Mechanické vlastnosti kompozitů na bázi polypropylen/dřevní moučka

Bc. Denisa Pohořelská
Univerzita Tomáše Bati ve Zlíně
Fakulta technologická
Ústav inženýrství polymerů
akademický rok: 2011/2012

ZADÁNÍ DIPLOMOVÉ PRÁCE
(PROJEKTU, UMĚLECKÉHO DÍLA, UMĚLECKÉHO VYKONU)

Jméno a příjmení: Bc. Denisa POHOŘEĽSKÁ
Osobní číslo: T10361
Studijní program: N 2808 Chemie a technologie materiálů
Studijní obor: Inženýrství polymerů
Téma práce: Mechanické vlastnosti kompozitů na bázi polypropylen/dřevní moučka

Zásady pro vypracování:
1. Zpracujte rešerši nejnovější literaturu z dané oblasti.
2. Připravte kompozity na bázi polypropylenu a dřevní moučky s různým plněním a za různých zpracovatelských podmínek.
3. U připravených kompozitů charakterizujte mechanické, optické a ostatní vlastnosti metodami dostupnými na UTB.
4. Zpracujte a diskutujte výsledky.
Rozsah diplomové práce:
Rozsah příloh:
Forma zpracování diplomové práce: tiskněné/elektronická

Seznam odborné literatury:

Vedoucí diplomové práce: Ing. Lenka Chvátalová, Ph.D.
Ústav inženýrství polymerů
Datum zadání diplomové práce: 10. února 2012
Termín odevzdání diplomové práce: 14. května 2012

Ve Zlíně dne 10. února 2012

[Podpisy]

Ing. Roman Čermák, Ph.D., dekan
Ing. Roman Čermák, Ph.D., ředitel ústavu
Příjmení a jméno: POHOŘELSKÁ DENISA

Obor: INžENÚŘSTVÍ ROZVODŮ

PROHLÁŠENÍ

Prohlašuji, že

• beru na vědomí, že odevzdávání diplomové/bakalářské práce souhlasím se zveřejněním své práce podle zákona č. 111/1998 Sb. o vysokých školách a o změně a doplnění dalších zákonů (zákon o vysokých školách), ve znění pozdějších právních předpisů, bez ohledu na výsledek obhajoby;

• beru na vědomí, že diplomová/bakalářská práce bude uložena v elektronické podobě v univerzitním informačním systému dostupná k nahlédnutí, že jeden výtisk diplomové/bakalářské práce bude uložen na příslušném ústavu Fakulty technologické UTB ve Zlíně a jeden výtisk bude uložen u vedoucího práce;

• byl/a jsem seznámen/a s tím, že na moji diplomovou/bakalářskou práci se plně vztahuje zákon č. 121/2000 Sb. o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon) ve znění pozdějších právních předpisů, zejm. § 35 odst. 3;

• beru na vědomí, že podle § 60 odst. 1 autorského zákona má UTB ve Zlíně právo na uzavření licenčního smlouvy o užití školního díla v rozsahu § 12 odst. 4 autorského zákona;

• beru na vědomí, že podle § 60 odst. 2 a 3 mohu užít své dílo – diplomovou/bakalářskou práci nebo poskytnout licenci k jejímu využití jen s předchozím písemným souhlasem Univerzity Tomáše Bati ve Zlíně, která je oprávněna v takovém případě ode mne požadovat přiměřený příspěvek na úhradu nákladů, které byly Univerzitou Tomáše Bati ve Zlíně na vytvoření díla vynaloženy (až do jejich skutečné výše);

• beru na vědomí, že pokud bylo k vypracování diplomové/bakalářské práce využito softwaru poskytnutého Univerzitou Tomáše Bati ve Zlíně nebo jinými subjekty pouze ke studijním a výzkumným účelům (tedy pouze k nekomerčnímu využití), nelze výsledky diplomové/bakalářské práce využít ke komerčním účelům;

• beru na vědomí, že pokud je výstupem diplomové/bakalářské práce jakýkoliv softwarový produkt, povazuji se za součást práce rovněž i zdrojové kódy, popř. soubory, ze kterých se projekt skládá. Neodezvzdání této součásti může být důvodem k neobhájení práce.

Ve Zlíně 14.5.2012

POHOŘELSKÁ DENISA
(2) Disertační, diplomové, bakalářské a rigorózní práce odevzdané uchazečům k obhajobě musí být též nejméně pět pracovních dnů před konaním obhajoby zveřejněny k nahlížení výpomocnici v minulé učenému vnitřním předáníem vysoké školy nebo není-li tak určeno, v místě pracoviště vysoké školy, které se má konat obhajoba práce. Každý si může ze zveřejněné práce požádat na své náklady vypis, kopii nebo rozmadlení.

(3) Platí, že odevzdané práce autorem souhlasí se zveřejněním své práce podle tohoto zákona, bez ohledu na vůle učedníka obhajoby.

§ 35 odst. 3 zákona č. 121/2000 Sb. o pravicích autorských

(5) Do práv autorského také nezasahuje škola nebo školní či vzdělávací zařízení, užije-li nikoli za účelem přímého nebo neprímého hospodářského nebo obchodního prospěchu k výuce nebo k vlastní potřebě dílo vytvořené školním nebo studentem k zpolnění školních nebo státních povinností využívajících jeho právního vztahu ke škole nebo školnímu či vzdělávacímu zařízení (školní dílo).

§ 35 odst. 3 zákona č. 121/2000 Sb. o pravicích autorských

(6) Do práv autorského také nezasahuje škola nebo školní či vzdělávací zařízení mají za obvyklého podmíněná práva na uveřejnění licenční smlouvy o užití školního díla (§ 35 odst. 3). Odpůrčí autor takového díla uvede svědectví bez vážného důvodu, mohou se tyto osoby domáhát nahrazení činěního projevu jeho vůle v soudu. Ustanovení § 35 odst. 3 zdeňoază neděleno.

(7) Do práv autorského také nezasahuje škola nebo školní či vzdělávací zařízení mají za obvyklého podmíněná práva na uveřejnění licenční smlouvy o užití školního díla (§ 35 odst. 3). Odpůrčí autor takového díla uvede svědectví bez vážného důvodu, mohou se tyto osoby domáhát nahrazení činěního projevu jeho vůle v soudu. Ustanovení § 35 odst. 3 zdeňoază neděleno.
ABSTRACT

The main aim of this Master’s Thesis in an evaluation of mechanical and thermal properties of composites, which consist of polypropylene matrix and natural fillers. Natural filler was presented by unmodified pine wood and oak wood flour. Properties of samples were tested by different methods, such as tensile test, notched impact strength, hygroscopicity, hardness, diferencial scanning calorimetry, wide-angle X-ray diffraction and thermogravimetry. It was found, that addition of wood flour into termoplastic matrix improves mechanical properties of all composites in comparison with virgin materials.

Keywords: polypropylene, wood flour, composites
Poděkování:
Chtěla bych poděkovat hlavně své vedoucí diplomové práce, Ing. Lence Chvátalové, za její ochotu, čas a trpělivost.

Prohlašuji, že odevzdaná verze diplomové práce a verze elektronická nahrána do IS/STAG jsou totožné.

Ve Zlíně 14. 5. 2012

[Podpisy]
OBSAH

ÚVOD ... 10
I TEORETICKÁ ČÁST ... 11
 1 KOMPOZITY PP/DŘEVO .. 12
 1.1 SLOŽENÍ PP/DŘEVO KOMPOZITŮ .. 12
 1.1.1 Polypropylen .. 12
 1.1.1.1 Vlastnosti polypropylenu ... 13
 1.1.1.2 Výroba polypropylenu .. 13
 1.1.1.3 Typy polypropylenu .. 14
 1.1.1.4 Nadmolekulární struktura polypropylenu ... 15
 1.1.2 Dřevo ... 18
 1.1.2.1 Chemické složení dřeva .. 19
 1.1.2.2 Kategorie dřeva ... 20
 1.2 MODIFIKACE ... 23
 1.3 ZPRACOVÁNÍ DŘEVO/PP KOMPOZITŮ .. 25
 1.4 VLASTNOSTI PP/DŘEVO KOMPOZITŮ ... 26
 1.5 APLIKACE DŘEVO/PP KOMPOZITŮ ... 27

2 ZKUŠEBNÍ METODY ... 29
 2.1 VRUBOVÁ HOUŽEVNATOST ... 29
 2.2 TAHOVÁ ZKOUŠKA .. 30
 2.3 TVRDOST .. 31
 2.4 INDEX TOKU TAVENINY .. 32
 2.5 NAVLHAVOST .. 32
 2.6 DIFERENCIÁLNÍ SNÍMACÍ KALORIMETRIE .. 33
 2.7 TERMOGRAVIMETRICKÁ ANALÝZA ... 34
 2.8 RENTGENOVÁ ANALÝZA ... 35

II PRAKTICKÁ ČÁST .. 37
3 MATERIÁL ... 38
 3.1 PŘÍPRAVA SMĚSÍ ... 39

4 EXPERIMENTÁLNÍ METODY A ZAŘÍZENÍ .. 44
4.1 RÁZOVÁ HOUŽEVNATOST ... 44
4.2 TAHOVÉ ZKOUŠKY .. 44
4.3 TVRDOST ... 45
4.4 INDEX TOKU TAVENINY ... 46
4.5 NAVLHAVOST ... 46
4.6 DIFERENCIÁLNÍ SNÍMACÍ KALORIMETRIE 47
4.7 RENTGENOVÁ ANALÝZA ... 47
4.8 TERMOGRAVIMETRICKÁ ANALÝZA ... 48
III VÝSLEDKY A DISKUZE ..新闻记者
5 RÁZOVÁ HOUŽEVNATOST ... 50
6 TAHOVÉ ZKOUŠKY .. 52
7 TVRDOST ... 55
8 INDEX TOKU TAVENINY ... 57
9 DIFERENCIÁLNÍ SNÍMACÍ KALORIMETRIE 59
10 RENTGENOVÁ ANALÝZA ... 63
11 TERMOGRAVIMETRICKÁ ANALÝZA ... 69
12 NAVLHAVOST ... 77
ZÁVĚR .. 78
SEZNAM POUŽITÉ LITERATURY .. 80
SEZNAM POUŽITÝCH SYMBOLŮ A ZKRATEK .. 87
SEZNAM OBRÁZKŮ .. 88
SEZNAM GRAFŮ ... 90
SEZNAM TABULEK ... 92
ÚVOD

Syntetické polymery se staly během posledních 50 let běžnou součástí našeho každodenního života a to převážně díky jejich dobrému poměru mezi užitnými vlastnostmi a cenou. Ještě k výraznějšímu zlepšení mechanických a fyzikálních vlastností těchto polymerů dochází přidávkem plniv. Nejběžněji používanými plnivy jsou skelná či uhlíková vlákna, různé jilové minerály a mnoho dalších.

Nejběžněji používanými polymery pro matrici jsou polyetylen (PE), polypropylen (PP) a polyvinylechlorid (PVC). Spojením polymerní matrice s dřevní moučkou získáme kompozit s krásným přírodním dezémem připomínajícím dřevo, ale zároveň tím předejdeme nežádoucím vlastnostem dřeva, jako je hniloba, plísně, změna barevnosti, kroucení. Kvalitu WPC lze ovlivnit už zprvopočátku volbou vstupních surovin a jejich poměrů. Wood Plastic Composites jsou převážně aplikovány na venkovní terasy, podlahy, okenní rámy a rovněž v automobilovém průmyslu.

Cílem práce je příprava kompozitů na bázi polypropylenu a dřevní moučky s různým plněním a za různých zpracovatelských podmínek. Budou vyhodnoceny mechanické, tepelné a další vlastnosti těchto kompozitů.
I. TEORETICKÁ ČÁST
KOMPOZITY PP/DŘEVO

1.1 Složení PP/dřevo kompozitů

Kompozit je složen z několika fází. V mém případě se budu zabývat kompozitem, který bude tvořit dvě fáze. Spojitou fází je matrice polypropylenu a druhou nespojitou fází je dřevní moučka. V níže uvedeném textu budou popsány základní informace výchozích materiálových složek.

1.1.1 Polypropylen

\[
\begin{array}{c}
\text{CH}_3 \\
\text{CH-CH}_2 \\
\hline
\end{array}
\]

\[n\]

\textit{Obrázek 1 - Strukturní vzorec PP[3]}

Nejvýznamnějším polymerem v řadě polyolefinů se nachází polypropylen. PP (Obrázek 1) je lineární polymer, v jehož řetězci nenajdeme dvojnou vazbu. Přítomnost methylové sku-
piny, která je připojena k terciálnímu atomu uhlíku v páteři řetězce může měnit jeho vlastnosti. To může způsobit např. mírné ztuhnutí řetězce a narušit molekulární symetrii. Dále mohou postraní methylové skupiny ovlivňovat některé aspekty chemického chování. Příkladem je terciální atom uhlíku, který poskytuje místo pro oxidaci tak, že polymer je méně stabilní k vlivu kyslíku než polyetylen [4].

1.1.1.1 Vlastnosti polypropylenu
Polypropylen je krystalický polymer, jehož stupeň krystalinity se pohybuje kolem 60–75 %. Tento polymer je neprůhledný. Obecně hustota polymeru je nízká a nabývá hodnot kolem 0,90–0,92 g/cm³. Má velmi dobré elektroizolační vlastnosti, chemickou odolnost (tak jako u PE). Dále botná nejen v ketonech, ale i esterách nebo uhlovodících. Taktéž dobře odolává vroucí vodě, má lepší odolnost vůči korozii za napětí, vyšší odolnost vůči oděru. U tohoto typu polymeru se setkáme s vyšší pevností (v tahu, v tlaku) a tvrdostí. Dále se vyznačuje menší propustností pro páry nebo plyny a neabsorbuje vlhkost [5–9].

1.1.1.2 Výroba polypropylenu
Polymerace probíhá v reaktorech za přítomnosti katalyzátoru chloridu titanitého s diethylaluminiumchloridem a rozpouštědla hexanu. Reakce probíhá při teplotách 50–70 °C a tlaku v rozmezí 0,7–1 MPa. Zde se nachází i vodík, který slouží jako regulátor molekulové hmotnosti. Suspenze polymeru v hexanu je z reaktoru vedená do uvolňovací věže, ze které je nezreagovaný propylen a rozpouštědlo veden k recyklaci. V této věži dochází vyprázdňování atakického polypropylenu. Poté je suspenze odváděna do dezaktivátoru, ve kterém dochází k rozkladu zbylých katalyzátorů pomocí methanolu na alkoholáty titanu, hliníku a chlorovodíku. Suspenze se vede do neutralizátoru, v němž se nachází hydroxid sodný. Metanol se oddělí dekantací. Suspenze je oddělena od hexanu pomocí odstředivek a nakonec je prášek polypropylenu sušen ve fluidní sušárně [9].
1.1.1.3 Typy polypropylenu

Polypropylen může mít strukturu izotaktickou, syndiotaktickou nebo ataktickou, která je dána různým ukládáním methylových skupin na alternujícím atomu uhlíku v řetězci. V Tabulce 1 jsou uvedeny vlastnosti jednotlivých typů PP.

Tabulka 1 - Vlastnosti různých typů polypropylene [9]

<table>
<thead>
<tr>
<th>Vlastnost</th>
<th>Izotaktický</th>
<th>Syndiotaktický</th>
<th>Ataktický</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hustota [g/cm³]</td>
<td>0,92–0,94</td>
<td>0,8–0,91</td>
<td>0,85–0,90</td>
</tr>
<tr>
<td>Bod tání [°C]</td>
<td>165</td>
<td>135</td>
<td>-</td>
</tr>
<tr>
<td>Rozpustnost v uhlovodíku při 20 °C</td>
<td>nerozpustný</td>
<td>střední</td>
<td>vysoká</td>
</tr>
<tr>
<td>Pevnost</td>
<td>vysoká</td>
<td>střední</td>
<td>velmi nízká</td>
</tr>
</tbody>
</table>

1.1.1.3.1 Izotaktický polypropylen

Izotaktická struktura (Obrázek 2) je nejvíce pravidelná, v nichž jsou všechny metylové skupiny umístěny na jedné straně molekuly. Tyto molekuly krystalizují ve šroubovici se třemi molekulami, které jsou potřebné pro jedno otočení šroubovice. Izotaktický polypropylen (iPP) má nižší hustotu (tj. 0,9 g/cm³) než polyetylen, je tuhé a vysoce krystalický. Má vyšší bod měknutí (T_f = 140–154 °C) i bod křehnutí (T_b = -70 °C). Dále je více náchynný k oxidaci [4].

Obrázek 2 - Izotaktický polypropylen [11]

1.1.1.3.2 Syndiotaktický polypropylen

Syndiotaktický polypropylen (sPP) se stal dostupným až v roce 1990. Vyrábí se pomocí metalocenových katalyzátorů. Takto vyrobený polymer se vyznačuje vysokou houževnatostí, čistotou a tepelnou odolností. Jeho negativním aspektem je vysoká cena oproti ostatním
typům PP. Obecně syndiotaktické PP jsou měkčí a více transparentní než iPP. Metylové skupiny v této struktuře jsou ukládány pravidelně střídavě nad a pod rovinu (Obrázek 3) [4].

![Syndiotaktický polypropylen](image)

Obrázek 3- Syndiotaktický polypropylen [11]

1.1.1.3 Ataktický polypropylen

Ataktický polypropylen (aPP) je získáván jako vedlejší produkt při výrobě iPP a nebo pomocí specifických procesů určené pro jeho přímou produkcí. Ataktický polypropylen je amorfní a pružný. Struktura uvedeného polymeru je zobrazena na Obrázku 4, v nichž jsou metylové skupiny nepravidelně uspořádány [4].

![Ataktický polypropylen](image)

Obrázek 4- Ataktický polypropylen[11]

Pro praktické účely je významnější izotaktický polypropylen.

1.1.1.4 Nadmolekulární struktura polypropylenu

Izotaktický polypropylen je polymorfní semikrystalický polymer, který může krystalizovat v několika fázích. Nejběžnější krystalickou formou je α-fáze, v níž řetězce polypropylenu dávají pravotočivé spirálovité konformace v monoklinické jednotkové buňce. Monoklinická buňka má tyto rozměry a= 6,65 Å, b= 20,96 Å, c=6,50 Å, a β=99,3°. Monoklinickou α-kristalickou strukturu můžeme vidět na Obrázku 5. Lamelární struktura vytváří pozitivní, negativní a smíšený dvojlom. Negativní dvojlom vyplývá ze sférolitu, ve kterých jsou dominantnější radiální lamely. V pozitivním dvojlomu se setkáme především s lamelami tangencionálního typu. Sférolity tvoří v negativním a v pozitivním dvojlomu
Maltézký kříž, ale ve smíšeném dvojlomu se s ním nesetkáme. Teplota tání této fáze je asi kolem 170 °C [12–15].

Obrázek 5- Monoklinická buňka α-fáze iPP [16]

Gama struktura isotaktického PP se nachází jen velmi zřídka. Poprvé byla pozorována Addink a Beintema [15]. Ti popsali ortorombickou buňku o rozměrech $a=8,54$ Å, $b=9,93$ Å a $c=42,41$ Å. Makromolekuly v této buňce koexistují s nerovnoměrnými řetězovými osami. Předpokládá se, že tato struktura vzniká jen tehdy, jestliže je alfa krystalický materiál namáhán ve směru růstu. Gama krystaly tvoří mřížkovou strukturu, která je podobná alfa formě. S tím rozdílem, že krystaly rostou ve dvou směrech současně. Výsledná struktura je oproti α-krystalické struktuře jednotnější. Krystalická hustota γ-fáze je větší než alfa a beta fáze isotaktického polypropylenu [13–15].
1.1.2 Dřevo

Dřevo je jedním z nejstarších a nejznámějších konstrukčním materiálem a jeden z mála obnovitelných přírodních zdrojů. Při zpracování a produkci dřeva není potřeba vynaložit velkou energii než při výrobě polymerů. To znamená, že je energeticky nenáročné. Dřevo je vhodné pro stavební konstrukce. Je velmi univerzální, protože má širokou škálu fyzikálních a mechanických vlastností. Má schopnost odolávat různému zatížení, které závisí na různých faktorech. Mezi tyto faktory můžeme zařadit typ, směr a dobu zatížení, dále teplostu a vlhkost a rovněž přítomnost nebo nepřítomnost suků a odštěpek [17].

Hlavními chemickými složkami dřeva jsou celulóza, hemicelulóza a lignin. Celulóza a hemicelulóza jsou polysacharidy složené z jednotek monosacharidů. Tyto monosacharidy vznikají pomocí fotosyntézy z oxidu uhličitého a vody za přítomnosti enzymů, chlorofýlu a světla. Chemický průběh fotosyntézy je vyjádřen následnou rovnicí [19].

\[n \text{CO}_2 + n \text{H}_2\text{O} \rightarrow (\text{HCOH})n + n \text{O}_2 \]

1.1.2.1 Celulóza

Celulóza je hlavní složkou sekundární buněčné stěny. Představuje 50 % dřevní hmoty. Co se týče její struktury, je to komplikovaný lineární polysacharidový řetězec s 500 molekulami D-glukózy, který je tvořen nerozpustnými vlákny z β 1,4-glukanu [20–23].

1.1.2.1.2 Hemicelulóza

Je další polysacharid, který je tvořen z různých druhů monomerních jednotek okolo 200. Typickými sacharidy jsou manany, glukany a xylany. Heteropolymerní substance jsou slo-

1.1.2.1.3 Lignin

![Struktury derivátů ligninu: a) p-kumaryl alkohol, b) koniferyl alkohol, c) sinapyl alkohol](image)

Obrázek 10- Struktury derivátů ligninu: a) p-kumaryl alkohol, b) koniferyl alkohol, c) sinapyl alkohol [25]

1.1.2.1.4 Průvodní látky

Každé dřevo obsahuje 3–10 % průvodních látek, které se nachází v malém množství. Jedná se o látky jako jsou sacharidy, bílkoviny, škroby, glykosidy, anorganické soli atd. U jehličnatých stromů dochází k vylučování balzámu, což je roztok přírodních pryskyřic respektive kalafuny v éterickém oleji zvaný terpentín. Kalafuna je tvořena pryskyřičnými kyselinami a terpentín je tvořen z různých terpénů a terpenoidů. Listnaté stromy obsahují třísloviny např. polyhydroxyfenoly, které jsou rozpustné ve vodě [26].

1.1.2.2 Kategorie dřeva

Dřevo můžeme rozdělit na dvě kategorie a to na tvrdá a měkké dřeva. Ve skutečnosti mohou být měkká dřevo tvrdší, než dřeva tvrdá a naopak.
Z botanického hlediska jsou tvrdá dřeva krytosemenná, přičemž jejich semena jsou uloženy ve vaječníku květin. Z anatomického hlediska jsou tvrdá dřeva porézní tzn. obsahují cévní části. Tyto části jsou buňky s otevřenými konci, které jsou umístěny nad sebou a vytvářejí tak cévu pro transport vody uvnitř stromu. Můžeme vidět na Obrázku 11 [27].

Mezi tvrdá dřeva řádíme stromy listnaté [28]:

- dub,
- jasan,
- lípa,
- topol.

![Obrázek 11 - SEM snímek tvrdého dřeva [17]](image)

Měkká dřeva jsou nahosemenné rostliny, jejichž semena se nacházejí v šiškách. Z anatomického hlediska jsou neporézní, neobsahující cévní části (Obrázek 12). Nevýhodou měkkého dřeva je, že snáze podléhá hnilobě ve srovnání s tvrdým dřevem, ale na druhou stranu je lépe zpracovatelné [27].

Mezi měkká dřeva řádíme stromy jehličnaté [28]:

- borovice,
- jedle,
- smrk,
- modřín.

1.1.2.1 Dub

Dub je tvořen úzkým světlehnědým bělem a širokým stejnoměrným jádrem. V středovém a tečném řezu můžeme vidět přeříznuté dřeňové paprsky, které jsou velmi výrazné. Dub ve srovnání s borovicí má lepší mechanické vlastnosti. Vyznačuje se vyšší tvrdostí, pevností i rázovou houževnatostí a delší trvanlivostí. Taktéž odolává lépe povětrnostním podmínkám [27, 29].
1.1.2.2.2 Borovice

Dřevo borovice je téměř bílé. Jádro uvnitř stromu je světle hnědé až naoranžovělé. Běl je tvořen z větší poloviny stromu. Vyznačuje se hrubou strukturou, která je trochu pryskyřišná. Dřevo je středně lehké a má středně nízkou pevnost v ohybu i v tlaku. Dále se vyznačuje středně nízkou odolností vůči nárazu a nízkou tuhostí [27, 30].

Obrázek 14- Dřevo borovice lesní [30]

1.2 Modifikace

Přírodní plniva jsou charakteristické jejich polární a hydrofilní povahou a ty mohou s nepolárními termoplasty vytvářet problémy. Může docházet k různorodé disperzi plniva v matrici, čímž se zhorší pevnost kompozitu. Pro zlepšení kompatibility polymerní matrice s přírodním plnivem můžeme přidat kompatibilizátory [1].

Modifikace dřevních plniv může být prováděno fyzikálně nebo chemicky a tím dojde ke zlepšení mezifázové adhezi [31]. Mezifázové interakce mezi dřevní moučkou a matricí mohou být upravovány různými způsoby. Většinou jsou polyolefiny upraveny pomocí maleinahydrardu, který se přidává během přípravy kompozitů, aby se zabránilo vzniku dutin, které by mohli přecházet do trhlin a způsobovat jeho selhání. Maleinahydridová skupina reaguje s hydroxylovou skupinou dřevní moučky a zlepšuje tak mezipovrchovou adhezi s polymerní matricí [32].

Dřevní plniva jsou převážně chemicky modifikována. Díky jejich modifikaci dosáhneme vyšší pevnosti částic a také nižší navlhavosti. Nejčastější používanou modifikací je esterifikace či éterifikace hydroxylových skupin. Dále je používaná benzylace a plastifikace dřeva pro výrobu všech dřevěných kompozitů. Pomocí těchto reakcí dochází k nahrazování
hydroxylové skupiny méně polární látkou, které snižují vodní adsorpci a tendenci k agregaci [32, 33].

Existuje několik způsobů modifikací dřevních vláken [34]:

- **Působení alkáliemi** – metoda je používána především pro kratší vlákna, která jsou zahřívána v 10% vodném roztoku hydroxidu sodného po dobu 4 hodin. Vlákna jsou nakonec vypírány a sušeny. Výsledkem této metody je, že umožní rozložení shluků vláken, čímž se získají menší vlákna s lepší kvalitou.

- **Acetylace** – vlákna jsou vložena do ledové kyseliny octové po dobu 1 hodiny a poté jsou ponořeny do směsi anhydridu kyseliny octové za přítomnosti kyseliny sírové. Nakonec jsou vlákna zfiltrována, vypírána a sušena. Jedná se tedy o esterifikáční metodu, která umožňuje stabilizovat buněčnou stěnu z hlediska absorpce vlhkosti.

- **Působení anhydridů** – postup se provádí pomocí maleinanhydridu nebo maleinovaného polypropylenu v roztoku toluenu či xylenu. Ponořením vláken dochází i impregnaci a k reakci s hydroxylovými skupinami na jejích povrchu. Výsledkem je opětovné snížení absorpce vody.

- **Působení silanů** – vlákna jsou ponořena do vodného roztoku s alkoholem (v poměru 2:3) obsahující silan. Opět dochází k reakci hydroxylových skupin se silany, čímž dojde ke zlepšení kvality povrchu vláken.

Modifikaci se zabýval např. Ichazo, ten upravoval dřevní moučku pomocí hydroxidu sodného, silanu a dvou maleinovaných polypropylenu, čímž dosáhl zlepšení přilnavosti mezi plnivem a matricí. Zjistili, že díky silanu došlo ke zlepšení adheze mezi plnivem a polymerní matricí a také ke zlepšení rozptylu částic. Modifikaci pomocí hydroxidu sodného došlo pouze ke zlepšení disperze [35].
1.3 Zpracování dřevo/PP kompozitů

Konečné vlastnosti kompozitů závisí na typu procesu a na podmínkách zpracování. Rozhodujícím faktorem je efektivní zamíchání, abychom dosáhli optimálního rozptýlení dřevní moučky v kompozitu. Dřevní moučka je smíchána s polymerní matricí v různých zařízeních. Nejčastěji se používá dvoušnekový extruder [36].

WPC se mohou zpracovávat běžnými zpracovatelskými metodami. Mezi tyto metody patří vstřikování, lisování a vytlačování. Důležitými faktory při zpracování jsou teploty, tlaky a rychlost průtoku taveniny [37].

Největší význam při přípravě WPC je disperze dřevních částic v termoplastické matrici, čímž můžeme ovlivnit konečné vlastnosti výrobků. Při michání taveniny termoplastu s dřevní moučkou se využívá vysokých smykových rychlostí. Dřevní moučka umožňuje snadnější míchání v kratší době ve srovnání s vlákny nebo většími částicemi. Mezi důležité parametry při michání směsi řadíme teplotu taveniny, typ plniva a jeho obsah. Dalším parametrem je doba michání a rychlost otáčení. Michání může být usnadněné zvýšením teploty, čímž snížíme viskozitu polymeru. Při zpracování WPC je nutné použít předsušené plnivo, aby nedocházelo k defectům. Důležitým faktorem je zpracovatelská teplota, která by měla být pod teplotou 200 °C. Tím se vyhneme problémům degradace dřeva, změnám barevnosti, vůně a k uvolňování těkavých látek [1, 39].
1.4 Vlastnosti PP/dřevo kompozitů

Mechanické vlastnosti WPC jsou ovlivňovány různými technologiemi zpracování (vstřikování, lisování, vytlačování). Moduly pružnosti se zvyšují s rostoucím obsahem dřevní frakce. Pevnost kompozitu je převážně závislá na formě dřeva, na typu použitého polymeru, na metodě zpracování a na vzájemném interakci mezi dřevem a plastem. V nemodifikovaných kompozitních systémech jsou malé částice více efektivní pro zvýšení modulu pružnosti v případě dřevní moučky. S rostoucím obsahem dřeva dochází obecně ke snižování pevnosti. U kompozitu dřevní vlákna/PP vyrobeného s dispergačním činidlem nebo za vysoké smykové rychlosti míchání se pevnost v tahu zvyšuje s rostoucím obsahem (Obrázek 16). Nasákovost a bobtnání u WPC se snižuje s rostoucím obsahem termoplastu [39].

\[\text{Obrázek 16- Relativní pevnost v tahu dřeva/PP kompozitu} \ [39] \]

Mechanické vlastnosti mohou být snižovány vlivem vlhkosti. Vlhkost způsobuje degradaci dřeva a dochází tak ke snížení ohybového modulu pružnosti a pevnosti. Množství absorbované vlhkosti závisí nejen na obsahu a velikosti částic dřevní moučky, ale i na typu zpracování. Kompozity vyráběné vstřikováním absorbují méně vlhkosti než je tomu u kompozitů vytlačovaných. Clemons a Ibach předpokládají, že je to díky bohaté polymerní povrchové vrstvě a nižším obsahem plniva. Nasákovost a botnání u WPC klesá s rostoucím obsahem termoplastu [39, 40].
1.5 Aplikace dřevo/PP kompozitů

Dřevo/PP kompozity se jeví jako vhodní kandidáti v mnoha průmyslových odvětvích, např. automobilový průmysl (31 % z celkové spotřeby), stavebnictví (26 %), elektronické součásti (10 %), spotřební zboží (8 %), letectví (1 %) a jiné. Např. v automobilovém průmyslu byly v posledních letech značně nahrazovány kompozity se skleněnými vlákny právě dřevěními vlákny. Dostatečná pevnost, nižší výrobní náklady a odolnost při extrémních teplotách vedly k využití WPC pro interiérové díly v automobilovém průmyslu [41].

Druhá největší oblast využití WPC je stavební průmysl. WPC z měkkého dřeva jsou použity na stavbách pro bednění, lešení, rámování, opláštění, podlahy, obložení, skřínky a mnoho dalších stavebních prvků. Tvrďá dřeva se používají ve WPC pro architektonické zpracování, interiérové výrobky (podlahové krytiny, nábytek) a obložení [42].

WPC lze využít na mnoho polotovarů i finálních výrobků pro venkovní použití (terasy, zábradlí, altány, kolem bazénů, ploty, dveře, přístavní mola nebo fasády domů) a vnitřní použití (podlahy, odpadkové koše) [43–45].

Při pokládání teras se mohou použít plná nebo dutá prkna, přičemž jejich vlastnosti se liší. Dutá prkna jsou cenově nižší a mají nižší záruku než plná prkna. Mají nižší hmotnost. Prkna jsou náchynější k poškozování. Rozdíly jsou zobrazeny na Obrázcích 17 a 18 [43].

Obrázek 17 - Duté prkno [43]

Obrázek 18 - Plné prkno [43]
2 ZKUŠEBNÍ METODY

Izotaktický polypropylen a stejně tak kompozity na bázi dřevo/PP jsou termoplastické materiály jejichž nadmolekulární struktura a tím i mechanické vlastnosti závisí na druhu, obsahu a velikosti částic plniva a stejně tak i zpracovatelských podmínkách. Proto je nutné pro vhodné využití těchto kompozitů porozumět vztahu mezi jejich strukturou, vlastnostmi a zpracováním. Tyto vztahy je možné studovat na několika strukturních úrovních a to užitím různých experimentálních metod:

- molekulární struktura: infračervená spektroskopie, Ramanovská spektroskopie,
- nadmolekulární struktura: rentgenová difrakce, diferenciální snímací kalorimetrie,
- mikroskopická úroveň: světelná mikroskopie, mikroskopie atomárních sil,
- makroskopická úroveň: mechanické testování [47].

2.1 Vrubová houževnatost

Houževnatost polymerů může být stanovena dvěma metodami podle Charpyho a Izoda. Stanovení rázové houževnatosti se provádí rázem v ohybu na zkušebních tělesech, která mohou být opatřena vrubem (Obrázek 25) nebo bez vrubu s tříbodovou podporou. Zkouška slouží ke stanovení houževnatosti pod rázovým zatížením. Metoda je standardizovaná podle normy ISO 179. Zkušební tělesa mohou být získána vstřikováním nebo řezáním z lisované či lité tabulky [48].

Obrázek 25- Charpyho kladivo [49]
Vrubová houževnatost Charpy lze vypočítat podle následujícího vztahu (1) [50]:

\[a_{cN} = \frac{W_B}{hb_N} \times 10^3 \]

(1)

kde \(a_{cN} \) [kJ/m\(^2\)].....vrubová houževnatost
\(W_B \) [J]........energie při přeražení
\(h \) [mm]............tloušťka zkušebního tělesa
\(b_N \) [mm].........šířka zkušebního tělesa pod vrubem

2.2 Tahová zkouška

Základním principem tahové zkoušky je upevnění zkušebního tělesa v podobě lopatky do hlavy na trhacím stroji. Po upevnění je zkušební těleso protahováno ve směru své hlavní podélné osy konstantní rychlostí do jeho porušení. Během zkoušky se měří prodloužení a zatížení, které působí na těleso. Výsledkem měření je tahová křivka, která udává závislost napětí v tahu (zatížení) na deformaci (poměrné prodloužení). Na Obrázku 26 můžeme vidět různé průběhy tahových křivek polymerů. Tahová křivka typu a) platí pro křehké materiály, b) a c) jsou křivky pro houževnaté polymery s mezí kluzu a poslední křivka typu d) náleží houževnatým materiálům bez meze kluzu [51–53].
2.3 Tvrdost

Nejčastější metodou stanovení mechanického testování polymeru je tvrdost. Stanovení je poměrně rychlé, jednoduché a efektivní. Pod pojmem tvrdost si můžeme představit odpor proti vtlačování těles různých tvarů za určitých podmínek tj. hloubka vtlačení, časový interval odečtení a typ vtlačovaného tělesa (kulička, kužel, jehlan). Existuje několik způsobů stanovení tvrdostí a mezi ně patří metoda podle Barcola, Brinella, Knoopa, Rockwella, Vicata a Shore. Tvrdost je spojována s pevností, tuhostí, odolností vůči poškrábání a opotřebení. Stanovení tvrdosti podle Shore může být různěho typu A, D, které lze vidět na Obrázku 27. Ke stanovení tvrdosti podle Shore A se používá komolý kužel s tupou špičkou a slouží pro měkčí pryže. U tvrdých plastů (termoplasty) se používá metoda Shore D, která používá komolý kužel s ostrým hrotem. Ve všech případech je přístroj opatřen stupnicí tvrdosti od 0–100. Principem je vtlačení komolého kužele do zkušebního tělesa pomocí pružiny. Tvrdost Shore je pak definována rozdílem mezi hodnotou tvrdosti 100 a hloubkou odsazení při zkušebním zatížení v mm [55–57].
2.4 Index toku taveniny

Index toku taveniny (ITT) nám udává, jaké množství taveniny (v gramech) proteče tryskou za 10 minut při předepsaných podmínkách tj. teplota a zatížení. Ke stanovení ITT je nejčastěji používán vytačovací plastometr [58]. Index toku taveniny lze vypočítat podle následujícího vztahu (2) [59]:

\[
ITT = \frac{S \times m}{t}
\]

kde \(S \) [s]……………… referenční čas
\(m \) [g]………………průměrná hmotnost odřezků
\(t \) [s]………………..časový interval mezi odřezky

2.5 Navlhavost

Termoplasty mohou absorbovat různé množství vody a její přítomnost může ovlivňovat vlastnosti výrobků jako je odpor elektrické izolace, mechanické vlastnosti, dielektrické ztráty a rozměry. Nasákovost termoplastických polymerů značně závisí na typu a konečném složení materiálu. Pokud termoplastické polymery obsahují pouze vodík a uhlík ve svém řetězci, jsou extrémně odolné vůči vodě. Jestliže jsou polymery velmi citlivé k absorpci vody, nalezneme v jejich řetězci skupinu kyslíku nebo hydroxidové skupiny [60]. Nasákovost polymerů lze ovlivnit přídavkem různých plniv, skelných vláken nebo změkčovadel. Tyto přísady vykazují vyšší afinitu k vodě [61]. Obsah vlhkosti ovlivňující vlastnosti výrobků závisí na typu expozice. Materiál může být ponořen do destilované vody nebo vystaven vysoké vlhkosti. Plasty s velmi nízkou absorpcí mají lepší rozměrovou stá-
lost [62]. Procentuální nárůst hmotnosti během ponoření nebo vystavení vlhkosti, lze vypočítat podle vztahu (3) [60, 61]:

\[
Absorbce \text{ vody}[\%] = \frac{\text{hmotnost v čase } t - \text{hmotnost počáteční}}{\text{hmotnost počáteční}} \times 100
\] (3)

2.6 Diferenciální snímací kalorimetrie

Metoda diferenciální snímací kalorimetrie (DSC) měří množství energie, která je absorbována nebo uvolněna vzorkem při ohřívání nebo chlazení. Měří teplotu a tok tepla, který je spojen s přechody v materiálech. Tepelný tok je funkcí času a teploty. Sleduje změny v endotermních a exotermních procesech nebo změny v tepelné kapacitě. Metoda nám může poskytnout různé informace o vzorku [63]:

- teplotu skelného přechodu,
- teplotu krystalizace
- teplotu tání,
- krystalinitu,
- měrné teplo,
- tepelnou stálost atd.

Stanovení se provádí pomocí referenčního a zkušebního vzorku, které jsou umístěny na samostatných tepelných čidlech v jedné kalorimetrické cele propojené pomocí tepelného mostu. Tepelný tok je dán jako rozdíl teplot mezi zkoušeným a referenčním vzorkem způsobený endotermními či exotermními ději. Výsledkem měření je DSC křivka, která udává závislost tepelné kapacity na teplotě, kterou lze vidět na Obrázku 28 [64].
2.7 Termogravimetrická analýza

Termogravimetrická analýza (TGA) sleduje změnu hmotnosti vzorku v závislosti na teplotě nebo čase. Zkušební vzorky mohou být ve stavu kapalného nebo pevného. Vzorky o hmotnosti 5–10 mg jsou vkládány do hliníkových pánev podobně jako u metody DSC. Měření se provádí na termováze za přítomnosti inertního plynu (dusíku) se zvolenou rychlostí ohřevu (až do 1000°C). Výsledkem měření je termogravimetrická křivka, která udává okamžitou hmotnost vzorku v závislosti na teplotě a čase. Průběh křivky je ovlivněn rychlostí ohřívání. Čím vyšší jsou rychlosti ohřívání, tím užší jsou teplotní intervaly, v nichž dochází ke změnám hmotnosti daného vzorku. Díky změnám ve hmotnostech v závislosti na teplotě můžeme tuto metodu použít k identifikaci polymerů, kopolymerů a jejich směsí a dále nám umožňuje sledovat obsah aditiv, rozpouštědel, anorganického popela nebo jejich stability (termické, oxidační) [66–69]. Na Obrázku 29 můžeme vidět názorný příklad TGA křivky materiálu s její derivací [69].
Obrázek 29- TGA křivka materiálu [69]

2.8 Rentgenová analýza

Krystalinitu polymeru můžeme zjistit pomocí širokoúhlé difrakce rentgenova paprsku (WAXS – Wide-Angle X-ray Scattering) v níž se používá Debye-Schererova metoda. Difrakční záření je zachycováno na citlivý film (2D) nebo je přímo vyhodnocována intenzita záření pomocí detektoru (1D). Princip difrakčního záření lze vidět na Obrázku 30. Difrakci rentgenového záření na částečně krystalických polymerech vznikají ostrá difrakční maxima od krystalické fáze a široké maximum od amorfní fáze (tzv. amorfní halo) [70].

Metoda poskytuje důležité informace [71]:

- obsah krystalického podílu,
- uložení atomů v krystalické buňce,
- hustota krystalické fáze,
- velikost krystalitů,
- stupeň orientace.
Krystalinitu polymeru lze vypočítat jako poměr intenzity krystalického podílu k celkové intenzitě. Relativní obsah β-fáze v krystalickém podílu materiálu se vypočítá podle vztahu (4) a pro obsah α-fáze podle vztahu (5) [72]:

\[
K_\beta = \frac{H_b}{(H_{a1} + H_{a2} + H_{a3})}
\]

\[
K_\alpha = 1 - K_\beta
\]

kde
\(H_{a1}\) …… intezita α-difrakčních píků při úhlu \(2\theta = 14,2^\circ\)
\(H_{a2}\) …… intezita α-difrakčních píků při úhlu \(2\theta = 17,0^\circ\)
\(H_{a3}\) …… intezita α-difrakčních píků při úhlu \(2\theta = 18,8^\circ\)
\(H_b\) …… intenzita β-difrakčního píku při úhlu \(2\theta = 16,2^\circ\)
II. PRAKTICKÁ ČÁST
Základním materiálem pro přípravu WPC byl použit polypropylen typu MOSTEN GB005 od firmy Unipetrol. V Tabulce 2 můžeme vidět jeho základní charakteristiky dle výrobce.

![Granule MOSTEN GB 005](image)

Tabulka 2 - Mechanické vlastnosti polypropylenu Mosten GB 005[73]

<table>
<thead>
<tr>
<th>Vlastnost</th>
<th>Jednotka</th>
<th>Hodnota</th>
<th>Zkušební metoda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index toku taveniny (230 °C/2,16 kg)</td>
<td>g/10 min</td>
<td>5</td>
<td>ISO 1133</td>
</tr>
<tr>
<td>Napětí na mezi kluzu</td>
<td>MPa</td>
<td>35</td>
<td>ISO 527</td>
</tr>
<tr>
<td>Celková tažnost</td>
<td>%</td>
<td>> 100</td>
<td>ISO 527</td>
</tr>
<tr>
<td>Ohybový modul</td>
<td>MPa</td>
<td>1600</td>
<td>ISO 178</td>
</tr>
<tr>
<td>Vrubová houževnatost Charpy 23 °C</td>
<td>kJ/m²</td>
<td>4</td>
<td>ISO 179</td>
</tr>
<tr>
<td>Teplota měknutí dle Vicata</td>
<td>°C</td>
<td>155</td>
<td>ISO 306</td>
</tr>
<tr>
<td>Teplota průhybu při zatížení</td>
<td>°C</td>
<td>56</td>
<td>ISO 75</td>
</tr>
</tbody>
</table>

Druhou základní složkou pro přípravu WPC byly dřevní pilíně. Tyto pilíně jsou odpadem ze soukromé dřevozpracující výroby. Pro přípravu kompozitů nebyly nijak modifikovány, aby bylo možné provést elementární výzkum těchto kompozitů, který je důležitý pro případnou následnou modifikaci. Pilíně byly ze dvou dřevů tj. borovice (Bor) a dubu (Dub) viz Obrázek 32.
3.1 Příprava směsí

Před samotným zpracováním byly piliny sušeny při teplotě 50 °C po dobu 48 hodin. Vysušené piliny byly pomocí sitové analýzy (Obrázek 33) rozděleny na požadovanou velikost částic: ≤ 0,4 mm a 1 mm.

Tabulka 3- Složení směsí

<table>
<thead>
<tr>
<th>Směs</th>
<th>Obsah plnění [hm.%]</th>
<th>Velikost dřevních částic [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP/borovice</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>PP/dub</td>
<td></td>
<td>0,4</td>
</tr>
<tr>
<td>PP/borovice</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>PP/dub</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Tabulka 4 - Zpracovatelské podmínky

<table>
<thead>
<tr>
<th>Teplota – pásmo [°C]</th>
<th>Vstupní</th>
<th>Přechodové</th>
<th>Výstupní</th>
<th>Rychlost [ot/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>170</td>
<td>185</td>
<td>190</td>
<td>45</td>
</tr>
</tbody>
</table>

Z vysušených granulí (75 °C/48 hod.) byla připravena zkušební těliska použitím vstřikovacího stroje DEMAG ERGOtech 50-200 systém (Obrázek 34). Vzniklé výstříky kompozitů a čistého PP můžeme vidět na Obrázcích 35–43.

Podmínky při vstřikování

- průměr šneku 30 mm
- délka šneku 600 mm
- max. vstřikovací objem 106 cm³
- vstřikovací tlak 700 bar
- vstřikovací rychlost 30 mm/s
- čas dotlaku 15 s
- dotlak 400 bar
- čas chlazení 20 s
- chlazení formy 50 °C
-tryska 200 °C
- teplotní profil: T₁=170 °C
 T₂=180 °C
 T₃=190 °C
Obrázek 34- Vstřikovací stroj DEMAG ERGOtech 50-200 systém [75]
Obrázek 35 - Bor 20 %, 0,4 mm

Obrázek 36 - Bor 20 %, 1 mm

Obrázek 37 - Bor 40 %, 0,4 mm

Obrázek 38 - Bor 40 %, 1 mm
Obrázek 39 - Dub 20 %, 0,4 mm

Obrázek 40 - Dub 20 %, 1 mm

Obrázek 42 - Dub 40 %, 0,4 mm

Obrázek 43 - Dub 40 %, 1 mm

Obrázek 41 - čistý PP
4 EXPERIMENTÁLNÍ METODY A ZAŘÍZENÍ

4.1 Rázová houževnatost

Zkouška byla provedena podle normy ČSN ISO 179/1Ea na přístroji ZWICK/Roell typu B5 113, který lze vidět na Obrázku 44. K měření rázové houževnatosti byly použity zkušební tělíska ve tvaru trámečku, které byly vstřikovány. Na zkušebním tělese byl vytvořen vrub do hloubky 2 mm pomocí stroje CEAST ITALY podle normy ISO 2818. Rázová rychlost byla 2,9 m/s a nominální energie rázového kyvadla 5 J. Měření se provedlo 10krát u každého zkušebního tělesa.

Obrázek 44- Přístroj ZWICK/Roell B5 113

4.2 Tahové zkoušky

4.3 Tvrdost

4.4 Index toku taveniny

Zkouška indexu toku taveniny byla provedena podle normy ČSN EN ISO 1133. Do vytlačovacího plastometru (Obrázek 47) bylo naváženo 8 g granulí připravených směsí. Při této metodě byla zkušební teplota 230 °C a zatížení 2,16 kg. Ve zvolených časových intervalech byly odřezávány struny taveniny.

![Obrázek 47 - Vytlačovací plastometr](image)

4.5 Navlhavost

K měření navlhavosti byl použit inkubátor (Obrázek 48), který byl temperován na teplotu 30°C a pomocí nasyceného roztoku Mg(NO₃)₂ 6 H₂O byla udržována relativní vlhkost vzduchu 52 ± 3 %. Měření se provedlo 3 krát u každé směsi.

![Obrázek 48 - Inkubátor pro stanovení navlhavosti](image)
4.6 Diferenciální snímací kalorimetrie

Měření tepelných vlastností bylo provedeno pomocí diferenciální snímací kalorimetrie podle normy EN ISO 11357 na přístroji typu Perkin-Elmer Pyris 1, viz Obrázku 49. K měření byla použita vstřikovaná zkušební tělesa, ze kterých byly nařezány zkušební vzorky o hmotnosti asi 5 mg, které byly uzavřeny do hliníkových kelímků. Rychlost průtoku inertního plynu (dusíku) byla 20 ml/s.

Vzorky byly ohřívány z 50 °C na 200 °C rychlostí 10 °C/min, poté temperovány při této teplotě po dobu 2 min, aby se eliminovala předešlá teplotní historie polymeru. Následně vzorky byly ochlazeny na 50 °C rychlostí 10 °C/min. A poté opět ohřáty na 200 °C rychlosti 10 °C/min a bylo pozorováno tání neizotermě zkrystalizovaného vzorku.

![Obrázek 49- Přístroj Perkin-Elmer Pyris 1](image)

4.7 Rentgenová analýza

Množství a složení krystalického podílu bylo analyzováno pomocí širokoúhlé rentgenové difrakce. Měření bylo provedeno na difraktometru typu X’Pert PRO PANalytical, který byl vybavený CuKα a Bragg-Brentano geometrií v uspořádání na odraz. Vzorky pro měření byly stejně jako na tahové zkoušky.
4.8 Termogravimetrická analýza

Měření bylo provedeno podle normy ČSN EN ISO 11358 na přístroji TGAQ 500 (Obrázek 50). Rychlost zahřívání byla 10 °C/ min po teplotu 600 °C. K proplachování byl použit inertní plyn dusíku, jehož průtoková rychlost byla 40 ml/s.

Obrázek 50- Přístroj TGAQ 500 [77]
III. VÝSLEDKY A DISKUZE
5 RÁZOVÁ HOUŽEVNATOST

V Grafu 1 je zobrazena závislost vrubové houževnatosti na obsahu dřevní moučky v kompozitech ve srovnání s čistým PP. Nejvyšší houževnatost se nachází u kompozitu obsahující borovici s obsahem 20 % a velikostí částic 1 mm. Nejnižší houževnatost se nachází opět u kompozitu s borovici při obsahu 40 % s částicí 0,4 mm. Lze s pravděpodobností říct, že houževnatost bude ovlivňována převážně obsahem dřevní moučky více u kompozitů s borovicí. V případě dubu dochází jen k menším změnám ve srovnání s čistým polymorem.

\[
\begin{array}{|c|c|}
\hline
\text{Vzorek} & \text{Vrubová houževnatost [MPa]} \\
\hline
\text{Čistý PP} & 1,8 \pm 0,1 \\
\text{Bor 20 \%, 0,4 mm} & 1,9 \pm 0,1 \\
\text{Bor 40 \%, 0,4 mm} & 1,0 \pm 0,2 \\
\text{Bor 20 \%, 1 mm} & 2,0 \pm 0,3 \\
\text{Bor 40 \%, 1 mm} & 1,5 \pm 0,4 \\
\text{Dub 20 \%, 0,4 mm} & 1,6 \pm 0,1 \\
\text{Dub 40 \%, 0,4 mm} & 1,4 \pm 0,4 \\
\text{Dub 20 \%, 1 mm} & 1,8 \pm 0,1 \\
\text{Dub 40 \%, 1 mm} & 1,8 \pm 0,1 \\
\hline
\end{array}
\]
Graf 1- Srovnání vrubové houževnatosti Charpy jednotlivých směsí
6 TAHOVÉ ZKOUŠKY

Byla provedena tahová zkouška u všech typů směsí s rychlostí protahování 10 mm/min. Z měření byly získány hodnoty napětí na mezi kluzu (σ), moduly pružnosti (E) a protažení při přetržení (ε), které jsou shrnuty v Tabulce 6. Jejich hodnoty byly vyneseny do grafů v závislosti na obsahu dřevní moučky. V Grafu 5 můžeme vidět srovnání a průběh tahových křivek jednotlivých směsí.

Tabulka 6- Změřené hodnoty na mezi kluzu, modulu pružnosti a tažnosti směsí

<table>
<thead>
<tr>
<th>Vzorek</th>
<th>σ [MPa]</th>
<th>E [MPa]</th>
<th>ε [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Čistý PP</td>
<td>32,5 ± 0,1</td>
<td>1630 ± 40</td>
<td>> 500</td>
</tr>
<tr>
<td>Bor 20 %, 0,4 mm</td>
<td>31,3 ± 0,1</td>
<td>2700 ± 200</td>
<td>7,5 ± 0,6</td>
</tr>
<tr>
<td>Bor 40 %, 0,4 mm</td>
<td>31,2 ± 0,2</td>
<td>4100 ± 200</td>
<td>2,5 ± 0,2</td>
</tr>
<tr>
<td>Bor 20 %, 1 mm</td>
<td>29,7 ± 0,1</td>
<td>2600 ± 100</td>
<td>5,3 ± 0,7</td>
</tr>
<tr>
<td>Bor 40 %, 1 mm</td>
<td>29,6 ± 0,5</td>
<td>4000 ± 30</td>
<td>2,3 ± 0,1</td>
</tr>
<tr>
<td>Dub 20 %, 0,4 mm</td>
<td>29,7 ± 0,2</td>
<td>2300 ± 300</td>
<td>6,4 ± 0,5</td>
</tr>
<tr>
<td>Dub 40 %, 0,4 mm</td>
<td>27,0 ± 0,1</td>
<td>3100 ± 100</td>
<td>3,7 ± 0,1</td>
</tr>
<tr>
<td>Dub 20 %, 1 mm</td>
<td>29,5 ± 0,2</td>
<td>2400 ± 200</td>
<td>5,0 ± 0,7</td>
</tr>
<tr>
<td>Dub 40 %, 1 mm</td>
<td>26,8 ± 0,3</td>
<td>3400 ± 300</td>
<td>2,7 ± 0,2</td>
</tr>
</tbody>
</table>

V Grafu 2 je zobrazeno napětí na mezi kluzu v závislosti na obsahu dřevní moučky. Z grafu je patrné, že napětí na mezi kluzu klesá s přídavkem plniva ve srovnání s čistým polypropylenem. Rovněž napětí klesá s rostoucím obsahem dřevní moučky. Výrazný pokles napětí na mezi kluzu byl zaznamenán u kompozitu obsahující dub.
Graf 2- Vliv obsahu a velikosti částic dřevní moučky na napětí na mezi klzu

Graf 3- Vliv obsahu a velikosti částic dřevní moučky na modul pružnosti

Graf 4 - Vliv obsahu a velikosti částic dřevní moučky na prodloužení při přetržení

V Grafu 4 je zobrazeno prodloužení při přetržení v závislosti na typu a obsahu dřevního plniva. Ve všech případech lze vidět pokles s rostoucím obsahem dřevního plniva. Prodloužení při přetržení u čistého polypropylenu dosahovalo více než 500 %.

Graf 5 - Srovnání tahových křivek jednotlivých směsí
7 TVRDOST

U všech typů směsí byla změřena tvrdost Shore D. Změřené hodnoty jsou shrnuty v Tabulce 7.

<table>
<thead>
<tr>
<th>Vzorek</th>
<th>Tvrdost Shore D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Čistý PP</td>
<td>73,0 ± 0,4</td>
</tr>
<tr>
<td>Bor 20 %, 0,4 mm</td>
<td>74,7 ± 0,8</td>
</tr>
<tr>
<td>Bor 40 %, 0,4 mm</td>
<td>78,2 ± 0,8</td>
</tr>
<tr>
<td>Bor 20 %, 1 mm</td>
<td>74,3 ± 1,0</td>
</tr>
<tr>
<td>Bor 40 %, 1 mm</td>
<td>79,3 ± 0,2</td>
</tr>
<tr>
<td>Dub 20 %, 0,4 mm</td>
<td>74,3 ± 0,5</td>
</tr>
<tr>
<td>Dub 40 %, 0,4 mm</td>
<td>76,7 ± 0,7</td>
</tr>
<tr>
<td>Dub 20 %, 1 mm</td>
<td>75,9 ± 1,2</td>
</tr>
<tr>
<td>Dub 40 %, 1 mm</td>
<td>77,8 ± 0,7</td>
</tr>
</tbody>
</table>

Graf 6- Srovnání tvrdosti Shore D polypropylen/dřevní moučka s čistým PP

V Grafu 6 vidíme, že nejnižší tvrdost patří čistému polypropylenu. Jestliže přidáme dřevní plnivo do matrice polypropylenu, dojde ke zvýšení tvrdosti materiálu. Z grafu lze odvodit, že vyšší tvrdosti dosáhneme i zvyšováním obsahu dřevní moučky. Nejvyšší tvrdost se na-
chází u kompozitu obsahující 40 % borovice s velikostí částic 1 mm a nejnižší tvrdost u kompozitu s obsahem 20 % borovice s částicí 1 mm a dubu s velikostí částic 0, 4 mm. Tvr
dost materiálu bude značně záviset také na dispergaci plniva.
8 INDEX TOKU TAVENINY

Byly změřeny indexy toku taveniny jednotlivých směsí, jejichž hodnoty jsou shrnuty v Tabulce 8. V Grafu 7 je patrné, že nejvyšší ITT se nachází u kompozitu, který obsahuje 20 % dubové moučky s velikostí částic 1 mm. To znamená, že se jedná o materiál s nízkou viskozitou a nižší molekulovou hmotností, který lehce poteče. Nejnižší ITT se nachází u kompozitu obsahující 40 % dřevní moučky z borovice s částicí 0,4 mm. Tento materiál bude mít opačné vlastnosti, které byly řečeny u předešlého materiálu. Když se podíváme na ITT čistého polypropylenu, jeho hodnota je 3,25 g/10 min. Tato získaná hodnota je nižší než byla uvedená výrobcem. Jestliže porovnáme index toku tavenin navzájem mezi sebou podle stejných obsahů dřevní moučky a jejich velikostí, tak vyšší hodnoty se nacházejí u kompozitu obsahující dub.

Tabulka 8- Naměřené hodnoty indexu toku taveniny

<table>
<thead>
<tr>
<th>Vzorek</th>
<th>ITT [g/10 min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Čistý PP</td>
<td>3,25</td>
</tr>
<tr>
<td>Bor 20 %, 0,4 mm</td>
<td>3,17</td>
</tr>
<tr>
<td>Bor 40 %, 0,4 mm</td>
<td>1,07</td>
</tr>
<tr>
<td>Bor 20 %, 1 mm</td>
<td>2,18</td>
</tr>
<tr>
<td>Bor 40 %, 1 mm</td>
<td>1,37</td>
</tr>
<tr>
<td>Dub 20 %, 0,4 mm</td>
<td>3,99</td>
</tr>
<tr>
<td>Dub 40 %, 0,4 mm</td>
<td>2,48</td>
</tr>
<tr>
<td>Dub 20 %, 1 mm</td>
<td>4,27</td>
</tr>
<tr>
<td>Dub 40 %, 1 mm</td>
<td>2,25</td>
</tr>
</tbody>
</table>
Graf 7- Srovnání hodnot indexu toku taveniny jednotlivých kompozitů
9 DIFERENCIÁLNÍ SNÍMACÍ KALORIMETRIE

Pomocí diferenciální snímací kalorimetrie byly získány teploty tání a krystalizace. Výsledky z měření jsou shrnuty v Tabulce 9.

Tabulka 9 - Teploty a měrná tepla tání a krystalizace jednotlivých kompozitů

<table>
<thead>
<tr>
<th>Vzorek</th>
<th>Ohřev</th>
<th>Chlazení</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Teplota tání [°C]</td>
<td>Entalpie [J/g]</td>
</tr>
<tr>
<td>Čistý PP</td>
<td>162,2</td>
<td>127,6</td>
</tr>
<tr>
<td>Bor 20 %, 0,4 mm</td>
<td>162,3</td>
<td>91,6</td>
</tr>
<tr>
<td>Bor 40 %, 0,4 mm</td>
<td>159,7</td>
<td>71,5</td>
</tr>
<tr>
<td>Bor 20 %, 1 mm</td>
<td>161,9</td>
<td>71,9</td>
</tr>
<tr>
<td>Bor 40 %, 1 mm</td>
<td>161,0</td>
<td>66,7</td>
</tr>
<tr>
<td>Dub 20 %, 0,4 mm</td>
<td>162,1</td>
<td>79,1</td>
</tr>
<tr>
<td>Dub 40 %, 0,4 mm</td>
<td>161,8</td>
<td>65,3</td>
</tr>
<tr>
<td>Dub 20 %, 1 mm</td>
<td>161,9</td>
<td>71,9</td>
</tr>
<tr>
<td>Dub 40 %, 1 mm</td>
<td>162,8</td>
<td>57,6</td>
</tr>
</tbody>
</table>

Graf 8 - Srovnání teplot tání jednotlivých směsí
V Grafu 8 jsou znázorněny závislosti teploty tání na obsahu plniva. Teploty tání při obsahu 20 % dřevní moučky se pohybují kolem 162 °C. Při obsahu 40 % došlo k výraznému snížení teplot. Nejvyšší teplota se nachází u směsi tvořené z dubu s částicí 1 mm.

Tato zjištění jsou protichůdná s předchozími studiemi.

V Graftech 10–13 jsou srovnány termogramy krystalizace a tání kompozitů s čistým polypropylenem. V Grafu 10 můžeme vidět, že maxima exothermických píků kompozitů se zvyšujícím se obsahem borovice jsou více posunuty k nižším teplotám ve srovnání s neplněným PP. U kompozitů obsahující dub (Graf 11) tento pokles není tak výrazný. Naproti tomu teploty tání kompozitů vykazují nezávisle na obsahu plnění pouze nepatrný pokles ve srovnání s teplotou tání čistého polypropylenu.
Graf 10 - Srovnání termogramů krystalizace směsi PP/borovice s čistým PP

Graf 11 - Srovnání termogramů krystalizace směsi PP/dub s čistým PP
Graf 12 - Srovnání termogramů tání směsi PP/borovice s čistým PP

Graf 13 - Srovnání termogramů tání směsi PP/dub s čistým PP
10 RENTGENOVÁ ANALÝZA

Byla provedena širokoúhlá rentgenová difrakce, pomocí které byla vypočítána krystalinita a obsah β-fáze jednotlivých kompozitů (Tabulce 10). V Grafech 17–27 jsou zobrazeny rentgenogramy směsi polypropylenu s borovicí, dubem, čistého polypropylenu a pilin. V Grafech 15 a 16 jsou srovnány intenzity difrakčních píků všech vzorků. Intenzity kompozitů jsou nižší ve srovnání s PP.

Výsledky z rentgenogramů ukazují, že celková krystalinita všech kompozitů se pohybuje kolem 40–42 %. Nejvyšší krystalinita se nachází u čistého PP (50,4 %). Přidáním dřevní moučky dochází ke snížení krystalinity kompozitů.

Přídavkem plniva došlo k poměrně výraznému nárůstu obsahu β-fáze a to zejména u kompozitů s 20 % plniva a velikosti částic 0,4 mm. Avšak s vyšším plněním a s větší velikostí dřevních částic došlo opět k poklesu obsahu β-fáze. Vzájemným srovnáním kompozitů borovice a dubu podle obsahu a velikosti částic můžeme pozorovat, že obsah β-fáze kompozitů obsahujících borovici je ve srovnání s dubem asi o 10 % vyšší. Při vstřikování je dosahováno poměrně vysokých smykových namáhání a to může indukovat krystalizaci do β-fáze [12–14]. V případě kompozitů dochází ke smyku mezi plnivem a matricí, což podporuje vznik β-fáze [78].
Tabulka 10- Krystalinita a obsah β-fáze jednotlivých směsí

<table>
<thead>
<tr>
<th>Vzorek</th>
<th>Krystalinita [%]</th>
<th>Obsah β-fáze [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Čistý PP</td>
<td>50,4</td>
<td>21,9</td>
</tr>
<tr>
<td>Bor 20 %, 0,4 mm</td>
<td>41,0</td>
<td>68,2</td>
</tr>
<tr>
<td>Bor 40 %, 0,4 mm</td>
<td>40,1</td>
<td>47,9</td>
</tr>
<tr>
<td>Bor 20 %, 1 mm</td>
<td>42,4</td>
<td>59,9</td>
</tr>
<tr>
<td>Bor 40 %, 1 mm</td>
<td>41,1</td>
<td>44,8</td>
</tr>
<tr>
<td>Dub 20 %, 0,4 mm</td>
<td>41,0</td>
<td>54,8</td>
</tr>
<tr>
<td>Dub 40 %, 0,4 mm</td>
<td>39,5</td>
<td>42,2</td>
</tr>
<tr>
<td>Dub 20 %, 1 mm</td>
<td>43,5</td>
<td>46,2</td>
</tr>
<tr>
<td>Dub 40 %, 1 mm</td>
<td>40,7</td>
<td>30,6</td>
</tr>
</tbody>
</table>

Graf 14- Srovnání celkové krystalinity s obsahem β-fáze směsí
Graf 15- Srovnání rentgenogramů polypropylenu s borovicí
Graf 16 - Srovnání rentgenogramů polypropylenu s dubem
Graf 17 - Rentgenogram Bor 20 %, 0,4 mm

Graf 18 - Rentgenogram Bor 40 %, 0,4 mm

Graf 19 - Rentgenogram pilin z borovice

Graf 20 - Rentgenogram Bor 20 %, 1 mm

Graf 21 - Rentgenogram Bor 40 %, 1 mm

Graf 22 - Rentgenogram čistého polypropylenu
Graf 23 - Rentgenogram Dub 20 %, 0,4 mm

Graf 24 - Rentgenogram Dub 40 %, 0,4 mm

Graf 25 - Rentgenogram dubových pilin

Graf 26 - Rentgenogram Dub 20 %, 1 mm

Graf 27 - Rentgenogram Dub 40 %, 1 mm
11 TERMOGRAVIMETRICKÁ ANALÝZA

Byla provedena termogravimetrická analýza jednotlivých vzorků. Výsledky z měření jsou shrnuty v následující Tabulce 11.

Tabulka 11- Shrnuté hodnoty z měření TGA

<table>
<thead>
<tr>
<th>Vzorek</th>
<th>Degradace [°C]</th>
<th>Celkový úbytek hmotnosti [%]</th>
<th>Zbytek popelovin [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dřevo</td>
<td>PP</td>
<td></td>
</tr>
<tr>
<td>Piliny z borovice</td>
<td>134,6</td>
<td>—</td>
<td>83,1</td>
</tr>
<tr>
<td>Piliny z dubu</td>
<td>168,7</td>
<td>—</td>
<td>79,0</td>
</tr>
<tr>
<td>Čistý PP</td>
<td>—</td>
<td>257,2</td>
<td>99,8</td>
</tr>
<tr>
<td>Bor 20 %, 0,4 mm</td>
<td>179,3</td>
<td>332,9</td>
<td>96,8</td>
</tr>
<tr>
<td>Bor 40 %, 0,4 mm</td>
<td>167,9</td>
<td>335,2</td>
<td>93,0</td>
</tr>
<tr>
<td>Bor 20 %, 1 mm</td>
<td>214,1</td>
<td>329,1</td>
<td>97,3</td>
</tr>
<tr>
<td>Bor 40 %, 1 mm</td>
<td>177,0</td>
<td>335,2</td>
<td>94,4</td>
</tr>
<tr>
<td>Dub 20 %, 0,4 mm</td>
<td>201,2</td>
<td>313,2</td>
<td>94,7</td>
</tr>
<tr>
<td>Dub 40 %, 0,4 mm</td>
<td>191,4</td>
<td>312,5</td>
<td>90,6</td>
</tr>
<tr>
<td>Dub 20 %, 1 mm</td>
<td>202,0</td>
<td>309,5</td>
<td>93,8</td>
</tr>
<tr>
<td>Dub 40 %, 1 mm</td>
<td>189,1</td>
<td>311,0</td>
<td>89,9</td>
</tr>
</tbody>
</table>

V Grafech 28 a 29 jsou srovnány TGA křivky směsi kompozitů s čistým PP a pilinami. Lze konstatovat, že přidavkem dřevního plniva dochází k posuvu TGA křivek k vyšším degradačním teplotám.

V Grafech 30–40 jsou zobrazeny jednotlivé průběhy termogravimetrických křivek. Jedná se o závislost úbytku hmotnosti na teplotě. Na termogravimetrické křivce v případě kompozitů jsou viditelné dvě oblasti degradačních teplot. V první oblasti se nachází degradační teplota dřevního plniva. V této oblasti jsou teploty rozkladu nižší než v části druhé. Ve druhé oblasti jsou teploty vyšší a tam dochází k rozkladu samotného polypropylenu. V Grafu 38 a 39 je zaznamenána závislost úbytku hmotnosti samotných dřevních pilin na teplotě. Je patrné, že v začáteční části první oblasti dochází k poklesu hmotnosti. Tento pokles lze přičíst úbytku vlhkosti dřevěných pilin se zvyšující se teplotou. Dále bylo zjištěno, že piliny z borovice jsou náchylnější na teplotní změny a dochází k dřívějšímu rozkladu při teplotě kolem 134 °C, kdežto u dubových pilin při teplotě asi 168 °C. Čistý PP se rozkládá při 257 °C. Avšak teplota degradace polypropylenu u všech druhů kompozitů se zvýšila až o 70 °C. Dále můžeme z těchto křivek zjistit celkový úbytek hmotnosti směsi a zby-
tek popelovin. Je patrné, že vyšší obsah popelovin je u dubu a to jak u samotných pilin, tak i u kompozitů s dubem.

Graf 28- Srovnání termogavimetrických křivek PP/borovice, čistého PP a pilin z borovice

Graf 29- Srovnání termogavimetrických křivek PP/dub, čistého PP a dubových pilin
Graf 30 - Termogravimetrická křivka Bor 20 %, 0.4 mm

Graf 31 - Termogravimetrická křivka Bor 20 %, 1 mm
Graf 32 - Termogravimetrická křivka Bor 40 %, 0,4 mm

Graf 33 - Termogravimetrická křivka Bor 40 %, 1 mm
Graf 34- Termogravimetrická křivka Dub 20 %, 0,4 mm

Graf 35- Termogravimetrická křivka Dub 20 %, 1 mm
Graf 36- Termogravimetrická křivka Dub 40 %, 0,4 mm

Graf 37- Termogravimetrická křivka Dub 40 %, 1 mm
Graf 38- Termogravimetrická křivka pilin borovice

Graf 39- Termogravimetrická křivka dubových pilin
Graf 40- Termogravimetrická křivka čistého polypropylenu
12 NAVLHAVOST

Byla provedena zkouška navlhavosti všech směsí. Měření probíhalo po dobu 41 dní. Z Grafu 41 je krásně viditelné, že nejvyšší navlhavost odpovídá samotným pilinám. Z nichž nejvíce navlhavé jsou piliny z borovice, které po prvním dni měření získaly vlhkost kolem 2,4 %. U pilin můžeme pozorovat kolísání vlhkosti. To znamená, že dřevo dosáhne bodu nasycení, což podle Forest Products Laboratory je kolem 30 % vody [21], v našem případě asi 3 % pro borovici a 2,5 % pro dub. Nejnižší navlhavost se nachází u čistého polypropylenu, která není příliš výrazná než u ostatních materiálů z důvodu nepřítomnosti polárních skupin. V případě kompozitních směsí dochází k postupnému zvyšování obsahu vlhkosti, které budou pravděpodobně později ustáleny. Dále je patrné, že nejvíce navlhavé jsou kompozity, které jsou plněny ze 40 % dřevní moučky s větší velikostí částic.

Graf 41 - Srovnání hodnot navlhavosti kompozitů s čistým PP
ZÁVĚR

Tato práce se zabývá přípravou kompozitů a jejich zhodnocením mechanických vlastností. Polymerní matricí byl použit polypropylen MOSTEN GB005. Tato polymerní matice byla plněná dřevní moučkou z borovice a dubu s různou koncentrací plnění a velikostí částic.

Ze stanovení vrubové houževnatosti bylo zjištěno, že nejvyšší houževnatost se nachází u kompozitu obsahující borovici. Vyšší obsah plnění způsobuje pokles houževnatostí u všech případů kompozitů. Dále byly prováděny tahové zkoušky, kde napětí na mezi kluzu kompozitů byly přibližně na stejné úrovni. Vyšší hodnoty modulu pružnosti dávají kompozity při obsahu 40 % dřevní moučky, ale za to nižší napětí při přetržení ve srovnání s čistým polypropylenem. Z tahových křivek je patrné, že se jedná o křehké materiály.

Tvrdost kompozitů se zvyšuje s rostoucím obsahem plniva, z nichž nejvyšší tvrdost se nachází u kompozitu obsahující 40 % borovice s částicí 1 mm. Tvrdost samotné polymerní matrice je nejnižší ze všech. Opět na obsahu dřevní moučky bude záviset i viskozita těchto kompozitů. Viskozita má klesající charakter právě při vyšším obsahu dřevní moučky.

Tepelná odolnost kompozitů byla zkoumána pomocí termogravimetrie. Ze stanovení je patrné, že obsah dřevní moučky posouvá degradační teplotu polymerní matrice k vyšším hodnotám. Lze pravděpodobně říct, že tepelně vhodnější bude kompozit z dubu, který začíná degradovat při teplotách 168 °C.

Srovnáním navlhavosti kompozitů se základními materiály, byl nejméně navlhavý čistý polypropylen. Jestliže matrice obsahuje dřevní moučku, dochází k pomalému narůstání vlhkosti. Termoplastická matice tak snižuje hydrofilitu celého kompozitu.

Z výsledků je patrné, že došlo díky plnění ke zlepšení mechanických i tepelných vlastností ve srovnání s termoplastickou matricí. Nelze s určitostí říct, který druh dřevní moučky je výhodnější. Vlastnosti se budou odvíjet na obsahu a velikosti dřevní moučky. Pravděpo-
dobně budou dávat lepší vlastnosti kompozity, které budou mít menší velikost částic. Ob- sah plnění bude převážně záviset na aplikacích výrobků dle požadavků zákazníka.
SEZNAM POUŽITÉ LITERATURY

[3] Stoklasa, K., Makromolekulární chemie II, Univerzita Tomáše Bati, Zlín

[22] Chemické složení dřeva, [online], [Cit. 2012-02-04], Dostupné z:

[23] Celulóza, [online], [Cit. 2012-02-04], Dostupné z:

[24] Struktura celulózy, [online], [Cit. 2012-02-04], Dostupné z:

[27] Wood Handbook - Wood as an Engineering Material, [online], [Cit. 2012-02-04],
Dostupné z: http://www.fpl.fs.fed.us/documnts/fplgtr/fplgtr190/front_matter.pdf

[28] Druhy dřeva, [online], [Cit. 2012-02-04],

[29] Charakteristika druhu dřev: dub, [online], [Cit. 2012-02-04],

[30] Charakteristika druhu dřev: borovice, [online], [Cit. 2012-02-04],

[38] Vytlačovací stroj WPC, [online], [Cit. 2012-02-04], Dostupné z: http://www.wpceextruder.com/PP-PE-Wood-Profile-Production-Line.html

[45] Fasády a terasy z WPC, [online], [Cit. 2012-02-04], Dostupné z: http://www.gtrade.cz/
[46] WPC montáže, [online], [Cit. 2012- 20-02], Dostupné z:

[47] Čermák, R., Beta polypropylene: Interrelations between structure, properties and processing, Univerzita Tomáše Bati, Zlín, 2005

[49] Charpyho kladivo, [online], [Cit. 2012- 20-02], Dostupné z:

[51] Stanovení tahových vlastností polymerů, [online], [Cit. 2012- 20-02], Dostupné z:

[52] Mechanické vlastnosti pevných látek, [online], [Cit. 2012- 20-02], Dostupné z:

[54] Plastic deformace a pevnost, [online], [Cit. 2012- 20-02], Dostupné z:
www.ipm.cz/group/fracture/vyuka/doc/P04.ppt

[59] ČSN EN ISO 1133 Plasty - Stanovení hmotnostního (MFR) a objemového (MVR) indexu toku taveniny termoplastů, Český normalizační institut, 2000

[64] Štarha, P., Trávniček, Z., Termická analýza, Univerzita Palackého v Olomouci, Olomouc, 2011

[68] Pommerenke, K., Ověřování jakosti polymerů s použitím termické analýzy, CHEMagazín, 2009, roč. 19

[70] Řezáč, M., Krystalizace v polymerních směsích, Fakulta technologická, Univerzita Tomáše Bati ve Zlíně, Zlín, 2007

[74] Sitovací stroj, [online], [Cit. 2012- 20-02], Dostupné z:

[75] Vstřikovací stroj DEMAG, [online], [Cit. 2012- 20-02], Dostupné z:

[76] Přístroj Perkin-Elmer Pyris 1, [online], [Cit. 2012- 20-02], Dostupné z:

[77] Přístroj Perkin-Elmer Pyris 1, [online], [Cit. 2012- 20-02], Dostupné z:
http://www.bargal.co.il/index2.php?id=9&productId=278&lang=ENG

SEZNAM POUŽITÝCH SYMBOLŮ A ZKRATKŮ

WPC Wood Plastic Composite
PP Polypropylen
PE Polyethylen
PVC Polyvinylchlorid
obj. % Objemová procenta
hm. % Hmotnostní procenta
T₁ Vstupní pásmo
T₂ Přechodové pásmo
T₃ Výstupní pásmo
SEZNAM OBRÁZKŮ

Obrázek 1 - Strukturní vzorec PP[3] ... 12
Obrázek 5- Monoklinická buňka α-fáze iPP [16] ... 16
Obrázek 6- Trigonální buňka β-fáze iPP [15] .. 17
Obrázek 7- Ortorombická buňka γ-fáze iPP [13] .. 17
Obrázek 8- Průřez kmene [18] ... 19
Obrázek 9- Struktura celulózy [24] .. 19
Obrázek 10- Struktury derivátů ligninu: a) p-kumaryl alkohol, b) koniferyl alkohol,
 c) sinapyl alkohol [25] ... 20
Obrázek 11- SEM snímek tvrdého dřeva [17] ... 21
Obrázek 12- SEM snímek měkkého dřeva [17] ... 22
Obrázek 13- Dřevo dub lesní [29] .. 22
Obrázek 14- Dřevo borovice lesní [30] ... 23
Obrázek 15- Vytlačovací stroj pro WPC [38] ... 25
Obrázek 16- Relativní pevnost v tahu dřeva/PP kompozitu [39] 26
Obrázek 17- Duté prkno [43] .. 27
Obrázek 18- Plné prkno [43] .. 27
Obrázek 19- Přístavní molo [44] .. 28
Obrázek 20- Terasa u bazénu [44] .. 28
Obrázek 21- Fasáda domu [45] .. 28
Obrázek 22- Plot [44] ... 28
Obrázek 23- Balkonová terasa [46] ... 28
Obrázek 24- Terasa [46] ... 28
Obrázek 25- Charpyho kladivo [49] .. 29
Obrázek 26- Typy tahových křivek plastů [54] .. 31
Obrázek 27- Stanovení tvrdosti podle Shore A a Shore D [57] 32
Obrázek 28- DSC křivka materiálu [65] .. 34
Obrázek 29- TGA křivka materiálu [69] ... 35
Obrázek 30- Princip vzniku difrakčního obrazu [70] ... 36
Obrázek 31 - Granule MOSTEN GB 005 .. 38
Obrázek 32 - Piliny: vlevo dub, vpravo borovice ... 39
Obrázek 33 - Sítovací stroj Retsch AS 200 [74] .. 39
Obrázek 34 - Vstřikovací stroj DEMAG ERGotech 50-200 systém [75] 41
Obrázek 35 - Bor 20 %, 0,4 mm .. 42
Obrázek 36 - Bor 20 %, 1 mm .. 42
Obrázek 37 - Bor 40 %, 0,4 mm .. 42
Obrázek 38 - Bor 40 %, 1 mm .. 42
Obrázek 39 - Dub 20 %, 0,4 mm .. 43
Obrázek 40 - Dub 20 %, 1 mm .. 43
Obrázek 41 - čistý PP .. 43
Obrázek 42 - Dub 40 %, 0,4 mm .. 43
Obrázek 43 - Dub 40 %, 1 mm .. 43
Obrázek 44 - Přístroj ZWICK/Roell B5 113 .. 44
Obrázek 45 - Přístroj ZWICK/Materialprüfung 1456 .. 45
Obrázek 46 - Přenosný tvrdoměr HHP-2001 .. 45
Obrázek 47 - Vytlačovací plastometr ... 46
Obrázek 48 - Inkubátor pro stanovení navlhavosti ... 46
Obrázek 49 - Přístroj Perkin-Elmer Pyris 1[76] .. 47
Obrázek 50 - Přístroj TGAQ 500 [77] ... 48
SEZNAM GRAFŮ

Graf 1- Srovnání vrubové houževnatosti Charpy jednotlivých směsí ..51
Graf 2- Vliv obsahu a velikosti částic dřevní moučky na napětí na mezi kluzu ..53
Graf 3- Vliv obsahu a velikosti částic dřevní moučky na modul pružnosti ..53
Graf 4- Vliv obsahu a velikosti částic dřevní moučky na prodloužení při přetížení54
Graf 5- Srovnání tahových křivek jednotlivých směsí ..54
Graf 6- Srovnání tvrdosti Shore D polypropylen/dřevní moučka s čistým PP ..55
Graf 7- Srovnání hodnot indexu toku taveniny jednotlivých kompozitů ...58
Graf 8- Srovnání teplot tání jednotlivých směsí ...59
Graf 9- Srovnání teplot krystalizace jednotlivých směsí ...60
Graf 10- Srovnání termogramů krystalizace směsí PP/borovice s čistým PP ...61
Graf 11- Srovnání termogramů krystalizace směsí PP/dub s čistým PP ...61
Graf 12- Srovnání termogramů tání směsí PP/borovice s čistým PP ...62
Graf 13- Srovnání termogramů tání směsí PP/dub s čistým PP ...62
Graf 14- Srovnání celkové krystalinity s obsahem β-fáze směsi ...64
Graf 15- Srovnání rentgenogramů polypropylenu s borovicí ...65
Graf 16- Srovnání rentgenogramů polypropylenu s dubem ...66
Graf 17- Rentgenogram Bor 20 %, 0,4 mm ..67
Graf 18- Rentgenogram Bor 40 %, 0,4 mm ..67
Graf 19- Rentgenogram pilin z borovice ...67
Graf 20- Rentgenogram Bor 20 %, 1 mm ..67
Graf 21- Rentgenogram Bor 40 %, 1 mm ..67
Graf 22- Rentgenogram čistého polypropylenu ...67
Graf 23- Rentgenogram Dub 20 %, 0,4 mm ...68
Graf 24- Rentgenogram Dub 40 %, 0,4 mm ...68
Graf 25- Rentgenogram dubových pilin ..68
Graf 26- Rentgenogram Dub 20 %, 1 mm ..68
Graf 27- Rentgenogram Dub 40 %, 1 mm ..68
Graf 28- Srovnání termogavimetrických křivek PP/borovice, čistého PP a pilin z borovice70
Graf 29- Srovnání termogavimetrických křivek PP/dub, čistého PP a dubových pilin70
Graf 30- Termogravimetrická křivka Bor 20 %, 0,4 mm ..71
Graf 31 - Termogravimetrická křivka Bor 20 %, 1 mm .. 71
Graf 32 - Termogravimetrická křivka Bor 40 %, 0,4 mm 72
Graf 33 - Termogravimetrická křivka Bor 40 %, 1 mm .. 72
Graf 34 - Termogravimetrická křivka Dub 20 %, 0,4 mm 73
Graf 35 - Termogravimetrická křivka Dub 20 %, 1 mm 73
Graf 36 - Termogravimetrická křivka Dub 40 %, 0,4 mm 74
Graf 37 - Termogravimetrická křivka Dub 40 %, 1 mm 74
Graf 38 - Termogravimetrická křivka pilin borovice .. 75
Graf 39 - Termogravimetrická křivka dubových pilin .. 75
Graf 40 - Termogravimetrická křivka čistého polypropylenu 76
Graf 41 - Srovnání hodnot navlhavosti kompozitů s čistým PP 77
SEZNAM TABULEK

Tabulka 1 - Vlastnosti různých typů polypropylene [9] ... 14
Tabulka 2 - Mechanické vlastnosti polypropylenu Mosten GB 005 [73] .. 38
Tabulka 3 - Složení směsi .. 39
Tabulka 4 - Zpracovatelské podmínky ... 40
Tabulka 5 - Hodnoty vrubové houževnatosti směsi ... 50
Tabulka 6 - Změřené hodnoty na mezi kluzu, modulu pružnosti a tažnosti směsí 52
Tabulka 7 - Změřené hodnoty tvrdosti Shore D ... 55
Tabulka 8 - Naměřené hodnoty indexu toku taveniny ... 57
Tabulka 9 - Teploty a měrná tepla tání a krystalizace jednotlivých kompozitů 59
Tabulka 10 - Krystalinity a obsah β-fáze jednotlivých směsí .. 64
Tabulka 11 - Shrnuté hodnoty z měření TGA .. 69