Implementace metod štíhlé výroby na pracovišti montáže ve společnosti XY

Bc. Dagmar Povalačová
ZADÁNÍ DIPLOMOVÉ PRÁCE
(PROJEKTU, UMĚLECKÉHO DÍLA, UMĚLECKÉHO VÝKONU)

Jméno a příjmení: Bc. Dagmar Povalačová
Osobní číslo: M12984
Studijní program: N6209 Systémové inženýrství a informatika
Studijní obor: Průmyslové inženýrství
Forma studia: prezenční

Téma práce: Implementace metod štihlé výroby na pracovišti montáže ve společnosti XY

Zásady pro vypracování:

Úvod
I. Teoretická část
 • Zpracujte literární rešerší z dané oblasti.
 • Formulujte teoretická východiska pro zpracování analytické a projektové části.

II. Praktická část
 • Proveďte analýzu současného stavu pracoviště montáže.
 • Zhodnoťte výsledky analyzy a navrhněte ideový záměr pro implementaci metod štihlé výroby.
 • Vypracujte projektové řešení ideového záměru.

Závěr
Rozsah diplomové práce: cca 70 stran
Rozsah přílohou:
Forma zpracování diplomové práce: tiskněná/elektronická

Seznam odborné literatury:

Vedoucí diplomové práce: prof. Ing. Felicita Chromjaková, Ph.D.
Ústav průmyslového inženýrství a informačních systémů

Datum zadání diplomové práce: 22. února 2014
Termín odevzdání diplomové práce: 2. května 2014

Ve Zlíně dne 22. února 2014

prof. Dr. Ing. Drahomíra Pavelková
děkanka

prof. Ing. Felicita Chromjaková, Ph.D.
ředitel ústavy
PROHLÁŠENÍ AUTORA
BAKALÁŘSKÉ/DIPLOMOVÉ PRÁCE

Beru na vědomí, že:

- odevzdaním bakalářské/diplomové práce souhlasím se zveřejněním své práce podle zákona č. 111/1998 Sb. o vysokých školách a o změně a doplnění dalších zákonů (zákon o vysokých školách), ve znění pozdějších právních předpisů, bez ohledu na výsledek obhajoby;

- bakalářská/diplomová práce bude uložena v elektronické podobě v univerzitním informačním systému,

- na mou bakalářskou/diplomovou práci se plně vztahuje zákon č. 121/2000 Sb. o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon) ve znění pozdějších právních předpisů, zejm. § 35 odst. 3;

- podle § 60 odst. 1 autorského zákona má UTB ve Zlíně právo na uzavření licenční smlouvy o užití školního díla v rozsahu § 12 odst. 4 autorského zákona;

1 zákon č. 111/1998 Sb. o vysokých školách a o změně a doplnění dalších zákonů (zákon o vysokých školách), ve znění pozdějších právních předpisů, § 47b Zveřejňování závěrečných prací:

1) Vysoká škola nevyučující zveřejňuje disertační, diplomové, bakalářské a rigorózní práce, u kterých proběhla obhajoba, včetně posluchačů operantů a výsledku obhajoby prostřednictvím databaze kvalifikačních práci, kterou spravuje. Způsob zveřejňování stanoví vnitrní předpis vysoké školy.

2) Disertační, diplomové, bakalářské a rigorózní práce odevzdané uchazečům k obhajobě musí být ještě nejméně pět pracovních dnů před konáním obhajoby zveřejněny k nahlišení veřejnosti v místě určeném vnitrním předpisem vysoké školy nebo není-li tak určeno, v místě pracoviště vysoké školy, kde se má konat obhajoba práce. Každý si může ze zveřejněné práce pořizovat na své náklady výpisky, opisy nebo rozmezíneniny.

3) Platí, že odevzdaním práce autor souhlasí se zveřejněním své práce podle tohoto zákona, bez ohledu na výsledek obhajoby.

2 zákon č. 121/2000 Sb. o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon) ve znění pozdějších právních předpisů, § 35 odst. 3:

(3) Do práva autorského také nezasahuje škola nebo školské či vzdělávací zařízení, užijí-li nikoli za účelem přímého nebo nepřímého hospodářského nebo obchodního prospěchu k výuce nebo k vlastní potřebě dílo vytvořené zákonem nebo studentem ke společně školním nebo studijním povinnostem vyplývajícím z jeho právního vztahu ke škole nebo školskému či vzdělávacímu zařízení (školní dílo).

3 zákon č. 121/2000 Sb. o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon) ve znění pozdějších právních předpisů, § 60 Školní dílo:

(1) Škola nebo školské či vzdělávací zařízení mají za obvyklých podmínek právo na uzavření licenční smlouvy o užití školního díla (§ 35 odst. 3). Odpůrčí-li autor takového díla užít k svojí vůle, mohou se tyto osoby domáhá nařízení příslušného právě u soudu. Ustanovení § 35 odst. 3 zůstává nedošlo.
• podle § 60 odst. 2 a 3 mohu užít své dílo - bakalářskou/diplomovou práci - nebo poskytnout licenci k jejímu využití jen s předchozím písemným souhlasem Univerzity Tomáše Bati ve Zlíně, která je oprávněna v takovém případě ode mne požadovat přiměřený příspěvek na úhradu nákladů, které byly Univerzitou Tomáše Bati ve Zlíně na vytvoření díla vynaloženy (až do jejich skutečné výše);

• pokud bylo k vypracování bakalářské/diplomové práce využito softwaru poskytnutého Univerzitou Tomáše Bati ve Zlíně nebo jinými subjekty pouze ke studijním a výzkumným účelům (tj. k nekomerčnímu využití), nelze výsledky bakalářské/diplomové práce využít ke komerčním účelům.

Prohlašuji, že:

• jsem bakalářskou/diplomovou práci zpracoval/a samostatně a použití informačního zdroje jsem citoval/a;

• odevzdaná verze bakalářské/diplomové práce a verze elektronická nahrana do IS/STAG jsou totožné.

Ve Zlině 29.4.2014________________________

4 zákon č. 121/2000 Sb. o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon) ve znění pozdějších právních předpisů, § 60 Školní dílo:

(2) Není-li sjednáno jinak, může autor školního díla své dílo užít či poskytnout jinému licenci, není-li to v rozporu s oprávněnými zájmy školy nebo školského či vzdělávacího zařízení.

(3) Škola nebo školské či vzdělávací zařízení jsou oprávněny požadovat, aby jim autor školního díla z vyděluje jím dosaženého v souvislosti s užitím díla či poskytnutím licence podle odstavce 2 přiměřený příspěvek na úhradu nákladů, které na vytvoření díla vynaložily, a to podle okolnosti až do jejich skutečné výše: přístem se přihlásí k výši výdělu dosaženého školu nebo školským či vzdělávacím zařízením či užití školního díla podle odstavce 1.
ABSTRAKT

Obsahem této diplomové práce je projekt zefektivnění montáže rozvaděčových skříní ve společnosti XY. Cílem je navržení takového pracoviště, které bude efektivně a plynule zajišťovat požadavky denní produkce. Práce je rozdělena do tří částí, a to na teoretickou, analytickou a projektovou.

ABSTRACT

The subject matter of the thesis is the increase in efficiency of the installation of control cabinets at company XY. The target is to design a workplace that meets the highest demands in efficiency as well as continuity of the daily production. It is divided into three parts, the theoretical part, the analytical and the project one.

Keywords: Lean production, Lean workplace, Layout, Visualization, Standardization, Kanban.
Na tomto místě bych chtěla poděkovat konzultantovi práce, Ing. Radimu Sládkovi, který s velkou ochotou spolupracoval na projektu a předal mi své zkušenosti z oblasti průmyslového inženýrství. Dále bych chtěla poděkovat vedoucí práce prof. Ing. Felicitě Chromajkové, Ph.D., která mě poskytla užitečné rady a typy pro vypracování celé práce.

„Hlupák má před vzdělaným člověkem velkou výhodu - je sám se sebou vždy spokojený.”
Napoleon Bonaparte
OBSAH

ÚVOD .. 9

I TEORETICKÁ ČÁST .. 10

1 PRŮMYSLOVÉ INŽENÝRSTVÍ ... 11

1.1 DEFINICE PRŮMYSLOVÉHO INŽENÝRA .. 11

1.2 STIHLÝ PODNIK ... 12

1.3 ŠTIHLÁ VÝROBA .. 12

1.3.1 Metody štíhlé výroby .. 13

1.3.2 Štíhlé pracoviště .. 13

1.4 PLYŤVÁNÍ .. 14

1.4.1 Přidaná hodnota ... 14

1.4.2 Druhy plynění .. 15

1.5 VYBRANÉ ANALYTICKÉ METODY PRŮMYSLOVÉHO INŽENÝRSTVÍ 17

1.5.1 Snímek pracovního dne ... 17

1.5.2 Spaghetti diagram ... 19

1.6 ZÁSADY TVORBY STIHLÉHO PRACOVIŠTĚ .. 20

1.6.1 Žády při tvorbě štíhlého pracoviště ... 20

1.6.2 Zásady tvorby layoutu štíhlého layoutu ... 22

1.7 PROSTOROVÉ USPOŘÁDÁNÍ PRACOVIŠTĚ .. 23

1.7.1 Individuální rozmístění ... 23

1.7.2 Skupinové rozmístění ... 23

1.7.3 Modulární uspořádání .. 25

1.7.4 Postup implementace výrobních buněk .. 25

1.7.5 Typy výrobních buněk ... 26

1.7.6 Základní tvary výrobních buněk .. 27

1.8 VYBRANÉ METODY PRO ŠTIHLÉ PRACOVIŠTĚ .. 28

1.8.1 Štíhlý layout ... 28

1.8.2 Vizuální řízení .. 29

1.8.3 Ergonomie pracoviště ... 31

2 ŘÍZENÍ ZÁSOB ... 34

2.1 JUST IN TIME (JIT) ... 34

2.2 KANBAN ... 34

2.3 MILKRUN ... 36

II ANALYTICKÁ ČÁST .. 37

3 PŘEDSTAVENÍ SPOLEČNOSTI ... 38

3.1 TECHNOLOGICKÝ PARK PRO ZPRACOVÁNÍ PLECHŮ .. 39

3.2 MONTÁŽ VÝROBKŮ .. 40

3.3 PORTFOLIO VÝROBKŮ ... 40

3.4 SWOT ANALÝZA SPOLEČNOSTI TVD .. 42

3.4.1 Silné stránky podniku ... 42

3.4.2 Slabé stránky ... 43

3.4.3 Příležitosti .. 44

3.4.4 Hrozby .. 45
4 ANALÝZA SOUČASNÉHO STAVU MONTÁŽE .. 46
4.1 POPIS FINALIÍHO VÝROBUKU – ROZVÁDEČOVÉ SKŘÍNĚ ... 46
 4.1.1 Výrobní operace .. 46
 4.1.2 Rozdělení dle velikosti .. 47
 4.1.3 Rozdělení dle typu chlazení .. 48
4.2 ANALÝZA PROCESU MONTÁŽE .. 48
 4.2.1 Snímky pracovního dne .. 49
 4.2.2 Popis procesu finální montáže ... 56
 4.2.3 Současný layout .. 59
4.3 POPIS VYBRANÉHO PRACOVIŠTĚ PRO MONTÁŽ POLOTOVARŮ - VENTILACE 59
 4.3.1 Současný layout vybraného pracoviště .. 60
 4.3.2 Snímek pracovního dne vybraného pracoviště ... 61
 4.3.3 Další nedostatky efektivity výroby ... 64
 4.3.4 Montáž ventilace ... 66
 4.3.5 Analýza materiálu na pracovišti ... 69
 4.3.6 Potřebné nástroje pro pracoviště ... 70
5 SHRNUÍ ANALÝZ A VÝCHODIŠKA PRO PROJEKT ... 71
6 PROJEKTOVÁ ČÁST .. 73
7 DEFINOVÁNÍ PROJEKTU ... 74
 6.1 POPIS PROJEKTU ... 74
 6.2 CÍLE PROJEKTU .. 74
 6.3 ÚČASTNÍCI PROJEKTU .. 75
 6.4 RIZIKA ... 75
 6.5 HARMONOGRAM PROJEKTU ... 76
8 NÁVRH IMPLEMENTACE METOD ŠTÍHLÉ VÝROBY NA PRACOVIŠTĚ MONTÁŽE VENTILACE .. 77
 7.1 OPTIMALIZACE ZÁSOBOVÁNÍ PRACOVIŠTĚ MATERIÁLEM 77
 7.1.1 Přepravní prostředky pro umístění polotovarů na pracovišti 77
 7.1.2 Rozdělení materiálu a jeho zásobování ... 78
 7.1.3 Návrh zásobování pracoviště .. 81
 7.2 NAVRHOVANÝ LAYOUT .. 84
 7.2.1 Přípravky .. 88
 7.2.2 Standardizace a vizualizace pracoviště ... 89
 7.3 ZHODNOCENÍ PROJEKTU .. 92
 7.3.1 Náklady projektu .. 92
 7.3.2 Přínosy projektu .. 92
 7.3.3 Návratnost investice ... 95
ZÁVĚR ... 96
SEZNAAM POUŽITÉ LITERATURY .. 97
SEZNAAM POUŽITÝCH SYMBOLŮ A ZKRATEK ... 100
SEZNAAM OBRÁZKŮ .. 101
SEZNAAM TABULEK ... 102
SEZNAAM GRAFŮ ... 103
SEZNAAM PŘÍLOH ... 104
ÚVOD

Společnost TVD – technická výroba, a.s. vyrábí výrobky z plechu (převážně rozvaděčové skříně) již po dobu jedenácti let. Výrobky společnosti mají na trhu své místo, vedení podniku si ale dobře uvědomuje vysoký konkurenční boj v odvětví, a proto se snaží podporovat neustálý vývoj v podniku ve všech aspektech podnikání. Přesto, že výrobky se neustále vyvíjí a zkvalitňují, výrobní procesy jsou po celou dobu výroby stejné. Průmyslové inženýrství nemá v podniku dlouhého trvání, metody a filozofie Štíhlé výroby jsou uplatňovány teprve dva roky. Proto je zde námětů na zlepšování velké množství.

Současnou prioritou podniku je odstranění plýtvání z procesu montáže. Montáž je podstatněmou součástí výrobního procesu rozvaděčových skříní a vzhledem ke složitosti některých typů produkce je mnohdy velmi složitá a tím pádem také časově náročná. Mnohé vlastnosti finálního výrobku jsou udávány právě montážními postupy. V odstranění plýtvání z tohoto procesu je skryt obrovský potenciál úspor a zlepšení práce. Montáž probíhá v podniku na dvou úrovních, a aby bylo docíleno zefektivnění celého procesu, je potřeba se nejdříve zaměřit na montáž polotovarů.

Aby bylo docíleno co nejefektivnějších výsledků diplomové práce, jsou v první části shromážděny teoretické znalosti o Štíhlé výrobě a vybraných metodách, které se využívají při přeměně pracovišť.

Práce je dále rozdělena na dvě části, analytickou a projektovou. V analytické části budou provedeny všechny potřebné analýzy k získání komplexního přehledu o současné situaci na pracovišti montáže. Během zpracování těchto analýz bude vybráno konkrétní pracoviště předmontáže, které bude na základě získaných poznatků z obou dvou částí práce optimalizováno. Optimalizace bude popsána v poslední části práce – projektové.
I. TEORETICKÁ ČÁST
1 PRŮMYSLOVÉ INŽENÝRSTVÍ

Průmyslové inženýrství je vědní obor, který sleduje jeden hlavní cíl – více kvalitních výrobků nebo služeb při využití minimálního množství zdrojů. Tento hlavní cíl s sebou nese obrovské množství procesů, metod a technik vyvinutých a zdokonalovaných v průběhu let. Snaha zefektivnit výrobu nebo služby se projevuje hlavně neustálým zlepšováním procesů, odstraňováním plýtvání a iracionality z produkce dané společnosti.

Odborníci v oblasti průmyslového inženýrství jsou si vědomi toho, jak podstatným faktorem úspěchu je flexibilita v čase, proto se také průmyslové inženýrství vyvíjí s neustálým vývojem trhu. Pokud chceme umět rychle reagovat na čím dál častější změny na trhu, musíme o to rychleji umět změnit způsob řízení organizací. Kdo jiný by měl jít příkladem než právě „zlepšovatelé“?

„Je to uznávaný vědní obor, který se orientuje na plánování, navrhování, zavádění a řízení integrovaných systémů, jejichž cílem je produkce výrobků nebo poskytování služeb. V těchto systémech zajišťuje a podporuje vysoký výkon, spolehlivost, údržbu, plnění plánu a řízení nákladů v rámci celého životního cyklu výrobku nebo služby.“ (Mašín, 2005, str. 65-66)

1.1 Definice průmyslového inženýra

„Průmyslový inženýr je hledačem lepších cest. Na rtech má neustále, pro mnoho lidí dotěrnou otázku „Jeto nejlepší možný způsob?“ (Mašín a Vytlacil, 1996, s. 82-83)

Průmyslový inženýr má předpoklady, jak charakterové, tak dovednostní, pro vykonávání činností v oblasti průmyslového inženýrství. Prostřednictvím neustálého zlepšování procesů a odstraňování plýtvání spojených s výrobkem či službami po celou dobu jejich životního cyklu, se snaží dosahovat vyšší produktivity, zisku a jakosti. Ke své práci využívá humanitní i sociální vědy, výpočetní techniku, základní inženýrské a technické vědy a teorii managementu (Mašín, 2005, s. 65).

Chromjaková a Rajnoha (2011, s. 65) uvádí, že průmyslový inženýr při své práci využívá své reakční schopnosti orientovat se v podnikových procesech, pochopit a správně pojmenovat plýtvání, navrhovat alternativní řešení problémů či projektů zlepšování či kvantifikovat výstupy výrobních procesů. To vše za účelem navržení konkurenceschopných strategických a operativních výrobních koncepcí spolu s dalšími členy týmu.
1.2 štíhlý podnik

Štíhlý podnik se snaží zvyšovat svoji výkonnost tím, že dělá jen to, co požaduje zákazník s co nejmenším počtem činností, které hodnotu výrobku nezvyšují. Cílem je vydělat více peněz než konkurence, a to s menším úsilím a v rychlejším čase (Košturiak a Frolík, 2006, s. 17).

Základní myšlenka štíhlého podniku je dle API (Akademie produktivity a inovací, s.r.o., © 2005-2012) založena na čtyřech pilířích, zobrazených na dalším obrázku.

1.3 Štíhlá výroba

Štíhlá výroba je založena na provádění pouze takových činností, které přináší produktu přidanou hodnotu. Ideálním stavem štíhlé výroby je dělat tyto činnosti bez chyb, tedy i bez oprav, s minimálními náklady a v co nejrychlejším čase.

Filozofie štíhlé výroby se vrací k základům všech obchodních a výrobních společností a klade otázku: „Co vlastně zákazník považuje za hodnotu?“ Potom seřadí tyto činnosti do řady (u jednoho výrobku jde o value stream= tok hodnot) a odstraní činnosti ostatní, které hodnotu nepřinášejí. Dále se na základě tahového systému od zákazníka zajistí plynulý a rychlý tok výrobků. Nakonec se k tomu přidá neustálé zlepšování s cílem hledání dokonalosti (Robert Bordás, © 2006).
1.3.1 Metody štíhlé výroby

Mezi nejzákladnější prvky štíhlé výroby různí autoři zařazují široké spektrum metod. Nejčastěji se vyskytující metody využívané při implementaci filozofie štíhlé výroby jsou zobrazeny v následujícím schématu.

Obrázek 2 Prvky Štíhlé výroby (vlastní zpracování)

Některé z těchto metod budou podrobněji popsány v následujících kapitolách teoretické části práce.

1.3.2 Štíhlé pracoviště

Štíhlé pracoviště je základem štíhlé výroby. Cílem budování štíhlého pracoviště je zvyšování produktivity, tedy poměru vstupních zdrojů a výstupu z pracoviště.

Fáze přestavby pracoviště na štíhlé dle IPA Czech, s.r.o. (© 2012):

1. Pořádek na pracovišti – 5S
2. Vizualizace pracoviště
3. Ergonomická analýza, analýza a měření práce -> odstranění činností nepřidávající hodnotu
4. Zabudování kvality výroby
Typické přínosy zeštíhlení pracoviště (Košturiak a Frolík, 2006, s. 79)

- Zvýšení výkonu pracoviště o 10-50% při nulových nebo minimálních investicích
- Snížení chybovosti a práceschopnosti na pracovišti
- Zlepšení přehlednosti a redukce ztrátových časů na pracovišti
- Zvýšení produktivity práce při snížené námaze pracovníků

Metody využívané pro štíhlé pracoviště budou popsány v následujících kapitolách textu.

1.4 Plýtvání

Všechny metody štíhlé výroby se zaměřují na jeden obecný cíl: odstraňování plýtvání. Odstraňování plýtvání je podstatným pilířem průmyslového inženýrství. Pro efektivní odstranění je potřeba nejdříve plýtvání umět identifikovat a volit vhodnou formu odstranění.

„Plýtvání je všechno, co zvyšuje náklady výrobku nebo služby bez toho, aby zvyšovalo jejich hodnotu.“ (Košturiak a Frolík, 2006, s. 19)

I další autoři se shodují se základní myšlenkou, že plýtvání lze definovat jako to, co nepřidává hodnotu výrobku nebo služby. Například Imai (2005 s. 79), který uvádí, že práce je sérií procesů, kde na začátku jsou suroviny a na konci produkt nebo služba. Produkt prochází několika těmito procesy a v každém ze nich je mu přidávána hodnota. V každém procesu jsou činnosti, které buď hodnotu přidávají, nebo nepřidávají. Plýtvání hodnotu nepřidává.

1.4.1 Přidaná hodnota

Přidanou hodnotou rozumíme zvýšení užitných vlastností produktu nebo služby pro zákazníky. Zjednodušeně řečeno je přidanou hodnotou pouze to, za co je nám zákazník ochoten zaplatit. Přidanou hodnotu označujeme jako VA – Činnosti nepřidávající hodnotu jsou všechny ostatní, které vykonáváme bez zhodnocení konečné produkce a značíme je N-VA - Non Value Added Activity.

Všechny činnosti v podniku, které doprovází produkt jeho životním cyklem a nepřidávají hodnotu, nemůžeme zcela odstranit. Takové činnosti jsou obecně známy jako činnosti nepřidávající hodnotu, ale jsou nutné pro produkci. Do této kategorie většinou spadá administračná v podniku.
1.4.2 Druhy plýtvání

Nadvýroba

Výroba nad rámec objednávek vyvolává náklady, které nejsou nezbytně nutné. Jde o náklady na lidský kapitál, skladovací a dopravní náklady spojené s řízením nadměrných zásob. Tento druh ztrát většinou vzniká ve snaze zmírnit dopad jiných problémů ve výrobě, či snaze využívat aktuálně volné kapacity.

Čekání

Čekání představuje ztrátu času pracovníků i strojů při výrobě. Tento druh ztráty vzniká jednak u pracovníků, jejíž pracovní náplň je seřizování strojů nebo dohled nad zařízením a jednak při úplně nečinnosti, například pokud výroba čeká na materiál, nářadí, nástroje, obsluhu stroje nebo informace o výrobě.

Doprava, přemístění

Doprava nepřidává výrobkům žádnou hodnotu, přesto jsme často z důvodu nevyhovujícího layoutu pracovního prostředí nuceni transportovat neefektivně. Další příčinou této ztráty je také špatná organizace na pracovišti nebo nevyhovující plánování. Transport také představuje jisté riziko vzniku nekvality produkce při přepravě, způsobené různými vlivy.

Neefektivní zpracování

Neefektivní prací rozumíme takové činnosti, které nejsou nezbytně nutné pro finální vlastnosti výrobku, jedná se o nepotřebné kroky v procesu výroby, ale jde také o práci, která přináší výrobku hodnotu, ale mohla by být prováděna efektivněji. Neefektivní práce sebou často nese také zbytečné náklady na materiál, lidský faktor nebo opotřebení stroje. Příčinou jsou nejčastěji chybná konstrukční řešení výrobků, nevhodné uspořádání nebo vybavení pracoviště, nejasné pokyny k pracovnímu postupu.

Nadbytečné zásoby

Nadbytečné zásoby jsou plýtváním také proto, že je v nich vázáno hodně kapitálu, ale hlavně představují nebezpečí vzniku ostatních druhů plýtvání (zastarávání, nadbytečnou
spotřebu surovin, nekvalitu, dopravu, skladování. Dalším podstatným problémem spojeným s nadbytečnými zásobami je zakrývání ostatních problémů při výrobních procesech (nevyváženost, nekvalita, poruchy, čekání apod.).

Zbytečné pohyby

Nekvalita

Nekvalita sebou nese velké náklady na výrobu vadných kusů nebo opravy zmetků, a to v podobě opotřebení stroje, času pracovníka, spotřeby materiálu. Do jisté míry je ztrátou také vliv na dobré jméno podniku. Nekvalita vzniká mnoha způsoby:

- Neznalost
- Nepozornost
- Nedodržování standardů
- Nedostatečná reakce na neočekávaný stav
- Nevhodná konstrukce výrobku nebo nářadí
- Přehlížení "drobných" nedostatků

Poslední druh plýtvání má zcela jiný charakter jako předchozí. Zatímco eliminaci předchozích druhů plýtvání snižujeme náklady, eliminací posledního druhu plýtvání zvyšujeme výnosy nebo prostředky díky využívání potenciálu pracovníků.

Nevyužitý lidský potenciál

„Ztráty času, nápadů, dovedností, nových zlepšení a přiležitostí k učení v důsledku toho, že se nezajímáme o své zaměstnance nebo jim nenasloucháte.“ (Liker, 2007, s 55-56)

Toto plýtvání je také podstatně náročnější na odhalení a následnou eliminaci. Jistou prevenci je vytvoření prostředí motivující zaměstnance k zájmu o práci a využívání svého potenciálu naplno a efektivní komunikace v podniku.
1.5 Vybrané analytické metody průmyslového inženýrství

Pro odhalení, identifikaci a správné zařazení plýtvání je potřeba zvolit vhodnou analytickou metodu. V této kapitole jsou popsány a zhodnoceny vybrané analytické metody.

1.5.1 Snímek pracovního dne

Snímek pracovního dne je metoda analýzy, při které jsou nepřetržitě po celou dobu pracovní směny zaznamenávány spotřeby pracovního času formou nepřetržitého pozorování. Snímek pracovního dne je nástroj, který můžeme přizpůsobit aktuálním potřebám vykonávané analyzy a získávat tak různá data.

Výhodou je získání velkého množství informací o průběhu práce, ale nevýhodou je velká časová náročnost stejně jako psychické zatížení pozorovatele i pozorovaných, kteří mohou pod tlakem práci provádět jinak. Existuje několik druhů snímků pracovního dne (Pavelka, 2007, s. 7):

- Snímek pracovního dne jednotlivce
- Snímek pracovního dne čety
- Hromadný snímek pracovního dne
- Vlastní snímek pracovního dne

Snímek pracovního dne je náročnou, ale nejpřesnější časovou analýzou díky přesnému zachycení činností. Pozorovatel je v kontaktu s pracovníky, a tak může zhodnotit aktuální situaci na pracovišti, dotazovat se nejasností a odhalovat problémy a nedostatky přímo na místě. (Pavelka, 2007, s. 8)

Postup analýzy

Pro snímek pracovního dne je doporučován následující postup (Pavelka, 2007, s. 8):

- **Výběr pracovníka** – závisí na cíli analýzy, mnohdy je stanoven z podnětu stanovení normy, analýzy úzkého místa, změny pracoviště,
- **Seznámení s pracovištěm** – první seznámení s pracovištěm usnadňuje samotné snímkování tím, že si můžeme dopředu stanovit pozorované jevy, připravit formulář pro zapisování apod.
- **Vymezení sledovaných dějů** – sledované děje závisí na cíli analýzy, v této fázi je potřeba také stanovit, jaký druh snímku bude použit
• **Stanovení počtu snímků** – počet pozorování závisí na charakteru pracoviště a na cíli analýzy.

• **Měření** – probíhá vždy nepřetržitě, začíná ještě před začátkem směny a končí až po ukončení všech dokončovacích prací.

• **Vyhodnocení**

Záznam analýzy probíhá do předem připraveného formuláře. Nejpodstatnějšími údaji jsou záznamy časů a názvy činností, které jsou sledovány. V průběhu analýzy můžeme dále pozorovat:

• Použité nástroje
• Vzdálenosti nebo počty kroků, které pracovník urazí za směnu
• Zda je nebo není stroj na pracovišti v chodu
• Zda činnost byla provedena v souladu s pracovním postupem, nebo naopak
• Dokumenty potřebné k výkonu práce
• Zachycení pohybů do Spaghetti diagramu

Výsledky analýzy

Všechna získaná data z průběhu analýzy musí být náležitě rozřídkena a vyhodnocena. Součástí práce je také navržení vhodných řešení zjištěných problémů nebo zjištěných ztrátových činností. Dalším výsledkem snímku pracovního dne může být rozbor ukazatelů výkonnosti a doporučení na odstranění překážek v procesech. (Pavelka, 2007, s. 11)

Návrhy na zlepšení jsou zpravidla podávány ve formě:

• Standardizace
• 5S
• Automatizace
• Změna layoutu
• Vizualizace
• Poka-yoke
• Andon
• Zlepšení
• Proškolení zaměstnanců
Omezení a rizika analýzy

Omezení a rizika snímků pracovního dne:

- Analýza musí být prováděna ve spolupráci s pracovníky na pracovišti
- Lidé mají obavu ze zkracování výkonových norem
- Měření práce není normování, naměřený čas není normou výkonu
- Nedostatečná znalost metod vede k nesprávným výsledkům
- Nízká produktivita měření práce s pomocí MTM metod
- Ne vždy je možná změna konstrukce výrobních zařízení
- Při nevhodném systému odměňování mají pracovníci odpor vůči všem formám zvyšování produktivity
- Odpor odborářů, kteří se domnívají, že štíhlé pracoviště znamená vykořisťování pracovníků
- Nesprávně vybrané pracoviště, kde náklady mohou být vyšší než přínosy

1.5.2 Spaghetti diagram

Spaghetti diagram je metoda, která zachycuje pohyb materiálu nebo materiálu v daném časovém intervalu.

Postup provádění Spaghetti diagramu (WorldPress.com, © 2006):

- Vyhledání nebo navržení schématu prostoru
- Označení místa, kde se první krok v procesu odehrává, a nakreslení šipky k místu, kde nastane následující krok. Pokračujte, dokud jsou zmapovány všechny procesní kroky
- Zhodnoťte konečný diagram s cílem zlepšení pracovního postupu
- Komplikované schéma s mnoha řádky naznačuje prostor pro zjednodušení procesu
- Pokud se čáry kříží, prozkoumat možnost restrukturalizace pracovního prostoru a vytvořit racionálnější tok
- Zhodnoťte kombinace a provedení operací, které se kříží v jednom místě ve stejné době

Spaghetti diagram se většinou provádí současně se snímkem pracovního dne. (WorldPress.com, © 2006)
1.5.3 VSM

Mapování hodnotového toku je jedinečným nástrojem, který nám pomáhá pochopit stávající stav a podmínky, za kterých proces probíhá. Zároveň nám pomáhá identifikovat příležitosti pro zlepšení procesu. VSM je grafickým nástrojem, který obsahuje symboly a ikony, jimž je zřetelně znázorněn celý proces. (Dennis, 2007, s. 87)

Dle Mašína (2003, s. 15-16) jsou nejvýznamnějšími přínosy této metody:

- eliminace plýtvání
- snížení průběžné doby výroby
- úspora místa
- zjednodušení řízení
- synchronizace procesu
- objasnění procesních kroků

1.6 Zásady tvorby štíhlého pracoviště

Atť už se jedná o přeměnu nebo tvorbu štíhlého pracoviště, autor projektu by měl dodržovat zásady doporučené pro obdobné projekty.

1.6.1 Zásady při tvorbě štíhlého pracoviště

Dle Košturiaka a Frolíka (2006, s. 68-69) se při budování štíhlého pracoviště zaměřujeme na následujících 9 oblastí:

- **Účel operace** - prozkoumání účelu operace je nejdůležitější částí analýzy pracoviště, cílem je eliminace nebo kombinace operací
- **Konstrukce** – konstrukce musí zohledňovat především vyrobivelnost a smontovatelnost, snížením počtu komponent nebo jejich unifikací se zpravidla dosahuje velkých úspor
- **Tolerance a specifikace, požadavky na provedení** – důraz musí být kladen na přesnost v klíčových operacích, je třeba zhodnotit možnosti eliminace lidských chyb a zajistit možnosti náhodné nebo 100% kontroly
- **Používaný materiál** – hledáme ekonomicky přístupnější materiál od nejlepšího dodavatele, zohledňujeme také možnosti recyklace
- **Výrobní proces, technologie** – všeobecná snaha o snížení počtu operací, přepravních vzdáleností novým uspořádáním nebo kombinováním operací; zvažujeme
možnost mechanizace a automatizace s cílem redukce mzdových nákladů, zvyšování plynulosti výroby, kvality snížení ploch, redukce cyklového času a použití efektivnějších zařízení a strojů

- **Nastavení a používané nářadí** – investice do nastavování by měla být zvážena s ohledem k výrobním množstvím, opakovatelnosti výroby, pracovníkům, požadavkům na pružnost výroby a celkovým nákladům;
- **Manipulace s materiálem** – snaha o snížení manipulace s materiálem
- **Layout pracoviště** – redukce vzdáleností a zbytečných pohybů má vliv na přímnost materiálového toku, snížování nákladů a produktivitu pracoviště
- **Návrh práce** – posouzení výkonu práce z hlediska antropometrického, biomechanického a fyziologického
1.6.2 Zásady tvorby layoutu štíhlého layoutu

Stejné autoři Košturiak a Frolik (2006, s. 140) také definovali tyto zásady tvorby štíhlého layoutu:

- Výstup jedné operace je vstupem druhé
- Těsné uspořádání strojů s možností více strojové obsluhy
- Úzké stroje a zařízení umožňující umístění řídícího panelu ve výšce a vertikální otevírání dveří
- V U-buňce jsou první a poslední operace u sebe
- Počáteční a koncový bod operátora jsou blízko u sebe
- Vyvážený materiálový tok s jednoduchou manipulací na další operaci
- Plynulý materiálový tok bez zásobníků, palet a kontejnerů
- Maximální využití gravitace při manipulaci mezi operacemi
- Malé přepravky a manipulační zařízení
- Redukce ploch mimoúrovňovou manipulací
- Nářadí, pomůcky a dodavatelé jsou umístěni co nejblíže, přípravky jsou rozděleny na jednotlivá zařízení
- Žádné překážky pohybu operátora
- Flexibilita pro rychlou a jednoduchou reorganizaci buňky
- Polotovary a vstupující součástky jsou skladovány blízko místa spotřeby a jsou snadno dosažitelné operátorem
- Mezisklady jsou umístěny blízko buněk, které zásobují
1.7 Prostorové uspořádání pracovišť

Uspořádání pracoviště je přizpůsobení relativně ohraničené části výrobního procesu přizpůsobená pro vykonávání určitého výrobního úkolu (pracovních operací). (Tuček a Bobák, 2006, s. 234)

Prostorové uspořádání pracoviště je také velmi závislé na materiálových tocích. Dále je také nutné při řešení prostorové struktury pracoviště přihlížet k:

- požadavkům ergonomie;
- podmínkám kvalitní, hospodárné a včasné výroby;
- snadné kontrole a řízení výrobního procesu;
- snadné a hospodárné manipulaci s materiálem, nástroji, odpadem apod.

Rozmístění pracoviště v prostoru může být individuální (volné) či skupinové. (Tuček a Bobák, 2006, s. 236)

1.7.1 Individuální rozmístění

Individuální rozmístění se využívá u neopakovaných výrob na malém počtu pracovišť. V takových podmínkách je těžké stanovit pro rozmístění strojů nebo zařízení s polečné znaky výrobků nebo operací.

1.7.2 Skupinové rozmístění

Uplatňuje se u složitých výrobních systémů při vyšších typech výrob. Dělba práce se odráží ve vyčleňování, případně slučování pracoviště podle jednoho ze dvou možných základních hledisek:

Technologické uspořádání

U tohoto uspořádání jsou stroje a zařízení seskupovány dle technologické podobnosti. Tato organizace pracoviště se také označuje jako „dílenské uspořádání“. Dále se vyskytuje ve dvou možných variantách a to s centrálním meziskladem nebo bez meziskladu. (Tuček a Bobák, 2006, s. 237)

Toto uspořádání s sebou nese výhody, ale také řadu nevýhod. Mezi nejpodstatnější nevýhody patří prodloužení výrobního cyklu, vysoké náklady na manipulaci, malé využití ploch, větší pracnost výrobků, náročnější mezioperační kontrola.
Předmětné uspořádání

Podstatou předmětného uspořádání pracovišť jsou pracoviště seskupená podle technologického postupu výrobků nebo jeho součástí. Za sebou jsou tedy řazena pracoviště s odlišným technologickým postupem, opracovávaný předmět se pohybuje během výrobního procesu dle sledu výrobních operací. Výhody jsou na rozdíl od předmětného uspořádání nízké náklady na manipulaci, krátká průběžná doba výroby, zvýšení specializace pracovníků a další. Předmětné uspořádání můžeme vidět ve dvou základních formách v závislosti na počtu a výrobním množství vyráběných předmětů jako (Tuček a Bobák, 2006, s. 238-239):

a) hnízdrové

b) linkové

Hnízdrové uspořádání

Hnízdrové uspořádání je vhodné pro větší počet druhů výrobků s menším vyráběným množstvím. Podmínkou je technologická podobnost výrobků. Při této výrobě není stanoven výrobní takt, proto je součástí uspořádání také řešení mezioperačních skladů. Hnízdrové uspořádání může být vytvořeno jako (Tuček a Bobák, 2006, s. 239):

- Volně rozptýlené
- Buňkové
- Řadové

Linkové uspořádání

Linkové uspořádání se používá u výroby malého počtu druhů výrobků s vyšším množstvím technologicky podobných produktů. Podle počtu dále rozděluje e toto uspořádání na (Tuček a Bobák, 2006, s. 239):

- Pružné linky – výroba skupiny výrobků se stejnými charakteristikami (velikost, technologie, tvar apod.); tok materiálu se mění dle potřeb výroby
- Proudové linky – jednosměrně dopravní spojení pracovišť s předem danou po-sloupností a délkou trvání operací; vhodné pro velkosériovou a hromadnou výrobu.
1.7.3 Modulární uspořádání

Rozdíl mezi klasickým (technologickým a předmětným) a modulárním uspořádáním pracoviště je znázorněn na následujících obrázcích 3 a 4.

![Obrázek 3 Technologické uspořádání pracoviště (Tuček a Bobák 2006, s. 246)](image1)

![Obrázek 4 klasické uspořádání pracoviště (Tuček a Bobák, 2006, s. 246)](image2)

Při použití modulárního uspořádání pracoviště dochází k úsporám zejména v oblasti pracovních ploch, průběžné doby výroby a kvality výstupů.

1.7.4 Postup implementace výrobních buněk

Principy výrobních buněk se využívají tam, kde je potřeba rychle a pružně reagovat na měnící se požadavky zákazníků. Pro buňky je typická flexibilita. Jednoduše lze změnit kapacitu změnou počtu operátorů i velikost výrobní dávky při velmi krátkých průběžných časech. Budování výrobních buněk ale vyžaduje jistou míru opakovatelnosti, v zakázkové kusové výrobě je jejich budování problematické. (Košturiak a Frolík, 2006, s. 145)

Postup vytváření buněk:

- Sestavení týmu, definice cílů a projektového plánu
- Procesní analýza
• Seskupování součástek – segmentace
• Určení rychlosti, taktu, požadavek zákazníka
• Mapování výrobních kroků
• Výběr zařízení a přepočet jejich kapacitního vytížení
• Layout buňky
• Výběr pracovníků a analýza jejich vytížení
• Návrh toku materiálu
• Organizace pracoviště
• Návrh toku informací
• Implementace
• Standardizace

1.7.5 Typy výrobních buněk

V případě výrobních buněk je potřeba v první řadě porozumět základním třem druhům buněk. Tyto buňky mají jeden společný aspekt – efektivně integrují výrobní činnosti i pracovníky a vytvářejí základ pro plynulé zlepšování. Jedná se o (Mašín a Vytlačil, 2000, s. 168-169):

• Buňky pro výrobu součástí – výrobní jednotky, ve kterých je integrováno veškeré technologické zařízení i nástroje řízení
• Montážní buňky – mohou být projektovány ve dvou úrovních, jako buňky před-montážní a buňky finální montáže;
• Procesní buňky – jsou předem určeny technologickým procesem, který zajišťuje; obvykle jsou vybaveny rozměrným a nemobilním zařízením)
1.7.6 Základní tvary výrobních buněk

Základní typy výrobních buněk uvádí Tuček a Bobák (2006, s. 247) zobrazením v následujících obrazcích. Jsou dále rozděleny na:

a) Jednoduché tvary

\[\text{Obrázek 5 jednoduché tvary výrobních buněk (Tuček a Bobák, 2006, s. 247)} \]

b) Komplexní tvary

\[\text{Obrázek 6 Komplexní tvary výrobních buněk (Tuček a Bobák, 2006, s. 247)} \]
1.8 Vybrané metody pro štíhlé pracoviště

V této kapitole jsou popsány vybrané metody štíhlé výroby, které jsou v projektové části práce aplikovány a implementovány na pracoviště montáže.

1.8.1 Štíhlý layout

Štíhlý layout je řešením problémů s dlouhými materiálovými toky, činnostmi manipulačními, skladovacími a kontrolními. Přináší také úsporu ploch jak výrobních, tak skladovacích, což umožňuje jednak plochy využít pro další výrobní operace, ale přináší to také lepší přehled o pohybu materiálu a zjednodušení řízení. (Košturiak a Frolík, 2006, s. 135)

Dle Košturiaka a Frolíka (2006, s. 135) má štíhlý layout tyto hlavní parametry:

- Přímý materiálový tok směrem k montážní lince a expedici
- Minimalizace přepravních vzdáleností mezi operacemi
- Minimalizace plochy na zásobníky a mezisklady
- Dodavatelé co nejblíže k zákazníkům
- Přímočaré a krátké trasy
- Minimální průběžné časy
- Sklady v místě spotřeby, vizuální kontrola počtu dílů v přepravce nebo na skladovací ploše
- Odstranění dvojnásobné manipulace
- FIFO a takový systém, kanban, DBR
- Buňkové uspořádání, segmentace a spine layout
- Flexibilita s ohledem na variabilitu produktů, výrobní množství a změny výrobního layoutu
- Nízké náklady na instalaci
1.8.2 Vizuální řízení

Vizuální řízení je metoda vycházející z faktu, že člověk vnímá očima mnohem více informací než sluchem, nebo ostatními smysly.

„Za prvek vizuálního managementu můžeme považovat jak jakékoli komunikační zařízení používané v pracovním prostředí, které nám na první pohled říká, jak by se měla práce vykonávat a zda se neodchyluje od standardu. Zaměstnancům, kteří chtějí odvádět dobrou práci, pomáhá okamžitě vidět, jak si skutečně počínají. Mohlo by třeba naznačovat, kam určité položky patří, kolik položek na určité místo patří, jaký je standardní postup provádění určité činnosti, upozorňovat na stav probíhajícího pracovního procesu a poskytovat mnoho jiných důležitých informací, které mají zásadní význam pro rok pracovních činností.“ (Liker, 2007, s. 195-196)

Dle Košturiaka a Frolíka (2006, s. 77) jsou základní prvky vizuálního managementu:

- Tabule výrobního systému
- Kanban karty a signály
- Červené kartičky
- Čáry limitů
- Označení ploch na podlaze
- Vizuální postup práce
- Označení neshodných výrobků
- Tabule chyb, plánovací a taktovací tabule
- Andon světla
- Checklisty
- Fotografie
- Mapy (procesu, layoutu) aj.

- **Informovat** - vizualizovaná informace by měla své okolí informovat. Úmyslně piši své okolí, protože vizuální řízení může pomoci zákazníkovi, aby pochopil proces, zaměstnancům, aby lehce identifikovala abnormalitu apod.
• **Řídit** – pracovník by měl být schopen na základě informace, která je vizualizována, proces řídit a správně se rozhodovat. V tomto případě je velmi důležitá vizuální forma – graf, barvy, piktogramy apod.

• **Porovnávat** – pro správné rozhodnutí je důležité porovnávat plánovaný a skutečný stav. Porovnáváním upozorňujeme a eskalujeme nežádoucí stav. Na druhou stranu, pokud se nám daří ukazatele plnit, tak tuto informaci můžeme s každým sdílet.

• **Motivovat** – správná forma vizuálního řízení by měla lídím motivovat k lepším výsledkům v daném procesu. Můžete to napravit vhodným porovnáváním, ukazováním trendů apod.

• **Učit** – pokud mám nějakou abnormalitu, tak bych měl vizualizovat realizované opatření a příčinu, aby se tato abnormalita už nikdy nevyskytla.

Princip vizualizace je možné aplikovat jak ve výrobě, tak také v ostatních aspektech života.

Na dalším obrázku je příklad vizualizace na pracovišti.

Obrázek 7 Příklad vizualizace na pracovišti (Košturiak a Frolik, 2006, s. 79)
1.8.3 Ergonomie pracoviště

Význam slova ergonomie spočívá ve spojení dvou řeckých slov – ergon = práce a nomos = zákon, pravidlo. I když různí autoři definují ergonometrii odlišně, základní myšlenka je stejná: zlepšení podmínek práce z hlediska bezpečnosti, komfortu a efektivity.

Dle Gilbertové a Matouška (2002, s. 15-16) Mezinárodní ergonomická společnost navrhla následující definici:

„Ergonomie je vědecká disciplína založená na porozumění interakci člověka a dalších složek systému. Aplikací vhodných metod, teorie i dat zlepšuje lidské zdraví, pohodu i výkonnost.“

V současné době ergonomie vychází z toho, že základem je systém člověk - stroj- prostředí, což jsou prvky systému na sobě vzájemně závislé. (Malý, Král, Hanáková, 2010, s. 55)

Přehled nejdůležitějších kritérií a parametrů ergonomického hodnocení pracovních systému

Pro práci je dle Gilbertové a Matouška (2002, s. 22-27.) stanoveno několik základních obecných ergonomických parametrů.

Podlahová plocha - pro jednoho pracovníka je minimální nezastavěná podlahová plocha 2 m². V prostředí bez denního osvětlení nebo s umělým ovzduší je tato hodnota 5 m².

Světlá výška pracoviště – Minimální světlá výška pracoviště je stanovena dle druhu osvětlení, ovzduší a dále podle pracovní plochy.

Vzdušný prostor – minimální vzdušný prostor pro pracovníka vsedě 12 m³, při práci ve stoje 15 m³, 18 m³ při těžké práci. Pro práci bez denního světla a umělým ovzduší jsou tyto hodnoty 20 m³, 25 m³ a 30 m³.

Pracovní prostor – Musí být přizpůsoben tělesným rozměrům pracovníka s ohledem na přístupové nebo únikové cesty, charakter vykonávaných pohybů nebo vizuální vybavení pracoviště.

Pracovní (manipulační) rovina – pracovní plocha by měla být umístěna přibližně v výšce, odpovídající výšce umístění lokte od podlahy. Zvýšení nebo snížení o 10-20 cm záleží na charakteru práce (práce namáhavá na zrak nebo manipulace s těžkými břemeny).

Prostor pro dolní končetiny – Prostor pro dolní končetiny musí umožňovat volný pohyb ze všech prostorových perspektiv. Minimální hodnoty jsou: výška = 60cm, šířka = 50 cm a hloubka 50cm. Optimální hloubka je 70cm.
Pracovní poloha – z fyziologického hlediska je nejoptimálnější polohou střídání práce vsedě a ve stoje. Pokud jde o práci v nepřirozené poloze (předklon, dřep apod.), měli by být činnosti střídány s přijatelnou polohou nebo střídány přestávkami.

Pracovní pohyby – optimální jsou pohyby střídající zátěž pro různé druhy svalů na horních i dolních končetinách. Dráhy pohybů by měly kopírovat přirozené pohybové stereotypy. Dosahová oblast by měla být vhodná pro typ pracovních úkonů, tzn. přizpůsobena váze předmětů, četnosti vykonávaných pohybů apod.

Pracovní poloha – z fyzikálněho hlediska je nejoptimálnější polohou střídání práce vsedě a ve stoje. Pokud jde o práci v nepřirozené poloze (předklon, dřep apod.), měli by být činnosti střídány s přijatelnou polohou nebo střídány přestávkami.

Pracovní pohyby – optimální jsou pohyby střídající zátěž pro různé druhy svalů na horních i dolních končetinách. Dráhy pohybů by měly kopírovat přirozené pohybové stereotypy. Dosahová oblast by měla být vhodná pro typ pracovních úkonů, tzn. přizpůsobena váze předmětů, četnosti vykonávaných pohybů apod.

Poměr statické a dynamické práce – dynamická práce (střídání napětí svalů) by měla převažovat nad statickou prací (trvalé napětí svalů).

Fyzická namáhavost práce – u mužů je průměrná spotřeba energie od 4,5 MJ do 6,8 MJ, a u žen od 3,4 MJ do 4,5 MJ.

Ovládací síly – Ovládací síly jsou stanoveny dle přesného charakteru ovládacího prvku (směr pohybu, frekvence využívání, pracovní poloze, způsobu uchopení apod.)

Manipulace s břemeny – limity pro zvedání těžkých břemen jsou závislé na pohlaví a věku pracovníka, vzdálenosti přenosu, dráze břemene, vzdálenosti od těžiště těla, úchopových možnostech.

Zrakové podmínky

- Hodnota osvětlení minimálně 200 lx, na pracovišti bez denního osvětlení 300 lx
- Rovnoměrnost umělého osvětlení (poměr mezi nejmenší a místně průměrnou hodnotou) musí být alespoň 0,65
- V zorném poli pracovníků se nesmí nacházet žádný předmět s velkým jasem nebo reflexními odrazy
- Optimální poměr jasu v místě výkonu práce, blízkém okolí a vzdálenějším okolí je 10:4:3
- Pro pracovníky nad 40 let je potřeba optimální hodnoty osvětlení zvýšit
- Pro pracovní povinnosti vyžadující rozlišování barev, je nutné volit světlo, které barvy nezkresluje

Barevné řešení prostředí a technických zařízení – odrazivost stropu by měla být 70-90%, stěn 50-60%, podlahy 10-30% a míst sledovaných zrakem 50-60%. Volba barevných od-
stínu pracoviště by měla být přiměřená velikosti a tvaru prostoru, osvětlení a barvě okolních předmětů.

Zrakové zdroje informací – Zorný úhel pro nejčastější pozorovaná místa by měl být 15-40°. Zorná závislost je závislá na náročnosti rozlišování detailů, pro velmi náročné je to 12-15 cm, pro zvýšenou náročnost 25-35 cm, pro běžnou práci 35-50 cm a při práci s velkými předměty, která není zrakově náročná 50 cm.

Zdroje informací se umisťují s ohledem na sdělovaná data (barva, písmo, obrázky), vhodnost pro předpokládanou funkci a bezpečnostní význam barev světelných sdělovačů.

Akustické podmínky – Nejvyšší přípustná hladina pro fyzickou práci je 85 dB s ohledem na poškození sluchu. Limit se dále upravuje dle charakteru práce (potřeba tvořivého myšlení a komunikace). Hladina varovných signálů musí být nejméně o 10 dB hlučnější než prostředí.

Mikroklimatické podmínky

- Optimální teplota v letním prostředí je 23 °C. Výkon klesá při teplotě 27 °C o 25% a při 30 °C až o 50%
- V zimním období je optimální teplota 20-24 °C
- Optimální vlhkost vzduchu se pohybuje v rozmezí 40 až 60%

Psychosociální podmínky – Jako potenciální příčiny stresorů a mikro stresorů se hodnotí:

- Kompetence
- Časový tlak
- Odpovědnost
- Sociální aktivity
- Monotonie
- Pracovní směny

Vytvořením vhodného ergonomického prostředí pro pracovníky zvyšujeme zároveň produktivitu pracovníků spolu s pozitivní motivací k práci.
2 ŘÍZENÍ ZÁSOB

Mezi hlavní metody používané ve výrobě při řízení zásob jsou obecně považovány tyto:

2.1 Just in time (JIT)

JIT je opakující se systém řízení výroby, kde je provoz, pohyb materiálu i zboží realizován co nejúsporněji a nejrychleji a to dle technologických potřeb a v co nejmenších výrobních dávkách. (Kavan, 2002)

Zjednodušeně řečeno jde o systém řízení dodavatelsko-odběratelských vztahů zcela bez zásob. Dalším cílem JIT je stoprocentní kvalita dodávaného materiálu.

Tento systém může být aplikován mezi dodavatelsko-odběratelskými vztahy externími i interními za podmínky pravidelných dodávek.

2.2 Kanban

Preclík ve své publikaci (2006, s. 274) uvádí, že v obecném smyslu Kanban není totéž jako JIT a při implementaci JIT není vždy využíván, ale často tyto jsou dva systémy využívány v součinnosti.

Kanban je systém řízení zásob řazený mezi systémy tahového charakteru.

V japonštině slovo KANBAN znamená oznamovací kartu, může jím tedy být bedna, identifikační místo na podlaze, v regálu nebo v boxu. V Evropě je pod tímto označením spíše známý systém dílenského řízení výroby a zásob, který informační karty používá. (API, © 2005-2012)

Kanban je založen na aplikaci zásad amerických supermarketů ve výrobě (CPI, © 2012):

1. zákazník si z regálu vezme požadované zboží, na kterém je umístěna kartička
2. u pokladny je tato kartička sejmuta a umístěna do skřínky
3. kartička je poslána do skladu
4. dle kartiček je zboží ze skladu odebráno a doplněno do regálů, dopravní karty jsou vyměněny za karty výroby
5. výrobní karty jsou shromažďovány do schránky
6. výrobní karty jsou dodány zpět do továrny, kde se nyní vyrobi přesně množství stanovené pomocí výrobních karet
7. po ukončení výroby jsou na výrobky uloženy nové výrobní karty
8. zboží je dodáno do skladu, celý cyklus se opakuje
Tento systém řízení je možné aplikovat na různé druhy systémů. Rozlišujeme interní a externí kanban.
Na následujících dvou obrázcích je zobrazení dvou druhů systému kanbanu, které uvádí API na svých stránkách (© 2005-2012)

Obrázek 8 Jednokatičkový kanban (API, © 2005-2012)

Obrázek 9 Dvojkaritčkový kanban (API, © 2005-2012)

Při zavedení kanbanu je cílem co, nejzdrojnalejší přizpůsobení se průběhu výroby materiálovým tokem, hlavním cílem je podporovat výrobu „na objednávku“ na každém stupni výroby. Tato výroba umožňuje bez větších investic redukovat zásoby a zvyšuje přesnost plnění termínů. Podmínkou dosažení cílů je vyvízení výrobních kapacit, se kterým by se mělo začít na finální montáži.

Systém Kanban je nejvhodnější implementovat pro opakovanou výrobu stejných součástek s velkou mírou v odbytu. Pokud není splněn tento předpoklad, je třeba systém Kanban vybavit speciálním plánovacím systémem (určení kapacity regulačních okruhů a jejich toleranční rozsahy apod.). (CPI, © 2012)
Na předpokladech zavedení tohoto tahového systému řízení zásob se autoři shodují (CPI, © 2012), (API, © 2005-2012), (Tuček, 2004). Jedná se tyto předpoklady:

- vyškolený, ale hlavně motivovaný personál
- vysoký stupeň opakování výroby, bez velkých výkyvů v poptávce
- vzájemně harmonizované kapacity
- rychlé postupy přetypování zařízení
- připravenost personálu v případě zvýšené poptávky (částečná pružnost kapacit)
- rychlé odstranění poruchy, kdy měli zvládnout dobře vyškolení operátoři zařízení
- výkonná kontrola kvality přímo na pracovišti
- připravenost managementu na všech úrovních delegovat pravomoci
- správně navržený layout dílny, s tendencí k linkovému uspořádání (plynulé toky)

2.3 MILKRUN

Strachota a Gerner (API, © 2005-1012) uvádí, že milkrun má prvopočátky v Anglii, kde probíhá pravidelný svoz mléka od farmářů. Do výroby byl aplikován za účelem:

- Eliminace jednotlivých dvoustranných transportů sběrnou službou
- Trasa přepravy je stanovena jako nejkratší možná varianta
- Každá zastávka je navštívěna jen jednou, navíc v předem známou dobu
- Milkrun neřeší jednostranně jen odběr zboží, nýbrž i dodání potřebného obalového materiálu, tj. prakticky nikdy nejede naprázdno
- Tím, že lze na základě daných dat stanovit jízdní řád, je možné empiricky změřit a nastavit využití pracovní doby odpovědného pracovníka
- Milkrun je vlastně městská hromadná doprava v logistice

Stejní autoři uvádí i hlavní body zavádění Milkrunu.

- Stanovení intervalu jízdních řádů
- Stanovení minimálního počtu materiálu ke kanban jednotce (potřeba pracoviště)
- Analýza všeho materiálu potřebného na pracovišti
- Stanovení signálů pro zavážení: Kanban karty a Kanban bedny.
- Stanovení a vizualizace sběrných míst pro Kanban karty a prázdné obaly.
- Nastavení naskladňovací a vysklaňovací strategie
- Příručka pro manipulanta v systému Milkrun.
II. ANALYTICKÁ ČÁST
3 PŘEDSTAVENÍ SPOLEČNOSTI

Obrázek 10 Správní budova společnosti (TVD – technická výroba a.s., © 2009)

V současné době je společnost rozdělena na čtyři divize – kovozpracování, zpracování plechů, lisování termoplastů a poslední je divize zpracování technické příze ve výši zmíněném Křekově. Diplomová práce je zaměřena na divizi zpracování plechů, která se soustředí na výrobu především rozvaděčových skříní, ostatních typů plechových skříní včetně povrchových úprav materiálu a výrobků. Výroba na této divizi je také vytěžována menšími projekty, které nezahrnují všechny dostupné technologické operace.

Společnost zaměstnává asi 420 pracovníků, z čehož většina působí právě na divizi plechů, a v současné době rozšiřuje výrobní kapacity výstavbou nové výrobní haly. Výrobky jsou expedovány do různých zemí EU a export činí asi 70% objemu produkce.
3.1 Technologický park pro zpracování plechů

Na rozloze 15 000 m² se mimo divizi zpracování plastů nachází technologie pro zpracování plechů a povrchovou úpravu. Jedná se o:

- Stříhání nůžkami
- Řezání laserovým paprskem
- Vysekávání
- Děrování
- Odjehlování
- Rovnání
- Ohýbání
- Nastřelování vrutů a nýtování
- Svaření
- Odmašťování
- Práškové lakování

V následující kapitole jsou popsány nejvýznamnější z technologií společnosti.

Řezání laserovým paprskem

V současné době jsou ve společnosti k dispozici dva vysokorychlostní laserové stroje značky Trumpf. Řezání laserem je velmi přesné, je možné vyřezávat také řezy složitých tvarů nebo materiál křehký, protože na něj nepůsobí mechanická síla. Přesnost řezu je až v desetinách mm. Řezání je vysoce efektivní a produktivní, proto se v nejbližší době výčet těchto strojů navýší o nově zakoupené laserové centrum, které bude umístěno v nové hale.

Ohýbací centrum Salvagnini

Kombinovaný stroj pro děrování a řezání laserem

Ve strojovém parku společnosti se nachází také jeden kombinovaný stroj pro řezání laserem a vysekávání. Díky kombinaci technologií dochází k zefektivnění výroby. Výhodami
jsou snadná výměna hlavy pro řezání laserem a široké spektrum nástrojů pro obrábění, jejichž využíváním dochází ke zvyšování kvality obráběných dílů. Díky laserové technologii umožňuje velmi přesné obrábění plechů. (TRUMPF, ©2014)

Svaření

Společnost nabízí sváření metodami MIG/MAG/TIG, tedy moderními a produktivními metodami v ochranné atmosféře aktivních i inertních plynů. Svařují se zde nelegované nízkouhlikové oceli, vysoce legované oceli a slitiny hliníku. Proces svařování je zefektivněn dvěma svařovacími roboty, kteří se otáčí kolem devíti os. (TVD – technická výroba, a.s. © 2009)

Automatická lakovací linka

Výrobky jsou lakovány v automatické lince na práškové lakování GALATEK. Linkové lakování umožňuje chemickou předúpravu, nanášení základního i vrchního prášku v jednom procesu. Linka zaručuje kvalitní nanášení laku a to 1000 hodin při zkoušce v solné mlze u dvouvrstvého laku a 300-500 hodin u jednovrstvého laku. Díky dvěma kabinám a závěrečnému vytvrzení barvy značně urychluje výrobu. Je řízena systémem Siemens, který je schopen záložovat všechna data. (Interní dokumenty TVD)

3.2 Montáž výrobků

3.3 Portfolio výrobků

Firma Tvd nabízí celou řadu produktů. Největší podíl ve výrobě činí skříň rozvaděčů, které jsou vyráběny v mnoha variacích. STS rozvaděčové skříně jsou vyráběny ve výrobkových řadách v krytí IP 55 a skříně STL s krytím IP 40. IP krytí označuje stupeň krytí proti stříkající vodě. IP 55 značí krytí proti stříkající vodě ze všech stran. Ukázka skříně je na obrázku č. 11.
Dalšími podstatnými výrobky jsou také skříně hlavních uzávěrů plynu a datové pulty. Datové pulty slouží k ovládání a kontrole výrobních linek (obr. 12 a 13).

Velkou výhodou společnosti je výroba na zakázku. Díky vlastní konstrukční kanceláři je podnik schopen zpracovat objednávky na výrobky různých velikostí, kvality, IP krytí, lakování a jiných konstrukčních požadavků. V současné době prochází téměř všechny zakázky konstrukčním oddělením, protože zákazníci vyžadují neustálé revize.
3.4 SWOT analýza společnosti Tvd

Ve SWOT jsou hodnocena dvě kritéria. První z nich je váha, které udává, jaký má význam pro podnik daný parametr, přičemž nejnižší význam je roven 0, naopak nejvyšší je roven 1. Druhým kritériem je hodnocení, které vyjadřuje úroveň parametru v podniku na škále od 5 do -5. Součinem těchto hodnot dostaneme celkové hodnocení přiděleno jednotlivým parametrům.

3.4.1 Silné stránky podniku

V tabulce 1 jsou zobrazeny silné stránky společnosti spolu s jejich ohodnocením. Jako nejsilnější stránky podniku byly vybrány dvě. Všestrannost práce s plechy, která poskytuje velkou konkurenční výhodu podniku. Tato silná stránka sebou zároveň nese také negativní důsledky, jako jsou náročnost na technologické vybavení a odbornost v oblasti všech dostupných pracovišť. Díky technologickému vybavení je podnik schopen zpracovat velký rozsah velikostí a materiálů plechů, a to v mnoha operacích dostupných přímo v areálu. Další silnou stránkou je velký rozptyl činností obecně. Podnik má v portfoliu činností mimo práci s plechem také lisování technické pryže, vlastní dopravu a poprodejní péči o zákazníka a do jisté míry také péči o zaměstnance.

Tabulka 1SWOT – silné stránky podniku (vlastní zpracování)

<table>
<thead>
<tr>
<th>Silné stránky</th>
<th>Váha</th>
<th>Hodnocení</th>
<th>Součet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rodinné klima firmy</td>
<td>0,25</td>
<td>2</td>
<td>0,5</td>
</tr>
<tr>
<td>Všestrannost práce s plechy</td>
<td>0,75</td>
<td>3</td>
<td>2,25</td>
</tr>
<tr>
<td>Velké výrobní kapacity</td>
<td>0,5</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Velký rozptyl činností podniku</td>
<td>0,75</td>
<td>3</td>
<td>2,25</td>
</tr>
<tr>
<td>Dostatečné finanční zdroje</td>
<td>0,5</td>
<td>3</td>
<td>1,5</td>
</tr>
<tr>
<td>Nákup nových technologií</td>
<td>0,75</td>
<td>4</td>
<td>1,5</td>
</tr>
<tr>
<td>Diferenciace výroby – schopnost přizpůsobit výrobky</td>
<td>0,75</td>
<td>4</td>
<td>1,5</td>
</tr>
<tr>
<td>Velká část produkcí je vyráběna pro jednoho zákazníka-budování image a odběratelsko-dodavatelských vztahů</td>
<td>0,2</td>
<td>2</td>
<td>0,4</td>
</tr>
<tr>
<td>Součet</td>
<td></td>
<td></td>
<td>11,9</td>
</tr>
</tbody>
</table>
3.4.2 Slabé stránky

Jako nejslabší stránka byla vyhodnocena míra odběru produkce jedním odběratelem. Tato slabá stránka je pro podnik velkým rizikem v podobě odchodu odběratele a ztráty větší části zakázek. Při správném řízení, je ale také do jisté míry silnou stránkou podniku. Společnost může využívat svého postavení u odběratele a budovat strategické vztahy jako prevenci před ukončením odběratelských vztahů a také prostřednictvím těchto vztahů budovat image firmy.

Další slabou stránkou je komunikace uvnitř firmy a to na všech úrovních organizační struktury. V podniku vzniká mnoho problémů se zbytečnými ztrátami právě kvůli nedostatečné komunikaci, ať už operátorů nebo skladníků, ale také manažerů na vrcholné úrovni.

Tabulka 2 SWOT - slabé stránky podniku (vlastní zpracování)

<table>
<thead>
<tr>
<th>Slabé stránky</th>
<th>Váha</th>
<th>Hodnocení</th>
<th>Součet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organizační struktura společnosti</td>
<td>0,5</td>
<td>-4</td>
<td>-2</td>
</tr>
<tr>
<td>Nedostatečná podpora IS podniku</td>
<td>0,5</td>
<td>-2</td>
<td>-1</td>
</tr>
<tr>
<td>Problémy ve vnitřní komunikaci</td>
<td>0,75</td>
<td>-3</td>
<td>-2,25</td>
</tr>
<tr>
<td>Pravomoci zaměstnanců nejsou jasně stanoveny</td>
<td>0,25</td>
<td>-4</td>
<td>-1</td>
</tr>
<tr>
<td>Velký rozptyl činností</td>
<td>0,25</td>
<td>-3</td>
<td>-0,75</td>
</tr>
<tr>
<td>Společnost nepodporuje kontinuální vzdělávání</td>
<td>0,75</td>
<td>-3</td>
<td>-2,25</td>
</tr>
<tr>
<td>Velký podíl výroby pro jednoho zákazníka</td>
<td>0,75</td>
<td>-4</td>
<td>-3</td>
</tr>
<tr>
<td>Není stanovena strategie a cíle podniku, chybí měřitka úspěchu</td>
<td>0,25</td>
<td>-5</td>
<td>-1,25</td>
</tr>
<tr>
<td>Nejsou podporovány inovativní metody a postupy</td>
<td>0,75</td>
<td>-3</td>
<td>-2,25</td>
</tr>
<tr>
<td>Vysoké výrobní náklady, velká rozpracovanost výroby</td>
<td>0,5</td>
<td>-3</td>
<td>-1,5</td>
</tr>
<tr>
<td>Součet</td>
<td></td>
<td></td>
<td>-17,25</td>
</tr>
</tbody>
</table>
3.4.3 Příležitosti

Mezi nejvýznamnější příležitosti, kterých může podnik v současné době využívat, patří příležitost v oblasti využívání potenciálu zaměstnanců a s tím spojené zvyšování vzdělání a odbornosti pracovníků v Tvd. Mnohdy je na první pohled jasné, že pracovníci mají vyšší potenciál, než který je využíván ve vykonávání jejich pracovních povinností. Pokud by podnik uměl využívat potenciálu zaměstnanců správným směrem a v co nejvyšší míře, znamenalo by to pro něj bezpochyby velký posun jak na úrovni konkurenceschopnosti, tak v oblasti rozvoje celého podniku.

Příležitosti je také umět se přizpůsobit technologickému rozvoji a reagovat na zrychlování vývoje, což se v současnosti daří díky plánovanému zakoupení nového technologického vybavení. Jistou výhodou pro podnik také představuje současná situace na trhu práce, kdy je dostatek uchazečů o práci, firma si může vybírat nejvhodnější žadatele a také nejsou tak vysoké požadavky na odměňování, což poskytuje možnost úspory nákladů.

Tabulka 3 SWOT příležitosti podniku (vlastní zpracování)

<table>
<thead>
<tr>
<th>Příležitosti</th>
<th>Váha</th>
<th>Hodnocení</th>
<th>Součet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rozšíření podniku, zvýšení kapacit</td>
<td>0,25</td>
<td>3</td>
<td>0,75</td>
</tr>
<tr>
<td>Kontinuální vzdělávání pracovníků</td>
<td>0,75</td>
<td>1</td>
<td>0,75</td>
</tr>
<tr>
<td>Vysoký potenciál zaměstnanců</td>
<td>0,75</td>
<td>2</td>
<td>1,5</td>
</tr>
<tr>
<td>Hledání nových výrobních možností</td>
<td>0,5</td>
<td>1</td>
<td>0,5</td>
</tr>
<tr>
<td>Obnova ekonomické situace po hospodářské krizi</td>
<td>0,5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Technologický rozvoj</td>
<td>0,75</td>
<td>2</td>
<td>1,5</td>
</tr>
<tr>
<td>Vysoká nezaměstnanost</td>
<td>0,5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Součet</td>
<td></td>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>
3.4.4 Hrozby

Tabulka 4 SWOT hrozby podniku (vlastní zpracování)

<table>
<thead>
<tr>
<th>Hrozby</th>
<th>Váha</th>
<th>Hodnocení</th>
<th>Součet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vysoká konkurence v odvětví</td>
<td>0,5</td>
<td>-5</td>
<td>-2,5</td>
</tr>
<tr>
<td>Ztráta významného zákazníka</td>
<td>0,75</td>
<td>-3</td>
<td>-2,25</td>
</tr>
<tr>
<td>Nesplnění požadavků na produktivitu od zákazníků</td>
<td>0,25</td>
<td>-2</td>
<td>-0,5</td>
</tr>
<tr>
<td>Legislativní požadavky</td>
<td>0,5</td>
<td>-1</td>
<td>-0,5</td>
</tr>
<tr>
<td>Nepříznivý demografický vývoj v oblasti</td>
<td>0,25</td>
<td>-1</td>
<td>-0,25</td>
</tr>
<tr>
<td>Vysoká vyjednávací síla zákazníků</td>
<td>0,75</td>
<td>-4</td>
<td>-3</td>
</tr>
<tr>
<td>Rozvoj konkurence</td>
<td>0,75</td>
<td>-3</td>
<td>-2,25</td>
</tr>
<tr>
<td>Součet</td>
<td></td>
<td></td>
<td>-11,25</td>
</tr>
</tbody>
</table>

Ze SWOT analýzy vyplývá, že podnik má výhody v samotné výrobě a v personální oblasti (potenciál zaměstnanců, prostor ve výběru zaměstnanců), ale velká část slabých stránek se týká spíše vedení podniku, řízení a komunikace. Pokud by podnik věnoval větší pozornost týmové spolupráci nebo přeměně organizační struktury, mnoho procesů by se zlepšilo a zvedlo by se tak také k lepšímu postavení podniků na trhu, což v současné konkurenčním prostředí není jednoduché.
4 ANALÝZA SOUČASNÉHO STAVU MONTÁŽE

V této kapitole bude provedena podrobná analýza pracoviště montáže. V jejím průběhu na základě výsledků analýzy montáže bude vybráno konkrétní pracoviště pro projekt implementace metod štíhlé výroby.

4.1 Popis finálního výrobku – rozvaděčové skříně

V následující kapitole bude popsán konečný výrobek pro zákazníka FIMOS. Výrobek bude popisován pouze v obecné rovině, aby nedošlo ke zveřejnění citlivých dat společnosti.

U rozvaděčových skříní vyrábí TVD všechny kovové součásti rozvaděčových skříní a zákazník je dále vybavuje elektrickými rozvody.

Výrobek musí splňovat mnoho technologických a bezpečnostních požadavků. Nejvýznamnějšími jsou:

- Voděodolnost
- Vodivost
- Odolnost povrchové úpravy vůči povětrnostním podmínkám
- Pevnost konstrukce

Rozvaděčová skříň pro tohoto zákazníka je vyráběna v mnoha variantách. Konečný produkt lze rozdělit dle dvou základních dělení:

- Podle velikosti
- Podle způsobu chlazení

4.1.1 Výrobní operace

Přesto, že do finálního výrobku vstupuje několik polotovarů, většina z nich prochází stejnými výrobními operacemi s výjimkou spojovacího materiálu, který je dodáván externím dodavatelem. Průběh výrobních operací je zobrazen na následujícím obrázku.

Obrázek 14 Nástin procesu výroby rozvaděčové skříně (vlastní zpracování)
Při první operaci – řezání a děrování materiálu - se posuzuje technologie dělení materiálu z různých hledisek, podstatné je vytížení stroje, náročnost tvaru polotovaru a případná jiná kritéria. Povrchová úprava se skládá ze dvou operací, buď jsou polotovary odmaštěny a lakovány, nebo dochází k chemické povrchové úpravě k dosažení požadovaných vlastností konečného výrobku.

Po výrobních operacích uvedených ve schématu následuje 100% kontrola hotových výrobků a expedice k zákazníkovi.

4.1.2 Rozdělení dle velikosti

Skříně pro zákazníka FIMOS se vyrábí z pěti základních druhů plášťů, které se liší velikostí. Jedná se o následující:

- Mini plášť
- Střední plášť
- Maxi plášť
- Hliníkový malý plášť
- Hliníkový velký plášť

Z těchto základních polotovarů se montují skříně jednoplášťové nebo dvouplášťové, které vznikají montáži dvou plášťů na sebe. Tabulka základních typů skříní dle velikosti spolu se zobrazením typu komponent je uveden v následující tabulce 5.

Tabulka 5 Základní typy skříní dle velikosti v mm (vlastní zpracování)

<table>
<thead>
<tr>
<th>Typ plášťů</th>
<th>Typ skříně</th>
<th>Typ 1</th>
<th>Typ 2</th>
<th>Typ 3</th>
<th>Typ 4</th>
<th>Typ 5</th>
<th>Typ 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mini</td>
<td></td>
<td>1382 x</td>
<td>1799 x</td>
<td>2091 x</td>
<td>1184 x</td>
<td>737 x</td>
<td>1048 x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>694</td>
<td>694</td>
<td>698</td>
<td>694</td>
<td>579</td>
<td>581</td>
</tr>
<tr>
<td>Střední</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maxi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hliníkový malý</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hliníkový velký</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.1.3 Rozdělení dle typu chlazení

Elektrická zařízení uvnitř rozvaděčových skříní produkují teplo. Provozní teplota a vlhkost ovšem níží životnost komponentů uvnitř skříně, proto je potřeba efektivně skříně odvětrávat a chladit. TVD vyrábí skříně se dvěma typy chlazení. Obě tato chlazení jsou montována na skříně různých velikostí.

Ventilace

Ventilace je ekonomický a rychlý způsob chlazení. Je založena na jednoduchém principu cirkulace vzduchu. Chladný vzduch je nasáván ventilátorem dovnitř skříně, ohřívá se a dále vychází ven. Součástí ventilátoru je také filtr, který umožňuje zachycení nečistot ovzduší, které by mohly poškodit zařízení uvnitř skříně.

Ventilátory jsou ve společnosti TVD montovány zčásti z vyrobených polotovarů a z části z nakupovaných součástek. Do skříní jsou montovány dva druhy a jednoventilátor a účinnější dvojventilátor.

Klimatizace

Tento druh chlazení se montuje do skříní, jejichž umístění není vhodné pro chlazení vzduchem (například příliš horký vzduch, obsah nevhodných částeček ve vzduchu apod.).

Jak ventilátory, tak klimatizace je potřeba smontovat na pracovištích předmontáže.

4.2 analýza Procesu montáže

Montáž výrobků je v podniku rozdělena do dvou hal, dle zákazníka. Důvodem tohoto rozdělení je odlišnost jednotlivých výrobků podle požadavků zákazníků. Každý ze zákazníků má specifické požadavky na vzhled skříní a technické vybavení. Projekt je primárně zaměřen na montáž zákazníka FIMOS.
4.2.1 Snímky pracovního dne

Pro bližší seznámení s charakteristikou procesu montáže v podniku byla provedena analýza jednotlivých pracovních pozic prostřednictvím analýz snímků pracovního dne.

Metodika analýzy

Pro účel analýzy byly činnosti rozděleny do dvou skupin a to dle konkrétních činností pracovníka a dále na kategorie činností. U konkrétních činností, které pracovník vykonává, není zcela jasné, čím se přesně zabývá. Proto jsou v analýze činnosti dále rozděleny do kategorií činností, kde je upřesněno, do jaké oblasti náplně práce pracovníka činností zapadají. Podrobné tabulky činností jsou u všech snímků uvedeny v příloze P I: Tabulky z SPD pracoviště montáže.

Dále je u snímků pracovního dne sledováno, na jakém místě se v pracovní době pohybují a tráví nejvíce času.

Snímky pracovního dne mistra montáže

Nejdříve byla provedena analýza pracovního dne mistra montáže, což umožnilo pochopení základních vztahů a posloupností montáže v komplexním pohledu. Snímkování probíhalo dvě směny ve dvou týdnech, aby byly eliminovány náhodné jevy.

Náplň práce mistra montáže v TVD:

- Organizace práce operátorů a skladníků na montáži
- Kontrola a řízení docházky pracovníků
- Plánování montáže
- Expedice výroby pro dané zákazníky
- Plán expedice, kontrola plnění objednávek
- Řešení operativních problémů
- Komunikace se středním a operativním managementem - porady
V následujícím grafu jsou uvedeny všechny činnosti mistra výroby a jejich celkový podíl na analyzovaném čase.

Graf 1 SPD mistr montáže – hlavní činnosti (vlastní zpracování)

Ze snímku vyplývá, že mistr montáže se třetinu pracovní doby věnuje komunikaci, ať už s operátory nebo s ostatními vedoucími pracovníky. Další velký podíl mají přestávky, které zaujímají dvě hodiny a třináct minut, což je 14% z celkového času. Z toho řádné přestávky činí za dvě směny sedmdesát minut. Mistr využil dalších 50 minut na pitný režim, toalety apod. Velký podíl na celkovém čase má také chůze, což není vzhledem k rozsáhlosti výrobních prostor překvapující, některé chůze ovšem v průběhu snímku byly zbytečné.

Zvláštní položkou je služební jízda. Mistr montáže při analýze měl povinnosti v externím skladu podniku, proto čtyři procenta z celkové pracovní doby zaujímá tato činnost, není však náplní práce mistra.
V dalším grafu jsou uvedeny kategorie činností, které blíže specifikují zaměření činností mistra montáže.

Graf 2 SDP skladník montáže – kategorie činností (vlastní zpracování)

Ztrátové činnosti zaujímají celkem 14 % z činností mistra, což představuje asi jednu hodinu času na směnu mistra. Z celkového snímků dne bylo zjištěno, že většinu těchto činností tvoří hledání výrobků pro montáž a jejich současný stav rozpracovanosti. Dále se jedná o čekání nebo služební jízdu, která zde byla zařazena, protože jejím účelem bylo také hledání materiálu v externím skladu. Jak je vidět, nejvíce času věnuje mistr primární činnosti – organizace, řízení a kontrola práce na pracovištích montáže, a to třetinu pracovní doby. Plánování výroby věnuje téměř hodinu a půl denně. V současné době podnik zavádí a testuje nový systém plánování, což by mělo tyto povinnosti částečně odstranit.

Poslední výsledky analýzy je tabelace místa výkonu práce. Zvláštní položkou je chůze, která není rozdělena do jednotlivých pracovišť, protože při chůzi mistr montáže přechází přes velký počet místností.
Nejvíce času tráví pracovník v kanceláři, kde převážně probíhá plánování výroby a administrativní práce. Mistr zde tiskne úkolové listy, kontroluje rozpracovanost výroby a dostupnost dílů pro montáž v informačním systému podniku. Časový úsek mimo pracoviště je poměrně vysoký a z důvodu služební cesty do externího skladu. Zbytečnou položkou v této tabulce je místo výkonu E-sklad, kde mistr hledá rozpracovanou výrobu, což je ztrámová činnost.

Snímky pracovního dne skladníka montáže

Analýza skladníka montáže je prováděna primárně za účelem získání informací o zásobování pracoviště a odvozu hotových výrobků. Zásobování pracoviště je popsáno v kapitole Zásobování pracoviště. Měření probíhalo pouze jeden pracovní den.

Celkem na montážním pracovišti FIMOS jsou k dispozici tři skladníci. Povinnosti těchto skladníků nejsou pevně stanoveny, práce se odvíjí od pokynů mistra montáži, popřípadě na základě potřeby operátorů montáže.
Náplň práce skladníka montáže

- Zásobování pracoviště montáže materiálem
- Uskladnění nedokončené výroby mezi operacemi
- Expedice hotových výrobků
- Úklid a uspořádání pracoviště

Protože pracovní povinnosti skladníků na pracovišti montáže se odvíjí od množství práce a délky montážních časů, patří mezi povinnosti skladníka také vytěžovací práce, které jsou prováděny v případě, že všechna pracoviště jsou zásobována a nejsou žádné výrobky k expedici.

Vytěžovací práce skladníků na montáži

- Balení hotové výroby
- Výrobní operace (nýtování)

Charakteristika dne

V den snímkování skladníka probíhal ve společnosti zákaznický audit, následkem čehož byla nepatrně pozměněna náplň práce skladníka. Ve snímku je více času tráveno úklidem a uspořádáním pracoviště.

Na rozdíl od snímku pracovního dne, bylo snímkování skladníka provedeno pouze jeden den a pak přerušeno, protože výsledky analýzy neposkytují potřebná data o zásobování pracoviště montáže.

Následující tabulka a graf znázorňují kompletní přehled činností skladníka montáže. Pokud skladník přechází mezi pracoviště, nebo jede pro materiál k montáži s prázdným paletovým vozíkem, je činnost definována jako chůze. Jakýkoliv pohyb s materiálem je definován jako transport.
Na následujících dvou grafech můžeme vidět výsledky analýzy snímku pracovního dne skladníka na montáži FIMOS.

SNÍMEK ČINNOSTÍ - SKLADNÍK MONTÁŽI

U1, U2 – transport materiálu
U3 – uskladnění
U4 – expedice
U6 – transport prázdných palet
U7 – odvážení odpadu
U8 – komunikace
U9 – balení dílů
U10 – Mimo kompetence
Ch – chůze
PP – příprava a úklid pracoviště
Ú – uspořádání, úklid objektů
ZMAN – zbytečná manipulace
Č – čekání
AD – administrativa
HL – hledání
P - přestávka

Graf 5 SPD skladník montáže – hlavní činnosti (vlastní zpracování)

Zbytečná manipulace je činností vznikající překládáním objektů z místa na místo, nebo manipulace s objekty při nedostupnosti potřebného materiálu nebo výrobků. Uspořádání a úklid objektů na pracovištích je zařazen do ztrátových činností. Pokud by měly objekty standardizované pozice, nedocházelo by k uspořádání.

SNÍMEK KATEGORIÍ ČINNOSTÍ

MK – mimo kompetencí
Z – ztrátové činnosti
EXP – expedice výroby
MON – zásobování montáže
Ú – úklid
Ch – chůze
P - přestávka

Graf 4SPD skladníka – kategorie činností (vlastní zpracování)
Největší podíl na pracovní době skladníka má chůze. Naopak transport materiálu či hotové výroby zaujímá pouze patnáct procent celkového času skladníka na směně.

Posledním vstupem je, stejně jako u analyzy pracovního dne mistra, zobrazení hodnot místa výkonu práce. Pro větší přehlednost je pracoviště montáže rozděleno do tří částí, jak zobrazuje následující obrázek.

Obrázek 15 Rozdělení layoutu montáže - SPD skladním montáže (vlastní zpracování)

Místo výkonu chůze obsahuje veškerou chůzi skladníka, včetně transportu materiálu nebo všech činností prováděných za pohybu, které jsou ve snímku činností zařazeny do příslušných činností. Důvodem je nepřesnost zařazení činností v chůzi na příslušné pracoviště. V kategorii ostatní pracoviště jsou zahrnuty vytěžovací práce mimo pracoviště montáži a ostatní pracoviště v podniku Tvd, která nekoordinují s pracovní náplní skladníka montáže.

Graf 6 SPD skladník – místo výkonu práce (vlastní zpracování)

Místo výkonu práce

MON1 – pracoviště montáže 1
MON2 – pracoviště montáže 2
MON3 – pracoviště montáže 3
ESKL – sklad nedokončené výroby
CH – chůze
RAM – expediční rampa
MP – mimo pracoviště
OS - ostatní

Obrázek 16 Spaghetti diagram - skladník montáže (vlastní zpracování)

Z diagramu jasně vyplývá, že skladník se pohybuje po celém prostoru montáže. Přestože jsou na jedné směně skladníci dva, nemají stanoveny pracoviště, na které naváží ani prácovní povinnosti.

4.2.2 Popis procesu finální montáže

V následující kapitole je popsán proces montáže skříní pro konkrétního zákazníka. Montážní procesy se liší převážně dle velikosti finálního výrobku, v některých případech je na přání zákazníka výrobek modifikován přidáním, odebráním nebo změnou komponent. Montáž probíhá na několika pracovištích, kde je prováděna předmontáž polotovarů a na pracovišti finální montáže skříně.

Pro analýzu procesu montáže byla zvolena metoda přímého pozorování a dotazování, při kterých vznikla video montážních postupu. Na základě nich byly dále zpracovány závěry o schématu vstupních polotovarů a rozčlenění pracoviště.

Zásobování pracoviště

Zásobování pracoviště probíhá v současné době bez standardu. Materiál a polotovary jsou na pracovišti dodávány dle aktuální situace a pohybu skladníků. U spojovacího materiálu si zásobování pracoviště zajišťují sami operátoři na montáži. U větších polotovarů je zajišťováno skladníky dle subjektivního dojmu, že materiálu je na pracovišti málo, nebo na pokyn operátora či mistra. Pokud není skladník k dispozici, protože vykonává jiné činnosti z náplně jeho pracovní doby, je operátor nucen pozastavit montáž nebo si polotovary zajiš-
tit sám. Tento způsob zásobování je naprosto nevhodný a jeho důsledkem vzniká obrovské množství plýtvání a prostopojů.

Dodávky materiálu jsou komplikované také z důvodu nejasného plánu výroby.

Plánování výroby na montáži a expedici

V současné době se softwarové plánování výroby v TVD týká pouze samotného zpracování plechů, tedy strojů, dělení nebo tváření materiálu. Další úrovně plánování jsou prováděny přímo středním managementem a jsou řízeny dle dat expedice hotových výrobků. Na montáži pro zákazníka FIMOS je hlavním dokumentem při plánování výroby přehled lnění objednávek, dle kterého mistr určuje prioritu montáže. Často dochází k tomu, že pracovníci z finální montáže sami oslovují pracoviště polotovarů s informací o potřebném počtu ks polotovarů do kompletní zakázky. Výsledkem tohoto systému plánování je přerušování práce na zakázích, protože expedice čeká na dokončovací práce jiné zakázky. Důsledkem nezaznamenaných požadavků z finální montáže jsou některá pracoviště přetěžována, protože mistr montáže se včas o těchto požadavcích nedozví.

V plánování výroby často dochází k okamžitým změnám v závislosti na změně priorit, termínů a počtu odebraných výrobků zákazníkem.

Kvůli nesystémovému plánování výroby dochází ve společnosti k obrovským ztrátám: vzájemné čekání pracovišť na díly, zvyšování rozpracovanosti, nedodržování termínů, riziko nekvality (práce ve spěchu, pod tlakem), nadbytečná práce technickohospodářských zaměstnanců (mistr, skladníci).
Díly vyráběné na montáži polotovarů

Následující výčet montovaných dílů obsahuje pouze díly, které je potřeba předpřipravit pro montáž. Neobsahuje díly nakupované, díly bez montáže a spojovací materiál. Všechny díly a jejich umístění jsou znázorněny v příloze PII: Schéma montovaných dílů zákazníka FIMOS. Při montáži hotového výrobku vstupují následující polotovary:

- Dveře
- Klimatizace/ventilátor
- Zemníci lišta
- Rámy pláštů
- Podstavec
- Rámeček filtru ventilace
- Kryt ke klimatizaci
- Alukryt

Na pracovišti předmontáže jsou baleny některé nemontované díly pro ostatní zákazníky. Důležitou součástí je balení příbalů ke skříním pro zákazníka FIMOS. Aby odběratelé mohli manipulovat se skříní, je potřeba nechat prostor v podstavci, který potřebuje uživatel následně zakrýt. Na finální montáži se k podstavci přidává příbal s těmito kryty a spojovacím materiálem.
4.2.3 Současný layout

Prostory montáže pro zákazníka FIMOS jsou umístěny v 2. podlaží budovy. Pro účely práce jsou analyzovány prostory montáže jako celek a v další části je podrobně popsán layout cílového pracoviště vybrán pro implementaci.

Současný layout montážních prostor

Prostory jsou umístěny do tří dílen, které celkem zaujímají plochu 63 m². Zásobování montáže a transport hotové výroby probíhá prostřednictvím dvou výtahů, které jsou situovány po obou stranách budovy, jak je zřejmé z obrázku 17.

![Obrázek 17 Layout pracoviště montáže FIMOS (zpracováno dle: interní materiály Tvd)](image)

4.3 Popis vybraného pracoviště pro montáž polotovarů - ventilace

4.3.1 Současný layout vybraného pracoviště

Pracoviště se nachází v prostřední dílně prostor montáže.

Obrázek 18 Zobrazení pracoviště v layoutu montáže (zpracováno dle: interní materiály Tvd)
Na dalším obrázku je současný layout pracoviště včetně umístění nářadí a materiálu k ope- racím.

Obrázek 19 Layout pracoviště montáže polotovarů vybraného realizaci projektu (vlastní zpracování)

Velké množství rozpracovanosti je dáno skladováním některých dílů také pro ostatní pra- coviště montáže polotovarů. Prostor pro konečné balení palet k expedici není nijak přizpů- soben potřebám balení. V regálech je uložen materiál různorodé povahy, od balícího mate- riálu přes potřebné díly až po nevyužitý materiál, který se zde nachází delší dobu.
U třech pracovních stolů pracují dvě operátorky, které střídají pozice dle potřeby a charakteru aktuální práce. Skladovací prostor pro balící materiál je na dalším obrázku.

4.3.2 Snímek pracovního dne vybraného pracoviště

Pro získání dat o pracovišti byla provedena analýza pracovního dne. Při této analýze je možno získat velké množství dat ze všech oblastí týkajících se pracoviště. Mimo podrobný popis činností byla získána data o zásobování montáže, potřebném materiálu, průběhu procesů, a bylo blíže specifikováno mnoho druhů ztrát, jejichž odstranění je cílem projektu.

Charakteristika analýzy

Snímek pracovního dne pracoviště byl prováděn po dva odlišné dny pro dva typy ventilace. Každý den pracují na pracovišti dvě operátorky, snímek tedy zahrnuje činnosti obou pracovnic.

Výsledky analýzy

Výsledky analýzy jsou zpracovány do grafické podoby a uvedeny v tabulce s podrobným vysvětlením a označením největšího plýtvání na pracovišti.
SNÍMEK ČINNOSTÍ - MONTÁŽ POLOTOVARŮ

U1 – montáž výrobků
U2 – předpříprava materiálu
U4 – montáž nýtováním
DP – dokončovací práce
PP – přípravné práce
UK – úklid pracoviště
AD – zahájení a ukončení práce
PŘ – příprava materiálu a polotovarů k montáži
P – přestávka (WC, pitný režim)
KOM – komunikace

Graf 7 SPD – pracoviště montáže polotovarů

Tabulka 6 SPD montáž ventilace (vlastní zpracování)

<table>
<thead>
<tr>
<th>KAT.</th>
<th>SNÍMEK ČINNOSTÍ - MONTÁŽ POLOTOVARŮ</th>
<th>ČAS</th>
<th>%</th>
<th>ČETNOST</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>montáž</td>
<td>2:41:46</td>
<td>37%</td>
<td>42</td>
</tr>
<tr>
<td>U3</td>
<td>předpříprava materiálu</td>
<td>0:01:52</td>
<td>0%</td>
<td>1</td>
</tr>
<tr>
<td>U4</td>
<td>montáž nýtováním</td>
<td>2:27:35</td>
<td>33%</td>
<td>75</td>
</tr>
<tr>
<td>DP</td>
<td>dokončovací práce</td>
<td>0:07:34</td>
<td>2%</td>
<td>7</td>
</tr>
<tr>
<td>PP</td>
<td>příprava pracoviště na zahájení operace</td>
<td>0:08:45</td>
<td>2%</td>
<td>15</td>
</tr>
<tr>
<td>UK</td>
<td>úklid, uspořádání pracoviště</td>
<td>0:05:46</td>
<td>1%</td>
<td>4</td>
</tr>
<tr>
<td>AD</td>
<td>Ukončení a zahájení práce na terminálu</td>
<td>0:04:29</td>
<td>1%</td>
<td>3</td>
</tr>
<tr>
<td>PŘ</td>
<td>příprava dílů k operaci</td>
<td>0:33:21</td>
<td>8%</td>
<td>79</td>
</tr>
<tr>
<td>Č</td>
<td>čekání, nečinnost</td>
<td>0:01:08</td>
<td>0%</td>
<td>4</td>
</tr>
<tr>
<td>CH</td>
<td>chůze</td>
<td>0:00:52</td>
<td>0%</td>
<td>2</td>
</tr>
<tr>
<td>M</td>
<td>manipulace zbytečná</td>
<td>0:01:34</td>
<td>0%</td>
<td>2</td>
</tr>
<tr>
<td>MP</td>
<td>mimo pracoviště</td>
<td>0:01:03</td>
<td>0%</td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td>přestávka pracovníka</td>
<td>0:46:54</td>
<td>11%</td>
<td>15</td>
</tr>
<tr>
<td>KOM</td>
<td>komunikace</td>
<td>0:18:04</td>
<td>4%</td>
<td>24</td>
</tr>
<tr>
<td>OSK</td>
<td>komunikace soukromá</td>
<td>0:00:16</td>
<td>0%</td>
<td>1</td>
</tr>
<tr>
<td>ZM</td>
<td>oprava zmetku</td>
<td>0:00:35</td>
<td>0%</td>
<td>1</td>
</tr>
<tr>
<td>SUMA ČASů</td>
<td></td>
<td>7:21:34</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>
Z výsledků analýzy jasně vyplývá, že hlavní náplní práce stráví pracovnice při montáži ventilace pouze 70% pracovního času. Zbytek času jsou přípravně či dokončovací práce, popřípadě ztrátové činnosti, které budou v následujících odstavcích postupně dle podílu na celkové časové kapacitě rozkládány a bližší popsány.

11% - 0:46:54 – Přestávka pracovníka

Přestávka pracovníka má velký podíl proto, že snímkování v jednom dni probíhalo přes 15 minutovou přestávku pracovníků. Vzhledem k tomu, že analýza probíhala celkem téměř sedm a půl hodny, podíl přestávek je vyšší než obvykle.

8% - 0:33:21 – příprava operace

Tato činnost zahrnuje převážně přesunu dílů k operaci. Tento ztrátový čas vzniká nevhodným uspořádáním pracoviště, kdy jsou pracovnice nuceny každý díl přinášet/odnášet až několik kroků. Palety s polotovary k výrobě nebo prázdné palety na výrobky jsou umístěny na zemi před pracovní plochou. Dále jsou díly za účelem přemístění z palet na pracovní stůl mnohdy odebrány po více kusech najednou i přes riziko vzájemného poškození laku. Umístění palet s výrobky a polotovary je vidět na dalším obrázku 21.

Obrázek 21 Umístění materiálu na pracovišti (vlastní zpracování)

V této činnosti je zahrnuta také příprava spojovacího materiálu, pro který si pracovnice chodí do skladu materiálu v průběhu operací, pokud nemají materiálu dostatek. Tento čas by mohl být radikálně minimalizován přeměnou layoutu pracoviště a stanovením systému zásobování pracoviště.
4% - 00:18:04 – komunikace

Tato 4% procenta tvoří převážně vzájemná komunikace operátorek na pracovišti, komunikace s mistrem a skladníkem montáže. Tento problém vzniká při řízení práce na celém pracovišti montáže, pracovnice jsou nuceny sami informovat skladníky o chybějícím materiálu, popřípadě diskutovat s mistrem montáže o frontě práce na pracovišti a rozdělení času mezi operace. Část tohoto problému bude odstraněna optimalizací zásobování pracoviště. Další snížení by mohlo být způsobeno zavedením nového systému plánování, který je v současné době ve fázi implementace.

2% - 00:08:45 – příprava pracoviště

Velký poměr času strávený pracovníci přípravou nástrojů na pracovišti nebo přípravou potřebných balicích nebo přepravních prostředků. Minimalizace těchto ztrátových časů bude provedena změnou layoutu pracoviště a převedením pravomocí přípravy přepravních prostředků na skladníky montážních pracovišť.

2% - 00:07:34 – dokončovací práce

Dokončovací práce mají stejnou příčinu jako příprava pracoviště a budou také stejnými řešením eliminovány.

Další činnosti, zaujímající po 1% časového fondu, jsou úklid a zahájení a ukončení práce na terminálu. Do úklidu patří v případě této analýzy hlavně úklid osobních věcí na pracovišti před zahájením práce na směně.

4.3.3 Další nedostatky efektivity výroby

Během přímého pozorování pracoviště byly zjištěny následující nedostatky:

Úkolové listy nejsou vždy dostupné

V úkolových listech je mimo počet ks v zakázce zobrazen také technický výkres výrobku, kusovník, návaznost operací a jiné údaje. Bez úkolového listu nemá pracovník základní informace o potřebném materiálu, využívaných nástrojích nebo poznámkách k operaci. Absencí těchto informací se výrazně zvyšuje riziko nekvality a vznikají ostatní druhy ztrát.

Převoz materiálu kvůli nedostupnosti

Materiál před i po opracování je na pracovišti umístěn na volné místo do řady palet za sebe. V řadách je zamezen přístup ke všem paletám, proto jsou pracovnice i skladníci často nuceni zbytečně manipulovat s paletami kvůli přístupu.
Změny plánu výroby

Nepřesné plánování výroby způsobuje rychlé změny operací. Situace, kdy pracovnice musí po přípravě pracoviště na operaci a zahájení operace práci přerušit a připravit a zahájit činnost jinou, není výjimkou. Často se také stává, že na některé operace čekají ostatní pracoviště, nebo nákladní auto při expedici. V takové situaci je na pracovníky vyvíjen tlak a dochází ke snížení soustředění pracovníků, nebo k absenci kontroly kvality.

Absence vizualizace

Na pracovišti nejsou standardizovány žádné pozice pro jakýkoliv materiál nebo nástroje. Často dochází k hledání dílů pro operaci, aktuálně potřebných úkolových listů nebo nástrojů, které jsou využívány oběma pracovníky.

Označování dílů pro externí zákazníky je prováděno až po zabalení všech dílů k expedici. Dochází k tomu, že pracovnice hledají příslušné díly k označení. Pokud jsou díly baleny do zákaznických přepravek a v nich dále skládány na paletu, musí pracovnice s bednami při hledání zbytečně manipulovat.

Dostupnost nářadí a materiálu

Nářadí je na pracovišti umístěno v centrální skříní na nářadí. Nachází se zde také spojovací materiál. Před každou operací musí pracovnice nástroje a materiál přemístit ze skříně na pracoviště.

Obrázek 22 Skřiň na nástroje a spojovací materiál (vlastní zpracování)
4.3.4 Montáž ventilace

Montáž ventilace je pro toto pracoviště stěžejní činností, v projektové části diplomové práce proto bude navrženo pracoviště pro tento typ předmontáže tak, aby pracovníci neustále neměnili pracoviště na ostatní operace odlišného charakteru.

Tabulka 7 Typy ventilace montované na pracovišti (vlastní zpracování)

<table>
<thead>
<tr>
<th>Zn.</th>
<th>TPV 1</th>
<th></th>
<th>TPV 2</th>
<th></th>
<th>Norma času celkem</th>
<th>Objem produkce (2013)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>VBU-017205</td>
<td>13</td>
<td>VBU-017222</td>
<td>4,4</td>
<td>16,4</td>
<td>3720</td>
</tr>
<tr>
<td>V2</td>
<td>VBU-017763</td>
<td>23,25</td>
<td>VBU-017222</td>
<td>4,4</td>
<td>27,65</td>
<td>1189</td>
</tr>
<tr>
<td>V3</td>
<td>VBU-023124</td>
<td>11,25</td>
<td>VBU-017222</td>
<td>4,4</td>
<td>15,65</td>
<td>779</td>
</tr>
<tr>
<td>V4</td>
<td>VBU-039385</td>
<td>15,50</td>
<td>VBU-017222</td>
<td>4,4</td>
<td>19,9</td>
<td>934</td>
</tr>
<tr>
<td>V5</td>
<td>VBU-037452</td>
<td>11,25</td>
<td>VBU-017222</td>
<td>4,4</td>
<td>15,65</td>
<td>592</td>
</tr>
<tr>
<td>V6</td>
<td>VBU-037456</td>
<td>11,25</td>
<td>VBU-017223</td>
<td>6,1</td>
<td>17,35</td>
<td>155</td>
</tr>
<tr>
<td>Celkem</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7369 ks</td>
</tr>
</tbody>
</table>

Tabulka 8 Zobrazení odlišnosti kusovníků ventilace V1-V6 (vlastní zpracování)

<table>
<thead>
<tr>
<th>Název</th>
<th>Označení</th>
<th>V1</th>
<th>V2</th>
<th>V3</th>
<th>V4</th>
<th>V5</th>
<th>V6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Příčka</td>
<td>VBU-039297</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Příčka rámu</td>
<td>VBU-016100</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VBU-016106</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VBU-016102</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VBU-016368</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>VBU-016369</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Příčka krytu</td>
<td>VBU-022999</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VBU-022997</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VBU-023000</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VBU-037233</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kryt filtru</td>
<td>VBU-016133</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VBU-016104</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VBU-016105</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VBU-016658</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VBU-016659</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VBU-023005</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kryt ventilátoru</td>
<td>VBU-023006</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kryt</td>
<td>VBU-039295</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VBU-039293</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klapka</td>
<td>VBU-016660</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ventilátor</td>
<td>VBU-017222</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VBU-017223</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Z analýzy vyplývá, že procesy jsou si velmi podobné, liší se velikostí dílů nebo konstrukčními vlastnostmi. Proto budou pro další účely práce zvoleni dva zástupci z této rodiny výrobků: V1, který tvoří 51% objemu produkce a je zástupcem pro výrobní proces jednoventilace a V2, který představuje nejdelší z procesů.
Takt zákazníka a průběžná doba výroby

Jedno z kritérií plnění cílů projektu je také průběžná doba výroby. Z toho důvodu bylo na pracovišti provedeno přímé měření práce. Protože výroba je prováděna dávkově v nestandardním počtu ks, je průběžná doba výroby propočtena v dané výrobní dávce. Tabulku využitou u propočtu průběžné doby výroby můžeme vidět v příloze PIII.

Rozpracovanost

Rozpracovanost na pracovišti byla vypočtena součtem po dobu výroby jedné dávky, tj. 12 ks ventilace typu V2 po přímém pozorování pracoviště. Při tomto charakteru výroby je rozpracovanost 10 ks. U ventilace typu V1 je dávka 20 ks a rozpracovanost 20 ks.

PDV ventilace

Průběžná doby výroby byla vypočtena součtem všech přípravných, ukončovacích a procesních časů jednotlivých operací při stanovené dávce.

V2: Dávka: 12 ks Průběžná doba výroby: 2:23:04
V1: Dávka: 20 ks Průběžná doba výroby: 3:35:15

Takt zákazníka

Takt zákazníka je potřebná veličina ke stanovení délky cyklu výroby a návaznosti na to také počtu operátorů na pracovišti.

Vzorec výpočtu taktu zákazníka: \(T = \frac{\text{dostupný čas}}{\text{požádávka zákazníka}} \)

V našem případě je výpočet následující: \(T = \frac{40 \times 60}{\frac{7369}{59}} \)

\[T = \frac{2400}{154} = 15,6 \text{ min.} \]
Popis procesu

Proces montáže ventilace se skládá z několika operací. Pro rychlou orientaci v procesu byly vytvořeny procesní mapy, které jsou z kapacitních důvodů uvedeny příloze PIV a PV. Délky jednotlivých operací jsou určeny dle přímého náměru (bez doprovodných činností) a jsou zobrazeny v následujících tabulkách.

Tabulka 9 Operace v procesu montáže rozvaděčové skříně (vlastní zpracování)

<table>
<thead>
<tr>
<th>V1</th>
<th>V2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Činnost</td>
<td>Doba trvání</td>
</tr>
<tr>
<td>Nýtování rámu</td>
<td>0:02:24</td>
</tr>
<tr>
<td>Nýtování krytu ventilace</td>
<td>0:02:07</td>
</tr>
<tr>
<td>Krimplování kabelů</td>
<td>0:00:48</td>
</tr>
<tr>
<td>Montáž ventilátoru</td>
<td>0:00:50</td>
</tr>
<tr>
<td>Finální montáž ventilace</td>
<td>0:03:22</td>
</tr>
<tr>
<td>Montáž ventilátoru (2x)</td>
<td>0:00:57</td>
</tr>
<tr>
<td>Příprava příbalových sáčků</td>
<td>0:03:30</td>
</tr>
<tr>
<td>Celkem</td>
<td>0:09:31</td>
</tr>
</tbody>
</table>

4.3.5 Analýza materiálu na pracovišti

Přehled potřebného materiálu pro výkon operací na pracovišti je podstatný pro zlepšování layoutu pracoviště. Přehled o velikosti a potřebě materiálu umožní přizpůsobit pracoviště a jeho vybavení. Analýza potřebného materiálu pro pracoviště montáže polotovarů byla vypracována z podrobných kusovníků jednotlivých šesti druhů ventilace. Data byla zpracovávána v rozsáhlé tabulce MS Excel. Spotřeba materiálu je mapována za rok 2013. Materiál potřebný na pracovišti lze rozdělit do několika skupin dle charakteru materiálu. Podrobné soupisy materiálu jsou v přílohách PVI až PVIII.

Spojovací materiál

Spojovací materiál je mapován pouze na výrobu nejdůležitějších komponent – ventilace. Tento materiál je pracoviště umístěné neustále a pracovníci jej doplňují při nedostatku sami. Podrobný soupis je uveden v příloze PVI.

Nedokončená výroba vstupující do montáže polotovarů
Všechny tyto komponenty jsou polotovarem z výroby společnosti TVD. Dle názvu a typu jsou tyto díly velmi podobné, liší se pouze velikostí nebo drobnými rozdíly v technologickém provedení.

Nakupované díly pro ventilaci FIMOS

V následující tabulce jsou uvedeny drobné díly, které jsou společností nakupovány. Všechny tyto díly jsou potřebné pro montáž ventilace.

4.3.6 Potřebné nástroje pro pracoviště

Zmapování potřebných nástrojů na pracovišti probíhalo v rámci snímků pracovního dne. Potřebné nástroje pro pracoviště jsou:

- Nýtovací kleště 2x
- Nýtovací kleště (pro nýtovací matice) 2x
- Akumulátorová vrtačka 2x včetně násad (vrtáky a závitníky)
- Zatavovací kleště
- Náhradní baterie a nabíječky akumulátorových vrtáček
- Krimplovací kleště 1x
- Štípací kleště 1x
- Odizolovací kleště 1x
- Utahovací klíč
- Kompresor - přívod vzduchu, hadice
- Řezací nůž 2x
- Nůžky
- Psací potřeby, štítky, lepicí páska
- Páskovací sada
5 SHRNUTÍ ANALÝZ A VÝCHODISKA PRO PROJEKT

Při analýze na pracovišti montáže bylo zjištěno mnoho ztrátových činností a nedostatků vedoucích k plýtvání. Odhalené problémy na pracovišti montáže polotovarů jsou uspořádány do tabulky spolu s návrhem řešení do další části práce.

Tabulka 10 Zjištěné problémy na pracovišti montáže polotovarů a návrhy řešení (vlastní zpracování)

<table>
<thead>
<tr>
<th>Problém</th>
<th>Návrh řešení</th>
</tr>
</thead>
<tbody>
<tr>
<td>Výroba po dávkách při nestandardním počtu</td>
<td>Nový layout pracoviště</td>
</tr>
<tr>
<td>Nevyhovující ergonomie</td>
<td>Využití zásad ergonomie</td>
</tr>
<tr>
<td>Zbytečný přenos dílů k operacím</td>
<td>Tok jednoho kusu</td>
</tr>
<tr>
<td>Nedostupnost dílů – zbytečná manipulace s paletami</td>
<td>Využití metody 5S</td>
</tr>
<tr>
<td>Hledání dílů a materiálu</td>
<td>Vizualizace na pracovišti</td>
</tr>
<tr>
<td>Absence výrobní dokumentace</td>
<td>Vytvoření standardů práce</td>
</tr>
<tr>
<td>Čekání na materiál</td>
<td>Návrh systému zásobování pracoviště</td>
</tr>
<tr>
<td>Změny sortimentu na poslední chvíli</td>
<td>Nový systém plánování ¹</td>
</tr>
<tr>
<td>Vysoká rozpracovanost</td>
<td></td>
</tr>
</tbody>
</table>

¹ V současné době je podnik v poslední fázi implementace nového systému plánování výroby, plánování tedy není součástí návrhů projektové části.
Pro hodnocení dosažení cílů projektu jsou klíčové parametry uspořádány do následující tabulky.

Tabulka 11 Současný stav ukazatelů plnění cílů (vlastní zpracování)

<table>
<thead>
<tr>
<th>Ukazatel</th>
<th>Současný stav</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V1</td>
<td>V2</td>
<td></td>
</tr>
<tr>
<td>PDV</td>
<td>3:35:15</td>
<td>2:23:04</td>
<td></td>
</tr>
<tr>
<td>Rozpracovanost</td>
<td>20 ks</td>
<td>10 ks</td>
<td></td>
</tr>
<tr>
<td>Prostor pracoviště</td>
<td>63 m³</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Skladovací prostory</td>
<td>48 m²</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Výrobní prostory</td>
<td>15 m²</td>
<td></td>
</tr>
<tr>
<td>Počet operátorů</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norma času/kus</td>
<td>16,4 min</td>
<td>27,65 min</td>
<td></td>
</tr>
<tr>
<td>Dávka v ks</td>
<td>20 ks</td>
<td>12 ks</td>
<td></td>
</tr>
</tbody>
</table>

Po podrobné analýze na pracovišti budou dále navrženy opatření pro odstranění plýtvání v další části práce. Projekt musí zahrnout změnu layoutu pracoviště s ohledem na ergonomické požadavky, implementaci standardizace a vizualizace na pracovišti.
III. PROJEKTOVÁ ČÁST
6 DEFINOVÁNÍ PROJEKTU

V následující kapitole jsou popsány všechny náležitosti projektu implementace metod štihlé výroby na pracovišti montáže.

6.1 Popis projektu

Projekt Implementace metod štihlé výroby na pracovišti montáže v podniku TVD probíhá v rámci diplomové práce.

Na pracovišti montáže zjevně dochází ke ztrátám. Projekt je zaměřen na konkrétní pracoviště montáže polotovarů, vstupujících do finální montáže. Výstupem projektu bude kompletní změna layoutu pracoviště, vybavení a zásobování pracoviště, ergonomie práce.

6.2 Cíle projektu

Hlavní cíl projektu: zefektivnění pracovního postupu na pracovišti montáže

Dílčí cíle projektu:

- Ergonomie práce
- Zrychlení průběžné doby operace
- Zvýšení kvality výstupu
- Standardizace práce
- Uspořádané pracoviště s přístupnými nástroji
- Minimalizace rozpracovanosti na pracoviště
6.3 Účastníci projektu

Zadavatel a konzultant projektu: Ing. Radim Sládek – vedoucí oddělení průmyslového inženýrství

Vedoucí projektu: Bc. Dagmar Povalačová – studentka UTB ve Zlíně, diplomantka

Účastníci projektu: Jaroslav Drga - Mistr montáže pro vybrané zákazníky

Jiří Zoller - Mistr montáže pro vybrané zákazníky

Lenka Dobošová – operátorka pracoviště

Lucie Dobošová – operátorka pracoviště

6.4 Rizika

Kompletní přehled rizik a míra jejich hrozby je zobrazen v příloze P IX: RIPRAN riziková analýza. Jako nejpodstatnější rizika byly vyhodnoceny ztráta podporu managementu, nedodržení harmonogramu práce a opomenutí podstatných faktorů pro splnění cílů práce.
6.5 Harmonogram projektu

Tabulka 12 Harmonogram činností projektu (vlastní zpracování)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Základní informace o společnosti, SWOT analýza</td>
<td></td>
</tr>
<tr>
<td>SPD mistra montáže a vyhodnocení</td>
<td></td>
</tr>
<tr>
<td>SPD skladníka na montáži a jejich vyhodnocení</td>
<td></td>
</tr>
<tr>
<td>Zadání projektu a jeho náležitosti</td>
<td></td>
</tr>
<tr>
<td>Analýza vstupujících komponent</td>
<td></td>
</tr>
<tr>
<td>Mapa procesu montáže</td>
<td></td>
</tr>
<tr>
<td>Prostorová analýza</td>
<td></td>
</tr>
<tr>
<td>SPD pracoviště a jeho vyhodnocení</td>
<td></td>
</tr>
<tr>
<td>Změna layoutu pracoviště</td>
<td></td>
</tr>
<tr>
<td>Vybavení pracoviště</td>
<td></td>
</tr>
<tr>
<td>Vizualizace, Infotabule, standardizace</td>
<td></td>
</tr>
<tr>
<td>Optimalizace zásobování pracoviště</td>
<td></td>
</tr>
<tr>
<td>Nákladová analýza</td>
<td></td>
</tr>
<tr>
<td>Zhodnocení projektu</td>
<td></td>
</tr>
<tr>
<td>Teoretická část práce</td>
<td></td>
</tr>
<tr>
<td>Revize, formální úpravy</td>
<td></td>
</tr>
<tr>
<td>Tisk, vazba, odevzdání DP</td>
<td></td>
</tr>
</tbody>
</table>

V tabulce 12 je zobrazen harmonogram projektu. Spolupráce s podnikem Tvd - technická výroba, a.s. je vedena ještě před zadáním projektu, seznámení s podnikem není součástí harmonogramu.
7 NÁVRH IMPLÉMENTACE METOD ŠTIHLÉ VÝROBY NA PRACOVIŠTĚ MONTÁŽE VENTILACE

V této kapitole budou uvedeny všechny návrhy implementace metod štíhlé výroby za účelem zefektivnění výroby na pracovišti.

7.1 Optimalizace zásobování pracoviště materiálem

Pro návrh štíhlého pracoviště je potřeba definovat další potřebné informace. Podstatné pro změnu layoutu jsou velikosti a množství skladovacích a přepravních prostředků na pracovišti. Z tohoto důvodu je nejdříve provedena optimalizace zásobování a skladování na pracovišti.

Pro fungování zásobování pracoviště je potřeba efektivního plánování výroby, se kterým je v současné době spojeno mnoho rychlých změn a nedostatků. TVD je v implementační fázi nového plánovacího systému napříč celým podnikem. Podmínkou fungování navrhovaného zásobování pracoviště je využívání plánu výroby pracoviště tak, aby byli manipulanti schopni připravit potřebný typ polotovaru pro montáž ventilace.

7.1.1 Přepravní prostředky pro umístění polotovarů na pracovišti

Aby bylo dosaženo efektivity manipulace s polotovary využívanými při montáži ventilace, je potřeba rozdělit díly do přepravních prostředků, v kterých budou na pracovišti dováženy a umístěny. Jedná se o palety, regál a plastové přepravní boxy.

V současné době jsou pro společnost poptány jednotné přepravky: jejich velikosti jsou uvedeny v další tabulce.

Tabulka 13 Druhy přepravky využívané v TVD (vlastní zpracování)

<table>
<thead>
<tr>
<th>Typ</th>
<th>Délka [mm]</th>
<th>Výška [mm]</th>
<th>Šířka [mm]</th>
<th>Nosnost [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>KLT 2228</td>
<td>300</td>
<td>200</td>
<td>280</td>
<td>50</td>
</tr>
<tr>
<td>KLT 4328</td>
<td>400</td>
<td>300</td>
<td>280</td>
<td>50</td>
</tr>
<tr>
<td>KLT 6428</td>
<td>600</td>
<td>400</td>
<td>280</td>
<td>50</td>
</tr>
<tr>
<td>SM</td>
<td>Plastové přepravní boxy na spojovací materiál</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7.1.2 Rozdělení materiálu a jeho zásobování

Pro účely optimalizace zásobování pracoviště je materiál rozdělen do několika skupin dle velikosti. Tyto materiály budou dále na pracoviště dováženy a skladovány různým způsobem.

Polotovary dovážené na pracoviště na paletách a v regálech

Polotovary uvedené v této skupině jsou příliš velké na to, aby mohly být na pracovišti umístěny v přepravkách, které má podnik k dispozici.

V následující tabulce je výčet polotovarů, které budou dováženy a umístěny na paletách.

Tabulka 14 Polotovary umístěny na paletách (vlastní zpracování)

<table>
<thead>
<tr>
<th>Materiál</th>
<th>Ventilace</th>
<th>Označení</th>
<th>Počet/ks</th>
<th>rozměry (mm)</th>
<th>Spotřeba (2013)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kryt filtru V1</td>
<td>VBU-016104</td>
<td>1</td>
<td>699x507</td>
<td>3725</td>
<td></td>
</tr>
<tr>
<td>Kryt filtru V4</td>
<td>VBU-039295</td>
<td>1</td>
<td>628x570</td>
<td>999</td>
<td></td>
</tr>
<tr>
<td>Kryt filtru V2</td>
<td>VBU-016658</td>
<td>1</td>
<td>793x595</td>
<td>1189</td>
<td></td>
</tr>
<tr>
<td>Kryt filtru V3, V5, V6</td>
<td>VBU-023005</td>
<td>1</td>
<td>444x460</td>
<td>1542</td>
<td></td>
</tr>
<tr>
<td>Kryt filtru V1</td>
<td>VBU-016105</td>
<td>1</td>
<td>317x317x80</td>
<td>3725</td>
<td></td>
</tr>
<tr>
<td>Kryt filtru V2</td>
<td>VBU-016659</td>
<td>2</td>
<td>292x275</td>
<td>2378</td>
<td></td>
</tr>
<tr>
<td>Kryt filtru V4</td>
<td>VBU-039293</td>
<td>1</td>
<td>319x319x100</td>
<td>999</td>
<td></td>
</tr>
<tr>
<td>Kryt filtru V3, V5, V6</td>
<td>VBU-023006</td>
<td>1</td>
<td>272x272x55</td>
<td>1542</td>
<td></td>
</tr>
<tr>
<td>Ventilátor V1 – V4</td>
<td>VBU-017222</td>
<td>1</td>
<td>8489</td>
<td>KLT 6428</td>
<td></td>
</tr>
<tr>
<td>Ventilátor V5</td>
<td>VBU-017223</td>
<td>1</td>
<td>155</td>
<td>KLT 6428</td>
<td></td>
</tr>
</tbody>
</table>

Uvedené polotovary jsou zástupci dvou skupin polotovarů, liší se konstrukčními vlastnostmi nebo velikostí. Vzhledem k tomu, že na pracovišti bude probíhat výroba vždy jen jednoho druhu ventilace, bude potřeba pouze tři paletových pozic pro materiál.
Příčky rámů jsou polotovary velikostí nevyhovující plastovým přepravkám, ale zároveň by bylo neefektivní skladovat je na paletě, vzhledem k jejich úzkému tvaru. Ten
to materiál bude skladován na pracovišti ve speciálním typu regálu.

Tabulka 15 Polotovary umístěny v regálu (vlastní zpracování)

<table>
<thead>
<tr>
<th>Materiál</th>
<th>Ventilace</th>
<th>Označení</th>
<th>Počet/ks</th>
<th>rozměry (mm)</th>
<th>Spotřeba (2013)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Příčka rámu</td>
<td>V2</td>
<td>VBU-018369</td>
<td>2</td>
<td>696x101</td>
<td>2378</td>
</tr>
<tr>
<td>Příčka krytu</td>
<td>V3</td>
<td>VBU-022999</td>
<td>2</td>
<td>641x73</td>
<td>1590</td>
</tr>
<tr>
<td>Příčka krytu</td>
<td>V4, V5, V6</td>
<td>VBU-037233</td>
<td>2</td>
<td>847x73</td>
<td>3492</td>
</tr>
<tr>
<td>Příčka rámu</td>
<td>V1</td>
<td>VBU-016106</td>
<td>2</td>
<td>699x72</td>
<td>7450</td>
</tr>
</tbody>
</table>

Do této skupiny byl zařazen dále materiál, který je proporčně nevhodný k umístění do pře
pravek jakéhokoliv druhu, protože bude zajišťován stejným systémem zásobování, jako
palety a polotovary v regálu. Pro tento materiál bude potřeba na pracovišti individuálně
vytvořit vhodný prostor pro umístění.

Tabulka 16 Ostatní materiál potřebný na pracovišti (vlastní zpracování)

<table>
<thead>
<tr>
<th>Materiál</th>
<th>Označení</th>
<th>Počet/ks</th>
<th>Spotřeba (2013)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kryt filtru</td>
<td>VBU-016133</td>
<td>1</td>
<td>7102</td>
</tr>
<tr>
<td>Samolepka</td>
<td>M30803001484</td>
<td>1(2)</td>
<td>795</td>
</tr>
<tr>
<td>Bužírka izolační</td>
<td>M30412001805</td>
<td>1</td>
<td>155</td>
</tr>
</tbody>
</table>
| Čep konektoru (ko
touč) | | 4(8) | 34576 |
| Bužírka smršťovací | M30412001804 | 2 | |
Polotovary umístěny do přepravek

Další polotovary z výroby TVD nejsou tak objemné, je proto možné je uložit do přepravek s menší kapacitou. Jedná se o přepravky z Tabulky 13 Druhy přepravek využívané v TVD. Všechny tyto komponenty montáže jsou uvedeny v další tabulce.

Tabulka 17 Polotovary umístěny v přepravkách (vlastní zpracování)

<table>
<thead>
<tr>
<th>Materiál</th>
<th>Typ ventilace</th>
<th>Označení</th>
<th>Počet /ks</th>
<th>rozměry (mm)</th>
<th>Spotřeba (2013)</th>
<th>Typ přepravky</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klapky</td>
<td>V2</td>
<td>VBU-016660</td>
<td>4</td>
<td>271x75</td>
<td>4756</td>
<td>KLT 4328</td>
</tr>
</tbody>
</table>

Spojovací materiál

Do této kategorie patří všechen spojovací materiál uveden v tabulce v příloze P VII. Stejným způsobem bude dále skladován a dovážen materiál, jehož přehled je v tabulce 17.

Tabulka 18 Spojovací materiál na pracovišti montáže ventilace (vlastní zpracování)

<table>
<thead>
<tr>
<th>Materiál</th>
<th>Označení</th>
<th>Počet /ks</th>
<th>Spotřeba (2013)</th>
<th>Typ přepravky</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pružina</td>
<td>M30701001475</td>
<td>4</td>
<td>4756</td>
<td>SM</td>
</tr>
<tr>
<td>Konektor</td>
<td>M30501001498</td>
<td>1</td>
<td>8644</td>
<td>SM</td>
</tr>
<tr>
<td>Páska na vázání kabelů</td>
<td>M10305900210</td>
<td>1</td>
<td>1542</td>
<td>SM</td>
</tr>
<tr>
<td>Průchodka</td>
<td>M30515001668</td>
<td>2</td>
<td>13721</td>
<td>SM</td>
</tr>
<tr>
<td>Čep konektoru</td>
<td></td>
<td>4(8)</td>
<td>34576</td>
<td>SM</td>
</tr>
</tbody>
</table>

Všechen tento materiál bude na pracoviště dodáván a skladován v přepravkách určených pro spojovací materiál.
7.1.3 Návrh zásobování pracoviště

Zásobování pracoviště bude prováděno tahovým systémem dvou přepravek na pracovišti.

Signál pro doplnění

Signálem pro manipulanta k doplnění je prázdná přepravka na pracovišti.

U materiálu a polotovarů, které nejsou skladovány v přepravkách, ale na paletách nebo v regále (uvedeny v tabulkách 14, 15, a 16) bude určena minimální zásoba na pracovišti (viz. kapitola 16.3.3), při které operátor vloží signální kartu k prázdným přepravkám. Manipulant na základě karty přiveze materiál na pracoviště a doplní na místo spolu se signální kartou. Návrh signální katry je zobrazen na dalším obrázku.

SIGNÁLNÍ KARTA

<table>
<thead>
<tr>
<th>NÁZEV</th>
<th>Příčka rámů</th>
</tr>
</thead>
<tbody>
<tr>
<td>OZNAČENÍ</td>
<td>ABC-123654</td>
</tr>
<tr>
<td>PRACOVIŠTĚ</td>
<td>Montáž ventilace</td>
</tr>
<tr>
<td>POČET KS</td>
<td>MP01</td>
</tr>
</tbody>
</table>

Obrázek 23 Návrh signální karty
(vlastní zpracování)

Signální karta má zelenou barvu, což je typické pro vizualizaci pozic pro materiál, nebo označení samotného materiálu. Na kartě se nachází všechny potřebné informace pro doplnění zásob na pracovišti.
Četnost dodávek

Protože pracoviště montáže ventilace je prvním pracovištěm, na které jsou implementovány metody štíhlé výroby, nelze určit pravidelný a co nejefektivnější cyklus rozvozu materiálu.

Pro doplnění materiálu na paletách a v přepravkách je stanovena četnost doplnění 1x nebo 2x za směnu. V případě spojovacího materiálu bude doplnění probíhat jednou za směnu, ale u polotovarů je nejdříve potřeba spočítat kolik výrobků je možno za směnu vyrobit a porovnat tento údaj se spotřebou materiálu.

Nejvyšší zásoby vyžaduje montáž ventilace V2, protože její součástí, na rozdíl od ostatních jsou dva ventilátory. Zároveň ale montáž představuje nejdelší proces, proto bude vypočteno množství zásob také pro ventilaci V1 a následně porovnáno.

Výpočet spotřeby polotovarů na směnu

Potřeba materiálu = \[\frac{časový fond}{délka cyklu výroby} \] * spotřeba materiálu na ks

Délka cyklu výroby je propočtena z přímých náměrů doby trvání operací a navýšena o časovou rezervu 12,5 %, což je standartní přirážka v TVD, která se využívá na tvorbu norem.

Výroba V1 = \[\frac{480-35}{10\cdot1,125} \] = 35,6 = 36 ventilací/ směnu

Výroba V2 = \[\frac{480-35}{12\cdot1,125} \] = 33 ventilací/směnu

Potřebný počet kusů je v následujících tabulkách.

Tabulka 19 Spotřeba materiálu V1(vlastní zpracování)

<table>
<thead>
<tr>
<th>Název</th>
<th>Označení</th>
<th>Způsob umístění</th>
<th>Spotřeba /ks</th>
<th>Spotřeba za směnu</th>
<th>Spotřeba Na ½ směny</th>
</tr>
</thead>
<tbody>
<tr>
<td>Příčka rám</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Příčka rámů</td>
<td>VBU-016100</td>
<td>regál</td>
<td>2</td>
<td>71</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>VBU-016106</td>
<td>regál</td>
<td>2</td>
<td>71</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>VBU-016102</td>
<td>Přepravka</td>
<td>4</td>
<td>144</td>
<td>72</td>
</tr>
<tr>
<td>Kryt filtru</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kryt filtru</td>
<td>VBU-016133</td>
<td>Přepravka</td>
<td>1</td>
<td>36</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>VBU-016104</td>
<td>Paleta</td>
<td>1</td>
<td>36</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>VBU-016105</td>
<td>Paleta</td>
<td>1</td>
<td>36</td>
<td>18</td>
</tr>
<tr>
<td>Ventilátor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ventilátor</td>
<td>VBU-017222</td>
<td>Přepravka</td>
<td>1</td>
<td>36</td>
<td>18</td>
</tr>
</tbody>
</table>
Z tabulek vyplývá, že kvůli velké potřebě materiálu spolu s porovnáním jeho velikosti a velikosti přepravek (viz Přílohy P VII – P IX) je efektivnější dodávat polotovary 2x za směnu.

Minimální zásoba pro signál k doplnění

Minimální zásoba na pracovišti bude odpovídat potřebě na dobu, kdy neprobíhá zásobování, tedy spotřebě materiálu za ½ směny. U skladování v regálu není možné na první pohled stanovit počet ks v regále a tak kontrolovat minimální zásobu, bude tedy na regálu vyznačena hladina minimální dávky, která odpovídá danému počtu – 36ks.
7.2 Navrhovaný layout

Nezbytným krokem pro zefektivnění celého procesu a odstranění mnoha druhů ztrát je změna layoutu pracoviště.

Na dalších obrázcích lze vidět ukázky z průběhu simulace a dva příklady možnosti uspořádání operací.

![Obrázek 25 Ukázky ze simulace pracoviště montáže ventilace (vlastní zpracování)](image1)

Po simulaci variant uspořádání pracoviště byla vybrána nejvyhovující varianta. Navrhovaný layout pracoviště je zobrazen na dalším obrážku.

![Obrázek 26 Navrhovaný layout pracoviště (vlastní zpracování)](image2)

Vzhledem k velikosti dílů na pracovišti je potřeba umístění mnoha palet pro polotovary výroby. V rámci štíhlé výroby byly některé operace sloučeny a byly vytvořeny pracoviště pro dvě operace. Pracoviště montáže ventilace a pracoviště montáže ventilátoru. Uvedené uspořádání pracoviště oproti přechozímu minimalizuje pohyb operátora a potřebné odkládání rozpracovanosti.
Vybavení pracoviště a umístění materiálu

Dle rozvržení materiálu a nástrojů k jednotlivým operacím bylo navrženo umístění pracovních pomůcek a materiálu na jednotlivé operace. Podrobné zobrazení všech pracovišť operací montáže ventilace FIMOS jsou zobrazeny uvedeny v této kapitole.

Jako společnou charakteristiku je potřeba uvést příklad zobrazení pracoviště zboku, aby bylo jasné, jak je pracoviště rozvrženo.

Obrázek 27 Bokorys pracoviště montáže ventilace (vlastní zpracování)

Umístění materiálu pro výroby v horní části pracoviště je umístěna 30cm nad pracovní plochou, protože tento prostor je určen k opracovávání nedokončené výroby.

Na pracovišti montáže ventilace bude prováděna montáž rámu, který bude následně odklopen, aby mohla být provedena montáž krytu ventilace. Dále bude na tomto pracovišti provedena finální montáž ventilace, včetně umístění větráků. Na tomto pracovišti je potřeba umístit závěsnou vrtačku a nýtovací kleště. Mimo to je potřeba umístit ještě jednu vrtačku se závětníkem na kontrolu a opravu závitů.
Uspořádání pracoviště je zobrazeno na dalším obrázku.

Pro polotovary příčka rámu je navržen speciální regál, který zajistí vzhledem k proporčím polotovaru efektivní využití skladovacího prostoru. Zobrazen je dalším obrázku.

Regál začíná ve výšce jednoho metru, což odpovídá ergonomickým podmínkám. Vysoký je celkem 190 cm, takže všechen materiál mají operátoři nadosah.

7.2.1 Přípravky

Pro zjednodušení a zrychlení práce jsou navrženy přípravky, které jsou popsány v následující kapitole.

Na řezání čepů ke konektoru

Čepy na konektory jsou dodávány v kotouči a pracovnice je na místě ostříhá nůžkami. Návrhem je vytvořit přípravek, který by odstraňoval z kotouče 4 čepy najednou.

Otočná pracovní plocha

Vzhledem k velikosti ventilací je manipulace na pracovišti s nimi obtížná. Součástí navrženého layoutu je také otočná plocha na pracovní desce, která pracovníkům umožní otáčet s výrobky dle potřeby. Díky tomuto přípravku se nebudou muset pracovníci při práci nahýbat nad výrobkem, nebo jej složitě otáčet.

Otočný držák na kotouč čepů

Obrázek 30 Návrh regálu na
příčky rámu (vlastní zpracování)
Dalším potřebným vybavením pracoviště je otočný držák čepů ke konektoru. Čepy konektoru jsou dodávány v pásu navinutém na kotouči, který bude umístěn na stěně pracoviště. Aby mohl pracovník jednoduše používat tento materiál, je potřeba otočného držáku kotouče, který by umožnil otáčení při odstraňování jednotlivých čepů.

Řezání bužírek

Při montáži ventilace V6 je na větrák přitavena bužírka, kterou pracovnice stříhá z celkové délky. Přípravek na oddělení bužírek zajistí urychlení práce a standartní délku těchto dílů.

Podstavec montáže větráku

V současné době montáž větráku probíhá na podstavci z polystyrenu, který není vytvořen za tímto účelem. Do budoucna je potřeba nový podstavec, který bude vyhovovat potřebám operace.

7.2.2 Standardizace a vizualizace pracoviště

Větší část této kapitoly bude zpracována až při fyzické změně pracoviště. Například vypracování standardů až s konkrétními ukázky využití nářadí a zařízení pracoviště. Přesto je potřeba dopředu určit, alespoň čím se budeme v tomto tématu zabývat.

Označení přepravek

Označení spojovacího materiálu jak na přepravkách, tak na skladovacích pozicích bude zajištěno již vytvořeným standardem společnosti. Polotovary budou označeny obdobnými štítky, které budou obsahovat místo údaje rozměr (v horní části štítku) údaj název polotovaru.

![Obrázek 31 Označení materiálu](interní materiály TVD)

Každý druh materiálu má dále vlastní barvu štítků, aby bylo na první pohled jasné, o který se jedná, pokud mají totožný rozměr.

Standardy práce
Po uvedení návrhu pracoviště bude vytvořen standard práce, který budou mít pracovnice na pracovišti k dispozici. Standard práce bude rozdělen po operacích a vyvěšen na pracovišti. Důležitým standardem bude vizualizace umístění kabelů s čepy konektoru do konektoru při montáži větráku, protože každý kabel má stanovenou pozici v konektoru. Standardizace zajistí snížení rizika nekvality větráků a tím celé ventilace na rozvaděčových skříních.

Vizualizace umístění zařízení na pracovišti

Všechno zařízení na pracovišti by mělo mít svoji standartní pozici. Označení konstrukce pracovních míst a paletových a regálových pozic na pracovišti bude na podlaze. Barevné označení bude odlišovat zařízení dle standartního rozdělení, které je uvedeno v následující tabulce.

Tabulka 21 Barevné značení na podlaze (Dashöfer Holding, Ltd, © 1997 – 2014)

<table>
<thead>
<tr>
<th>Barva</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Žlutá</td>
<td>uličky, jízdní pruhy a pracovní úseky</td>
</tr>
<tr>
<td>Bílá</td>
<td>zařízení a instalace ostatní bez určené barvy</td>
</tr>
<tr>
<td>Modrá, zelená nebo černá</td>
<td>materiál a komponenty</td>
</tr>
<tr>
<td>Červená</td>
<td>poškození, praskliny, údržba, oprava</td>
</tr>
<tr>
<td>Červenobílá</td>
<td>oblasti, které musí zůstat volné z důvodů bezpečnosti nebo vyhovění vnitřním předpisům</td>
</tr>
<tr>
<td>Černobílá</td>
<td>oblasti, které musí zůstat z provozních důvodů volné</td>
</tr>
<tr>
<td>Černožlutá</td>
<td>oblasti, kde mohou být zaměstnanci vystaveni specifickým fyzičkým nebo zdravotním nebezpečím</td>
</tr>
</tbody>
</table>

Pro umístění nářadí na desku s nářadím (pracoviště montáže větráku, finální montáž ventilace) bude využito standardu, který je již ve společnosti zaveden. Příklad takové standardizace a vizualizace je dalším obrázku.
Nářadí je umístěno nadosah pracovníků a jeho pozice je na desce zakreslena tak, aby bylo vždy umístěno na správném místě.

Obrázek 32 Příklad standardizace a vizualizace uložení nářadí (interní dokumentace TVD)
8 ZHODNOCENÍ PROJEKTU

V poslední kapitole bude projekt celkově zhodnocen z hlediska nákladů a přínosů. Součástí této kapitoly jsou také ostatní přínosy podniku plynoucí z realizace projektu.

8.1 Náklady projektu

Celkové náklady na projekt činí náklady na pracoviště. Protože společnost již má na skladě materiál na sestavení linky, má k dispozici propočet nákladů na jeden pracovní stůl. Přehled nákladů je zobrazen v následující tabulce.

<table>
<thead>
<tr>
<th>Zařízení</th>
<th>Cena bez Dph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konstrukce linky</td>
<td>10 472 Kč</td>
</tr>
<tr>
<td>Přepravky na materiál</td>
<td>882 Kč</td>
</tr>
<tr>
<td></td>
<td>2 x 94</td>
</tr>
<tr>
<td></td>
<td>2 x 67</td>
</tr>
<tr>
<td>Podlahové pásky (vinil, 50 mm x 33 m, 3 barvy)</td>
<td>1 170 Kč</td>
</tr>
<tr>
<td></td>
<td>3 x 390</td>
</tr>
<tr>
<td>Celkem</td>
<td>12 524 Kč</td>
</tr>
</tbody>
</table>

Plastové přepravky na polotovary nakupuje společnost již použité. Přepravky na spojovací materiál nejsou zahrnuty, protože jsou v současné době dostupné na pracovišti, nebo ve skladu spojovacího materiálu, v rámci projektu budou pouze přemístěny.

Cena lepících podlahových pásek je uvedena orientační v případě, že společnost bude nakupovat pásky pouze na dané pracoviště, ne větší množství.

8.2 Přínosy projektu

Přínosy podniku jsou rozděleny do dvou skupin, finanční přínosy, které budou porovnány s náklady projektu a dále nefinanční přínosy.

Finanční přínosy

Vyčíslitelné přínosy, které přinese změna pracoviště, spočívají v odstranění manipulace s materiálem a minimalizace prostopů na pracovišti. Všechny přínosy jsou propočteny na jeden rok.
Z analýzy pracoviště vyplývá, že manipulace s materiálem tvoří 8% pracovní doby, dále přípravné a dokončovací práce jsou dohromady 4% a komunikace ohledně chybějícího materiálu nebo organizace práce 4%. Pokud změna pracoviště odstraní všechny tyto činnosti, bude úspora 16% pracovní doby. Průměrná mzda pracovníků na pracovišti je 84 Kč za hodinu práce. Za rok to činí 168 000 Kč (84 Kč *8 hodin *250 pracovních dní), z čehož 16 % činí 26 880 Kč.

Ostatní přínosy

Mimo finanční přínosy přinese projekt také ostatní úspory pracoviště.

Snížení průběžné doby výroby

Díky toku jednoho kusu se dle výpočtů průběžná doba výroby bude rovnat průběžné době výroby jednoho kusu ventilace. Jde o značnou úsporu rychlosti výroby. U dvojventilace (při původní výrobní dávce 12 ks) je časová úspora až 3:30:00. U ostatních druhů ventilací se snížení pohybuje přes 2 hodiny.

Snížení počtu operátorů na jednoho

V současné době na pracovišti pracují dva pracovníci, což sice urychluje výrobu, ale je zcela neefektivní. Při obsluhování pracoviště jedním operátorem bude mít společnost úsporu jedné pracovní sily a zároveň je takt výroba stále nižší než zákaznický takt.

Snížení mezioperačních zásob na pracovišti

Optimalizací zásobování pracoviště bude značně snížena zásoba materiálu a hlavně polotovarů na pracovišti na zásobu potřebnou pro produkcii linky.

Optimalizace zásobování

Mimo snížení zásob přineslo optimalizace zásob také snížení hledání daných polotovarů na pracovišti. Dále pracovnice nebudou vyžadovat potřebný materiál po manipulantech nebo si jej obstarávat samy. Velkým přínosem je také doba přípravy výroby, která dříve spočívala převážně ve vychystávání materiálu a jejich umístění na pracoviště.

Zmenšení výrobní plochy

Změna layoutu přinesla úsporu potřebné plochy. Z dřívějších 63 m² plocha pracoviště zmenšena na 22,2 m². Tato úspora je ve větši části způsobena úsporou skladovací plochy. Výrobní plochu bude možné využít na jiné účely.

Zlepšení pracovního prostředí
Dalším významným přínosem je úspora pracovního prostředí. Tento přínos sebou nese několik dílčích výhod. Pracovníci budou pracovat ve vyhovujícím prostředí, což může zvýšit produktivitu práce. Dále pracoviště zlepšuje image podniku při četných návštěvách zákazníků nebo mezi zaměstnanci.

Shrnutí všech měřitelných ukazatelů úspěšnosti projektu jsou zobrazeny v následující tabulce.

Tabulka 23 Ukazatele plnění cílů projektu (vlastní zpracování)

<table>
<thead>
<tr>
<th>Ukazatel</th>
<th>Současný stav</th>
<th>Cíl projektu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V1</td>
<td>V2</td>
</tr>
<tr>
<td>Norma času</td>
<td>16,4 min</td>
<td>27,65 min.</td>
</tr>
<tr>
<td>PDV</td>
<td>3:35:15</td>
<td>2:23:04</td>
</tr>
<tr>
<td>Rozpracovanost</td>
<td>20 ks</td>
<td>10 ks</td>
</tr>
<tr>
<td>Prostor pracoviště</td>
<td>63 m³</td>
<td>23 m²</td>
</tr>
<tr>
<td>Skladovací prostory</td>
<td>48 m²</td>
<td>3 m²</td>
</tr>
<tr>
<td>Výrobní prostory</td>
<td>15 m²</td>
<td>20 m²</td>
</tr>
<tr>
<td>Počet operátorů</td>
<td>2</td>
<td>2 (při průměrném provozu)</td>
</tr>
<tr>
<td>Dávka v ks</td>
<td>20 ks</td>
<td>12 ks</td>
</tr>
</tbody>
</table>
8.2.1 Návratnost investice

Návratnost investice bude vypočtena dle následujícího vzorce.

\[
\text{Doba návratnosti investice} = \frac{\text{celkové náklady na investici}}{\text{roční úspora nákladů v důsledku investice}}
\]

\[
\text{Doba návratnosti investice} = \frac{12524}{26880} = 0,47 \text{ roku} = 172 \text{ dny}
\]

Doba návratnosti investice do změny pracoviště je 172 dnů. Navrhovaný projekt přinese zvýšení zisku již po necelých 6 měsících fungování spolu s dalšími přínosy, které se projeví ihned po realizaci projektu.
ZÁVĚR

Účelem práce bylo optimalizovat pracoviště montáže v dané společnosti. Pro splnění tohoto cíle bylo nejdříve potřeba popsát teoretické znalosti a informace z této oblasti. Na základě těchto informací byly zpracovány následující části práce – Analýza současného stavu montáže a Projekt implementace metod štíhlé výroby na vybrané pracoviště.

V analytické části bylo nejdříve uvedeno představení společnosti a SWOT analýza. Protože nebylo před analýzou zcela jasné, které pracoviště bude vybráno pro zadaný projekt, bylo potřeba se nejdříve seznámit s finálním výrobkem a procesem jeho výroby. Velmi podstatnou částí byla analýza zásobování a snímky pracovního dne mistra montáže. Díky výsledkům této analýzy jsme se po konzultaci se zadavatelem projektu rozhodly implementovat metody štíhlé výroby v pilotním projektu na pracovišťě montáže ventilace. Proto se další část analýzy zabývala právě tímto pracovištěm. Byly provedeny snímky pracovních dní, jejichž výsledkem je obrovské množství informací o procesech na pracovišti. Dalším podstatným bodem je analýza materiálu využívaného do všech typů ventilace.

V projektové části byly aplikovány vybrané metody štíhlé výroby. Projekt je přizpůsoben potřebám pracoviště. Na pracovišti se bude vyrábět šest druhů ventilace, proto je potřeba vytvořit flexibilní zázemí pro všechny tyto výrobky. Protože pro návrh layoutu pracoviště je potřeba znát skladovací a přepravní prostředky materiálu a velikost zásob, byl nejdříve zpracován návrh zásobování. Materiál byl rozdělen do přepravních prostředků a byla stanovena četnost dodávek, signál pro doplnění a množství materiálu na pracovišti. Protože přepravní prostředky byli známy, mohla být provedena simulace variant uspořádání pracoviště spolu s operátory, což dále poskytlo výhodu větší zainteresovanosti a nižší odpor ke změnám. Po výběru nejefektivnějšího uspořádání byly implementovány ostatní metody, tedy standardizace a vizualizace.

V závěru projektové části jsou uvedeny všechny předpokládané přínosy realizace projektu, včetně finančního zhodnocení a výpočtu návratnosti investice. Výsledkem projektu je investice, která se spočech na navržení 172 dní a přinese sebou celou řadu dalších přínosů: snížení průběžné doby výroby, snížení počtu operátorů na jednoho, snížení mezioperačních zásob na pracovišti, optimalizace zásobování, zmenšení výrobní plochy, zlepšení pracovního prostředí.
SEZNAM POUŽITÉ LITERATURY

Monografické publikace a periodika:

Elektronické zdroje:

http://www.teprostroj.com/index.php/zastoupeni-firem/38-prislusenstvi-pro-
rozvadece/ventilace-a-klimatizace-pro-rozvadece/939-ventilace-a-klimatizace-pro-
rozvadece-obecne

stupné z: http://www.cz.trumpf.com/cs/produkty/obrabeci-stroje/produkty/obraben-vyse-
kavanimlaserem/vysekacilaserove-stroje/trumatic-6000.html

diagram-layout-diagram/

Vnitropodnikové materiály.
SEZNAM POUŽITÝCH SYMBOLŮ A ZKRATEK

SPD Snímek pracovního dne.

SWOT Analýza silných a slabých stránek, příležitostí a hrozb.

VSM Mapování hodnotového toku (Value stream mapping).

PDV Průběžná doba výroby.

RIPRAN Metoda pro analýzu projektových rizik (Risk project analysis).

JIT Logistická technologie „právě včas“ (just in time).

FIFO Metoda oceňování „první dovnitř, první ven“ (first in, first out).

cm Jednotka metrického systému (centimetr)
SEZNAM OBRÁZKŮ

Obrázek 1 Pilíře štíhlého a inovativního podniku ... 12
Obrázek 2 Prvky štíhlé výroby .. 13
Obrázek 3 Technologické uspořádání pracoviště .. 25
Obrázek 4 Klasické uspořádání pracoviště .. 25
Obrázek 5 Jednoduché tvary výrobních buněk ... 27
Obrázek 6 Komplexní tvary výrobních buněk ... 27
Obrázek 7 Příklad vizualizace na pracovišti ... 30
Obrázek 8 Jednokatičkový kanban .. 35
Obrázek 9 Dvojkaritčkový kanban .. 35
Obrázek 10 Správní budova společnosti ... 38
Obrázek 11 Rozvaděčová skříň ... 41
Obrázek 12 Skříň hlavního uzávěru plynu .. 41
Obrázek 13 Datový pult ... 41
Obrázek 14 Nástin procesu výroby rozvaděčové skříně ... 46
Obrázek 15 Rozdělní layoutu montáže - SPD skladním montáže ... 55
Obrázek 16 Spaghettní diagram - skladník montáže .. 56
Obrázek 17 Layout pracoviště montáže FIMOS ... 59
Obrázek 18 Zobrazení pracoviště v layoutu montáže ... 60
Obrázek 19 Layout pracoviště montáže polotovarů vybraného realizaci projektu 60
Obrázek 20 Prostor pro skladování balícího materiálu ... 61
Obrázek 21 Umístění materiálu na pracovišti .. 63
Obrázek 22 Skříň na nástroje a spojovací materiál ... 65
Obrázek 23 Návrh signální karty .. 81
Obrázek 24 Ukázka pracoviště ... 84
Obrázek 25 Ukázky ze simulace pracoviště montáže ventilace .. 85
Obrázek 26 Navrhovaný layout pracoviště .. 85
Obrázek 27 Bokorys pracoviště montáže ventilace ... 86
Obrázek 28 Návrh operace montáže ventilace .. 87
Obrázek 29 Operace montáž větráku .. 87
Obrázek 30 Návrh regálu na příčky rámu ... 88
Obrázek 31 Označení materiálu .. 89
Obrázek 32 Příklad standardizace a vizualizace uložení nářadí ... 91
SEZNAM TABULEK

Tabulka 1 SWOT – silné stránky podniku ... 42
Tabulka 2 SWOT - slabé stránky podniku ... 43
Tabulka 3 SWOT příležitosti podniku ... 44
Tabulka 4 SWOT hrozby podniku ... 45
Tabulka 5 Základní typy skříní dle velikosti v mm .. 47
Tabulka 6 SPD montáž ventilace .. 62
Tabulka 7 Typy ventilace montované na pracovišti .. 66
Tabulka 8 Zobrazení odlišnosti kusovníků ventilace V1-V6 67
Tabulka 9 Operace v procesu montáže rozvaděčové skříně 69
Tabulka 10 Zjištěné problémy na pracovišti montáže polotovarů a návrhy řešení 71
Tabulka 11 Současný stav ukazatelů plnění cílů ... 72
Tabulka 12 Harmonogram činností projektu .. 76
Tabulka 13 Druhy přepravek využívané v TVD ... 77
Tabulka 14 Polotovary umístěny na paletách .. 78
Tabulka 15 Polotovary umístěny v regálu ... 79
Tabulka 16 Ostatní materiál potřebný na pracovišti ... 79
Tabulka 17 Polotovary umístěny v přepravkách ... 80
Tabulka 18 Spojovací materiál na pracovišti montáže ventilace 80
Tabulka 19 Spotřeba materiálu V1 ... 82
Tabulka 20 Spotřeba materiálu V2 ... 83
Tabulka 21 Barevné značení na podlaze ... 90
Tabulka 22 Náklady projektu .. 92
Tabulka 23 Ukazatele plnění cílů projektu ... 94
SEZNAM GRAFŮ

Graf 1 SPD mistr montáže – hlavní činnosti ... 50
Graf 2 SDP skladník montáže – kategorie činností ... 51
Graf 3 SPD mistr montáže – místo výkonu práce ... 52
Graf 4 SPD skladníka – kategorie činností ... 54
Graf 5 SPD skladník montáže – hlavní činnosti .. 54
Graf 6 SPD skladník – místo výkonu práce ... 55
Graf 7 SPD – pracoviště montáže polotovarů .. 62
SEZNAM PŘÍLOH

P I Tabulky z SPD pracoviště montáže
P II Schéma montovaných dílů zákazníka FIMOS
P III Tabulka výpočtu průběžné doby výroby
P IV Proces montáže ventilace V1
P V Proces montáže ventilace V2
P VI Potřebný materiál pro pracoviště montáže ventilace – spojovací materiál
P VII Potřebný materiál pro pracoviště montáže ventilace – nedokončená výroba
P VIII Potřebný materiál pro pracoviště montáže ventilace – nakupované díly
P IX Riziková analýza RIPRAN
<table>
<thead>
<tr>
<th>Zkratka</th>
<th>SNÍMEK ČINNOSTÍ - MISTR MONTÁŽI dne 10. 2. 2014 a 19. 2. 2014</th>
<th>ČAS</th>
<th>%</th>
<th>ČETNOST</th>
</tr>
</thead>
<tbody>
<tr>
<td>KOM</td>
<td>Komunikace o pracovních záležitostech</td>
<td>2:06:29</td>
<td>13%</td>
<td>57</td>
</tr>
<tr>
<td>TEL</td>
<td>Telefonická komunikace o pracovních záležitostech</td>
<td>1:35:41</td>
<td>10%</td>
<td>67</td>
</tr>
<tr>
<td>K</td>
<td>Kontrola pracovišt’/pracovníků a plnění úkolů, obchůzky po pracovišti</td>
<td>1:40:19</td>
<td>11%</td>
<td>16</td>
</tr>
<tr>
<td>PL</td>
<td>Plánování výroby - kontrola přehledu plnění objednávek</td>
<td>1:11:04</td>
<td>7%</td>
<td>13</td>
</tr>
<tr>
<td>OŘ</td>
<td>Organizace a řízení pracovníků, rozdělování práce</td>
<td>0:52:44</td>
<td>6%</td>
<td>14</td>
</tr>
<tr>
<td>AD</td>
<td>Tisk průvodek, vyplňování výkazů, kontrola docházky apod.</td>
<td>1:20:17</td>
<td>8%</td>
<td>24</td>
</tr>
<tr>
<td>DO</td>
<td>Ověřování dostupnosti komponent pro montáž v IS</td>
<td>1:28:22</td>
<td>9%</td>
<td>15</td>
</tr>
<tr>
<td>OS</td>
<td>Ostatní operativní činnosti (řešení objednávek a vyhledávání informací o problémech)</td>
<td>0:04:36</td>
<td>0%</td>
<td>3</td>
</tr>
<tr>
<td>CH</td>
<td>Chůze (přechod mezi kanceláři a pracovišti)</td>
<td>1:40:54</td>
<td>11%</td>
<td>59</td>
</tr>
<tr>
<td>PŘ</td>
<td>Denní přípravné práce (příprava PC a jiných pracovních pomůcek), úklid pracoviště mistra</td>
<td>0:11:26</td>
<td>1%</td>
<td>7</td>
</tr>
<tr>
<td>JIZ</td>
<td>Služební jízda</td>
<td>0:34:30</td>
<td>4%</td>
<td>2</td>
</tr>
<tr>
<td>Č</td>
<td>Čekání, nečinnost</td>
<td>0:05:33</td>
<td>1%</td>
<td>2</td>
</tr>
<tr>
<td>HL</td>
<td>Hledání</td>
<td>0:36:12</td>
<td>4%</td>
<td>8</td>
</tr>
<tr>
<td>OK</td>
<td>Komunikace soukromá</td>
<td>0:11:55</td>
<td>1%</td>
<td>2</td>
</tr>
<tr>
<td>P</td>
<td>Přestávka pracovníka (svačina, oběd, pitný režim, WC)</td>
<td>2:12:58</td>
<td>14%</td>
<td>9</td>
</tr>
<tr>
<td>SUMA ČASŮ</td>
<td>15:53:00</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KAT</th>
<th>SPD MISTR MONTÁŽE – KATEGORIE ČINNOSTÍ</th>
<th>Čas</th>
<th>%</th>
<th>Četnost</th>
</tr>
</thead>
<tbody>
<tr>
<td>MK</td>
<td>Činnosti mimo kompetenci mistra montáže</td>
<td>0:40:43</td>
<td>4%</td>
<td>21</td>
</tr>
<tr>
<td>Z</td>
<td>Ztrátové činnosti - činnost zbytečné</td>
<td>1:36:49</td>
<td>10%</td>
<td>20</td>
</tr>
<tr>
<td>OPE</td>
<td>Operativní řešení problémů (náhle nečekané činnosti spojené s operativou)</td>
<td>0:52:33</td>
<td>6%</td>
<td>32</td>
</tr>
<tr>
<td>PL</td>
<td>Plánování výroby</td>
<td>2:50:40</td>
<td>18%</td>
<td>37</td>
</tr>
<tr>
<td>ORG</td>
<td>Organizace, řízení a kontrola práce (rutinní povinnosti pracovníka, hlavní nápěl práce)</td>
<td>4:36:56</td>
<td>29%</td>
<td>73</td>
</tr>
<tr>
<td>EXP</td>
<td>Řízení a organizace expedice výroby</td>
<td>1:21:27</td>
<td>9%</td>
<td>47</td>
</tr>
<tr>
<td>CH</td>
<td>Chůze</td>
<td>1:40:54</td>
<td>11%</td>
<td>59</td>
</tr>
<tr>
<td>P</td>
<td>Přestávka</td>
<td>2:12:58</td>
<td>14%</td>
<td>9</td>
</tr>
<tr>
<td>SUMA ČASŮ</td>
<td>15:53:00</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zkratka</td>
<td>SPD – Mistr montáže - místo výkonu práce</td>
<td>%</td>
<td>Četnost</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>---</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>KAN</td>
<td>Kancelář mistrů</td>
<td>48%</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>MON</td>
<td>Pracoviště montáže</td>
<td>14%</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>ESKL</td>
<td>E-sklad</td>
<td>2%</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>CH</td>
<td>Chůze</td>
<td>11%</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>RAM</td>
<td>Rampa expedice</td>
<td>4%</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>MP</td>
<td>Mimo pracoviště - přestávky, služební cesta, apod.</td>
<td>19%</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>OS</td>
<td>Ostatní pracoviště (kanceláře kolegů)</td>
<td>2%</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

SUMA ČASŮ 100%

<table>
<thead>
<tr>
<th>Zkratka</th>
<th>SNÍMEK ČINNOSTÍ - SKLADNÍK MONTÁŽÍ dne 20. 2. 2014</th>
<th>ČAS</th>
<th>%</th>
<th>ČETNOST</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>Transport zakázky na pracoviště</td>
<td>0:44:02</td>
<td>8%</td>
<td>34</td>
</tr>
<tr>
<td>U2</td>
<td>Transport zakázky z pracoviště</td>
<td>0:36:52</td>
<td>7%</td>
<td>24</td>
</tr>
<tr>
<td>U3</td>
<td>Uskladnění (umístění palety ve skladu)</td>
<td>0:02:00</td>
<td>0%</td>
<td>2</td>
</tr>
<tr>
<td>U4</td>
<td>Expedice - nakládání hotových výrobků do nákladních aut, popř. příjem materiálu</td>
<td>0:38:51</td>
<td>7%</td>
<td>5</td>
</tr>
<tr>
<td>U6</td>
<td>Transport prážních palet</td>
<td>0:01:50</td>
<td>0%</td>
<td>1</td>
</tr>
<tr>
<td>U7</td>
<td>Odvážení odpadu</td>
<td>0:02:18</td>
<td>0%</td>
<td>2</td>
</tr>
<tr>
<td>U8</td>
<td>Komunikace, telefonická nebo ústní</td>
<td>0:39:15</td>
<td>8%</td>
<td>33</td>
</tr>
<tr>
<td>U9</td>
<td>Balení dílů</td>
<td>0:33:23</td>
<td>6%</td>
<td>4</td>
</tr>
<tr>
<td>U10</td>
<td>Ostatní vytěžovací</td>
<td>0:35:33</td>
<td>7%</td>
<td>4</td>
</tr>
<tr>
<td>CH</td>
<td>Chůze</td>
<td>1:57:39</td>
<td>23%</td>
<td>222</td>
</tr>
<tr>
<td>PP</td>
<td>Příprava a úklid pracoviště a prostředků</td>
<td>0:06:13</td>
<td>1%</td>
<td>8</td>
</tr>
<tr>
<td>U</td>
<td>Uspořádání, úklid objektů na pracovištích</td>
<td>0:33:44</td>
<td>6%</td>
<td>19</td>
</tr>
<tr>
<td>ZMAN</td>
<td>Zbytečná manipulace</td>
<td>0:20:37</td>
<td>4%</td>
<td>17</td>
</tr>
<tr>
<td>Č</td>
<td>Čekání, nečinnost</td>
<td>0:32:25</td>
<td>6%</td>
<td>21</td>
</tr>
<tr>
<td>AD</td>
<td>Administrativa (vypisování expedičních listů, odvádění práce, vyplňování úkolových listů)</td>
<td>0:04:17</td>
<td>1%</td>
<td>3</td>
</tr>
<tr>
<td>HL</td>
<td>Hledání</td>
<td>0:09:06</td>
<td>2%</td>
<td>5</td>
</tr>
<tr>
<td>OK</td>
<td>Osobní komunikace</td>
<td>0:01:10</td>
<td>0%</td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td>Přestávka pracovníka (svačina, oběd, pitný režim, WC)</td>
<td>1:00:39</td>
<td>12%</td>
<td>14</td>
</tr>
</tbody>
</table>

SUMA ČASŮ 8:39:54 100%

<table>
<thead>
<tr>
<th>KAT</th>
<th>SPD skladník – kategorie činnosti</th>
<th>Čas</th>
<th>%</th>
<th>Četnost</th>
</tr>
</thead>
<tbody>
<tr>
<td>MK</td>
<td>Činnosti mimo kompetenci skladníka</td>
<td>1:18:18</td>
<td>15%</td>
<td>17</td>
</tr>
<tr>
<td>Z</td>
<td>Ztrátové činnosti - činnost zbytečně</td>
<td>1:41:05</td>
<td>19%</td>
<td>61</td>
</tr>
<tr>
<td>EXP</td>
<td>Zajišťování expedice</td>
<td>1:10:46</td>
<td>14%</td>
<td>31</td>
</tr>
<tr>
<td>MON</td>
<td>Zásobování montáží</td>
<td>1:32:16</td>
<td>18%</td>
<td>70</td>
</tr>
<tr>
<td>U</td>
<td>Uklid pracoviště, uspořádání</td>
<td>0:05:23</td>
<td>1%</td>
<td>4</td>
</tr>
<tr>
<td>CH</td>
<td>Chůze, jízda výtahem</td>
<td>1:51:27</td>
<td>21%</td>
<td>109</td>
</tr>
<tr>
<td>P</td>
<td>Přestávka</td>
<td>1:00:39</td>
<td>12%</td>
<td>7</td>
</tr>
</tbody>
</table>

SUMA ČASŮ 8:39:54 100%
<table>
<thead>
<tr>
<th>KAT.</th>
<th>SPD - MONTÁŽ POLOTOVARŮ</th>
<th>ČAS</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>Montáž</td>
<td>3:38:33</td>
<td>15%</td>
</tr>
<tr>
<td>U2</td>
<td>Balení</td>
<td>3:55:41</td>
<td>16%</td>
</tr>
<tr>
<td>U3</td>
<td>Předpříprava materiálu potřebného pro montáž, či balení</td>
<td>0:26:32</td>
<td>2%</td>
</tr>
<tr>
<td>U4</td>
<td>Montáž nýtováním</td>
<td>4:26:32</td>
<td>18%</td>
</tr>
<tr>
<td>U5</td>
<td>Regulace závitů</td>
<td>2:57:17</td>
<td>12%</td>
</tr>
<tr>
<td>DP</td>
<td>Dokončovací práce (odnášení prážných obalů, nářadí, apod.)</td>
<td>0:17:07</td>
<td>1%</td>
</tr>
<tr>
<td>PP</td>
<td>Příprava pracoviště na zahájení práce (vychystávání nástrojů)</td>
<td>0:33:40</td>
<td>2%</td>
</tr>
<tr>
<td>UK</td>
<td>Układ, který nesouvisí se zahájením nebo ukončením práce</td>
<td>0:20:34</td>
<td>1%</td>
</tr>
<tr>
<td>AD</td>
<td>Administrativa - vypísovaní průvodků, vykazování práce</td>
<td>0:54:37</td>
<td>4%</td>
</tr>
<tr>
<td>PŘ</td>
<td>Příprava dílů k operaci (přivezení, apod.)</td>
<td>0:41:21</td>
<td>3%</td>
</tr>
<tr>
<td>OD</td>
<td>Odvoz hotových polotovarů na následující pracoviště</td>
<td>0:05:29</td>
<td>0%</td>
</tr>
<tr>
<td>Č</td>
<td>Čekání, nečinnost</td>
<td>0:49:22</td>
<td>3%</td>
</tr>
<tr>
<td>HL</td>
<td>Hledání</td>
<td>0:54:08</td>
<td>4%</td>
</tr>
<tr>
<td>CH</td>
<td>Chůze (vzdálení se od stroje, přechody mezi halami)</td>
<td>0:16:03</td>
<td>1%</td>
</tr>
<tr>
<td>M</td>
<td>Manipulace zbytečná (s materiálem, výrobky, zařízením)</td>
<td>0:15:50</td>
<td>1%</td>
</tr>
<tr>
<td>MP</td>
<td>Mimo pracoviště</td>
<td>0:06:42</td>
<td>0%</td>
</tr>
<tr>
<td>P</td>
<td>Přestávka pracovníka (svačina, oběd, pitný režim, WC)</td>
<td>2:46:38</td>
<td>11%</td>
</tr>
<tr>
<td>KOM</td>
<td>Komunikace (řešení pracovních záležitostí, porada)</td>
<td>1:01:35</td>
<td>4%</td>
</tr>
<tr>
<td>OSK</td>
<td>Komunikace soukromá</td>
<td>0:01:12</td>
<td>0%</td>
</tr>
<tr>
<td>SD</td>
<td>studování dokumentace (výkresy, průvodky, pokyny...)</td>
<td>0:02:12</td>
<td>0%</td>
</tr>
<tr>
<td>ZM</td>
<td>oprava zmetku</td>
<td>0:02:58</td>
<td>0%</td>
</tr>
</tbody>
</table>

SUMA ČASŮ 24:34:03 100%
- Polotovary montované na jednom z pracovišť předmontáže

- Nedokončená výroba (díly vyráběné na kovozpracováním)
Příloha PIII: Tabulka výpočtu průběžné doby výroby

<table>
<thead>
<tr>
<th>Dávka</th>
<th>Příprava</th>
<th>nýtování rámu</th>
<th>Ukončení</th>
<th>Příprava</th>
<th>nýtování krytu ventilace</th>
<th>Ukončení</th>
<th>Příprava</th>
<th>Montáž klapek</th>
<th>Ukončení</th>
<th>Příprava</th>
<th>montáž ventilátoru</th>
<th>Ukončení</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventilace V2</td>
<td>10 ks</td>
<td>0:00:57</td>
<td>0:14:20</td>
<td>0:00:00</td>
<td>0:00:00</td>
<td>0:14:50</td>
<td>0:00:00</td>
<td>0:01:12</td>
<td>0:07:00</td>
<td>0:00:00</td>
<td>0:00:21</td>
<td>0:10:36</td>
</tr>
<tr>
<td>Ventilace V1</td>
<td>20 ks</td>
<td>0:01:28</td>
<td>0:55:08</td>
<td>0:00:00</td>
<td>0:00:00</td>
<td>0:00:00</td>
<td>0:00:00</td>
<td>0:00:00</td>
<td>0:00:00</td>
<td>0:00:00</td>
<td>0:00:47</td>
<td>0:16:45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Příprava</th>
<th>nýtování rámu a krytu</th>
<th>Ukončení</th>
<th>Příprava</th>
<th>Montáž ventilace-F</th>
<th>Ukončení</th>
<th>Příprava</th>
<th>Krimpování</th>
<th>Ukončení</th>
<th>PDV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventilace V2</td>
<td>0:00:00</td>
<td>0:18:12</td>
<td>0:00:00</td>
<td>0:03:28</td>
<td>0:59:00</td>
<td>0:00:32</td>
<td>0:02:00</td>
<td>0:09:57</td>
<td>0:00:16</td>
</tr>
<tr>
<td>Ventilace V1</td>
<td>0:01:18</td>
<td>0:42:20</td>
<td>0:00:00</td>
<td>0:01:51</td>
<td>1:10:13</td>
<td>0:01:42</td>
<td>0:02:00</td>
<td>0:19:03</td>
<td>0:00:16</td>
</tr>
</tbody>
</table>
PŘÍLOHA PVI: POTŘEBNÝ MATERIÁL PRO PRACOVIŠTĚ MONTÁŽE VENTILACE – SPOJOVACÍ MATERIÁL

<table>
<thead>
<tr>
<th>Označení</th>
<th>Název</th>
<th>Spotřeba/ks</th>
<th>Spotřeba(2013)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M20302001159</td>
<td>Podložka pruž.zvl.něB A2 nerez</td>
<td>4</td>
<td>24412</td>
</tr>
<tr>
<td>M20104000767</td>
<td>Šroub půlkul kř dr A2 bez PÚ</td>
<td>4</td>
<td>41401</td>
</tr>
<tr>
<td>M30505001477</td>
<td>Ventilátor FIMOS</td>
<td>1</td>
<td>7102</td>
</tr>
<tr>
<td>M20704000393</td>
<td>Nýt trh.vodot.pl.hl A2/A2 bez PÚ 1-4</td>
<td>16</td>
<td>126511</td>
</tr>
<tr>
<td>M20132000488</td>
<td>Šroub závtorváltORX St zn bílý</td>
<td>8</td>
<td>57037</td>
</tr>
<tr>
<td>M20701000782</td>
<td>Nýt trh zap hl Al/St zn bílý</td>
<td>20</td>
<td>139492</td>
</tr>
<tr>
<td>M20101000763</td>
<td>Šroub 6hr celý závit A2 nerez</td>
<td>2</td>
<td>12573</td>
</tr>
<tr>
<td>M30515001668</td>
<td>Průchodka FIMOS plast</td>
<td>2</td>
<td>13721</td>
</tr>
<tr>
<td>M20302001158</td>
<td>Podložka pruž.zvl.něB A2 nerez</td>
<td>4</td>
<td>59157</td>
</tr>
<tr>
<td>M307010001475</td>
<td>Pružina FIMOS ner1.4305</td>
<td>4</td>
<td>4756</td>
</tr>
<tr>
<td>M20301000144</td>
<td>Podložka pro 6hr hl A2 bez PÚ</td>
<td>8</td>
<td>13344</td>
</tr>
<tr>
<td>M30505001793</td>
<td>Ventilátor FIMOS</td>
<td>1</td>
<td>1542</td>
</tr>
<tr>
<td>M10305900210</td>
<td>Páska na váz.kab standardní</td>
<td>1</td>
<td>1542</td>
</tr>
<tr>
<td>M30803001484</td>
<td>Samolepka Samolepka FIMOS</td>
<td>1</td>
<td>795</td>
</tr>
<tr>
<td>M20102001128</td>
<td>Šroub válcová hl A2 nerez</td>
<td>2</td>
<td>3084</td>
</tr>
<tr>
<td>M20302001160</td>
<td>Podložka pruž.zvl.něB A2 nerez</td>
<td>2</td>
<td>3084</td>
</tr>
<tr>
<td>M20201000005</td>
<td>Matice 6hr A2 nerez</td>
<td>2</td>
<td>3084</td>
</tr>
<tr>
<td>M20301000150</td>
<td>Podložka pro 6hr hl A2 bez PÚ</td>
<td>4</td>
<td>2988</td>
</tr>
<tr>
<td>Materiál</td>
<td>Označení</td>
<td>Počet/ks</td>
<td>rozměry (mm)</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------</td>
<td>----------</td>
<td>--------------</td>
</tr>
<tr>
<td>Příčka rámu</td>
<td>VBU-016102</td>
<td>4</td>
<td>493x10</td>
</tr>
<tr>
<td>Příčka rámu</td>
<td>VBU-016100</td>
<td>2</td>
<td>544x62</td>
</tr>
<tr>
<td>Kryt filtru</td>
<td>VBU-016104</td>
<td>1</td>
<td>699x507</td>
</tr>
<tr>
<td>Kryt filtru</td>
<td>VBU-016105</td>
<td>1</td>
<td>317x317x80</td>
</tr>
<tr>
<td>Příčka rámu</td>
<td>VBU-016106</td>
<td>2</td>
<td>699x72</td>
</tr>
<tr>
<td>Kryt filtru</td>
<td>VBU-016133</td>
<td>1</td>
<td>φ256x10</td>
</tr>
<tr>
<td>Kryt filtru</td>
<td>VBU-016658</td>
<td>1</td>
<td>793x595</td>
</tr>
<tr>
<td>Kryt filtru</td>
<td>VBU-016659</td>
<td>2</td>
<td>292x275x80</td>
</tr>
<tr>
<td>Kryt filtru</td>
<td>VBU-016660</td>
<td>4</td>
<td>271x75</td>
</tr>
<tr>
<td>Ventilátor</td>
<td>VBU-017222</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ventilátor</td>
<td>VBU-017223</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Příčka rámu</td>
<td>VBU-018368</td>
<td>2</td>
<td>507x72</td>
</tr>
<tr>
<td>Příčka rámu</td>
<td>VBU-018369</td>
<td>2</td>
<td>696x101x47</td>
</tr>
<tr>
<td>Příčka krytu</td>
<td>VBU-022997</td>
<td>2</td>
<td>418x62</td>
</tr>
<tr>
<td>Příčka krytu</td>
<td>VBU-022999</td>
<td>2</td>
<td>641x73</td>
</tr>
<tr>
<td>Příčka krytu</td>
<td>VBU-023000</td>
<td>4</td>
<td>367x10</td>
</tr>
<tr>
<td>Kryt filtru</td>
<td>VBU-023005</td>
<td>1</td>
<td>444x460</td>
</tr>
<tr>
<td>Kryt ventilátoru</td>
<td>VBU-023006</td>
<td>1</td>
<td>388x388</td>
</tr>
<tr>
<td>Příčka krytu</td>
<td>VBU-037233</td>
<td>2</td>
<td>847x73</td>
</tr>
<tr>
<td>Kryt</td>
<td>VBU-039293</td>
<td>1</td>
<td>319x100</td>
</tr>
<tr>
<td>Kryt</td>
<td>VBU-039295</td>
<td>1</td>
<td>628x570</td>
</tr>
<tr>
<td>Příčka</td>
<td>VBU-039297</td>
<td>2</td>
<td>544x62</td>
</tr>
</tbody>
</table>
Příloha P VIII: Potřebný materiál pro pracoviště montáže ventilace – nakupované díly

<table>
<thead>
<tr>
<th>Materiál</th>
<th>Označení</th>
<th>Počet/ks</th>
<th>rozměry (mm)</th>
<th>Spotřeba dílů celkem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventilátor</td>
<td>M30505001793</td>
<td>1</td>
<td>1542</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M30505001477</td>
<td>1(2)</td>
<td>7102</td>
<td></td>
</tr>
<tr>
<td>Průchodka</td>
<td>M30515001668</td>
<td>2</td>
<td>13721</td>
<td></td>
</tr>
<tr>
<td>Samolepka</td>
<td>M30803001484</td>
<td>1(2)</td>
<td>795</td>
<td></td>
</tr>
<tr>
<td>Pružina</td>
<td>M30701001475</td>
<td>4</td>
<td>4756</td>
<td></td>
</tr>
<tr>
<td>Bužírka izolační</td>
<td>M30412001805</td>
<td>1</td>
<td>155</td>
<td></td>
</tr>
<tr>
<td>Čep konektoru</td>
<td>4(8)</td>
<td></td>
<td>34576</td>
<td></td>
</tr>
<tr>
<td>Konektor</td>
<td>M30501001498</td>
<td>1</td>
<td>8644</td>
<td></td>
</tr>
<tr>
<td>Bužírka smršťovací</td>
<td>M30412001804</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Páska na vázání kabelů</td>
<td>M10305900210</td>
<td>1</td>
<td>1542</td>
<td></td>
</tr>
</tbody>
</table>
PŘÍLOHA P IX: RIZIKOVÁ ANALÝZA RIPRAN

<table>
<thead>
<tr>
<th>ID</th>
<th>Hrozba</th>
<th>P-st hrozby</th>
<th>ID</th>
<th>Scénář</th>
<th>P-st scénáře</th>
<th>Celková P-st</th>
<th>Dopad</th>
<th>Hodnota rizika</th>
<th>Opatření</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Ztráta podpory managementu podniku</td>
<td>0,5</td>
<td>1.1</td>
<td>Zdržení práce</td>
<td>0,75</td>
<td>0,375</td>
<td>VP</td>
<td>SD</td>
<td>VHR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.2</td>
<td>Zrušení práce</td>
<td>0,1</td>
<td>0,05</td>
<td>MP</td>
<td>VD</td>
<td>SHR</td>
</tr>
<tr>
<td>2.</td>
<td>Nesprávné využití dat</td>
<td>0,1</td>
<td>2.1</td>
<td>Zkreslené výsledky analýzy</td>
<td>0,5</td>
<td>0,05</td>
<td>MP</td>
<td>SD</td>
<td>MHR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.2</td>
<td>Zcela odlišné výsledky od skutečnosti – nereálná aplikace opatření</td>
<td>0,25</td>
<td>0,025</td>
<td>MP</td>
<td>VD</td>
<td>SHR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.3</td>
<td>Výsledky analýzy jsou odpovídající, ale nebudou správně využity</td>
<td>0,5</td>
<td>0,05</td>
<td>MP</td>
<td>SD</td>
<td>MHR</td>
</tr>
<tr>
<td>3.</td>
<td>Opomenutí podstatných faktorů pro realizaci</td>
<td>0,2</td>
<td>3.1</td>
<td>Je potřeba změna práce</td>
<td>1</td>
<td>0,5</td>
<td>VP</td>
<td>SD</td>
<td>VHR</td>
</tr>
<tr>
<td>4.</td>
<td>Nedodržení harmonogramu</td>
<td>0,25</td>
<td>4.1</td>
<td>Opoždění jednotlivých kroků</td>
<td>0,5</td>
<td>0,125</td>
<td>SP</td>
<td>SD</td>
<td>SHR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.2</td>
<td>Práce nebude odevzdana včas</td>
<td>0,1</td>
<td>0,025</td>
<td>MP</td>
<td>VD</td>
<td>VHR</td>
</tr>
<tr>
<td>5.</td>
<td>Nepřesné vstupní informace</td>
<td>0,1</td>
<td>5.1</td>
<td>Zkreslené výsledky analýzy</td>
<td>0,75</td>
<td>0,075</td>
<td>MP</td>
<td>SD</td>
<td>MHR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.2</td>
<td>Zcela odlišné výsledky od skutečnosti – nereálná aplikace opatření</td>
<td>0,25</td>
<td>0,025</td>
<td>MP</td>
<td>SD</td>
<td>MHR</td>
</tr>
<tr>
<td>6.</td>
<td>Nedostatečná komunikace</td>
<td>0,3</td>
<td>6.1</td>
<td>Problémy v komunikaci se zaměstnanci</td>
<td>0,5</td>
<td>0,15</td>
<td>SP</td>
<td>SD</td>
<td>SHR</td>
</tr>
<tr>
<td>Označení</td>
<td>Pravděpodobnost</td>
<td>Hodnota</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP</td>
<td>Malá pravděpodobnost</td>
<td>0-9%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP</td>
<td>Střední pravděpodobnost</td>
<td>10-29%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VP</td>
<td>Vysoká pravděpodobnost</td>
<td>30-100%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Označení</th>
<th>Dopad</th>
<th>Hodnota</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD</td>
<td>Malý dopad</td>
<td>Má minimální dopad na práci</td>
</tr>
<tr>
<td>SD</td>
<td>Střední dopad</td>
<td>Změni nebo opoždí práci</td>
</tr>
<tr>
<td>VP</td>
<td>Vysoký dopad</td>
<td>Ohrožuje existenci práce</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Míra rizika</th>
</tr>
</thead>
<tbody>
<tr>
<td>VD</td>
</tr>
<tr>
<td>VP</td>
</tr>
<tr>
<td>SP</td>
</tr>
<tr>
<td>MP</td>
</tr>
</tbody>
</table>