidasa negativní, katalasa pozitivní a metylčevěh pozitivní. Tato bakterie byla poprvé popsána koncem 19. století Theodorem Escherichem. Bakterie se přirozeně vyskytuje v trávicím traktu člověka a dalších teplokrevných živočíchů, rozděluje se na apatogenní a patogenní kmeny, které mohou být buď intestinální nebo extraintestinální.

E. coli je popsáno několik fylogenetických skupin, rozřazení do skupin lze provádět jak pomocí multilokusové enzymové elektroforezy a ribotypizace, tak pomocí PCR. V roce 2000 byla popsána rychlá PRC metoda založená na detekci genů *chuA*, *yjaA* a TspE4.C2. Tato metoda rozděluje kmeny do 4 základních fylogenetických skupin A, B1, B2 a D.

Antibiotika jsou látky, které zabraňují růstu bakterií a hub a nebo je úplně ničí. Antibiotika, která zabraňují růstu bakterií se označují jako bakteriostatická a antibiotika která bakterie ničí se označují jako baktericidní. *E. coli* je velmi často zkoumána rezistence na antibiotika. Rezistence se dělí na rezistenci přirozenou a získanou, rezistence jednotlivých bakterií může být využita při jejich identifikaci. Hlavní příčinou nevnímavosti gramnegativních bakterií je nepropustnost buněčné membrány. Vyšetření citlivosti na antibiotika ukazují, zdali jsou bakterie k jednotlivým antibiotikům citlivé nebo vykazují na toto antibiotikum rezistence. Kvantitativně se hodnotí pomocí zjišťování MIC nebo pomocí diskové difúzní metody.

Bakteriociny představují skupinu toxinů, hrají důležitou roli ve zprostředkování mikrobiální interakce a udržují mikrobiální rozmanitost. Bakteriociny jsou velmi atraktivní pro použití jako lék, v posledních letech jsou používány ve veterinární medicíne a při skladování potravin. První bakteriocin byl izolován v roce 1925 z bakterie *E. coli*.

E. coli je důležitým modelovým mikroorganismem, jelikož na této bakterii bylo prokázána bakteriální konjugace, replikace DNA a další buněčné procesy. Do jejího genomu byly vneseny geny pro produkcí nejrůznějších látek. Dále se tato bakterie uplatňuje jako indikátorový a indexový mikroorganismus, jedná se o vytypovaný mikroorganismus, na který se provádí vyšetření potravin a předmětů běžného užívání. *E. coli* slouží jako ukazatel fekálního znečištění, jedná se o nejběžnější indikátor fekální kontaminace pitné vody.

Bakterie se také uplatňuje jako patogen, je schopna způsobit intestinální i extraintestinální onemocnění. První informace o tom, že by se mohla uplatnit jako patogen se objevily již
v roce 1930, první definovaná skupina byla nazvána jako EPEC (enteropatogenní *E. coli*) a byla izolována od dětí s průjmy. Mezi nejčastější patogenní kmeny této bakterie dále patří ETEC, EHEC, EIEC, EAEC, DAEAC a UPEC. Nicméně bylo prokázáno, že apatogenní kmeny *E. coli* se mohou uplatnit jako probiotika.

Bakterie se vyskytuje jak ve vodě, půdě, na rostlinách, u lidí a zvířat, tak v potravinách a dalších komoditách, do kterých se dostává pomocí sekundární kontaminace. U lidí a zvířat se bakterie může vyskytovat jak u zdravých jedinců, tak u nemocných. Ke kontaminaci suroviny rostlinného původu dochází zejména při styku odpadních vod s úrodou, *E. coli* se může vyskytovat v široké škále potravin jako je například ovoce, zelenina, koření, mošty a další nápoje vyráběné z ovoce a zeleniny. U potravin živočišného původu je výskyt také velmi rozmanitý, příkladem mohou být sýry, fermentované mléčné výrobky, studené omáčky, tepelně nedostatečně opracovaná masa, hojně se *E. coli* vyskytuje v drůbežích výrob cích.

Diagnostikovat tuto bakterie je možné jak z hlediska mikrobiologického, tak z hlediska molekulárně biologického. Mikrobiologické stanovení se provádí zejména na selektivně diagnostických půdách, principem je většinou schopnost tolerance žluči, mezi tyto půdy patří MacConkey agar a Endo agar. Další možností stanovení *E. coli* jsou mikrotesty (enterotest). Molekulárně biologická diagnostika je založena na průkazu bakteriálních nukleových kyselin, největší uplatnění našla metoda PCR (Polymerázová řetězová reakce), tato metoda byla zavedena v roce 1985 Kary B. Mullisem.
I. TEORETICKÁ ČÁST
1 OBECNÁ CHARAKTERISTIKA BAKTERIE *ESCHERICHIA COLI*

Bakterie *Escherichia coli* se taxonomicky řadí do domény *Bacteria*, kmenu *Proteobacteria*, třídy *Gammaproteobacteria*, řádu *Enterobacteriales* a čeledi *Enterobacteriaceae* [1].

1.1 Čeleď *Enterobacteriaceae*

Jedná se o gramnegativní rovné tyčinky, které jsou buď nepohyblivé nebo se pohybují pomocí peritrichálních bičíků. Bakterie z čeledi *Enterobacteriaceae* netvoří ani endospory ani cysty. Jedná se o fakultativně anaerobní a chemoorganotrofní bakterie, mají respiratorní i fermentatorní typ metabolismu. Většina druhů roste dobře při 37 °C [1]. Velikost bakterií z této čeledi je v průměru 0,5 až 1,5 mikrometrů a délky 2 až 4 mikrometry. Tyto bakterie redukují dusičnan na důsledkem [2].

1.2 Rod *Escherichia*

1.3 *Escherichia coli*

Bakterie *Escherichia coli* (Obr. 1) byla poprvé popsána koncem 19. století (1885) bavorským pediatrem Theodorem Escherichem, tento rok 1885 bývá mnohdy považován za počátek studií o fyziologii trávicího traktu [6]. Jednalo se o průkopnickou studii dětské střevní mikroflóry. Doktor Escherich zkoumal normální střevní flóru zdravých jedinců a popsal ji jako *Bacterium coli*. Jednalo se o 19 izolátů, které získal. *Bacterium coli* byla poté na jeho počest přejmenována na *Escherichia coli* [7] [8]. Jedná se o nejprozkoumanější druh, slouží totiž jako modelový mikroorganismus pro biochemické, genetické a fyziologické studie. Jedná se o první bakteriální druh, u něhož byla prostudována konjugace a výměna genetického materiálu [9]. *Escherichia coli* hraje velmi důležitou roli ve vývoji v oblasti moleku-
lární biologie, jedná se o mikroorganismus ve kterém byly objasněny základní aspekty regulace genové exprese. Dnes je tato bakterie běžně používána jako hostitelský mikroorganismus pro molekulární klonování a expresi proteinů [7].

Obr. 1. Bakterie Escherichia coli [5].

vitaminů B1, K1 a K2. Dále bylo prokázáno, že apatogenní *E. coli* se velmi významně podílí na tvorbě imunitního systému. Trávicí trakt se osídluje apatogenními kmeny *E. coli* již několik hodin po porodu a osídlení zde probíhá nejčastěji prostřednictvím matčiných bakterií orálním přenosem [6].
2 ROZDĚLENÍ BAKTERIE *ESCHERICHIA COLI*

2.1 Apatogenní *Escherichia coli*

Apatogenní *E. coli* jsou velmi významnou složkou fyziologické mikroflóry a mají velký antagonistický účinek vůči invazi patogenů. Jedním z nich je vliv na *Salmonella enterica* sub-sp. *enterica* serovar Typhimurium. Podstata antiinvazivního efektu je připisována produkci mikrocínů kmenem *E. coli* DSM 6601, ovšem antiinvazivní efekt byl prokázán také u *E. coli*, které mikrociny neprodukují (H5445). U apatogenního kmene *E. coli* DSM 6601 je také známá produkce lipopolysacharidů, které působí jako endotoxiny, ale organismu neschodí, realizují fyziologické imunoregulační pochody. Implementací tohoto kmene do prostředí střeva dochází k rychlému nárůstu koncentrace imunoglobulinů IgA a IgM ve stolici i v séru [6].

2.2 Patogenní *Escherichia coli*

Patogenní *E. coli* vyvolává dva typy onemocnění, a to intestinální, které jsou provázené průjmy a extraintestinální, které se nejčastěji týkají močových cest, infekcí ran a hnisavých procesů [3].

2.2.1 Intestinální kmeny

Patogenní *E. coli* vyskytující se ve střevech člověka se dělí na neinvazivní a invazivní [6].

Dělení patogenních intestinálních kmenů *E. coli* dle jiného autora je následující:

1. EPEC- enteropatogenní;
2. ETEC- enterotoxigenní;
3. EIEC- enteroinvasivní;
4. STEC- shiga-toxigenní;
5. EHEC- enterohemoragická;
6. EAEC- enteroagregativní;
7. DAEC- difúzně-adherentní [7].
Následující tabulka (Tab. 1) uvádí přehled patogenních kmenů *E. coli* způsobujících různá onemocnění:

*Tab. 1. Přehled patogenních kmenů *E. coli* [6].*

<table>
<thead>
<tr>
<th>Patogenní typ</th>
<th>Sérotyp</th>
<th>Hlavní klinické projevy</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPEC</td>
<td>O55,O111,O127</td>
<td>Enteritidy novorozenců a kojenců</td>
</tr>
<tr>
<td>ETEC</td>
<td>O25,O78,O128</td>
<td>Cestovatelské průjmy</td>
</tr>
<tr>
<td>EHEC</td>
<td>O157,O111,O22</td>
<td>Krvavé průjmy</td>
</tr>
<tr>
<td>EIEC</td>
<td>O28,O24</td>
<td>Hemoragicko-ulcerózní kolitida</td>
</tr>
</tbody>
</table>

2.2.2 Extraintestinální kmeny

Dělení extraintestinálních kmenů *E. coli* je následující:

1. UPEC- uropatogenní;
2. MNEC- kmeny spojené meningitidou a sepsí;
3. APEC- kmeny způsobující infekce respiratorního traktu u ptactva;
4. NTEC- kmeny produkující nekrotizující faktory;
5. AIEC- kmeny spojené s Crohnovou chorobou [7].

Bakterie *Escherichia coli* je z 80 % původcem uroinfekcí, virulence je vázána především na O sérotypy, a to zejména O1, O2, O4, O6, O7, O16, O18, O75. Tyto kmeny jsou z 80 % původci pyelonefritidy, z 60 % původci cystitid a z 30 % asymptomatických bakteriurii. Adhesiny na povrchových fimbriích *E. coli* jsou většinou lektiny, hlavními adherentními systémy jsou papG na P-fimbriích, sfa na S-fimbriích a afa (nejsou spojeny s fimbriemi). K identifikaci přítomnosti pap, sfa a afa operonů jsou doporučovány molekulární metody [6].

2.3 Rozdělení *E. coli* do fylogenetických skupin

U *E. coli* je popsáno několik fylogenetických skupin (jedná se o příbuzné kmeny na základě přítomnosti genů), kmeny patřící do jedné skupiny mají stejné vlastnosti, pokud se podaří kmen zařadit, mohou se u něj předpokládat dané společné vlastnosti celé skupiny [13].

Metoda triplex PCR rozděluje *E. coli* do skupin podle dichotomického klíče (Obr. 2), založeného na přítomnosti nebo nepřítomnosti genů *chuA* a *yjaA* a TSPE4.C2 [13]. Fylogenetická analýza ukázala, že lze kmeny *E. coli* rozdělit do 4 základních fylogenetických skupin A, B1, B2, D [12]. Do roku 2008 byla tato metoda použita k charakterizaci *E. coli* ve více než 150 studiích [13].

![Strom pro rozdělení E. coli do fylogenetických skupin](image)

Obr. 2. Strom pro rozdělení E. coli do fylogenetických skupin [14].

Jsou sledovány tři hlavní markery:

a) *chuA*- jedná se o gen, který je potřebný pro krevní transport v enterohemoragické *E. coli* O157:H7;

b) *yjaA*- jedná se o gen, který byl nedávno poprvé identifikován v sekvenci kompletního genomu *E. coli* K12;

c) *yyy* (TSPE4.C2)- jedná se o anonymní fragment DNA [12].
Niemně bylo prokázáno, že metoda podle Clermonta není příliš přesná. Analýzy ukázaly, že 85-90 % kmenů může být přiřazeno k některé ze skupin (A, B1, B2, D), a že 80-85 % skupin přiřazených metodou podle Clermonta je správných. Pokud se jedná o skupiny B1 a B2, je zde procento správného přiřazení vyšší, dokonce 95 %. Pokud se jedná o kmeny přiřazené do skupiny A na základě toho, že zde nebyly žádné pozitivní produkty, zřídkakdy se opravdu jedná o tuto skupinu [13].

Nejpravděpodobnější je problémem této metody skutečnost, že validace byla provedena na relativně málo kmenech, které byly získány převážně od lidí a zvířat. Ve studii provedené v roce 2008 byla u 662 kmenů kontrolována správnost zařazení do skupin. Podle této studie byly kmeny přiřazeny do skupin dle přítomnosti jednotlivých genů následovně (Tab. 2) [13].

Tab. 2. Frekvence výskytu fylogetických skupin. [13]

<table>
<thead>
<tr>
<th>Fylogenetická skupina</th>
<th>chuA</th>
<th>yjaA</th>
<th>TspE4.C2</th>
<th>Frekvence výskytu (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7,5</td>
</tr>
<tr>
<td>A</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>14,4</td>
</tr>
<tr>
<td>B1</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>28,9</td>
</tr>
<tr>
<td>B2</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>3,0</td>
</tr>
<tr>
<td>B2</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>27,7</td>
</tr>
<tr>
<td>D</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>13,6</td>
</tr>
<tr>
<td>D</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>4,9</td>
</tr>
</tbody>
</table>

Pouze v 11 % případů nebylo možno kmen jednoznačně přiřadit. Pokud se jednalo o skupinu B1 se charakteristikou --+ (*chuA*, *yjaA*, TspE4.C2) nebo skupinu B2 +++ (*chuA*, *yjaA*, ...
3 VLASTNOSTI BAKTERIE ESCHERICHIA COLI

3.1 Faktory patogenity a virulence E. coli

Patogenní infekce lze rozdělit podle typu původce na primárně (striktně) patogenní kmeny, které způsobují onemocnění u zdravého jedince a oportunní patogeny, které způsobují onemocnění u imunokompromitovaných jedinců. Zdrojem infekce podmíněnými patogeny může být zevní prostředí, ale i autochtonní flóra. Přítomnost podmíněných patogenů zejména v prostředí nemocnic souvisí s problematikou nozokomiálních infekcí komplikujících základní onemocnění [3] [6].

V rámci patogenního druhu mohou být jednotlivé kmeny vysoce virulentní, virulentní nebo avirulentní [3]. Třemi nejdůležitějšími součástmi patogenity a virulence mikroorganismů jsou přenosnost, invazivita a toxicita [15]. Jednotlivé kroky infekčního procesu souvisejí s produkci faktorů patogenity, jejich tvorba je geneticky kódována buď chromozomálně nebo extrachromozomálně na plasmidech, dále mohou být vázány na lyzogenní konverzi. Faktory patogenity se dělí na faktory invazivity, které bakteriím umožňují kolonizaci, proniknutí a množení a na toxické produkty, které jsou uvolňovány bakterií do prostředí nebo jsou její součástí a uvolní se po jejím rozpadu [3].

3.1.1 Přenosnost a invazivita jako součást virulence a patogenity

Úspěšnost přenosu mikroba do organismu závisí na počtu mikrobů vylučovaných z orga-nismu, na rezistenci vůči prostředí, na infekční dávce a na chování hostitele [15].

Invazivitou se rozumí schopnost mikroba vstoupit do hostitele, dále se zde řadí schopnost přilnutí (adherence), schopnost proniknutí (penetrace), a schopnost se množit a šířit [15]. Invaze mikroorganismů do organismu představuje složitý proces, tento proces se u různých mikroorganismů liší a není vlastností všech. U bakterie E. coli jsou jasně eneteroinvazivní pouze sérotypy O28 a O124, u jiných sérotypů je tato charakteristika vyjádřena pouze minimálně. Primární branou vstupu jsou M buňky, což jsou epitelové buňky umístěné od pyloru k ileocekální chlopní opatřené povrchovými mikroenzymy, které slouží k transepiteliálnímu přenosu těl mikroorganismů z lumen trávicího traktu do lymfatické tkáne [6].

Adheze je zprostředkována fimbriemi, což jsou duté tyčinkovité útvary tvořené bílkovinami zvanými pilin. Fimbrie jsou schopny specificky reagovat s povrchem epitelie [6]. Adheziny
na povrchu buňky reagují s receptory na jejich povrchu. Na sliznicí soupeří patogenní bakterie s přítomnou kolonizující mikroflorou o receptory. Jako adheziny působí různé fimbrie, zejména fimbrie typu 1 a typu 4, dále existují P-fimbrie, které se vážou na buňky močového epitelu a jsou specifické pro kmeny gramnegativních bakterií, zejména *E. coli*, která vyvolává močové infekce, zvláště pyelonefritidu. Adheziny mají závitnicovou strukturu, po adhezi fungují jako spirálová pružina a rozvinou se do sedminásobné délky. Dle specifity fimbriové adheziny vyvolávají určité kmeny *E. coli* buď střevní nebo močovou infekci. Adheziny se nevážou na jakoukoli buňku, jsou specifické pro určitou tkáň nebo živočišný druh. U *E. coli* je patrná specifita pro tkáň, některé adhezují jen k prasečím nebo telecím buňkám, ale nikoliv k lidským, jiné výhradně k nim [16].

U bakterie *E. coli* je funkce fimbrií velmi dobře prozkoumána. U enteropatogenních kmenů byly popsány kolonizační faktory CFA I a CFA II, dalšími adheziny vyskytujícími se u *E. coli* jsou P-fimbrie a faktor K88 [15]. U patogenních *E. coli* je známo, že stejný sérotyp patogenního kmene mikroorganismů (ETEC O25, O78, O128) může působit u člověka a zvířat prostřednictvím rozdílných adhezinů (CFA I, CFA II, K88, K99) [6].

Obsažené adheziny u různých sérotypů patogenních *E. coli* jsou znázorněny v tabulce (Tab. 3) [6]:

Tab. 3. Adheziny u patogenních E. coli [6].

<table>
<thead>
<tr>
<th>Patogenní E. coli</th>
<th>Sérotyp</th>
<th>Adhezivní faktor-adhezin</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPEC</td>
<td>O55, O111, O127</td>
<td>EHAF-EPEC faktor</td>
</tr>
<tr>
<td>ETEC</td>
<td>O25, O78, O128</td>
<td>CFA I, II</td>
</tr>
<tr>
<td>EHEC</td>
<td>O157, O111, O22</td>
<td>EHAF-EHEC faktor</td>
</tr>
<tr>
<td>EIEC</td>
<td>O28, O124</td>
<td>Není znám</td>
</tr>
</tbody>
</table>

U *E. coli* je také zmapována povaha receptorů, v případě EPEC sérotypů O55, O111 a O127 je známo, že adheze je lokalizována na Hep-2 buňky. Pokud je adheze vlastností patogenních mikroorganismů i symbiotických mikroorganismů dochází k vzájemnému soutěžení o vazebná místa na receptorech (antagonismus fyziologické mikroflory), vyskytuje-li se u jedince kvantitativní porucha fyziologické mikroflóry, je zde zvýšená možnost adherence patogenů, jejich množení, invaze a produkce toxinů [6].
3.1.2 Tři základní typy antigenů

3.1.3 Toxicita jako součást virulence a patogenity

Jedná se o schopnost mikroba poškozovat svého hostitele, přičemž k poškození může dojít buď přímým účinkem daného agens a nebo reakcí organismu na toto agens. Přímou cestou dochází nejčastěji k poškozování vlivem mikrobiálních toxinů. Produkované toxiny se dělí na exotoxiny (produkované živými mikroorganismy) a endotoxiny (produkované po zániku mikroorganismu) [6] [15]. Mezi exotoxiny produkované E. coli patří farmakologicky účinný termolabilní enterotoxin. Geny pro mnohé exotoxiny jsou přítomny na plasmidech, což znamená, že tvorba toxinu není pro růst a množení mikroorganismu nezbytná, je ovšem vhodná pro jeho množení a šíření. Enterotoxické kmeny E. coli vyvolávají průjem pomocí farmakologicky účinných toxinů, které buňku přímo nezabíjejí, ale narušují její funkce. Zvyšují hladinu cAMP uvnitř buňky, což vede k masivnímu úniku vody, minerálů a dalších esenciálních látek z buňky [15].

3.1.4 Mechanismus translokace u Escherichia coli

U patogenních kmenů E. coli s invazivní složkou je znám mechanismus translokace, který probíhá v několika fázích:

a) v první fázi dojde k neintimnímu kontaktu, který je zprostředkován filamentárními organelami s obsahem sekrečního proteinu EpsA;

b) v další fázi dojde k signálu transdukcí do cytoskeletu hostitelských epiteliálních buněk, ten je zprostředkován dalšími sekrečními proteiny EpsB a EpsD;
c) ve finální fázi dojde k adhezi a poté k invazi enteropatogenních kmenů, toto je zahájeno pomocí membránového proteinu intiminu, který je vázán na specifický receptor Tir [17]. Geny pro EpsA, EpsB a EpsD, intimin a Tir jsou lokalizovány na chromozomálních ostrovech patogenity a jsou označovány jako LEE (Locus for Enterocyte Effacement) [6] [17].

3.1.5 Hemolysiny, intimin, Shiga-like toxiny, ostrovy patogenity, extracelulární serinové proteasy

a) Hemolysiny

U kmenů STEC byly popsány dva rozlišné hemolysiny, které jsou kódovány na plasmidech. Alfa-hemolysin je kódován genem hlyA, druhý hemolysin je kódován genem elyA a je produkovan zejména lidskými kmeny STEC [18].

b) Intimin

Jedná se o látku zprostředkovávající adherenci ke střevním buňkám, je kódován eaeA genem. Genový locus eae je sestaven z eaeA, eaeB a sep, je nazýván LEE a chybí u komenzálních kmenů E. coli [18].

c) Shiga-like toxiny

E. coli O157:H7 produkuje faktory virulence označované SLTs (verotoxiny), které jsou kódovány bakteriofágy. VT1 a VT2 jsou synonymy pro SLT-I a SLT-II a nakonec byly přejmenovány na Stx1 a Stx2 [18].

d) Ostrovy patogenity

Jedním z mechanismů pro toxicitu E. coli O157:H7 je schopnost adherence na enterocyty. Místa, kterými je tato toxicita kódována jsou označována jako LEE [18].

e) Extracelulární serinová proteasa

V roce 1997 byla identifikována nová proteasa EspP kódovaná plasmidem o velikosti 90 kb, která štěpí lidský koagulační V faktor, zabezpečující srážení krve. Proteasa EspP byla prokázána u pacientů s EHEC infekcemi [18].
3.2 Antibiotická rezistence E. coli

E. coli je citlivá přirozeně na řadu antibiotik s výjimkou benzylpenicilinu, zejména nemocniční kmeny mají sekundární rezistenci přenosového typu [3]. Citlivost bakterie E. coli na kvarterní amoniové soli, hexachlorofen a diaminy se u jednotlivých kmenů liší, citlivost na chlorhexidin je u všech kmenů téměř stejná. Hlavní příčinou nevnímavosti na antimikrobiální látky je u gramnegativních bakterií nepropustnost buněčné membrány. Dalším předmětem studia je eflux, který může být u bakterie E. coli příčinou nevnímavosti na antibiotika. Jedná se o mechanismus, který dokáže pomocí pump vyčerpat nežádoucí toxické látky z buňky [19]. Účinnost cefalosporinů, chráněných penicilinů, fluorovaných chinolonů a ko-trimoxazolu je dobrá. U močových infekcí se dobře uplatňují chinolony a nitrofurantoin [4].

Tabulka 4 ilustruje, jak se vyvíjela antibiotická rezistence na příslušná antibiotika.

Tab. 4. Data objevení antibiotické rezistence u jednotlivých antibiotik [20].

<table>
<thead>
<tr>
<th>Název antibiotika</th>
<th>Rok nasazení antibiotika</th>
<th>Rok objevení rezistence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfonamidy</td>
<td>1930</td>
<td>1940</td>
</tr>
<tr>
<td>Penicilin</td>
<td>1943</td>
<td>1946</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>1943</td>
<td>1959</td>
</tr>
<tr>
<td>Chloramfenikol</td>
<td>1947</td>
<td>1959</td>
</tr>
<tr>
<td>Tetracyklin</td>
<td>1948</td>
<td>1953</td>
</tr>
<tr>
<td>Erytromycin</td>
<td>1952</td>
<td>1988</td>
</tr>
<tr>
<td>Vankomycin</td>
<td>1956</td>
<td>1988</td>
</tr>
<tr>
<td>Methicilin</td>
<td>1960</td>
<td>1961</td>
</tr>
<tr>
<td>Ampicilin</td>
<td>1961</td>
<td>1973</td>
</tr>
<tr>
<td>Cefalosporiny</td>
<td>1960</td>
<td>1960</td>
</tr>
</tbody>
</table>
3.2.1 Stručná charakteristika antimikrobiálních látek

Antibiotika jsou látky, které zabraňují růstu bakterií a hub, nebo je úplně ničí. Antibiotika, která zabraňují růstu mají bakteriostatický účinek a antibiotika, která bakterie úplně ničí mají účinek baktericidní [20]. Dělení antibiotik dle účinku je následující:

1. antibiotika působící na biosyntézu buněčné stěny;
2. antibiotika blokující bakteriální syntézu proteinů;
3. antibiotika blokující replikaci a opravu DNA;
4. antibiotika s jiným mechanismem účinku [20].

K antibiotikům působícím na biosyntézu buněčné stěny se řadí β-laktamová a nitrillaktoza, tuto skupiny reprezentují peniciliny, monobaktamy, karbapenemy a cefalosporiny, dále zde patří glykopeptidy a fosfomycyiny [21].

K inhibitorům syntézy proteinů patří aminoglykosidy, MLSK (makrolidy, linkosamidy, strep programiny, ketolydy), tetracykliny, glyceryklykliny, fenikoly, oxazolidinony a ansamycyiny [21].

K inhibitorům nukleových kyselin patří chinolony a furany. Do skupiny antimetabolitů patří sulfonamidy a trimetoprim/sulfametoxazol. Mezi inhibitory membránových funkcí patří lipopeptidy, polimyxiny a cyklické lipopeptidy [21].

3.2.2 Mechanismy získané rezistence

První možností je mutační rezistence, kde jsou důvodem bakteriální rezistence k antibiotikům mutačními změnou v buňce. Dojde k pozměnění cílového místa, které je odolné vůči antimikrobiální látech a je stále schopno vykonávat svoji fyziologickou funkci. Takto dochází například k rezistenci na β-laktamová antibiotika, aminoglykosidy, chinolony, tetracyklinová antibiotika a glykopeptidy. Rezistence na alkohol u buněk bakterie E. coli, u které se zvýší nevnímavost, je způsobena poklesem v poměru vnitromembránového fosfatidyletanolaminu k anionům fosfolipidů, fosfatidyglycerolu a fosfatidyldiglycerolu [19].

3.2.3 Mar operon E. coli

Escherichia coli obsahuje mar operon, jedná se o soubor genů chromosomu E. coli a dalších gramnegativních bakterií způsobujících infekční onemocnění, tento operon zprostřed-

3.2.4 Případy rezistence na antimikrobiální látky u bakterie E. coli

Od roku 1998 do roku 2000 bylo ve Washingtonu DC v USA nasbíráno 472 izolátů bakterie E. coli. Tyto izoláty byly získány z masa, a to z kuřecího, hovězího, vepřového a krůtího. Bylo zde zjištěno, že 59 % bylo rezistentních vůči tetracyklinu, 45 % vůči sulfametoaxazolu, 44 % vůči streptomycinu, 38 % vůči cefalotinu, 35 % vůči ampicilinu. V menší míře se rezistence objevila i u dalších antibiotik, 12 % bylo odolných proti gentamicinu, 8 % proti kyselině nalidixové, 6 % proti chloramfenikolu, 4 % proti ceftiofuru a 1 % proti ceftriaxonu [22].

Ve Vietnamu byly vyšetřeny různé druhy masa, a to kuřecího, vepřového a korýšů. Bylo zkoumáno celkem 99 izolátů na 15 antimikrobiálních látek. Celkem 84 % izolátů bylo rezistentních k jednomu nebo více antibiotik. U 75 % izolátů z vepřového masa a 89,5 % kuřecího masa byla prokázána multirezistence (rezistence na více než 3 různé skupiny antibiotik) [23].

3.2.5 Vyšetření citlivosti na antibiotika

Toto vyšetření se provádí z důvodu zjištění, zdali je mikrob k antibiotiku citlivý. Kvantitativně se hodnotí pomocí zjišťování MIC (minimální inhibiční koncentrace), nebo pomocí difúzní diskové metody. Diskový difúzní test se provádí na Muller-Hinton agaru, pH půdy nesmí překročit 7,2-7,4. K testování se používají standardní disky od prověřených výrobců. Po změření zón, které se vytvoří okolo disku, se dle tabulek odečítají hraniční hodnoty pro daného mikroba. Cílem vyšetření citlivosti je návrh terapie a dávkování, vyšetřují se běžně používaná antibiotika. Vzhledem k mechanismu rezistence a růstovým vlastnostem druhu se pro každou skupinu bakterii či druh vyšetřuje speciální sestava antibiotik [3].
3.3 Produkce bakteriocinů *E. coli*

Bakteriociny představují velkou skupinu toxinů, které se nacházejí ve většině linií bakterií a archeí. Studie ukazují, že bakteriociny hrají klíčovou roli při zprostředkování mikrobiální interakce a dokonce mohou hrát zásadní roli pro udržení mikrobiální rozmanitosti. Rozmanitost bakteriocinů je opravdu mimořádná, u jednotlivých druhů se mohou vyskytovat i desítky bakteriocinů. V posledních letech jsou bakteriociny terčem pro použití ve veterinární medicíně a při skladování potravin. Bakteriociny jsou velmi atraktivní pro použití jako lék, jelikož jsou aktivní proti všem známým lidským, zvířecím a rostlinným patogenům. Jsou to pozoruhodně stabilní proteiny a nejsou toxické pro lidské buněky. Je známo použití bakteriocinu nisinu a kolicinů E a B pro snížování střevních patogenů u hospodářských zvířat. První bakteriocin byl izolován v roce 1925 jako antimikrobiální protein z bakterie *E. coli*. Existují dva hlavní rysy, kterými se bakteriociny dělí od klasických antibiotik, bakteriociny jsou syntetizovány na ribozomech a mají relativně úzké spektrum působení [24].

Geny pro produkci bakteriocinů jsou kódovány chromozomálně nebo na plasmidu. Bakteriociny se dělí na dvě hlavní skupiny:

a) bakteriociny produkované grampozitivními bakteriemi- jsou to kationtové, amfifilní, membránovou propustné peptidy o velikosti přibližně 2-6 kDa;

b) bakteriociny produkované gramnegativními bakteriemi- od předešlé skupiny se liší hlavně tím, že jsou obvykle propouštěny lýzí buněk a tím, že jsou často závislé na regulačních dráhách hostitele [24].

E. coli je symbiontem, jelikož svým působením znemožňuje průnik patogenů, protože produkuje toxické koliciny [4].
4 VÝZNAM BAKTERIE ESCHERICHIA COLI

4.1 Escherichia coli jako modelový mikroorganismus

Tato bakterie je důležitým modelovým mikroorganismem, byla na ní prokázána bakteriální konjugace, replikace DNA a další buněčné procesy. Do genomu E. coli byly vneseny geny pro produkci nejrozmanitějších látek, jako je lidský inzulin nebo interferon, mimo jiné byly vneseny geny kódující antigeny jiných mikrobů, což vede ke vzniku rekombinantních vakcín. Agar s masivně nahořkovánou E. coli se používá pro pěstování některých ameb [4].

4.2 Escherichia coli jako indikátorový a indexový mikroorganismus

Poživatiny a předměty běžného užívání se musí mikrobiologicky vyšetřovat. Mikroflóra se mění při technologických operacích kvantitativně i kvalitativně. Není možné vyšetřovat potraviny a předměty běžného užívání na všechny mikroorganismy, proto byly vytipovány některé druhy, rody a mikrobiální skupiny, které se stanovují, takové mikroorganismy jsou nazývány jako indikátorové [2].

Escherichia coli patří mezi indexové bakterie, které informují o možnosti přítomnosti choroboplodných zárodků, které jsou jinak nazývány jako Escherichia coli fekálního typu [2]. Fekálním znečištěním se E. coli dostává do vody, kde může přežít řadu týdnů, slouží jako nejběžnější indikátor fekální kontaminace pitné vody [3].

Mezi skupinu, která je označována jako indikátorové a indexové koliformní bakterie patří:

- Enterobacteriaceae (EBA);
- koliformní bakterie (KFB);
- koliformní termotolerantní bakterie (KFT);
- fekální Escherichia coli (ECF) [2].

Původním stanovištěm těchto bakterií je střevní trakt, výkaly se dostanou do vnějšího prostředí, kde se dokážou přizpůsobit změněným podmínkám a velmi dobře se rozmnožují v potravinách, kde byly jejich přirození antagonisté usmrceni. Indexový význam KFT je ten, že bakterie Escherichia coli, které pocházejí bezprostředně z lidských fekálí velmi ochotně rostou při teplotách 44,5 až 45,8 °C, naproti tomu bakterie, které pocházejí z vnějšího pro-
středí tuto schopnost nemají. Principem indexového významu *E. coli* a ECF je fakt, že jsou indol pozitivní a metylčerven pozitivní [2].

Významem těchto mikroorganismů je tedy:

- prokazatelnost spolehlivosti pasteurace;
- indikátory primární a sekundární kontaminace potravin;
- indikátory sanitace nářadí a zařízení;
- index přítomnosti choroboplodných zárodků v pitné vodě [2].

Například v mléce přítomnost bakterie *Escherichia coli* neznamená pouze to, že došlo ke kontaminaci fěkáliemi dojnic, ale může dojít ke kontaminaci ploch, které poté zpětně infikují nekontaminované mléko. Poukazují tedy na to, že plochy nebyly dostatečně čištěné a dekontaminované [2].

4.2.1 Osídlení trávicího traktu

Osídlení trávicího traktu člověka koliformními bakteriemi (Tab. 5) se v různých částech mění. Nejméně koliformních bakterií se vyskytuje v žaludku, směrem k vyústění trávicího traktu se počet zvyšuje, nejvyšší počet se nachází v kolonu.

Tab. 5. Osídlení trávicího traktu [6].

<table>
<thead>
<tr>
<th>Množství koliformních bakterií v 1 ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>žaludek</td>
</tr>
<tr>
<td>jejunum</td>
</tr>
<tr>
<td>ileum</td>
</tr>
<tr>
<td>kolon</td>
</tr>
</tbody>
</table>

4.3 Escherichia coli jako patogen

Už Theodor Escherich navrhl, že by bakterie mohla způsobovat intestinální a uretické problémy. První informace o tom, že by *E. coli* mohla být nebezpečná přišly v letech 1930. V roce 1945 pediatr John Bray definoval podskupinu kmenů *E. coli*, které byly spojovány
s průjmy dětí. Tato skupina byla nakonec definována pomocí sérotypizace jako EPEC (enteropatogenní E. coli) [7]. Nejznámější jsou antigenní typy O55, O111, O126, O86 [4]. Symptomy nákazy kmeny EPEC jsou nevolnost, zvracení, průjem a objevují se po 12ti až 36ti hodinách po vniknutí do organismu. U dětí se jedná o jedno z nejčastějších onemocnění, a může trvat déle než dva týdny. Patogenita je způsobena schopností adheze těchto kmenů na membránu enterocytů a produkci tzv. připojovacích a skromných lézí. Jedná se o fascinující proces, který kódují geny 35 kb ostrůvek patogenity, které jsou nazývány LEE (The Locus of Enterocyte Effacement) [11].

Další skupiny spojené s onemocněním střev byly popsány v roce 1960 a nazvány jako ETEC (enterotoxigenní E. coli) a EIEC (enteroinvazivní E. coli). V současnosti existuje 6 dobře charakterizovaných tříd patogenních typů E. coli, které mohou způsobit střevní potíže u lidí. Kmeny EPEC jsou především spojovány s průjmy dětí, úzce související patotyp je EHEC, který navíc produkuje potenciální cytotoxin Shiga-toxin, který rozšiřuje spektrum nemoci o nekrvácíící průjmy, krvácíící průjmy, hemolyticko-uremický syndrom a potenciální fatální ledvinové onemocnění. EHEC jsou širší podmnožinou kategorie nazývané STEC (shiga-toxin produkující E. coli) [7].

Hlavní příčinou cestovatelských průjmů jsou ETEC. Tyto průjmy nastávají zejména při výcestování z rozvojových zemí. Tyto kmeny produkují toxiny, dále produkují řadu intestinalních kolonizačních faktorů [7].

Jsou produkovány dva typy toxinů:

a) termostabilní toxin ST- který dokáže odolat teplotám 100 °C po dobu 15 minut, je acidorezistentní; existují dvě formy tohoto toxinu, jednou je \(ST_A \) toxin, který má nižší molekulovou hmotnost, druhou formou je \(ST_B \);
b) termolabilní toxin LT- který je inaktivován při záhřevu na 60 °C po dobu 30 minut [11].

EIEC kmeny jsou velmi podobné bakterii Shigella. Escherichia coli a Shigella jsou taxonomicky nerozeznatelné na úrovni druhu. EAEC (enteroagregatní E. coli) byly zpočátku objeveny na základě jejich agregativní adherence, poté byla objevena produkce množství toxinů. EAEC je stále více rozeznávána jako příčina přetrvávajících průjmů u dětí a dospělých [7]. Hlavními příznaky této nemoci jsou horečka, rozsáhlé bolesti břicha, vodnatý průjem, nevolnost, dále sliz a leukocyty ve stolici [11].

Dalším typem je DAEC (difúzně-adherentní E. coli). Více adhezinů a toxinů bylo popsáno pro UPEC (uropatogenní E. coli), dalším typem, který je spojován s meningitidou dětí je MNEC jedná se o nejčastější příčinu gramnegativní meningitidy u kojenců. MNEC se šíří z krve do CNS skrz invazivní proces [7].

Některé kmeny bakterie E. coli jsou schopny vyvolat potíže u lidí i u zvířat, některé mohou vyvolat potíže pouze u zvířat a u lidí se neprojevují. Například kmeny EHEC mohou způsobit problémy u zvířat, ale nejsou hlavním zvířecím patogenem, naproti tomu APEC (ptačí patogenní E. coli) způsobuje dýchací potíže infekce u drůbeže, ale není schopná se projevit u člověka [7]. Některé kmeny tedy produkují enterotoxiny a jiné faktory virulence a způsobují průjmová onemocnění. Jsou také původci infekcí močových cest a nozokomiálních infekcí (septikémie, meningitidy). Epidemiologicky patogenní kmeny jsou charakterizovány a identifikovány sérologicky na základě somatických, kapsulárních a bičíkových antigenů. Jiné druhy tohoto rodu se vyskytují většinou ve spojitosti s infekcemi ran [1].

V Dánsku na mléčných farmách byl zkoumán vliv věku zvířete a plemene na výskyt E. coli, která je schopná produkovat verotoxin. V celkem 3,6 % případů se jednalo o kmeny VTEC O157. Nejvíce pozitivní na přítomnost VTEC byly vzorky od 2-6 měsíčních telat, naproti tomu telata s věkem pod 2 měsíce byla pozitivní na přítomnost VTEC pouze v 0,7 % případů. Více VTEC se vyskytovalo u býčků než krav [25].
4.4 *Escherichia coli* a její probiotická aktivita

Vybrané apatogenní kmeny *Escherichia coli* se používají dokonce jako probiotika, jelikož jejich podáním lze podstatně snížit riziko výskytu patogenů v zaživacím traktu. Jejich použití může být buď krátkodobé po antibiotické léčbě nebo dlouhodobé u závažnějších onemocnění. V humánní medicíně jsou imunodeficientní stavy a změny mikroflóry digestivního traktu známé především u nemocných AIDS a s nádory s doprovodnou neurotropenii, kde z oportunitních infekcí převažují nejvíce infekce kandidové. Antagonistický efekt *E. coli* je prokázán na kmeni Niessle 1917 proti růstu *Candida albicans* [6].
5 VÝSKYT BAKTERIE _ESCHERICHIA COLI_

Bakterie _Escherichia coli_ se vyskytuje ve vodě, půdě, na rostlinách, u lidí a zvířat [2] [8] [12]. Gastrointestinální trakt je osidlený asi 10^{12} bakterií na jeden gram složky, z čehož se okolo 1 % jedná o _Escherichia coli_ [26]. V důsledku toho, že se bakterie vyskytuje přirozeně ve střevní flóře, je velmi jednoduché, aby došlo k sekundární kontaminaci [27]. Z hygienického hlediska slouží ve vodách a potravinách jako ukazatel fékálního znečištění. Vyskytuje se v potravinách, které byly v kontaktu s hnojenou půdou [9].

5.1 Výskyt _E. coli_ u zvířat

Bakterie _Escherichia coli_ se může vyskytovat u zvířat, které jsou zdravé, ale také u zvířat nemocných. Při narození je mikroflóra trávicího traktu přežvýkavců stejná jako u zvířat s jednoduchým žaludkem, k vývoji dochází během 2 a 6 týdnů věku, kdy jsou zvířata krmena objemovým krmiva. Z počátku je zde vysoký počet _E. coli_ ve střevech a jsou prokazatelné ve výkalech (10^9 CFU/g), ve věku okolo třech měsíců počet _E. coli_ klesá na 10^6 CFU/g.

V rozvinutém bachoru je vysoká koncentrace těkavých mastných kyselin a je zde takové pH, které zabraňuje rozvoji infekce salmonelami a _E. coli_ [28].

Tab. 6. Výskyt E. coli O157:H7 [28].

<table>
<thead>
<tr>
<th>Typ dobytka</th>
<th>Země</th>
<th>Počet vzorků</th>
<th>Procento pozitivní</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mladí býčci</td>
<td>ČR</td>
<td>163</td>
<td>5,5</td>
</tr>
<tr>
<td>Býci 100-200 kg</td>
<td>ČR</td>
<td>47</td>
<td>59,6</td>
</tr>
<tr>
<td>Býci 200-400 kg</td>
<td>ČR</td>
<td>36</td>
<td>44,4</td>
</tr>
<tr>
<td>Býci 400-600 kg</td>
<td>ČR</td>
<td>71</td>
<td>22,5</td>
</tr>
<tr>
<td>Ostavené jalovice</td>
<td>USA</td>
<td>3483</td>
<td>1,7</td>
</tr>
<tr>
<td>Hovězí dobytek</td>
<td>UK</td>
<td>1840</td>
<td>13,4</td>
</tr>
<tr>
<td>Jalovice</td>
<td>Austrálie</td>
<td>106</td>
<td>2,8</td>
</tr>
<tr>
<td>Dospělý dobytek</td>
<td>Nizozemí</td>
<td>540</td>
<td>10,6</td>
</tr>
<tr>
<td>Dobytek na výkrsm</td>
<td>Itálie</td>
<td>223</td>
<td>16,6</td>
</tr>
</tbody>
</table>

Operaci při zpracování masa, která přináší riziko kontaminace, je stahování z kůže, jelikož na kůži je obsažena přirozená flóra a další mikroorganismy včetně bakterie E. coli [28]. V roce 2000 byla provedena studie na výskyt mikroorganismů na kůži před eviscerací, po evisceraci a po vložení jatečních těl do chladniček. Před eviscerací bylo na EHEC O157 pozitivních 87 % vzorků, 57 % vzorků bylo pozitivních po evisceraci a 17 % vzorků bylo pozitivních po ukončení všech procesů a vložení těl do chladniček [29]. Bylo prokázáno, že na E. coli působí také sprejování masa kyselinami, například octovou nebo mléčnou [28].

Důležitým rezervoárem sérotypu O157:H7 se zdá být dobytek, jelikož byl tento sérotyp izolován v 0,9-8,2 % ze zdravého dobytka ve Velké Británii [11]. V Ugandě bylo vyšetřeno 159 kusů zdravého dobytka na přítomnost E. coli O157 a dalších typů E. coli, které produkují shiga-toxin. Z celkových 159 vzorků se v 45 případech jednalo o STEC. Bylo prokázáno, že dobytek je významným rezervoárem těchto mikroorganismů ve srovnání s výskytem u ugandských dětí [30]. Další výzkum na přítomnost STEC kmenů byl proveden v Rio de Janeiro, kde bylo odebráno celkem 197 vzorků výkalů dobytka z různých deseti farem, vzorky byly vyšetřovány pomocí metody PCR na přítomnost genových sekvencí pro produkcii shiga-toximu. Ze všech vzorků se v 71 % případů jednalo o patogenní kmen STEC, v 60 % případů byly přítomny sekvence genu stx1 a stx2. Ve třech případech byl izolován nebezpečný kmen O157:H7 [31].
5.2 Výskyt E. coli u člověka

Tato bakterie se běžně vyskytuje ve střevním traktu člověka, kde je pro svého hostitele užitečná. Dokáže syntetizovat vitamíny a přispívá k celkové rovnováze mikroorganismů ve střevech, jelikož zde inhibuje růst škodlivých bakterií tím, že s nimi soutěží o kyslík a živiny [32].

V ugandské Campale bylo odebráno 237 vzorků od dětí s příjmem. Tyto vzorky byly vyšetřovány na přítomnost E. coli O157 a na další kmeny produkující shiga-toxin. Vzorky byly kultivovány na MacConkey agaru obsahujícím sorbitol, bylo testováno celkem 150 vzorků stolice a ani u jednoho vzorku nebyla prokázána přítomnost E. coli O157. U dalších 87 vzorků byla přítomnost jakýchkoliv jiných kmenů E. coli produkujících shiga-toxin také negativní. Naproti tomu kmeny EPEC se vyskytovali u celkem 14,3 % vzorků [30].

5.3 Výskyt E. coli v surovinách a potravinách rostlinného původu

Zelenina je součástí jedlých rostlin včetně listů, stopek, kořenů, hlíz, cibulí, květů a semen. Hlavními komponentami zeleniny a ovoce jsou voda, vláknina, škrob, vitamíny, minerály a některé tuky. Obecně platí, že hodnota pH rostlinných olejů a tkání je pohybuje okolo 5-7. Vzhledem k tomu, celkové složení a pH jsou velmi příznivé, může zde růst četné množství mikrobiálních druhů. Prakticky je všechna zelenina v přirozeném stavu náchylná ke znehojdení mikroorganismy, rychlost závisí na různých faktorech. Aby se zabránilo používaní sušení, olejování, chlazení, mražení, fermentace, konzervování, ozáření, vakuové balení a balení do modifikované atmosféry [28].

Ke kontaminaci ovoce a zeleniny velmi často dochází v případě, že se dostanou odpadní vody do úrody, takto k tomu došlo například v roce 2001, kdy se do úrody zeli dostala pomocí zavlažovací vody voda odpadní a bylo zde nalezeno až 6 různých sérotypů bakterie Escherichia coli [33]. V poslední době, kdy dochází k stále větší mechanizaci sklizení ledového salátu, se zvyšuje možnost kontaminace bakterií E. coli v průběhu terénních postupů, bylo zjištěno, že se musí dodržovat prevence kontaminace nožů a dále se čerstvý salát musí rychle vychladit, aby se zajistila bezpečnost [34]. V roce 1999 bylo infikováno 72 zákazníků restaurace bakterií E. coli O157:H7, zdrojem této kontaminace byl strouhaný ledový salát. Byla provedena studie, aby se zjistilo, jak dochází ke křížové kontaminaci této komodity. Nastrouhaný ledový salát byl následně skladován při pokojové teplotě a ve vodě
v lednici, za jeden den bylo zkoumáno pomnožení bakterií. Zatímco salát skladovaný při pokojové teplotě obsahoval velmi vysoký počet bakterií, salát uložený při teplotě 4 °C ob-
sahoval pouze několik desítek bakterií. Dále bylo zjištěno, že praní salátu ve vodě nijak zre-
telně nesnižilo počet daných bakterií, zatímco mytí chlornanem vápenatým výrazně snížilo počet kontaminovaných kusů. Tato studie dokázala, že skladování nakrájeného salátu je velmi nevhodné, a že se musí věnovat velká pozornost řízení teploty při jeho skladování [35].

Další komoditou, která může být kontaminována *E. coli* je ovoce. *E. coli* O157:H7 je často
nalezena na jablcích, její přítomnost zvyšuje porušení plodu rostlinnými patogeny, dále me-
chanickým poraněním a v neposlední řadě poškození škůdci. Je tedy velmi důležité zabránit
po skizně poškození jablek, aby se snížilo riziko kontaminace sérotypem O157:H7. U suše-
ného ovoce se většinou mnoho patogenů neobjevuje, jelikož dlouhé skladování před prode-
jem minimalizuje riziko, nicméně byla *E. coli* O157:non-H7 izolována z konvenčně pěsto-
váných rozinek a dále se vyskytla u ekologicky pěstovaných dovezených meruněk [28].

Dalšími komoditami, které jsou potenciálními zdroji patogenů, je koření, suché ovoce, or-
ientální látky určené k aromatizaci. U koření se nachází široká škála mezofilních nesporu-
lujících bakterií, je zde i četné množství koliformních bakterií, ale *E. coli* zde není příliš
frekventovaná. Nicméně 30 % černého a bílého pepře je kontaminováno *E. coli*, v Německu
bylo zjištěno, že při prodeji petržele z užitkové zahrady byla obsažena u 30 z 64 vzorků *E.
coli*. V dalším výzkumu (Velká Británie) zjistili, že 42 % z 100 vzorků deseti různých koře-
ní a bylin obsahovalo *E. coli* na vyšší úrovni než 10 CFU/g. *E. coli* se také může vyskytnout
na cereáliích a cereálních produktech. Pokud je s obilovinami správně zacházeno, jsou nato-
ilk suché, že na nich bakterie nemohou růst. Cestou zanesení bakterií může být člověk nebo
kontaminace od zvířat jako je hmyz, hlodavci a ptáci. Další smíšenou komoditou, kde hrozí
kontaminace mikroorganismy jsou tortily, které jsou velmi často připravovány v primitiv-
ních venkovských podmínkách Střední Ameriky. Tepelná úprava sice ničí bakteriální pato-
geny, ale tortily jsou většinou okamžitě rekcontaminovány, jelikož obsahují velké množství
vhodnosti, což podporuje růst *E. coli*. Také z ořechů byly izolovány patogenní kmeny *E. coli*,
množství těchto bakterií klesá během skladování [28].

Fekální kontaminace vodních zdrojů a potravin může často vyústit v rozsáhlou nákuze způ-
sobenou například kmeny EPEC, EIEC a ETEC. V roce 1961 došlo k rozsáhlé infekci

Obávaným rezervoárem pro E. coli jsou naklíčená semena, jedná se o sazenice získané klíčením semen, jsou určeny k přímé spotřebě. Klíčky mohou být kontaminovány při sklizni, výrobě, skladování nebo přepravě. U klíčení jsou velmi vhodné teploty a vlhkost pro rozvoj mikroorganismů [36]. Velmi nebezpečné onemocnění pocházelo z klíčků ředkve, došlo k němu ve městě Sakai a onemocnělo zde 5700 lidí. K dalšímu zdroji těchto bakterií patří klíčky vojtěšky. Mezi potraviny rostlinného původu, ve kterých byla tato bakterie prokázána patří také vařená kukuřice a růžičková kapusta [2].

Bylo dokázáno, že se E. coli vyskytuje u kyselých chlazených potravin, jako jsou rajčata nebo výrobky z nich. Dokonce byl prokázán výskyt u kyselých potravin, které měly pH 4,2 až 4,8 a některé obsahovaly i konzervační činidlo. Přežití E. coli bylo prodlouženo skladovaláním při snížené teplotě [37].

5.4 Výskyt E. coli v surovinách a potravinách živočišného původu

V roce 2000 byla provedena studie, zdali u tepelně neopracovaného masa může zabránit výskytu *E. coli* dekontaminace. Bylo zjištěno, že dekontaminace masa vede ke snížení počtu patogenů. U dekontaminovaného masa je problémem, že při opětovné kontaminaci při řezání nebo balení dojde k vyššímu růstu patogenních mikroorganismů, než u masa nedekontaminovaného, jelikož je zde nedostatek apatogenních konkurenčních mikroorganismů. Maso bylo v této studii dekontaminováno parami v kombinaci s postřikem 0,2 M kyselinou mléčnou. Podle zásad HACCP má zacházení s dekontaminovaným masem velice přísná kritéria a měl by se používat postřik ochranných bakterií mléčného kvašení [38].

V Itálii byla v roce 2003 zkoumána přítomnost *E. coli* ve výrobcích z masa skotu. Vzorky byly odebrány náhodně v maloobchodní síti, jednalo se o vzorky mletého hovězího masa, které bylo buď samostatné nebo bylo smícháno se zeleninou v podobě karbanátů. Pomocí PCR byla zjišťována přítomnost genů virulence izolátů. U 30,2% vzorků byla zjištěna přítomnost *E. coli*, a to zejména ze vzorků mletého masa smíchaného se zeleninou. Ve 3 ze 149 vzorků byla nalezen kmen O157, tři kmeny byly pozitivní na produkci verotoxiny. Ideální je pro detekci *E. coli* použití chromogenního agaru, je totiž více selektivní a eliminuje falešné pozitivní kolonie [39].

E. coli se velmi hojně vyskytuje v drůbežích výrobcích, a dále také u ryb a výrobcích z nich. Další komoditou živočišno-rostlinného původu, ve kterém je možno nalézt *E. coli* jsou krmiva pro zvířata a strava pro domácí mazlíčky. Kmen O157 a další kmeny *E. coli*, které byly zapojeny v mnoha případech hemolytické enteritidy nebo HUS u lidí, mohou být transportovány přes trávu a jiné nezpracované nebo rekontaminované krmiva. Bylo zde prokázáno přežití po celé měsíce a dokonce i množení těchto kmenů ve vlhkém krmivu a napájecích žlabech [28].

Escherichia coli se bežně vyskytuje také ve fermentovaných párcích a majonézách [11]. V majonézách je problémem, že pH výrobku je většinou vyšší než 4, což představuje jisté
Riziko otrav E. coli O157:H7, tyto kmeny mohou být často mírně acido-tolerantní nebo není kyselost výrobku dostatečná. V Oregonu se v roce 1993 nakazilo 62 lidí touto bakterií z majonézy a nivových dresinků kontaminovaných sérotypem O157:H7 [28].

U sýrů způsobuje tato bakterie tzv. časné duření, dochází zde k fermentaci laktosy za vzniku oxidu uhličitého a vodíku. Mimořádnou pozornost vzbudil obsah této bakterie v sýrech kamembertského typu, čili v sýrech, jejichž plíseň tvoří P. camemberti. Koliformní bakterie patří mezi plynnotvorné a způsobují škody při výrobě sýrů s nízkodohřívanou sýřeninou [2].
6 DIAGNOSTIKA BAKTERIE *ESCHERICHIA COLI*

Bakterie *Escherichia coli* může být odlišena od ostatních bakterií z čeledi *Enterobacteriaceae* na základě zkvašování cukrů a dalších biochemických testů. Základní možnosti jsou testy IMViC, které se skládají z následujících reakcí:

- indol z tryptofanu,
- dostatečná kyselost, která mění pH půdy pod 4,4 a bodem indikace je metylčerveně;
- acetoin;
- schopnost utilizovat citrát.

6.1 Mikrobiologická diagnostika *E. coli*

Půdy lze všeobecně rozdělit na syntetické a přirozené, většina půd používaných v mikrobiologii se řadí mezi přirozené, jejichž základem je většinou živný bujón, který není přesně chemicky definován. Velikost, vzhled a další znaky kolonií mohou být charakteristické pro určité mikroby, což může sloužit k jejich předběžnému stanovení [15].

Selektivní techniky pro *E. coli* většinou využívají schopnost tolerance žluči a dalších povrchově aktivních sloučenin, které se nacházejí v jejich přirozených stanovištích, jako je střevo. Dále jsou používány anilinové barvy a schopnost většiny kmenů růst při teplotách 44 °C [11].

6.1.1 MacConkey agar

První selektivní a rozlišovací médium bylo vymyšleno MacConkeyem v roce 1905 a později bylo toto médium různě pozměňováno. Žlučové soli zde hrájí roli inhibitorů grampozitivních bakterií a některých náročných gramnegativních. Je zde obsažena laktosa, kterou je možno fermentovat s pH indikátorem, kterým je obvykle neutrální červeně. Silní producenti kyselin, jako je právě *Escherichia coli* zde tvoří červené kolonie. MacConkey agar není

6.1.2 Endo agar

Tato půda je označována jako selektivně diagnostická, jelikož na ní rostou pouze nenáročné gramnegativní bakterie, zejména enterobakterie. Na této půdě se dají diagnostikovat mikroby, které dokážou rychle štěpit lactosu, indikátorem štěpení lactosy je zde opět bazický fuchsin, který je odbarvený síričitanem sodným. Na Endo agaru (Obr. 3) roste *E. coli* ve formě tmavorudých kolonií, mnohdy se zlatožlute kovovým odleskem, půda kolem kolonie se barví červeně [15].

![Obr. 3. Endo agar](image)

6.1.3 Enterotest

Jedná se o komerčně vyráběné mikrotesty firmy Pliva-Lachema, Brno. Jedná se o miniaturizované destičky s jamkami, v nichž jsou obsaženy příslušné živné roztoky a pomocné látky k detekci bakterií z čeledi *Enterobacteriaceae*. Tyto soupravy nahradily dřívější testy
ve zkumavkách. Jednotlivé jamky se inokulují a poté se inkubují předepsanou dobu, po které se vyhodnocují. V zahraničí se používají testy Enterotube [32].

6.1.4 Barvení dle Grama

Nejčastěji se k identifikaci používá diagnostické barvení, a to barvení dle Grama, toto barvení je velmi vyhledávané z hlediska rychlosti výsledku. Poskytuje informaci o tom, zdali se ve vzorku bakterie vyskytují a pokud ano, jaký mají tvar a jaké tvoří útvary. Nejdůležitější informací ovšem je, zdali se jedná o grampozitivní či gramnegativní bakterie [15].

6.1.5 Sklíčková aglutinace

Jedná se o vyšetření na základě antigenní struktury. Provádí se pomocí antisér proti různým antigenům vyšetřovaného mikroba. Tato metoda se využívá u *E. coli* k identifikaci enteropatogenních sérotypů O55, O111 a enterohemorrhagických *E. coli* O157:H7 [15].

6.1.6 Pokus na zvířeti

Pokud je třeba doplnit identifikaci o průkaz toxicity respektive virulence izolovaného kmeně, je možné použít pokus na zvířeti. Tato metoda se používala u průkazu enteroinvazivních sérotypů *E. coli* [15].

6.1.7 PYR-test

Jedná se o jednotlivý rychlý test, který je používán pro identifikaci mezi *E. coli* a klebsielou [4].

6.1.8 Testy pro patogenní kmeny *E. coli*

Testem pro diagnostiku EIEC je *Serényiho test*, kde se invazivita mikroba prokazovala na spojivkovém vaku morčete. Pokud není použit MacConkey agar ke stanovení STEC kmenů, které se vyznačují neschopností štěpit sorbitol, je možno použít rychlejší a méně pracnou, bohužel dražší variantu pro přímý průkaz antigenu metodou ELISA [15].
6.2 Molekulárně biologická diagnostika *E. coli*

Identifikace kmenů *E. coli*, které způsobují průjmy je založena na detekci jejich asociativních virulentních faktorů, a to ST a LT u ETEC kmenů a LTI a Stx genů u ETEC a EHEC pomocí metody PCR [11].

6.2.1 Průkaz bakteriálních nukleových kyselin

Rozlišuje se, zdali se jedná o průkaz DNA bez amplifikace nebo s amplifikací, bez amplifikace se DNA prokazuje tzv. genovou sondou (úsek jednovláknové DNA komplementární k DNA hledaného mikroba), poté dochází k hybridizaci [15].

Pokud se jedná o metodu s amplifikací tak největší uplatnění našla metoda PCR (Polymerase Chain Reaction) [15]. PCR byla zavedena v roce 1985 Kary B. Mullisem [41]. Tato metoda je založena na opakovaných cyklech tří jednoduchých reakcí, z nichž každá probíhá za určité teploty. Prvním krokem je denaturace, kdy se vlákna DNA rozpletou (94 °C), dalším krokem je připojení dvou krátkých nukleotidů, které ohraničí hledaný úsek DNA (30-65 °C) poté dochází k prodlužování těchto nukleotidů (65-75 °C) pomocí Taq-Polymerasy, získané z termofilní bakterie *Thermus aquaticus* [15] [41]. Je potřeba, aby tyto polymerasy odolávaly teplotě, při níž DNA denaturuje, to umožňuje, aby syntéza probíhala opakovaně formou cyklů. Primery jsou uměle připravované krátké oligonukleotidy o délce zhruba 18-30 bází, odvozené od koncových sekvencí DNA určené k amplifikaci [42]. Cykly se automaticky opakují v zařízení zvaném termocykler [15]. Výsledným produktem reakce jsou fragmenty DNA definované délky analogické restrikčním fragmentům, jejichž přítomnost v reakční směsi se prokazuje buď elektroforetický, southernovou hybridizací se značenou sondou komplementární k části sekvence amplifikovaného úseku nebo stanovením sekvence DNA [42]. Metoda PCR je využívána u patogenních variant bakterie *E. coli* [15].

Existují také jisté modifikace PCR:

- reverzní PCR (RT-PCR);
- inverzní PCR (IPCR);
- asymetrická PCR;
- *In-situ* PCR;
• PCR pomocí vnitřních a vnějších primerů (nested PCR);
• PCR s degenerovanými oligonukleotidovými primery (DOP-PCR);
• náhodná PCR (AP-PCR, RAPD-PCR);
• PCR sledovaná v reálném čase (online PCR) [42].

6.2.2 Elektroforéza nukleových kyselin

Principem je pohyb nabitých molekul v elektrickém poli, hlavním nositelem náboje NK jsou záporně nabité fosfátové skupiny. Používané elektroforézy jsou následující:

• gelová elektroforéza;
• pulzní gelová elektroforéza;
• gely pro sekvencování nukleových kyselin [42].

U gelové elektroforézy jsou gely nejčastěji tvořeny polyakrylamidem nebo agarózou, gely vytvářejí složitou síť s póry. Polyakrylamidové gely se používají k separaci menších molekul než gely agarózové. Molekuly DNA se zviditelní barvivem, používá se nejčastěji etidium-bromid. Pulzní gelová elektroforéza se používá k separaci větších molekul se stejnou pohybovou rychlostí, zde je gel vystaven elektrickému poli pod určitým úhlem, jehož směr se periodicky mění v časových intervalech [42].

6.3 Ostatní diagnostika E. coli

Další možností jak stanovit E. coli je fluorescenční metoda. Stanovení se provádí na agarózových gelech obsahujících nízkou koncentraci etidiumbromidu, zde se vzorky bud’ nakapou nebo probíhá elektroforéza. Po ozáření gelu UV dochází k fluorescenci komplexu DNA s etidiumbromidem. Intenzita světla se srovnává s intenzitou standardu bud’ vizuálně nebo pomocí fotografie [42].
II. PRAKTICKÁ ČÁST

7 CÍL PRÁCE

Tato diplomová práce byla v praktické části zaměřena na:

- izolaci kmenů bakterie *Escherichia coli* z potravin;
- identifikaci získaných izolátů pomocí biochemických mikrotestů;
- stanovení citlivosti izolátů *E. coli* k abtibiobiotikům pomocí diskové difúzní metody;
- stanovení produkce kolicinů u jednotlivých izolátů *E. coli*;
- rozřazení kmenů *E. coli* izolovaných z potravin do fylogenetických skupin.
8 MATERIÁL

Praktická část se skládala z izolace bakterií ze zakoupených potravin, dále byla u izolovaných bakterií provedena identifikace. U kmenů, které byly určeny jako *E. coli* byla provedena difúzní disková metoda ke stanovení citlivosti na antibiotika, byla provedena kvantitativní analýza produkce kolicinů a v poslední fázi praktické části byly izolované kmeny a další kmeny ze sbírky ÚTMP FT UTB ve Zlíně [43] rozřazeny pomocí PCR do fylogenetických skupin.

8.1 Přístrojová technika

- běžné laboratorní sklo a pomůcky
- souprava mikrotestů ENTEROtest 24 (PLIVA - Lachema Diagnostika s.r.o. Brno, ČR)
- antibiotické disky (Oxoid Ltd., Velká Británie)
- parní sterilizátor VARIOKLAV 75S, 135S (H+P Labortechnik, Německo)
- biologický inkubátor (Memmert, Německo)
- předvážky KERN 440-47N (Kern, Německo)
- termocykler PTC 100 MJ Research (Bio-Rad, USA)
- termoblok Bio TDB-100 (Biotech, ČR)
- termostat BT120 (Laboratorní přístroje Praha, ČR)
- elektroforetické zařízení model B1A (OWL Separation System, Inc., USA)
- UV- transluminátor - dokumentační systém pro elektroforézu (Biotech, ČR)
- digitální fotoaparát PowerShot G6 (Canon, Japonsko)
- Denzitometr DENZI-LA-METEREMO (Lachema, ČR)
- Laboratorní chlazená cetrifuga 2300K (Hemle Labortechnik, Německo)
- Automatické mikropipety (Nichiryo, Japonsko)
8.2 Kultivační média

Složení jednotlivých kultivačních médií je uvedeno v tabulkách níže (Tab. 7, Tab. 8, Tab. 9, Tab. 10, Tab. 11, Tab. 12).

Masopeptonový agar (MPA)

Tab. 7. Složení MPA.

<table>
<thead>
<tr>
<th>Komponenta</th>
<th>Množství</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agar (HiMedia Laboratories Pvt. Ltd., Indie)</td>
<td>15 g</td>
</tr>
<tr>
<td>Masový výtažek (HiMedia Laboratories Pvt. Ltd., Indie)</td>
<td>10 g</td>
</tr>
<tr>
<td>Pepton (HiMedia Laboratories Pvt. Ltd., Indie)</td>
<td>10 g</td>
</tr>
<tr>
<td>NaCl (Ing. Petr Lukeš, Uherský Brod)</td>
<td>5 g</td>
</tr>
<tr>
<td>Destilovaná voda</td>
<td>1000 ml</td>
</tr>
</tbody>
</table>

Masopeptonový bujón (MPB)

Tab. 8. Složení MPB.

<table>
<thead>
<tr>
<th>Komponenta</th>
<th>Množství</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masový výtažek (HiMedia Laboratories Pvt. Ltd., Indie)</td>
<td>3 g</td>
</tr>
<tr>
<td>Pepton (HiMedia Laboratories Pvt. Ltd., Indie)</td>
<td>5 g</td>
</tr>
<tr>
<td>NaCl (Ing. Petr Lukeš, Uherský Brod)</td>
<td>3 g</td>
</tr>
<tr>
<td>Destilovaná voda</td>
<td>1000 ml</td>
</tr>
</tbody>
</table>

Soft agar (SA)

Tab. 9. Složení Soft agaru.

<table>
<thead>
<tr>
<th>Komponenta</th>
<th>Množství</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agar (HiMedia Laboratories Pvt. Ltd., Indie)</td>
<td>10,5 g</td>
</tr>
<tr>
<td>Masový výtažek (HiMedia Laboratories Pvt. Ltd., Indie)</td>
<td>3 g</td>
</tr>
<tr>
<td>Pepton (HiMedia Laboratories Pvt. Ltd., Indie)</td>
<td>5 g</td>
</tr>
<tr>
<td>NaCl (Ing. Petr Lukeš, Uherský Brod)</td>
<td>5 g</td>
</tr>
<tr>
<td>Destilovaná voda</td>
<td>1000 ml</td>
</tr>
</tbody>
</table>
Endo agar (EA)

Tab. 10. Složení Endo agaru.

<table>
<thead>
<tr>
<th>Živná půda</th>
<th>41,5 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destilovaná voda</td>
<td>1000 ml</td>
</tr>
</tbody>
</table>

Mueller Hinton agar

Tab. 11. Složení Mueller Hinton agaru.

<table>
<thead>
<tr>
<th>Živná půda</th>
<th>38 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destilovaná voda</td>
<td>1000 ml</td>
</tr>
</tbody>
</table>

Fyziologický roztok

Tab. 12. Složení fyziologického roztoku.

<table>
<thead>
<tr>
<th>NaCl (Ing. Petr Lukeš, Uherský Brod)</th>
<th>8,5 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destilovaná voda</td>
<td>1000 ml</td>
</tr>
</tbody>
</table>

Příprava kultivačních médií:

Postupně byly naváženy jednotlivé složky půdy, poté byly rozpuštěny v příslušném množství destilované vody. Připravené půdy byly sterilovány v autoklávu při teplotě 121 °C po dobu 15 minut. Poté byly půdy rozhlevány do sterilních Petriho misk nebo zkumavek.

8.3 Chemikálie

- destilovaná voda
- chloroform
- parafínový olej
- **primery** - IDT (Integrated DNA Technologies), USA
- **Taq DNA polymeráza** - *Taq* DNA polymerase with ThermoPol Buffer, New England BioLabs, USA
- **dNTP Mix**- směs dATP, dCTP, dGTP, dTTP, Jena Bioscience, Německo
• agaróza – Sea Kem LE Agarose, Lonza, USA
• etidiumbromid – Sigma Aldrich, Německo
• nanášecí pufr – TopBio, Česká republika

• TAE pufr (50x koncentrovaný)
 1. Trizma - Sigma Aldrich, Německo
 2. EDTA (0,5M roztok EDTA, pH 8,0) - Lachema, ČR
 3. Kyselina octová - Ing. Petr Lukeš, ČR

• 100 bp DNA marker- New England Biolabs, USA
 1. 180 µl vody
 2. 50 µl nanášecího pufru
 3. 20 µl DNA ladder

8.4 Použité bakteriální kmeny

Vzorky použité v této práci (Tab. 13) byly izolovány z nakoupených potravin v obchodních sítích po Zlíně a blízkém okolí.

Tab. 13. Vzorky potravin pro izolaci E. coli.

<table>
<thead>
<tr>
<th>Číslo vzorku</th>
<th>Datum zakoupení</th>
<th>Název vzorku, firma</th>
<th>E. coli</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.10.2011</td>
<td>Vepřová krkovice, Ing. Vladimír Sluštík- Kašava 33, 763 19</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>3.10.2011</td>
<td>Vepřový bok, Ing. Vladimír Sluštík- Kašava 33, 763 19</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3.11.2011</td>
<td>Vepřová kýta, Ing. Vladimír Sluštík- Kašava 33, 763 19</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>3.11.2011</td>
<td>Vepřová plec, Ing. Vladimír Sluštík- Kašava 33, 763 19</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Datum</td>
<td>Produkt</td>
<td>Provozní společnost</td>
</tr>
<tr>
<td>---</td>
<td>---------------</td>
<td>--------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>5</td>
<td>3.11.2011</td>
<td>Kuřecí koráby, Raciola - Jehlička s.r.o.</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>3.11.2011</td>
<td>Kuřecí žaludky, Raciola - Jehlička s.r.o.</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>10.11.2011</td>
<td>Kuřecí křídla, Raciola - Jehlička s.r.o.</td>
<td>+</td>
</tr>
<tr>
<td>8</td>
<td>10.11.2011</td>
<td>Vepřový ořez, Sanytrák s.r.o.</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>10.11.2011</td>
<td>Vepřová plec, Sanytrák s.r.o.</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>18.11.2011</td>
<td>Kuřecí játra, Maso a uzeniny u Červinků, Zlín</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>18.11.2011</td>
<td>Kuřecí srdce, Maso a uzeniny u Červinků, Zlín</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>18.11.2011</td>
<td>Krůtí stehno, Maso a uzeniny u Červinků, Zlín</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>18.11.2011</td>
<td>Čerstvý sýr brusinka, Kromilk, a.s.</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>18.11.2011</td>
<td>Kuřecí křídlo, Raciola - Jehlička s.r.o.</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>18.11.2011</td>
<td>Kuřecí horní stehno, Raciola - Jehlička s.r.o.</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>18.11.2011</td>
<td>Kuřecí játra, Raciola - Jehlička s.r.o.</td>
<td>-</td>
</tr>
<tr>
<td>17</td>
<td>8.11.2011</td>
<td>Kravské mléko, Toko Agri a.s.</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>8.11.2011</td>
<td>Vepřový ořez, Raciola - Jehlička s.r.o.</td>
<td>-</td>
</tr>
<tr>
<td>19</td>
<td>8.11.2011</td>
<td>Kuřecí žaludek, Raciola - Jehlička s.r.o.</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>8.11.2011</td>
<td>Kuřecí játra, Raciola - Jehlička s.r.o.</td>
<td>-</td>
</tr>
<tr>
<td>21</td>
<td>8.11.2011</td>
<td>Pařížský salát, Sanytrák s.r.o.</td>
<td>-</td>
</tr>
<tr>
<td>22</td>
<td>16.11.2011</td>
<td>Vepřová kýta, Maso a uzeniny u Červinků, Zlín</td>
<td>+</td>
</tr>
<tr>
<td>23</td>
<td>16.11.2011</td>
<td>Vepřová krkovice, Maso a uzeniny u Červinků, Zlín</td>
<td>-</td>
</tr>
<tr>
<td>24</td>
<td>16.11.2011</td>
<td>Kuřecí prsa, Maso a uzeniny u Červinků, Zlín</td>
<td>-</td>
</tr>
<tr>
<td>25</td>
<td>16.11.2011</td>
<td>Kuřecí stehno, Maso a uzeniny u Červinků, Zlín</td>
<td>-</td>
</tr>
<tr>
<td>26</td>
<td>16.11.2011</td>
<td>Kuřecí hřbet, Maso a uzeniny u Červinků, Zlín</td>
<td>-</td>
</tr>
<tr>
<td>27</td>
<td>16.11.2011</td>
<td>Kuřecí játra, Maso a uzeniny u Červinků, Zlín</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>datum</td>
<td>popska</td>
<td>místníce</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>28</td>
<td>16.11.2011</td>
<td>Vepřová kotleta, Maso a uzeniny u Červinků, Zlín</td>
<td>-</td>
</tr>
<tr>
<td>29</td>
<td>24.11.2011</td>
<td>Zkažený EiDAM, Kromilk, a.s.</td>
<td>+</td>
</tr>
<tr>
<td>30</td>
<td>24.11.2011</td>
<td>Zkažené maso, Raciola - Jehlička s.r.o.</td>
<td>-</td>
</tr>
<tr>
<td>31</td>
<td>2.8.2011</td>
<td>Porubský Mls, Farma Zdeňka, Hustopeče n.B.</td>
<td>+</td>
</tr>
<tr>
<td>32</td>
<td>29.7.2011</td>
<td>Čerstvý bílý sýr, Farma Zdeňka, Hustopeče n.B.</td>
<td>+</td>
</tr>
<tr>
<td>33</td>
<td>23.8.2011</td>
<td>Polotvrdý čerstvý sýr, MDMnč, Čabová 25, Moravský Beroun</td>
<td>+</td>
</tr>
<tr>
<td>34</td>
<td>24.8.2011</td>
<td>Čerstvý tvarohový sýr, MDMnč, Čabová 25, Moravský Beroun</td>
<td>+</td>
</tr>
<tr>
<td>35</td>
<td>26.8.2011</td>
<td>Čerstvý sýr z nepasterovaného ovčího mléka, Michal Hrdlička, Na statko 32, 78975, Brničko u Zábřehu na Moravě, CZ 18517</td>
<td>-</td>
</tr>
<tr>
<td>36</td>
<td>28.8.2011</td>
<td>Uzený sýr z nepasterovaného ovčího mléka, Michal Hrdlička, Na statko 32, 78975, Brničko u Zábřehu na Moravě, CZ 18517</td>
<td>-</td>
</tr>
<tr>
<td>37</td>
<td>2.9.2011</td>
<td>Sýrové nitě paprikové, Rastislav Volek - Syrex, s.r.o., Ráztoky 35, 02705 Zábrívá, SK 4-7-24 ES</td>
<td>+</td>
</tr>
<tr>
<td>38</td>
<td>17.9.2011</td>
<td>Čerstvý sýr Běla, ZD Jeseník, Šumperská 118, 79001, Jeseník</td>
<td>+</td>
</tr>
<tr>
<td>39</td>
<td>23.9.2011</td>
<td>Kozí sýr s grilovacím kořením, Jířina Julinová, Paseky 390, Lukov u Zlina, 76317</td>
<td>-</td>
</tr>
<tr>
<td>40</td>
<td>19.11.2011</td>
<td>Nakládaný ovění sýr, CZ 161 34 ES</td>
<td>-</td>
</tr>
<tr>
<td>41</td>
<td>7.10.2011</td>
<td>Doral-kozí sýr s česnekem, Ing.Pavel Dobrovolný, 67551, Ratibořice 1</td>
<td>-</td>
</tr>
<tr>
<td>42</td>
<td>7.10.2011</td>
<td>Doral-kozí sýr bílý, Ing.Pavel Dobrovolný, 67551, Ratibořice 1</td>
<td>-</td>
</tr>
</tbody>
</table>

Pokračování Tab. 13.
<table>
<thead>
<tr>
<th>Ĉíslo</th>
<th>Data</th>
<th>Název produktu</th>
<th>Místo výroby</th>
<th>Rozhodnutí</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>29.11.2011</td>
<td>Špička, Potraviny Tempo, Zlín</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>44</td>
<td>6.12.2011</td>
<td>Ořechový rohlíček, Potraviny Tempo, Zlín</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>45</td>
<td>6.12.2011</td>
<td>Laskonka, Potraviny Tempo, Zlín</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>46</td>
<td>6.12.2011</td>
<td>Špička, Cukrárna Zlíňanka</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>47</td>
<td>5.1.2012</td>
<td>Řecký salát, Billa spol. s.r.o.</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>48</td>
<td>5.1.2012</td>
<td>Baby mungo, Beskyd Fryčovice, a.s.</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>49</td>
<td>5.1.2012</td>
<td>Zeleninový salát, Billa spol. s.r.o.</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>50</td>
<td>10.1.2012</td>
<td>Solný nálev ze sýrů balkánského typu, laboratorní výroba UTB</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>51</td>
<td>10.1.2012</td>
<td>Solný nálev ze sýrů balkánského typu, laboratorní výroba UTB</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>52</td>
<td>10.1.2012</td>
<td>Solný nálev ze sýrů balkánského typu, laboratorní výroba UTB</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>53</td>
<td>10.1.2012</td>
<td>Solný nálev ze sýrů balkánského typu, laboratorní výroba UTB</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>54</td>
<td>10.1.2012</td>
<td>Solný nálev ze sýrů balkánského typu, laboratorní výroba UTB</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>55</td>
<td>10.1.2012</td>
<td>Solný nálev ze sýrů balkánského typu, laboratorní výroba UTB</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>56</td>
<td>18.1.2012</td>
<td>Ovčí sýr, Billa spol. s.r.o.</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>57</td>
<td>18.1.2012</td>
<td>Sýr balkánského typu, laboratorní výroba UTB</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>58</td>
<td>18.1.2012</td>
<td>Sýr balkánského typu, laboratorní výroba UTB</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>59</td>
<td>18.1.2012</td>
<td>Sýr balkánského typu, laboratorní výroba UTB</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>60</td>
<td>18.1.2012</td>
<td>Pstruh, Billa spol. s.r.o.</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>61</td>
<td>26.1.2011</td>
<td>Laskonka, Cukrárna Zlíňanka</td>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>
Pokračování Tab. 13.

<table>
<thead>
<tr>
<th></th>
<th>Datum</th>
<th>Produkt</th>
<th>Síťový kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>26.1.2011</td>
<td>Zeleninový salát, Billa spol. s.r.o.</td>
<td>+</td>
</tr>
<tr>
<td>64</td>
<td>26.1.2011</td>
<td>Sýr z ovčího mléka, Billa spol. s.r.o.</td>
<td>+</td>
</tr>
<tr>
<td>65</td>
<td>8.2.2012</td>
<td>Sýr balkánského typu, Laboratorní výroba UTB</td>
<td>-</td>
</tr>
<tr>
<td>66</td>
<td>8.2.2012</td>
<td>Sýr balkánského typu, Laboratorní výroba UTB</td>
<td>-</td>
</tr>
<tr>
<td>67</td>
<td>10.2.2012</td>
<td>Čekanka, Billa spol. s.r.o.</td>
<td>-</td>
</tr>
<tr>
<td>68</td>
<td>10.2.2012</td>
<td>Špička, Cukrárna DINO, s.r.o.</td>
<td>-</td>
</tr>
<tr>
<td>69</td>
<td>15.2.2012</td>
<td>Kuřecí křídla, Raciola - Jehlička s.r.o.</td>
<td>-</td>
</tr>
<tr>
<td>70</td>
<td>15.2.2012</td>
<td>Kuřecí játra, Raciola - Jehlička s.r.o.</td>
<td>-</td>
</tr>
<tr>
<td>71</td>
<td>23.2.2012</td>
<td>Uzený šprot, Billa spol. s.r.o.</td>
<td>-</td>
</tr>
<tr>
<td>72</td>
<td>23.2.2012</td>
<td>Kozí sýr, Biofarma DORA s.r.o.</td>
<td>-</td>
</tr>
<tr>
<td>73</td>
<td>23.2.2012</td>
<td>Brokolice krájená, Billa spol. s.r.o.</td>
<td>-</td>
</tr>
<tr>
<td>74</td>
<td>23.2.2012</td>
<td>Kuře celé, Raciola - Jehlička s.r.o.</td>
<td>+</td>
</tr>
<tr>
<td>75</td>
<td>23.2.2012</td>
<td>Kuřecí směs na polévku, Maso a uzeniny u Červinků, Zlín</td>
<td>+</td>
</tr>
<tr>
<td>76</td>
<td>23.2.2012</td>
<td>Parmazán Grana Padano, Ambrosi s.p.a.</td>
<td>-</td>
</tr>
<tr>
<td>77</td>
<td>23.2.2012</td>
<td>Bazalka, Bylinky, Beskyd Fryčovice</td>
<td>-</td>
</tr>
<tr>
<td>78</td>
<td>23.2.2012</td>
<td>Vepřová nožička, Maso a uzeniny u Červinků, Zlín</td>
<td>+</td>
</tr>
</tbody>
</table>

Dále byla využita sbírka kmenů *E. coli* z Ústavu technologie a mikrobiologie potravin, Fakulty technologické UTB ve Zlíně. Jednalo se o 39 izolátů pocházejících z chlazené drůbeže u prodejců RACIOLA - JEHLIČKA s.r.o., nákupy byly provedeny ve zlínské podnikové prodejně, Řeznictví a uzenářství Josef Filák v podnikových prodejnách ve Zlíně a Uherském Hradišti. Tyto vzorky byly dne 9.7.2010 a do použité byly uchovány ve zmrzlině při teplotě -80 °C. Tyto vzorky byly označeny následovně R1, R2, R3, R4, R5, R6, R7, R8,
9 METODY

9.1 Izolace kmenů E. coli

Z každého zakoupeného vzorku (Tab. 13) bylo sterilně přeneseno 5 g do mikroténového sáčku, dále bylo přidáno 45 g fyziológieho roztoku, tento sáček byl ponechán homogenizovat na homogenizátoru po dobu 10 minut. Z takto připravené suspenze bylo odpipetováno 100 µl na Petriho misky s Endo agarem. Po dobu 24 hodin byly tyto misky ponechány ke kultivaci při teplotě 37 °C.

9.2 Identifikace E. coli pomocí biochemických mikrotestů

U vzorků ze zakoupených potravin byly pro identifikaci provedeny biochemické mikrotesty. Byla použita souprava ENTEROtest 24, která je určena pro rutinní identifikaci významných druhů střevních bakterií z čeledi Enterobacteriaceae. Souprava umožňuje identifikaci pomocí 24 biochemických testů, které jsou umístěny do mikrotitracní destičky, vždy v řadě po osmi.

9.3 Antibiotická rezistence

Čistá bakteriální kultura byla pomocí klíčky přenesena do 3ml sterilního MPB a bylo ponecháno inkubovat po dobu 24 hodin při teplotě 37 °C. Po vyjmutí z termostatu byly do plastových sterilních zkumavek připraveny suspenze odpovídající zákalu 1. stupně McFarlando-

Sady použitých antibiotických disků:

Jednotlivé sady antibiotických disků jsou přehledně uvedeny níže (Tab. 14, Tab. 15, Tab. 16).

1) **Sada G1**

<table>
<thead>
<tr>
<th>Název antimikrobiální látky</th>
<th>Koncentrace v µg</th>
<th>Zkratka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampicilin</td>
<td>10</td>
<td>AMP</td>
</tr>
<tr>
<td>Cefalotin</td>
<td>30</td>
<td>KF</td>
</tr>
<tr>
<td>Doxycyklin</td>
<td>30</td>
<td>DO</td>
</tr>
<tr>
<td>Cefuroxim</td>
<td>30</td>
<td>CXM</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>5</td>
<td>CIP</td>
</tr>
<tr>
<td>Sulfamethoxazol/trimetoprim</td>
<td>25</td>
<td>SXT</td>
</tr>
<tr>
<td>Kyselina oxolinová</td>
<td>2</td>
<td>OA</td>
</tr>
</tbody>
</table>

2) **Sada G2**

Tab. 15. Antibiotika v sadě G2.

<table>
<thead>
<tr>
<th>Název antimikrobiální látky</th>
<th>Koncentrace v µg</th>
<th>Zkratka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gentamicin</td>
<td>10</td>
<td>CN</td>
</tr>
<tr>
<td>Cefotaxim</td>
<td>30</td>
<td>CTX</td>
</tr>
<tr>
<td>Ceftazidim</td>
<td>30</td>
<td>CAZ</td>
</tr>
<tr>
<td>Amoxicilin/klavulanát</td>
<td>30</td>
<td>AMC</td>
</tr>
<tr>
<td>Aztreonam</td>
<td>30</td>
<td>ATM</td>
</tr>
<tr>
<td>Chloramphenikol</td>
<td>30</td>
<td>C</td>
</tr>
<tr>
<td>Colistin</td>
<td>10</td>
<td>CT</td>
</tr>
</tbody>
</table>
2) Sada G3:

Tab. 16. ATB v sadě G3.

<table>
<thead>
<tr>
<th>Název antimikrobiální látky</th>
<th>Koncentrace v µg</th>
<th>Zkratka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amikacin</td>
<td>30</td>
<td>AK</td>
</tr>
<tr>
<td>Cefoperazon/sulbactam</td>
<td>105</td>
<td>SCF</td>
</tr>
<tr>
<td>Piperacilin/tazobactam</td>
<td>110</td>
<td>TZP</td>
</tr>
<tr>
<td>Cefepim</td>
<td>30</td>
<td>FEP</td>
</tr>
<tr>
<td>Imipenem</td>
<td>10</td>
<td>IPM</td>
</tr>
<tr>
<td>Meronem</td>
<td>10</td>
<td>MEM</td>
</tr>
<tr>
<td>Tigecyklin</td>
<td>15</td>
<td>TGC</td>
</tr>
</tbody>
</table>

9.4 Kvantitativní stanovení produkce bakteriocinů

Biologická aktivita kolicinů byla stanovena kvantitativně, a to pomocí vpichového pokusu. Bakterie byly naočkovány pomocí vpichu do misek s MPA a kultivovány v termostatu po dobu 48 hodin a teplotě 37 °C. Po vyjmutí z termostatu byly bakterie na miskách usmrceny parami chloroformu, který působil 30 minut. Poté byly půdy přelity suspenzí obsahující 3 ml 1,05 % agaru (Soft agar) a 100 µl indikátorového kmene, který byl den předem zaočkován do MPB a ponechán inkubovat po dobu 24 hodin při teplotě 37 °C. Jako indikátorové kmeny byly použity kmeny E. coli Row, E. coli P400, E. coli B1, E. coli φ, E. coli Sabi tai 40. Poté byly opět Petriho misky vloženy do termostatu a ponechány k inkubaci po dobu 24 hodin při teplotě 37 °C, po vyjmutí byly odečítány zóny vytvořené okolo jednotlivých kmenů bakterií [50].

9.5 PCR reakce

Metoda PCR byla použita pro rozřazení kmenů E. coli do fýlogenетických skupin. Tato metoda byla provedena jak u vzorků izolovaných z potravin v této práci, tak u sbírky ÚTMP FT UTB ve Zlíně [43], která byla vyočkována ze zamraženého stavu.
9.5.1 Příprava bakteriálního lyzátu

Do předem připravených a řádně označených eppendorfek bylo připraveno 100 µl 1x ředěného PCR pufru, tato suspenze byla zhromaděna na homogenizátoru a dále byla pocházející v termobloku po dobu 20 minut při teplotě 95 °C. Poté byl na centrifuze oddělen supernatant, který byl poté odpipetován do dalších eppendorfek, tento supernatant sloužil jako templát do PCR reakce.

9.5.2 Složení amplifaikační směsi pro detekci genů dle standardního protokolu

Jednotlivé složky reakční směsi pro PCR reakci (Tab. 18) byly namíchány ve formě master mixu, a to z důvodu eliminace chyb, ke kterým by mohlo dojít v případě pipetování velmi malých množství jednotlivých látek. Celkový objem jedné reakční směsi pro PCR byl 20 µl. Primery, které byly použity do PCR směsi jsou uvedeny níže (Tab. 17). Dle standardního protokolu byla do každé reakční směsi použita jedna pára primerů.

Tab. 17. Sekvence jednotlivých primerů.

<table>
<thead>
<tr>
<th>Název primeru</th>
<th>Sekvence primeru</th>
</tr>
</thead>
<tbody>
<tr>
<td>ChuA1</td>
<td>5’-GAC GAA CCA ACG GTC AGG AT-3’</td>
</tr>
<tr>
<td>ChuA2</td>
<td>5’-TGC CGC CAG TAC CAA AGA CA-3’</td>
</tr>
<tr>
<td>YjaA1</td>
<td>5’-TGA AGT GTC AGG AGA CGC TG-3’</td>
</tr>
<tr>
<td>YjaA2</td>
<td>5’-ATG GAG ATT GCG TTC CTC ACC-3’</td>
</tr>
<tr>
<td>TspE4C2.1</td>
<td>5’-GAG TAA TGT CGG GGC ATT CA-3’</td>
</tr>
<tr>
<td>TspE4C2.2</td>
<td>5’-CGC GCC AAC AAA GTA TTA CG-3’</td>
</tr>
</tbody>
</table>

Tab. 18. Složení směsi dle standardního protokolu.

<table>
<thead>
<tr>
<th>Složka směsi PCR</th>
<th>Objem v µl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voda</td>
<td>16,2</td>
</tr>
<tr>
<td>PCR pufr</td>
<td>2</td>
</tr>
<tr>
<td>dNTP mix</td>
<td>0,4</td>
</tr>
<tr>
<td>Templátová DNA</td>
<td>0,5</td>
</tr>
<tr>
<td>Taq DNA polymeráza</td>
<td>0,5</td>
</tr>
<tr>
<td>ChuA1/ChuA2</td>
<td>0,2/0,2</td>
</tr>
</tbody>
</table>
9.5.3 Složení amplifikační směsi pro detekci genů podle metody Triplex PCR

Tab. 19. Složení směsi pro Triplex PCR.

<table>
<thead>
<tr>
<th>Složka směsi PCR</th>
<th>Objem v µl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voda</td>
<td>12,5</td>
</tr>
<tr>
<td>PCR pufr</td>
<td>2</td>
</tr>
<tr>
<td>dNTP mix</td>
<td>0,4</td>
</tr>
<tr>
<td>Templátová DNA</td>
<td>3</td>
</tr>
<tr>
<td>Tag DNA polymeráza</td>
<td>0,5</td>
</tr>
<tr>
<td>ChuA1/ChuA2</td>
<td>0,2/0,2</td>
</tr>
<tr>
<td>YjaA1/YjaA2</td>
<td>0,2/0,2</td>
</tr>
<tr>
<td>TspE4C2.1/TspE4C2.2</td>
<td>0,2/0,2</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>0,4</td>
</tr>
</tbody>
</table>

9.5.4 Podmínky PCR reakce dle standardního protokolu

Podmínky, za kterých probíhala PCR dle standardního protokolu jsou uvedeny v tabulce (Tab. 20).

Tab. 20. Podmínky standardní PCR reakce.

<table>
<thead>
<tr>
<th>Úvodní denaturace</th>
<th>94 °C/5 minut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opakování cyklu</td>
<td>30x</td>
</tr>
<tr>
<td>Denaturace</td>
<td>94 °C/30s</td>
</tr>
<tr>
<td>Annealing</td>
<td>55 °C/30s</td>
</tr>
<tr>
<td>Extenze</td>
<td>72 °C/30s</td>
</tr>
<tr>
<td>Záverená extenze</td>
<td>72 °C/7 minut</td>
</tr>
<tr>
<td>Chlazení</td>
<td>4 °C/libovolně</td>
</tr>
</tbody>
</table>
9.5.5 Podmínky PCR reakce dle metody Triplex PCR

Podmínky, za kterých probíhala PCR pomocí metody Triplex [12] jsou uvedeny v tabulce (Tab. 21).

Tab. 21. Podmínky Triplex PCR reakce.

<table>
<thead>
<tr>
<th>Úvodní denaturace</th>
<th>94 °C/4 minut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opakování cyklu</td>
<td>30x</td>
</tr>
<tr>
<td>Denaturace</td>
<td>94 °C/5s</td>
</tr>
<tr>
<td>Annealing</td>
<td>59 °C/10s</td>
</tr>
<tr>
<td>Extenze</td>
<td>72 °C/5 minut</td>
</tr>
<tr>
<td>Záverečná extenze</td>
<td>72 °C/7 minut</td>
</tr>
<tr>
<td>Chlazení</td>
<td>4 °C/libovolně</td>
</tr>
</tbody>
</table>

9.5.6 Detekce produktů PCR reakce

Pro detekci amplikonů získaných metodou PCR byla použита elektroforéza v 1,5 % agarózovém gelu. Rychlost migrace jednotlivých molekul v gelu byla závislá na jejich velikosti.

Pro přípravu gelu bylo naváženo 1,5 g agarózy a rozpuštěno ve 100 ml 1x koncentrovaného TAE pufru, který byl připraven zředěním ze zásobního 50x koncentrovaného TAE pufru. Tato směs byla zahřívána v mikrovlákné troubě a několikrát přivedena k varu. Poté byla směs ponechána lehce zchladnit a následně k ní byly přidány 4 µl etidiumbromidu, gel byl nalit do elektroforetické vaničky a byl vsunut hřebínek pro vytvoření jamek. V průběhu tuhnutí gelu byly ke všem vzorcům vyjmutým z termocykleru přidány 4 µl nanášecího pufru.

Po tuhnutí gelu byla vanička až po rysku doplněna 1x zředěným TAE puřem, do každé jamky byl nanesen jeden vzorek v množství 15 µl, do první jamky byl vždy nanesen marker 100 bp. Napětí na zdroji bylo nastaveno na 90 V a čas separace 60 minut. Po skončení separace byl výsledek elektroforézy vyhodnocen v UV světle a zdokumentován pomocí programu Gene-Snap od SyneGene.
10 VÝSLEDKY A DISKUSE

10.1 Identifikace bakteriálních izolátů

Vzorky byly zaočkovány na Endo agar a ponechány inkubovat, pokud se po inkubaci objevily tmavě fialové kolonie, jednalo se o laktóza pozitivní bakterie. S těmito bakteriemi byla dále provedena rychlá identifikace. Některé kolonie jevily kovový odlesk, některé nikoliv. K rychlé identifikaci sloužil ENTEROtest 24 od firmy Pliva - Lachema, výsledky byly zaznamenány do tabulky (Tab. 22).

Tab. 22. Výsledek identifikací bakteriálních izolátů.

<table>
<thead>
<tr>
<th>Číslo kmene</th>
<th>Identifikační skóre</th>
<th>T-index</th>
<th>Taxon</th>
<th>identifikace</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>intermediární</td>
</tr>
<tr>
<td>4</td>
<td>99,36</td>
<td>0,926</td>
<td>Escherichia coli</td>
<td>výborná</td>
</tr>
<tr>
<td>7</td>
<td>99,94</td>
<td>0,512</td>
<td>Escherichia coli</td>
<td>přijatelná</td>
</tr>
<tr>
<td>10</td>
<td>99,36</td>
<td>0,926</td>
<td>Escherichia coli</td>
<td>výborná</td>
</tr>
<tr>
<td>12</td>
<td>82,92</td>
<td>0,433</td>
<td>Kluyvera ascorbata</td>
<td>rodová</td>
</tr>
<tr>
<td>22</td>
<td>97,90</td>
<td>0,772</td>
<td>Escherichia coli</td>
<td>velmi dobrá</td>
</tr>
<tr>
<td>29</td>
<td>89,19</td>
<td>0,971</td>
<td>Escherichia coli</td>
<td>druhovalená</td>
</tr>
<tr>
<td>31</td>
<td>99,68</td>
<td>0,926</td>
<td>Escherichia coli</td>
<td>velmi dobrá</td>
</tr>
<tr>
<td>32</td>
<td>99,57</td>
<td>0,971</td>
<td>Escherichia coli</td>
<td>výborná</td>
</tr>
<tr>
<td>33</td>
<td>98,67</td>
<td>0,856</td>
<td>Escherichia coli</td>
<td>velmi dobrá</td>
</tr>
<tr>
<td>34</td>
<td>97,15</td>
<td>0,926</td>
<td>Escherichia coli</td>
<td>velmi dobrá</td>
</tr>
<tr>
<td>35</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>neidentifikováno</td>
</tr>
<tr>
<td>36</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>intermediární</td>
</tr>
<tr>
<td>37</td>
<td>99,36</td>
<td>0,926</td>
<td>Escherichia coli</td>
<td>výborná</td>
</tr>
<tr>
<td>38</td>
<td>97,91</td>
<td>0,971</td>
<td>Escherichia coli</td>
<td>velmi dobrá</td>
</tr>
<tr>
<td>39</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>intermediární</td>
</tr>
<tr>
<td>40</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>neidentifikováno</td>
</tr>
<tr>
<td>43</td>
<td>89,19</td>
<td>0,971</td>
<td>Escherichia coli</td>
<td>druhovalená</td>
</tr>
<tr>
<td>44</td>
<td>89,19</td>
<td>0,971</td>
<td>Escherichia coli</td>
<td>druhovalená</td>
</tr>
</tbody>
</table>
Z celkem 78 zkoumaných vzorků potravin zakoupených v různých obchodech ve Zlíně a okolí bylo izolováno celkem 21 kmenů *E. coli* (vždy z jednoho vzorku maximálně jeden izolát), což bylo prokázáno pomocí ENTEROtestu 24 firmy Pliva - Lachema.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td></td>
<td>69,24</td>
<td>0,357</td>
<td>Escherichia coli</td>
<td>druhová</td>
</tr>
<tr>
<td>56</td>
<td></td>
<td>-</td>
<td>-</td>
<td>neidentifikováno</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td></td>
<td>-</td>
<td>-</td>
<td>neidentifikováno</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td></td>
<td>52,22</td>
<td>0,386</td>
<td>Klebsiella sp.</td>
<td>rodová</td>
</tr>
<tr>
<td>59</td>
<td></td>
<td>-</td>
<td>-</td>
<td>neidentifikováno</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>76,57</td>
<td>0,773</td>
<td>Klebsiella oxytoca</td>
<td>rodová</td>
</tr>
<tr>
<td>61</td>
<td></td>
<td>99,58</td>
<td>0,971</td>
<td>Escherichia coli</td>
<td>výborná</td>
</tr>
<tr>
<td>62</td>
<td></td>
<td>99,36</td>
<td>0,926</td>
<td>Escherichia coli</td>
<td>výborná</td>
</tr>
<tr>
<td>63</td>
<td></td>
<td>89,19</td>
<td>0,971</td>
<td>Escherichia coli</td>
<td>druhová</td>
</tr>
<tr>
<td>64</td>
<td></td>
<td>92,63</td>
<td>0,512</td>
<td>Escherichia coli</td>
<td>přijatelná</td>
</tr>
<tr>
<td>68</td>
<td></td>
<td>-</td>
<td>-</td>
<td>neidentifikováno</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td></td>
<td>-</td>
<td>-</td>
<td>neidentifikováno</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td>-</td>
<td>-</td>
<td>neidentifikováno</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td></td>
<td>84,09</td>
<td>0,449</td>
<td>Escherichia coli</td>
<td>druhová</td>
</tr>
<tr>
<td>75</td>
<td></td>
<td>58,45</td>
<td>0,846</td>
<td>Escherichia coli</td>
<td>druhová</td>
</tr>
<tr>
<td>78</td>
<td></td>
<td>67,43</td>
<td>0,757</td>
<td>Escherichia coli</td>
<td>druhová</td>
</tr>
</tbody>
</table>
Na obrázku (Obr. 4) je záznamový arch pro ENTEROtest 24.

Obr. 4. Záznamový arch pro ENTEROtest 24.

10.2 Stanovení citlivosti na antibiotika diskovou difúzní metodou

Existují tři hlavní mechanismy vzniku rezistence u bakterií, inaktivace antibiotika, eflux antibiotika z bakteriální buňky a modifikace vnímavého molekulárního cíle. Antibiotická rezistence se neustále zvyšuje, v důsledku různých mutací genomu [20].

V této práci byla pro zjištění antibiotické rezistence u izolovaných kmenů použita difúzní disková metoda. Tato metoda byla provedena u 19 kmenů z celkového počtu 21, jelikož zbylé 2 kmeny byly k dispozici pouze ve formě bakteriálního lyzátu, nikoli živé kultury. To do stanovení bylo provedeno na Mueller-Hinton agaru (Obr. 5) a na základě měření inhibičních zón lze kmeny rozdělit na citlivé, rezistentní a intermediární.

Ze tabulky (Tab. 23) je zřetelné, že každý standart má jiná kritéria, každý hodnotí velikost zón jinak. Evropský (EUCAST) a britský (BSAC) standard dokonce již některá antibiotika ani neuvádí a u některých antibiotik je přímo odkázáno na stanovení MIC. Standardy EUCAST a BSAC dělí některé kmeny na citlivé (C), intermediární (I) a rezistentní (R), ale některé kmeny dělí pouze na citlivé a rezistentní. Pokud je v Tabulce 23 uveden za počtem citlivých, intermediárních a rezistentních kmenů počet celkových kmenů nižší než 19 (což je celkový počet zkoumaných), je důvodem nedostupnost dalších antibiotických disků na trhu, tedy bylo použito dostupné množství alespoň na některých kmenech.
Tab. 23. Vyhodnocení diskové difúzní metody dle tří standardů.

<table>
<thead>
<tr>
<th></th>
<th>MU</th>
<th>EUCAST</th>
<th>BSAC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
<td>I</td>
<td>R</td>
</tr>
<tr>
<td>CAZ</td>
<td>12</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>ATM</td>
<td>18</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>CT</td>
<td>18</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>19</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CN</td>
<td>18</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>CTX</td>
<td>14</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>AMC</td>
<td>0</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>CIP</td>
<td>18</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>SXT</td>
<td>10</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>DO</td>
<td>3</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>CXM</td>
<td>1</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>AMP</td>
<td>0</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>KF</td>
<td>0</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>OA</td>
<td>18</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>TZP</td>
<td>15</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>SCF</td>
<td>18</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ME</td>
<td>16</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>IPM</td>
<td>16</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>FEP</td>
<td>14</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>AK</td>
<td>18</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

V Tabulce 24 je uveden přehled, kolik kmenů z celkového počtu bylo rezistentní na jednotlivá antibiotika. V další tabulce (Tab. 25) je navíc uvedeno procentuální vyjádření množství rezistentních kmenů ze všech testovaných kmenů. Procentuální vyjádření bylo využito i přesto, že soubor kmenů je malý, je zde uvedeno pouze pro potřeby srovnání rezistence s dostupnou literaturou.
Tab. 24. Počet rezistentních kmenů k celkovému počtu vyšetřených kmenů.

<table>
<thead>
<tr>
<th></th>
<th>MU</th>
<th>EUCAST</th>
<th>BSAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATB</td>
<td>Počet rezistentních kmenů/ celkový počet kmenů</td>
<td>Počet rezistentních kmenů/ celkový počet kmenů</td>
<td>Počet rezistentních kmenů/ celkový počet kmenů</td>
</tr>
<tr>
<td>CAZ</td>
<td>2/19</td>
<td>10/19</td>
<td>14/19</td>
</tr>
<tr>
<td>ATM</td>
<td>0/19</td>
<td>3/19</td>
<td>2/19</td>
</tr>
<tr>
<td>CT</td>
<td>1/19</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>C</td>
<td>0/19</td>
<td>0/19</td>
<td>0/19</td>
</tr>
<tr>
<td>CN</td>
<td>0/19</td>
<td>1/19</td>
<td>5/19</td>
</tr>
<tr>
<td>CTX</td>
<td>1/19</td>
<td>0/19</td>
<td>8/19</td>
</tr>
<tr>
<td>AMC</td>
<td>11/19</td>
<td>19/19</td>
<td>19/19</td>
</tr>
<tr>
<td>CIP</td>
<td>0/19</td>
<td>1/19</td>
<td>0/19</td>
</tr>
<tr>
<td>SXT</td>
<td>1/11</td>
<td>1/11</td>
<td>1/11</td>
</tr>
<tr>
<td>DO</td>
<td>2/19</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CXM</td>
<td>6/19</td>
<td>14/19</td>
<td>15/19</td>
</tr>
<tr>
<td>AMP</td>
<td>19/19</td>
<td>19/19</td>
<td>19/19</td>
</tr>
<tr>
<td>KF</td>
<td>10/19</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>OA</td>
<td>1/11</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TZP</td>
<td>0/19</td>
<td>0/19</td>
<td>4/19</td>
</tr>
<tr>
<td>SCF</td>
<td>0/19</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MEM</td>
<td>2/19</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>IPM</td>
<td>1/19</td>
<td>3/19</td>
<td>3/19</td>
</tr>
<tr>
<td>FEP</td>
<td>2/19</td>
<td>19/19</td>
<td>19/19</td>
</tr>
<tr>
<td>AK</td>
<td>0/19</td>
<td>0/19</td>
<td>0/19</td>
</tr>
</tbody>
</table>
Tab. 25. Procentuální vyjádření množství rezistentních kmenů.

<table>
<thead>
<tr>
<th>ATB</th>
<th>MU Procentuální vyjádření rezistentních kmenů (%)</th>
<th>EUCAST Procentuální vyjádření rezistentních kmenů (%)</th>
<th>BSAC Procentuální vyjádření rezistentních kmenů (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIP</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>SXT</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>DO</td>
<td>11</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CXM</td>
<td>32</td>
<td>74</td>
<td>79</td>
</tr>
<tr>
<td>AMP</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>KF</td>
<td>53</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>OA</td>
<td>9</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CAZ</td>
<td>11</td>
<td>53</td>
<td>74</td>
</tr>
<tr>
<td>ATM</td>
<td>0</td>
<td>16</td>
<td>11</td>
</tr>
<tr>
<td>CT</td>
<td>5</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CN</td>
<td>0</td>
<td>5</td>
<td>26</td>
</tr>
<tr>
<td>CTX</td>
<td>5</td>
<td>0</td>
<td>42</td>
</tr>
<tr>
<td>AMC</td>
<td>58</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>TZP</td>
<td>0</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>SCF</td>
<td>0</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MEM</td>
<td>11</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>IPM</td>
<td>5</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>FEP</td>
<td>11</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>AK</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Jako výborný zdroj informací o antibiotické rezistenci u humánních izolátů slouží v ČR a ostatních zemích databáze EARSS, která průběžně zaznamenává tyto údaje. ČR je členem databáze od roku 2000. Databáze EARSS v ČR až do roku 2009 interpretovala výsledky podle breakpointů bežně užívaných v ČR, od roku 2010 se tyto výsledky interpretují podle klinických breakpointů EUCAST. Databáze EARSS uvádí, že v roce 2010 byla bakterie *E. coli* v 59 % případů rezistentní vůči ampicilinu, v 11 % případů rezistentní vůči caftazidimu, v 11 % vůči cefotaximu a v 8 % případů vůči gentamicinu [48]. Podle breakpointů EUCAST byla rezistence u kmenů *E. coli* získaných v této práci k ampicilinu 100 %,
k ceftazidimu bylo rezistentních 53 % kmenů, k cefotaximu byly citlivé všechny izolované kmeny, což tedy byly hodnoty vyšší při srovnání s údaji z EARSS (údaje o humánních izolátech). Důvodem pro tyto rozdíly může být zejména malý soubor testovaných kmenů v této práci (procentuální vyjádření je pouze orientační) a také jiný původ testovaných kmenů (potraviny). Naopak tomu bylo v případě gentamicinu, kdy byla rezistence zjištěná v této práci srovnatelná s údaji v EARSS, přestože byla mírně nižší (5 %) [48].

Ve srovnání rezistence 51 kmenů *E. coli* izolovaných v roce 2010 ze vzorků masa ze stejné oblasti a ve stejné laboratorních podmínkách [43] a kmenů získaných v této práci byla celková rezistence vyšší, jelikož bylo 100 % kmenů rezistentních alespoň k jednomu antibiotiku, kdežto v roce 2010 to bylo 98 %. Při srovnání jednolivých antibiotik došlo k výraznějšímu poklesu rezistence u doxycyklinu, cefalotinu a colistinu. Výrazně vyšší byla rezistence u cefuroximu, meronemu a cefepimu. U ampicilinu, k. oxolinové, ceftazidimu, amoxicilinu, cefoperazonu/sulbactamu a imipenemu se rezistence lišila pouze nepatrně. Například u doxycyklinu bylo v roce 2010 rezistentních 82 % kmenů, kdežto v této práci bylo rezistentních pouze 11 % kmenů. Naproti tomu například u cefuroximu bylo v roce 2010 rezistentních 8 % kmenů a v roce 2011/2012 32 %.
Tab. 26. Přehled antibiotik, na které byl daný kmen citlivý, rezistentní nebo se jevil jako intermediární, zhodnoceno dle MU.

<table>
<thead>
<tr>
<th>Č. kmene</th>
<th>ATB - citlivý</th>
<th>ATB - rezistentní</th>
<th>ATB - intermediární</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>14</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>29</td>
<td>13</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>31</td>
<td>14</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>32</td>
<td>12</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>33</td>
<td>12</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>34</td>
<td>13</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>37</td>
<td>14</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>38</td>
<td>15</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>43</td>
<td>13</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>44</td>
<td>13</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>49</td>
<td>11</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>61</td>
<td>13</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>62</td>
<td>15</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>63</td>
<td>14</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>64</td>
<td>14</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>74</td>
<td>11</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>75</td>
<td>11</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>78</td>
<td>8</td>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>

Z tabulky (Tab. 26) je jasné, že všechny zkoumané kmeny E. coli byly rezistentní alespoň na jedno antibiotikum. Z celkového počtu zkoumaných kmenů bylo na jedno antibiotikum rezistentní 16 % a multirezistenci, čili rezistenci ke dvěma a více antibiotikům, vykazovalo 84 %.

Rezistence bakterií na antibiotika je mezinárodním dlouhodobým problémem. Příčin rezistence může být více, ale nejvýznamnějším z nich je zbytečné podávání antibiotik u infekcí virového původu a dále u banálních, samouzdravných bakteriálních infekcí [48].

V letech 1997-1999 byla provedena studie antibiotické rezistence u E. coli ve vzorcích pocházejících od zvířat, lidí, ale také potravin, a to zejména živočišného původu. Antibiotika jsou běžně používána k léčbě onemocnění lidí a zvířat, ale mohou být také použita jako růstové stimulátory. Antibiotika používaná ve veterinární a humánní medicíně mají stejnou
strukturu. Endogenní bakteriální mikroflóra může hrát důležitou roli jako příjemce a dárci přenosných genů, které nesou informaci o antibiotické rezistenci [49].

Potraviny živočišného původu jsou důležitým zdrojem *E. coli* pocházející z fěkální kontaminace jatečných těl na jatkách, možná informace o rezistenci u těchto mikroorganismů může být přenesena konzumaci na lidi. V této studii bylo zkoumáno 69 potravin živočišného původu, které pocházeli ze 14 různých lokálních supermarketů a obchodů s drůbeží ve Španělsku. Antimikrobiální rezistence zde byla vyšetřena pomocí diskové difúzní metody na Mueller Hinton agaru, stejně jako v této práci [49].

Z 69 vzorků se u 47 podařilo izolovat *E. coli*, čili v 68 %, bakterie v těchto vzorcích pravděpodobně pocházely z fěkální kontaminace při evisceraci. Z těchto vzorků bylo 13 % rezistentních na ciprofloxacin a 13 % na gentamicin, dle breakpointů EUCAST bylo v této práci ke gentamicinu rezistentních méně (5 %) vzorků a k ciprofloxacinu také 5 %, čili rezistence zde byla nižší. K ampicilinu bylo ve studii rezistentních 47 % kmenů izolovaných z potravin, což je ve srovnání s výsledkem této práce mnohem nižší číslo, jelikož v této práci byly k ampicilinu rezistentní všechny izolované kmeny, stejně tak bylo ve studii k amoxicilin/klavulanámu rezistentních pouze 13 % vzorků, kdežto v této práci byly opět rezistentní všechny kmeny. Naproti tomu u sulfametoxazol/trimetoprimum byla rezistence v této práci nižší, pouze 9 % oproti 34 % ze studie [49].

V roce 2001 byla v USA provedena studie antibiotické rezistence u 220 vzorků *E. coli* pocházejících od lidí, zvířat a z potravin, které byly izolovány od roku 1985 do roku 2000, této studii byla rezistence k ampicilinu výrazně nižší než v této práci (13 a 100 %) [22].

10.3 Kolicinogenie kmenů *Escherichia coli*

Bakteriociny jsou látky s baktericidním účinkem, tyto látky je schopná produkovat také bakterie *Escherichia coli* [44] [45]. V této práci byla pro detekci produkce kolicinů použita vpichová metoda.

Koliciny jsou toxické exoproteiny produkované kolicinogenními kmeny *E. coli* a některými dalšími kmeny z čeledi *Enterobacteriaceae*, tyto proteiny slouží k zabíjení úzce příbuzných druhů, což poskytuje producentovi lepší přístup k omezeným zdrojům [50] [51]. *E. coli* produkuje dva typy bakteriocinů, koliciny a mikrociny [52]. Literatura uvádí, že okolo 35 % kmenů *E. coli* osídlovaných trávicí trakt je kolicinogenních. Nejvíce kolicinů je produkováno
v exponenciální fázi růstu bakterií. Prvním objeveným bakteriocinem byl kolicin V, nyní je tento bakteriocin klasifikován jako mikrocin V. Je charakterizováno okolo 34 kolinů, z čehož 21 jsou velmi dobře popsány. Koliciny se liší od mikrocinů způsobem, jakým jsou uvolňovány z produkujících buněk. Většina dostupných zdrojů uvádí, že se kolicinogenie vyskytuje u 25 - 45 % kmenů E. coli, některé studie ovšem ukázaly pouze 12 % produkci kolinů a některé naopak až 75 % [50]. Produkce bakteriocinů je důležitou charakteristikou E. coli pocházející od člověka. Do roku 2010 bylo analyzováno 26 kolinů a 9 mikrocinů na molekulární úrovni umožňující molekulární detekci korespondujících genů [60]. U 19 z 21 kmenů bakterie E. coli izolovaných v této práci z potravin byla vpichovým pokusem zjišťována produkce bakteriocinů, u zbylých 2 kmenů nebyl vpichový pokus proveden, jelikož byly k dispozici pouze ve formě bakteriální lyzáty a né živé kultury. Na základě vyhodnocení inhibičních účinků na 5 indikátorových kmenech bylo zjištěno, že 2 kmeny produkují bakteriociny. Výsledky jsou zaznamenány níže (Tab. 27) a ukázku agaru s vpichovým pokusem zobrazuje Obrázek 6.
Tab. 27. Vyhodnocení vpichového pokusu.

<table>
<thead>
<tr>
<th>Č. kmene</th>
<th>Sab 40</th>
<th>B1</th>
<th>P 400</th>
<th>Row</th>
<th>E. coli φ</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>29</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>31</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>32</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>33</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>34</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>37</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>38</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>43</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>44</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>49</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>63</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>64</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>74</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>75</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>78</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
V roce 2011 byla ve stejných laboratorních podmínkách a na kmenech z podobných podmínek zjišťována vpichových pokusem produkce bakteriocinů, bylo zjištěno, že 13 ze 46 kmeneň produkuje bakteriociny [53]. V této práci bylo zjištěno, že bakteriociny produkuji pouze 2 kmeny z 19, což je výrazně nižší incidence, než u kmenů v roce 2011. Důvodem rozdílné incidence je pravděpodobné to, že vzorky v roce 2011 pocházely z jiných typů potravin než vzorky použité v této práci, dalším možným důvodem je to, že soubor kmenů v této práci byl příliš malý.

Studie, která byla provedena v letech 2005-2006 ukázala, že z celkového počtu 266 izolátů E. coli, 38 % produkovalo bakteriociny, 24 % produkovalo koliciny a 20 % mikrociny. Ze 102 kmenů, které produkovaly bakteriociny, 42 % produkovalo jeden typ, 41 % produkovalo 2 typy, 16 % produkovalo 3 typy a jeden kmen dokonce produktoval 4 typy bakteriocinů. Kmeny, které produkovaly více než jeden typ bakteriocinů nejčastěji patřily do fylogenetické skupiny B2, méně často do skupin A nebo D [13].

Ve studii na univerzitě ve slovinské Lublani byla v roce 2011 provedena studie na produkci bakteriocinů u 105 kmenů E. coli pocházejících ze vzorků od pacientů s bakteriemii. Bylo zjištěno, že 66 % produkovalo alespoň jeden bakteriocin, 43 % produkovalo jeden nebo více kolicinů a 54 % jeden nebo více mikrocinů. Bylo prokázáno, že mikrociny přispívají k virulenci E. coli způsobující bakteriemie močových cest. Pokud by se výsledek kolicinogenie v této práci vyjádřil pro potřeby srovnání na procenta, dělala by tato produkce pouze
10,5 %, což je mnohem méně, než v ostatních studiích, ničméně takto nízký počet vzorků nelze považovat za statistický soubor [52].

10.4 Fylogenetická analýza dle standardního protokolu a triplex PCR

Všech 21 kmenů izolovaných z potravin v této práci a 39 kmenů ze sbírky ÚTMP FT UTB ve Zlíně [43], celkem tedy 60 kmenů *E. coli*, bylo podrobeno PCR dle standardního protokolu nebo triplex PCR. Pokud byla provedena PCR dle standardního protokolu byly u každého kmene provedeny 3 reakce, pokud byla použita metoda Triplex, stačila pouze jedna reakce ke zjištění přítomných genů.

Po provedení PCR dle standardního protokolu a zjištění přítomných genů byla metoda triplex standardizována pro podmínky laboratoře, jelikož dle návodu Clermonta [12] v podmínkách naší laboratoře nefungovala. Bylo pracováno s různými množstvími dNTP stavebních kamenů DNA, s různým množstvím lyzátu a dále s hořčnatými ionty. Poté, co byla metoda Triplex zjištěna jako fungující byly další kmeny stanoveny již pomocí této metody, jestliže se některý výsledek jeví jako nejasný, byla opět zpětně provedena PCR dle standardního protokolu, pro ověření, zdali je výsledek triplex PCR správný.

10.4.1 Detekce produktů PCR reakce

Získané amplikony byly detekovány eletroforézou v 1,5 % agarózovém gelu, jednalo se buď o metodu, kde byl použit pouze jeden pár primerů (Obr. 7) nebo metodu, kde byly použity všechny tři páry primerů - triplex (Obr. 8). Metodou PCR byly izolované kmeny *E. coli* rozděleny do jednotlivých fylogenetických skupin. Rozdělení do skupin proběhlo podle dichotomického klíče, který byl navržen Clermontem [12].
Obr. 7 Agarózový gel s PCR produkty. Zleva: 1. jamka marker (100 bp), 2. jamka- pozitivní gen chuA (279 bp), 3. jamka- pozitivní gen yjaA (211 bp), 4. jamka- pozitivní gen TspE4C2 (152 bp), 5. jamka- negativní gen chuA (279 bp), 6. jamka- negativní gen yjaA (211 bp), 7. jamka- pozitivní gen TspE4C2 (152 bp), 8. jamka- negativní gen chuA (279 bp), 9. jamka- negativní gen yjaA (211 bp), 10. jamka- pozitivní gen TspE4C2 (152 bp). Jamka 2-4 vzorek 43, jamka 5-7 vzorek 33, jamka 8-10 vzorek 34.

Obr. 8 Agarózový gel s PCR produkty. Zleva: 1. jamka marker (100 bp), 2-7, 10-11 chuA (279 bp), yjaA (211 bp), TspE4C2 (152 bp) negativní kmeny 7, 10, 22, 32, 38, JR10, JR 27, JR 28. 8-9 pozitivní geny chuA (279 bp), yjaA (211 bp), TspE4C2 (152 bp) u kmenů 43, 74. 12 pozitivní chuA (279 bp) a yjaA (211 bp) kmen JR33. 13-14, 16 negativní chuA (279 bp), yjaA (211 bp), TspE4C2 (152 bp) vzorky JR28, JR29, JR31. 14 pozitivní gen yjaA (211 bp) JR1.
10.4.2 Vyhodnocení výsledků fylogenetické analýzy

Tabulka 28 zobrazuje výsledky získané provedením PCR fylogenetické analýzy. Výsledky PCR ukázaly, že 30 z 60 zkoumaných kmenů patřilo do skupiny A (50 %), 27 z 60 (45 %) vzorků patřilo do skupiny B1 a zbylé 3 (5 %) kmeny patřily do skupiny B2. V této práci nebyl do skupiny D zařazen ani jeden kmen *E. coli*.

Tab. 28 Výsledky fylogenetické analýzy.

<table>
<thead>
<tr>
<th>Č. kmene</th>
<th>chuA</th>
<th>yjaA</th>
<th>TspE4C2</th>
<th>Skupina</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>B1</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>22</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>29</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>B1</td>
</tr>
<tr>
<td>31</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>32</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>33</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>B1</td>
</tr>
<tr>
<td>34</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>B1</td>
</tr>
<tr>
<td>37</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>38</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>43</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>B2</td>
</tr>
<tr>
<td>44</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>49</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>61</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>62</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>63</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>64</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>74</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>B2</td>
</tr>
<tr>
<td>75</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>B1</td>
</tr>
<tr>
<td>78</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>B1</td>
</tr>
<tr>
<td>JR 1</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>JR 2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>JR 3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>JR 4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>JR 5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>JR 6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>JR 7</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>B1</td>
</tr>
<tr>
<td>JR 8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>JR 10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>A</td>
</tr>
</tbody>
</table>
Pokračování Tab. 28.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>JR 12</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>JR 13</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>B1</td>
</tr>
<tr>
<td>JR 14</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>B1</td>
</tr>
<tr>
<td>JR 15</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>B1</td>
</tr>
<tr>
<td>JR 16</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>B1</td>
</tr>
<tr>
<td>JR 17</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>B1</td>
</tr>
<tr>
<td>JR 18</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>B1</td>
</tr>
<tr>
<td>JR 19</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>JR 20</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>B1</td>
</tr>
<tr>
<td>JR 21</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>B1</td>
</tr>
<tr>
<td>JR 22</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>B1</td>
</tr>
<tr>
<td>JR 23</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>B1</td>
</tr>
<tr>
<td>JR 24</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>JR 25</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>JR 26</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>B1</td>
</tr>
<tr>
<td>JR 27</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>JR 28</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>JR 29</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>JR 31</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>JR 33</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>B2</td>
</tr>
<tr>
<td>JR 35</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>B1</td>
</tr>
<tr>
<td>JR 37</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>JR 38</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>B1</td>
</tr>
<tr>
<td>JR 39</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>B1</td>
</tr>
<tr>
<td>JR 40</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>B1</td>
</tr>
<tr>
<td>JR 41</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>B1</td>
</tr>
<tr>
<td>JR 45</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>B1</td>
</tr>
<tr>
<td>JR 47</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>B1</td>
</tr>
<tr>
<td>JR 50</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>B1</td>
</tr>
<tr>
<td>JR 51</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>B1</td>
</tr>
</tbody>
</table>

V jiné studii fylogenetická analýza kmenů *E. coli* ukázala, že virulentní extraintestinální kmeny patří hlavně do skupiny B2 nebo D, bylo také prokázáno, že většina komenzálních kmenů patří do skupiny A. Metodou dichotomického větvení bylo ve studii Clermonta správně zařazeno 228 z 230 kmenů, čili 99 %, pouze dva kmeny, které měly být zařazeny jako B1 byly zařazeny jako A. Do skupiny A patřilo 43 kmenů z 230, tedy 18,7 %. Do skupiny B1 patřilo 23 kmenů (10 %), do skupiny B2 patřilo 113 (49 %) kmenů a do skupiny D
51 (22,2 %) [12]. Vzhledem k tomu, že v této práci nebyl zařazen ani jeden kmen do skupiny D a do skupiny B2 byly zařazeny pouze 3 kmeny, je zřejmé, že extraintestinální kmeny se v potravinách vyskytují ve velmi malé míře. Pravděpodobně se tedy v převážně většině jedná o intestinální kmeny, je tedy možné, že je sekundární kontaminace právě fekálního původu.

Zajímavé výsledky poskytuje studie týkající se fylogenetických skupin u kmenů *E. coli* izolovaných ze vzorků, které byly odebrány v čistírnách odpadních vod [55]. V dané studii patřilo nejvíce kmenů do skupiny D, naopak, což je zajímavé, v této práci do skupiny D nebyl zařazen ani jeden kmen. Dále již následovalo zastoupení ve skupinách ve stejném pořadí jako v této práci A, B1, B2. Bylo prokázáno, že voda, které se dostává do životního prostředí je potenciálním nebezpečím. Vzhledem k tomu, že skupina D je tvořena převážně extraintestinálními kmeny, je možné, že v čistírnách odpadních vod převažuje kontaminace pocházející z urogenitálního traktu nad fekální kontaminací. Ze studie provedené v roce 2011 je zřejmé, že izolované kmeny z klinických vzorků patří do různých fylogenetických skupin a není možné s jistotou říci, odkud pravděpodobně kmen v potravině pocházel. Tento výzkum prokázal, že nejvíce kmenů z klinických izolátů patřilo do skupiny A (44,4 %), což je totožné jako v této práci, nicméně izoláty zařazené do této skupiny pocházely z moči, stolice i ze vzorků z vaginy. Další nejvíce zastoupenou skupinou byla skupina B1, což také odpovídá výsledkům této práce, kmeny do této skupiny zařazené
pocházely také ze všech tří typů klinických vzorků. Zajímavé je, že kmeny zařazené do skupiny B2 (17,7 %) pocházely z moči a vaginálních vzorků, ani jeden vzorek v této skupině nepocházel ze stolice. V nejméně zastoupené skupině D (15,5 %) byly také zastoupeny všecheny typy klinických izolátů [56].

Je zřejmé, že u většiny provedených studií patří nejvíce kmenů do skupiny A, jak tomu také bylo v případě studie klinických bovinních mastitid, zde dokonce patřilo do této skupiny 82,6 % izolovaných kmenů, důležité je, že se ve většině případů jednalo o komensální kmeny, tedy kmeny z GIT (gastrointestinální trakt) [57]. Je tedy pravděpodobné, že kmeny zařazené do skupiny A v této práci pocházeli z GIT buď zvířat, pokud se jednalo o vzorky masa nebo z GIT člověka, pokud se jednalo o vzorky ostatních potravin, zejména těch, které přicházejí do úzkého styku se zaměstnanci podniků. Na základě těchto výsledků je možné říci, že v řetězcích, kde byly vzorky zakoupeny, by se měla zvýšit hygienická opatření, měl by být kladen vyšší důraz na hygienu, jak pracovních a prodejních prostor, tak samotných zaměstnanců. V neposlední řadě by měla být zlepšena kvalita prodeje v prodejnách s čerstvým masem a masnými výrobky. Zaměstnanci, kteří přicházejí do styku s pěněžemi by neměli přicházet do styku s komoditami nebo by měli řádně používat ochranných rukavic, které by měly být dostatečně často měněny.

Přehled o tom, jaké skupiny jsou nejčastěji zastoupeny ve vzorcích fekálií od člověka je uveden níže (Tab. 29), z tohoto přehledu je více než zřejmé, že velmi závisí na geografické poloze zkoumané oblasti, a že není pravidlem, že by skupiny A byla nejčastěji zastoupena [58].

Tab. 29. Přítomnost 4 hlavních fylogenetických skupin [58].

<table>
<thead>
<tr>
<th>Populace</th>
<th>Počet vzorků</th>
<th>A (%)</th>
<th>B1 (%)</th>
<th>B2 (%)</th>
<th>D (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Francie</td>
<td>56</td>
<td>61</td>
<td>12,5</td>
<td>10,5</td>
<td>16</td>
</tr>
<tr>
<td>Čína</td>
<td>325</td>
<td>43,7</td>
<td>23,4</td>
<td>16,0</td>
<td>16,9</td>
</tr>
<tr>
<td>Japonsko</td>
<td>61</td>
<td>28,0</td>
<td>0,0</td>
<td>44,0</td>
<td>28,0</td>
</tr>
<tr>
<td>Chorvatsko</td>
<td>57</td>
<td>35,1</td>
<td>31,6</td>
<td>19,3</td>
<td>14,0</td>
</tr>
<tr>
<td>Austrálie</td>
<td>266</td>
<td>19,5</td>
<td>12,4</td>
<td>45,1</td>
<td>22,9</td>
</tr>
</tbody>
</table>
V roce 2010 byla provedena studie, jejímž cílem bylo zjistit, jak se mezi fylogenetické skupiny rozdělují určité kmeny *E. coli* pocházející od lidí, kuřat, skotu, koz, prasat a ovcí, aby bylo možné podle fylogenetické skupiny rozlišit zdroj fekální kontaminace [59].

Bylo prokázáno, že rozložení fylogenetických skupin, podskupin (A0, A1, B1, B22, B23, D1, D2) a genetických markerů je u analyzovaných hostitelů nenáhodné. Kmeny ze skupiny B1 se nacházely u všech hostitelů, nicméně převažovaly u skotu, koz a ovcí, naproti tomu podskupina B23 se vyskytovala pouze v lidských vzorcích. Byla vyzkoušena analýza, které dokázala se 17 % četností chyb určit, zdali se jedná o býložravý nebo všežravý zdroj daného kmene. Rozdělení do skupin proběhlo následovně:

- A₀ - *chuA*-, *yjaA*-, TspE4.C2-;
- B₁ - *chuA*-, *yjaA*-, TspE4.C2+;

Vzhledem k tomu, že v této studii se skupina B₂₃ vyskytovala pouze v lidských vzorcích, je pravděpodobné, že dva kmeny vyšetřované v této práci ve skutečnosti pocházely z lidského zdroje kontaminace, jednalo se o vzorky 74 a 43, tedy o cukrářský výrobek špička a kuře celé z pultového prodeje.

ZÁVĚR

Bakterie *Escherichia coli* se vyskytuje přirozeně v trávicím traktu člověka a zvířat, dále se vyskytuje v komoditách rostlinného i živočišného původu a ve vodách, kde slouží jako ukazatel sekundární kontaminace. Dělí se na patogenní a apatogenní kmeny, které mohou být jak intestinální tak extraintestinální. U této bakterie byly charakterizovány jednotlivé fylogenetické skupiny z nichž nejzákladnější jsou A, B1, B2 a D. Velmi významným předmětem testování je antibiotická rezistence této bakterie, která může být přirozená nebo získaná, u *E. coli* je velmi dobrá vnímanost na cefalosporiny, flourované chinolony ko-trimoxazol, přirozeně necitlivá je tato bakterie na benzylpenicilin. *E. coli* je schopna produkce dva typy bakteriocinů, koliciny a mikrociny. Koliciny jsou toxické exoproteiny, které slouží k zabíjení úzce příbuzných druhů bakterií, prvním objeveným kolicinem byl kolicin V, je charakterizováno okolo 34 kolicinů z nichž 21 je velmi dobře popsáno.

Cílem této práce bylo izolovat bakteriální kmeny z potravin, provést jejich identifikaci pomocí mikrotestů a u kmenů *E. coli* provést zjištění citlivosti na jednotlivé antibiotika pomocí difúzní diskové metody, kolicinogenii vpichovým pokusem a rozdělit kmeny do jednotlivých fylogenetických skupin metodou PCR.

Z celkem 78 vzorků potravin pocházejících s maloobchodních prodejen na Zlínsku bylo izolováno celkem 21 kmenů *E. coli*. U 19 kmenů byla vyšetřena citlivost na antibiotika, bylo zjištěno, že všechny kmeny jsou rezistentní alespoň k jednomu antibiotiku (16 %) a zbylých 84 % prokázalo multirezistenci, tedy rezistenci na dvě a více antibiotik. Hlavní přičinou rezistence bakterií je zbytečné podávání antibiotik u infekcí virového původu a dále u banálních samozdravých bakteriálních infekcí.

U 19 kmenů bylo pomocí vpichového pokusu hodnocena kolicinogenie. Na základě vyhodnocení inhibičních účinků na 5 indikátorových kmenech bylo zjištěno, že 2 kmeny produkuji koliciny.

Celkem u 60 kmenů *E. coli* bylo provedeno rozřazení do fylogenetických skupin pomocí metody PCR. Bylo zjištěno, že největší podíl kmenů patří do fylogenetické skupiny A (50 %), 27 kmenů (45 %) bylo zařazeno do fylogenetické skupiny B1 a zbylých 3 kmenů (5 %) patřily do skupiny B2. Do skupiny D nebyl v této práci zařazen žádný kmen. Z výsledků je
zřejmě, že se nejčastěji jednalo právě o kmeny intestinálního původu, což poukazuje na nedostatečnou hygienu a sanitaci výrobních, skladovacích a prodejních prostor.
SEZNAM POUŽITÉ LITERATURY

[25] NIELSEN, Eva, Conny TEGTMEIER, ANDERSEN a Jens ANDERSEN. Influence of age, sex and herd characteristics on the occurrence of verocytotoxin-producing Escherichia coli O157 in Danish dairy farms. Veterinary Microbiology. 2002, roč. 1, č. 88, s. 245-257.

[29] ELDER, R. O. From the Cover: Correlation of enterohemorrhagic Escherichia coli O157 prevalence in feces, hides, and carcasses of beef cattle during processing. *Proceedings of the National Academy of Sciences*. roč. 7, č. 97, s. 2999-3003. ISSN 00278424. DOI: 10.1073/pnas.060024897.

[37] ERIBO, Broderick a Mogessie ASHENAFI. Behavior of Escherichia coli O157: H7 in tomato and processed tomato products. *Food Research International.* 2003, roč. 8, č. 36, s. 823-830. DOI: 10.1016/S0963-9969(03)00077-2.

[51] MAJEED, Hadeel, Osnat GILLOR, Benjamin KERR a Margeret RILEY. Competitive interactions in Escherichia coli populations: the role of bacteriocins. The ISME Journal. 2011, roč. 1, č. 5, s. 71-81.

[54] OBENG, Akua Serwaah, Heather RICKARD, Olasumbo NDI, Margaret SEXTON a Mary BARTON. Antibiotic resistance, phylogenetic grouping and virulence potential of Escherichia coli isolated from the faeces of intensively farmed and free range poultry. Veterinary Microbiology. 2012, roč. 3-4, č. 154, s. 305-315. ISSN 03781135. DOI: 10.1016/j.vetmic.2011.07.010.

[55] MOKRACKA, Joanna, Ryszard KOCZURA, Lucyna JABLONSKA a Adam KAZNOWSKI. Phylogenetic groups, virulence genes and quinolone resistance of

SEZNAM POUŽITÝCH SYMBOLŮ A ZKRATEK

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Oznacení</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETEC</td>
<td>Enterotoxigenní E. coli</td>
</tr>
<tr>
<td>EPEC</td>
<td>Enteropatogenní E. coli</td>
</tr>
<tr>
<td>EIEC</td>
<td>Enteroinvazivní E. coli</td>
</tr>
<tr>
<td>EHEC</td>
<td>Enterohemoragická E. coli</td>
</tr>
<tr>
<td>STEC</td>
<td>Shiga - toxigenní E. coli</td>
</tr>
<tr>
<td>EAEC</td>
<td>Enteroagregativní E. coli</td>
</tr>
<tr>
<td>DAEC</td>
<td>Difúzně- adherentní E. coli</td>
</tr>
<tr>
<td>UPEC</td>
<td>Uropatogenní E. coli</td>
</tr>
<tr>
<td>MNEC</td>
<td>Kmeny E. coli spojené s meningitidou a sepsí</td>
</tr>
<tr>
<td>APEC</td>
<td>Kmeny E. coli způsobující infekce respiratorního traktu u ptactva</td>
</tr>
<tr>
<td>NTEC</td>
<td>Kmeny E. coli produkující nekrotizující faktory</td>
</tr>
<tr>
<td>AIEC</td>
<td>Kmeny E. coli spojené s Crohnovou chorobou</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerázová řetězová reakce</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonukleová kyselina</td>
</tr>
<tr>
<td>LEE</td>
<td>Ostrovy patogenity</td>
</tr>
<tr>
<td>MIC</td>
<td>Minimální inhibiční koncentrace</td>
</tr>
<tr>
<td>HUS</td>
<td>Hemolyticko- uremický syndrom</td>
</tr>
<tr>
<td>HACCP</td>
<td>Systém kritických kontrolních bodů</td>
</tr>
<tr>
<td>NK</td>
<td>Nukleová kyselina</td>
</tr>
<tr>
<td>MPA</td>
<td>Masopeptonový agar</td>
</tr>
<tr>
<td>MPB</td>
<td>Masopeptonový bujón</td>
</tr>
<tr>
<td>EA</td>
<td>Endo agar</td>
</tr>
<tr>
<td>GIT</td>
<td>Gastrointestinální trakt</td>
</tr>
</tbody>
</table>
SEZNAM OBRÁZKŮ

Obr. 1. Bakterie Escherichia coli [5]...15
Obr. 2. Strom pro rozdělení E. coli do fylogenetických skupin [14]................................. 19
Obr. 3. Endo agar [40]..43
Obr. 4. Záznamový arch pro ENTEROtest 24. ..66
Obr. 5. Mueller-Hinton agar s antibiotickými disky, kmen 75. ...67
Obr. 6. Vpichový pokus, kmen 55..76
Obr. 7 Agarózový gel s PCR produkty. Zleva: 1. jamka marker (100 bp), 2. jamka-
pozitivní gen chuA (279 bp), 3. jamka- pozitivní gen yjaA (211 bp), 4. jamka-
pozitivní gen TspE4C2 (152 bp), 5. jamka- negativní gen chuA (279 bp), 6.
jamka- negativní gen yjaA (211 bp), 7. jamka- pozitivní gen TspE4C2 (152 bp),
8. jamka- negativní gen chuA (279 bp), 9. jamka- negativní gen yjaA (211 bp),
10. jamka- pozitivní gen TspE4C2 (152 bp). Jamka 2-4 vzorek 43, jamka 5-7
vzorek 33, jamka 8-10 vzorek 34...78
Obr. 8 Agarózový gel s PCR produkty. Zleva: 1. jamka marker (100 bp), 2-7, 10-11
chuA (279 bp), yjaA (211 bp), TspE4C2 (152 bp) negativní kmeny 7, 10, 22,
32, 38, JR10, JR 27, JR 28. 8-9 pozitivní geny chuA (279 bp), yjaA (211 bp),
TspE4C2 (152 bp) u kmenů 43, 74. 12 pozitivní chuA (279 bp) a yjaA (211 bp)
kmen JR33. 13-14, 16 negativní chuA (279 bp), yjaA (211 bp), TspE4C2 (152
bp) vzorky JR28, JR29, JR31. 14 pozitivní gen yjaA (211 bp) JR1.78
SEZNAM TABULEK

Tab. 1. Přehled patogenních kmenů E. coli [6].. 18
Tab. 2. Frekvence výskytu fylogenetických skupin [13]... 20
Tab. 3. Adheziny u patogenních E. coli [6].. 23
Tab. 4. Data objevení antibiotické rezistence u jednotlivých antibiotik [20]................................. 26
Tab. 5. Osídlení trávicího traktu [6].. 31
Tab. 6. Výskyt E. coli O157:H7 [28].. 36
Tab. 7. Složení MPA.. 50
Tab. 8. Složení MPB.. 50
Tab. 9. Složení Soft agaru.. 50
Tab. 10. Složení Endo agaru.. 51
Tab. 11. Složení Mueller Hinton agaru.. 51
Tab. 12. Složení fyziologického roztoku.. 51
Tab. 13. Vzorky potravin pro izolaci E. coli.. 52
Tab. 14. Antibiotika v sadě G1. ... 59
Tab. 15. Antibiotika v sadě G2. ... 59
Tab. 16. ATB v sadě G3... 60
Tab. 17. Sekvence jednotlivých primerů.. 61
Tab. 18. Složení směsi dle standardního protokolu. ... 61
Tab. 19. Složení směsi pro Triplex PCR.. 62
Tab. 20. Podmínky standardní PCR reakce... 62
Tab. 21. Podmínky Triplex PCR reakce.. 63
Tab. 22. Výsledek identifikací bakteriálních izolátů... 64
Tab. 23. Vyhodnocení diskové difúzní metody dle tří standardů... 68
Tab. 24. Počet rezistentních kmenů k celkovému počtu vyšetřených kmenů................................. 69
Tab. 25. Procentuální vyjádření množství rezistentních kmenů... 70
Tab. 26. Přehled antibiotik, na které byl daný kmen citlivý, rezistentní nebo se jevil jako intermediární, zhodnoceno dle MU. .. 72
Tab. 27. Vyhodnocení vpichového pokusu.. 75
Tab. 28 Výsledky fylogenetické analýzy... 79
Tab. 29. Přítomnost 4 hlavních fylogenetických skupin [58].. 82