Současné stanovení vybraných volných aminokyselin a biogenních aminů pomocí kapalinové chromatografie

Bc. Tomáš Vavřík
Univerzita Tomáše Bati ve Zlíně
Fakulta technologická
Ústav chemie
akademický rok: 2011/2012

ZADÁNÍ DIPLOMOVÉ PRÁCE
(PROJEKTU, UMELECKÉHO DÍLA, UMELECKÉHO VÝKONU)

Jméno a příjmení: Bc. Tomáš VAVŘÍK
Osobní číslo: T100013
Studijní program: N 2901 Chemie a technologie potravin
Studijní obor: Chemie potravin a bioaktivních látek

Téma práce: Současné stanovení vybraných volných aminokyselin a biogenních aminů pomocí kapalinové chromatografie

Zásady pro vypracování:

I. Teoretická část
1. Popište význam sledování obsahu biogenních aminů v potravinách.
2. Charakterizujte metody stanovení obsahu biogenních aminů v potravinách se zaměřením na metody využívající kapalinovou chromatografii.

II. Praktická část
1. Optimalizujte metodu stanovení obsahu biogenních aminů s využitím kapalinové chromatografie.
2. Zhodnoťte použitelnost optimalizované metody na vybrané druhy potravin.
Rozsah diplomové práce:
Rozsah příloh:
Forma zpracování diplomové práce: tiskněna/elektronická

Seznam odborné literatury:

Vedoucí diplomové práce: doc. Ing. František Buňka, Ph.D.
Ústav technologie a mikrobiologie potravin
Datum zadání diplomové práce: 10. února 2012
Termín odevzdání diplomové práce: 7. května 2012

Ve Zlíně dne 10. února 2012

[Signature]

doc. Ing. Roman Čermák, Ph.D.
depan

[Signature]

prof. Ing. Antonín Klásek, DrSc.
Peditén Ústavu
Příjmení a jméno: Váňek Tomáš
Obor: CHTB-810

PROHLÁŠENÍ

Prohlašuji, že

- beru na vědomí, že odevzdávám diplomové/bakalářské práce souhlasím se zveřejněním své práce podle zákona č. 111/1998 Sb. o vysokých školách a o změně a doplnění dalších zákonů (zákon o vysokých školách), ve znění pozdějších právních předpisů, bez ohledu na výsledek obhajoby 1/3;
- beru na vědomí, že diplomová/bakalářská práce bude uložena v elektronické podobě v univerzitním informačním systému dostupná k nahlédnutí, že jeden výtisk diplomové/bakalářské práce bude uložen na příslušném ústavu Fakulty technologické UTB ve Zlíně a jeden výtisk bude uložen u vedoucího práce;
- byl/a jsem seznámen/a s tím, že na moji diplomovou/bakalářskou práci se plně vztahuje zákon č. 121/2000 Sb. o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon) ve znění pozdějších právních předpisů, zejm. § 35 odst. 3 3/2;
- beru na vědomí, že podle § 60 1/3 odst. 1 autorského zákona má UTB ve Zlíně právo na uzavření licenční smlouvy o užití školního díla v rozsahu § 12 odst. 4 autorského zákona;
- beru na vědomí, že podle § 60 3/3 odst. 2 a 3 mohu užít své dílo – diplomovou/bakalářskou práci nebo poskytnout licenci k jejímu využití jen s předchozím písemným souhlasem Univerzity Tomáše Bati ve Zlíně, která je oprávněna v takovém případě ode mne požadovat příměřený příspěvek na úhradu nákladů, které byly Univerzitou Tomáše Bati ve Zlíně na vytvoření díla vynaloženy (až do jejich skutečné výše);
- beru na vědomí, že pokud bylo k vypracování diplomové/bakalářské práce využito softwarové použité, která je oprávněna v takovém případě ode mne požadovat příměřený příspěvek na úhradu nákladů, které byly Univerzitou Tomáše Bati ve Zlíně na vytvoření díla vynaloženy (až do jejich skutečné výše);
- beru na vědomí, že pokud je výstupem diplomové/bakalářské práce jakýkoliv softwarový produkt, považuji se za součást práce rovněž i zdrojové kódy, popř. soubory, ze kterých byl tento produkt vytvořen. Neodezvádám této součásti může být důvodem k neobhajování práce.

Ve Zlíně ____________

21.9.2012

[Podpis]
1) Zákon č. 111/1998 Sb. o vysokých školách a o změně a doplňení dalších zákonů (zákon o vysokých školách), ve znění pozdějších právních předpisů, § 47 Zveřejnění zveřejněných prací.
(1) Vysoká škola nezveřejňuje zveřejněnou studijní, diplomovu, bakalářskou a rigorózní práci, u kterých probíhala obhajoba, včetně poukázání na osobu, v jejíž péči se práci obhajovala.
(2) Zveřejnění práce je zveřejnění, které se děje na základě osobního výběru a v souladu s požadavky ustanovení výkonného orgánu školního úřadu.
(3) Zveřejnění práce je zveřejnění práce, které se děje na základě osobního výběru a v souladu s požadavky ustanovení výkonného orgánu školního úřadu.
(4) Zveřejnění práce je zveřejnění práce, které se děje na základě osobního výběru a v souladu s požadavky ustanovení výkonného orgánu školního úřadu.
ABSTRAKT

Cílem této práce bylo navrhnut metodu současného stanovení vybraných volných aminokyselin a biogenních aminů pomocí kapalinové chromatografie. Teoretická část obsahuje informace o vzniku biogenních aminů, kde jsou popsány syntézy jednotlivých biogenních aminů. Je zde také popsán význam sledování biogenních aminů zejména pro jejich vysokou toxicitu. Biogenní aminy a aminokyseliny jdou stanovit více metodami, které jsou také obsaženy v teoretické části a nemalou části obsahu teoretické části je i výčet derivatizačních činidel používaných v kapalinové chromatografii pro stanovení biogenních aminů a aminokyselin.

V praktické části byla využita kapalinová chromatografie s použitím derivatizačního činidla FMOC-Cl ke stanovení volných aminokyselin a biogenních aminů. Povedlo se současně separenat tyrozin a tyramin v reálných vzorcích.

Klíčová slova: HPLC, biogenní aminy, aminokyseliny, derivatizace, FMOC-Cl, FLD.

ABSTRACT

The goal of this work is to devise a simultaneous determination method of given free amino acids and biogenic amines by liquid chromatography. Theoretical part informs about formation of biogenic amines, describing synthesis of particular biogenic amines. The significance of observing biogenic amines is described as well, especially for its serious toxicity. It is possible to identify the biogenic amines and the amino acids using more methods comprehended in this theoretical part and major part of the theoretical part is an enumeration of the derivatization reagents used in liquid chromatography to assess biogenic amines and amino acids.

In my practical part I use the liquid chromatography notably derivatization reagent FMOC-Cl to define free amino acids and biogenic amines. I succeeded separating tyrosine and tyramine all at once.

Keywords: HPLC, biogenic amines, amino acids, derivatization, FMOC-Cl, FLD
Chtěl bych moc poděkovat panu doc. Ing. Františku Buňkovi, Ph.D. za odborné vedení, rady a připomínky, trpělivost, ochotu a toleranci při zpracování mé diplomové práce.

Nemalé díky patří také Ing. Radce Flasarové a Bc. Ludmile Zálešákové, DiS. za pomoc v laboratoři.

Prohlašuji, že odevzdaná verze bakalářské/diplomové práce a verze elektronická nahaná do IS/STAG jsou totožné.
OBSAH

ÚVOD .. 9
I TEORETICKÁ ČÁST .. 10
 1 BIOGENNÍ AMINY ... 11
 1.1 VZNIK BIOGENNÍCH AMÍNŮ .. 12
 1.2 VÝZNAM SLEDOVÁNÍ BIOGENNÍCH AMÍNŮ ... 15
 1.3 SKUPINY POTRAVIN OBSAHUJÍCÍ BIOGENNÍ AMÍNY .. 19
 1.3.1 Nefermentované potraviny .. 19
 1.3.2 Fermentované potraviny ... 19
 1.4 METODY STANOVENÍ BIOGENNÍCH AMÍNŮ ... 21
 1.4.1 Plynová chromatografie (GC) .. 21
 1.4.2 Kapilární zónová elektroforéza (CZE) ... 24
 1.4.3 Vysokoúčinná kapilární elektroforéza (HPCE) ... 24
 1.4.4 Tenkovrstvá chromatografie .. 25
 1.4.5 Vysokoúčinná kapalinové chromatografie (HPLC) ... 26
 1.5 DERIVATIZACE V KAPALINOVÉ CHROMATOGRAFII .. 26
 1.6 MOŽNOSTI SOUČASNÉHO STANOVENÍ BIOGENNÍCH AMÍNŮ A VOLNÝCH AMÍNOKYSELIN .. 31
II PRAKTICKÁ ČÁST .. 33
 2 CÍL PRÁCE ... 34
 3 METODIKA PRÁCE .. 35
 3.1 POPIS EXPERIMENTU .. 35
 3.2 EXPERIMENT 1 ... 38
 3.3 EXPERIMENT 2 ... 39
 3.4 EXPERIMENT 3 ... 40
 3.5 EXPERIMENT 4 ... 42
 3.6 EXPERIMENT 5 ... 43
 3.7 EXPERIMENT 6 ... 44
 4 VÝSLEDKY A DISKUZE ... 46
 4.1 EXPERIMENT 1 ... 46
 4.2 EXPERIMENT 2 ... 47
 4.3 EXPERIMENT 3 ... 49
 4.4 EXPERIMENT 4 ... 51
 4.5 EXPERIMENT 5 ... 52
 4.6 EXPERIMENT 6 ... 54
ZÁVĚR ... 67
SEZNAM POUŽITÉ LITERATURY .. 68
SEZNAM POUŽITÝCH SYMBOLŮ A ZKRATEK ... 73
SEZNAM OBRÁZKŮ .. 75
SEZNAM TABULEK .. 77
SEZNAM GRAFŮ ... 78
ÚVOD

Biogenní aminy jsou bazické dusíkaté sloučeniny s nízkou molekulovou hmotností a jsou syntetizovány mikrobiálním, rostlinným a živočišným metabolismem. Jsou tvořeny enzymy z příslušných aminokyselin dekarboxylací.

Vyskytují se jak v nefermentovaných výrobcích (ryby a rybí výrobky), tak i ve fermentovaných výrobcích (maso, sýry, nápoje).

Nařízením komise (ES) jsou dána povolená množství histaminu v produktech rybolovu z druhů ryb spojovaných s vysokým množstvím histidinu a z produktů rybolovu, které byly ošetřeny enzymatickým zráním v láku, vyrobené z druhů ryb spojovaných s vysokým množstvím histidinu.

Některé biogenní aminy mohou reagovat s nitrily za vzniku heterocyklických nitrosaminů, které jsou karcinogenní.

Množství biogenních aminů lze stanovit mnoha způsoby: kapalinovou chromatografii, plynovou chromatografii, tenkovrstvovou chromatografii nebo elektroforézu, a to jak kapilární zónovou elektroforézu, tak vysokoúčinnou kapilární elektroforézu.

Teoretická část obsahuje obecné informace o biogenních aminech, dále popisuje vznik biogenních aminů. Také se v této práci můžete dočíst, v jakých potravinách se biogenní aminy nacházejí a jakými metodami lze biogenní aminy stanovit.

Praktická část zahrnuje několik experimentů, ve kterých bylo snahou navrhnout metodu pro současné stanovení biogenních aminů a aminokyselin. Podařilo se úspěšně separovat současně tyrozín a tyramin pomocí kapalinové chromatografie.
I. TEORETICKÁ ČÁST
1 BIOGENNÍ AMINY

Biogenní aminy (BA) jsou bazické dusíkaté sloučeniny s nízkou molekulovou hmotností a jsou syntetizovány mikrobiálním, rostlinným a živočišným metabolismem. Biogenní aminy v potravinách a nápojích jsou tvořeny enzymy a jsou generovány mikrobiální dekarboxylačí aminokyselin. BA v potravinách jsou indikátory kvality potravin.[1, 2]

Bylo zjištěno, že některé z alifatických aminů můžou být tvořeny in vivo aminací z odpovídajících aldehydů. [1]

Chemická struktura biogenních aminů:

1. Alifatické (putrescin, kadaverin, spermin a spermidin)
2. Aromatické (tyramin, fenylethylamin)
3. Heterocykly (histamin, tryptamin)

Putrescin, spermidin, spermin, histamin a kadaverin jsou součástí živých buněk, regulují funkci nukleových kyselin a syntézu proteinů.

Pro vznik biogenních aminů mikroorganismy je důležitá dostupnost volných aminokyselin, přítomnost dekarboxyláz a vytvoření příhodných podmínek, které umožňují růst bakterii, syntézu dekarboxyláz a aktivitu dekarboxyláz. [1]

Histamin produkovaný gram-poživními mléčnými bakteriemi se vyskytuje ve fermentovaných produktech, jako je víno, sýr nebo rybí omáčka. V syrovém rybím mase je histamin produkován gram-negativními bakteriemi Morganella morganii, Klebsiella spp. a Enterobacter spp. [3]
1.1 Vznik biogenních aminů

Biogenní aminy vznikají především dekarboxylací aminokyselin nebo aminací a transamínací aldehydů a ketonů. Ve fermentovaných potravinách vznikají BA dekarboxylací působením dekarboxyláz, které jsou tvořeny například bakteriemi mléčného kvašení. Vybrané bakterie mléčného kvašení se používají jako startovací kultury.[1, 4]

Histidin se pomocí enzymu histidin dekarboxylázy (EC 4.1.1.22) přeměňuje na histamin. (Viz. Obrázek 1).

Histamin je tkáňový hormon, má vliv na krvní tlak, sekreci žaludečních šťáv a účastí se při anafylaktickém šoku a alergických reakcích.[5]

Putrescin je syntetizován u gramnegativních bakterií několika metabolickými dráhami. První metabolická dráha (Obrázek 2) je nejjednodušší. Z ornitinu enzymem ornitin dekarboxylázou (EC 4.1.1.17) vzniká putrescin a dochází k odštěpení oxidu uhličitého. Enzym ornitin dekarboxyláza je kódována konstitutivním genem speC nebo biodegradabilním genem speF. Druhou metabolickou dráhou je agmatin produkován dekarboxylací argininu enzymem arginin dekarboxylázy (EC 4.1.1.19). Tento enzym je kódován genem speA. Vzniklý agmatin je enzymem agmatinázou (EC 3.5.3.11) převeden na putrescin, kde jako vedlejší produkt reakce vzniká močovina. U bakterií je enzym agmatináza kódován genem speB. Putrescin je také syntetizován pomocí dvou enzymů: agmatin deamináza (EC 3.5.3.1), která je kódována genem aguA a agmatiminohydroláza (EC 3.5.3.12), které vytváří N-karboamoylputrescin, který se enzymem N-karboamoylputrescinimidohydroláza (EC3.5.1.53) (kódován genem aguB) přeměňuje na putrescin.

Putrescin se vyskytuje v mase, rybách a sýrech. V sýru se biogenní aminy tvoří působením proteáz a peptidáz. Dochází k proteolýze kaseinu a tvorbě aminokyselin a z nich se pak tvoří příslušné BA.
Sýr obvykle obsahuje jednotky až stoveky mg/kg putrescinu. Výrazně vyšší množství BA bylo zjištěno u sýrů z nepasterovaného mléka.

Putrescin je produkován gram-negativními bakteriemi např. *Enterobacter cloacae*. Stabilizuje makromolekuly (nukleové kyseliny, subcelulární struktury (ribosomy), stimuluje diferenciaci buněk a je to rostlinný hormon.[1, 5, 6, 7]

Obrázek 2 Syntéza putrescinu, 1. metabolická dráha [8]

Obrázek 3 Syntéza putrescinu, 2. a 3. metabolická dráha [9, 10]
V močovinovém cyklu (Obrázek 4) vzniká hydrolýzou z L-argininu L-ornitin pomocí enzymu arginázy (EC 3.5.3.1), spolu s ním vzniká jako vedlejší produkt močovina. Ornitin je produkovan gram-negativními bakteriemi např. Enterobacter cloae, Proteus morgani.[12]

Tyramin vzniká dekarboxylací tyrozinu (Obrázek 5) za enzymatické katalýzy enzymem tyrozin dekarboxylázou (EC 4.1.1.25). Tento enzym produkují některé kmeny bakterií rodu Lactococcus (Lactococcus lactis subsp. cremoris, Lactococcus lactis subsp. lactis, Lactococcus lactis subsp. lactis var. diacetylactis), Leuconostoc (Leuconostoc mesenteroides sub sp. cremoris) Lactobacillus (Lactobacillus helveticus, Lactobacillus buchneri, L. arabinose, L. casei, L. plantarum, L. acidophilus) a Streptococcus (Streptococcus thermophilus). Tyramin je prekurzorem dopaminu, lokální tkáňový hormon, zvyšuje krevní tlak a má vliv na kontrakce hladkého svalstva.[5, 13, 14]

V rybím mase se vyskytují miroorganismy Klebsiella pneumonia, Hafnia alvei, Proteus aerogenes, Vibro alginolytien. V sýrech Lactobacillus buchneri, Lactobacillus 30a, Streptococcus faecium, S. mitis, Bacillus macerans, v mase a masných výrobcích se jedná o rody Pediococcus, Enterobacteriaceae, Lactobacillus, Pseudomonas, Streptococcus, Micrococcus. Kadaverin umožňuje stabilizaci nukleových kyselin, stimuluje diferenciaci buněk a stabilizuje subcelulární struktury (ribosomy).[5, 14]

Obrázek 6 Syntéza kadaverinu

1.2 Význam sledování biogenních aminů

Sledování množství biogenních aminů v potravinách je důležité z hlediska jejich toxicity při vysokém příjmu. [15]

Nadměrné požívání biogenních aminů obsažených v potravinách může způsobovat zvracení, pocení, problémy s dýcháním aj. Histamin způsobuje hypotenzi, tyramin hypertenzi, migrény jsou způsobeny fenylethylaminem a tyraminem. [5]

Malé množství biogenních aminů v organismu je tolerováno, účinný systém detoxikace existuje ve střevním traktu, aby přeměňoval histamin, který je přijímán z potravy a histamin, který tvoří střevní bakterie. Detoxikace histaminu je tvořena dvěma enzymy, diamin oxidázou (EC 1.4.3.22) a histamin-N-methyltransferázou (EC 2.1.1.8). Tyto enzymy přeměňují histamin na netoxický produkt jenom v případě, že je dodržena akceptovatelná koncentrace příjmu histaminu. Detoxikace tyraminu je tvořena enzymem monoamin oxidázou (EC1.4.3.4). Na obrázku 7 je zobrazeno schéma detoxikace histaminu.[14]
Obrázek 7 Detoxikace histaminu [49]
Histamin vyvolává toxický efekt interakcí s dvěma typy receptorů (H₁ a H₂) na buněčnou membránu lidské a dalších druhů. Histamin způsobuje rozšíření periferních krevních cév, kapilár a tepen, to má za následek hypotenzi, závratě a bolest hlavy. Histamin v intestinálním hladkém svalstvu, zprostředkovaný H₁ receptorem, může odpovídat za křeče v břišku, průjem a zvracení. Sekrece žaludeční kyseliny je regulována histaminem pomocí H₂ receptorů nacházejících se v parietálních buňkách.[16]

Histamin je právě jedním z biogenních aminů, který způsobuje intoxikaci. Otravy histaminem se objevily po konzumaci sýrů nebo ryb. Toxikologický efekt závisí na koncentraci histaminu, přítomnosti jiných aminů, aminooxidázy a střevní fyziologii jednotlivce. Nebílkovinné dusíkaté sloučeniny, jako aminy a peptidy, se podílejí na vůni a chuťi masa. Charakteristická červená barva masa se vytváří přidáním dusitanů k syrovému masu. Obavy týkající se použití dusitanů kvůli jejich reakci s amínami a aminokyselinami přítomnými v mase byly předmětem četných výzkumů. [17]

Sekundární aminy (putrescin a kadaverin) můžou reagovat s nitrily za vzniku heterocyklických karcinogenních nitroaminů (nitrosopyrrolidin a nitrosopiperidin). Například z prolínu a ornitínu vzniká N-nitrosoprolín a jeho dekarboxylování N-nitrosopyrrolidin. Z lyzínu a k němu příslušného aminu kadaverinu vzniká N-nitrosopiperidin. Nitrosaci agmatinu vzniká N-nitrosoagmatin. Karcinogenita uvedených nitrosloučenin je uvedena v Tabulce 1. [18]

<table>
<thead>
<tr>
<th>Nitrosloučenina</th>
<th>KrysaTD₅₀[mg·kg⁻¹·den⁻¹]</th>
<th>MyšTD₅₀[mg·kg⁻¹·den⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-nitrosopiperidin</td>
<td>1,31</td>
<td>1,3</td>
</tr>
<tr>
<td>N-nitrosopyrrolidin</td>
<td>0,409</td>
<td>0,679</td>
</tr>
<tr>
<td>N-nitrosoarmatin</td>
<td>0,0907</td>
<td>netestováno</td>
</tr>
</tbody>
</table>

TD₅₀ - Dávka, která způsobuje určité toxické příznaky u 50% pokusných zvířat.[19]

Toxikologická hranice biogenních aminů je velmi obtížně zjistitelná, protože závisí na toleranci jedince na biogenní aminy, na koncentraci BA a na přítomnosti jiných aminů. V literatuře se uvádí, že toxická dávka histaminu v alkoholických nápojích se pohybuje v rozmezí 8-20 mg/l, 25-40 mg/l tyraminu a 3mg/l fenylethylaminu a může způsobovat
negativní fyziologický efekt. Nepředpokládá se, že konzumace popisovaného množství histaminu a jeho potenciátorů v potravinách by mohla v normálních dávkách působit nějaké problémy. [20, 21]

Povolené množství histaminu v produktech rybolovu z druhů ryb spojovaných s vysokým množstvím histidinu a z produktů rybolovu, které byly ošetřeny enzymatickým zráním v láku, vyrobené z druhů ryb spojovaných s vysokým množstvím histidinu jsou dány nařízením komise (ES) č. 2073/2005 ze dne 15. listopadu 2005 o mikrobiologických kritériích pro potraviny. Tyto hodnoty jsou uvedeny v tabulce 2. Jedná se o druhy ryb z čeledí *Scombridae, Clupeidae, Engraulidae, Coryfenidae, Pomatomidae, Scombresosidae.* [22]

Tabulka 2 Kritéria bezpečnosti potravin [22]

<table>
<thead>
<tr>
<th>Kategorie potravin</th>
<th>Mikroorganismy (jejích toxiny, metabolismy)</th>
<th>Plán odběru vzorků</th>
<th>Limity</th>
<th>Analytická referenční metoda</th>
<th>Fáze, na niž se kritérium vztahuje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produky rybolovu z druhů ryb spojovaných s vysokým množstvím histidinu</td>
<td>Histamin</td>
<td>9 2</td>
<td>100 mg/kg 200 mg/kg</td>
<td>HPLC</td>
<td>Produkty uvedené na trh během doby údržnosti</td>
</tr>
<tr>
<td>Produkty rybolovu, které byly ošetřeny enzymatickým zráním v láku, vyrobené z druhů ryb spojovaných s vysokým množstvím histidinu</td>
<td>Histamin</td>
<td>9 2</td>
<td>200 mg/kg 400 mg/kg</td>
<td>HPLC</td>
<td>Produkty uvedené na trh během doby údržnosti</td>
</tr>
</tbody>
</table>
1.3 Skupiny potravin obsahující biogenní aminy

Vyskytují se v různých potravinách a nápojích, zejména ve víně, pivě, rybách a v mase.[23]

Celkové množství různých aminů silně závisí na povaze potraviny a mikroorganizmů v ni přítomných. Biogenní aminy jsou přítomny v potravinářských produktech, a to v rybích výrobcích, masných výrobcích, mléčných výrobcích, víně, pivě, zelenině a ovoci.[24]

1.3.1 Nefermentované potraviny

V nefermentovaných potravinách lze přítomnost biogenních aminů považovat orientačně za nežádoucí mikrobiální aktivitu. Proto by obsah biogenních aminů mohl být využit jako indikátor mikrobiální kaženě. Nicméně přítomnost biogenních aminů v potravinách nemusí nutně korelovat s růstem organismů přispívajících ke kaženě, protože nejsou všechny dekarboxyláza-pozitivní.[25]

Ryby a rybí výrobky obsahují velké množství biogenních aminů. Obsahují totiž červenou svalovinu, která je bohatá na histidin. Množství histidinu se pohybuje od 1 g*kg\(^{-1}\) ve sledech do více jak 15 g·kg\(^{-1}\) v tuňácích, kde může být přeměněn dekarboxylázou na histamin.[14]

1.3.2 Fermentované potraviny

Při přípravě fermentovaných potravin lze očekávat přítomnost mnoha druhů mikroorganismů, z nichž některé jsou schopny produkovan biogenní aminy. Ve většině fermentovaných produktů se nachází bakterie mléčného kvašení, které produkují množství putrescinvu, kadaverinu, histaminu a tyraminu.[26]

Maso a masné výrobky obsahují tyramin, kadaverin, putrescin, spermin, a spermidin. V některých typech klobás se může procesem fermentace tvořit histamin. Během procesu zrání klobáse se zvýší nejméně 10x koncentrace histaminu v průběhu prvních 3 dnů. Obecně platí, že se v klobásách vyskytuje různé množství biogenních aminů. To může být způsobeno různou dobou zrání, odlišnostmi dekarboxylázní aktivity přirozenou mikroflórou, která způsobuje fermentaci, biosyntézu a metabolizmus příslušných biogenních aminů. Dalším faktorem různého množství biogenních aminů je typ a kvalita použitého masa, podíl masa a délka zrání. Čerstvé veprrové vzorky obsahují spermin, spermidin a stopy dalších aminů. Zvýšení obsahu biogenních aminů ve vepřovém masa je závislé na
teplotě. Během skladování dochází ke zvýšení koncentrace biogenních aminů, zatímco se koncentrace sperminu a spermidinu snižuje. Vepřové maso skladované při 30 °C má vyšší obsah biogenních aminů než vepřové skladované při teplotě 4 °C. Obsah biogenních aminů ve vepřovém mase, které je skladováno při -18 °C, se nemění v průběhu 9 měsíčního obdobi.[14]

Sýry obvykle neobsahují biogenní aminy, ale někdy jsou tvořeny ve vysokých koncentracích. Nejvíce důležité biogenní aminy vyskytující se v sýrech jsou tyramin, histamin, putrescinu, kadaverin, tryptamin a β-fenyletylamin. Během zrání sýrů je kasein pomalu degradován proteolytickými enzymy, což vede ke zvýšení obsahu volných aminokyselin, které se procesem dekarboxylace s příslušnými enzymy přeměňují na biogenní aminy za uvolnění CO₂.[14]

Lasekan a kol. stanovili množství biogenních aminů v sedmi alkoholických nápojích vyráběných v Nigérii, jednalo se o fermentované alkoholické nápoje. Tyto nápoje jsou konzumovány především pro nutriční, slavnostní a léčivé účely. Jedná se o tyto fermentované alkoholické nápoje: „burukutu“ pivo (fermentovaný čirok), „sekete“ pivo (fermentovaná kukuřice), palmové vino, „agadagidi“ (fermentovaný jitrocel), „pito“ a „pinto“ nápoje (líker z kukuřice) a zázvorové pivo.[47]

Kelly, Blaise a Larroque stanovovali současně množství aminokyselin a biogenních aminů ve víně, ovoci a medu pomocí kapalinové chromatografie. Pro derivatizaci použili o-ftalaldehyd (OPA), který byl rozpuštěný v N-acetyl-L-cysteine (NAC). Podařilo se jim úspěšně stanovit současně 24 aminokyselin a biogenních aminů a tato metoda byla validována. [28]

Soufleros, Bouloumpasi, Zotou a Loukou stanovovali pomocí vysokoúčinné kapalinové chromatografie s UV-detekcí množství biogenních aminů v řeckém víně. Ve víně jsou biogenní aminy produkované v průběhu fermentace. U žádného vzorku nebyla překročena
horní hranice množství tyraminu a histaminu. Pouze 4 vzorky ze 100 obsahovaly více než 3 mg/l 2-fenylethylaminu, tuto hodnotu je potřeba hlídat. 90 % vzorků vína obsahovalo méně než 10mg/l biogenních aminů a tato hodnota je přijatelná.[26]

1.4 Metody stanovení biogenních aminů

BA se stanovují nejrůznějšími metodami zahrnující plynovou chromatografii, tenkovrstvou chromatografii, kapilární zónovou elektroforézu a také kapalinovou chromatografii. V následujících kapitolách jsou jednotlivé metody popsány.

1.4.1 Plynová chromatografie (GC)

Jednou z nejvíce univerzálních a široce aplikovatelných technik v analytické chemii v posledních 40 letech je plynová chromatografie. Popularitu si plynová chromatografie získala díky jednoduchosti, rychlosti a nízké finanční náročnosti. Jako metoda našla použití pro separaci těkavých sloučenin. Plynová chromatografie může být využita pro mnohé analýzy v petrochemii, farmacii a také v potravinářství.

V plynovém chromatografii prochází analyty skrz kolonu mobilní fází složenou z inertního plynu jako je helium nebo vodík. V závislosti na analytech, na rozpustnosti ve stacionární fázi dochází k separaci a eluci na koloně. Po eluci analyty vchází do detektoru, kde vytváří elektrický signál. Tento signál je poslán do datového systému, který vytvoří obraz nazývaný chromatogram, kde jsou zobrazeny píky analytů.

Primární a sekundární aminy můžou být derivatizovány acylační reakcí, kde acylová skupina reaguje s aminoskupinou. Toho lze dosáhnout použitím acylové skupiny, jako je například anhydrid kyseliny octové, acylchlorid, acylimidazol nebo acylamid. Viz obrázek 8.
Výhoda použití acylace jako derivatizační techniky pro aminy je, že reakce probíhá snadno za mírných podmínek, a to ne jenom u aminů, ale i u další aktivních substituentů, jako jsou fenoly, thioly, a hydroxyly. Z dalších důležitých acylačních činidel je např. acylimidazol tzv. N-methyl-bis(trifluoracetamid) (MBTFA), jehož vzorec a reakce jsou na obrázku č. 9.

Pokud používáme MBTFA, není nutné odstraňovat vedlejší produkty kyseliny, které mohou zničit kolonu, jako tomu je při použití anhydridu kyseliny octové a acyl chloridu v acylační reakci. Kromě toho může být MBTFA použit ve spojení s jiným derivatizačním procesem, jako je trimethylsilylace na N-selektivně acylované hydroxyamino molekule.

Další činidlo pro derivatizaci aminů silylací je N,O-bis(trimethylsilyl)trifluoracetamid (BSTFA), jehož vzorec a reakce jsou na obrázku 10.
Jak je tomu u jiných silylačních činidel, BSTFA derivatizuje hydroxylové a karboxylové skupiny v bezvodém stavu. Primární aminy jsou snadněji derivatizovány než sekundární aminy.

Trimethylichlorsilan (TMCS), jehož vzorec a reakce můžete vidět na obrázku 11, je jako účinný katalyzátor přidán do silylační reakce ke zjednodušení derivatizace aminoskupiny. Je třeba zdůraznit, že silylační reakce jsou nejúčinnější v bezvodých reakčních podmínkách, a proto nejsou vhodné vodné vzorky. Je možné, že silylové skupiny mohou reagovat s jedním nebo s oběma protony primárního aminu při derivatizaci tak, že se mohou tvořit mono- nebo di-N-trimethylsilylderiváty.

Obrázek 11 Katalyzátor silylace, trimethylichlorsilan (TMCS) [30]

Dalším užitečným činidlem pro silylační reakci s aminy je N-methyl-N-(terc-butyldimethylsilyl)trifluoracetamid (MTBSTFA). Vzorec této sloučeniny spolu s reakcí je na obrázku 12. Výhoda použití MTBSTFA je, že vytváří deriváty, které jsou více stabilní vůči hydrólýze než deriváty TMS. To je přičítáno ochraně silylové skupiny před vlhkostí terc-butyl skupinou derivátu. Obecně platí, že t-BDMS deriváty jsou citlivější pro GC analýzu než odpovídající TMS deriváty.[29, 30]

Obrázek 12 N-methyl-N-(terc-butyldimethylsilyl)trifluoracetamid (MTBSTFA) [30]
1.4.2 Kapilární zónová elektroforéza (CZE)

Mezi mnohé moderní postupy pro analýzu založenou na separaci patří metoda, která používá elektromigraci v kapiláře z taveného křemene a nazývá se kapilární elektroforéza. Tato metoda je vhodná pro separaci a stanovení iontů, které se liší svou molekulovou hmotností, tvarem a nábojem. Touto metodou lze stanovit oba dva druhy iontů, jak kladné tak záporné, molekuly musí nést náboj. Tato metoda není vhodná pro elektroneutrální molekuly, protože princip CZE spočívá v migraci iontů v elektrickém poli k opačně nabité elektrodě a neutrální molekuly žádný náboj nenesou. Lze touto metodou stanovit aminy, polyaminy včetně aromatických a heterocyklických aromatických aminů v potravinách a jiných biologických vzorcích.[17, 31]

Principem kapilární zónové elektroforézy je, že molekuly migrují vlivem elektrického pole a dělí se na základě rozdílných elektroforetických pohyblivostí v kapiláře.

Oguri použil elektromigrační metody pro stanovení aminokyselin, biogenních aminů a aromatických aminů.[31]

1.4.3 Vysokoúčinná kapilární elektroforéza (HPCE)

Vysokoúčinná kapilární elektroforéza je moderní analytická technika odvozená od tradiční elektroforézy a je spojená i s chromatografií. Spojení těchto analytických technik nám poskytuje spoustu kombinací.

Vysokoúčinná kapilární elektroforéza má široké spektrum použitelnosti pro nabité a nenabité sloučeniny s nízkou i vysokou molekulovou hmotností. Možnosti této techniky byly zkoumány až po roce 1981, kdy Jorgenson a Luckas předvedli vysokoúčinnou separaci v úzké kapiláře (<100 µm).

Ve vysokoúčinné kapilární elektroforéze je naplněná kapilára pufrem vložena mezi dvě nádrže s pufrem a působením elektrického pole přes kapiláru dochází k separaci. Na obrázku 13 je schéma HPCE.[32, 33]
1.4.4 Tenkovrstvá chromatografie

Tenkovrstvá chromatografie (TLC) je jednoduchá, rychlá a nenákladná metoda, která by mohla být alternativou k sofistikovaným instrumentálním metodám použitým pro stanovení biogenních aminů produkovaných bakteriemi. V tenkovrstvě chromatografii můžeme stanovit současně několik vzorků v krátké době oproti HPLC, kde musí být analyzován jeden vzorek v každém kroku. TLC byla použita na stanovení histaminu produkovaný mikroorganismy. Latorre-Moratalla a kol., použili TLC destičku o velikosti 20x20 cm, která byla potažena silikagelem G60 o tloušťce 0,25 mm. 10µl objemu extraktu ethylacetátu a dansylovaných aminů bylo aplikováno 2 cm od začátku destičky v 1 cm rozestupech. Vyvíjecí komora byla naplněna 100 ml rozpouštědla. Jakmile dosáhlo rozpouštědlo vzdálenost od startovní pozice (10-17 cm, vzdálenost závislá na druhu vyvíjení) byla destička
odebrána z vyvíjecí komory, usušena a jednotlivé skvrny byly separovány a viděny pod UV lampou s vlnovou délkou 366 nm. K identifikaci jednotlivých BA byl stanoven retenční faktor a srovnán s retenčním faktorem standardů, kde byla použita fluorescence pro určení aminů na destičce. [16]

1.4.5 Vysokoúčinná kapalinová chromatografie (HPLC)

Vysokoúčinná kapalinová chromatografie je analytická separační metoda, kde je směs složek rozdělena na jednotlivé složky průchodem skrz kolonu. To vše se provádí průchodem mobilní fáze, která obsahuje směs složek, přes stacionární fázi, která se skládá z pevných částic pravidelného tvaru a jednotné velikosti. Fyzikální a chemické síly působící mezi rozpuštěnými látkami a dvěma fázemi jsou zodpovědné za retenci rozpuštěných látek na chromatografické koloně. Průtok mobilní fázi skrz kolonu je zajištěn vysokým tlakem. [17, 20]

Kapalinovou chromatografii lze analyzovat ionty, polární i nepolární látky, látky málo těkavé nebo tepelně nestabilní. U kapalinové chromatografie lze složením mobilní fáze ovlivnit separaci. Složení mobilní fáze lze ovlivnit změnou pH, složením rozpouštědel, iontovoú silou. Jako stacionární fáze se používají náplňové kolony. Velikost částic v koloně je různá a pohybuje se běžně od 3 do 10 µm, ale nověji se používají i kolony s velikostí částic 2 µm a nižší.

1.5 Derivatizace v kapalinové chromatografii

Pomocí derivatizačních činidel se mění fyzikální a chemické vlastnosti analytů. Hlavní výhoda tohoto procesu, který se může zavádět buď před kolonou nebo za kolonou je např. zlepšení stability analytů nebo celkové zlepšení chromatografických vlastností, například změna polarity. [17]

Mezi nejčastěji derivatizační činidla používané pro derivatizaci před kolonou patří ninhydrin, Dns-Cl (dansylchlorid), FMOC-Cl (9-fluorenyl-methyloxycarbonyl chlorid), PITC (fénylisothiokyanát) a AQC (6-aminoquinolyl-N-hydroxysuccinimidylcarbamát). Pro derivatizaci za kolonou se používá např. ninhydrin. OPA derivatizační činidlo lze požít před i za kolonou.
Ninhydrin

Ninhydrin reaguje s primárními aminy a tvoří modrofialové sloučeniny (diketonhydrindyliden-diketonhydrinamin). Jedná se o tzv. Ruhemannovu červeň (Ruhemannův purpur), která má maximum absorbance při 570 nm. Reakce se sekundárními aminy (prolin nebo hydroxyprolin) je zobrazena na Obrázku 15. Prolin tvoří žlutý komplex s maximem absorbance při 440 nm.[34, 35]

Ninhydrin se používá v postkolonové derivatizaci aminoglykosydů (streptomycin a dihydrostreptomycin). Reakce probíhá v alkalickém prostředí s činidlem v mobilní fázi. Reakce je za laboratorní teploty pomalá, proto je směs zahřátá na teplotu 100-135°C po dobu 1-2 minut.[9, 25, 36]

Obrázek 14 Reakce ninhydrinu s aminokyselinou a vznik hydrindantinu [9, 48]

Obrázek 15 Reakce ninhydrinu s R-H (prolin), R-OH (hydroxyprolin) [9]
Komprda, Neznalová, Standara a Bover-Cid použili ninhydrin ke stanovení biogenních aminů ve fermentovaném českém salámu poličanu. Ke stanovení použili spektrofotometrickou detekci o vlnové délce 520 nm. [37]

Yemm a Cocking použili ninhydrin pro stanovení aminokyselin, zjistili některé nevýhody použití tohoto činidla, mezi které patří například složitá kontrola měření přesnosti pH. [49]

α-ftalaldehyd OPA

OPA je dobře známé derivatizační činidlo. Toto fluorogenní činidlo reaguje rychle, ale jenom s primárními aminy ve vodném zásaditém prostředí (pH 9-11) v přítomnosti thiolové sloučeniny (R-SH, např. 2-merkaptoetanol). Viz obrázek 16. Právě thiolová sloučenina spolu s primárním aminem vytváří vysoce fluorescenční isoindolové deriváty. (excitace 350 nm, emise 405-450 nm)

Obrázek 16 Reakce OPA s aminokyselinou v prostředí thiolu [9]

Derivatizační reakce se provádí za pokojové teploty 2 minuty ve směsi borátového pufru (pH 6-8 pro aminy a pH 9,7-10 pro aminokyseliny) a metanolu.

Reakce může být prováděna v předkolonové nebo poskolonové derivatizaci.

V předkolonovém způsobu může být derivatizace dosažena buď manuálním kontrolováním reakční doby a časovým intervalu před nastříknutím, nebo automaticky, kdy umožňuje vyšší citlivost a reprodukovatelnost analýz. Navíc OPA je také používán v postkolonovém způsobu kvůli krátké reakční době a fluorogenními vlastnostmi.

OPA reaguje jenom s primárními aminy, ale přidáním octanu sodného umožňuje derivatizaci sekundárních aminů. Derivatizace je vysoce nestabilní a je rychle degradována v nefluorescentních látkách.

Používá se pro předkolonovou derivatizaci různých biogenních aminů ve víně (histamin, methylamin, ethylamin, tyramin, tryptamin, 2-fenylethylamin, putrescin a kadaverin).[9, 25]
1-dimethylaminonaftalen-5-sulfonyl chlorid (DNS-Cl nebo dansylchlorid)

Dansylchlorid je obvykle používán na primární a sekundární aminy, které jsou derivatizovány s fluorescenční detekcí. Požívá se hlavně k derivatizaci před kolonou. Reaguje s primárními i sekundárními aminy nukleofilní substitucí a tvoří fluorescenční dansylderiváty. (Obrázek 17)

Optimální reakční doba (30-120 minut) závisí na aminosloučeninách. Tato doba je potřebná pro zreagování dansylchloridu s aminosloučeninami. Dansylderiváty jsou stabilní. Činidlo je hydrolyzováno během derivatizace za účelem produkce 1-dimethylaminonaftalen-5-sulfonylové kyseliny, vysoce fluorescenční sloučeniny, která se používá pro předkolonovou derivatizaci.

Pomocí DNS-Cl lze stanovit biogenní aminy jako je například putrescin, kadaverin, spermidin a spermin, derivatizace trvá 10 minut při 70°C. [9, 25]

Obrázek 17 Reakce dansylchloridu s animokyselinou [9]

Benedito de Barber, Prieto a Collar analyzovali změny aminokyselin během fermentace pšeničného chlebového těsta. Pro derivatizaci aminokyselin použili derivatizační činidlo dansylchlorid.[39]

9-fluorenylmethylchloroformát (FMOC-Cl)

Toto činidlo se používá pro předkolonovou derivatizaci primárních a sekundárních aminů. (Obrázek 18) Reaguje nukleofilní substituci v borátovém pufru (pH 8) po dobu dvou minut a vytváří stabilní fluorescenční deriváty. Nadbytek činidla je nutný, ale může být elimino- ván v průběhu reakce aminokyselinou. Toto činidlo umožňuje fluorimetrickou (excitace a emise vlnových délek byla v intervalu 263-265 nm excitace a 313-340 nm emise) a UV-VIS detekci aminů. Reakce s tímto derivatizačním činidlem probíhá v acetonu nebo acetonitrilu. [25]
Fluorescence představuje hlavní nevýhodu FMOC-OH. Jedná se totiž o velmi citlivou metodu, která je schopná detekovat i vzniklý FMOC-OH. FMOC-OH může být odstraněn extrakcí derivátů organickým rozpouštědlem, jako je například pentan. Stejně jako DNS-Cl je i FMOC reaktivní vůči fenolickým hydroxyskupinám. Dále se činidlo spojuje s imidazolovým kruhem aminosoučinu. I této reakci tyrozin a histidin tvoří mono a disubstituované deriváty. I přes jeho nevýhody se tato reakce stala známou pro svoji jednoduchost a automatizaci derivatizace. Citlivost je srovnatelná s OPA metodou.

FMOC-Cl se používá na různé analýzy jako derivatizační činidlo pro stanovení biogenních aminů. Toto čidlo lze také použít pro stanovení aminoglykosidů jako je gentamycin a neomycin. [9, 25]

V článku Molnára-Perla, který se zabýval stanovením biogenních aminů a volných aminokyselin, použil různá derivatizační čidla, mezi něž patřil také FMOC-Cl, stanovil 5 aminokyselin a 8 biogenních aminů v 15 růžových a 15 bílých vínech. Pro derivatizaci potřeboval 5mMFMOC-Cl, který rozpustil v acetonitrilu. [40]

AQC (6-aminoquinoyl-N-hydroxysuccinimidylkarbamát)

Řadí se k nejnovějším derivatizačním čidlům, reaguje jak s primárními tak sekundárními aminokyselinami v prostředí borátového pufru o pH 9,3 při teplotě 55° C za vzniku derivá-
tů. (Obrázek 19) Tyto deriváty jsou snadno separovány gradientovou elucí na reverzní fázi. Vzniklé deriváty jsou stabilní asi týden při laboratorní teplotě. Nadbytek činidla se odstraňuje hydolýzou samotného činidla za vzniku 6-aminochinolinu a N-hydroxsuccinimidu.[9]

Obrázek 19 Reakce AQC s aminokyselinou [9]

Busto, Guash a Borrull stanovili biogenní aminy ve víně pomocí předkolonové derivatizace s 6-aminoquinoyl-N-hydroxsuccinimidylkarbamátem. Toto derivatizační činidlo se jim osvědčilo jako dobrá alternativa pro stanovení biogenních aminů ve víně. V této práci byly biogenní aminy analyzovány plně automaticky a při přímém vstřikování na kolonu poskytovaly lepší citlivost než při použití OPA.[41]

1.6 Možnosti současného stanovení biogenních aminů a volných aminokyselin

V běžné praxi se stanovují zvlášť aminokyseliny a zvlášť biogenní aminy. Z hlediska úspory času a chemikálií je vhodné vyhledat metodu, která by umožnila stanovit aminokyseliny a biogenní aminy současně.

Soufleros, Boulompasi, Zotou a Loukou stanovili množství biogenních aminů a volných aminokyselin v řeckém víně pomocí kapalinové chromatografie a UV detekci po dansylaci. Použitím 1,7-diaminoheptanu jako vnitřního standardu stanovili pomocí HPLC deset biogenních aminů: methylamin, ethylamin, 2-fenylamin, isoamylamin, putrescin, kadaverin, hisammin, tyramin, spermidin a spermin.

Podmínky separace a detekce pro stanovení biogenních aminů:

- předkolonovou derivatizaci aminu pomocí DNS-Cl a další SPE (solid-phase extraction) derivátů přes C18 cartrige.
Separace dansylamidu byla provedena na Inerstil ODS-3(5 µm, 250·4,6 mm vnitřní průměr) koloně, gradientová eluce 35 minut s binarním systémem acetonitril/voda s průtokem 1ml/min a detekce byla provedena měřením při absorbanci 254nm.

Dále stanovili 21 aminokyselin po předkolonové derivatizaci primárních aminoskupin s OPA.

Podmínky separace a detekce pro stanovení volných aminokyselin:

- Excitace a emise vlnových délek byla 340 a 450 nm.
- Binární gradientový program byl použit pro následující mobilní fáze: roztok A byl ve vodném roztoku 0,68% (w/v) CH₃COONa·H₂O a 5% (v/v) tetrahydrofuran, upraven na pH 5,7 pomocí kyseliny octové a roztok B byl absolutní methanol.
- Aminokyseliny byly kvantifikovány použitím norvalinu jako vnitřního standardu.[26]
II. PRAKTICKÁ ČÁST
2 CÍL PRÁCE

Cílem práce bylo:

- Popsat význam ledování obsahu biogenních aminů v potravinách
- Charakterizovat metody stanovení obsahu biogenních aminů v potravinách se zameřením na metody využívající kapalinovou chromatografii

V praktické části je snaha o optimalizaci metody pro stanovení obsahu biogenních aminů s využitím kapalinové chromatografie a zhodnocení použitelnosti optimalizované metody na vybrané druhy potravin.
3 METODIKA PRÁCE

3.1 Popis experimentu

Pro optimalizaci metody byly použity standardy biogenních aminů (kadaverin, putrescin, tyramin, fenylethylamin, histamin a agmatin) a k nim příslušné aminokyseliny (histidin, arginin, fenylalanin, ornitin, tyrozin a lyzin).

Standardy biogenních aminů a aminokyselin byly analyzovány na dvou přístrojích, Systém HPLC (Agilent Technologies). Binární pumpa LabAlliance, USA, autosampler LabAlliance, USA, kolona s termostatem; UV/VIS DAD detektor ($\lambda = 254$ nm); FLD detektor 1200 Infinity (excitace 263 nm, emise 313nm) a degaser 1260 Infinity (Obrázek 21). HPLC (degasser, pumpa, termostat, autosampler a DAD detektor, PerkinElmer) (Obrázek 20). Bylo použito jak fluorescenční detekce tak UV-VIS detektor. Jednotlivé experimenty jsou popsány níže. Jako derivatizační činidlo u všech analýz byl použit FMOC-Cl.

Přístrojové vybavení laboratoře pro chromatografické stanovení:

1. Analytické váhy A&D GH-200 EC, Japonsko
2. Laboratorní třepačka LT2
3. Odstředivka EBA 21, Hettich ZENTRIFUGEN, Německo, Tuttlingen

Obrázek 20 Kapalinový chromatograf (HPLC)
Kolona

- Supercosil LC18 DB 150x4,6mm; 3 µm (Sigma-Aldrich)

Obrázek 21 Kapalinový chromatograf (HPLC)

Všechny standardy (viz tabulka 3) byly zakoupeny od firmy Sigma-Aldrich.

Tabulka 3 Standardy a jejich zkratky použité v diplomové práci

<table>
<thead>
<tr>
<th>Aminokyselina</th>
<th>Zkratka</th>
<th>Biogenní amin</th>
<th>Zkratka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histidin</td>
<td>HIS</td>
<td>Histamin</td>
<td>HIM</td>
</tr>
<tr>
<td>Tyrozin</td>
<td>TYR</td>
<td>Tyramin</td>
<td>TYM</td>
</tr>
<tr>
<td>Lyzin</td>
<td>LYZ</td>
<td>Kadaverin</td>
<td>CAD</td>
</tr>
<tr>
<td>Arginin</td>
<td>ARG</td>
<td>Putrescin</td>
<td>PUT</td>
</tr>
<tr>
<td>Fenylalanin</td>
<td>PHE</td>
<td>Fenylethylamin</td>
<td>PEA</td>
</tr>
<tr>
<td>Ornitin</td>
<td>ORN</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
V tabulce 4 je seznam chemikálií, které byly použity pro stanovení BA a AMK a je u nich uveden dodavatel, od kterého byly dané chemikálie zakoupeny.

<table>
<thead>
<tr>
<th>Chemikálie</th>
<th>Dodavatel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetonitril</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Kyselina chlorovodíková dýmová</td>
<td>Merck</td>
</tr>
<tr>
<td>Triethylamin</td>
<td>Merck</td>
</tr>
<tr>
<td>2-butanol</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Amoniak</td>
<td>Merck</td>
</tr>
<tr>
<td>Kyselina octová ledová</td>
<td>Merck</td>
</tr>
<tr>
<td>FMOC-Cl</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Hydroxid sodný</td>
<td>Merck</td>
</tr>
<tr>
<td>Kyselina boritá</td>
<td>Merck</td>
</tr>
<tr>
<td>Prolin</td>
<td>Merck</td>
</tr>
<tr>
<td>Tetrahydrofuran</td>
<td>Merck</td>
</tr>
<tr>
<td>Glycin</td>
<td>Merck</td>
</tr>
</tbody>
</table>
3.2 Experiment 1

V experimentu 1 se postupovalo podle článku Bauza et al. [42]

Konzentrace směsi standardů byla 200 mg/l. V experimentu 1 bylo snahou stanovit jednotlivě i ve směsi pět BA (kadaverin, putrescin, tyramin, fenylethylamin a histamin) a šest volných aminokyselin (histidin, arginin, fenylalanin, ornitin, tyrozín a lizin).

Příprava vzorku na analýzu:

Odebralo se 50 μl standardu, který se smíchal se 125 μl borátového pufru, který byl připraven rozpuštěním kyseliny borité ve vodě a upraven na pH 8,5 pomocí 0,5 M NaOH.

Derivatizace:

Do směsi standardů a borátového pufru bylo přidáno 250 μl derivatizačního činidla, v našem případě se jednalo o FMOC-Cl v koncentraci 10mM. Reakce se po třech minutách zastavila 125 μl amoniaku (0,5M). Do takto připravené směsi bylo přidáno ještě 750 μl směsi o složení (ACN:CH₃COOH:H₂O, 80:8:12). Výsledná směs byla zředěna v poměru 1:1 mobilní fází A, přefiltrována přes nylonový filtr (0,22µm).

Složení mobilní fáze:

B (ACN : 2-butanol, 98:2)

V dalších fázích experimentu 1 se měnilo složení mobilních fází, jako mobilní fáze A byl použit 5% ACN, jako mobilní fáze B byl použit 100% ACN.

Analýza:

Na kolonu bylo nastříknuto množství vzorku 5μl, gradientová eluce je uvedena v Tabulce 5, průtok byl 1ml/min, teplota kolony 30 ⁰C. Pro detekci byl použit UV-VIS detektor s vlnovou délkou 263 nm. Po provedení analýzy byl vyhodnocen chromatogram a postupně se měnila gradientová eluce, pro lepší separativnost jednotlivých BA a AMK.
Tabulka 5 Gradientová eluce

<table>
<thead>
<tr>
<th>Čas [min]</th>
<th>Mobilní fáze A [%]</th>
<th>Mobilní fáze B [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>85</td>
<td>15</td>
</tr>
<tr>
<td>12</td>
<td>85</td>
<td>15</td>
</tr>
<tr>
<td>12,20</td>
<td>62</td>
<td>38</td>
</tr>
<tr>
<td>16</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>19</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>42</td>
<td>58</td>
<td>42</td>
</tr>
<tr>
<td>63</td>
<td>15</td>
<td>85</td>
</tr>
<tr>
<td>68</td>
<td>15</td>
<td>85</td>
</tr>
<tr>
<td>69</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>75</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>76</td>
<td>85</td>
<td>15</td>
</tr>
<tr>
<td>82</td>
<td>85</td>
<td>15</td>
</tr>
</tbody>
</table>

3.3 Experiment 2

Experiment 1 nebyl úspěšný, proto v experimentu 2 byl využit výzkum Kirschbauma a Luckase. Jako derivatizační činidlo použili FMOC-Cl a reakci zastavovali přidáním heptylaminu. [43]

Koncentrace směsi standardů byla 200 mg/l. V naší práci se derivatizační reakce v experimentu 2 nezastavovala, v dalších experimentech se zastavovala nejprve prolinem, později glycinem.

Příprava vzorku na analýzu:

Odebralo se 100 µl směsi, která byla ředěna acetonitrilem v poměru 1:49. Poté byla smíchána se 100µl borátového pufru, který byl připraven rozpuštěním kyseliny borité ve vodě a upraven na pH 8,5 pomocí 0,5 M NaOH. Poté bylo přidáno 200 µl acetonitrilu.

Derivatizace:

Do směsi standardů, borátového pufru a acetonitrilu bylo přidáno 100 µl FMOC-Cl v koncentraci 3 mM. FMOC-Cl reagoval se směsí 15 minut. Výsledná směs byla přefiltrována přes nylonový filtr (0,22µm).

Složení mobilní fáze:

A:0,1M octan sodný (upraven na pH 4,4 pomocí ledové kyseliny octové) : acetonitril (78:22)

B: acetonitril
Analýza:
Na kolonu bylo nastříchnuto množství vzorku 10 μl, gradientová eluce je uvedena v Tabulce 6, průtok byl 1,2 ml/min, teplota kolony 30 °C. Pro detekci byl použit fluorescenční detektor s vlnovou délkou pro excitaci 265 nm a pro emisi 315 nm.

Tabulka 6 Gradientová eluce

<table>
<thead>
<tr>
<th>Čas [min]</th>
<th>Mobilní fáze A [%]</th>
<th>Mobilní fáze B [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>80</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>77</td>
<td>23</td>
</tr>
<tr>
<td>27</td>
<td>77</td>
<td>23</td>
</tr>
<tr>
<td>30</td>
<td>64</td>
<td>36</td>
</tr>
<tr>
<td>37</td>
<td>64</td>
<td>36</td>
</tr>
<tr>
<td>42</td>
<td>58</td>
<td>42</td>
</tr>
<tr>
<td>57</td>
<td>45</td>
<td>55</td>
</tr>
<tr>
<td>63</td>
<td>45</td>
<td>55</td>
</tr>
<tr>
<td>70</td>
<td>7</td>
<td>93</td>
</tr>
<tr>
<td>73</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>82</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>83</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>93</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

3.4 Experiment 3

V Předchozích dvou experimentech se nepodařilo úspěšně optimalizovat metodu pro stanovení BA a AMK, proto byl vybrán nový postup. Experiment 3 částečně koreluje s článkem Carratúat al. [44]

Jako derivatizační činidlo použili FMOC-Cl a reakci zastavovali přidáním roztoku 1-aminoamantadinu rozpuštěného v methanolu. V našem experimentu se reakce zastavovala přidáním 30 mM prolinu. Koncentrace směsi standardů byla 200 mg/l. V experimentu 3 bylo zkoumáno, zda koncentrace FMOC-Cl ovlivňuje separaci a také bylo zjišťováno, jestli separaci ovlivňuje reakční čas použitého derivatizačního činidla.

Příprava vzorku na analýzu:
Odebralo se 250μl standardu o koncentraci 200 mg/l
Derivatizace:

Do směsi standardu bylo přidáno 300μl FMOC-Cl v koncentraci 30mM. FMOC-Cl reagoval se směsí 10 minut. Po uplynutí 10 minut byla reakce s FMOC-Cl zastavena prolinem o koncentraci 30mM. Výsledná směs byla přefiltrována přes nylony filtr (0,22μm).

Složení mobilní fáze:

A: acetonitril : isopropyalkohol (90:10)

B: 0,05M octan sodný (upraven na pH 4,03 pomocí ledové kyseliny octové) obsahující 4% tetrahydrofuranu.

Analýza:

Na kolonu bylo nastříkno množství vzorku 10μl, gradientová eluce je uvedena v Tabulce 7, průtok byl 1,2 ml/min, teplota kolony 30 °C. Pro detekci byl použit fluorescenční detektor s vlnovou délkou 265 nm excitate a 315 nm emise.

Konzentrace FMOC-Cl

Pro ověření, jestli koncentrace FMOC-Cl ovlivňuje separaci, byly zvoleny následující příhavky množství derivatizačního činidla: 300 µl, 200 µl, 150 µl, 100 µl, 50 µl, 40 µl, 20 µl a 10 µl.

Reakční čas

Množství FMOC-Cl bylo zastavováno pomocí prolinu v časových intervalech 0,5; 1; 1,5; 2; 3; 4 a 5 minut.

Tabulka 7 Gradientová eluce

<table>
<thead>
<tr>
<th>Čas [min]</th>
<th>Mobilní fáze A [%]</th>
<th>Mobilní fáze B [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20</td>
<td>80</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>80</td>
</tr>
<tr>
<td>40</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>50</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td>60</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>70</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>85</td>
<td>80</td>
<td>20</td>
</tr>
<tr>
<td>90</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>98</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>99</td>
<td>20</td>
<td>80</td>
</tr>
</tbody>
</table>
3.5 Experiment 4

V tomto experimentu byly využity dosavadní výsledky předchozích experimentů. Byla změněna koncentrace derivatizačního činidla.

Brückner at al. stanovovali BA v čaji. Postup v našem experimentu je stejný jako v článku. Použili derivatizační činidlo FMOC-Cl.[45]

Pro tento experiment byly použity standardy HIS, HIM, TYR, TYM, AGR, ORN a PUT.

Příprava vzorku na analýzu:

Konzentrace standardu byla 10mM. Pro HIM byla koncentrace čtyřnásobná (40mM). Jednotlivé standardy byly rozpuštěny v 0,1M HCl v množství 20 µl.

Derivatizace:

Do směsi standardu bylo přidáno 100 µl 0,5M borátového pufru o pH 7, poté bylo mixovací metodou přidáno 100 µl FMOC-Cl o koncentraci 3 mM. Celá reakce byla zastavena přidáním 25 µl glycinu. Tato směs byla zmixována reakční směsí (0,1 M octan sodný s acetonitrilem v poměru 1:1)

Složení mobilní fáze:

A: 0,1M octan sodný (upraven na pH 7 pomocí ledové kyseliny octové)

B: acetonitril

Analýza:

Na kolonu bylo nastříkáno množství vzorku 10µl, gradientová eluce je uvedena v Tabulce 8, průtok byl 1,2 ml/min, teplota kolony 30 °C. Pro detekci byl použit fluorescenční detektor s vlnovou délkou 263 nm excitace a 313nm emise. Gradientová eluce je v Tabulce 8

<table>
<thead>
<tr>
<th>Čas [min]</th>
<th>Mobilní fáze A [%]</th>
<th>Mobilní fáze B [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>66</td>
<td>34</td>
</tr>
<tr>
<td>1</td>
<td>66</td>
<td>34</td>
</tr>
<tr>
<td>80</td>
<td>11</td>
<td>89</td>
</tr>
<tr>
<td>81</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>90</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>91</td>
<td>66</td>
<td>34</td>
</tr>
<tr>
<td>95</td>
<td>66</td>
<td>34</td>
</tr>
</tbody>
</table>
3.6 Experiment 5

Po předchozích experimentech, ve kterých byl postup práce prováděn podle odborných článků, vychází experiment 5 z doktorandské práce Dott. C. Corzani, která se zabývala současným stanovením aminokyselin a biogenních aminů pomocí HPLC s předkolono-vou derivatizací pomocí FMOC-Cl a použitím UV detekce. [46]

Experiment 5 se zabýval podmínkami derivatizace. Bylo zapotřebí zjistit, jestli je množství glycinu dostačující pro zastavení derivatizační reakce. Proto bylo nejprve přidáno 25 μl glycinu a stejné množství FMOC-Cl a pak čtyřnásobné množství FMOC-Cl tj. 100 μl.

Příprava vzorku na analýzu:

Koncentrace standardu aminokyselin byla 40 mM. Jednotlivé navážky standardů byly rozpuštěny v 0,01M HCl v množství 2 ml.

Derivatizace:

Aminokyseliny i biogenní aminy byly derivatizovány za pokojové teploty předkolonovou derivatizací. Do směsi standardu bylo přidáno 100 μl 0,5 M borátového pufru o pH 4,2; poté bylo mixovací metodou přidáno 100 μl FMOC-Cl o koncentraci 0,015mM. Po třech minutách byla celá reakce zastavena přidáním 25 μl glycinu. Tato směs byla po dalších třech minutách zmixována se 160 μl reakční směsí (0,1 M octan sodný s acetonitrilem v poměru 1:1)

Složení mobilní fáze:

A: 0,05M octan sodný (upraven na pH 4,2 pomocí ledové kyseliny octové)
B: acetonitril

Analýza:

Na kolonu bylo nastříkno to množství vzorku 10μl, gradientová eluce je uvedena v Tabulce 9, průtok byl 0,7 ml/min, teplota kolony 30 °C. Pro detekci byl použit fluorescenční detektor s vlnovou délkou 263 nm excitace a 313nm emise.
Tabulka 9 Gradientová eluce

<table>
<thead>
<tr>
<th>Čas [min]</th>
<th>Mobilní fáze A [%]</th>
<th>Mobilní fáze B [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>68</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>68</td>
<td>32</td>
</tr>
<tr>
<td>14</td>
<td>59</td>
<td>31</td>
</tr>
<tr>
<td>40</td>
<td>42</td>
<td>58</td>
</tr>
<tr>
<td>45</td>
<td>35</td>
<td>65</td>
</tr>
<tr>
<td>90</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>105</td>
<td>68</td>
<td>32</td>
</tr>
<tr>
<td>110</td>
<td>68</td>
<td>32</td>
</tr>
</tbody>
</table>

3.7 Experiment 6

Experiment 6 navazuje na experiment 5, postupuje se přesně podle publikace Dott. Claudia Corzani, která je uvedena v předchozí kapitole. V experimentu 6 se začala metoda používat na reálné vzorky. Po předchozích pokusech byl pro analýzu vybrán tyrozin a tyramin. Dále bylo zkoumáno, zda zbytečné aminokyseliny neovlivňují analýzu tyrozínu a tyraminu.

U reálných vzorků byla provedena extrakce, jejíž postup je popsán níže. Pro analýzu se použily čerstvé vzorky sýrů eidamského typu: čerstvého (do 24 hodin před solením), uzrálého (8 týdnů) a extra uzrálého (12 měsíců), vzorky piva (Svijanský máz 11°, Pilsner Urquell 12°) a dva čerstvé fermentované trvanlivé masné výrobky, salámy Poličan. Číslování reálných vzorků je uvedeno v tabulce 10.

Tabulka 10 Číslování reálných vzorků

<table>
<thead>
<tr>
<th>Vzorek</th>
<th>Číslo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Čerstvý sýr</td>
<td>1</td>
</tr>
<tr>
<td>Uzrálý sýr</td>
<td>2</td>
</tr>
<tr>
<td>Extra uzrálý sýr</td>
<td>3</td>
</tr>
<tr>
<td>Svijanský máz 11°</td>
<td>4</td>
</tr>
<tr>
<td>Pilsner Urquell 12°)</td>
<td>5</td>
</tr>
<tr>
<td>Salám Poličan</td>
<td>6</td>
</tr>
<tr>
<td>Salám Poličan</td>
<td>7</td>
</tr>
</tbody>
</table>
Extrakce

Na analytických vahách se odváží 1g vzorku s přesností na 0,001 a přidá se 10 ml 0,1MHCl. Vše se nechá 30 minut třpat na třepačce nastavené na nejvyšší stupeň. Po 30 minutách se vzorek vloží na 5 minut do odstředivky při 6000 ot./min. Po odstředění se obsah vylíje do 25 ml odměrné baňky a ke zbylému pevnému podílu se přidá 7 ml 0,1MHCl. Celý postup se 2x opakuje až do získání 24 ml extrahovaného vzorku.
4 VÝSLEDKY A DISKUZE

V následujících podkapitolách jsou rozděleny výsledky podle jednotlivých experimentů, chronologicky uspořádány.

4.1 Experiment 1

Jedním z prvních pokusů stanovit současně biogenní aminy a volné aminokyseliny můžeme vidět na obrázku č. 22. Na chromatogramu je separace lyzinu, kadaverinu a histaminu ve směsi o koncentraci 200mg/l. Z tohoto chromatogramu nelze přesně určit, zda se jedná o dané aminokyseliny a biogenní aminy, jelikož se jednotlivé píky vyskytovaly i ve vodě. Vzhledem k vysoké citlivosti fluorescenčního detektoru a složitým složením mobilních fází a jejich reakcí s jednotlivými biogenními aminy a aminokyselinami, nelze určit o jaké BA nebo AMK se jedná. I přes změnu složení mobilních fází i gradientu se nám nepodařilo úspěšně stanovit BA ani AMK. Z článku, podle kterého se postupovalo, se nám nepodařilo sepatrath ani AMK ani BA.

Obrázek 22 Chromatogram separace lyzinu, kadaverinu a histaminu
4.2 Experiment 2

V dalších krocích experimentu 2 byla snaha o separaci jednotlivých biogenních aminů a aminokyselin. Pro časovou náročnost analýzy z důvodu dlouhotrvající gradientové eluce a neúspěchy, které tuto metodu doprovázely, nebylo možné v tomto experimentu pokračovat, a proto byly hledány jiné možnosti separace v jiných odborných článcích.

Obrázek 23 Chromatogram A neředěný, chromatogram B ředění 1:49
4.3 Experiment 3

Experimentem 3 se otvírá nová kapitola výzkumu, jelikož dosavadní výsledky nebylo možné použít. V experimentu 3 se derivatizační reakce zastavovala přidáním prolinu. Směs BA a AMK byly opět v koncentraci 200mg/l.

Pro získání úspěšných výsledků, bylo potřeba zjistit, jestli reakční čas nebo množství FMOC-Cl jako derivatizačního činidla ovlivňuje separaci. V článku přidali 200 µl FMOC-Cl. Jelikož nebylo možné vyhodnotit výsledné chromatogramy, postupovalo se podle následujícího postupu. Postupně se zvyšovalo přidané množství derivatizačního činidla, nejprve bylo přidáno 50 µl, pak 100 µl, 150µl a nakonec 200µl. Na obrázku 24 se výrazně mění píky v chromatogramu, z toho plyne, že množství přidaného derivatizačního činidla ovlivňuje separaci. Na základě získaných výsledků se v dalších experimentech používala nižší koncentrace derivatizačního činidla.

Obrázek 24 Chromatogram změny koncentrace přidaného derivatizačního činidla
Na obrázku 25 je chromatogram změny reakčního času. I v tomto případě změna reakčního času, tj. doba, po kterou reaguje derivatizační činidlo, než se reakce zastaví pomocí prolínů, nepatrně ovlivňuje separaci. Reakční čas je uveden v minutách a byl stopován po 0,5 min, 1 min, 1,5 min, 2 min, 3 min, 4 min a 5 minutách. V článku reakci zastavovali po 10 minutách. Tímto pokusem bylo zjištěno, že reakční čas výrazně neovlivňuje separaci.

Obrázek 25 Chromatogram změny reakčního času

Tato metoda se použila i na směs pouze tyrozinu a tyraminu. Vzhledem k tomu, že chromatogram vypadal stejně jako chromatogram vody nebo směsi, musela být tato metoda ukončena. Nebylo možné detekovat BA a AMK.
4.4 Experiment 4

V experimentu 4 můžeme podle chromatogramu z obrázku 26 přibližně odvodit separované BA. Koncentrace HIS, TYR, TYM, AGR, ORN a PUT byla 10 mM, koncentrace HIM byla čtyřnásobná (40 mM). Pokud porovnáme směs s jednotlivými biogenními aminy, můžeme konstatovat, zda se jedná o biogenní amin, který se podařilo odseparovat. Například pík v 60 minutě by mohl odpovídat putrescinu, jelikož se nachází i ve směsi. Touto vylučovací metodou můžeme pravděpodobně určit některé biogenní aminy i aminokyseliny. Podařilo se separovat jednotlivé biogenní aminy ve směsi, ale píky pro jednotlivé BA nebo AMK se nacházeli na různých místech v chromatogramu a nebylo možné určit, kde se jaký BA nebo AMK přesně nachází, proto se experimentem 4 v další práci nebude zabývat. I při dodržení všech podmínek separace se nám nepodařilo optimalizovat tuto metodu pro dané BA a AMK. Autorům článku, podle kterého experiment 4 vycházel, se podařilo separovat BA i AMK, které se v jejich chromatogramu ukázali až po 60 minutách. I tohle je jeden z dalších faktorů, proč se experimentem 4 nebude zabývat.

Obrázek 26 Chromatogram směsi BA, histaminu, putrescinu a tyraminu
4.5 Experiment 5

V experimentu 5 se použil zcela nový postup, který byl popsán v odborné práci Dott. Claudia Corzani. Na obrázku 27 je chromatogram směsi volných aminokyselin označených modrou barvou a 3 jednotlivé aminokyseliny, ornitin, arginin a histidin. Z chromatogamu jde vyčíst, kde se jednotlivé aminokyseliny pravděpodobně nacházejí, a to opět vylučovací metodou, kdy směs s jednotlivými aminokyselinami proložíme vodou a vyselektujeme píky, které se nachází i ve vodě a ve směsi a určíme tak jejich přibližnou polohu.

Obrázek 27 Chromatogram směsi AMK, ornitinu, argininu a histidinu

Po prostudování dalších článků a prohloubení znalostí o této problematice se vyskytl další problém, který bylo nutné eliminovat. Derivatizační činidlo se dává v nadbytku, úkolem experimentu 5 bylo dokázat, jestli zbylé derivatizační činidlo, které nezreagovalo s glycinem, neovlivňuje separaci. Na obrázku 28 je zobrazen chromatogram, ve kterém je černou barvou označena reakce 25µl glycinu s 25µl FMOC-Cl a modře označená reakce, kdy je FMOC-Cl v nadbytku, tzn. 100µl FMOC-Cl a 25µl glycinu. Podle výsledků, které nám poskytl chromatograf, bude lepší postupovat se stejnou koncentrací glycinu i derivatizačního činidla, protože nezreagovaný FMOC-Cl s glycinem reagoval s ostatními složkami a nepříznivě tak ovlivnil průběh separace.
Obrázek 28 Chromatogram reakce FMOC-Cl s glycinem ve stejném poměru a v nadbytku FMOC-Cl

Většina BA a AMK je separována na začátku analýzy, proto se gradientová eluce zkrátila na 20 minut. Bylo tak možné hledat optimální metodu pro dané AMK a BA. Pro další analýzy se upravoval gradient, měnily se koncentrace, bylo možné zkoušet změny ve složení mobilních fází. Přes všechny dosavadní neúspěchy se podařilo v experimentu 5 separovat TYR a TYM, optimalizovat podmínky separace a zkusit metodu na reálné vzorky. To vše se dělalo v experimentu 6.
4.6 Experiment 6

Experimentem 6 započala finální část mé diplomové práce, všechny dosavadní výsledky byly zužitkovány a použity v tomto experimentu. Na Obrázku 29 je vyobrazena směs tyrozinu a tyraminu s vodou. Píky v 5-6 minutě odpovídají tyrozinu a tyraminu, další kroky v experimentu 6 vedly k potvrzení této domněnky, že se opravdu jedná o tyrozin a tyramin. Pro lepší interpretaci výsledku poslouží obrázek 30, kde jasně vidíme, který z píků odpovídá tyrozinu a který tyraminu.

Obrázek 29 Chromatogram směsi tyrozinu, tyraminu a vody
Dalším důkazem toho, že se opravdu jedná o tyrozin a tyramin, je obrázek 31, kde je směs hydrolyzátu složeného z asparaginu, glutaminu, serinu, glycínku, alaninu, methioninu, valinu, cysteinu, leucinu, izoleucinu, tyrozinu, fenylalaninu, argininu, lyzinu, histidinu a prolinu o koncentraci 0,05 mM a hydrolyzátu s přídavkem tyrozinu a tyraminu. Ve 4-6 minutě vidíme jasný posun v koncentraci obou zmíněných sloučenin.
Obrázek 31 Chromatogram směsi hydrolyzátu a hydrolyzátu s přídavkem TYR a TYM

Poněvadž se nám podařilo úspěšně separovat jeden biogenní amin a jednu aminokyselinu, bylo snahou zjistit nejmenší možnou detekovatelnou koncentraci. Proto byla vytvořena koncentrační řada, která je na obrázku 32. Koncentrace směsi byly 0,075 mmol/l; 0,05 mmol/l; 0,025 mmol/l; 0,01 mmol/l a 0,0075 mmol/l. Na chromatogramu je jasně vidět, jak se se snižující koncentrací zmenšuje plocha píku.
Nejnižší detekovatelná koncentrace byla experimentálně zjištěna a činí 0,0005 mmol/l. Chromatogram je na obrázku 3. Díky této koncentraci můžeme stanovit množství příslušného BA a AMK i ve velmi malých koncentracích.
V dalším kroku se provedla opakovatelnost analýzy směsi tyraminu a tyrozinu o koncentraci 0,0025mmol/l. Tj, směs byla 10x podrobena stejně analýze. Cílem bylo zjistit, jestli metoda funguje. Z chromatogramu jednoznačně vidíme, že po celou dobu analyzy se chromatogram neměnil, tudíž můžeme s určitostí říct, že metoda funguje. Chromatogram je na obrázkě 34
Obrázek 34 Chromatogram, opakovatelnost na směsi tyrozínu a tyraminu o koncentraci 0,0025 mmol/l.

Na základě všech dosavadních výsledků, se metoda použila na reálné vzorky. Na obrázku 35 je vyobrazen chromatogram vzorku extra uzrálého sýru eidamského typu, který byl extrahován a poté 10x zředěn.
Pro úplnost a přesnost výsledků byla dále provedena opakovatelnost i na vzorku extra uzrálého sýru eidamského typu, který můžete vidět na chromatogramu na obrázku 36. Jak vidíme v chromatogramu, jednotlivé vzorky byly analyzovány hned po sobě a vloženy do jednoho chromatogramu. Velikosti píků se malinko liší. To může být způsobeno zanesením kolony, kolísáním tlaku v koloně, stářím kolony nebo chybou při chystání jednotlivých vzorků.
Další metodou pro komplexnost a přesnost výsledků je vytvoření grafu linearity pro tyrozín a tyramin. Linearita byla prováděna 2x a v textu je označena jako linearita I a linearita II. V tabulce 11 jsou uvedeny použité koncentrace, které byly u obou linearity stejné a k daným koncentracím jsou uvedeny plochy píků pro obě linearity označeny jako plocha I. a plocha II. pro tyrozín, v tabulce 13 pak hodnoty pro tyramin. Je v ní uvedena koncentrace příslušné AMK nebo BA. Všechny tyto hodnoty jsou zobrazeny v grafu 1.

Tabulka 11 Hodnoty pro tyrozín

<table>
<thead>
<tr>
<th>c [mmol/l]</th>
<th>plocha I. [mFU/s]</th>
<th>plocha II. [mFU/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0750</td>
<td>3941,0200</td>
<td>3975,5440</td>
</tr>
<tr>
<td>0,0500</td>
<td>2666,6400</td>
<td>2817,1180</td>
</tr>
<tr>
<td>0,0250</td>
<td>1440,5630</td>
<td>1486,6570</td>
</tr>
<tr>
<td>0,0100</td>
<td>608,5510</td>
<td>601,4200</td>
</tr>
<tr>
<td>0,0075</td>
<td>500,1030</td>
<td>479,5750</td>
</tr>
<tr>
<td>0,0050</td>
<td>354,9340</td>
<td></td>
</tr>
<tr>
<td>0,0025</td>
<td>161,9390</td>
<td></td>
</tr>
<tr>
<td>0,0010</td>
<td>74,4110</td>
<td></td>
</tr>
<tr>
<td>0,0001</td>
<td>70,0030</td>
<td>358,4450</td>
</tr>
</tbody>
</table>
Tabulka 12 Hodnoty tyrozinu v reálných vzorcích

<table>
<thead>
<tr>
<th>vzorek</th>
<th>plocha píku [mFU/s]</th>
<th>vzorek</th>
<th>plocha píku [mFU/s]</th>
<th>vzorek</th>
<th>plocha píku [mFU/s]</th>
<th>průměr</th>
<th>směrodatná odchylka</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>0,000</td>
<td>2A</td>
<td>0,000</td>
<td>3A</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>2A</td>
<td>0,000</td>
<td>2B</td>
<td>150,724</td>
<td>2C</td>
<td>109,843</td>
<td>86,856</td>
<td>77,947</td>
</tr>
<tr>
<td>3A</td>
<td>35,290</td>
<td>3B</td>
<td>68,542</td>
<td>3C</td>
<td>77,047</td>
<td>60,293</td>
<td>22,067</td>
</tr>
<tr>
<td>4A</td>
<td>210,783</td>
<td>4B</td>
<td>217,488</td>
<td>4C</td>
<td>203,542</td>
<td>210,604</td>
<td>6,975</td>
</tr>
<tr>
<td>5A</td>
<td>385,551</td>
<td>5B</td>
<td>300,655</td>
<td>5C</td>
<td>297,751</td>
<td>327,986</td>
<td>49,874</td>
</tr>
<tr>
<td>6A</td>
<td>192,172</td>
<td>6B</td>
<td>151,013</td>
<td>6C</td>
<td>173,280</td>
<td>172,155</td>
<td>20,603</td>
</tr>
<tr>
<td>7A</td>
<td>153,500</td>
<td>7B</td>
<td>183,187</td>
<td>7C</td>
<td>171,663</td>
<td>169,450</td>
<td>14,967</td>
</tr>
</tbody>
</table>

Výpočet množství tyrozinu v reálném vzorku:

Z rovnice lineární regrese pro linearity I, hodnoty vzorků dosazených do výpočtu jsou zprůměrovány. Všechny vzorky byly ředěny 10×, proto výsledek bude vynásoben 10×.
\[y = 51870x + 75,99 \]
\[86,856 = 51870x + 75,99 \]
\[10,866 = 51870x \]
\[x = 0,0002\text{mmol/l} \]
\[x = 0,002\text{mmol/l} \]

Převoz jednotek:

\[c = \frac{n}{V} \]
\[0,002 = \frac{n}{V} \]
\[n = 0,002\text{mmol} \]

\[M = \frac{m}{n} \]
\[181,19 = \frac{m}{0,002} \]
\[m = 0,362\text{mg} \]

Tabulka 13 Množství tyrozinu v reálných vzorcích

<table>
<thead>
<tr>
<th>vzorek</th>
<th>koncentrace [mmol/l]</th>
<th>koncentrace [mg/l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0,002</td>
<td>0,362</td>
</tr>
<tr>
<td>3</td>
<td>pod detekčním limitem</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0,026</td>
<td>4,711</td>
</tr>
<tr>
<td>5</td>
<td>0,049</td>
<td>8,878</td>
</tr>
<tr>
<td>6</td>
<td>0,019</td>
<td>3,443</td>
</tr>
<tr>
<td>7</td>
<td>0,018</td>
<td>3,261</td>
</tr>
</tbody>
</table>

U linearity II. chybí některé hodnoty ploch píku u dané koncentrace. To je pravděpodobně způsobeno chybou řešení. U vzorku 3, tj. extra uzrálý sýr je množství tyrozinu mimo detekční limit
Tabulka 14 Hodnoty pro tyramin

<table>
<thead>
<tr>
<th>c [mmol/l]</th>
<th>plocha I. [mFU/s]</th>
<th>plocha II. [mFU/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0750</td>
<td>2998,7330</td>
<td>3053,6280</td>
</tr>
<tr>
<td>0,0500</td>
<td>1982,9580</td>
<td>2234,2510</td>
</tr>
<tr>
<td>0,0250</td>
<td>1122,5970</td>
<td>1178,6640</td>
</tr>
<tr>
<td>0,0100</td>
<td>480,5590</td>
<td>483,6440</td>
</tr>
<tr>
<td>0,0075</td>
<td>349,0430</td>
<td></td>
</tr>
<tr>
<td>0,0050</td>
<td>243,2640</td>
<td>400,1600</td>
</tr>
<tr>
<td>0,0025</td>
<td>100,3130</td>
<td>330,6140</td>
</tr>
<tr>
<td>0,0010</td>
<td>74,7890</td>
<td>216,5680</td>
</tr>
<tr>
<td>0,0001</td>
<td>61,9330</td>
<td>192,6170</td>
</tr>
</tbody>
</table>

Graf 2 Linearita I. a II. pro tyramin

\[
y = 39327x + 190,2 \quad R^2 = 0,998
\]

\[
y = 39327x + 54,29 \quad R^2 = 0,998
\]
Tabulka 15 Hodnoty tyraminu v reálných vzorcích

<table>
<thead>
<tr>
<th>vzorek</th>
<th>plocha píku [mFU/s]</th>
<th>vzorek</th>
<th>plocha píku [mFU/s]</th>
<th>vzorek</th>
<th>plocha píku [mFU/s]</th>
<th>průměr</th>
<th>směrodatná odchylka</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>0,000</td>
<td>2A</td>
<td>0,000</td>
<td>3A</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>2A</td>
<td>0,000</td>
<td>2B</td>
<td>82,343</td>
<td>2C</td>
<td>89,809</td>
<td>57,384</td>
<td>49,836</td>
</tr>
<tr>
<td>3A</td>
<td>174,818</td>
<td>3B</td>
<td>141,944</td>
<td>3C</td>
<td>142,184</td>
<td>152,982</td>
<td>18,911</td>
</tr>
<tr>
<td>4A</td>
<td>101,870</td>
<td>4B</td>
<td>75,393</td>
<td>4C</td>
<td>101,792</td>
<td>93,018</td>
<td>15,264</td>
</tr>
<tr>
<td>5A</td>
<td>39,085</td>
<td>5B</td>
<td>46,453</td>
<td>5C</td>
<td>57,883</td>
<td>47,807</td>
<td>9,472</td>
</tr>
<tr>
<td>6A</td>
<td>58,843</td>
<td>6B</td>
<td>53,898</td>
<td>6C</td>
<td>76,319</td>
<td>63,020</td>
<td>11,780</td>
</tr>
<tr>
<td>7A</td>
<td>66,416</td>
<td>7B</td>
<td>75,089</td>
<td>7C</td>
<td>87,338</td>
<td>76,281</td>
<td>10,512</td>
</tr>
</tbody>
</table>

Výpočet množství tyraminu v reálném vzorku:

Z rovnice lineární regrese pro linearitu I, hodnoty vzorků dosazených do výpočtu jsou zprůměrovány. Všechny vzorky byly ředěny 10x, proto výsledek bude vynásoben 10x.

\[
y = 39327x + 54,99
\]

\[
57,384 = 39327x + 54,99
\]

\[
x = 0,00006mmol/l
\]

\[
x = 0,0006mmol/l
\]

Přepočet jednotek:

\[
c = \frac{n}{V}
\]

\[
0,0006 = \frac{n}{1}
\]

\[
n = 0,0006mmol
\]

\[
M = \frac{m}{n}
\]

\[
137,179 = \frac{m}{0,0006}
\]

\[
m = 0,082mg
\]
Na základě všech možných analýz bylo zjištěno množství tyrozinu a tyraminu v reálných vzorcích. Tyto hodnoty jsou uvedeny v tabulce 13 a 16. Nejvíce tyraminu je ve vzorku extra uzrálého sýru, nejvíce tyrozinu je ve vzorku č. 5, tj. pivo značky Pilsner Urquell. Tou- to metodou lze stanovit množství tyrozinu i tyraminu. Lze se touto metodou dále zabývat a pokusit se stanovit i zbývající AMK nebo BA.
ZÁVĚR

Tato práce byla zaměřena na současné stanovení vybraných volných aminokyselin a biogenních aminů pomocí vysokoučinné kapalinové chromatografie. Pro tuto práci bylo vybráno ke stanovení 6 biogenních aminů (kadaverin, putrescin, tyramin, fenylethylamin, histamin a agmatin) a k nim 6 příslušných aminokyselin (histidin, arginin, fenylalanin, ornitin, tyrozin a lyzin). Přes spoustu nevydařených pokusů se v této práci podařilo stanovit současně pouze tyrozin a tyramin. Byla provedena opakovanost na vzorcích i na přesných koncentracích, a to z důvodu přesnosti výsledků. Podařilo se stanovit množství tyrozínu a tyraminu v reálných vzorcích. Reálnými vzorky byly: čerstvý sýr (do 24 hodin před solením), uzrálý (8 týdnů) a extra uzrálý (12 měsíců), vzorky piva (Svijanský máz 11°, Pilsner Urquell 12°) a dva čerstvé fermentované trvanlivé masné výrobky - salámy Poličan.

Největší koncentrace tyrozinu byla v extra uzrálém sýru a největší koncentrace tyrozinu byla v pivu značky Pilsner Urquell.

Závěrem lze říci, že se podařilo stanovit jeden biogenní amin a jednu aminokyselinu a dokázat, že metoda, která je popsána v této diplomové práci, funguje a je potřeba s ní dále pracovat, aby bylo možné stanovit i další biogenní aminy a aminokyseliny.
SEZNAM POUŽITÉ LITERATURY

SEZNAM POUŽITÝCH SYMBOLŮ A ZKRATEK

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Název</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA</td>
<td>Biogenní amin</td>
</tr>
<tr>
<td>AMK</td>
<td>Aminokyselina</td>
</tr>
<tr>
<td>GC</td>
<td>Plynová chromatografie</td>
</tr>
<tr>
<td>MBTFA</td>
<td>N-methyl-bis(trifluoracetamid)</td>
</tr>
<tr>
<td>BSTFA</td>
<td>N,O-bis(trimethylsilyl)trifluoracetamid</td>
</tr>
<tr>
<td>TMSC</td>
<td>Trimethylchlorsilan</td>
</tr>
<tr>
<td>MTBSTFA</td>
<td>N-methyl-N-(terc-butyldimethylsilyl)trifluoracetamid</td>
</tr>
<tr>
<td>CZE</td>
<td>Kapilární zónová elektroforéza</td>
</tr>
<tr>
<td>HPCE</td>
<td>Vysokoúčinná kapilární elektroforéza</td>
</tr>
<tr>
<td>TLC</td>
<td>Tenkovrstvá chromatografie</td>
</tr>
<tr>
<td>HPLC</td>
<td>Vysokoúčinná kapalinová chromatografie</td>
</tr>
<tr>
<td>OPA</td>
<td>o-ftalaldehyd</td>
</tr>
<tr>
<td>DNS-Cl</td>
<td>1-dimethylaminonaftalen-5-sulfonyl chlorid, dansylchlorid</td>
</tr>
<tr>
<td>FMOC-Cl</td>
<td>9-fluorenylmethylchloroformát</td>
</tr>
<tr>
<td>AQC</td>
<td>6-aminoquinoyl-N-hydroxysuccinimidylkarbamát</td>
</tr>
<tr>
<td>HIS</td>
<td>Histidin</td>
</tr>
<tr>
<td>TYR</td>
<td>Tyrozin</td>
</tr>
<tr>
<td>LYZ</td>
<td>Tyramin</td>
</tr>
<tr>
<td>ARG</td>
<td>Arginin</td>
</tr>
<tr>
<td>PHE</td>
<td>Fenylalanin</td>
</tr>
<tr>
<td>ORN</td>
<td>Ornitin</td>
</tr>
<tr>
<td>HIM</td>
<td>Histamin</td>
</tr>
<tr>
<td>TYM</td>
<td>Tyramin</td>
</tr>
<tr>
<td>CAD</td>
<td>Kadaverin</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Compound</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
</tr>
<tr>
<td>PUT</td>
<td>Putrescin</td>
</tr>
<tr>
<td>PEA</td>
<td>Fenylethylamin</td>
</tr>
<tr>
<td>ACN</td>
<td>Acetonitril</td>
</tr>
</tbody>
</table>
SEZNAM OBRÁZKŮ

Obrázek 1 Syntéza histaminu [3] .. 12
Obrázek 2 Syntéza putrescinu, 1. metabolická dráha [8] .. 13
Obrázek 3 Syntéza putrescinu, 2. a 3. metabolická dráha [9, 10] ... 13
Obrázek 4 Syntéza ornitinu (močovinový cyklus) [8, 11] ... 14
Obrázek 5 Syntéza tyraminu [5] .. 14
Obrázek 6 Syntéza kadaverinu .. 15
Obrázek 7 Detoxikace histaminu [49] .. 16
Obrázek 8 Acylace primárního aminu pomocí acylchloridu [29] .. 22
Obrázek 9 Reakce acylační činidla N-methyl-bis(trifluoracetamid) (MBTFA) [30] 22
Obrázek 10 Derivatizační činidlo N,O-bis(trimethylsilyl)trifluoracetamid (BSTFA) [30] 22
Obrázek 11 Katalyzátor silylace, trimethylchlorsilan (TMCS) [30] ... 23
Obrázek 12 N-methyl-N-(terc-butyl)dimethylsilyl)trifluoracetamid (MTBSTFA) [30] 23
Obrázek 13 Schéma HPCE [17] .. 25
Obrázek 14 Reakce ninhydrinu s aminokyselinou a vznik hydrindantinu [9, 48] 27
Obrázek 15 Reakce ninhydrinu s R-H (prolin), R-OH (hydroxyprolin) [9] 27
Obrázek 16 Reakce OPA s aminokyselinou v prostředí thiolu [9] ... 28
Obrázek 17 Reakce dansylchloridu s aminokyselinou [9] ... 29
Obrázek 18 Reakce FMOC s aminokyselinou [25] ... 30
Obrázek 19 Reakce AQC s aminokyselinou [9] .. 31
Obrázek 20 Kapalinový chromatograf (HPLC) ... 35
Obrázek 21 Kapalinový chromatograf (HPLC) ... 36
Obrázek 22 Chromatogram separace lyzinu, kadaverinu a histaminu ... 46
Obrázek 23 Chromatogram A neředěný, chromatogram B ředění 1:49 .. 47
Obrázek 24 Chromatogram změny koncentrace přidaného derivatizačního činidla 49
Obrázek 25 Chromatogram změny reakčního času .. 50
Obrázek 26 Chromatogram směsi BA, histaminu, putrescinu a tyraminu 51
Obrázek 27 Chromatogram směsi AMK, ornitinu, argininu a histidinu 52
Obrázek 28 Chromatogram reakce FMOC-Cl s glycinem ve stejném poměru a v nadbytku FMOC-Cl .. 53
Obrázek 29 Chromatogram směsi tyrozinu, tyraminu a vody ... 54
Obrázek 30 Chromatogram směsi (TYR+TYM) a samostatně TYR a TYM 55
Obrázek 31 Chromatogram směsi hydrolyzátu a hydrolyzátu s přídavkem TYR a TYM

Obrázek 32 Chromatogram koncentrační řady

Obrázek 33 Chromatogram nejnižší možné detekovatelné koncentrace

Obrázek 34 Chromatogram, opakovatelnost na směsi tyrozínu a tyraminu o koncentraci 0,0025 mmol/l.

Obrázek 35 Chromatogram vzorku extra uzrálého sýru

Obrázek 36 Opakovatelnost na vzorku extra uzrálého sýru
SEZNAM TABULEK

Tabulka 1 Karcinogenita vybraných nitrosloučenin (TD₅₀[mg·kg⁻¹·den⁻¹]) [18]............. 17
Tabulka 2 Kritéria bezpečnosti potravin [22]... 18
Tabulka 3 Standardy a jejich zkratky použité v diplomové práci.. 36
Tabulka 4 Chemikálie a dodavatel... 37
Tabulka 5 Gradientová eluce ... 39
Tabulka 6 Gradientová eluce ... 40
Tabulka 7 Gradientová eluce ... 41
Tabulka 8 Gradientová eluce ... 42
Tabulka 9 Gradientová eluce ... 44
Tabulka 10 Číslování reálných vzorků.. 44
Tabulka 11 Hodnoty pro tyrozin.. 61
Tabulka 12 Hodnoty tyrozinu v reálných vzorcích... 62
Tabulka 13 Množství tyrozinu v reálných vzorcích... 63
Tabulka 14 Hodnoty pro tyramin... 64
Tabulka 15 Hodnoty tyraminu v reálných vzorcích... 65
Tabulka 16 Množství tyraminu v reálných vzorcích... 66
SEZNAM GRAFŮ

Graf 1 Linearita I. a II. pro tyrozín... 62
Graf 2 Linearita I. a II. pro tyramin... 64