Nutriční charakteristika skořápkového ovoce a jeho využití v gastronomii

Zuzana Šnajdrová
Univerzita Tomáše Bati ve Zlíně
Fakulta technologická
Ústav analýzy a chemie potravin
akademický rok: 2011/2012

ZADÁNÍ BAKALÁŘSKÉ PRÁCE
(PROJEKTU, UMĚLECKÉHO DÍLA, UMĚLECKÉHO VYKONU)

Jméno a příjmení: Zuzana ŠNAJDROVÁ
Osobní číslo: T09332
Studijní program: B 2901 Chemie a technologie potravin
Studijní obor: Technologie a řízení v gastronomii

Téma práce: Nutriční charakteristika skořápkového ovoce a jeho využití v gastronomii

Zásady pro vypracování:
1. Rozdělení, charakteristika a chemické složení skořápkového ovoce.
2. Výživové látky obsažené ve skořápkovém ovoce.
3. Gastronomické využití.
Rozsah bakalářské práce:
Rozsah příloh:
Forma zpracování bakalářské práce: tištěná

Seznam odborné literatury:

Vedoucí bakalářské práce: Ing. Petra Vojíšková
Datum zadání bakalářské práce: 6. ledna 2012
Termin odevzdání bakalářské práce: 21. května 2012

Ve Zlíně dne 15. února 2012

[Signatures]
PROHLÁŠENÍ

Prohlašuji, že

- beru na vědomí, že odevzdáváním diplomové/bakalářské práce souhlasím se zveřejněním své práce podle zákona č. 111/1998 Sb. o vysokých školách a o změně a doplnění dalších zákonů (zákon o vysokých školách), ve znění pozdějších právních předpisů, bez ohledu na výsledek obhajoby;
- beru na vědomí, že diplomová/bakalářská práce byla uložena v elektronické podobě v univerzitním informačním systému dostupná k nahlédnutí, že jeden výtisk diplomové/bakalářské práce bylo uloženo na příslušném ústavu Fakulty technologické UTB ve Zlíně a jeden výtisk byl uložen v vedoucího práce;
- byl/a jsem seznámen/a s tím, že na moji diplomovou/bakalářskou práci se plně vztahuje zákon č. 121/2000 Sb. o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon) ve znění pozdějších právních předpisů, zejm. § 35 odst. 3;
- beru na vědomí, že podle § 60 odst. 1 autorského zákona má UTB ve Zlíně právo na uzavření licenční smlouvy o užití školního díla v rozsahu § 12 odst. 4 autorského zákona;
- beru na vědomí, že podle § 60 odst. 2 a 3 mohu užít své dílo – diplomovou/bakalářskou práci nebo poskytnout licenci k jejímu využití jen s předchozím písemným souhlasem Univerzity Tomáše Bati ve Zlíně, která je oprávněna v takovém případě ode mne požadovat příměřný příspěvek na úhradu nákladů, které byly Univerzitou Tomáše Bati ve Zlíně na vytvoření díla vynaloženy (až do jejich skutečné výše);
- beru na vědomí, že pokud bylo k vypracování diplomové/bakalářské práce využito softwaru poskytnutého Univerzitou Tomáše Bati ve Zlíně nebo jinými subjekty pouze ke studijním a výzkumným účelům (tedy pouze k nekomerčnímu využití), nesou výsledky diplomové/bakalářské práce využit ke komerčním účelům;
- beru na vědomí, že pokud je výstupem diplomové/bakalářské práce jakýkoliv softwarový produkt, považuji se za součást práce rovněž i zdrojové kódy, popř. soubory, ze kterých se projekt skládá. Neodevzdání této součásti může být důvodem k neohlášení práce.

Ve Zlíně 6.8.2012

[Podpisy]

5 zákon č. 111/1998 Sb. o vysokých školách a o změně a doplnění dalších zákonů (zákon o vysokých školách), ve znění pozdějších právních předpisů, § 47 Zveřejnění závěrečných prací.
(1) Vysoká škola nevelkostně zveřejňuje disertační, diplomové, bakalářské a riaditeľské práce, u kterých proběhl obhajoba, včetně podobných výroků o výsledku obhajoby právnických osob a právnických subjektů, které jsou zveřejňovány v přístupové databázi zveřejňovaných právnických prací, kterou zpracuje. Zveřejnění zveřejňuje stanovivat větší předpis vysoké školy.
(2) Zloučitelné, diplomové, bakalářské a riegové práce odvážené uchazečem k obhajobě musí být těmito nejméně před pracovními dny před kondímem obhajobě zveřejněny k nakládění vrchními v místě určeném vrchním příslušníkem vysoké školy nebo jen v tak učině, v místě pracoviště vysoké školy, jde se může konat obhajoba práce. Každý si může ze zveřejněně práce pokračovat na své následky výsledy, opravy nebo rozpracování.

(3) Platí, že odvážením práce autor souhlasí se zveřejněním své práce podle tohoto zákona, bez ohledu na výsledky obhajoby.

(4) Zák. č. 121/2000 Sb. o právu autorském, o právech soudních s právem autorským a o změně některých zákonů (autorský zákon) ve znění pozdějších právních předpisů, § 33 odst. 1:

(3) Do práva autorského také nezasahuje škola nebo školské či vyučovací zařízení, užijí-li někdo za účelem přísněho nebo neoprávněného hospodaření nebo osobního posudku k vlastní nebo k ostatním poděláním dílo vydávání školák nebo studentem ke vzniknutí školních nebo studijních povinností vyplývajících z jeho právního vztahu ke škole nebo školnímu či vyučovacímu zařízení (štátní dílo).

(5) Zák. č. 121/2000 Sb. o právu autorském, o právech soudních s právem autorským a o změně některých zákonů (autorský zákon) ve znění pozdějších právních předpisů, § 6 do řádu díla:

Školka nebo školní či vyučovací zařízení mají za obvyklých podmínek právo na uzavírání Českého směrnice o ulici školního díla (§ 35 odst. 3). Uzavírání autor školního díla uděluje svěřené bez vztahu důvodu, mohu se týmtosobu stát až většího nároku, nebo této uděluje svěřené. Ustavení § 35 odst. 3 zákonné výroků.

(2) Nese-li způsobu jinak, může autor Školního díla své dílo užití či poskytnout jinému licencii, není-li to v rozporu s oprávněnými zájmy školy nebo školního či vyučovacího zařízení.

(3) Škola nebo školní či vyučovací zařízení jsou oprávněny požadovat, aby jím autor školního díla z výběru jím dosáhnutého v souvislosti s ulici dílo či poskytnutím licencii podle odstavce 2 platného případě na úhradu nákladů, které na vytvoření díla vznikly, a to podle okolností až do jejich skutečné výše, případě se přihlásí k výběru výběru dosáhnutého školou nebo školním či vyučovacím zařízením s ulici školního díla podle odstavce 3.
ABSTRAKT

Cílem bakalářské práce bylo charakterizovat jednotlivé druhy skořápkového ovoce. U jednotlivých druhů byl popsán výskyt a charakteristika plodů, jejich chemické složení a možné využití skořápkového ovoce v gastronomii. Jednotlivé látky obsažené ve skořápkovém ovoci byly charakterizovány především z hlediska jejich významu ve výživě. Ořechy jsou považovány za součást zdravé výživy. Nejčastěji se obsažené látky uplatňují proti některým druhům rakovin, osteoporóze, zlepšují trávení, snižují hladinu LDL cholesterolu; ovlivňují stav pokožky a vlasů, činnost srdce i duševní činnost.

Klíčová slova: ořechy, chemické složení, gastronomie, výživa, zdraví

ABSTRACT

The aim of this thesis was to characterize individual species of nuts. The incidence and characteristics of nuts, chemical composition and possible use of nuts in gastronomy were described for particular species. The individual compounds in nuts were primarily characterized in terms of their importance in nutrition. Nuts are considered to be a part of healthy nutrition. Most often they work against some cancer, osteoporosis, they improve digestion, lower levels of LDL cholesterol; they influence the state of skin, hair, heart and mental activity.

Keywords: nuts, chemical composition, gastronomy, nutrition, health
Na tomto místě bych chtěla poděkovat vedoucí mé bakalářské práce Ing. Petře Vojtíškové za cenné rady, pomoc a trpělivost při vedení mé bakalářské práce.

Prohlašuji, že odevzdaná verze bakalářské/diplomové práce a verze elektronická nahrána do IS/STAG jsou totožné.

V Kroměříži dne Zuzana Šnajdrová
ÚVOD.. 10
1 SKOŘÁPKOVÉ OVOCE .. 11
2 ROZDĚLENÍ SKOŘÁPKOVÉHO OVOCE .. 13
 2.1 VLAŠSKÉ ORECHY .. 13
 2.1.1 Chemické složení .. 14
 2.2 LÍSKOVÉ ORECHY .. 15
 2.2.1 Chemické složení .. 17
 2.3 MANDLE .. 18
 2.3.1 Chemické složení .. 18
 2.4 PARA ORECHY .. 19
 2.4.1 Chemické složení .. 20
 2.5 ORECHY KEŠU ... 20
 2.5.1 Chemické složení .. 21
 2.6 ARAŠÍDY ... 21
 2.6.1 Chemické složení .. 22
 2.7 KASTANY ... 22
 2.7.1 Chemické složení .. 23
 2.8 PEKANOVÉ ORECHY ... 24
 2.8.1 Chemické složení .. 24
 2.9 PISTÁCIE .. 24
 2.9.1 Chemické složení .. 25
 2.10 PINOVÉ ORECHY ... 26
 2.10.1 Chemické složení ... 27
 2.11 KOKOSOVÉ ORECHY ... 27
 2.11.1 Chemické složení ... 28
 2.12 MACADAMIA .. 28
 2.13 KEMIRIS .. 29
 2.14 BEHENOVÉ ORECHY ... 30
 2.15 BETELOVÉ ORECHY ... 29
3 LÁTKY OBSAŽENÉ VE SKOŘÁPKOVÉM OVOCI ... 31
 3.1 LIPIDY ... 31
 3.2 BÍLKOVINY .. 32
 3.3 SACHARIDY .. 33
 3.4 VLÁKNINA .. 33
 3.5 VITAMINY ... 34
 3.5.1 Vitamin C ... 35
 3.5.2 Thiamin ... 35
 3.5.3 Riboflavin ... 36
 3.5.4 Niacin .. 36
 3.5.5 Kyselina pantothenová .. 36
3.5.6 Pyridoxin .. 36
3.5.7 Kyselina listová .. 36
3.5.8 Biotin ... 36
3.5.9 Vitamin A .. 36
3.5.10 Vitamin E .. 37
3.6 MINERÁLNÍ LÁTKY .. 38
3.6.1 Vápník ... 38
3.6.2 Hořčík ... 39
3.6.3 Draslík ... 39
3.6.4 Fosfor ... 39
3.6.5 Sodík ... 39
3.6.6 Železo ... 39
3.6.7 Zinek ... 40
3.6.8 Měď ... 40
3.6.9 Mangan ... 40
3.6.10 Selen ... 40
3.7 FYTOLÁTKY .. 40
4 VYUŽITÍ SKOŘÁPKOVÉHO OVOCE V GASTRONOMII 42
4.1 VLAŠSKÉ OŘECHY ... 42
4.2 LÍSKOVÉ OŘECHY ... 43
4.3 MANDLE ... 44
4.4 ARAŠÍDY ... 45
4.5 KOKOSOVÉ OŘECHY ... 46
4.6 KAŠTANY .. 47
4.7 OŘECHY KEŠU .. 47
4.8 MACADAMIA A KEMIRIS 48
4.9 PINIOVÉ OŘÍŠKY ... 48
4.10 PISTÁCIE .. 48
ZÁVĚR ... 49
SEZNAM POUŽITÉ LITERATURY 50
SEZNAM OBRÁZKŮ .. 54
SEZNAM TABULEK .. 55
ÚVOD

Ovoce je rozsáhlá skupina potravin o různém složení. Jedná se o plody a semena rozmamitých rostlin jak pěstovaných, tak rostoucích planě. Ovoce se dělí na jádrové, peckové, bobulové, skořápkové a dužnaté plody nepravé a sdružené. Skořápkové plody tvoří zvláštní skupinu ovoce. Ovoce je tvořeno zhruba 60-96 % vody, kdežto ořechy obsahují pouze kolem 5 % vody.

Cílem bakalářské práce bylo charakterizovat celou skupinu skořápkového ovoce, dále se podrobněji zabývat jednotlivými druhy ořechů, chemickým složením plodů a význam látek přítomných v ořeších. V kapitole Gastronomické využití je uvedeno nejčastější uplatnění vybraných druhů skořápkového ovoce.
1 SKOŘÁPKOVÉ OVOCE

Skořápkovým ovocem rozumíme plody stromů a keřů, které jsou poměrně náročné na sluneční svit, teplo a půdu. Jsou charakteristické svou tvrdou plodovou stěnou, která obklopuje semená určené ke konzumaci. Častěji se setkáváme spíše s označením ořechy, suché ovoce [1].

Ořechy obsahují zhruba polovinu tuku své hmotnosti, například ořech kešu obsahuje 42 g, makadamový ořech až 73 g tuku na 100 gramů. V průměru jejich kalorická hodnota dosahuje 2891 kJ na 100 g, řadí se tedy mezi kaloricky vydatné potraviny. Většina ořechů je bohatá na polynenasycené mastné kyseliny, výjimkou tvoří para ořechy a kokos, kde převažuje nasycené tuky, neobsahují ovšem cholesterol. Nejvyšší obsah vícenásobných nenasycených tuků obsahují mandle, vlašské a lískové ořechy. Jsou bohaté na bílkoviny, dále na vitaminy a minerální látky. Z vitaminů jsou především zastoupeny vitaminy skupiny B a vitamin E. Z minerálních látek obsahují draslík, hořčík, vápník, fosfor a železo. Para ořechy mají delší trvanlivost. Loupané můžou být pražené a solené. Dále se tyto vyloupané ořechy prodávají v různých podobách:

Ořechy jsou považovány jako součást zdravé výživy i přes zmíněný vyšší obsah lipidů. Snižují také hladinu cholesterolu v krvi i hladinu aminokyselin homocysteinu. Dále obsahují nerozpustnou vlákninu, která velmi málo váže vodu a pomáhá proti zácpě. Optimalní příjem vlákniny se uvádí v rozmezí 40 až 50 gramů denního příjmu. Ořechy patří
mezi potraviny s nízkým glykemickým indexem – pod 30, což znamená, že sacharidy, obsažené ve skořápkových plodech, vyvolávají slabší zvýšení cukru v krvi. Například burské ořechy mají hodnotu 20, vlašské ořechy 15. Pravidlem je, že čím vyšší glykemický index, tím je sacharid rizikovější z dietologického hlediska. Mezi rizikové potraviny jsou řazeny ty potraviny, které mají glykemický index 50 až 100 [5-8].
2 ROZDĚLENÍ SKOŘÁPKOVÉHO OVOCE

Skořápkové ovoce můžeme rozdělit podle druhu na vlašské ořechy, lískové ořechy, mandle, para ořechy, ořechy kešu, arašidy, kaštany, pekany, pistácie, piniové ořechy a kokosové ořechy, další méně známé druhy jako macadamia, kemiris a behenové ořechy.

2.1 Vlašské ořechy

Vlašské ořechy jsou plody stromu ořešáku královského (*Juglans regia*), který dosahuje značných rozměrů a dorůstá do výšky až 45 metrů. Lidově je tento dlouhověký strom nazýván ořechem vlašským. Původem pochází z Malé Asie a Kavkazu, dále byl rozšířen do Evropy, Středozemí, ale i do Ameriky a Číny. Dnes se pěstuje téměř po celém světě, kde jsou vhodné klimatické podmínky. Vlašský ořešák je známý jsou schopností se přizpůsobit vlivům vnějšího prostředí. Ve starověkém Řecku a Římě byl považován za symbol plodnosti [1,5,9,10].

Mladá jádra mají mléčně bílou barvu a sladkou chuť. Konzumují se jako čerstvá, sušená a často se nakládají. Sušené vlašské ořechy mají hořkosladkou chuť. Lze je koupit jako vyloupané, nasekané nebo mleté. Mají širokou škálu využití jak na sladké, tak na slané výrobky [3].

Dosažením zralosti plody spadnou ze stromu na zem z ochranného pouzdra nebo i s pouzdrem. Dozrávají od srpna do září. Jeden strom plodí až 70 kg ořechů ročně. Z čeledi ořešákovité (*Juglandaceae*) je známo více druhů, ne však všechny plody jsou pro člověka poživatelné. Nejznámější druhy ořešáku královského jsou kamenáč velký, křapáč obrovský, papírky a ořešák hroznovitý. Liší se náročnosti na pěstování a na klimatické podmínky. Lze mezi nimi najít nepatrné rozdíly ve složení a vzhledu plodu [1,5,10].

Plody kamenáče velkého (*Juglans regia var. durissima*) se vyznačují velmi tvrdou skořápkou a hůře rozlousknutelným jádrem. Nejčastěji jsou oválného, kulovitého nebo kónického tvaru. Jádro je nasládlé chuti se světle hnědým osemením. Kamenáče jsou spíše vyznávají nenáročností na podnebí a půdu ve srovnání s ostatními skupinami ořešáků [1,10].

Křapáče obrovské (*Juglas regia var. maxima*) jsou vhodné pro teplejší oblasti. Plody jsou větší velikosti a většinou vejcovitého tvaru. Středně velké jádro pokryvá křehká, často neúplně uzavřená skořápka, která se dá lehce oddělit. Její povrch je hrubě zbrázděný, ně-
kdy i dírkovitý. Jádra nejsou vhodná ke skladování, využívají se v čerstvém stavu. Z polozralých plodů se vyrábějí kompoty, likéry apod. [1].

Papírky (Juglans regia var. tenera) se vyznačují plody střední až nadprůměrné velikosti. Mají pískově žlutou skořápkou, která je snadno rozlousknutelná. Mezi nejznámější odrůdy patří Apollo, Jupiter, Mars a Saturn [1].

Stromy ořešáku hroznovitého (Juglans regia var. fertilis) mají v jednom hroznu 9-24 plodů. Velikost plodů je ovlivněna množstvím v hroznu. Čím je jich více v jednom hroznu, tím jsou menší. V porovnání s plody ostatních skupin jsou drobnější, kulovitého až oválného tvaru, bez výraznějšího hrotu. Polopapírovitá či tvrdá skořápká je téměř hladká. Drobné jádro má mírně nasládlou chuť, zcela vyplňuje prostor pokrytý skořápkou [1].

2.1.1 Chemické složení

Vlašské ořechy neloupané mají energetickou hodnotu 1242 kJ, kdežto loupané 2717 kJ. Plody ořešáku jsou s nepatrnými rozdíly podle odrůd bohaté na tuky, jejich obsah se pohybuje kolem 65 %, z nichž 73 % se skládá z polynenasycených mastných kyselin. Z mastných kyselin je obsažena ze 7 % kyselina linolenová. Obsah bílkovin se pohybuje kolem 11-19 %. Dalšími významnými látkami jsou sacharidy, vitaminy a minerální látky. Obsah sacharidů bývá zhruba 16 g na 250 g vlašských jader. Z minerálních látek jsou to především: vápník, fosfor, hořčík, zinek, mangan, z vitaminů vitamin A, C a vitaminy skupiny B. Čerstvě sklizené plody mají až 40 % vody, její obsah se sušením sníží na 7-8 %, což prodlouží jejich trvanlivost až na 2 roky [2,3,6,10,12]. Chemické složení vlašských ořechů je uvedeno v Tab. 1.
Tab. 1: Obsah látek ve 100g vlašských ořechů [2,13]

<table>
<thead>
<tr>
<th>Složka</th>
<th>Zastoupené množství</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuky</td>
<td>g 60</td>
</tr>
<tr>
<td>Bílkoviny</td>
<td>g 15,9</td>
</tr>
<tr>
<td>Sacharidy</td>
<td>g 16,5</td>
</tr>
<tr>
<td>Voda</td>
<td>g 3,9</td>
</tr>
<tr>
<td>Vitamin C</td>
<td>mg 5,5</td>
</tr>
<tr>
<td>Vitamin E</td>
<td>mg 3,12</td>
</tr>
<tr>
<td>Beta-karoten</td>
<td>μg 48</td>
</tr>
<tr>
<td>Vitamin B<sub>2</sub></td>
<td>μg 12</td>
</tr>
<tr>
<td>Vitamin B<sub>1</sub></td>
<td>μg 0,4</td>
</tr>
<tr>
<td>Biotin</td>
<td>mg 20</td>
</tr>
<tr>
<td>Vápník</td>
<td>mg 91</td>
</tr>
<tr>
<td>Fosfor</td>
<td>mg 355</td>
</tr>
<tr>
<td>Draslík</td>
<td>mg 571</td>
</tr>
<tr>
<td>Sodík</td>
<td>mg 4</td>
</tr>
<tr>
<td>Hořčík</td>
<td>mg 144</td>
</tr>
</tbody>
</table>

2.2 Lískové ořechy

Lískové ořechy jsou plody malých stromů či keřů lísky (*Corylus*), která se vyskytuje především v mírných pásmech Asie, Evropy a Ameriky. Je známo asi dvacet druhů dřevin - *Corylus*, vyšlechtěny jsou tři druhy: *Corylus avellana*, *Corylus maxima*, *Corylus avellana x C. maxima*. Lískové ořechy se nejvíce pěstují v Turecku, Rusku, Zakavkazsku, Itálii, Francii a Anglii. Líska kvete už v únoru a březnu. Turecko tvoří až 65 % z celkové světové produkce. Plod se nachází v listenovém obalu. Plody jsou využívány jak v potravinářském průmyslu, tak v kosmetice a farmacii [1,2,9,10,14,15].

Poslední vyšlechtěnou skupinou tvoří hybridy, což jsou kříženců lombardských a zellských odrůd (*Corylus avellana x C. maxima*). Pravděpodobně byly dovezeny Římany z Řecka či Damašku. Tvar plodů je různých tvarů, často ze stran mírně zploštělý a podlouhlý. Středně tlustá skořápká světle hnědé barvy je mírně rýhovaná. Punčoška pevně objímající plod může být delší nebo stejně dlouhá jako oříšek. Nejvýznamnějším křížencem je odrůda Webbova [1,10].
2.2.1 Chemické složení

Lísková jádra mají vysokou energetickou hodnotu, která je u loupaných jader 2757 kJ. Obsah vody tvoří asi 8 %. Dále se vyznačují vysokým zastoupením tuků, což je v průměru kolem 63 %, obsah sacharidů se uvádí 7-14 %, bílkoviny kolem 17 %. Z minerálních látek jsou zastoupeny draslík, fosfor, vápník, hořčík, železo, měď a další stopové prvky. Z vitaminů je to skupina vitaminu B, nejvíce B_1 a B_2, dále pak vitamin E, provitamin A a nepatrné množství vitaminu C, uvádí se 3-30 mg ve 100g lískových jader [1,10]. Chemické složení je uvedeno v Tab. 2

Tab. 2: Obsah látek ve 100g lískových ořechů [2]

<table>
<thead>
<tr>
<th>Složka</th>
<th>Zastoupené množství</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuky</td>
<td>g</td>
</tr>
<tr>
<td>Vitamin E</td>
<td>mg</td>
</tr>
<tr>
<td>Biotin</td>
<td>mg</td>
</tr>
<tr>
<td>Hořčík</td>
<td>µg</td>
</tr>
<tr>
<td>Vitamin B_2</td>
<td>µg</td>
</tr>
<tr>
<td>Vitamin B_1</td>
<td>mg</td>
</tr>
<tr>
<td>Železo</td>
<td>mg</td>
</tr>
</tbody>
</table>

Obr. 2. Lískový ořech [16]
2.3 Mandle

Mandle jsou plody nízkého stromu zvaného mandloň obecná (*Amygdalus communis* L.), která je příbuzná s broskvověmi a dalšími peckovinami. Patří do čeledi růžovitých (*Rosaceae*). Hlavní rozdělení mandloně je na mandloně var. *dulcis* se sladkým jádrem a var. *amara* s hořkým jádrem. Hořké mandle se dokonce v některých státech, jako např. USA, neprodávají. Plodem je peckovice. Vyznačuje se nejedlým oplodím, kde jádro uzavírá děrovaná pecka. Přesný původ mandloně není známý, ale pravděpodobně pochází ze západní Asie díky dochovaným památkám o tom, že byla pěstována již ve středověké Asýrii a Persii. V jižní Evropě jsou významné mandloňové plantáže. Stromy mandloně se pěstují nejen díky jádrům, ale i aromatickému oleji, který je dále využíván v lékařství a kosmetickém průmyslu. Mandle posilují imunitní systém, zvyšují plodnost u mužů, podporují činnost srdce. Uplatňují se v boji proti některým družím rakovin, osteoporóze, zlepšují stav pokožky a vlasů, zlepšují trávení, činnost srdce i duševní činnost [1,3,10,17].

![Obr. 3. Mandle](image)

2.3.1 Chemické složení

Mandle jsou energeticky vydatné potraviny s hodnotou 2484 kJ, loupané mandle 2757 kJ, mandlový olej má energetickou hodnotu 3879 kJ. Jádra obsahují až 50 % oleje, 16-30 % bílkovin a 4-8 % sacharidů. Z polynenasycených mastných kyselin tvoří 10,8 g kyselina linoleová. Jsou významným zdrojem vitaminů skupiny B, především vit. B₂, dále kyseliny listové a vitaminu E. Obsahují především z minerálních látek značné množství vápníku a hořčíku, dále fosfor, draslík, železo. Hořké mandle jsou uplatňovány především ve farmaceutickém průmyslu díky přítomnosti jedovatého glykosidu amygdalinu, pří jehož rozkladu dochází k uvolňování jedovatého kyanovodíku, jeho obsah se pohybuje kolem
5 %. V malé dávce tento glykosid obsahují i sladké mandle. [2,10,19]. Chemické složení mandlí je uvedeno v Tab. 3.

<table>
<thead>
<tr>
<th>Složka</th>
<th>Zastoupené množství</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuky</td>
<td>50,3</td>
</tr>
<tr>
<td>Bílkoviny</td>
<td>20,2</td>
</tr>
<tr>
<td>Sacharidy</td>
<td>19,5</td>
</tr>
<tr>
<td>Voda</td>
<td>4,7</td>
</tr>
<tr>
<td>Vitamin E</td>
<td>26,1</td>
</tr>
<tr>
<td>Biotin</td>
<td>0,4</td>
</tr>
<tr>
<td>Vitamin C</td>
<td>5,0</td>
</tr>
<tr>
<td>Vitamin B₁</td>
<td>0,2</td>
</tr>
<tr>
<td>Vitamin B₂</td>
<td>0,6</td>
</tr>
<tr>
<td>Hořčík</td>
<td>258</td>
</tr>
<tr>
<td>Železo</td>
<td>4,1</td>
</tr>
<tr>
<td>Draslík</td>
<td>785</td>
</tr>
<tr>
<td>Vápník</td>
<td>246</td>
</tr>
<tr>
<td>Fosfor</td>
<td>467</td>
</tr>
<tr>
<td>Sodík</td>
<td>12</td>
</tr>
</tbody>
</table>

2.4 Para ořechy

Para ořechy jsou plody stromu juvie ztepilé (Bertholetia excelsa) dorůstajícího až do 50 metrů. Pochází z Brazílie. Nazývají se také juviové ořechy či brazilské kaštany. Strom se vyskytuje u břehů Amazonky a Orinoka a roste planě. Dobře se mu daří v jihoamerických tropických pralesech. Plody zvané tobolky jsou oválného tvaru podobné kokosovým ořechům. Jedna tobolka váží až 2 kg. Tobolka s průměrem 30 cm obsahuje
25-40 trojhranných ořechů, které jsou poskládány jako dílky pomeranče. Skořápka je dosti tvrdá, těžko rozlousknutelná. Plody jsou, po vyjmutí ze skořákpy, náchyně k rychlému žluknutí. Z ořechů se lisuje jedlý olej bohatý na kyselinu linolovou a olejovou [2,9,10,17].

Obr. 4. Para ořechy [20]

2.4.1 Chemické složení

Jádra obsahují velmi značné množství tuku, jehož množství se uvádí až 70 % v jedlém podílu. Kalorická hodnota je 2803 kJ ve 100g jader. Jádra obsahují 17 % bílkovin, 7 % sacharidů, značný obsah vitaminů skupiny B, vitaminu E a vlákniny. Ze všech ořechů mají největší obsah hořčíku, mnoho draslíku, vápníku, fosforu, dále železo, zinek a selen [2,10].

2.5 Ořechy kešu

Jedná se o plody stromu ledvinovníku západního (*Anacardium occidentale*), jehož původní výskyt byl v povodí Amazonky, odkud se rozšířil do ostatních zemí tropické Ameriky, jihovýchodní a jižní Asie, do Afriky a Oceánie. Hlavními vývozci jsou Brazílie, Indie, Mosambik a Tanzanie. Strom šedavé barvy dorůstá do výšky 7-18 m. Plody jsou ledvinovitého tvaru s tlustou, kožovitě rohovitou hnědozelenou skořápou. S růstem plodu vzniká tzv. nepravý plod hruškovitého tvaru [1,9].

Jádra jsou bělavé barvy, 3-4 cm dlouhá, sladké chuti a drobivé konzistence. Jádra se prodávají pouze vyloupané, protože k jejich získání je nutný dlouhodobý zážrěv. Konzumace těchto plodin prospívá kůži, sliznicí a očím. Pozitivní účinek prokazují při onemocnění nervové soustavy a přiznivě působí proti kardiovaskulárnímu onemocnění. Pro tech-
nické a potravinářské účely se využívá vylisovaný olej z jader. Skořápka ořechů má dezinfekční účinky díky obsahu smolnatého oleje - kardolu, jehož obsah se pohybuje v rozmezí 30-35 %. Nepravý plod, jablko kešu, se uplatňuje při výrobě sirupů, šťáv, marmelád, marinád i alkoholických nápojů [1,2,3,17,21].

Obr. 5. Ořechy kešu [22]

2.5.1 Chemické složení

Energetická hodnota ořechů kešu se pohybuje okolo 2393 kJ ve 100g jader. Nejvyšší zastoupení v jádrech tvoří tuky s podílem 46,2 %, obsah sacharidů 26,4 %, bílkovin 19,6 %, minerálních látek 2,7 % a vlákniny 1 %. Z minerálních látek je zastoupen především hořčík s obsahem 267 mg ve 100g a z vitaminů jsou to vitaminy skupiny B [1,2].

2.6 Arašídy

Burským oříškům jsou přiřazovány příznivé účinky jako lék na nervovou soustavu, podpora krvetorby, pomáhají při látkové přeměně a krevního oběhu, kladně působí při nemocech srdce. Dále upravují stav některých kožních onemocnění. Uvádí se také, že zabraňují kazivosti zubů. Při nesprávném sušení jsou často napadeny plísněmi, které produkují aflatoxiny [2,3].
2.6.1 Chemické složení

Čerstvé burské ořechy mají menší energetickou hodnotu (2372 kJ) oproti praženým, kde je tato hodnota až 2448 kJ. Arašídy jsou bohaté na tuky (38-55 %), dále obsahují 24-35 % bílkovin, sacharidy, minerální látky, zejména vápník a hořčík s obsahem (181 mg hořčíku ve 100g jader) [2,3].

2.7 Kaštany

Plody Kaštanovníku jedlého (Casstanea sativa), jako jedny z nejstarších plodin, byly sbírány už v době kamenné. Kaštanovník dorůstá výšky 30 m a dožívá se stáří až 500 let. Jako hlavní oblast pro pěstování jsou mírné a jižní části Evropy, zejména Itálie, Francie a Maďarsko. Je známo více jedlých druhů, například japonský druh Castanea crenata a další druhy tohoto stromu, dále již vyhynulý druh Castanea dentata ze Severní Ameriky. Většina kaštanů se dováží z Francie a Španělska. Plody koňského kaštanu (Aesculus hippocastanum), okrasného stromu známého pod názvem jírovec maďal, jsou nepoživatelné a slouží ke krmení zvěře [1,9,10].

Plody jsou velké kulovitého až protáhlého tvaru se slupkou tmaňohnědé barvy, po odstranění slupky je jádro smetanově bílé. Zralé plody se dají dobře loupat. Plody se dělí dle velikosti na kaštany (5-12 g) a maróny (12-20 g). Kaštany se nedoporučuje jíst syrové nejen kvůli obsahu kyseliny tříslové, která blokuje vstřebávání železa, ale i díky nepříjemné chuti. Konzumují se sušené, vařené nebo pečené. Mimo sezonu jsou k dostání v sušené podobě, plechovkách, mražené i jako kaštanové pyré. Používají se také jako surovina pro výrobu mouky, která se využívá při výrobě nádivek. Listy kaštanu byly ve středověku využívány k léčbě kašle, jejichž složky jsou i dodnes jako součástí některých průmyslových léků proti kašli [1,3,9,10].
Kaštany mají vhodné složení pro osoby trpící revmatismem, ledvinovými chorobami, vysokým krevním tlakem. Konzumace pro tyto osoby je vhodná díky nízkému obsahu sodíku. Další pozitivní účinek je kvůli obsahu kyseliny tříslové, zejména ve slupce, která působí proti zánětům a průjmu [10].

Obr. 7. Kaštany [24]

2.7.1 Chemické složení

Kaštany tvoří výjimku ze skořápkového ovoce díky vysokému obsahu sacharidů 35-60 %, zejména škrobů, z toho cukry tvoří 15 %. Zanedbatelný je obsah bílkovin a tuků. Z vitaminů jsou obsaženy především vitamin C a E, vitaminy skupiny B, především vit. B₂ a B₆. Mezi minerální látky, které jsou obsažené v kaštanech v početnějším množství, patří draslík, fosfor, hořčík, vápník a železo. Ve slupce jsou obsaženy látky zvané třísloviny [1,10]. Chemické složení je uvedeno v Tab. 4

Tab. 4: Obsah látek ve 100g kaštanů [1,10]

<table>
<thead>
<tr>
<th>Složka</th>
<th>Zastoupené množství</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sacharidy</td>
<td>g</td>
</tr>
<tr>
<td></td>
<td>30-40</td>
</tr>
<tr>
<td>Bílkoviny</td>
<td>g</td>
</tr>
<tr>
<td></td>
<td>6-8</td>
</tr>
<tr>
<td>Tuky</td>
<td>g</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Vitamin C</td>
<td>mg</td>
</tr>
<tr>
<td></td>
<td>40</td>
</tr>
<tr>
<td>Vitamin B₁</td>
<td>mg</td>
</tr>
<tr>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>
2.8 Pekanové ořechy

Obr. 8. Pekanové ořechy [26]

2.8.1 Chemické složení

Nejvyšší zastoupení v jádru tvoří tuky s hodnotou dosahující až 71 %. Bílkovin je do 10 %. Z vitaminů je nejvíce obsažen vitamin A a vitamin B. Nejvíce zastoupené minerální látky jsou vápník, fosfor, dále draslík a železo [10].

2.9 Pistácie

Pistácie (Pistacia vera) jsou plody nízkého stromu či keře z čeledi ledvinovníkovité (Anacardiaceae), který je vysoký 5-7 m. Pistácie pravá je původem ze střední Asie a teplé oblasti kolem Středozemního moře, kde byla poté dovezena do Říma. V dnešní době se pistácie pravá pěstuje především v Turecku, Íránu, na Sicílii, v Afganistánu, Tunisu, Sýrii, Řecku a v jižní Francii. Plodem je peckovice elipsoidního tvaru s poměrně tenkou a hladkou slupkou. Je známo jedenáct druhů pistácií. Tvrdá skořápka při zrání puká. Díky své-
mu zbarvení bývají jádra nazývány zelenými mandlemi, jejich povrch je tvořen blankou skořicově hnědé barvy. Pistácie jsou dlouhé až 20 mm, k vrcholu zašpičatělé. Jádra se konzumují jak syrová, tak pražená i solená. Jsou prodávána v neloupané formě. Nejčastěji se uplatňují v potravinářství, kde slouží jako ochucovadla nebo jsou také využívána k barvení. Z vnitřní slupky se získává barvivo tanin. Díky obsaženým látkám v jádrech podporují imunitní systém, soustředění a intelekt, také prospívají cévám [1,2,9,10,17,27].

Obr. 9. Pistácie [28]

2.9.1 Chemické složení

Pistációvá jádra mají energetickou hodnotu, 2431 kJ ve 100g. Největší procentuální zastoupení mají tuky, až 62 %. Jsou dobrým zdrojem bílkovin, jejichž množství se pohybují kolem 20 %, sacharidy obsahují 15-18 %, voda asi 8 %. V pistációvých jádrech je obsažen ve vysokém množství vitamin A, také vitaminy skupiny B a vitamin E. Pistácie mají největší obsah želeза ze všech skořápkových plodů. Z minerálních látek jsou přítomny draslík, fosfor, vápínek, hořčík [2,10,27]. Chemické složení je uvedeno v Tab. 5.
Tab. 5: Obsah látek ve 100g celých čerstvých pistácií [29]

<table>
<thead>
<tr>
<th>Složka</th>
<th>Zastoupené množství</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sacharidy</td>
<td>g 25,4</td>
</tr>
<tr>
<td>Bilkoviny</td>
<td>g 19,7</td>
</tr>
<tr>
<td>Tuky</td>
<td>g 49,5</td>
</tr>
<tr>
<td>Vitamin E</td>
<td>mg 22,3</td>
</tr>
<tr>
<td>Draslík</td>
<td>mg 1033</td>
</tr>
<tr>
<td>Železo</td>
<td>mg 6,8</td>
</tr>
<tr>
<td>Fosfor</td>
<td>mg 500</td>
</tr>
</tbody>
</table>

2.10 Piniové ořechy

Plody borovice pinie *(Pinus pinea)* obsahují malé piniové oříšky. Strom se nejčastěji pěstuje v Itálii, Řecku, Španělsku, Portugalsku, dále i v Sýrii, Íránu, Indii, ale také i u Černého moře. Po sloupnutí červenohnědé až šedé slupky jsou oříšky smetanové barvy. Vyznačují se svou typickou aromatickou chutí, čerstvá semena měkké konzistence mají slabou příchuť pryskyřice. Často se uplatňují v cukrářství. Pozitivní účinky plodů se uplatňují při léčbě suchého kašle a mají mírně projímatelné účinky [2,3,9,10].

Obr. 10. Piniové ořechy [30]
2.10.1 Chemické složení

Oproti ostatním ořechům mají nižší obsah tuků, který se pohybuje okolo 47 %, uvádí se i 60 %. Vysoký obsah bílkovin dosahuje hodnot až 31 %, sacharidy tvoří průměrně 12 %. Z vitaminů jsou přítomny především vitaminy skupiny B, z minerálních látek je nejvíce hořčíku (268 mg ve 100g semínek) [2,10,17].

2.11 Kokosové ořechy

Strom rostoucí v tropickém pásmu z čeledi arekovitých (Arecales) kokosovník ořechoplodý (Cocos nucifera), patří mezi nejužitečnější rostliny. Dosahuje výšky 5-30 m a vyskytuje se v celém tropickém pásmu. Původ není zcela známý, odhaduje se, že pochází z jihozápadní Asie, Indie. Plodem jsou vejčité peckovice, které dosahují nejčastěji velikosti 12-15 cm, dokonce i 30 cm. Strom plodí celoročně. Jádro má několik vrstev, přičemž vnitřní se skládá z dutiny neboli bílého pletiva a často z mléčně zbarvené kokosové vody, která se spotřebovává zráním. Kokosové mléko je v nedozrálých plodech. Vnější vrstvu tvoří vláknitá část a tmavě hnědá slupka. Plod obaluje kožovité oplodí [2,3,9,10,17].

Usušené a rozdrcené jádro obsahuje 60 – 75 % oleje a 6 % vody, nazývá se kopra. Lísimu se z něj olej na výrobu kosmetických přípravků a margarinů. Vylišovaný olej tuhne už při teplotě 18-20°C. Vláknitá část kokosu zvaná koir, bývá zužitkována při výrobě kobereců, provazů a rohoží. Ze sladké mízy – toddy, se páli známá kořalka arak, může také sloužit na výrobu cukru. Léčebné účinky kokosového jádra vedou ke zlepšení nehtů, vlasů, zubní skloviny a ovlivňují dobrý stav pokožky [2,10,15,27].

Obr. 11. Kokosový ořech [31]
2.11.1 Chemické složení

Energetická hodnota kokosového ořechu je 2805 kJ ve 100g, kdežto kokosová moučka dosahuje dokonce hodnoty 2805 kJ. V čerstvém stavu je zastoupeno až 50 % vody. U kokosového ořechu je množství tuků kolem 30-33 %, z čehož převažují nasycené lipidy. Obsah bílkovin dosahuje pouze 6 % a sacharidů dokonce jen 3 %. Největší zastoupení z vitaminů náleží vitaminům ze skupiny B. Z minerálních jsou obsaženy v kokosovém jádrhořčík ve větším množství, dále fosfor, vápník, zinek, železo a draslík [2,10].

2.12 Macadamia

Obr. 12. Macadamia [32]
2.13 Kemiris

Obr. 13. Kemiris [33]

2.14 Betelové ořechy

Jsou plodem palmy arekové (*Areca catechu*) či betelové z čeledi arekovitých. Původem pocházejí z Indie, dnes se vyskytují v zemích Asie a Afriky. Plod velikostí slepičího vejce obklopuje žlutooranžová slupka. Plod je tvořen vláknitou dužninou s jedním semenem, betelovým ořechem. Alkaloidy obsažené v semenu působí příznivě na trávicí systém a zlepšují srdeční činnost. Pro Asii je typické krájení plodu na kolečka, jež je zabaleno do betelového listu spolu s kořením, které se žvýká. Účinné látky mají schopnost ničit škodlivé červy uvnitř těla [3,17].

Obr. 14. Betelové ořechy [34]
2.15 Behenové ořechy

3 LÁTKY OBSAŽENÉ VE SKOŘÁPKOVÉM OVOCI

Zásadní rozdíl mezi ovocem a skořápkovým ovocem je v obsahu vody. V ovoci je přítomno 60-96 % vody. Je to také jeden z rozhodujících činitelů, který má vliv na energetickou hodnotu. V ořechách se obsah vody pohybuje kolem 5 %. Největší podíl jader tvoří tuky, které se podle daného druhu liší, uvádí se průměrná hodnota 55 %. Bilkoviny jsou zastoupeny zhruba z 20 %, jednoduché sacharidy z 5 %, sacharidy ve formě vlákniny z 12 %. Ve skořápkovém ovocí se z vitaminů nejčastěji vyskytuje vitamin E, thiamin, riboflavin, pyridoxin, kyselina listová a niacin. Z minerálních látek jsou to hořčík, vápník, draslík, železo, zinek, měď, mangan, selen, jód. Další látky, které se nachází ve skořápkových plodech, jsou tzv. fytolátky, kam se řadí např. kyselina elagová, flavonoidy, fenolové sloučeniny a luteolin [10,19].

3.1 Lipidy

Skořápkové ovoce je bohaté na tuky, například pekanové ořechy mají až 71 %, para ořechy 60 %, mandle 50 %, vlašské ořechy 50 % a lískové ořechy 36 % tuku. Z pohledu výživy je kladen důraz na složení tuků. Dělí se na nasycené a nenasycené, přičemž ty se rozdělují podle počtu dvojných vazeb na mononenasycené a polynenasycené. Rizikovou skupinu tvoří tuky nasycené, které při nadměrné konzumaci způsobují zdravotní komplikace, naopak tuky nenasycené, které jsou zastoupeny ve větším podílu v plodech, jsou zdraví prospěšné. Ve většině ořechů je obsažena z polynenasycených mastných kyselin esenciální kyselina linoleová, která spadá do omega-3 mastných kyselin. Jedinou výjimku ze skořápkového ovoce tvoří kokosový ořech, v něm jsou ve větším poměru tuky nasycené oproti nenasyceným [2,6,7,10].

Nejčastěji přítomné mastné kyseliny obsažené v rostlinných olejích (mandlový, lískový) ze skořápkového ovoce jsou kys. palmitová, palmitoleová, stearová, olejová, linolová,
linolenová, arachová, eikosanová. U podzemnicového oleje se vyskytuje i nepatrné množství kyseliny behenové a lignocerové [19].

K doprovodným látkám lipidů jsou řazeny steroly. Lipofilní sloučeniny vyskytující se v rostlinných olejích, které jsou získány lisováním skořápkových plodů, nazýváme fytosteroly. Například v palmovém oleji jsou obsaženy sitosterol, kampesterol a stigmastosterol. Tyto látky se z hlediska výživy zařazují mezi potraviny s pozitivními účinky [19,35].

Tab. 6: Obsah sterolů v rostlinných olejích (mg/kg) [19]

<table>
<thead>
<tr>
<th>Druh oleje</th>
<th>Obsah fytosterolů</th>
</tr>
</thead>
<tbody>
<tr>
<td>podzemnicový</td>
<td>901-2854</td>
</tr>
<tr>
<td>palmový</td>
<td>376-627</td>
</tr>
<tr>
<td>palmojádrový</td>
<td>792-1406</td>
</tr>
<tr>
<td>mandlový</td>
<td>2660</td>
</tr>
<tr>
<td>lískový</td>
<td>1200</td>
</tr>
</tbody>
</table>

3.2 Bílkoviny

Bílkoviny jsou látky, které se skládají z více jak 100 aminokyselin. Z výživového hlediska se rozdělují na plnohodnotné, téměř plnohodnotné a neplnohodnotné. Do neplnohodnotných bílkovin jsou řazeny zejména rostlinné proteiny, čili i skořápkové ovoce. Ořechy jsou řazeny mezi zdroje rostlinného původu, kde se nachází vyšší množství bílkovin. Zastoupení v ořechách se pohybuje v průměru kolem 20 %. Jsou nezbytné pro zdravý vývoj organismu, slouží pro výstavbu a reparaci tkání a orgánů. Obsahují esenciální aminokyseliny, které si organismus nedokáže syntetizovat sám [6,8,19,29].
Tab. 7: Obsah dusíkatých látek (g/100 g) [29]

<table>
<thead>
<tr>
<th></th>
<th>Mandle</th>
<th>Vlašské ořechy</th>
<th>Lískové ořechy</th>
<th>Pistácie</th>
<th>Makadamské ořechy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bílkoviny</td>
<td>20,4</td>
<td>15,8</td>
<td>14,6</td>
<td>19,7</td>
<td>7,9</td>
</tr>
<tr>
<td>Lysin</td>
<td>0,6</td>
<td>0,4</td>
<td>0,5</td>
<td>1,1</td>
<td>0,0</td>
</tr>
<tr>
<td>Arginin</td>
<td>2,4</td>
<td>2,3</td>
<td>2,3</td>
<td>1,9</td>
<td>1,5</td>
</tr>
</tbody>
</table>

3.3 Sacharidy

Další z důležitých živin tvoří skupina sacharidů. Jsou to sloučeniny také zvané jako polyhydroxaldehydy a polyhydroxyketony. Podle počtu vázaných cukerných jednotek v molekule se rozdělují na monosacharidy, oligosacharidy, polysacharidy a složené sacharidy. Slouží jako rychlý přísun energie. Mezi jednoduché cukry, které jsou organismem lehce tráveny, patří například glukóza, fruktóza, sacharóza, maltóza a další. Měly byť ve stravě zastupovat kolem 15 % z celkového příjmu sacharidů; u složených sacharidů se uvádí 85 %, kde tvoří část vláknina a škroby, což jsou látky složené z polysacharidů. Ze skořápkového ovoce je největší množství sacharidů zastoupeno v kaštanech, kde je 35-60 % tvořeno zejména škroby [19,35].

3.4 Vláknina

Plody ořechů obsahují 12 % vlákniny. Řadí se mezi neenergické živiny i přesto, že je složena z polysacharidů. V lidském organismu není trávena kvůli chybějícím enzymům. Organismu na nepatrné výjimky neposkytuje energii. Doporučená denní dávka je v rozmezí 20 – 30 g. Vláknina snižuje hladinu cukrů a tuků v krvi, podporuje peristaltiku střev, působí proti záčepům, chrání před působením radioaktivních látek a před vznikem aterosklerózy. Z chemického hlediska se rozděluje na rozpustnou a nerozpustnou. Nerozpustná vláknina se vyznačuje čistící funkcí, čímž snižuje riziko vzniku rakoviny tlustého střeva a konečníku. Rozpustná vláknina vyznačuje schopnost bobtnat a vyvolat pocit nasycení, což se uplatňuje u redukčních diet. Nejznámějšími polysacharidy považované za vlákninu
jsou celulózy, hemicelulózy, pektiny, ligniny, slizy aj. Významnými zdroji vlákniny jsou např. ovoce, zelenina, luštěniny, cereální výrobky, zejména obiloviny [8,10,19,35].

Tab. 8: Obsah vlákniny (g/100 g) [29]

<table>
<thead>
<tr>
<th></th>
<th>Mandle</th>
<th>Vlašské ořechy</th>
<th>Lískové ořechy</th>
<th>Pistácie</th>
<th>Makadamské ořechy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vláknina</td>
<td>11,9</td>
<td>5,9</td>
<td>8,7</td>
<td>7,5</td>
<td>8,6</td>
</tr>
</tbody>
</table>

3.5 Vitamíny

Vitamíny se definiují jako organické nízkomolekulární látky, které se jako součást katalyzátorů účastí biochemických reakcí. Většina vitaminů se získává exogenní cestou, čili z potravy. V potravině jsou obsaženy v pouze malém množství, které je často dostávající pro organismus. V určitém množství jsou nezbytné pro látkovou přeměnu a regulaci metabolismu člověka. Rozdělují se na 2 skupiny: vitamíny rozpustné v tucích a vitamíny rozpustné ve vodě. Látky, které nevykazují fyziologické účinky, ale slouží jako prekurzory vitaminů, nazýváme provitamíny. Provitamíny jsou v organismu syntetizovány na vitaminy. Látky zvané antivitamíny se definují jako látky, které neumožňují plné využití vitamínu organismem nebo je inhibuji. Doplňení vitamínu v potravině na původní hladinu, která byla snížena při různých kulinárních a technologických procesech, se nazývá restituce [36].
Tab. 9: Obsah vitaminů ve 100g celých čerstvých ořechů [29]

<table>
<thead>
<tr>
<th></th>
<th>Mandle</th>
<th>Vlašské ořechy</th>
<th>Lískové ořechy</th>
<th>Pistácie</th>
<th>Makadamské ořechy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin C (mg)</td>
<td>4,5</td>
<td>5,2</td>
<td>4,1</td>
<td>6,3</td>
<td>1,1</td>
</tr>
<tr>
<td>Thiamín (mg)</td>
<td>0,2</td>
<td>0,4</td>
<td>0,4</td>
<td>0,8</td>
<td>1,1</td>
</tr>
<tr>
<td>Riboflavin (mg)</td>
<td>0,7</td>
<td>0,1</td>
<td>0,2</td>
<td>0,1</td>
<td>0,0</td>
</tr>
<tr>
<td>Niacín (mg)</td>
<td>3,6</td>
<td>1,2</td>
<td>1,3</td>
<td>1,3</td>
<td>2,5</td>
</tr>
<tr>
<td>Kyselina pantothenová (mg)</td>
<td>0,5</td>
<td>0,9</td>
<td>1,2</td>
<td>0,5</td>
<td>0,7</td>
</tr>
<tr>
<td>Pyridoxín (mg)</td>
<td>0,1</td>
<td>0,0</td>
<td>0,5</td>
<td>1,7</td>
<td>0,4</td>
</tr>
<tr>
<td>Karotén (mg)</td>
<td>0,1</td>
<td>0,1</td>
<td>0,0</td>
<td>0,1</td>
<td>0,0</td>
</tr>
<tr>
<td>Vitamin E (mg)</td>
<td>25,0</td>
<td>3,1</td>
<td>25,2</td>
<td>22,3</td>
<td>0,7</td>
</tr>
<tr>
<td>Kyselina listová (µg)</td>
<td>45,0</td>
<td>78,0</td>
<td>81,0</td>
<td>55</td>
<td>11,1</td>
</tr>
</tbody>
</table>

3.5.1 Vitamin C

Doporučená denní dávka se uvádí 60 mg, bývá uváděno také v rozmezí 75 – 1000 mg, kde záleží na stavu organismu. Aktivitu vitaminu C vykazuje pouze kyselina L-askorbová. Vitamin C vykazuje antioxidační vlastnosti, stimuluje imunitu, snižuje obsah cholesterolu v krvi, zabraňuje krvácivosti dásní aj. [10,36].

3.5.2 Thiamín

Vitamin B₁, dříve zvaný aneurin, se řadí do skupiny hydrofilních vitaminů. Slouží především jako kofaktor enzymů metabolitu sacharidů a aminokyselin. Jeho přítomnost také ovlivňuje dobrý stav srdce, zubů, střev a je nutný při tvorbě krve. Doporučená denní dávka je 1,4 mg [10,22,36].
3.5.3 Riboflavin

Denní doporučená dávka vitaminu B₂ je 1,6 mg. Je katalyzátorem enzymatických reakcí, ovlivňuje regeneraci buněk [10,36].

3.5.4 Niacin

Niacin, známý také pod názvem vitamin PP či kyselina nikotinová a její amid. Doporučená denní dávka je 18 mg [10,36].

3.5.5 Kyselina pantothenová

Doporučená denní dávka vitaminu B₅ je 6 - 8 mg. Nedostatek vitaminu se vyskytuje jen v ojedinělých případech. Má vliv na kvalitu vlasů, sliznic aj. [10,36].

3.5.6 Pyridoxin

Pyridoxin, čili vitamin B₆, se vyskytuje v potravinách rostlinného původu zvláště v cereáliích, luštěninách, ovoci a zelenině, dále z potravin živočišného původu jsou to masa a masné výrobky, mléko. Denní doporučená dávka je 0,3 – 2,6 mg [10,36]

3.5.7 Kyselina listová

Vitamin je známý také pod názvy jako vitamin B₉, vitamin B₁₂ či folacin. Denní doporučený příjem je 0,2 – 0,9 mg. V organismu slouží při tvorbě krvinek, chrání před srdečními a cévními chorobami, proti rakovině plíc, tlustého střeva a konečníku. Pozitivně působí proti depresím, Alzheimerově chorobě, dně, osteoporóze aj. [10,36]

3.5.8 Biotin

Doporučený denní příjem vitaminu se pohybuje v rozmezí 50 – 100 µg. V organismu chrání játra před ukládáním tuku. Při velmi malém denním příjmu je nedostatek vitaminu vzácný [10,36].

3.5.9 Vitamin A

K vitaminu A, retinolu, se řadí také další látky vykazující aktivitu vitaminu A, nazývají se provitaminy vitaminu A, retinoidy. Nejvýznamnější z provitaminu A je β-karoten. Doporučený denní příjem vitaminu A je 0,8 – 1 mg. V organismu se podílí na biosyntéze bílkovin a v biochemii zrakového vjemu, má antikarcinogenní účinky. Přiznivě působí na stav kůže, imunity, sliznic aj. [10,36].
3.5.10 Vitamin E

Vitamin E je název skupiny látek tzv. tokoferoly. Působí jako antioxidant, chrání buněčné blány, zpomaluje proces stárnutí. Jeho přísun pomáhá při prevenci kardiovaskulárního onemocnění a vzniku rakoviny. Doporučená denní dávka je 15 mg, která je proměnlivá s podle příjmu polyenových mastných kyselin v potravě [10,36]

Obr. 15. Množství vitaminu E ve vybraných druzích ořechů [29]
3.6 Minerální látky

Minerální látky se uvádějí jako prvky obsažené v popelu potraviny, u většiny potravin se jejich podíl pohybuje od 0,5 do 3 hm. %. Podle množství v potravinách jsou klasifikovány na majoritní, minoritní a stopové prvky. Z výživového hlediska se rozdělují na esenciální, toxické a neesenciální prvky. Toxické mohou být i esenciální prvky (např. Se, Ni), kde je kladen důraz na přijatém množství [36].

Tab. 10: Obsah minerálních látek (mg/100g) [29]

<table>
<thead>
<tr>
<th></th>
<th>Mandle</th>
<th>Vlašské ořechy</th>
<th>Lískové ořechy</th>
<th>Pistácie</th>
<th>Makadamské ořechy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vápník</td>
<td>252,0</td>
<td>95,7</td>
<td>180,0</td>
<td>130,0</td>
<td>86,0</td>
</tr>
<tr>
<td>Železo</td>
<td>3,8</td>
<td>2,7</td>
<td>5,7</td>
<td>6,8</td>
<td>3,6</td>
</tr>
<tr>
<td>Hořčík</td>
<td>247,0</td>
<td>159,0</td>
<td>152,6</td>
<td>145,0</td>
<td>131,7</td>
</tr>
<tr>
<td>Fosfor</td>
<td>480,5</td>
<td>377,0</td>
<td>304,0</td>
<td>500,0</td>
<td>190,3</td>
</tr>
<tr>
<td>Draslík</td>
<td>791,0</td>
<td>575,0</td>
<td>648,0</td>
<td>1033,0</td>
<td>372,4</td>
</tr>
<tr>
<td>Sodík</td>
<td>9,9</td>
<td>4,3</td>
<td>4,7</td>
<td>5,1</td>
<td>5,0</td>
</tr>
<tr>
<td>Zinek</td>
<td>2,9</td>
<td>3,4</td>
<td>2,2</td>
<td>1,6</td>
<td>1,4</td>
</tr>
<tr>
<td>Měď</td>
<td>0,9</td>
<td>1,4</td>
<td>1,3</td>
<td>1,1</td>
<td>0,7</td>
</tr>
<tr>
<td>Mangan</td>
<td>1,9</td>
<td>3,4</td>
<td>5,3</td>
<td>1,0</td>
<td>4,3</td>
</tr>
</tbody>
</table>

3.6.1 Vápník

Doporučený denní příjem kalcia je 1 g. Vyskytuje se především v mléčných výrob-cích a sójových bobech. Ke správnému vstřebání je důležitá přítomnost vitaminu D. V organismu se podílí na svalové kontrakci svalů, je nezbytným prvkem pro srážlivost krve. S hlavní funkcí souvisí i nedostatek, který se projevuje osteoporosou [8,36].
3.6.2 Hořčík

Hořčík se vyskytuje především v zelených rostlinách, kde je jako součást chlorofyllu, zeleného barviva. Doporučený denní příjem se uvádí 300 - 400 mg. Prvek je součástí řady enzymů. Jeho nedostatek způsobuje poruchy spánku, ztuhuntlost svalů [8,35].

3.6.3 Draslík

Důležitou funkcí draslíku, jakožto buněčného kationtu, je význam pro svalovou aktivitu a funkci myokardu. Nedostatek může způsobovat nepravidelnost činnosti srdce, poruchu ledvin, svalovou slabost. Doporučený denní příjem se uvádí 2 - 3 g [8,35,36].

3.6.4 Fosfor

Fosfor je ve formě fosforečnanu obsažen v kostech a zubech, dále je součástí fosfolipidů a ATP. Jako zdroje fosforu se uvádí ořechy, ryby, mléko a mléčné výrobky, uzeniny, tavené sýry i kolové nápoje. Fosfor slouží pro látkovou přeměnu živin. Při nadměrném příjmu fosforu dochází ke snižování využitelnosti vápníku. Doporučená denní dávka je 1200 mg [35,36].

3.6.5 Sodík

Doporučená denní dávka se uvádí 500 mg. Sodík se uvádí jako hlavní mimobuněčným kationt, který působí při udržování osmotického tlaku a iontových sil tělních tekutin. Sodík je potřebný i pro aktivaci α-amylasy. Jeho nadměrný příjem se projevuje vysokým tlakem a zadržováním vody v těle [10,35,36].

3.6.6 Železo

Železo je v nejlépe využitelné formě obsažené v živočišných. Využití železa z potravin se zvyšuje při kyselém prostředí, které může být díky přítomnosti kyseliny askorbové, organických kyselin (kyseliny citronové, mléčné, jablečné, vinné a jantarové). Dále je zvýšena resorpce ze stravy za přítomnosti některých sacharidů a aminokyselin, zejména histidinu, lysinu a cysteinu. Denní doporučený příjem železa je 10 - 15 mg. Jeho nedostatek se projevuje chudokrevností, čili anémií, dále únavou, špatným prokrvováním kůže, vypadávání vlasů a lomivosti nehtů [8,10,35,36].
3.6.7 Zinek

Přítomnost zínu je v organismu nezbytná kvůli katalytické funkci enzymů, ve kterých jsou obsaženy. Podporuje imunitu a působí proti volným radikálům. Příznaky z nedostatku jsou vypadávání vlasů a nehtů, ztráta chuti, změny na kůži. Denní doporučená dávka je 15 - 30 mg. Ve vyšších dávkách je zinek toxický, ze stravy je však přijetí tak vysoké dávky vyloučeno [8,36].

3.6.8 Měď

Doporučená denní dávka se uvádí v rozmezí 2 - 5 mg. Funkcí mědi je přítomnost v enzymech, které chrání organismus před volnými radikály, spoluúčast při vestavování železa do červených krvinek, čili nedostatek mědi vede také k anémii [8,10,35,36].

3.6.9 Mangan

Manganu se připsuje spoluúčast na vestavování vápníku do kostí, ovšem přijetím vysokých dávek vápníku snižuje resorpci manganu z potravy. Vysoké dávky manganu snižují využitelnost železa, čili dochází k poklesu hladiny hemoglobinu. Mangan zejména ovlivňuje vývoj kostry, čímž se stává důležitým prvkem pro děti a dospívající. Doporučený denní příjem je v rozmezí 10 - 30 mg [8,10,36].

3.6.10 Selen

Doporučená denní dávka selenu je 250 - 300 µg. Selen působí jako antioxidant, ochrana biologických membrán před peroxidy a volnými radikály. Připsuje se mu také účinek proti zhoubnému bujení. Je přítomen v některých enzymech. Nadměrný příjem se projevuje edémem plic, krvácivostí, kožními změnami, depresemi a záněty dýchacích cest [8,10,36].

3.7 Fytolátky

Fytolátky jsou sloučeniny rostlinného původu, které vykazují antioxidanční účinky. Ve skořápkovém ovoci jsou obsaženy např. kyselina elagová, flavonoidy, fenolové sloučeniny a luteolin [10].

Kyselina elagová je nejvíce zastoupena ve vlašských a pekanových ořeších. V rostlinách se vyskytuje ve formě taninu, který se snadno hydrolyzuje při konzumaci. Má protinádorové a antioxidanční účinky [36].
Flavonoidy tvoří rozsáhlá skupina rostlinných fenolů, které obsahují v molekule dva benzenové kruhy spojené třiuhlíkovým řetězcem. V arašídech je obsažen z flavonoidů taxifolin, ve slupkách eriodiktyol a luteolin [37].
4 VYUŽITÍ SKOŘÁPKOVÉHO OVOCE V GASTRONOMII

Potraviny se upravují za účelem lepší stravitelnosti, také připravený pokrm se stává chutnějším, vzhlednějším. Potraviny se mohou nevhodným zpracováním znehodnotit. Dochází ke ztrátám biologickým či mechanickým. Při vysokých teplotách dochází ke ztrátě vitaminů, minerální látky se stávají nerozpustnými a tuky, které jsou z většiny hlavní složkou skořápkových plodů, se mohou rozkládat na karcinogenní látky. Při příznivých teplo-
tách dochází k lepší stravitelnosti živin, potraviny se stávají významnější díky zlepšení senzorických vlastností [39].

Skořápkové ovoce jsou všestranně využitelné plody. Ořechy se můžou konzumovat jako pochoutka, nejčastěji v solené a pražené podobě. Nejběžněji se podávají např. k vínům, koktejům a dalším nápojům, často v kombinaci se sýry. Dále se ořechy vyskytují ve sladké podobě jako součástí sušenek, tyčinek, nebo jsou jednotlivé plody obalovány v čokoládě, jogurtu, naloženy v medu.

V kulinářství jsou využívány díky své nezaměnitelné chuti, která zvýrazňuje pokrm. Pokrmům dodávají typické aroma a křupavost. Nejčastěji se přidávají do salátů, těstovinových pokrmů, pečiva slaného i sladkého. Často bývají přidávány jako přísada do mouky či strouhanky, kterou se obalují např. karbanátky, krokety. Běžně jsou používány také oře-
chové oleje např. na vaření či smažení.

4.1 Vlašské ořechy

Vlašský ořech byl využíván již ve starověkém Řecku a Římě pro plody i dřevo. Americký černý ořech vlašský Juglans nigra je využíván pro výrobu trestí. Ořech zvaný máslový Juglans cinerea se používá jako přísada cukrovinek. Plody nezralé se nejčastěji nakládají a konzervují v síruru. Zralé plody se přidávají při výrobcích moučníků, bábovek, perníků, dortů, zmrzlin, vánočního cukroví, sušenek, měsíčí, kombinují se s jablinky, skořicí, hřebíčkem a hrozinkami. Ořechy v sušené podobě se dále podávají jako dezert, při výrobcích pečiva i cukrovinek. Z vlašských ořechů se získává ořechový olej, který je vhodný pro přípravu zálivek na saláty a těstoviny, kde se mohou přidat také celá jádra v kombinaci s bazalkou či pestem. Známý je také likér či víno z ořechů [5,9].

Ve Středomoří se z vlašských ořechů připravují předkrmy, omáčky, pesta a dressin-
gy. V anglických zemích je známá Greek walnut salsa, původem z Řecka, která je vyrobcována z rozmixovaných rajčat, okurek, červené cibule, opražených ořechů, dále se přidává
olivový olej, citronová šťáva, česnek a oregano. Podává se jako součást předkrmové sady zvané mezze [40].

4.2 Lískové ořechy

Lískové ořechy se nejčastěji využívají při výrobě různých cukrářských výrobků, koláčů, vánočního cukroví. Mladé a čerstvé lískové oříšky jsou vhodné pro zpestření chuti salátů, podobnou funkci plní i lískový olej. Lískové ořechy i olej se uplatňují zejména ve španělské kuchyni, kde tvoří základ v mnoha pokrmech. Nejznámější specialita ve Španělsku je omáčka salsa romesco, která se podává po celé zemi v mnoha různých obměnách [9].

V Itálii má svou tradici čokoláda s obsahem asi 30 % lískových oříšků zvaná gianduia. V roce 1852 se v Itálii začaly vyrábět z gianduity gianduiotti, což jsou čokoládky ze směsi kakaa a lískových ořechů ve tvaru obrácené lodě. Další italskou pochoutkou je nugát zvaný tortone, který může sloužit také jako náplně do cukrovinek [9,41].

Obr. 16. Gianduiotti [42]

Známým výrobkem z lískových oříšků je krém Nutella od italské společnosti Ferrero. Dřívější podoba této oříškové pochoutky byla v pevném stavu a původní recept vznikl v roce 1941, který se skládal z 50 % čokolády a z 50% lískových ořechů nebo mandlí. Dnešní podoba krémovité pochoutky získala již v roce 1963, kdy byla uvedena na trh pod názvem Nutella s upravenou recepturou původního složení. Dnes je Nutella prodávána ve více než 75 zemích světa. Hlavními ingrediencemi Nutelly jsou cukr, rostlinný olej, lískové ořechy, kakao a sušené odstředěné mléko [43].
4.3 Mandle

Mandle jsou považovány jako jedny z nejdůležitějších jader v gastronomii. Hořké mandle se využívají na výrobu mandlového oleje a mandlové esence, syrové se nevyužívají kvůli obsahu kyanidu. Pravá mandlová třesť z hořkých mandlí slouží k ochucování např. makronek nebo ratafias, což je italské cukroví. Mandle sladké jsou využívány v cukrářství, pekařství, kde obohacují svou chuti koláče, dorty, dezerty, zákusky a další různé sladké pečiva. Na trhu jsou mandle k dostání v různých úpravách například loupané, sekané, mleté, mandlové vločky, což ušetří čas při výrobě [3,9].

Nejvýznamnější cukrářskou hmotou vyráběnou z mandlí je marcipán. Tato hmota pochází z Orientu. Již ve 14. století se podával marcipán jako dezert. Základ tvoří oloupané a rozdrcené sladké mandle s cukrem. Mandle musí tvořit nejméně 50 % a cukr nejvýše 50 %. Hmota se prohněte do požadované konsistence a případně se provedou další úpravy jako zahřívání či odpařování, aby bylo dosaženo požadované vlhkosti. Dále je upravován buď pro přímou spotřebu, nebo slouží jako polotovar na další výrobky [44].

Ve východních zemích se připravují pokrmy zvané pilaf, kde tvoří základ rýže nebo pšenice, dále různé směsi zeleniny, ovoce, maso a často ořechy, zejména mandle. Mandle se také dobře kombinují s rybami, jsou vhodné i do nádivek. Mleté mandle se používají jako zahušťovadlo do polévek a omáček. Do salátů a pikantních omáček se hodí více celé mandle [3,9,45].

Obr. 17. Pilaf [45]
4.4 Arašídy

Arašídy se u nás nejčastěji podávají jako pochoutka k vínům v pražené a solené podobě. Jako cukrovinky se upravují obalováním v čokoládě, cukru, nebo medu. Z arašídů se lisuje olej, který je vhodný například do salátů a při vaření, snese i vyšší teploty. Je využíván zejména v asijské kuchyni. Z mletých burských ořechů se vyrábí světoznámé burákové máslo [9].

Neznámějším výrobkem z arašídů je vysoce kalorické burákové máslo, což je táhnoucí se nahnědlá hmota z mletých pražených arašídů smíchaná s tukem a ochucena solí. První burákové máslo bylo dovezeno Mexičany do USA. V dnešní době se rozlišují dva druhy arašídového másla. První je tvořeno i s kousky arašídů a druhé je tzv. jemné burákové máslo. Málo našlo uplatnění nejen jako pomazánka na chléb, topinky, ale také slouží jako přísada do pokrmů zejména v americké kuchyni [46].

Známým čínským pokresem je Kung-pao, které našlo zalíbení i v naší zemi. Jeho základ tvoří maso, většinou kuřecí, dále pórek, burské ořechy, chilli papričky, škrob, sojová omáčka, pepř, česnek, zázvor, dále na dochucení se může ještě použít ocet, cukr, vývar [47].

Arašídy se považují v západní Africe jako důležitá složka pokrmů. Slouží k zahušťování polévek a dušených pokrmů zejména v pražené podobě. V Indonésii a Malajské se připravuje jako národní gado gado, což je zeleninový pokrm, kde hlavní chuť tvoří arašídová omáčka. Základní ingredience pokrnu tvoří různé druhy zeleniny, popřípadě se můžou přidat i vejce, tofu, brambory, luštěniny a arašídová omáčka. Omáčka se skládá z arašídů, kokosového cukru, papriky, limetkové šťávy, krevetové pasty, tamarind a vody. Tamarind je strom v Indii, jehož výtažky se smícháním s cukrem a různými druhy koření tvoří základ indické kuchyně. Charakteristická je hořkosladká chuť. Další typickým využitím arašídů v těchto zemích je výroba tradiční pasty zvané satay, která se podává zejména ke grilovaným masovým špízům. [9,48].
4.5 Kokosové ořechy

Kokosový ořech je všestranně využitelná plodina. Využívá se jak bílé jádro, které se suší a strouhá, tak i kokosová voda, někdy nazývaná kokosové mléko. Pravé kokosové mléko se lisuje z dužiny máčené ve vodě a je hlavní přísadou pro zahuštění jídel v indonéské a malajské kuchyni. Používá se také hodně v západní Africe, na pobřeží Kolumbie a Brazílie, kde se dává charakteristickou vůni při přípravě rýže. V Indii se připravuje speciální omáčka molee, které dává kokosové mléko specifickou chuť a vůni. Kokosové mléko je k dostání na trhu v plechovkách a krabicích, ale také se dá vyrobit lehce ze strouhaného kokosu, který se mixuje v téměř vroucí vodě a vychladlé se propasíruje.
V západních kuchyních se vyrábí pečivo ze strouhaného kokosu. Další využití kokosu se uplatňuje v cukrárství k výrobě dezertů jak do těst, tak jako zdobící složka [3,9].

Z kokosového ořechu se lisuje olej, který slouží jako zdroj tuku ve výživě milionu lidí. Slouží také na vaření či smažení. Uplatnění je jak v gastronomii, tak v potravinářství i medicíně [50].

4.6 Kaštan

Kaštan je plod obsahující mnoho škrobu a málo tuku. Po umletí se získává bezlepková mouka, které ovšem není příliš vhodná na pečení. Plody jsou použitelné až po odstranění jak hnědé skořápek, tak i slupky a upravují se vařením, pečením, mletím. Kaštan se hodí do polévek, dušených jídel, nádivek a dezertů. Typické pro zimní měsíce je prodej jedlých pečených kaštanů na trzích. Známou pochoutkou jsou ledové kaštanovy máčené v sirupu, zvané také marrons glacés. Tradiční využití kaštanů zejména v USA je nádivka do krocana nebo drůbeže. Kaštanová nádivka se obecně připravuje z másla, vajec, žemlí, kaštanů, mléka a na dochucení sůl, muškátový květ a cukr [9,51].

Obr. 20. Krocan s kaštanovou nádivkou [51]

4.7 Ořechy kešu

Ořechy kešu se nejvíce využívají jako pochoutka v pražené a solené podobě. Z ořechů se vyrábí máslo, se kterým se zahušťují omáčky v jižní Indii [9].
4.8 Macadamia a kemiris

Macadamia se používají především jako solené cocktailové nebo jako dezertní ořechy [9].

Ořechy kemiris mají v syrovém stavu projímací účinky, které tepelnou úpravou zaniknou. Jejich využití je především k zahuštění polévek a k přípravě jídla sambal jako dochucovadlo v indonéské a malajské kuchyni [9].

4.9 Piniové oříšky

Piniové oříšky se přidávají do sladkých jídel, nádivek a pilafů zejména na Středním východě. Ve Španělsku a v Itálii slouží jako přísada do zeleninových pokrmů nebo jako zahušťující složka do omáček, například do omáčky pesto. Z oříšků se vyrábí v Americe koláčky zvané piñon [9].

4.10 Pistácie

Na Středním východě jsou důležitou součástí pokrmů. Pistácie se především podávají jako solené cocktailové ořechy. V cukrářství se využívají na výrobu zmrzlin, moučníků a náplní, kterým dává nezaměnitelnou chuť, vůni a barvu [9].
ZÁVĚR

Bakalářská práce shrnuje obecné informace o skořápkovém ovoci, jejich výskytu, chemickém složení a významu ve výživě. Gastronomické využití plodů je zaměřeno na kulinářství v cizích zemích, protože v České republice tyto plody netvoří hlavní součást pokrmu, pomíne-li se cukrářská výroba.

Ořechy jsou mylně vypouštěny z jídelníčku pro svou vysokou kalorickou hodnotu, která je srovnatelná například s bůčkem. Ovšem u těchto potravin je důležité složení. Skořápkové plody jsou bohatým zdrojem lipidů, ale především nenasyacených mastných kyselin na rozdíl od bůčku. Obsahují esenciální mastné kyseliny, které jsou důležité pro organismus. Z polynenasycených mastných kyselin je nejvíce obsažena kyselina linoleová, která patří do skupiny esenciálních omega-3 mastných kyselin. Dále se uvádí u ořechů nízký glykemický index, což znamená, že sacharidy obsažené ve skořápkovém ovoci vyvolávají slabší zvýšení cukru v krvi.

Ve skořápkovém ovoci se nachází řada vitamínů jako vitamin E, thiamin, riboflavin, pyridoxin, kyselina listová a niacin. Z minerálních látek jsou to hořčík, vápník, draslík, železo, zinek, měď, mangan, selen, jód. Další látky, které se nachází ve skořápkových plodech, jsou tzv. fytolátky, kam se řadí např. kyselina elagová, flavonoidy, fenolové sloučeniny a luteolin. Některým látkám přítomným v plodech je přisouzen antioxidační účinek, což je působení proti volným radikálům, které mohou poškozovat buňky.

Ořechy jsou považovány jako součást zdravé výživy. Skořápkovým plodům se připsují pozitivní účinky na lidský organismus při pravidelné konzumaci v příjemnějším množství. Nejčastěji se obsažené látky uplatňují proti některým druhům rakovin, osteoporóze, zlepšují trávení, snižují hladinu LDL cholesterolu, příznivě působí na stav pokožky a vlasů, činnost srdce i duševní činnost. Skořápkové plody obsahují zhruba 12 % vláknniny, která má tzv. čistící funkci, snižuje riziko vzniku rakoviny tlustého střeva a konečníku.
SEZNAM POUŽITÉ LITERATURY

SEZNAM OBRÁZKŮ

Obr. 1. Vlašský ořech .. 14
Obr. 2. Lískový ořech .. 17
Obr. 3. Mandle ... 18
Obr. 4. Para ořechy .. 20
Obr. 5. Ořechy kešu .. 21
Obr. 6. Arašidy ... 22
Obr. 7. Kaštany ... 23
Obr. 8. Pekanové ořechy ... 24
Obr. 9. Pistácie ... 25
Obr. 10. Piniové ořechy .. 26
Obr. 11. Kokosový ořech ... 27
Obr. 12. Macadamia .. 28
Obr. 13. Kemiris ... 29
Obr. 14. Betelové ořechy ... 29
Obr. 15. Množství vitaminu E ve vybraných druzích ořechů 37
Obr. 16. Gianduiotti .. 43
Obr. 17. Pilaf ... 44
Obr. 18. Gado gado .. 46
Obr. 19. Satay ... 46
Obr. 20. Krocan s kaštanovou nádívkou 47
SEZNAM TABULEK

Tab. 1: Obsah látek ve 100g vlašských ořechů .. 15
Tab. 2: Obsah látek ve 100g lískových ořechů .. 17
Tab. 3: Obsah látek ve 100g mandlí ... 19
Tab. 4: Obsah látek ve 100g kaštanů ... 23
Tab. 5: Obsah látek ve 100g celých čerstvých pistácií ... 26
Tab. 6: Obsah sterolů v rostlinných olejích (mg/kg) ... 32
Tab. 7: Obsah dusíkatých látek (g/100 g) ... 33
Tab. 8: Obsah vlákniny (g/100 g) .. 34
Tab. 9: Obsah vitaminů ve 100g celých čerstvých ořechů 35
Tab. 10: Obsah minerálních látek (mg/100g) .. 38