Měření velikosti polymerních klubek hyaluronanu metodou DLS

Martin Cvek
Univerzita Tomáše Bati ve Zlíně
Fakulta technologická
Ústav fyziky a mater. inženýrství
akademický rok: 2011/2012

ZADÁNÍ BAKALÁŘSKÉ PRÁCE
(PROJEKTU, UMĚLECKÉHO DÍLA, UMĚLECKÉHO VÝKONU)

Jméno a příjmení: Martin CVEK
Osobní číslo: T09815
Studijní program: B 2808 Chemie a technologie materiálů
Studijní obor: Chemie a technologie materiálů
Téma práce: Měření velikosti polymerních klubek hyaluronanu metodou DLS

Zásady pro vypracování:
1. Vypracovat literární rešerší.
2. Provést experimenty podle zadání vedoucího práce.
3. Vypracovat diskuzi výsledků a konzultovat je s vedoucím práce.
Rozsah bakalářské práce:
Rozsah příloh:
Forma zpracování bakalářské práce: tříštěná

Seznam odborné literatury:
1. Mezinárodní časopisy: Macromolecular Chemistry and Physics, Macromolecules, Carbohydrate Polymers (dle výběru vedoucího bakalářské práce).

Vedoucí bakalářské práce: Mgr. Aleš Mráček, Ph.D.
Ústav fyziky a mater. inženýrství
Datum zadání bakalářské práce: 13. února 2012
Termín odevzdání bakalářské práce: 7. května 2012

Ve Zlíně dne 13. února 2012

doc. Ing. Roman Čermák, Ph.D.
Příjmení a jméno: Cvek Martin Obor: Materiálové inženýrství

PROHLÁŠENÍ

Prohlášuji, že

- beru na vědomí, že odezvádám diplomové/bakalářské práce souhlasím se zveřejněním své práce podle zákona č. 111/1998 Sb. o vysokých školách a o změně a doplnění dalších zákonů (zákon o vysokých školách), ve znění pozdějších právních předpisů, bez ohledu na výsledky obhajoby;
- beru na vědomí, že diplomová/bakalářská práce bude uložena v elektronické podobě v univerzitním informačním systému dostupná k nahlédnutí, že jeden výtisk diplomové/bakalářské práce bude uložen na příslušném ústavu Fakulty technologické UTB ve Zlíně a jeden výtisk bude uložen u vedoucího práce;
- byla jsem seznámena/s a tím, že na moji diplomovou/bakalářskou práci se plně vztahuje zákon č. 121/2000 Sb. o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon) ve znění pozdějších právních předpisů, zejm. § 35 odst. 3;
- beru na vědomí, že podle § 60 odst. 1 autorského zákona má UTB ve Zlíně právo na uzavření licenční smlouvy o užití školního díla v rozsahu § 12 odst. 4 autorského zákona;
- beru na vědomí, že podle § 60 odst. 2 a 3 mohu užít své dílo – diplomovou/bakalářskou práci nebo poskytnout licenci k jejímu využití jen s předchozím písemným souhlasem Univerzity Tomáše Bati ve Zlíně, která je oprávněna v takovém případě ode mne požadovat přiměřený příspěvek na úhradu nákladů, které byly Univerzitou Tomáše Bati ve Zlíně na vytvoření díla vynaloženy (až do jejich skutečné výše);
- beru na vědomí, že pokud bylo k vypracování diplomové/bakalářské práce využito softwaru poskytnutého Univerzitou Tomáše Bati ve Zlíně nebo jinými subjekty pouze ke studijním a výzkumným účelům (tedy pouze k nekomerčnímu využití), nelze výsledky diplomové/bakalářské práce využít ke komerčním účelům;
- beru na vědomí, že pokud je výstupem diplomové/bakalářské práce jakýkoliv softwarový produkt, považuji se za součást práce rovněž i zdrojové kódy, popř. soubory, ze kterých se projekti skládá. Neodezvádání této součásti může být důvodem k neobhajování práce.

Ve Zlíně

..
(2) Okrašťené, diplomové, teologické a středoškolské odborné scholážení se zveřejňují v stěžejních výzkumových setkáních odborníků, které se konají před odborné skupině větví na vědecké skupiny, veřejně a veřejně všemi odborníky, a o směření vědeckých skupin ve znění rozdělujících právních předpisů, § 33 odb. 3.

(3) Není-li odborné skupiny veřejné pro předání odborného materiálu do veřejnosti vědeckého výzkumu větví na vědecké skupiny, které se konají před odborné skupině větví, nebo je měsíce od výzvě, v případě, že se má konat odborné skupiny veřejné, může se mít ve znění předani odborného materiálu skupiny na vědecké skupiny větví na vědecké skupiny ve znění rozdělujících právních předpisů, § 33 odb. 3.

(4) Do právního autorského aktu je zasahuje skupina nebo skupiny, které se konají před odborné skupině větví na vědecké skupiny, nebo je měsíce od výzvě, v případě, že se má konat odborné skupiny veřejné, může se mít ve znění předani odborného materiálu skupiny na vědecké skupiny větví na vědecké skupiny ve znění rozdělujících právních předpisů, § 33 odb. 3.

(5) Skupiny se mějí před odborné skupině větví na vědecké skupiny větví na vědecké skupiny, které se konají před odborné skupině větví, nebo je měsíce od výzvě, v případě, že se má konat odborné skupiny veřejné, může se mít ve znění rozdělujících právních předpisů, § 33 odb. 3.

(6) Skupina se mějí před odborné skupině větví na vědecké skupiny, které se konají před odborné skupině větví, nebo je měsíce od výzvě, v případě, že se má konat odborné skupiny veřejné, může se mít ve znění rozdělujících právních předpisů, § 33 odb. 3.

(7) Není-li odborné skupiny veřejné pro předání odborného materiálu do veřejnosti vědeckého výzkumu větví na vědecké skupiny, které se konají před odborné skupině větví, nebo je měsíce od výzvě, v případě, že se má konat odborné skupiny veřejné, může se mít ve znění rozdělujících právních předpisů, § 33 odb. 3.
ABSTRAKT

Tato bakalářská práce se zabývá rozptylem světla a využitím tohoto jevu k charakterizaci částic hyaluronanu. Pozornost byla věnována jednak měřené látce – kyselině hyaluronové (HA) – a také povrchově aktivním látkám (PAL). Experimentální část byla zaměřena na metodiku měření velikosti částic metodou dynamického rozptylu světla (DLS). Podstatná část experimentální části zkoumá vliv kvarterních amoniových solí (QAS), konkrétně hexadecyltrimethyl amonia bromidu (CTAB), na chování polymerních klubek hyaluronanu o různých molekulových hmotnostech v roztocích o fyziologické hodnotě pH. Výsledky měření a diskuze možných chyb byly zahrnuty do závěru této práce.

Klíčová slova: kyselina hyaluronová, dynamický rozptyl světla, kvarterní amoniové soli

ABSTRACT

This bachelor thesis deals the light scattering and using this phenomenon to characterize particles of hyaluronan. The attention was paid to both the measured substance – hyaluronic acid (HA) – and surface-active agents (PAL). The experimental part was focused on methods of measuring particle size by dynamic light scattering (DLS). A substantial part of the experimental part investigates the influence of quaternary ammonium salts (QAS), namely hexadecyltrimethyl ammonium bromide (CTAB), on the behavior of hyaluronan polymer coils of various molecular weights in the solutions of physiological pH values. Measurement results and discussion of possible errors were included in the conclusion of this thesis.

Keywords: hyaluronic acid, dynamic light scattering, quaternary ammonium salts
Poděkování

Prohlášení

Prohlašuji, že jsem bakalářskou práci vypracoval samostatně a že všechny použité literární zdroje jsem správně a úplně citoval. Bakalářská práce je z hlediska obsahu majetkem Fakulty technologické UTB ve Zlíně a může být využita ke komerčním účelům jen se souhlasem vedoucího bakalářské práce a děkana FT UTB.

Prohlašuji, že odevzdaná verze bakalářské práce a verze elektronická nahrána do IS/STAG jsou totožné.

....................................

podpis studenta
OBSAH

ÚVOD... 10

I TEORETICKÁ ČÁST... 11

1 ROZPTYL SVĚTLA... 12
 1.1 HISTORIE.. 12
 1.2 METODY MĚŘENÍ VELIKOSTÍ ČÁSTIC .. 12
 1.3 ZÁKLADNÍ PRINCIPY ROZPTYLU SVĚTLA NA ČÁSTICÍCH .. 13
 1.3.1 Brownův pohyb.. 13
 1.3.2 Elastický rozptyl (Rayleighho rozptyl) ... 14
 1.3.3 Kvazi-elastický rozptyl ... 15
 1.3.4 Neelastický rozptyl ... 16
 1.3.5 Mieův rozptyl ... 16
 1.3.6 Ramanův rozptyl .. 17
 1.4 FYZIKÁLNÍ PRINCÍP METODY MĚŘENÍ ROZPTYLU SVĚTLA ... 17
 1.4.1 Statický rozptyl světla ... 18
 1.4.2 Metoda DLS ... 19
 1.4.3 Ramanova spektroskopie, Stokesův a anti-Stokesův posuv ... 21
 1.5 EXPERIMENTÁLNÍ DATA Z DLS A JEJICH VYUŽITÍ K CHARAKTERIZACI VZORKŮ 22
 1.5.1 Ekvivalentní průměry (poloměry) .. 22
 1.5.1.1 Hydrodynamický poloměr – RH .. 22
 1.5.1.2 Gyrátní poloměr – RG .. 23
 1.5.1.3 Některé další ekvivalentní průměry ... 23
 1.5.2 Auto-korelační funkce ... 24

2 KYSELINA HYALURONOVÁ A JEJÍ SODNÁ SŮL .. 27
 2.1 HISTORIE .. 27
 2.2 VÝSKYT .. 27
 2.3 VYUŽITÍ .. 28
 2.4 CHEMICKÁ STRUKTURA ... 28
 2.5 STRUKTURA HA V ROZTOKU ... 29
 2.6 SYNTÉZA HA ... 30
 2.7 BIOCHEMIE HA ... 30
 2.8 VÝROBA HA .. 31
 2.9 VÝSKYT ROZTOKŮ HA ... 32

3 KVARTERNÍ AMONIOVÉ SOLI .. 33
 3.1 ANTIMIKROBIÁLNÍ POUZITÍ QAS.. 33
 3.2 TERMINOLOGIE DANÉ OBLASTI ... 33
 3.3 POUVRCHOVÉ AKTIVNÍ LÁTKY (PAL) ... 33
 3.3.1 Kationické tenzidy .. 35
 3.3.2 Vliv povrchově aktivních látek (PAL) na rychlost reakce ... 35
 3.4 KŘÍTKÁ MICELÁRNÍ KONCENTRACE (CMC) .. 35
 3.4.1 Vlivy hydrofilní skupiny surfaktantu na CMC ... 37
 3.4.2 Vlivy hydrofobní skupiny surfaktantu na CMC ... 37
3.4.3 Vliv přídavku elektrolytu na CMC .. 37
3.4.4 Faktory ovlivňující CMC a agregační číslo .. 38
3.4.5 Agregační číslo .. 38
3.4.6 Zjišťování hodnoty CMC, Krafftova teplota .. 39

II PRAKTICKÁ ČÁST ... 42

4 MATERIÁLY A METODIKA ... 43
4.1 POUŽITÉ CHEMIKÁLIE ... 43
4.2 PŘÍPRAVA FOSFÁTOVÉHO PUFRU .. 43
4.3 PŘÍPRAVA KONCENTRAČNÍ SADY ROZTOKŮ SURFAKTANTU PRO ZJIŠTĚNÍ
 CMC BODU .. 44
4.4 POVRCHOVÉ NAPĚTÍ .. 45
 4.4.1 Metoda měření povrchového napětí .. 46
4.5 MĚŘENÍ VELIKOSTI POLYMERNÍCH KLUBEK HYALURONANU 48
 4.5.1 Metoda DLS .. 48
 4.5.1.1 Postup přípravy vzorků pro Zetasizer Nano (Malvern) 48
 4.5.1.2 Popis přístroje Zetasizer Nano ZS ... 49
 4.5.1.3 Schéma přístroje ... 49
4.6 ANALÝZA DAT ... 52
 4.6.1 Vysokomolekulární HA ... 52
 4.6.2 Nízkomolekulární HA .. 55
 4.6.3 Srovnání intenzitních distribucí vysokomolekulární a
 nízkomolekulární HA ... 57

ZÁVĚR .. 60

SEZNAM POUŽITÉ LITERATURY ... 61
SEZNAM POUŽITÝCH SYMBOLŮ A ZKRATEK ... 68
SEZNAM OBRÁZKŮ ... 71
SEZNAM TABULEK .. 73
SEZNAM PŘÍLOH ... 74
ÚVOD

Rozptyl světla je jev, se kterým se setkáváme každý den. Lidé se mechanismem rozptylu světla zabývají už od 10. století, ale až v posledních desetiletích byl rozptyl světla objasněn a začal se využívat. Tento fyzikální jev lze využít v materiálových vědách ke stanovení velikosti zpravidla velmi malých částic. Tato práce se zabývá měřením velikostí polymerních klubek hyaluronanu právě pomocí rozptylu světla.

Kyselina hyaluronová (HA) je přirozeně se vyskytující lineární polysacharid tvořený opakující se disacharidovou jednotkou N-acetyl-D-glukosaminu a kyseliny D-glukuronové. Ve formě soli se HA vyskytuje téměř ve všech biologických tkáních živých organismů. HA se nachází v synoviální kloubní tekutině, ve sklivci oka, v chrupavkách, cévách, kůži a pupekni šňůre. Její unikátní fyzikálně-chemické a biologické vlastnosti umožňují široké spektrum využití tohoto biopolymeru jednak ve farmaceutickém průmyslu, tak také v mnoha lékařských aplikacích.

Všechny fyziologické účinky HA jsou závislé na její molekulové hmotnosti a koncentraci, proto se tato bakalářská práce zabývá dvěma různými molekulovými hmotnostmi.

Vzhledem k jejímu širokému využití má smysl zabývat se metodami zvýšení trvanlivosti (konzervace) roztoků HA.

Trvanlivost roztoků čisté kyseliny hyaluronové je velmi krátká, protože tato látku podléhá intenzivnímu rozkladu způsobenému mikroorganismy. Této degradaci lze zabránit použitím konzervačních látek. Obvykle se za tímto účelem používají kvarterní amoniové soli, které způsobují strukturální změny HA. V této práci byl jako konzervant použit hexadecyltrimethylammonium bromid (CTAB), u kterého byla nejdřív zjištěna kritická micelární koncentrace (CMC) měřením povrchového napětí. CMC je koncentrace, kdy se mění řada fyzikálních a chemických vlastností. Přídavky CTAB byly voleny tak, aby bylo postihnuto chování polymerních klubek při koncentraci podkritické, nadkritické, ale i kritické. Každá disacharidová jednotka HA obsahuje jednu karboxylovou, čtyři hydroxylové a acetamidovou skupinu. Pomocí funkčních skupin může HA interagovat s řetězcí CTAB a tím měnit velikost klubka. Velikost polymerního klubka byla zjišťována pomocí metody DLS. Cílem této bakalářské práce bylo popsat vliv přídavků CTAB na chování hyaluronových klubek.
I. TEORETICKÁ ČÁST
1 ROZPTYL SVĚTLA

Rozptyl světla je jev, se kterým se v životě setkal asi každý z nás. Můžeme jej pozorovat na částicích prachu, které se nachází ve vzduchu. Je to složitý jev, který zahrnuje ohyb, odraz, lom a interferenci záření. V dokonale čistém vzduchu se viditelné světlo nerozptyluje. Rozptylem světla můžou vznikat zajímavé atmosférické efekty, jako je modrá barva oblohy, červený západ slunce a podobně.[1]

1.1 Historie

Jako první se na vědecké úrovni začal těmito jevy zabývat arabský vědec, matematik a astronom Abu Ali al-Hasan ibn al-Haytham, známý také jako Alhazen of Basra. Ve svém díle vysvětlil, že podstata vnímání okolního světa je založená na odrazu světla od předmětů a následném dopadu paprsků světla do oka pozorovatele. Tyto jevy zkoumal na přelomu 10. a 11. století.[2]

V 15. století se světlem experimentoval také Leonardo da Vinci. Mezi jeho experimenty patřilo osvětlování kouře a vodní mlhy před kusem černého sametu. V roce 1704 v díle Optics Isaac Newton popsal rozklad světla na optickém hranolu a vysvětlil barvy tenkých vrstev.[3] Dalším mezníkem v historii rozptylu světla byl objev Johna Tyndalla, který zjistil, že rozptyl světla je závislý na vlnové délce – modrá se rozptyluje více než červená. Mezi další vědce, kteří se zasadili o objevy v této oblasti, patří Lord Rayleigh, Gustav Mie a také indický vědec Chandrasekhara Venkata Raman, jejichž dílem se zabývají následující kapitoly (Kap. 1.3.2, 1.3.5, 1.3.6) v rámci této bakalářské práce.[1, 4]

1.2 Metody měření velikosti částic

Existuje řada metod, díky kterým jsme schopni určit velikost a tvar částic. Přičemž každá metoda má své výhody a svá omezení. Níže je uvedený krátký přehled některých metod s důrazem na metodu použitou při našem měření (Kap. 1.4.2).

- sítová analýza je jedna z nejstarších technik k určování distribuce velikosti částic (prášků, suspenzí). Princip metody je založen na využití sady sítí známou velikostí otvorů, která se sestavuje ve směru gravitačního transportu analyzované látky do bloku s postupně se zmenšující velikostí otvorů. Výsledkem analýzy jsou podíly prášků, které odpovídají hmotnostním procentům analyzované látky. Měřicí rozsah této metody je určen typem vestavěných sítí.[5, 6]
- **sedimentační metody** stejně jako síťová analýza patří k tradičním metodám analýzy velikosti částic. Výhodou je jednoduchý princip měření a jednoznačná interpretace výsledků. Principem metody je skutečnost, že velké částice klesají vlivem gravitace rychleji než malé. Obvyklý rozsah měření je 1-100 \(\mu \)m, v případě centrifugace až do oblasti řádově 0,1 \(\mu \)m.[7]

- **ultramikroskopie** je metoda, při které jsou koloidní disperze pozorovány při bočním osvitu. Jinými slovy tato metoda využívá Tyndalova jevu. Do objektivu nevstupuje primární paprsek, ale světlo rozptýlené na disperzních částicích. Pozorovatel pak částice vidí jako zářící body na temném podkladu. Mez rozlišení této metody je cca 5 nm.[8]

- **dynamický a statický rozptyl světla**, detailní rozbor těchto metod je uveden v kapitole 1.4.

1.3 Základní principy rozptylu světla na částicích

1.3.1 Brownův pohyb

Intenzita Brownova pohybu koloidních částic závisí také na velikosti daných částic. U částic nad cca 5 \(\mu \)m není pozorovatelný, protože takové částice se usazují a obvykle jsou příliš těžké. Další proměnnou je hustota, resp. molekulová hmotnost disperzní fáze. Například kovové částice o stejných rozměrech za stejných podmínek vykazují výrazně méně intenzivní Brownův pohyb. Podmínka, že částice podléhá Brownovu pohybu, je základním předpokladem pro měření metodou DLS (dynamický rozptyl světla).[9, 10]

Pro každou částici, je její střední translační energie dána vztahem:

\[
\bar{E}_K = \frac{1}{2} m \bar{v}^2 = \frac{3}{2} k_B T ,
\]

kde \(m \) je hmotnost částice, \(\bar{v} \) je její střední rychlost, \(T \) je termodynamická teplota a \(k_B \) je Boltzmannova konstanta. Ze vztahu je patrné, že s rostoucí teplotou rychlost pohybu
částice vzrůstá a dále že střední rychlost pohybu částice je nepřímo úměrná odmocnině z její hmotnosti.[9]

1.3.2 Elastic ký rozptyl (Rayleighho rozptyl)

Při elastických srážkách dopadající a cílové částice zůstávají beze změny. Žádná energie není ztracena nebo přeměněna (na jiné formy energie nebo deformaci) a celková kinetická energie je po srážce sdílena dopadající částicí a cílovou částicí.[11] To znamená, že dopadající i rozptýlené světlo mají stejný kmitočet a tutéž vlnovou délkou. Toto tvrzení zahrnuje určitou aproximaci, neboť ve skutečnosti rozptýlené světlo obsahuje spojité spektrum složek, které mají rozdílnou vlnovou délkou od primárního paprsku. Rozdíl vlnových délek respektive frekvencí je velmi malý, ale za použití moderní měřicí techniky lze jej velmi přesně stanovit.[12]

Pružný neboli elastický rozptyl na malých částicích jako jsou atomy nebo molekuly, jehož následkem je rozptýlení záření, ke kterému dochází ve všech směrech jednotně (se stejnou intenzitou) se nazývá Rayleighho rozptyl. Anglický fyzik John W. Rayleigh v roce 1899 zjistil, že poměr intenzity rozptýleného světla \(I_\theta \) a dopadajícího světla \(I_0 \) je nepřímo úměrný čtvrté mocnině vlnové délky \(\lambda \) pro dané záření.[1]

\[
\frac{I_\theta}{I_0} = \text{konst.} / \lambda^4
\] \hspace{1cm} (2)

Záření o kratších vlnových délkách se proto rozptyluje více. Jeho příkladem může být rozptyl slunečního záření na částicích v atmosféře. Výsledkem toho je modrá barva oblohy, kterou vidíme přes den. Modrá část slunečního světla (400 nm) dopadá na horní vrstvy atmosféry a je rozptýlena asi 10 krát více než světlo červené (700 nm), takže modré světlo je v atmosféře rozptýleno do oka pozorovatele, zatímco červené světlo jde do značné míry nerozptýleno zpět do vesmíru. Podmínkou toho je, aby polohy rozptýlujících center byly náhodné, jako je tomu například v plynu. Pokud by polohy rozptýlujících center nebyly náhodné, jednalo by se o rozptyl koherentní a potom tedy dochází k difrakci (ohybu) záření.[13, 14]
Obr. 1: Srovnání Rayleighova a Mieova rozptylu. Nad hlavou pozorovatele převažuje Rayleighův rozptyl (situace A). Nachází-li se větší částice ve vzduchu, můžeme vidět světlou záři kolem Slunce, převažuje Mieův rozptyl (situace B).[14]

Rayleigh rozptyl tedy může být považován za pružný rozptyl fotonů, protože energie rozptylených fotonů se nezmění (frekvence záření zůstává konstantní). Za zmínku stojí, že modrá barva nebe je více nasycena, když se podíváme dále od Slunce. Téměř bílý rozptyl v blízkosti Slunce lze přičíst Mieovu rozptylu, který není příliš závislý na vlnové délce.

Rayleigh zjistil, že i nejčistočistší látky mají nepatrné fluktuace indexu lomu, což vede k rozptylu světla. To znamená, že rozptylující částice nejsou pro tento jev nezbytné.[1]

1.3.3 Kvazi-elastický rozptyl

Při měření rozptylu světla na molekulách dochází k tomu, že molekuly se neustále pohybují tepelným pohybem, přičemž některé z nich se pohybují směrem od detektoru a jiné směrem opačným. Světlo rozptylené na částicích pohybujících se směrem k detektoru dorazí se zvýšeným kmitočtem, u částic pohybujících se od detektoru je situace opačná. Dorazí tedy se sníženým kmitočtem. Tato skutečnost se nazývá Dopplerův efekt. Rozptyl světla spojený s těmito změnami kmitočtu se nazývá kvazi-elastický. Rozptylené světlo
tedy dopadá na detektor z velmi úzkého frekvenčního intervalu. Narozdíl od Ramanova rozptylu je tento interval frekvencí spojitý.[14]

1.3.4 Neelastický rozptyl

V případě nepružného rozptylu je část kinetické energie dopadající částice ztracena uvnitř cíle, což vede ke vzniku některých interních procesů a jen zlomek z této energie uvede cíl do pohybu. Například pokud budete mít kulatou nádobu, na kterou vystřelíte malý míč, tak by taková srážka mohla být považována za elastickou (v ideálním světě). Pokud nádobu naplníte několika kulíčkami a pak vystřelíte další míč, část kinetické energie uvede míč do pohybu, ale část rozpohybuje kulíčky uvnitř. V tomto smyslu lze říci, že nepružný rozptyl nastane v případě, když se cíl skládá z menších dílů. Jedná se o rozdíly mezi nepružným a pružným rozptylem, že u pružného rozptylu cíl nebude měnit formu, zatímco u nepružného rozptylu se cíl může rozdělit do nových forem. Proton se může rozdělit na hadrony (částice postaveny z kvarků) při nepružných srážkách. Nyní vidíme, že pokud se prokáže, že cíl (například proton) rozptyluje neelasticky, pak můžeme předpokládat, že v jeho struktuře musí probíhat nějaký vnitřní proces (taková částice musí obsahovat menší částice). K tomuto procesu by nemělo dojít, pokud je částice dále nedělitelná.[13]

1.3.5 Mieův rozptyl

je pružný (elastický) rozptyl, který vzniká na relativně velkých částicích nebo molekulách s rozměry srovnatelnými s vlnovou délkou dopadajícího záření nebo dokonce většími. Výsledné rozptýlené záření je nerovnoměrné. Jeho efekt není příliš závislý na vlnové délce záření. Tento proces vede ke vzniku bílého rozptýleného světla, což lze vidět na oblacích nebo mlze.[13]
Tento rozptyl vytváří pomyslnou obávku záření s ostřejsí a intenzivnější přední částí u větších částic. Rozptyl se mění z isotropního, tzn., že má stejné intenzity ve všech směrech (v rovině rozptylu), na anizotropní. Naruší se ve směru paprsku (Obr. 2).[15] Mieův rozptyl vytváří téměř bílou záři kolem Slunce, když je ve vzduchu přítomno mnoho částic. Je také příčinou bílé barvy světla v mlze.[14]

1.3.6 Ramanův rozptyl

Rozptyl, po kterém fotony mají buď vyšší, nebo nižší energii se nazývá Ramanův rozptyl. Obvykle tento druh rozptylu zahrnuje excitování vibračního stavu molekul, což představuje nižší energii rozptýlených fotonů nebo rozptyl na excitovaných molekulách, které předávají svou vibrační energii dopadajícím fotonům.[14]

Jedná se o nepružný (neelastický) rozptyl, při kterém je frekvence rozptýleného záření změněna při současném zisku nebo ztrátě energie, která odpovídá energetickým hladinám v atomu nebo molekule. Změna se týká vibračních a / nebo rotačních vlastností molekule, na nichž rozptyl nastane. Tohoto jevu se vyžívá pro mnoho forem diagnostické analýzy. Ramanův rozptyl je velmi slabý a je obvykle mnohem menší než Rayleighovo rozptýlené světlo, takže musí být věnována velká pozornost extrakci Ramanova signálu z Rayleighovo signálu, zejména pro malé frekvenční posuny – Ramanova spektroskopie.[13]

C. V. Raman roku 1928 objevil jev nepružného rozptylu, který dnes nese jeho jméno a v roce 1930 mu byla udělena Nobelova cena za fyziku. Ramanův rozptyl vytváří rozptýlené fony, které se liší ve frekvenci od zdroje záření, které rozptyl způsobilo.[14]

1.4 Fyzikální princip metody měření rozptylu světla

Optické vlastnosti koloidních soustav jsou silně závislé na fyzikálních vlastnostech koloidních částic. Zejména na jejich velikosti, elektrické vodivosti a vlastní absorpci světla látkou tvořící disperzní fázi. Z jevů spojených s interakcí světla s koloidními soustavami mnoho informací poskytuje právě rozptyl světla. Rozptyl světla nastává při interakci světla o vlnové délce λ s koloidními částicemi (o poloměru r) právě když je splněna podmínka:

$$\lambda \gg r$$ \hspace{2cm} (3)

Podmínka (3) platí pouze pro elastický rozptyl světla. Pokud není tato podmínka splněna, dochází k odrazu světla a pozorujeme zákal.[16]

1.4.1 Statický rozptyl světla
(také známý jako "klasický" nebo "Rayleighho rozptyl") je neinvazivní metoda používaná k charakterizaci molekul v roztoku. Princip spočívá v měření průměrné intenzity rozptyleného světla v určitém časovém intervalu, na rozdíl od dynamického rozptylu se tedy neměří fluktuace intenzity rozptyleného světla v čase. Naakumulovaná intenzita rozptyleného světla je následně přiřazena k určité koncentraci.[17]

Klasickou teorii statického rozptylu světla za výše uvedené podmínky (3) vypracoval Rayleigh. Tato teorie je založena na základě představy, že částice se chová jako oscilující dipól. Podle ní tento dipól vyzařuje pohlcenou energii světla do všech stran beze změny vlnové délky. Rozptylená intenzita I_θ světla závisí na:

- elektrických vlastnostech rozptylující částice (polarizovatelnost α)
- vlnové délce světla λ
- pozorovací vzdálenosti R
- pozorovacím úhlu θ

$$\frac{I_\theta}{I_0} = \frac{8\pi^4}{\lambda^4 R^2} \left(\frac{\alpha}{4\pi \varepsilon_0} \right)^2 (1 + \cos \theta)$$ (4)

V praxi se metoda statického rozptylu světla na výpočet rozměru rozptylujících částic používá jen zřídka. Důvodem je komplikovaný výpočet rozměru rozptylujících částic. Dnes se tato metoda využívá k určení molekulové hmotnosti makromolekulárních látek. Podrobný popis včetně matematického odvození lze najít v literatuře [16].

Touto metodou tedy lze zjistit molekulovou hmotnost i druhý viriální koeficient (A_2), který popisuje míru interakce mezi dispergovanými částicemi a prostředím, popř. rozpouštědlem.

Ve vztahu k bakalářské práci je dobré zmínit, že znalost druhého viriálního koeficientu lze využít k hodnocení „termodynamické kvality“ rozpouštědla.
Kladný A_2 charakterizuje termodynamicky dobré rozpouštědlo. To znamená, že interakce polymer-rozpuštědlo jsou větší než interakce polymer-polymer. Klubko polymeru se tedy zvětšuje. Pro zápornou hodnotu A_2 je situace opačná a klubko zmenšuje svůj objem a shlukuje se. Rozpuštědlo vykazující tuto vlastnost se nazývá termodynamicky špatné. Nulová hodnota koeficientu A_2 znamená, že interakce jsou rovnocenné a klubko nemění svůj objem. Taková situace nastává za použití tzv. theta rozpouštědla. V těchto rozpouštědlech se řetězce polymeru chovají jako by byly tvořeny pouze hmotními body a navzájem spolu neinteragují ani si nepřekáží.[17]

1.4.2 Metoda DLS

Výsledky stanovení velikosti koloidních částic jsou obvykle v přiměřené shodě s výsledky z elektronového mikroskopu. Určité nesrovnalosti mezi výsledky z obou metod můžou být přisouzeny rozdílu mezi hydrodynamickým poloměrem, který může zahrnovat solvatační obal či naadsorbovanou vrstvu na povrchu částic, a skutečným poloměrem. Určité odchylky také můžou být přisouzeny změnám velikosti částic při přípravě vzorku pro elektronový mikroskop. Vzorky je totiž nutné vysušit, další změny velikosti částic mohou způsobit interakce látky s elektrony. Získaná průměrná velikost koloidních částic z DLS je vážená podle páté mocniny (tzv. z-average), takže velké částice jsou velmi nadhodnoceny. Dokonce se může stát, že frakce malých částic se ztratí ve velké intenzitě záření rozptýleného na velkých částicích.[16]

DLS se stala důležitou technikou, založenou na rozptylu světla, pro studium vlastností suspenzí a koloidních roztoků, biologických roztoků makromolekul a polymerů. Je to technika neinvazivní a nedestruktivní. Je také užitečná pro měření rychlosti například mikroorganismů, které jsou přítomny v roztoku nebo analyzují toku tekutin.[15]
Při obecném rozptylu světla je světlo, rozptýlené od částic, v náhodné fázi, takže nedochází k jeho interferenci. V případě použití laseru je světlo koherentní a po jeho interakci s částicemi k interferenci dochází. Protože se malé částice v kapalině pohybují díky Brownovu pohybu (kap. 1.3.1), mění se vzdálenost, kterou musí urazit rozptýlené světlo k detektoru. Rozptýlené vlnění může interferovat v závislosti na vzdálenosti mezi částicí a detektorem. Výsledkem jsou intenzitní fluktuace rozptýleného záření okolo průměrné hodnoty intenzity. Z fluktuací intenzity se získá korelační funkce (kap. 1.5.2).

Dopad monochromatického paprsku na částice konající Brownův pohyb způsobí Dopplerův posun, což se projeví změnou vlnové délky dopadajícího paprsku. Tato změna souvisí s velikostí částic. Je tedy možné vypočítat rozdělení velikostí částic (Obr. 3) a popsat pohyb těchto částic v médiu ale i měřit difúzní koeficient částic pomocí autokorelační funkce.

Obr. 3: Částice v roztoku konají Brownův pohyb a rychlost jejich pohybu je použita k určení velikosti částic. Princip: malé částice se ve stejném rozpouštědle pohybují rychleji (A) než částice vetší (B).[15]

Tato technika je jednou z nejvíce používaných metod pro stanovení velikosti částic. Rozsah metody je od 0,3 nm do 10 µm, což je obtížné dosáhnout jinými technikami.[15]
DLS metoda má několik výhod. Především doba trvání experimentu je poměrně krátká, vše je téměř automatizovaná, takže rutinní měření nevyžadují rozsáhlé zkušenosti uživatele. Avšak příprava vzorků a interpretace výsledků již vyžadují zkušeného experimentátora s dobrými teoretickými znalostmi v dané oblasti. Komerční systémy většinou pracují pouze pod jedním úhlem (90°) a používají červené světlo (675 nm).[18]

Dynamický rozptyl v zásadě není tak přesný pro rozlišení malých oligomerů než klasický rozptyl světla. Totéž platí i pro měření sedimentační rychlosti. Výhodou použití dynamického rozptylu je možnost analyzovat vzorky obsahující široké distribuce druhů značně rozdílné molekulové hmotnosti a detekovat velmi malá množství vyšších molekulových hmotností (< 0,01% v mnoha případech).[18]

Dnes je DLS standardní nástroj široce používaný například ve farmaceutickém průmyslu. Znalost zjištěovaných parametrů je důležitá, protože vlastnosti částic jako jsou velikost a tvar ovlivňují například u bílkovin jejich rozpustnost, distribuci v těle a nepřímo také technologii jejich výroby.[15]

1.4.3 Ramanova spektorskopie, Stokesův a anti-Stokesův posuv

Princip Ramanova rozptylu spočívá ve dvoufotonovém přechodu mezi dvěma vibračními stavy molekuly.[19] Energie jednotlivých stavů můžeme označit za E_1 a E_2. ($E_2 > E_1$) Tento přechod je vyvolaný interakcí s fotonem dopadajícího záření o frekvenci:

$$v_0 = \frac{(E_2 - E_1)}{h},$$ (5)

Molekula pak emituje tato záření:

- záření se stejnou frekvencí jako má dopadající záření (v_0) – Rayleighův rozptyl
- s frekvencí ($v < v_0$) – Stokesův rozptyl
- nebo s frekvencí ($v > v_0$) – anti-Stokesův rozptyl

Ramanův rozptyl
1.5 Experimentální data z DLS a jejich využití k charakterizaci vzorků

Z dat získaných z čistě fyzikální podstaty kvazi-elastického rozptylu světla lze spočítat některé veličiny charakterizující zkoumaný vzorek. Nejběžnější charakteristikou popisující částice nejen v materiálových vědách je velikost částice. Pro přesné kulovité částice lze říci, že jejich velikost odpovídá jejich průměru respektive poloměru. Pro nekulové částice se jejich velikost musí definovat s ohledem na metodu měření. Proto se počítají takzvané ekvivalentní průměry, čímž se v prvé řadě myslí průměry ekvivalentních koulí.[7]

1.5.1 Ekvivalentní průměry (poloměry)

Mezi ekvivalentní průměry resp. poloměry, které lze změřit metodou rozptylu světla, patří:

1.5.1.1 *Hydrodynamický poloměr* – R_H

Měřeným údajem v dynamickém rozptylu světla (DLS) je korelační křivka. Korelační křivka nese všechny informace týkající se difúze částic v měřeném vzorku. Difúzní koeficient (D) se vypočítá převedením korelační křivky na exponenciální funkci, kde D je úměrný době poklesu exponenciály. Hydrodynamický poloměr (R_H) se pak vypočítá z difúzního koeficientu pomocí Stokes-Einsteinovy rovnice, kde k je Boltzmannova konstanta, T je termodynamická teplota, η je viskozita prostředí a $f = 6\pi \eta R_H$ je frikční koeficient tuhých kulových částic ve viskozním prostředí.[21]

$$D = \frac{kT}{f} = \frac{kT}{6\pi \eta R_H}$$ (6)
Podle definice pak poloměr měřený metodou DLS je poloměr hypotetické tuhé kulovité částice, která difunduje stejnou rychlostí jako zkoumaná částice. V praxi však platí, že makromolekuly v roztoku jsou nekulové, dynamické a solvatované.[21]

1.5.1.2 **Gyrační poloměr – \(R_G \)**

Vedle hydrodynamického poloměru se pro charakterizaci polymerních molekul často používá tzv. gyrační poloměr. Gyrační poloměr je definován jako průměrná hodnota kvadrátů vzdáleností segmentů od těžiště daného polymerního řetězce.[22]

Rozdělíme-li polymer na \(x \) malých dílků (hmotných bodů), pak můžeme gyrační poloměr definovat jako:

\[
s^2 = \frac{1}{x} \sum_i x_i s_i^2,
\]

kde \(x_i \) je hmotnost \(i \)-tého bodu a \(s_i \) je jeho vzdálenost od těžiště. Symbol \(x \) představuje hmotnost celého polymeru a je roven sumě všech \(x_i \). Pokud mají všechny dílky stejnou hmotnost, jde vzorec (7) zjednodušit do tvaru:

\[
s^2 = \frac{1}{n} \sum_i s_i^2,
\]

kde \(n \) je počet hmotných bodů. Gyrační poloměr je pak kvadratickým průměrem vzdáleností všech hmotných bodů od těžiště. Může být stanoven z výsledků měření statického rozptylu světla bez ohledu na tvar částice.[12]

1.5.1.3 **Některé další ekvivalentní průměry**

Následující ekvivalentní průměry nelze měřit metodou rozptylu světla, proto je zde uveden pouze jejich krátký přehled. Mezi další běžné průměry patří objemové-ekvivalentní průměr \(D_{obj} \). Jedná se o průměr koule stejného objemu jako vybraná nepravidelná částice o objemu \(V_c \).

\[
D_{obj} = \left(\frac{6}{\pi} V_c \right)^{\frac{1}{3}}
\]

Povrchové-ekvivalentní průměr \(D_{povr} \) je průměr koule stejného povrchu jako vybraná nepravidelná částice o velikosti povrchu \(S_c \). Další druhy ekvivalentních průměrů lze najít v literatuře [7].

\[
D_{povr} = \left(\frac{6}{\pi} S_c \right)^{\frac{1}{2}}
\]
1.5.2 Autokorelační funkce

Základem metody DLS je měření fluktuace intenzity rozptýleného světla z laserového zdroje (koherentní záření) okolo její průměrné hodnoty. Tyto fluktuace souvisí s interferenčním zeslabováním a zesilováním světla rozptýleného na nestacionárních částicích disperzní fáze podléhajících Brownovu pohybu. Okamžitou hodnotu fluktuace intenzity v čase \(t + \tau \) popisuje pro velmi malé hodnoty \(\tau \) tzv. autokorelační funkce \(g(\tau) \). Experimentálně zjištěný průběh této funkce je pro monodisperzní systémy aproximovatelný exponenciální funkcí ve tvaru:

\[
g(\tau) = \exp\left(-\frac{\tau}{\tau_c}\right),
\]

kde \(\tau_c \) je tzv. relaxační čas (doba návratu fluktuace k průměrné hodnotě intenzity rozptýleného světla). Hodnota relaxačního času vykazuje souvislost k difuznímu koeficientu \(D \) rozptylujících částic. (menší částice se pohybují rychleji, a tudíž fluktuace vyvolané jejich pohybem také rychleji zanikají) Platí vztah:

\[
\tau_c = \frac{1}{2}DQ^2,
\]
kde Q je vlnový vektor a D je difúzní koeficient. Hodnota vlnového vektoru je určena vlnovou délkou primárního světelného paprsku λ a úhlem θ, pod kterým je intenzita rozptýleného světla měřena.

Obr. 6: Fluktuace intenzity rozptýleného světla pro velké a malé částice [15]

Pro vlnový vektor pak platí:

$$Q = \left(\frac{4\pi}{\lambda}\right) \sin \frac{\theta}{2}.$$ (13)

Ze získané hodnoty difuzního koeficientu lze pak určit na základě Stokes-Einsteinovy rovnice hodnotu \textbf{hydrodynamického poloměru R_H rozptýlujících částic}:

$$R_H = \left(\frac{kT}{6\pi \eta}\right) Q^2 \tau_C,$$ (14)

Alternativní metoda pro analýzu autokorelační funkce je založena na zpětné Laplaceově transformaci a je označována jako CONTIN. Autorem této metody je Steven Provencher. Metoda CONTIN je vhodná pro polydisperzní a multimodální systémy, které nelze řešit kumulační metodou.[27]

Obr. 7: Význam korelační funkce při interpretaci dat [15]

Obr. 8: Význam korelační funkce při interpretaci dat – konkrétní příklady [17]
2 KYSELINA HYALURONOVÁ A JEJÍ SODNÁ SŮL

2.1 Historie

2.2 Výskyt

Kyselina hyaluronová se z chemického hlediska se řadí mezi glykosaminoglykany s vysokou molekulovou hmotností, skládá se z disacharidu N-acetylglukosamin a z kyseliny glukuronové. Tato poměrně jednoduchá struktura je zachována u všech savců.[34] V těle se HA vyskytuje ve formě soli a nachází se ve vysokých koncentracích v mnoha měkkých pojivových tkáních včetně kůže, pupeční šňůry, synoviální tekutiny a ve sklivci. Významné množství HA se také nachází v plicích, ledvinách, mozku a svalové tkáni.[32]
2.3 Využití

HA byla poprvé použita v roce 1942, kdy Endre Balazs požádal o patent používat HA jako náhradu za vaječný bílek u pekárenských výrobků. První lékařskou aplikací hyaluronanu byla náhrada sklivce při operaci oka na konci 50.tých let 20. století. Používaný hyaluronan byl původně izolován z lidského pupeků a krátké poté z kohoutích hřebenů ve vysoce čisté podobě a s vysokou molekulovou hmotností.[31]

Už v 60.tých letech se využívala při léčbě popálenin a kožních vředů. Od roku 1979 je na trhu určena pro použití v oční chirurgii, kde se využívá k dočasnému vyplnění prostoru přední komory oční například při implantaci čočky nebo při operaci šedého zákalu.[32]

Její konzistence a šetrnost ke tkáním umožňuje použití v péči o pokožku, jako jsou hydratační krémy apod. Kyselina hyaluronová je jednou z nejvíce hydrofylních (vodu vázajících) látek.[32] Její unikátní vlastnosti spolu s biokompatibilitou vedly k jejímu použití v řadě lékařských aplikacích, včetně doplnění kloubní tekutiny při artritidě [35, 36, 37] nebo v oční chirurgii, a také k usnadnění hojení a regenerace chirurgických ran.[32, 38]

Mnoho výjimečných fyzikálně-chemických vlastností HA, např. unikátní viskoelastické vlastnosti a schopnost vázat vodu, dovozu její různé aplikace obzvláště ve farmacii, medicíně a na poli kosmetiky. Pokračující výzkum se nyní soustřeďuje na použití HA pro různé terapeutické aplikace v oftalmologii, dermatologii a při osteoartróze. Charakterizace hydrodynamických vlastností HA a detailní znalost její molekulární struktury jsou velmi důležité pro její efektivní aplikace.[39]

2.4 Chemická struktura

Kyselina glukuronová a N-acetylglukosamin jsou propojeny pomocí střídavé β-1,4 a β-1,3 glykosidické vazby (Obr. 9). Všechny objemné skupiny (hydroxylové, carboxylové a acetamidové) se nachází ve stéricky východních pozicích, zatímco všechny malé atomy vodíku zaujímají stéricky méně příznivé axiální pozice. To znamená, že struktura tohoto disacharidu je energeticky velmi stabilní.[32]

Počet disacharidů v molekule hyaluronanu může dosáhnout více než 10 000 s molekulovou hmotností ~ 4 miliony daltonů (každý disacharid je ~ 400 daltonů). Průměrná délka disacharidu je ~ 1 nm. Takže molekula hyaluronanu s 10 000 mery může měřit 10 mikronů, přibližně stejně jako v průměrný lidský erytrocyt.[32, 40]
Hyaluronát sodný tvoří v tuhém stavu hexagonální mřížku o rozměrech $a_1 = 1,17$ nm se vzdáleností opakující se jednotky 2,85 nm a nachází se ve formě trojřetězové svinuté šroubovicové struktury. Byl také zjištěn její výskyt ve formě monoklinické mřížky ve formě dvojřetězové svinuté šroubovicové struktuře.[41]

Obr. 9: Chemická struktura HA [32]

2.5 Struktura HA v roztoku

Ve fyziologickém roztoku je osa molekuly hyaluronanu vyztužena vnitřními vodíkovými můstkami a interakcemi s rozpouštědlem. Axíální atomy vodíku jsou nepolární, relativně hydrofobní, zatímco rovníkové a stranové řetězce jsou více polární a hydrofilní, to způsobuje terciální strukturu ve formě šroubovice. Roztoky hyaluronanu vykazují velmi neobvyklé reologické vlastnosti a jsou mimořádně hydrofilní. V roztoku řetězce hyaluronanu zaujímají formu expandovaného polymerního klubka. Tyto řetězce se ve velmi nízkých koncentracích mohou navzájem prolést, což může přispět k neobvyklým reologickým vlastnostem. Při vyšších koncentracích mají roztoky extrémně vysokou viskozitu. Roztok o hmotnostní koncentraci 1%hm. je jako gel, ale když je pod tlakem, pohybuje se snadno a může s ním být manipulováno pomocí malé injekční jehly.

Mimořádné reologické vlastnosti roztoku hyaluronanu z něj dělají ideální mazivo. Hyaluronan odděluje většinu tkání, které se po sobě navzájem pohybují.

Jak již bylo zmíněno, polymer v roztoku zaujímá vyztuženou šroubovicovou strukturu, která obsahuje vodíkové můstky mezi hydroxylovými skupinami podél řetězce. V důsledku toho její klubkovitá struktura pojme až tisícínásobek vody.[32, 40]
Molekula HA ve svých strukturách obsahuje karboxylové skupiny –COOH, které jsou disociovatelné. Z tohoto důvodu se ve vodných roztocích chová jako záporně nabitý polyelektrolyt a její konformace, tvar a stupeň hydratace závisí na stupni disociace. Na stupeň disociace má vliv pH, iontová síla a přítomnost kladně nabitých iontů.[41]

2.6 Syntéza HA

Syntéza buněčné HA je unikátní a vysoce řízený proces. Většina glykosaminoglykanů je vytvořena v Golgiho aparatu. HA je přirozeně syntetizována v integrálních membránových proteinech zvaných hyaluronové syntházy, z nichž obratlovci mají tři typy: HAS1 a HAS2 a HAS3.[42] Hyaluronové syntézní enzymy syntetizují velké lineární polymery s opakující se disacharidovou strukturou hyaluronanu.[32]

2.7 Biochemie HA

U savců dochází k enzymatické degradaci HA působením tří typů enzymů: hyaluronidáza (hyaluronidase, zkr. hyase), β-D-glukuronidáza a β-N-acetyl-hexosaminidáza. Tyto enzymy se nachází v těle v různých formách a to intracelulárně a v séru. Obecně platí, že hyaluronidáza štěpí vysoké molekulové hmotnosti HA na menší oligosacharidy, zatímco β-D-glukuronidáza a β-N-acetylhexosaminidáza degradují tyto fragmenty oligosacharidů.[32, 43]

Hyaluronidáza snižuje viskozitu hyaluronové kyseliny, čímž se zvyšuje propustnost tkání. Z tohoto důvodu se používá v lékařství ve spojení s jinými léky, aby se urychlila jejich dodávka a rozptýlení. Nejčastěji se používá v oční chirurgii v kombinaci s lokálními anestetiky. Některé bakterie, jako je Staphylococcus aureus, Streptococcus pyogenes et pneumoniae a Clostridium perfringens, produkují hyaluronidázu jako prostředek pro zvýšení mobility prostřednictvím tělesných tkání a jako antigenní přestrojení, která brání jejich rozpoznání fagocyty imunitního systému.[32, 44, 45]

Kyselina hyaluronová má řadu ochranných fyzikálně-chemických funkcí, které mohou poskytnout další chondroprotektivní účinky in vivo a můžou vysvětlit její dlouhodobější účinky na kloubní chrupavku. Kyselina hyaluronová může redukovat nervové impulzy a nervovou citlivost spojenou s bolestí. V případě osteoartrózy mají glykosaminoglykany ochranné účinky na chrupavky a je známo, že exogenní kyselina hyaluronová by měla být začleněna do chrupavky.[46]
Exogenní HA snižuje produkci a aktivitu prozánětlivých mediátorů a má vliv na chování buněk imunitního systému. Mnohé z fyziologických účinků exogenní HA můžou být funkcí její molekulové hmotnosti. Hyaluronan je velmi hygroskopická látka a tato vlastnost je velmi důležitá pro hydrataci tkání a osmotickou rovnováhu.[47] Kromě své funkce jako pasivní strukturální molekula, hyaluronan také funguje jako signální molekula interakcí s receptory na povrchu buněk a reguluje buněčné proliferace, migrace a diferenciace. Hyaluronan je také nezbytný pro embryogenezi.[48]

Funkce hyaluronanu jsou různorodé. Jeho hygroskopické vlastnosti významně ovlivňují hydrataci, ale také je schopen komunikovat s řadou receptorů, což vede k aktivaci signálních kaskád, které ovlivňují buněčnou migraci (šíření) a genové exprese.[32, 49]

2.8 Výroba HA

V současné době lze vyrobit velké množství preparátů na bázi HA o různých molekulových hmotnostech. V medicíně lze však uplatnit pouze jen ty preparáty, které neobsahují velké množství průvodních bílkovin. Ty je často velmi snadno dají detekovat pomocí UV-VIS spektroskopie. Zvýšený obsah bílkovin by mohl mít za následek různá zápalová onemocnění apod.[41]

První metodu pro izolaci a čištění HA pro farmaceutické účely vyvinul Balazs. Jeho metodou lze získat preparáty s 0,5%hm. obsahem bílkovin a výtěžnost produktu je 0,9 g/kg výchozí suroviny. Jak bylo uvedeno výše, výchozí surovinou byla především pupeční šňůra a kohoutí hřebeny, které se musí zmrazit, což způsobí rozrušení buněčných stěn a takto upravený materiál se řeže a extrahuje pomocí etanolu s přídavkem cetylpyridiu chloridu, chloroformu a vody. Získaný extrakt se čistí a upravuje se jeho pH a iontová síla.[41]

Podle československého patentu je možné izolovat vysoce čistou HA s konečným obsahem bílkovin pod 0,1 %hm. při výtěžnosti 1,6 g/kg výchozí suroviny. Podstata tohoto způsobu je založená na modifikaci některých polárních skupin v molekulách kontaminujících bílkovin, které tvoří vazby na HA.

Pro kosmetický průmysl je hlavní produkční metodou HA kultivace bakterií Streptococcus equi a Streptococcus zoopidemicus. Kultivace těchto bakterií se provádí v roztocích glukózy s obsahem kvasinek a solí při teplotě 33°C a pH 8,5.[41]
2.9 Viskozita roztoků HA

Limitní viskozitní číslo \([\eta]\) představuje jednu z nejdůležitějších proměnných, které popisují chování zředěného roztoku polymeru. Je to míra hydrodynamického objemu zabraného makromolekulami v roztoku, a proto je obrazem jejich velikosti. Vztah mezi limitním viskozitním číslem a molární hmotností popisuje tzv. Mark-Houwinkova rovnice:

\[
[\eta] = K \times M^a,
\]

Tato rovnice poskytuje přímé informace o konfiguraci a konformaci polymerních řetězců ve zředěném roztoku za daných podmínek (tj. rozpouštědlo a teplota). Grafy Mark-Houwinkovy rovnice lineárních polymerů jsou lineární v celém rozsahu molární hmotnosti, zatímco její zakrivené grafy indikují rozvětvenou strukturu. Sklon grafu, tedy Mark-Houwinkův exponent, nese informace o interakcích polymer-rozpuštědlo a molekulární konformaci a konfiguraci.

Hodnoty parametru \(a\) lineárních polymerů v termodynamicky dobrých rozpouštědlech jsou kolem 0,7; hodnoty v rozsahu okolo 0,8 - 1,0 (někdy až 2) indikují expandovanou konformaci. Při tzv. theta podmínkách je exponent \(a\) roven 0,5. Konstanty \(K\) a \(a\) jsou konstanty pro dvojici polymer – rozpouštědlo, které je nutno určit experimentálně na základě molárních hmotností stanovených jinými metodami (např. rozptylem světla).

Mark-Houwinkova rovnice se také často používá pro stanovení průměrné molární hmotnosti. Nicméně, přesnost molárních hmotností získaných tímto způsobem velmi závisí na spolehlivosti parametrů \(K\) a \(a\). Vzorek musí být měřen za stejných podmínek, jaké jsou použity pro stanovení Mark-Houwinkových parametrů.

Mark-Houwinkův exponent závisí na molární hmotnosti HA. Pokles exponentu \(a\) s rostoucí molární hmotností se vysvětluje jako důsledek přechodu expandované konformace při nízkých molárních hmotnostech do konformace statistického klubka při vysokých molárních hmotnostech. Nevýhodou dříve publikovaných výsledků byl relativně nízký počet analyzovaných vzorků. Například tři různé Mark-Houwinkovy exponenty uvádí autoři [50] na základě experimentálních dat pro pouhých šest vzorků.[39, 51]

Kyselina hyaluronová se používá již více než 20 let v mnoha produktech po celém světě kvůli její biokompatibilitě, biologické rozložitelnosti a snadno modifikovatelné chemické struktuře a dalším vlastnostem, které se využívají pro medicínské účely.[52]
3 KVARTERNÍ AMONIOVÉ SOLI

Jsou syntetické deriváty amonium chloridu, ve kterém jsou čtyři vodíky kationtu amonia nahrazeny organickými skupinami. Nejméně jedna z těchto organických skupin představuje zbytek dlouhého alifatického řetězce.[53] Vodné roztoky QAS snižují povrchové napětí. Většinou se vyrábí jako chloridy, menší část výroby představují bromidy, jodidy a nitráty. Používají se jako dezinfekční látky, tenzidy a antistatická činidla (například v šamponech).[53, 54]

3.1 Antimikrobiální použití QAS

QAS nejlépe účinkují proti grampozitivním bakteriím. Dobré účinky také vykazují proti houbám, amébám a zapouzdřeným virům. Účinek QAS spočívá v destrukci buněčné membrány a bílkovin. QAS nejsou příliš účinné v přítomnosti organických sloučenin, ale kombinací s fenoly lze jejich účinnost zvýšit. Účinné hladiny QAS se pohybují okolo 200 ppm. Jejich účinnost je omezena teplotou 100°C.[55]

3.2 Terminologie dané oblasti

Tenzid je povrchově aktivní látka, která už v malých koncentracích má schopnost hromadit se na fázovém rozhraní a tím snižovat mezifázovou energii soustavy. Detergent je směs tenzidů a dalších látek, které mají detergenční vlastnosti. Detergenčními vlastnostmi se rozumí schopnost převádět nečistotu z pevného povrchu do objemové fáze. Saponát je starší (nepřesný) název pro syntetické tenzidy. Syndet je zkratka pro syntetický detergent.[56]

3.3 Povrchově aktivní látky (PAL)

Některé molekuly mohou obsahovat dvě odlišné složky, které se liší v afinitě ke svým rozpouštědům. Část molekuly, která má afinitu k polárním rozpouštědům, jako je voda, je část hydrofilní. Část molekuly, která má afinitu k nepolárním látkám, jako jsou uhlovodíky, se nazývá část hydrofobní. Molekuly, které obsahují oba typy komponent, jsou amfoterní (amfifilní). (Obr. 10, ilustrace A).

Tyto molekuly vykazují odlišné chování při interakci s vodou. Polární část molekuly se snaží navázat interakci s vodou, zatímco nepolární část se interakci s vodou vyhýbá. Existují dva způsoby, jak taková molekula zvládne oba tyto stavy.
Amfifilní molekula zaujme takovou pozici, že polární část interaguje s vodou a nepolární část směřuje nad povrch (atť už do vzduchu nebo do nepolární kapaliny), jak je znázorněno na obrázku B. Přítomnost těchto molekul na povrchu narušuje soudržné energie na povrchu a tím snižuje povrchové napětí. Takové molekuly se nazývají povrchově aktivní látky (PAL) neboli surfaktanty.[57]

Podle charakteru polární „hlavy“ (kation, anion, obojetný ion – zwitterion, polyol či polyether) se tenzidy dělí na:

- kationické
- anionické
- amfoterní (zwitteriontové)
- neionické [54]

Obr. 10: Vlastnosti micel [7]

Další uspořádání těchto molekul dovoluje, že molekuly mohou tvořit agregáty, které mají hydrofobní části orientované do středu koule, kterou tvoří. Hydrofilní části jsou vystaveny působení rozpouštědla. Tyto agregáty se nazývají micely. Příklad kulové micely je zobrazen výše (Obr. 10, ilustrace C). Obrázek 10C je nutno chápat jako ilustrativní, protože ve skutečnosti je střed micely propleten hustější hydrofobními řetězci než místa dále od středu.[57]
Podíl molekul přítomných na povrchu nebo jako micel v kapalině závisí na koncentraci tenzidu. Při nízkých koncentracích zaujmou surfaktanty uspořádání na povrchu. Jak se povrch začíná stávat přeplněný povrchově aktivními molekulami, začínají se tvořit micely.

3.3.1 Kationické tenzidy

Kationické tenzidy vykazují i významný mikrobicidní efekt. Jejich biologická rozložitelnost je oproti anionickým tenzidům obecně horší. Téměř u všech kationických tenzidů je kationtem kvartérní dusíkový atom. Katonické tenzidy jsou hlavně kvartérní amoniové soli, a to chloridy, methosulfáty nebo bromidy. Kvartérní amoniové soli můžou obsahovat jeden až tři delší alkyly.[56]

Kationické tenzidy se používají do kondicionačních přípravků pro vlasovou kosmetiku a do aviváží. Anionické tenzidy nelze kombinovat s kationickými, neboť se vzájemně srážejí a vzniká nerozpustný aglomerát.[56] Mezi kationické tenzidy patří i hexadecyltrimethylammonium bromid (CTAB), který byl použit při měření v rámci této práce. Konkrétní informace o anionických i amfoterních tenzidech lze najít v literatuře [53].

![Strukturní vzorec CTAB](image)

Obr. 11: Strukturní vzorec CTAB [7]

3.3.2 Vliv povrchově aktivních látek (PAL) na rychlost reakce

V přítomnosti povrchově aktivních látek dochází u některých reakcí ke zrychlení reakce 10x-100x. Ve zvláštních případech může být zrychlení reakce ještě o řád vyšší. Tyto změny nejsou způsobeny přítomností PAL, ale jsou výsledkem jevů spojených se vznikem a přítomností micel. Tento druh katalýzy se nazývá micelární katalýza.[58]

3.4 Kritická micelární koncentrace (CMC)

Konzentrace, při které se v roztoku právě začínají tvořit micely, se nazývá kritická micelární koncentrace (CMC). Hodnoty CMC se pro různé látky pohybují v rozmezí 10^{-5}
až 10^{-3} mol/l. Pod touto koncentrací je micelární koloid v systému pouze ve formě unimerních molekul, nad ní všechny přidávané molekuly asocioují do micel.

K nalezení CMC může být použito měření povrchového napětí. Graf povrchového napětí versus logaritmus koncentrace přidaného surfaktantu obvykle vypadá takto:

Obr. 12: Závislost povrchového napětí na koncentraci surfaktantu s vyznačeným bodem CMC [57]

V tomto grafu lze vidět tři fáze:
1. Při velmi nízkých koncentracích surfaktantu je zjištěna pouze nepatrná změna povrchového napětí.
2. Při jeho přidavku se povrchové napětí snižuje
3. Povrch se stává zaplněným, nenastávají žádné další změny v povrchovém napětí.

Jak je uvedeno výše, techniky pro zjištění CMC měřením povrchového napětí jsou jednoduché a přímočaré. Vzniká graf závislosti povrchového napětí versus logaritmus koncentrace. CMC se nachází v bodě, v němž se dvě linky protínají. Graf povrchového napětí versus logaritmus koncentrace může být sestrojen po měření série ručně smíšených roztoků nebo automaticky pomocí přístrojů Attension Sigma 700 nebo 701. Ruční míčání
a testování povrchového napětí pro řadu roztoků je časově náročné a obtížné. Čas na přípravu se může pohybovat od minut až po hodiny.[57]

3.4.1 Vlivy hydrofilní skupiny surfaktantu na CMC

Změna skupiny v hydrofilní části surfaktantu má vliv na CMC. Obecně platí, že surfaktanty obsahující iontové skupiny v hydrofilní části mají vyšší CMC než ty s obsahem neionogenní skupiny.[52] To je způsobeno repulzními silami mezi skupinami hydrofilních skupin sousedních molekul surfaktantu. Surfaktanty obsahující hydrofilní části typu zwitterion, mají obvykle menší CMC než ty, které obsahují iontové skupiny ve svých hydrofilních částech.[59]

3.4.2 Vlivy hydrofobní skupiny surfaktantu na CMC

Hydrofobní skupiny surfaktantu mají také vliv na hodnotu CMC. Obecně platí, že CMC klesá se zvyšujícím se počtem atomů uhlíku v alkylovém řetězci až do hodnoty přibližně 16-18 atomů uhlíku (pro přímý alkylový řetězec).[52] Jako orientační pravidlo pro iontické surfaktanty platí, že přídavek jedné methylenové skupiny na hydrofobní ocas sníží hodnotu CMC na polovinu. Pro neionické surfaktanty a surfaktanty typu zwitterion platí, že přídání methylenové skupiny snižuje CMC přibližně o 80 % ve srovnání s mateřskou CMC. Obecně platí že, atomy uhlíku na rozvětvených hydrofobních řetězcích mají poloviční vliv na CMC jako atomy uhlíku na rovných řetězcích. Přídání fenylové skupiny na uhlovodíkový řetězec odpovídá přibližně 3,5 methylenovým skupinám.

Dvojná vazba uhlík-uhlík zvyšuje CMC ve srovnání ke stejně, ale nasycené sloučenině. Sloučeniny s cis konformací dvojné vazby mají vyšší CMC než sloučeniny s trans konformací dvojné vazby. Když je kyslík nebo hydroxylová skupina přidána do hydrofobní části, CMC se zvyšuje. Methylenové skupiny mezi těmito polárními skupinami a hydrofilní skupinou hlavy mají přibližně poloviční vliv na CMC jako by měli v případě absence polární skupiny.[52, 59]

3.4.3 Vliv přídavku elektrolytu na CMC

Přítomnost elektrolytů zásadně ovlivňuje proces tvorby micel. Primárně dochází ke snížení CMC v roztocích tenzidů, ovlivněn je i rozměr micel. Například CMC anionického detergentu dodecylsulfátu sodného (SDS) je cca 6 mmol/l, ale v přítomnosti 150 mmol/l NaCl je CMC snížena na 1,4 mmol/l.[60] Další snížení CMC na 0,9 mmol/l bylo nalezeno po přídání 350 mmol/l NaCl. Snížení CMC po přídavku soli bylo prokázáno i u
kationických čisticích tenzidů, včetně dodecylammonium chloridu, docyltrimethylammonium bromidu, a cetyltrimethylammonium sulfátu.\cite{60, 61} Snížení CMC v přítomnosti elektrolytů u ionických tenzidů je pravděpodobně v důsledku snížení v náboje obklopujícího skupiny iontové hlavy.

3.4.4 Faktory ovlivňující CMC a agregační číslo

Zvýšení CMC
- dvojná vazba uhlík-uhlík
- polární skupiny bez přítomnosti hydrofobního řetězce
- ionické skupiny v hydrofylní části tenzidu

Snížení CMC
zvyšující se počet methylenových skupin v alkylovém řetězci
fenylové skupiny v alkylovém řetězci
fluorouhlíky na hydrofobním řetězci
přídavek elektrolytů do roztoků ionicích tenzidů \cite{59}

3.4.5 Agregační číslo

Další fyzikální vlastností micel je agregační číslo. Je to počet monomerů tenzidu tvořících právě jednu micelu \cite{52, 62, 63}. Většina tenzidů používaných pro biochemické aplikace má agregační číslo v rozmezí od 50 do 100.\cite{64} Výjimkou jsou některé deriváty žlučových kyselin, které mají agregační číslo okolo 10. Tenzidy s menšími agregačními čísly mají tendenci tvořit více sférické micely, zatímco tenzidy s většími agregačními čísly mají tendenci vytvářet micely ve tvaru elipsoidu. Obecně platí že, číslo agregace se zvyšuje s narůstající délkou uhlovodíkové řetězce. Zvýšení teploty roztoků ionicích tenzidů také způsobuje nárůst čísla agregace. Agregační čísła mohou být stanovená řadou metod včetně rozptýlu světla.\cite{65}

Ze znalosti hodnoty CMC daného tenzidu a agregačního čísla lze zjistit několik důležitých parametrů včetně koncentrace micel přítomných v roztoku a molekulová hmotnost agregátu micel. Za ideálních podmínek lze koncentraci micel zjistit ze vztahu:

\[
[micely] = [tenzid] - \frac{[CMC]}{AN},
\]

(16)
kde CMC je kritická micelární koncentrace a AN je agregační číslo.

Molekulová hmotnost agregátů micel (aggregate molecular weight – AMW) se pak vypočte jako:

$$AMW = AN \cdot M.$$ \hspace{1cm} (17)

V rovnici (17) je symbolem M označena molekulová hmotnost monomeru. Molekulové hmotnosti agregátů micel se nejčastěji pohybují v rozmezí 20 až 100 kDa.[59]

3.4.6 Zjišťování hodnoty CMC, Krafftova teplota

Při koncentraci, která odpovídá CMC, se v důsledku vzniku micel mění směrnice koncentračních závislostí mnohých fyzikálně-chemických vlastností roztoků micelárních koloidů. Jak můžeme vidět na obrázku č. 13, velmi výrazná změna nastává u povrchového napětí, molární vodivosti, osmotického tlaku a turbidity.[66] Při překročení CMC vznikají ve vodných roztocích tenzidů agregáty, jejichž charakter, velikost a tvar ovlivňuje řada vlivů. Nejvýznamnější je vliv struktury amfifilu, dále pak vliv teploty a složení systému.

![Diagram](image.png)

Obr. 13: Změna vlastností roztoků micelárních koloidů v bodě CMC [67]
Při vyšších koncentracích by byl na křivce u některých fyzikálně-chemických vlastností pozorován další zlom, který odpovídá tzv. druhé kritické micelární concentraci. Tato vlastnost je vysvětlována změnami v typu agregace, interakcích micela-micela, monomer-micela apod.[66]

Nezbytnou podmínkou pro vznik micel z aniontových nebo kationtických tenzidů je, aby teplota daného systému byla vyšší než tzv. **Krafftova teplota**. Pod Krafftovou teplotou je rozpustnost tenzidu ve vodě nepatrná, nad touto teplotou rozpustnost vzrůstá často i o několik řádů. V praxi se s tenzidy pracuje za teplot výrazně vyšších než je Krafftova teplota, proto se často jako nutná podmínka pro vznik agregátů udává pouze překročení CMC.[54]

Typ vznikajícího agregátu závisí na vzájemném poměru velikosti a tvaru hydrofilní a hydrofobní části molekuly daného tenzidu. Kvantitativně se popisuje pomocí kritického „sbalovací“ parametru CPP (critical packing parameter). Pak platí:

\[
CPP = \frac{V}{A} \cdot L
\]

kde \(V\) značí objem, který v agregátu zaujímá hydrofobní alkylový řetězec. \(A\) představuje plochu, kterou na fázovém rozhraní zabírá polární hlava tenzidu a \(L\) reprezentuje efektivní délku daného alkylového řetězce.[54]

Obr. 14: Charakterizace molekuly pro definování CPP [54]
Agregáty micel můžou zaujímat různé tvary (Obr. 15). Micely a inverzní micely jsou poměrně málo uspořádané a vysoce dynamické s průměrnou dobou existence řádově zlomky sekund. Agregáty jako dvojvrstvy představují systémy vysoce uspořádané a stabilní po dobu týdnů i měsíců.[54]

Obr. 15: Souvislost struktury amfifilu a typu vznikajícího agregátu [54]
II. PRAKTICKÁ ČÁST
4 MATÉRIÁLY A METODIKA

4.1 Použité chemikálie

Hyaluronan (M\textsubscript{W} = 0,35 MDa, CPN spol. s.r.o., č. šarže: 080810-2-D1, CAS: 00-12-11)

Hyaluronan (M\textsubscript{W} = 1,80 MDa, CPN spol. s.r.o., č. šarže: 291010-E1, CAS: 00-01-14)

Hexadecyltrimethylammonium bromid – \(\text{CH}_3(\text{CH}_2)_{15}\text{N(Br)}(\text{CH}_3)_3\) (Sigma-ALDRICH, Inc., > 99%, CAS 57-09-0, č. šarže: 027K2047)

Dihydrogenfosforečnan sodný – \(\text{NaH}_2\text{PO}_4\) (Sigma-ALDRICH, Inc., > 98%, CAS: 7558-80-7)

Hydrogenfosforečnan disodný – \(\text{Na}_2\text{HPO}_4\) (Sigma-ALDRICH, Inc., > 98,5%, CAS: 7558-79-4, č. šarže: 011M0191V)

Chlorid sodný p.a. – \(\text{NaCl}\) (Fluka, > 99,5%)

Demineralizovaná voda – \(\text{H}_2\text{O}\)

4.2 Příprava fosfátového pufru

Roztoky chemických látek, které nedovolují, aby došlo ke změnám hodnoty pH po přídavku kyseliny nebo zásady se nazývají tlumivé roztoky (ústojné roztoky, pufry, regulátory pH). Podstatou tlumivých roztoků je současná přítomnost konjugovaného páru kyseliny a její zásady v roztoku. Jedná se o dvojici látek, které se liší o jeden proton. Kyselina může reagovat s hydroxylovými ionty (po přídavku zásady) a konjugovaná zásada s vodíkovými ionty (po přídavku kyseliny do roztoku). Reakce probíhající v lidském organismu vyžadují poměrně stabilní hodnotu pH.[68]

Elektrochemická veličina pH byla měřena pomocí skleněné elektrody. Kalibrační sada obsahovala roztoky o pH = 7,00; pH = 4,00 a pH = 9,00. Po kalibraci elektrody byla provedena vlastní příprava fosfátového pufru.

Dále byla navážena vypočtená množství \(\text{Na}_2\text{HPO}_4\) a \(\text{NaH}_2\text{PO}_4\) a rozpuštěna v demineralizované vodě. Navážky hydrogenfosforečnanu sodného a dihydrogenfosforečnanu sodného byly počítány na požadovaný objem výsledného pufru podle vztahů:
Ze vztahů (19) a (20) po jednoduché matematické úpravě vyplývá rovnice pro výpočet navážky:

\[
m = \frac{m}{M}
\]

\[
c = \frac{n}{V}
\]

(19) \hspace{1cm} (20)

kde: c… molární koncentrace [mol/l]

M…molární hmotnost [g/mol]

V…objem [dm³]

Hodnota objemu roztoku se použila k výpočtu navážky NaCl dle vztahu:

\[
m_{NaCl} = \frac{c \cdot M_{NaCl} \cdot V_{NaCl}}{m}
\]

(22)

Přesně stanovené množství NaCl bylo rozpuštěno ve fosfátovém pufru, (stabilizace roztoku). Nutno poznamenat, že takto připravený pufr je vhodný k měření jen v časovém rozmezí cca 1 týdne od jeho přípravy za podmínky, že je uchováván při teplotě do cca 5°C. V průběhu celé přípravy se pracovalo s demineralizovanou vodou.

4.3 Příprava koncentrační sady roztoků surfaktantu pro zjištění CMC bodu

Pro stanovení kritické micelární koncentrace zvoleného surfaktantu (CTAB) byla zvolena koncentrační řada (viz Tab. 1). K příslušným koncentracím byly určeny navážky. Na tyto koncentrace a pro určitý objem byly stanoveny navážky surfaktantu.

4.4 Povrchové napětí
Na každou částici v kapalině působí částice z jejího bezprostředního okolí. Sféra molekulového působení je řádově 1 nm, což je několik mezimolekulových vzdáleností. Vzdálenost částic v kapalinách je srovnatelná se vzdáleností částic u pevných látek. Ale na rozdíl od pevných látek, v kapalinách částice kmitají kolem rovnovážných poloh, které se v čase mění. Změny rovnovážných poloh částic kapaliny vnímáme jako tekutost.[69]
Obr. 16: Působení síly na částice kapaliny [69]

Výsledná síla působící na částici u hladiny směřuje směrem dovnitř do kapaliny. Krajní molekuly jsou tak vtahovány dovnitř, ale v cestě jim brání jiné molekuly. Výsledkem je, že kapalina se snaží zaujmout geometrický útvar s co nejmenším povrchem. Tímto útvarem je koule. Povrch kapaliny se chová jako pružná blána.

Povrchové napětí je veličina, která udává, jak moc se kapalina snaží zmenšit svůj povrch. Povrchové napětí závisí na teplotě, (s rostoucí teplotou klesá) na druhu kapaliny a také na tom, zda jsou v dané kapalině rozpuštěny nějaké další látky).

Tenzidy mají schopnost snižovat povrchové napětí, protože se samovolně koncentrují na fázovém rozhraní.[69]

4.4.1 Metoda měření povrchového napětí

Princip této metody je založen na měření síly, která je zapotřebí k odtržení speciální platinové destičky od hladiny měřeného roztoku. Povrchové napětí je zjištěno na základě údajů o síle a smáčené délce destičky za předpokladu nulové hodnoty smáčecího úhlu.

Před začátkem měření se nejprve změřilo povrchové napětí čistého rozpouštědla (vody, pufru) a dále se měřily koncentrace tenzidu (od nejnižší po nejvyšší). Pro každé měření byla destička opláchnuta vodou, ethanolem a následně žíhaná nad plamenem lihového kahanu.

Po změření povrchového napětí všech vzorků, vody a samotného pufru byla data exportována a vyhodnocena. Výsledkem byla závislost povrchového napětí na koncentraci. Z průsečíku tečen získaných závislostí byla určena kritická micelární koncentrace.
Obr. 17: Závislost povrchového napětí na koncentraci tenzidu [58]

Na následujícím grafu je zjištěná hodnota CMC bodu surfaktantu CTAB za výše uvedených podmínek.

Obr. 18: Určení CMC bodu CTAB

Z regresních rovnic dané závislosti byla vypočtena koncentrace CMC na hodnotu 0,0777 mmol/l.
4.5 Měření velikosti polymerních klubek hyaluronanu

Zkoumané vzorky hyaluronanu byly vyrobeny firmou Contipro Group, s.r.o.

K měření byly použity dvě různé molekulové hmotnosti. Nízkomolekulární Mw = 0,35 – 0,70 MDa a wysokomolekulární Mw = 1,35 – 1,80 MDa. Vypočtené množství hyaluronanu se navážilo na analytických váhách a kvantitativně převedlo tak, aby vznikl 0,1%hm. roztok hyaluronanu ve fosfátovém pufru. Rozpouštění hyaluronanu probíhalo při teplotě 50°C po dobu 24 hodin. K měření velikosti částic byla použita metoda DLS a přístroj Zetasizer Nano (Malvern).

4.5.1 Metoda DLS

Tato metoda již byla popsána v kapitole (1.4.2). Zde jsou uvedeny některé technické i provozní výhody, které tato technika poskytuje. Velkou výhodou DLS je, že doba trvání experimentu je poměrně krátká (řádově v minutách). Další výhodou použití dynamického rozptylu je možnost analyzovat vzorky obsahující široké distribuce známých rozdílných molekulových hmotností (např. nativní protein a různé velikosti agregátů) a detekovat velmi malá množství vyšších molekulových hmotností (< 0,01% v mnoha případech).[18]

4.5.1.1 Postup přípravy vzorků pro Zetasizer Nano (Malvern)

Měřený vzorek byl připraven smícháním 1400 µl roztoku hyaluronanu (0,1%hm.) a 3000 µl fosfátového pufru. Roztok byl promíchán na magnetickém míchadle a následně přefiltrován přes mikrofiltr do polystyrenové kyvety (typ DTS0012).

V případě měření vzorků s tenzidem byly přidávány přídavky 15,5 µl, 25 µl a 38,9 µl roztoku CTAB (0,5%hm.).

Před měřením byl přístroj Zetasizer Nano nastaven na požadované hodnoty (měřená látka, rozpouštědlo, ekvilibrační doba, teplota, typ kyvety).

Zetasizer je schopný zahřívat či chladit měřený vzorek na požadovanou teplotu. Měření nelze spustit, dokud měřený vzorek nedosáhne zvolené teploty. Ekvilibrační čas je doba před začátkem měření, kdy senzory přístroje ověřují, zda je teplota vzorku stejná jako teplota kyvety. Základní předpoklad měření – Brownův pohyb částic – tedy není usnadněn vlivem teplotních gradientů. Ekvilibrační doba byla nastavena na 60 s, přičemž teplota vzorku po ekvibraci byla 25 °C.
Nejdříve se měřila velikost polymerních klubek hyaluronanu ve fosfátovém pufru. Každý vzorek byl změřen 4x, přičemž za maximální připustnou odchylku velikosti (z-average) je považována hodnota do 10 %. Obdobným způsobem byla změřena velikost polymerních klubek hyaluronanu ve fosfátovém pufru s přídavky tenzidu.

Na základě znalosti CMC použitého tenzidu byly pro měření velikosti částic zvoleny tři koncentrace CTAB. Jedna pod hodnotou CMC, hodnota CMC a poslední nad hodnotou CMC. Celý tento postup byl aplikován jak pro nízkomolekulární HA, tak také pro vysokomolekulární HA.

4.5.1.2 Popis přístroje Zetasizer Nano ZS

Zetasizer Nano je přístroj, který umožňuje měřit tři vlastnosti částic nebo molekul v kapalném prostředí. Tyto tři základní parametry jsou velikost částic, zeta potenciál a molekulová hmotnost. Zařízení Zetasizer ZS dovoluje měřit tyto parametry v širokém rozsahu koncentrací, ale i stanovení bodu tání bílkovin. Oplývá přesnou regulací teploty, potřebná pro reprodukovatelné a přesné měření. Mimo to Zetasizer poskytuje možnost měření dalších klíčových parametrů jako je pH a koncentrace.

4.5.1.3 Schéma přístroje

Laserové záření prochází čočkou kolimátoru a pak dopadá na částice v kyvete. Světlo je rozptýleno a detekováno fotonásobičem, který transformuje změnu intenzity světla na změnu napětí. Před fotonásobičem se nachází další kolimační čočka. Použití obou kolimačních čoček je nutné. První čočka umožňuje zaměřit paprsek do kyvety tak, aby oblast, která bude zasažena, byla dostatečně daleko od strany kyvety. Druhá čočka je
použita k získání části rozptýleného světla.[18] Zpracování signálu a analýzu dat provádí software zmíněný v kapitole 1.5.2.

Obr. 19: Schéma přístroje [4]

Obr. 20: Princip přístroje [17]

Rychlost čítače fotonů (Count rate)

Count rate zobrazuje počet detekovaných fotonů za sekundu. Je to užitečná veličina pro sledování kvality měřeného vzorku. Jeho průběh může mít různou podobu (Obr. 21).
21A – normální count rate

21B – ostré peaky signalizují přítomnost prachových částic

21C – široce fluktuující count rate indikuje teplotní gradienty, je tedy zapotřebí delší čas na ekvilibraci

21D – pozvolna stoupající hodnota count rate indikuje, že vzorek tvoří agregáty (1), zatímco když klesá, jde o vzorek podléhající sedimentaci (2)

Obr. 21: Jednotlivé typy count rate [17]
4.6 Analýza dat

Celkem bylo provedeno přes 200 měření. Reprezentativní výsledky shrnují následující grafy.

4.6.1 Vysokomolekulární HA

Všechny měřené vzorky byly připraveny smícháním 1400 µl roztoku hyaluronanu (0,1%hm.) a 3000 µl fosfátového pufru. Vlivy přídavků CTAB jsou znázorněny na následujících obrázcích. Jednalo se o přídavky 15,5 µl (označen symbolem C1), 25µl (označen symbolem C2) a 38,9 µl (označen symbolem C3) roztoku CTAB ve fosfátovém pufru, který byl připraven o koncentraci 0,5%hm.

Tab. 2: Tabulka míšení roztoku vysokomolekulární HA, roztoku pufru a roztoku CTAB

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1400</td>
<td>15,5</td>
<td>3000</td>
<td>4416</td>
</tr>
<tr>
<td>1400</td>
<td>25,0</td>
<td>3000</td>
<td>4425</td>
</tr>
<tr>
<td>1400</td>
<td>38,9</td>
<td>3000</td>
<td>4439</td>
</tr>
</tbody>
</table>

(zelený řádek označuje CMC)

Distribuční křivky včetně čisté kyseliny hyaluronové jsou zobrazeny na Obr. 22 a srovnání distribučních křivek HA s jednotlivými přídavky CTAB je na Obr. 23.
Obr. 22: Intenzitní distribuce velikosti částic 1,8MDa HA a HA s přídavky CTAB

Obr. 23: Intenzitní distribuce velikosti částic 1,8MDa a HA s přídavky CTAB
Jelikož je v grafu intenzitní distribuce osa x logaritmická, lze poměrně těžce přesně odhadnout, jaká je hodnota z-average. Tyto údaje lze vyčíst z následujících tabulek.

Tab. 3: Velikosti polymerních klubek vysokomolekulární HA včetně chyby měření

<table>
<thead>
<tr>
<th>$V_{CELK.} [\mu l]$</th>
<th>$V_{CTAB}/V_{CELK.}$</th>
<th>$C_{HA} [mmol/l]$</th>
<th>$C_{CTAB} [mmol/l]$</th>
<th>$d [nm]$</th>
<th>chyba [nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4416</td>
<td>0,00351</td>
<td>0,0001761</td>
<td>0,04816</td>
<td>78,4</td>
<td>0,3</td>
</tr>
<tr>
<td>4425</td>
<td>0,00565</td>
<td>0,0001758</td>
<td>0,07751</td>
<td>62,3</td>
<td>0,3</td>
</tr>
<tr>
<td>4439</td>
<td>0,00876</td>
<td>0,0001752</td>
<td>0,1202</td>
<td>63,8</td>
<td>0,5</td>
</tr>
<tr>
<td>průměr $C_{HA} [mmol/l]$</td>
<td>1,757.10^{-4}</td>
<td>0</td>
<td>64,2</td>
<td>0,3</td>
<td></td>
</tr>
<tr>
<td>chyba $C_{HA} [mmol/l]$</td>
<td>2,70.10^{-7}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Velikost polymerních klubek čistého 1,8MDa hyaluronanu ve fosfátovém pufru byla za daných podmínek (64,2±0,3) nm. Po přídavku 15,5 µl roztoku CTAB se velikost klubek zvětšila na (78,4±0,3) nm. Už na základě těchto dílčích výsledků lze tvrdit, že při koncentracích daného surfaktantu pod jeho CMC hodnotou, se velikost klubek hyaluronanu zvětšuje.

Pokud byla koncentrace daného surfaktantu stejná jako jeho kritická micelární koncentrace, velikost klubka hyaluronanu klesla na (62,3±0,3) nm, což je více než o 3 % oproti roztoku bez přídavku CTAB.

V případě, že byla koncentrace CTAB v měřeném vzorku vyšší než CMC, velikost klubka HA mírně vzrostla vůči druhému přídavku. Naměřená hodnota velikosti polymerních klubek v tomto případě byla (63,8±0,5) nm.

Tyto výsledky potvrzují, že kritická micelární koncentrace daného surfaktantu byla nalezena správně. Tvrzení, že došlo ke změně vlastností (velikosti polymerních klubek HA), je pravdivé. Následující graf (Obr. 24) vystihuje výše uvedená tvrzení.
Obr. 24: Závislost velikosti polymerních klubek 1,8MDa HA na koncentraci kationického surfaktantu CTAB včetně chybových úseček

4.6.2 Nízkomolekulární HA

Vzorky roztoků nízkomolekulární HA byly připraveny stejně jako u jejího vysokomolekulárního analoga. Jednotlivé přídavky CTAB jsou obsahem následující tabulky.

Tab. 4: Tabulka míšení roztoku nízkomolekulární HA, roztoku pufru a roztoku CTAB

<table>
<thead>
<tr>
<th>V_{HA} [µl]</th>
<th>V_{CTAB} [µl]</th>
<th>V_{PUFR} [µl]</th>
<th>V_{CELK.} [µl]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1400</td>
<td>15,5</td>
<td>3000</td>
<td>4416</td>
</tr>
<tr>
<td>1400</td>
<td>25,0</td>
<td>3000</td>
<td>4425</td>
</tr>
<tr>
<td>1400</td>
<td>38,9</td>
<td>3000</td>
<td>4439</td>
</tr>
</tbody>
</table>

(oranžový řádek označuje CMC)
Obr. 25: Intenzitní distribuce velikosti částic 0,35MDa HA a HA s přídavky CTAB

Obr. 26: Intenzitní distribuce velikosti částic 0,35MDa HA s přídavky CTAB
4.6.3 Srovnání intenzitních distribucí vysokomolekulární a nízkomolekulární HA

Obr. 27: Srovnání obou měřených HA

Z intenzitní distribuce velikosti částic hyaluronanu lze vidět, že nízkomolekulární HA vykazuje vyšší intenzitu rozptýleného záření (Obr. 27). Dalším podstatným rozdílem je, že velikost polymerního klubka nízkomolekulárního hyaluronanu je menší než u vysokomolekulárního za stejných podmínek.

Tab. 5: Velikosti polymerních klubek nízkomolekulární HA včetně chyby měření

<table>
<thead>
<tr>
<th>V_{CELK.} [µl]</th>
<th>V_{CTAB/V_{CELK.}}</th>
<th>C_{HA} [mmol/l]</th>
<th>C_{CTAB} [mmol/l]</th>
<th>d [nm]</th>
<th>chyba C_{HA} [nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4416</td>
<td>0,00351</td>
<td>0,0009059</td>
<td>0,04816</td>
<td>49,8</td>
<td>0,4</td>
</tr>
<tr>
<td>4425</td>
<td>0,00565</td>
<td>0,0009040</td>
<td>0,07751</td>
<td>45,9</td>
<td>0,2</td>
</tr>
<tr>
<td>4439</td>
<td>0,00876</td>
<td>0,0009011</td>
<td>0,1202</td>
<td>36,6</td>
<td>0,2</td>
</tr>
</tbody>
</table>

průměr C_{HA} [mmol/l] \(9,037 \cdot 10^{-4} \)
chyba C_{HA} [mmol/l] \(1,40 \cdot 10^{-6} \)
Velikost polymerních klubek čisté 0,35MDa soli kyseliny hyaluronové ve fosfátovém pufru byla (40,0±0,1) nm. Jestliže se koncentrace CTAB v měřeném vzorku pohybovala pod hodnotou CMC tohoto surfaktantu, polymerní klubka se zvětšila na hodnotu (49,8±0,4) nm. Oproti koncentraci (C1) se při kritické micelární koncentraci polymerní klubko mírně zmenšilo na hodnotu (45,9±0,2) nm. Ale ve srovnání s čistou HA bylo klubko o 15% větší. Mírné zmenšení klubek hyaluronanu bylo naměřeno při koncentraci surfaktantu vyšší, než je jeho CMC.

![Obr. 28: Závislost velikosti polymerních klubek 1,8MDa HA na koncentraci kationického surfaktantu CTAB včetně chybových úseček](image)

Zajímavým zjištěním je, že nejmenší velikosti polymerního klubka u 1,8MDa kyseliny hyaluronové bylo dosaženo právě při kritické micelární koncentraci použitého kationického surfaktantu CTAB. U 0,35MDa kyseliny hyaluronové bylo nejmenší velikosti polymerního klubka dosaženo při koncentraci CTAB vyšší, než je jeho CMC. Další změny ve velikostech klubek při zvyšující se koncentraci CTAB můžeme na základě těchto výsledků jenom odhadovat.

Nicméně tyto výsledky říkají, že při skladování 1,8MDa kyseliny hyaluronové by bylo vhodné použít jako konzervant roztok CTAB právě o jeho kritické micelární koncentraci, tedy 0,0777 mmol/l.
Kyselinu hyaluronovou o $M_W = 0,35$MDa lze při skladování chránit proti vlivu mikroorganismů použitím konzervantu CTAB o koncentraci vyšší, než je jeho CMC. Ve výše uvedeném přídavku CTAB tak bylo dosaženo 8% zmenšení klubka hyaluronanu. Pokud by se s rostoucí koncentrací CTAB velikost klubek hyaluronanu stále zmenšovala, bylo by na zvážení, jestli jsou takové přídavky opravdu nutné. Roztoky léčivých látek s obsahem kyseliny hyaluronové (spreje do nosu, oční kapky) nebo různé krémy by při velkých přídavcích konzervantu mohly způsobit podráždění. CTAB je dráždivý, takže jeho koncentrace v látkách tohoto typu by neměla překročit určitou hranici.
ZÁVĚR

Tato práce se zabývá rešerší na téma dynamický rozptýl světla a jeho využití k měření velikosti polymerních klubek hyaluronanu.

V praktické části této bakalářské práce byl studován vliv kvarterních amoniových solí na velikost polymerních klubek hyaluronanu. Z kvarterních amoniových solí byl vybrán hexadecyltrimethylammonium bromid (CTAB). Cílem této práce bylo nalézt hodnotu kritické micelární koncentrace CTAB a prostudovat jeho vliv na chování klubek hyaluronanu při různých koncentracích. CMC tohoto surfaktantu byla měřením povrchového napětí stanovena na 0,0777 mmol/l. Použité koncentrace přídavků CTAB byly zářem voleny tak, aby byl z výsledků měření patrný jeho vliv na HA nad i pod hodnotou kritické micelární koncentrace CTAB.

Čistý roztok 1,8MDa HA vykazoval při měření metodou DLS nižší intenzitu rozptýleného záření a vyšší hodnotu z-average než vzorek 0,35MDa HA.

Velikost polymerních klubek 1,8MDa HA ve fyziologickém roztoku byla (64,2±0,3) nm. Při koncentracích CTAB pod jeho kritickou hodnotou polymerní klubka HA expandovala a zvítězila svoji velikost na (78,4±0,3) nm, což je téměř o 22%. Při koncentraci CMC byla velikost klubka nejmenší – jenom (62,3±0,3) nm. V koncentracích nad CMC se velikost klubka HA opět zvětšila, a to na hodnotu (63,8±0,5) nm.

Velikost polymerních klubek 0,35MDa HA byla ve fyziologickém roztoku (40,0±0,1) nm. Na rozdíl od 1,8MDa HA byla nejmenší velikost klubka dosažena až nad kritickou micelární koncentrací CTAB. Při koncentraci CTAB pod hodnotou jeho CMC byla velikost klubka 0,35MDa HA taktéž největší, a to (49,8±0,4) nm. Zvětšení klubka tedy v tomto případě bylo 20%.

Popis závislosti velikosti polymerních klubek HA na přídavcích určitých tenzidů je důležitý, neboť právě tyto informace můžou vést k určení správných množství tenzidů pro správné skladování HA. Totéž platí pro různé kosmetické přípravky nebo léčiva, které obsahují HA, a přídavek tenzidu je u nich limitován.
SEZNAM POUŽITÉ LITERATURY

 Presentace. VUT.

 http://tresen.vscht.cz/min/sites/default/files/Tvar%20a%20velikost%20%C4%8D%C3%A1stic_2010.pdf

http://www.physics.ox.ac.uk/documents/PUS/DIS/scattering.htm

http://www.andor.com/learning/light/?docid=334

http://www.malverninstruments.com/

[22] Vlastnosti izolovaných polymerních molekul. Liberec, 2007. 21 s. Dostupné z:
www.kmd.fp.tul.cz/Akr-NMg/_pracovni/kapitola_201%20FP.doc. Skripta.
Technická univerzita v Liberci.

University of Wisconsin. (online 2002).

Vědecký článek. Simon Fraser University.

[59] *Detergents and Their Uses in Membrane Protein Science: It´s all about purity*. 17 s. Dostupné z: www.anatrace.com

SEZNAM POUŽITÝCH SYMBOLŮ A ZKRATEK

DLS Dynamický rozptyl světla (Dynamic Light Scattering).
HA Kyselina hyaluronová (Hyaluronic Acid).
PAL Povrchově aktivní látky.
QAS Kvarterní amoniová sůl (Quaternary Ammonium Salts).
CTAB Hexadecyltrimethylammonium bromid (Cetyltrimethylammonium bromide).
CMC Kritická micelární koncentrace (Critical Micellar Concentration).
PCS Fotonová korelační spektroskopie (Photon Correlation Spectroscopy).
QELS Kvazi-elastický rozptyl světla (Quasi-Elastic Light Scattering).
UV-VIS Ultrafialová-viditelná oblast záření (ultraviolet-visible).
SDS Dodecylsulfát sodný (Sodium Dodecyl Sulfate).
AN Agregační číslo (Agregate Number).
AMW Molární hmotnost agregátů micel (Aggregate Molecular Weight).
CPP Kritický „sbalovací“ parametr (Critical Packing Parameter).
p.a. Označení chemikálií k analytickým účelům (Pro Analysi).
Obr. Obrázek.
Tab. Tabulka.
R_H Hydrodynamický poloměr.
R_G Gyrační poloměr.
I_0 Intenzita rozptýleného světla.
I_0 Intenzita dopadajícího světla.
R Pozorovací vzdálenost.
θ Pozorovací úhel.
\cos Kosinus.
A_2 Druhý viriální koeficient osmotického tlaku.
v_0 Frekvence dopadajícího záření.
v Frekvence záření.
h Planckova konstanta.
k Boltzmannova konstanta.
η Dynamická viskozita.
f Frikční koeficient.
λ Ludolfovo číslo.
x_i Počet hmotných bodů.
s_i Vzdálenost i-tého hmotného bodu od těžiště.
$D_{\text{obj.}}$ Objemově-ekvivalentní průměr.
$V_{\text{č.}}$ Objem částice.
$D_{\text{povr.}}$ Povrchově-ekvivalentní průměr.
$S_{\text{č.}}$ Povrch částice.
τ Čas.
$g(\tau)$ Autokorelační funkce.
τ_c Relaxační čas.
Q Vlnový vektor.
\sin sinus
$\%\text{hm.}$ Hmotnostní procento.
$^\circ$C Stupeň Celsia.
$[\eta]$ Limitní viskozitní číslo.
ppm Jedna miliontina (*Parts per milion*).
V Objem.
A Plocha polymerního řetězce.
Da Dalton.
L Efektivní délka polymerního řetězce.
α Polarizovatelnost.
λ Vlnová délka.
E₁, E₂ Energetické stavy.
D Difuzní koeficient.
T Termodynamická teplota (absolutní).
n Látkové množství.
m Hmotnost/ Metr.
M Molární hmotnost.
D Difuzní koeficient.
c Látková (molární) koncentrace.
Mₘ Hmotnostní střed molekulových hmotností.
s Sekunda.
ε₀ Permitivita vakua.
° Úhlový stupeň.
s.r.o. Společnost s ručením omezeným.
K, a Parametry Mark-Houwinkovy rovnice.
a₁ Rozměr mřížky.
SEZNAM OBRÁZKŮ

Obr. 1: Srovnání Rayleighova a Mieova rozptylu. Nad hlavou pozorovatele převažuje Rayleighův rozptyl (situace A). Nachází-li se větší částice ve vzdachu, můžeme vidět světlou září kolem Slunce, převažuje Mieův rozptyl (situace B).[14] ... 15

Obr. 2: Druhy rozptylů světla [14] ... 16

Obr. 3: Částice v roztoku konají Brownův pohyb a rychlost jejich pohybu je použita k určení velikosti částic. Princip: malé částice se ve stejném rozpouštědle pohnují rychleji (A) než částice vetší (B).[15] .. 20

Obr. 4: Stokesův a anti-Stokesův rozptyl [20] ... 22

Obr. 5: Srovnání hydrodynamického (R_H), gyračního (R_G) a geometrického (R_S) poloměru [23] .. 24

Obr. 6: Fluktuace intenzity rozptýleného světla pro velké a malé částice [15]....... 25

Obr. 7: Význam korelační funkce při interpretaci dat [15]... 26

Obr. 8: Význam korelační funkce při interpretaci dat – konkrétní příklady [17]...... 26

Obr. 9: Chemická struktura HA [32]... 29

Obr. 10: Vlastnosti micel [7] .. 34

Obr. 11: Strukturní vzorec CTAB [7].. 35

Obr. 12: Závislost povrchového napětí na koncentraci surfaktantu s vyznačeným bodem CMC [57].. 36

Obr. 13: Změna vlastností roztoků micelárních koloidů v bodě CMC [67]................................. 39

Obr. 14: Charakterizace molekuly pro definování CPP [54] ... 40

Obr. 15: Souvislost struktury amfifilu a typu vznikajícího agregátu [54] 41

Obr. 16: Působení síly na částice kapaliny [69]... 46

Obr. 17: Závislost povrchového napětí na koncentraci tenzidu [58]................................. 47

Obr. 18: Určení CMC bodu CTAB .. 47

Obr. 19: Schéma přístroje [4] ... 50

Obr. 20: Princip přístroje [17] .. 50

Obr. 21: Jednotlivé typy count rate [17]... 51

Obr. 22: Intenzitní distribuce velikosti částic 1,8MDa HA a HA s přídavky CTAB .. 53

Obr. 23: Intenzitní distribuce velikosti částic 1,8MDa a HA s přídavky CTAB........ 53
Obr. 24: Závislost velikosti polymerních klubek 1,8MDa HA na koncentraci kationického surfaktantu CTAB včetně chybových úseček ..55
Obr. 25: Intenzitní distribuce velikosti částic 0,35MDa HA a HA s přídavky CTAB..56
Obr. 26: Intenzitní distribuce velikosti částic 0,35MDa HA s přídavky CTAB.........56
Obr. 27: Srovnání obou měřených HA ..57
Obr. 28: Závislost velikosti polymerních klubek 1,8MDa HA na koncentraci kationického surfaktantu CTAB včetně chybových úseček58
Obr. 29: Intenzitní distribuce velikosti částic čisté 1,8MDa HA pro 4 měření75
Obr. 30: Intenzitní distribuce velikosti částic 1,8MDa HA s přídavkem 15,5 µl CTAB pro 4 měření..75
Obr. 31: Intenzitní distribuce velikosti částic 1,8MDa HA s přídavkem 25 µl CTAB pro 4 měření..76
Obr. 32: Intenzitní distribuce velikosti částic 1,8MDa HA s přídavkem 38,9 µl CTAB pro 4 měření..76
Obr. 33: Intenzitní distribuce velikosti částic čisté 0,35MDa HA pro 4 měření77
Obr. 34: Intenzitní distribuce velikosti částic 0,35MDa HA s přídavkem 15,5 µl CTAB pro 4 měření..77
Obr. 35: Intenzitní distribuce velikosti částic 0,35MDa HA s přídavkem 25 µl CTAB pro 4 měření..78
Obr. 36: Intenzitní distribuce velikosti částic 1,8MDa HA s přídavkem 38,9 µl CTAB pro 4 měření..78
SEZNAM TABULEK

Tab. 1: Koncentrační řada ke zjištění CMC ... 45
Tab. 2: Tabulka míšení roztoku vysokomolekulární HA, roztoku pfuru a roztoku CTAB ... 52
Tab. 3: Velikosti polymerních klubek vysokomolekulární HA včetně chyby měření ... 54
Tab. 4: Tabulka míšení roztoku nízkomolekulární HA, roztoku pfuru a roztoku CTAB ... 55
Tab. 5: Velikosti polymerních klubek nízkomolekulární HA včetně chyby měření ... 57
SEZNAM PŘÍLOH

PŘÍLOHA PI.: Intenzitní distribuce velikosti částic roztoku 1,8MDa HA s přídavkem CTAB, při průměrné koncentraci $(1,8 \times 10^{-4} \pm 2,7 \times 10^{-7})$ mmol/l HA v roztoku pufru.

PŘÍLOHA PII.: Intenzitní distribuce velikosti částic roztoku 0,35MDa HA s přídavkem CTAB, při průměrné koncentraci $(9,0 \times 10^{-4} \pm 1,4 \times 10^{-6})$ mmol/l HA v roztoku pufru.
PŘÍLOHA P I:

Obr. 29: Intenzitní distribuce velikosti částic čisté 1,8MDa HA pro 4 měření

Obr. 30: Intenzitní distribuce velikosti částic 1,8MDa HA s přídavkem 15,5 µl CTAB pro 4 měření
Obr. 31: Intenzitní distribuce velikosti částic 1,8MDa HA s přídavkem 25 µl CTAB pro 4 měření

Obr. 32: Intenzitní distribuce velikosti částic 1,8MDa HA s přídavkem 38,9 µl CTAB pro 4 měření
PŘÍLOHA P II:

Obr. 33: Intenzitní distribuce velikosti částic čisté 0,35MDa HA pro 4 měření

Obr. 34: Intenzitní distribuce velikosti částic 0,35MDa HA s přídavkem 15,5 µl CTAB pro 4 měření
Obr. 35: Intenzitní distribuce velikosti částic 0,35MDa HA s přídavkem 25 µl CTAB pro 4 měření

Obr. 36: Intenzitní distribuce velikosti částic 1,8MDa HA s přídavkem 38,9 µl CTAB pro 4 měření