Statistické metody zabezpečování kvality ve výrobě

Štěpán Pospíšilík
ZADÁNÍ BAKALÁŘSKÉ PRÁCE
(PROJEKTU, UMĚLECKÉHO DÍLA, UMĚLECKÉHO VÝKONU)

Jméno a příjmení: Štěpán POSPÍŠILÍK
Osobní číslo: M10299
Studijní program: B6208 Ekonomika a management
Studijní obor: Management a ekonomika
Forma studia: prezenční

Téma práce: Statistické metody zabezpečování kvality ve výrobě

Zásady pro vypracování:

Úvod

I. Teoretická část

- Zpracujte literární rešerši a popište statistické metody vhodné pro řešení zabezpečování kvality ve výrobě.

II. Praktická část

- Analyzujte stávající stav využití statistických metod ve výrobních procesech firmy Toray Textiles Central Europe, s.r.o.
- Provedte aplikaci vhodných statistických metod pro zvýšení kvality u vybraných výrobních procesů a provedte analýzu dat.
- Na základě výsledků analýzy navrhněte doporučení.

Závěr
Rozsah bakalářské práce: 40 stran
Rozsah příloh:
Forma zpracování bakalářské práce: tištěná/elektronická

Seznam odborné literatury:
Dostupné z: databáze Knovel

Vedoucí bakalářské práce: Ing. Martin Jurásek
Ústav statistiky a kvantitativních metod
Datum zadání bakalářské práce: 22. února 2014
Termín odevzdání bakalářské práce: 16. května 2014

Ve Zlíně dne 22. února 2014

prof. Dr. Ing. Drahomíra Pavelková
děkanka

Ing. Radek Benda, Ph.D.
ředitel ústavu
PROHLÁŠENÍ AUTORA
BAKALÁŘSKÉ PRÁCE

Beru na vědomí, že:

- odevzdáváním bakalářské/diplomové práce souhlasím se zveřejněním své práce podle zákona č. 111/1998 Sb. o vysokých školách a o změně a doplnění dalších zákonů (zakon o vysokých školách), ve znění pozdějších právních předpisů, bez ohledu na výsledek obhajoby;

- bakalářská/diplomová práce bude uložena v elektronické podobě v univerzitním informačním systému,

- na mou bakalářskou/diplomovou práci se plně vztahuje zákon č. 121/2000 Sb. o pravu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon) ve znění pozdějších právních předpisů, zejm. § 35 odst. 3;

- podle § 60 odst. 1 autorského zákona má UTB ve Zlíně právo na uzavření licenční smlouvy o užití školního díla v rozsahu § 12 odst. 4 autorského zákona;

1 zákon č. 111/1998 Sb. o vysokých školách a o změně a doplnění dalších zákonů (zákon o vysokých školách), ve znění pozdějších právních předpisů, § 47b Zveřejňování závěrečných prací:
(1) Vysočí škola nevyužíváč nezveřejně disertační, diplomové, bakalářské a rigorózní práce, u kterých proběhla obhajoba, včetně posudků oponentů a výsledku obhajoby prostřednictvím databáze kvalifikovaných prací, kterou spravuje. Způsob zveřejnění stanoví vnitřní předpis vysočí školy.

(2) Disertační, diplomové, bakalářské a rigorózní práce odevzdané uchazečem k obhajobě musí být těž nejméně pět pracovních dnů před konáním obhajoby zveřejněny k nahlížení veřejnosti v místě určeném vnitřním předpisem vysočí školy nebo není-li tak určeno, v místě pracovního vysočí školy, kde se má konat obhajoba práce. Každý si může se zveřejněné práci pořízen závěr všech nákladů výpisy, opisy nebo rozpočtové.

(3) Platí, že odevzdané práce autor souhlasí se zveřejněním své práce podle tohoto zákona, bez ohledu na výsledek obhajoby.

2 zákon č. 121/2000 Sb. o pravu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon) ve znění pozdějších právních předpisů, § 35 odst. 3:
(3) Do práva autorského také nesouhlasí škola nebo školská či vedlejší zařízení, užije-li nikoli za účelem přímého nebo nepřímého hospodářského nebo obchodního prospěchu k výuce nebo k vlastní potřebě dílo vytvořené žákem nebo studentem ke splnění školních nebo studijních povinností vyplývajících z jeho právního vztahu ke škole nebo školníku či vedlejšího zařízení (školní dílo).

3 zákon č. 121/2000 Sb. o pravu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon) ve znění pozdějších právních předpisů, § 60 Školní dílo:
(1) Škola nebo školské či vedlejší zařízení mají za obvyklých podmínek právo na uzavření licenční smlouvy o užití školního díla (§ 35 odst. 3). Odprávňuje autor takového díla účel svolání bez vážného důvodu, mohou se tyto osoby domáchat nahraní obvyklého projektu jeho vůle u soudu. Ustanovení § 33 odst. 3 zásadně nedoločená.
• podle § 60 odst. 2 a 3 mohu užít své dílo – bakalářskou/diplomovou práci – nebo poskytnout licenci k jejímu využití jen s předchozím písemným souhlasem Univerzity Tomáše Bati ve Zlíně, která je oprávněna v takovém případě ode mne požadovat přiměřený příspěvek na úhradu nákladů, které byly Univerzitou Tomáše Bati ve Zlíně na vytvoření díla vynaloženy (až do jejich skutečné výše);

• pokud bylo k vypracování bakalářské práce využito softwaru poskytnutého Univerzitou Tomáše Bati ve Zlíně nebo jinými subjekty pouze ke studijním a výzkumným účelům (tj. k nekomerčnímu využití), nelze výsledky bakalářské práce využít ke komerčním účelům.

Prohlašuji, že:

• jsem bakalářskou prácí zpracoval samostatně a použité informační zdroje jsem citoval;

• odevzdaná verze bakalářské/diplomové práce a verze elektronická nahaná do IS/STAG jsou totožné.

Ve Zlíně 14. 5. 2014

4 zákon č. 121/2000 Sb. o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon) ve znění pozdějších právních předpisů, § 60 Školní dílo:

(2) Není-li sjednáno jinak, máte autor školního díla své dílo užít či poskytnout jinému licenci, není-li to v rozporu s oprávněnými zájmy školy nebo školského či vzdělávacího zařízení.

(3) Škola nebo školské či vzdělávací zařízení jsou oprávněny požadovat, aby jiný autor školního díla z výdělku jím dosaženého v souvislosti s užíváním díla či poskytnutím licence podle odstavce 2 přiměřené příspěvek na úhradu nákladů, které na vytvoření díla vynaložily, a to podle okolností až do jejich skutečné výše; případně se přihlédne k výši výdělku dosaženého školou nebo školským či vzdělávacím zařízením z užití školního díla podle odstavce 1.
ABSTRAKT

Pro svou bakalářskou práci jsem si zvolil téma: Statistické metody zabezpečování kvality ve výrobě. Cílem této práce je aplikace některých statistických metod ve výrobním procesu TTCE s.r.o. V teoretické části se věnuji popisu některých statistických metod regulace procesu a Taguchiho metodám on-line. V praktické části představím společnost a následně aplikuji statistické metody z teoretické části na podnik.

Klíčová slova:

CUSUM, EWMA, Hotellingův diagram, K-S test, normální rozdělení, Shewhartovy regulaci diagramy, Taguchiho metody on-line

ABSTRACT

For my barchelor thesis I chose the theme Statistical Methods for Quality Assurance in Production. The aim of this work is the application of some statistical methods in the production process in TTCE s.r.o. Thetheoretical part describes some statistical methods of proces control and Taguchi’s on-line methods. In practical part I will introduce company and than aplly statistical methods from the theoretical part to the company.

Keywords:

CUSUM, EWMA, Hotelling’s diagram, K-S test, Normal distribution, Shewhart’s regulation diagrams, Taguchi’s on-line methos
Touto cestou bych rád poděkoval vedoucímu mé bakalářské práce Ing. Martinu Juráskovi, který mi poskytl důležité rady, cenné připomínky a hlavně odborné vedení. Dále bych chtěl poděkovat vedení Toray Textiles Central Europe s.r.o. za možnost zpracování bakalářské práce v této firmě. A v neposlední řadě chci poděkovat Ing. Ireně Havlanové a Ing. Tomáši Zikmundovi za rady a čas, který mi věnovali a bez kterých by tato práce nevznikla.
OBSAH

ÚVOD .. 10
1 TEORETICKÁ ČÁST .. 11
1 STATISTICKÁ REGULACE PROCESU .. 12
 1.1 FÁZE STATISTICKÉ REGULACE PROCESU (SPC) ... 12
 1.1.1 Přípravná fáze .. 12
 1.1.2 Fáze zabezpečení statistické zvládnutosti (stability) procesu ... 13
 1.1.3 Fáze analýzy způsobilosti procesu (Capability Analysis) .. 14
 1.1.4 Fáze vlastní statistické regulace procesu .. 14
 1.2 PRINCIPY REGULAČNÍCH DIAGRAMŮ .. 14
 1.2.1 Základní charakteristika regulačních diagramů ... 14
 1.2.2 Interpretace regulačního diagramu .. 16
 1.2.3 Členění regulačních diagramů ... 18
 1.2.4 Obecný postup při sestrojení a analýze regulačního diagramu 19
 1.3 NORMÁLNÍ ROZDĚLENÍ .. 20
 1.3.1 Test dobré shody χ^2 .. 20
 1.3.2 Kolmogorovův-Smirnovův test ... 21
 1.3.3 Distribuční funkce ... 21
 1.4 KORELACE .. 21
2 REGULAČNÍ DIAGRAMY .. 23
 2.1 SHEWARTOVY REGULAČNÍ DIAGRAMY ... 23
 2.1.1 Regulační diagramy (x, S) .. 23
 2.1.2 Regulační diagram R ... 24
 2.1.3 Regulační diagram pro individuální hodnoty (x_i) ... 24
 2.2 HOTELLINGŮV DIAGRAM .. 25
 2.3 EWMA ... 26
 2.4 CUSUM ... 27
 2.4.1 Interpretace průběhu diagramu CUSUM ... 28
 2.4.2 Rozhodovací kritéria diagramu CUSUM ... 28
3 TAGUCHIHO METODY ON-LINE ... 30
 3.1 ZTRÁTOVÁ FUNKCE ... 30
 3.1.1 Ztrátová funkce ... 31
 3.1.2 Standardizovaná ztrátová funkce ... 33
 3.1.3 Vícevrstvená ztrátová funkce ... 33
 3.2 CELKOVÉ NÁKLADEY NA JAKOST .. 33
 3.2.1 Kontrola všech výrobků ... 33
 3.2.2 Kontrola po n výrobcích ... 34
4 TEORETICKÁ VÝCHODISKA PRO PRAKTICKOU ČÁST ... 35
5 PŘEDSTAVENÍ SPOLEČNOSTI ... 36
 5.1 TORAY TEXTILES CENTRAL EUROPE S.R.O. (TTCE) ... 38
 5.1.1 Historie .. 38
 5.1.2 Výrobky .. 38
5.1.3 Organizační struktura ... 40
5.2 POUŽITÝ STATISTICKÝ PROGRAM QC EXPERT 40
 5.2.1 Data ... 41
 5.2.2 Grafy .. 41
 5.2.3 Protokol .. 42
 5.2.4 Základní charakteristika výrobku .. 43
 5.2.5 Předpoklady pro sestavení regulačních diagramů 43
5.3 TEST NORMALITY .. 43
 5.3.1 Posouzení normality pomocí explatorních grafů 44
 5.3.2 Kolmogorov-Smyrnov test ... 45
5.4 KORELACE .. 46
5.5 HOMOGENITA ... 47
5.6 SHEWARTOVY REGULAČNÍ DIAGRAMY 48
5.7 HOTELLINGŮV DIAGRAM .. 49
5.8 EWMA .. 51
 5.8.1 Test závislosti ... 51
 5.8.2 EWMA digram ... 52
5.9 CUSUM .. 53
6 NADPIS TAGUCHIHO METODY ... 56
 6.1 VÍCEROZMĚRNÁ ZTRÁTOVÁ FUNKCE 56
 6.1.1 Vícerozměrná ztrátová funkce .. 56
7 NÁVRHY NA ZLEPŠENÍ .. 59
ZÁVĚR ... 62
SEZNAM POUŽITÉ LITERATURY ... 63
SEZNAM POUŽITÝCH SYMBOLŮ A ZKRATEK 65
SEZNAM OBRÁZKŮ .. 66
SEZNAM TABULEK .. 68
SEZNAM PŘÍLOH .. 69
ÚVOD

Cílem této práce je analyzovat pomocí statistických metod úroveň kvality výrobků ve firmě Toray Textiles Central Europe s.r.o. a následně vytvářet doporučení, které by mělo mít za následek zvýšení počtu kvalitních výrobků, snížení nákladů na kvalitu a zjednodušení procesu analýzy dat získaných z výroby.

V teoretické části se budu věnovat klasickým Shewhartovým regulačním diagramům a podmínkám, za kterých je lze použít. Následně uvedu některé vícevrstvění statistické metody regulace procesu, jako jsou např. Hotellingovy diagramy, CUSUM a EWMA. Tyto diagramy porovnám se Shewhartovými diagramy a zhodnotím možnost jejich použití v praktické části.

Mimo to se ještě budu věnovat Taguchiho metodám a to zejména ztrátové funkci. Tyto metody se totiž jeví jako levná alternativa při posuzování úrovně kvality, která má navíc široké pásmo uplatnění.

V praktické části aplikuji zmíněné metody na data získaná ve firmě Toray Textiles Central Europe s.r.o. Pro tuto aplikaci nejdříve otestuji možnosti použití regulačních diagramů. Na základě výsledků testů stanovím hypotézy, podle kterých sestavím regulační diagramy. Pro získaná data sestrojím víceasobnou ztrátovou funkci. Tato funkce mi znázorní úroveň ztráty, se kterou předchozí metody nepočítaly. Výsledky regulačních diagramů a ztrátové funkce podrobím analýze a následně vyvodím doporučení.

Pro analýzu a grafické znázornění dat použiji statistický program QC Expert.
I. TEORETICKÁ ČÁST
1 STATISTICKÁ REGULACE PROCESU

Statistická regulace procesu (Statistical Process Control) představuje preventivní nástroj řízení jakosti, který umožňuje včasné odhalování významných odchylek od předem stanovené úrovně. SPC umožňuje realizovat zásahy do procesu a tím jej dlouhodobě udržovat na požadované a stabilní úrovni nebo umožnit proces dále zlepšovat.

(Tošenovský a Noskievičová, 2000, str. 165)

1.1 Fáze statistické regulace procesu (SPC)

Hlavním cílem statistické regulace procesu je dosahování a udržování procesu ve statisticky zvládnutém stavu tak, aby se zajistila shoda produktů se specifikovanými požadavky. (tj. způsobilý proces)

Hlavní cíl SPC se realizuje v několika fázích:

1. Fáze přípravná
2. Fáze zabezpečování stavu statistické zvládnutosti procesu
3. Fáze analyzy a zabezpečení způsobilosti procesu
4. Fáze vlastní statistické regulace procesu

(Tošenovský a Noskievičová, 2000, str. 166-167)

1.1.1 Přípravná fáze

Během přípravné fáze je nutné realizovat několik kroků:

1. Identifikace cíle regulace.
2. Stanovení znaků jakosti nebo parametrů procesu, které budou představovat regulovanou veličinu. Hodnoty těchto znaků je třeba zjišťovat a zaznamenávat. Dále je nutné rozhodnout, zda se bude na každém vybraném produktu sledovat jeden či simultánně více znaků jakosti.
4. Zvolení vhodné metody k získání vybraných hodnot zvoleného znaku jakosti. Součástí by měla být také analýza měřicího systému.
5. Zvolení vhodné délky kontrolního intervalu vzhledem k vlastnostem technologie výroby, pracností provedení procesu do podskupiny atd. Obecně lze stanovit pravidlo, které říká, že v procesech s nižší stabilitou je potřeba měřit častěji a na začátku statistické regulace využít kratšího kontrolního intervalu, který se bude později dále prodlužovat.

7. Zvolení adekvátního rozsahu výběru.

8. Zvolení vhodného typu regulačního diagramu

9. Příprava sběru a záznamu dat

(Tošenovský a Noskievičová, 2000, str. 168)

1.1.2 Fáze zabezpečení statistické zvládnutosti (stability) procesu

Cílem je identifikovat a minimalizovat, případně odstranit působení vymezitelných vlivů. Dále vytvoření podmíněn tak, aby se jejich působení nemohlo opakovat. Při analýze a zajišťování statistické zvládnutosti se obecně doporučuje pracovat s regulačními diagramy.

(Tošenovský a Noskievičová, 2000, str.169-170)

Používáme-li dvojice diagramů (x̅, R), je postup následující:

1. Sestrojení regulačního diagramu pro výběrová rozpětí (R).

2. Provedení analýzy regulačního diagramu (R). Jsou-li v regulačním diagramu body mimo regulační meze, trendy nebo nenáhodná seskupení, provede se identifikace vymezených příčin a příjme se opatření, které jejich působení omezí nebo zcela eliminuje.

4. Fáze 1 - 3 se opakují tak dlouho, až všechny body leží uvnitř regulačních mezí a nevykazují žádná nenáhodná seskupení. Cílem není eliminovat nepohodlné hodnoty, ale stanovit regulační meze tak, aby efektivně vymezovaly pásmo působení pouze náhodných vlivů.

5. Stejný postup se provede u diagramu znázorňující výběrové průměry (x̅), ale bez výběrů vypuštěných v bodě 3.

(Tošenovský a Noskievičová, 2000, str.169-170)
1.1.3 Fáze analýzy způsobilosti procesu (Capability Analysis)

Pro zdokonalování procesu pomocí statistické regulace se používá analýza způsobilosti procesu (Capability Analysis). Zde se zkoumá, jestli je proces po předchozích fázích schopný splnit požadavky zákazníků, které jsou určeny formou tolerančních mezi.

(Tošenovský a Noskievičová, 2000, str.170)

1.1.4 Fáze vlastní statistické regulace procesu

V této fázi se již proces udržuje ve stavu, kdy ho lze považovat za statisticky zvládnutý a způsobilý. Pomocí regulačního diagramu dochází k signalizaci poruch ve stabilitě procesu. Tyto poruchy se pomocí regulačních diagramů identifikují a následně odstraní. Tyto regulační diagramy používají regulační meze, které byly stanoveny ve fázi zajištění statistické zvládnutelnosti a také se zohledněním výsledků analýzy způsobilosti procesu. Tyto jsou dlouhodobého charakteru, protože jejich platnost trvá od doby změny procesu. U této změny se předpokládá, že bude nadále působit i v budoucnu a příčinu je možné identifikovat.

(Tošenovský a Noskievičová, 2000, s. 170)

1.2 Principy regulačních diagramů

Regulační diagramy patří k základním nástrojům pro regulaci jakosti při výrobních procezech. Dají se však použít zcela obecně všude tam, kde jsou postupně v čase získávány informace o jakosti. V praxi nejrozšířenějším typem je v současnosti Shewhartův regulační diagram. Tento diagram navrhl v květnu 1924 W.A. Shewhart z Bell Telephone Laboratories. Další možností při aplikaci SPC je použití některých typů speciálních regulačních diagramů např. CUSUM, EWMA nebo Hotellingerovy regulační diagramy, které mohou na rozdíl od Shewhartových regulačních diagramů sledovat více znaků jakosti současně.

(Meloun, 2012, str. 904)

1.2.1 Základní charakteristika regulačních diagramů

Za základní nástroj pro SPC je považován regulační diagram. Tento grafický prostředek zobrazuje vývoj variability procesu v čase. Využívá k tomu principy testování statistických hypotéz.

(Kovářík, 2012)
Pro rozhodnutí o tom, jestli se dá proces považovat za statisticky vzdálený nebo ne se používají 3 základní čáry:

- **CL** střední čára (Central Line) je jedná se o referenční požadovanou hodnotu pro znázorněnou charakteristiku

- **UCL** horní regulační mez (Upper Control Limit), určuje maximální úroveň vlastností, kterých musí proces dosahovat, aby se dal ještě považovat za statisticky vzdálený.

- **LCL** je dolní regulační mez (Lower Control Limit), určuje minimální úroveň vlastností, kterých musí proces dosahovat, aby se dal ještě považovat za statisticky vzdálený.

 (*Kovářík, 2012*)

V některých případech se horní a dolní regulační meze označují jako tzv. akční meze. Akční meze vymezení pásma působnosti pouze náhodných příčin variability a napomáhají při rozhodnutí, zda je nutné udělat zásah do procesu nebo ne. V někdy se navíc do regulačních diagramů přidávají tzv. výstražné meze (UWL a LWL)

- **UWL** – horní výstražná mez (Upper Warning Limit)
Tyto výstražné meze bývají umístěny blíže CL než UCL a LCL, nejčastěji se jedná \(\pm 2\sigma \) od CL.

\textit{(Kovářík, 2012)}

1.2.2 Interpretace regulačního diagramu

Pro interpretaci regulačního diagramu platí obecně základní pravidlo:

\begin{itemize}
\item a) Leží-li všechny body uvnitř UCL a LCL, je proces pokládán za statisticky zvládnutý a není vyžadován žádný zásah do procesu.
\item b) Leží-li některý bod mimo regulační mez UCL nebo LCL, je proces pokládán za statisticky nezvládnutý, je vyžadována identifikace vymezitelné příčiny této odchylky a přijetí opatření s cílem úplné či alespoň částečné eliminace vymezitelného vlivu.
\end{itemize}

\textit{(Tošenovský a Noskievičová, 2000, str. 173)}

V případě, že použijeme výstražné meze, mohou zde navíc nastat další dvě skutečnosti:

\begin{itemize}
\item Uvnitř výstražných mezi leží nějaký bod – v tomto případě se vychází z předpokladu, že se proces nachází ve statisticky zvládnutém stavu a není nutné do procesu zasahovat.
\item Některý z bodů se nachází mezi UWL a UCL případně mezi LWL a LCL. Pokud nastane tato možnost, tak se bez ohledu na kontrolní interval provede další výběr. Pokud nově získaný bod leží na intervalu mezi výstražnými mezemi, není vyžadován zásah do procesu. V případě, že se tento bod nachází mimo výstražné meze, jedná se o signál, že zde působí nějaké vymezitelné příčiny a musí se provést zásah do procesu.
\end{itemize}

\textit{(Tošenovský a Noskievičová, 2000, str.173)}
Tabulka 1 Nejčastěji používané testy nenáhodných seskupení
(Zdroj: Tošenovský a Noskievičová, 2000, str.174)

<table>
<thead>
<tr>
<th>Situace v regulačním diagramu</th>
<th>Možné vymezené příčiny</th>
</tr>
</thead>
<tbody>
<tr>
<td>Popis</td>
<td>Regulační diagram (R)</td>
</tr>
<tr>
<td></td>
<td>- zvětšení rozptylu vlivem změny v prvcích procesu v daném okamžiku</td>
</tr>
<tr>
<td></td>
<td>- změna měřidla, kontrolora</td>
</tr>
<tr>
<td>Body mimo regulační meze</td>
<td>- vylepšení dat</td>
</tr>
<tr>
<td></td>
<td>Regulační diagram (x̅)</td>
</tr>
<tr>
<td></td>
<td>- proces se posunul právě u dané podskupiny</td>
</tr>
<tr>
<td></td>
<td>- změna měřicího systému</td>
</tr>
<tr>
<td>9 bodů za sebou leží nad CL nebo pod CL</td>
<td>Regulační diagram (R)</td>
</tr>
<tr>
<td></td>
<td>- zvětšení (zmenšení) rozptylu vlivem změny v prvcích procesu</td>
</tr>
<tr>
<td></td>
<td>- změna měřidla, kontrolora</td>
</tr>
<tr>
<td></td>
<td>- vylepšení dat</td>
</tr>
<tr>
<td></td>
<td>Regulační diagram (x̅)</td>
</tr>
<tr>
<td></td>
<td>- změna měřidel, způsobu měření</td>
</tr>
<tr>
<td></td>
<td>- změna prvků procesu</td>
</tr>
<tr>
<td>6 bodů za sebou stoupá nebo klesá (trend)</td>
<td>Regulační diagram (R)</td>
</tr>
<tr>
<td></td>
<td>- zvětšení (zmenšení) rozptylu vlivem změny v prvcích procesu</td>
</tr>
<tr>
<td></td>
<td>- změna měřidla, kontrolora</td>
</tr>
<tr>
<td></td>
<td>- vylepšení dat</td>
</tr>
<tr>
<td></td>
<td>Regulační diagram (x̅)</td>
</tr>
<tr>
<td></td>
<td>- opotřebení nástroje</td>
</tr>
<tr>
<td>Oba regulační diagramy</td>
<td>Oba regulační diagramy</td>
</tr>
<tr>
<td></td>
<td>- nesprávně vypočtené meze</td>
</tr>
<tr>
<td></td>
<td>- nesprávně kalibrované měřidlo</td>
</tr>
<tr>
<td></td>
<td>- podskupiny obsahují výrobky ze dvou či více strojů</td>
</tr>
</tbody>
</table>
15 bodů v řadě za sebou leží ve vnitřní třetině pásma mezi regulačními mezemi - zlepšení procesu

<table>
<thead>
<tr>
<th>UCLOba regulační diagramy</th>
<th>CL</th>
<th>LCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>- nesprávně vypočtené meze</td>
<td>- nesprávně zakreslené body</td>
<td></td>
</tr>
<tr>
<td>- nesprávně kalibrované měřidlo</td>
<td>- podskupiny obsahují výrobky ze dvou či více strojů, v jednom výběru jsou výrobky z jednoho stroje</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- změření v procesu, v metodách měření</td>
<td></td>
</tr>
</tbody>
</table>

8 bodů za sebou leží na obou stranách CL, ale žádná ve vnitřní třetině pásma mezi regulačními mezemi

1.2.3 Členění regulačních diagramů

V dnešní době v sobě skryvá statistická regulace procesů velice širokou škálu prostředků analýzy procesu. V následující tabulce jsou uvedena různá členění dle vybraných hledisek.

(Tošenovský a Noskievičová, 2000, str.175)

Tabulka 2 Členění regulačních diagramů

(Zdroj: Tošenovský a Noskievičová, 2000, str. 175-176)

<table>
<thead>
<tr>
<th>Hledisko</th>
<th>Typy regulačních diagramů</th>
</tr>
</thead>
</table>
| **Počet regulačních mezí** | • Regulační diagramy pro jednostrannou regulaci
• Regulační diagramy pro oboustrannou regulaci |
| **Charakter regulované veličiny** | • Regulační diagramy SPC měřením
• Regulační diagramy SPC srovnáváním |
| **Počet znaků jakosti simultánně sledovaných na jednotce výběru** | • Regulační diagramy pro sledování jednoho znaku jakosti (klasické Shewhartovy diagramy)
• Regulační diagramy pro sledování více znaků jakosti najednou (např. Hotellingův diagram) |
| **Stupeň opakovatelnosti procesu** | • Regulační diagramy pro proces s vysokým stupněm opakovatelnosti (klasické Shewhartovy regulační diagramy)
• Regulační diagramy pro procesy s nízkým stupněm opakovatelnosti (např. cílové standardizované diagramy) |
Zohlednění předchozích hodnot výběrové charakteristiky ve výpočtu aktuální hodnoty výběrové charakteristiky
- Regulační diagramy bez paměti (klasické Shewhartovy diagramy)
- Regulační diagramy s pamětí (např. diagramy CUSUM, EWMA)

Použité testové kritérium
- Regulační diagramy pro monitorování polohy procesu (např. diagram \bar{x})
- Regulační diagramy pro sledování stejnoměrnosti procesu (např. diagram R, s)
- Regulační diagramy pro sledování počtu, resp. podílu neshodných jednotek (např. diagram p)
- Regulační diagramy pro sledování počtu resp. podílu neshod (např. diagram c)

Zohlednění rizika zbytečného signálu α a rizika chybějícího signálu β
- Regulační diagramy pracující pouze s rizikem α (klasické Shewhartovy diagramy)
- Regulační diagramy zohledňující oba druhy rizika

Závislost hodnot regulované veličiny
- Regulační diagramy pro nezávislá data (např. klasické Shewhartovy diagramy)
- Regulační diagramy pro nezávislá data (např. diagram reziduí, dynamický EWMA diagram)

1.2.4 Obecný postup při sestrojení a analýze regulačního diagramu

Poznatky týkající se regulačních diagramů lze shrnout do následujících devíti základních bodů. Tyto kroky je nutné provést bez ohledu na metodu SPC, která byla použita.

1. **Volba regulované veličiny**
2. **Sběr a záznam dat**
3. **Ověření předpokladů o datech**
4. **Volba rozsahu výběru**
5. **Volba vhodného regulačního diagramu**
6. Výpočet hodnot zvoleného testového kritéria (výběrové charakteristiky) pro jednotlivé výběry

7. Ověření a zajištění statistické zvládnutosti procesu

8. Ověření a zajištění statistické způsobilosti procesu

9. Vlastní regulace procesu

(Tošenovský a Noskievičová, 2000, str. 176)

1.3 Normální rozdělení

Použití některých statistických metod či postupů mnohdy velice blízce souvisí s oprávněností předpokladu o normálním rozdělení sledovaných veličin. Poměrně častá podmínka normality vyplývá nejenom z toho, že odvozená řešení mají vlastnosti, se kterými se dobře pračuje, ale často to může být z méně oprávněného přesvědčení, že není obtížné této podmínce vyhovět.

(Hebák, 2004, s. 15)

Náhodná veličina má normální rozdělení s parametry μ a σ², jestliže má její hustota pravděpodobnosti tvar

$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

kde $-\infty < \mu < +\infty$, $\sigma^2 > 0$. Normální rozdělení je symetrické a jeho hustota pravděpodobnosti je symetrická kolem bodu μ.

(Marek, 2012, s. 161)

1.3.1 Test dobré shody χ²

Tento test používáme pro testování hypotézy, že náhodný výběr pochází z nějakého zvoleného pravděpodobnostního rozdělení. Je možné testovat zvolené rozdělení s danými (známými) parametry nebo z náhodného výběru tyto parametry odhadnout a testovat shodu empirického a zvoleného rozdělení s odhadnutými parametry. Předpokládejme tedy, že máme náhodný výběr o rozsahu n z rozdělení s distribuční funkcí $F(x;\Theta)$, kde Θ je k-rozměrný vektor známých nebo neznámých parametrů.

(Malá, 2013)
1.3.2 Kolmogorovův-Smirnovův test

Kolmogorovův-Smirnovův test je jednou z možností, jak lze testovat hypotézu o rozdělení, ze kterého pochází výběr. Tento test pracuje na základě porovnávání empirické a teoretické distribuční funkce. Kolmogorovův-Smirnovův test na rozdíl od testu χ^2 předpokládá nejen spojité teoretické rozdělení, ze kterého daný náhodný výběr pochází, ale také znalost parametrů tohoto rozdělení. (Malá, 2013)

1.3.3 Distribuční funkce

Pro popis pravděpodobnostního chování náhodné veličiny lze univerzálně použít distribuční funkce. Tato funkce přiřazuje každému reálnému číslu x pravděpodobnost, že náhodná veličina X nabude hodnoty menší než x. Takto definovaná distribuční funkce $F(x)$ se zapíše jako:

$$F(x) = P(X < x)$$

 ostrá nerovnost

Někdy se také lze setkat s poněkud odlišným zápisem

$$F(x) = P(X \leq x)$$

tupá nerovnost

takto zapsaná distribuční funkce s tupou nerovností má potom trochu jiné vlastnosti než distribuční funkce s ostrou nerovností. Např. není spojitá zleva, ale zprava. (Pavelka, 2000)

Je tedy třeba při čtení literatury či při používání softwaru sledovat, zda je v definici distribuční funkce použita ostrá či neostrá nerovnost. V případě nerespektování rozdílů mezi použitými nerovnostmi je možné získat při výpočtech nesprávné výsledky. (Marek, 2012)

1.4 Korelace

Korelační analýza poskytuje důležité informace o vztazích mezi měřenými veličinami. Používá se jako jedna z pomocných metod při řízení jakosti. Korelace určuje míru lineární
závislosti mezi proměnnými. Pomocí korelačních koeficientů r se zjišťuje, zda je příslušný korelační koeficient ρ nenulový. Pokud se hodnoty korelačních koeficientů bliží 1, můžeme říct, že se jedná o silnou závislost. O tom jak velkou hodnotu korelačního koeficientu je nutné považovat za statisticky významnou závislost, lze rozhodnout na základě testu významnosti korelačního koeficientu, který zjišťuje úroveň odlišnosti od nuly.

(TriloByte Statistical Software)

![Graf korelace](image.png)

Obrázek 2 Graf korelace

(Zdroj: Vlastní zpracování v programu QC Expert)
2 REGULAČNÍ DIAGRAMY

2.1 Shewhartovy regulační diagramy

Pojem regulační diagram byl zaveden W. Shewhartem v r. 1924. Tento regulační diagram má sloužit jako diagnostický nástroj pro posouzení zda je proces ve statisticky zvládnutém stavu. Shewhartův diagram musí vždy obsahovat informace jak o sledované hodnotě, tak o její variabilitě.

Základní předpoklady pro sestavení Shewhartova diagramu:

Normalita dat

Konstantní střední hodnota procesu

Konstantní směrodatná odchylka

Nezávislost dat

Nepřítomnost vybočujících hodnot

(Pupka)

2.1.1 Regulační diagramy (x, S)

Při konstrukci tohoto diagramu se vychází z logických podskupin, které tvoří průměry a směrodatné odchylky. Tyto diagramy se používají pro malé výběry, ale lze je použít pro sledování úrovně procesu i v případě, že se jedná o větší výběry.

Regulační meze a základní linie se určí u diagramu x – průměr dle následujících vztahů:

\[CL = \bar{x} \]

\[UCL = \bar{x} + 3 \frac{\hat{\sigma}}{\sqrt{n}} \]

\[LCL = \bar{x} - 3 \frac{\hat{\sigma}}{\sqrt{n}} \]

Pro regulační diagram S, lze základní linie a regulační meze určit dle vztahů:

\[ZL = \bar{s} \]

\[UCL = \bar{s} \sqrt{\frac{\chi^2_{0.99865}(n-1)}{n-1}} \]
2.1.2 Regulační diagram R

Jako alternativu diagramu S lze použít diagram R pro rozpětí. Rozpětí podskupiny určuje rozdíl největší a nejmenší hodnoty \(R_i = x_{\text{max},i} - x_{\text{min},i} \). Tento diagram R lze s omezenou přesností použít pro výpočet směrovatelné odchylky.

Pro určení mezí a základní linie se používají vztahy založené na odhadu směrovatelné odchylky:

\[
\hat{\sigma}_R = d_3 \frac{\bar{R}}{d_2}
\]

\[
CL = \bar{x}
\]

\[
UCL = \bar{x} + 3 \hat{\sigma}_R = D_4 \bar{R}
\]

\[
LCL = \bar{x} - 3 \hat{\sigma}_R = D_3 \bar{R}
\]

(Kupka, 106-107)

2.1.3 Regulační diagram pro individuální hodnoty \((x_i)\)

Tento diagram se používá v případě, že z nějakého důvodu není vhodné stanovování podskupin. Tyto podskupiny jsou v tomto případě nahrazeny přímo naměřenými hodnotami \(x_i\). Pro zjišťování variability se používá regulační diagram R. Rozpětí podskupiny je však nahrazeno naměřenými hodnotami. Tato hodnota se nazývá klouzavé rozpětí MR (moving range). (Kupka)

\[
MR_i = |x_i + x_{i-1}|
\]

Regulační meze se určí dle následujících vztahů:

\[
CL = \bar{x}
\]

\[
UCL = \bar{x} + 3 \frac{MR}{d_2}
\]

\[
LCL = \bar{x} - 3 \frac{MR}{d_2}
\]
2.2 Hotellingův diagram

V případě, že se na jednom výrobku sleduje pouze jeden znak jakosti, používá se klasický Shewhartův diagram. Pokud se, ale sleduje několik znaků jakosti najednou, může být tento postup nepřesný. Jedním důvodem je, že se pro každý znak jakosti sestavuje samostatný Shewhartův diagram. A druhým důvodem je, že data spolu mohou vzájemně korelovat. V případě, že chceme sledovat více znaků jakosti na jednom produktu, je lépe použít místo např. Shewhartova diagramu Hotellingův diagram jako nástroj pro SPC. Testovým kritériem je v tomto případě jednorozměrná Hotellingova statistika T^2, jejíž maticový zápis u regulačních diagramů pro výběrové průměry lze zapsat jako:

$$T^2_j = n * (\bar{x}_j - \bar{x})^T C^{-1} (\bar{x}_j - \bar{x}) \quad \text{pro } j = 1, 2, \ldots, k$$

- n = rozsah výběru;
- \bar{x}_j = vektor výběrových průměrů všech znaků jakosti v j-tém výběru;
- \bar{x} = vektor, pomocí něhož se odhadují hodnoty μ pro simultánně sledované znaky jakosti
- C = kovariáční matice

(Tošenovský a Noskievičová, 2000, str. 240-242)

Každou hodnotu T^2_j je nutno porovnat s regulačními mezí UCL. Tato horní regulační mez se vypočte dle vztahu:

$$UCL = \left(\frac{k * n * m - k * m + m}{k * n - k - m + 1} \right) * F_{(m, k * n - k - m + 1)}(\alpha),$$

kde $F_{(m, k * n - k - m + 1)}(\alpha)$ znázorňuje kritickou hodnotu Fischerova-Snedecorova rozdělení.

POZN.

Hodnota T^2_j se porovnává pouze s horní regulační mezí a to z důvodu, že tento diagram nemá LCL, ale jen UCL. U Hotellingerova diagramu předpokládáme více-rozměrné normální rozdělení. *(Tošenovský a Noskievičová, 2000, str. 240-242)*
2.3 EWMA

EWMA je zkratkou anglického názvu Exponentially Weighted Moving Average (exponenciálně vážené klouzavé průměry) označované někdy také jako exponenciální zapominání nebo také GMA (Geometric Moving Average). Tento diagram se dá použít obdobně jako u Shewhartovy diagramy. Hodí se především v situacích, kdy v procesu dochází k náhlým malým a přetrvávajícím změnám. Při použití je nutné splnění předpokladu nezávislosti sledovaných znaků. Každý bod EWMA diagramu W_j je váženým průměrem nově naměřené hodnoty x_j, případně průměru podskupiny o velikosti N a posledního zaznamenaného bodu diagramu W_{j-1}. Základním volitelným parametrem diagramu EWMA je váha r, která se může pohybovat mezi hodnotami 0 a 1. Pokud je hodnota r ve tvaru $r = 1$, odpovídá Shewhartově diagramu. Čím více se hodnota r blíží 0, tím pomaleji reagují vynášené hodnoty W_j na lokální změny ve sledovaném procesu. (Meloun a Militký, 2006, s. 939) (Tošenovský a Noskievičová, 2000, str. 225)

Pokud vhodně zvolíme parametr r, můžeme diagram nastavit tak, aby nereagoval na lokální odchylky od předepsaných hodnot tak rychle, jak je tomu u Shewhartova diagramu. EWMA diagram se tedy používá především v oblastech, kde k takovým odchylkám dochází, aniž by se jednalo o poruchu. Navíc má tento diagram tendenci ke zvýraznění systematické dlouhodobé odchylky tím způsoben, že se vrací zpět k předepsané hodnotě pomaleji než vlastní měřená veličina. Tato vlastnost EWMA diagramu je tím výraznější, čím je r menší. (Meloun a Militký, 2006, s. 939)

Hodnoty se W_j vypočítávají dle vzorce:

$$W_j = rx_j + (1-r)W_{j-1}$$

r = váha

x_j = naměřená hodnota

Hodnota r se obvykle volí mezi 0,15 a 0,4. Nejčastěji se volí $r = 0,25$.

K určení regulačních mezin se využívá odhad rozptylu W_j. Vzhledem k předpokladu normálního rozdělení W_j lze zde použít pro konstrukci regulačních mezin pravidlo 3 sigma. Takto definované meze pak odpovídají Shewhartově diagramu. Mají-li data normální rozdělení s konstantním rozptylem a střední hodnotou, je pravděpodobnost překročení mezi asi 0,25%. (Kupka, str.146)
Rozptyl získáme ze vztahu:

$$S^2_{wj} = \frac{\sigma^2}{N} \frac{r}{2-r} (1 - (1-r)^{2j})$$

Toleranční meze UCL a LCL se následně stanoví podle vztahů:

$$UCL = d + 3 \sqrt{S^2_{wj}}$$
$$LCL = d - 3 \sqrt{S^2_{wj}}$$

(Kupka, str. 146)

2.4 CUSUM

(Montgomery, 676-677)

Základním omezením je předpoklad, že jednotlivé dílec výběry jsou nezávislé. Pokud je, ale účelem z co nejmenšího počtu výběrů zachytit nenáhodný trend (indikovaný např. posunem střední hodnoty), je vhodné použít regulačních diagramů typu CUSUM.

Diagramy CUSUM navrhl E. S. Page v roce 1954. Tyto diagramy jsou založené na principu kumulativních součetů (anglicky CUmulative SUMs). Hodí se zejména pro rychlou detekci relativně malého posunu střední hodnoty v procesu. Pokud je srovnáno s klasičními Shewhartovými diagramy zjistíme, že je jejich detekce až o řád rychlejší. Pro konstrukci CUSUM se používá postupných součetů odchylek měřené veličiny od předepsaného nebo očekávané konstantní cílové hodnoty K_0. Pro takovýto proces se ve statistice používá označení tzv. náhodné kráčení.

(Kupka), (Meloun a Militky, 2002)

CUSUM mají ve srovnání s Shewhartovými diagramy několik výhod:

- Tyto diagramy jsou mnohem citlivější na malé a střední změny v procesu ($0,5\sigma - 2,0\sigma$).
- CUSUM je daleko efektivnější při identifikaci zbytečného signálu $\alpha \leq 0,1$ a to tím více, čím je α menší.
• Detekce malých a středních změn v procesu je 2-4x rychlejší při stejném rozsahu výběru n.
• Metoda CUSUM pracuje s menšími rozsahy n, tudíž jsou zde i nižší náklady na kontrolu a to při stejném riziku α.
• CUSUM umožňuje přesněji určit okamžik vzniku změny parametrů rozdělení u regulované veličiny a dále odhadnout i velikost a směr působení.

Na ose x se vynáší pořadí výběru k, a na ose y pak kumulativní součet odchylek zvolené výběrové charakteristiky. Hustotu testového kritéria můžeme určit dle vzorce:

$$C_k = \sum_{j=1}^{k} (\bar{x}_j - \mu_0) = C_{k-1} + (\bar{x}_k - \mu_0)$$

C₀ = 0, kde k je pořadí výběru a \(\bar{x}_j\) je výběrový průměr z hodnot regulované veličiny v j-tém výběru.

(Tošenovský a Noskievičová, 2000, str. 205)

2.4.1 Interpretace průběhu diagramu CUSUM

Průběh diagramu CUSUM můžeme interpretovat pomocí této úvahy

1. Jestliže je proces udržován na cílové hodnotě \(\mu_0\), pak body v diagramu zachovávají směr přibližně rovnoběžný s osou x.
2. Jestliže došlo k náhle změně střední hodnoty regulované veličiny přibližně v době, kdy byl odebrán q-tý výběr, a tato změna přetrvává, pak body v diagramu počínaje bodem \([q, C_q]\) náhodně oscilují kolem přímky, která není rovnoběžná s osou x.
3. Jestliže střední hodnota procesu roste nebo klesá a ještě se nestabilizovala (v procesu existuje trend), pak body v diagramu tvoří křivku viditelně se zakrivující nahoru nebo dolů.

(Tošenovský a Noskievičová, 2000, str. 205)

2.4.2 Rozhodovací kritéria diagramu CUSUM

Samotnou analýzou průběhu CUSUM diagramu se nedá s jistotou určit, zda změna průběhu diagramu signalizuje významnou odchylku, tzn. působení vymezitelného vlivu na proces, nebo jde o odchylku náhodnou. Z tohoto důvodu je nutno doplnit diagram o rozhodo-
vací kritéria, pomocí kterých tato skutečnost zjistit lze. V praxi se používají nejčastěji dva základní druhy kritérií:

1. rozhodovací maska
2. rozhodovací interval

(Tošenovský a Noskievičová, 2000, str. 205)

1. **Rozhodovací maska**

Pokud nemáme k dispozici vhodný počítačový software, který pracuje s diagramy CUSUM (masku automaticky sestrojuje a vykreslí do diagramu), je možné masku nakreslit na průsvitnou fólii a přiložit na graf. Tato maska se přiloží na diagram CUSUM tak, aby byla osa s úhlu 2Θ s osou diagramu x a aby bod P překrýval poslední zaznamenanou hodnotu v diagramu. (Tošenovský a Noskievičová, 2000, str. 208), (Meloun a Militky, 2002)

![Obrázek 3 Oboustranná rozhodovací V-maska](image)

Obrázek 3 Oboustranná rozhodovací V-maska

(Zdroj: (Noskievičová,Tošenovský,2000,str.208)

2. **Rozhodovací interval**

(Tošenovský a Noskievičová, 2000, str. 214), (Kovářík, 2012)
3 TAGUCHIHO METODY ON-LINE

3.1 Ztrátová funkce

(Tošenovský a Noskievičová, 2000, str. 130)

Celá Taguchiho koncepce stojí na předpokladu neustálého zlepšování kvality produktu v důsledku zlepšování úrovně výrobního procesu. *(Taguchi, 2005)*

U každého výrobku se sleduje určitá charakteristika, podle které se posuzuje kvalita, např. hmotnost, pevnost atd. Tyto charakteristiky mají stanovenou optimální hodnotu \(T \), tzv. cílovou hodnotu (Target Value). Jakákoliv odchylka od cílové hodnoty, ať už směrem k hornímu nebo k dolnímu specifikačnímu limitu, představuje ztrátu pro odběratele, ale zároveň i pro podnik. Tyto ztráty, i když jsou v rámci tolerance, jsou tím větší, čím je skutečná hodnota ukazatele kvality vzdálenější od cílové hodnoty \(T \).

Tyto odchylky od \(T \) nám představují náklady, které bude muset vynaložit odběratel v souvislosti s nedodržením úrovně požadovaných vlastností výrobku. Jedná se například o náklady spojené s údržbou, seřizováním strojů, opravami apod. V našem podniku se tyto odchylky mohou projeviti nespojoveností zákazníků a následným snížením počtu objednávek. *(Tošenovský a Noskievičová, 2000, str. 130)*
3.1.1 Ztrátová funkce

\[L(Y) = k \times (Y - T)^2 \]

T \quad
\begin{align*}
\text{cílová hodnota ukazatele kvality}
\end{align*}

Y \quad
\begin{align*}
\text{skutečně dosažená úroveň ukazatele kvality}
\end{align*}

L(Y) \quad
\begin{align*}
\text{ztráta způsobená odchylkou od T}
\end{align*}

k \quad
\begin{align*}
\text{konstanta}
\end{align*}

(Obrázek 4 Taguchiho ztrátová funkce)

(Zdroj: Six Sigma: Koncepce a příklady pro řízení bez chyb)

(Tošenovský a Noskievičová, 2000, str. 131)
Obrázek 5 Ztrátová funkce se symetrickou tolerancí

(Zdroj: Noskievičová, Tošenovský, 2000, str. 134)

Obrázek 6 Ztrátová funkce s nesymetrickou tolerancí

(Zdroj: Noskievičová, Tošenovský, 2000, str. 134)
3.1.2 Standardizovaná ztrátová funkce

U ztrátové funkce může nastat problém s určením konstanty. *Aby se obešel problém s určením konstanty k, je možné upravit vzorec na tzv. standardizovaný tvar.*

\[
SL(Y) = \left(\frac{2}{USL - LSL} \right)^2 (Y - T)^2
\]

USL horní specifikační limit

LSL dolní specifikační limit

T cílová hodnota ukazatele kvality

Y skutečně dosažená úroveň ukazatele kvality

(Tošenovský a Noskievičová, 2000, str. 137)

3.1.3 Vícerozměrná ztrátová funkce

Standardizace ztrátové funkce umožňuje její zobecnění pro \(n \) – rozměrný případ, kdy je sledovaných znaků kvality \(n \). Tato vícerozměrná ztrátová funkce (Total Standarized Loss Function) značená TSL, má rovnici

\[
TSL(Y_1, \ldots, Y_n) = 4 \sum_{i=1}^{n} \left(\frac{Y_i - T_i}{USL_i - LSL_i} \right)^2
\]

(Tošenovský a Noskievičová, 2000, str. 137)

3.2 Celkové náklady na jakost

Při výpočtu celkových nákladů na jakost budou ztráty za nekvalitu v rámci tolerance, jen jednou z mnoha položek, které ovlivňují celkovou výši nákladů. I tak však uvidíme, že ztrátová funkce je důležitou součástí výpočtu. Existují různé možnosti, jak lze vyčíslit celkové náklady na jakost. U Taguchiho metod pro výpočet celkových nákladů se navíc rozlišuje, jaký typ kontroly byl použit při získávání dat.

(Tošenovský a Noskievičová, 2000, str. 138)

3.2.1 Kontrola všech výrobků

Provádí-li se 100% kontrola, pak celkové náklady na jakost určíme ze vzorce

\[
L = \frac{Q}{R} + \frac{A}{d^2} \sigma_0^2
\]
Q (roční) náklady na 100% kontrolu
R (roční) produkce v kusech
d funkční tolerance
A ztráta při překročení tolerance d

Výpočet s_0^2 závisí na způsobu odběru kontrolních vzorků a pro nejjednodušší případ, kdy máme výsledky měření $y_1, y_2, ..., y_n$ bude:

$$s_0^2 = \frac{1}{n-1} \left[(y_2 - y_1)^2 + (y_3 - y_2)^2 + (y_n - y_{n-1})^2 \right]$$

(Tošenovský a Noskievičová, 2000, str. 139)

3.2.2 Kontrola po n výrobcích

Pokud se neprovádí 100% kontrola a mezi dvěma kontrolami je vyrobeno n-výrobků, určí se celkové náklady pomocí vzorce (Tošenovský a Noskievičová, 2000, str. 141)

$$L = \frac{B}{n} + \frac{C}{u} + A \frac{D^2}{3} + \frac{A}{d^2} \left(\frac{n + 1}{2} + z \right) \frac{A}{d^2} \cdot s_m^2$$

A ztráta za překročení tolerance d
B cena kontroly (jednoho) výrobku
C cena opravy stroje (linky)
n kontrolní interval
u průměrný počet výrobků mezi opravami (poruchami)
d funkční tolerance
D výrobní tolerance
z počet výrobků zhotovených během kontroly
B/n cena kontroly na kus
C/u cena opravy na kus

$$(A/d^2) \cdot (D^2/3)$$ ztráty způsobené nepřesností výroby (připadající na kus)

$$\frac{A}{d^2} \cdot \frac{D^2}{u} \cdot \left(\frac{n+1}{2} + z \right)$$ ztráty za zmetky

$$\frac{A}{d^2} \cdot s_m^2$$ ztráty způsobené nepřesností měření
4 TEORETICKÁ VÝCHODISK A PRO PRAKTICKOU ČÁST

Cílem této práce je analyzovat pomocí statistických metod úroveň kvality výrobků ve firmě Toray Textiles Central Europe s.r.o. a následně vydělat doporučení, které by měla mít za následek zvýšení počtu kvalitních výrobků, snížení nákladů na kvalitu a zjednodušení procesu analýzy dat získaných z výroby.

V teoretické části jsem se věnoval klasickým Shewhartovým regulačním diagramům a podminkám, za kterých je lze použít. Následně jsem se věnoval vícevrstvým statistickým metodám regulace procesu, jako jsou například. Hotellingovy diagramy, CUSUM a EWMA. Tyto diagramy jsem srovnal se Shewhartovými diagramy a zjistil, že v některých případech je jejich použití daleko vhodnější.

V poslední části jsem se věnoval Taguchiho metodám a to zejména ztrátové funkci. Zjistil jsem, že použití těchto metod je velice rozsáhlé a oproti standardně používaným metodám nabízejí určité výhody, např. ztrátu za nekvalitu vyjadřují peněžně.

V praktické části aplikuji zmíněné metody na data získaná ve firmě Toray Textiles Central Europe s.r.o. Otestuji možnosti použití regulačních diagramů a na základě výsledků testů stanovím hypotézy, podle kterých sestavím regulační diagramy. Navíc ještě pro získaná data sestrojím vícenásobnou ztrátovou funkce. Výsledky regulačních diagramů a ztrátové funkce podrobím analýze a následně vyvodím doporučení.
II. PRAKTICKÁ ČÁST
5 PŘEDSTAVENÍ SPOLEČNOSTI

Toray Textiles Central Europe s.r.o. je dceřinou společností Toray Industries Inc. Ta byla založena v lednu 1926 v Japonsku a je mateřskou společností pro 238 poboček, které tvoří společenství Toray Group. Toray je největším výrobcem vláken a textilu v Asii.

Toray Group se zaměřuje na výrobu a prodej v šesti základních oblastech:

1. Vlákn a textil
2. Plasty a chemické produkty
3. Zdravotnické produkty a farmacie
4. Životní prostředí a stavební hmoty
5. Uhliková vlákna a kompozity
6. Výrobky pro informační technologie

Toray Group je v Evropě zastoupena pěti výrobními závody (1 Velká Británie, 1 Itálie, 1 Česká republika, 2 Francie), třemi obchodními pobočkami (Německo, Velká Británie a Itálie) a finanční institucí v Nizozemí. (interní materiály společnosti)
5.1 Toray Textiles Central Europe s.r.o. (TTCE)

5.1.1 Historie

(interní materiály společnosti)

5.1.2 Výrobky

Hlavními výrobky TTCE jsou hladký taft, texturovaný taft a pongee. Jsou to lehké tkaniny jednoduché plátnové vazby ze 100% polyesterového hedvábí. Tyto tkaniny se primárně využívají při výrobě oblečení, ale dají se využít i jinak např. jako dekorativní materiál nebo pro reklamní potisky.

Obrázek 7 Vzorkovnice

(Zdroj: interní materiály)

Nezanedbatelnou část výroby tvoří také technická polyamidová tkanina, která se používá v automobilovém průmyslu na výrobu airbagů, a ofsetové hliníkové desky, které se používají v polygrafickém průmyslu např. pro tisk časopisů, obrázků atd.

(interní materiály společnosti)
Obrázek 8 Tkalcovna

(Zdroj: interní materiály)

Obrázek 9 Hliníkové desky pro polygrafický průmysl

(Zdroj: interní materiály)
5.1.3 Organizační struktura

![Organizační struktura Toray Textiles Central Europe s.r.o.](image)

(Zdroj: interní materiály)

5.2 Použitý statistický program QC Expert

Data jsem zpracoval pomocí statistického programu QC Expert. Tento program byl vytvořen ve společnosti TriloByte Statistical Software.

Pokud spustíme tento program, objeví se nám tři okna, označená jako Data, Grafy a Protokol.

Pokud tedy chceme analyzovat data, zkopírujeme je do okna data. Následně si klikneme na tlačítko QC.Expert a zde si vybereme úkon, který chceme, aby program provedl.

* (TriloByte Statistical Software)

5.2.1 Data

![Obrázek 11 QC Expert - Data](image)

* (Zdroj: vlastní zpracování v programu QC Expert)

5.2.2 Grafy

V okně Grafy jsou po výpočtu zobrazeny příslušné grafy a diagramy, které slouží k vizuální diagnostice dat.

* (TriloByte Statistical Software)
5.2.3 Protokol

V okně Protokol se zobrazují výsledky výpočtů, případně závěry vyplývající z testů.

Obrázek 12 QC Expert - Grafy

(Zdroj: vlastní zpracování v programu QC Expert)

Obrázek 13 QC Expert - Protokol

(Zdroj: vlastní zpracování v programu QC Expert)
5.2.4 Základní charakteristika výrobku

Pro výrobek z technické polyamidové tkaniny se ve firmě používá označení batch. Z každého batche se standardně odebírají vzorky pro analýzu ve třech úsecích. Na začátku, uprostřed a na konci, a děje se tak na základě dlouholetých zkušeností, a to proto, že technická polyamidová tkanina má v každém bodě své délky trochu jiné vlastnosti a bylo vypozorováno, že největší rozdíly mezi naměřenými hodnotami se většinou vyskytují na začátku, uprostřed a na konci. Tedy v místech, odkud se odebírají vzorky.

Firma TTCE s.r.o. vyrábí více druhů airbagové tkaniny ve své práci se budu věnovat analýze dat z technické polyamidové tkaniny označované jako kvalita 3660. Běžný rozměr batche pro tuto kvalitu je 2200 m². V současnosti se cena za 1 m² této tkaniny pohybuje okolo 43,70 Kč/m².

5.2.5 Předpoklady pro sestavení regulačních diagramů

Ve firmě se standardně pro sledování zvládnutosti procesu používají Shewhartovy regulační diagramy. Abych získal základ pro posouzení výsledků použitých regulačních diagramů, sestrojím Shewhartovy regulační diagramy a výsledky následně srovnám s některými dalšími použitými metodami.

Pro správnou aplikaci klasických Shewhartových diagramů je nutné otestovat:

- normalitu
- nezávislost dat
- homogenitu

Pokud jsou všechny předpoklady splněny, je vhodné použít Shewhartovy diagramy. Pokud ne je na zvážení, zda nepoužít jiný typ regulačních diagramů.

Pro sestavení Shewhartových regulačních diagramů jsem vybral charakteristiky kvality označované jako Tear strength - osnova a Tear strength - útek.

5.3 Test normality

Nejdříve si stanovím hypotézy pro testování, ze kterých následně doporučím nebo nedoporučím použití pro regulační diagramy.

H₀ data mají normální rozdělení.

H₁ data mají jiné než normální rozdělení
5.3.1 Posouzení normality pomocí exploratorních grafů

Pro posouzení zda mají data normální rozdělení mi program QC Expert nabízí několik možností např. vizuální posouzení na základě grafů vymodelovaných z použitých dat.

Jedná se to tzv. exploratní grafy. Z těchto grafů jsem sice pro každý testovaný úsek vybral jiný graf, ale výsledky jsou stejné.

Pro vizuální posouzení normality v prvním úseku jsem použil kruhový graf. Jak můžete vidět, tak se zelený kruh představující optimální tvar pro normální rozdělení, téměř kryje s černým kruhem, který znázorňuje analyzovaná data. Oba kruhy se téměř kryjí, což znaméná, že data mají normální rozdělení.

Pro vizuální posouzení normality v druhém úseku jsem analyzoval pomocí Q-Q grafu. Jak můžete vidět, modré body, které znázorňují testovaná data, téměř přesně leží na černé přímce, která reprezentuje ideální tvar normálního rozdělení. Z toho se dá usoudit, že data v druhém úseku analyzovaná pomocí Q-Q grafu mají normální rozdělení.
Pro vizuální analýzu dat z třetího úseku batche jsem použil graf hustoty pravděpodobnosti.

Při porovnání červeně vyznačeného jádrového odhadu hustoty a zeleně vyznačené Gaussovy křivky normálního rozdělení, vidíme, že se přibližně shodují. Z toho usuzuji, že data mají normální rozdělení.

5.3.2 Kolmogorov-Smyrnov test

Abych si byl úplně jistý, že jsem předchozí grafy správně interpretoval, otestuji data ještě pomocí Kolmogorov-Smyrnova testu normality dat.

Tear strength - osnova

Tabulka 3 K-S test (Zdroj: vlastní zpracování v programu QC Expert)

<table>
<thead>
<tr>
<th>Sloupce</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kritický kvantil chi2(22)</td>
<td>33,92443847</td>
<td>33,92443847</td>
<td>33,92443847</td>
</tr>
<tr>
<td>Testové kritérium D</td>
<td>28,13466656</td>
<td>16,13006937</td>
<td>17,61175733</td>
</tr>
<tr>
<td>p-hodnota</td>
<td>0,171261064</td>
<td>0,809378303</td>
<td>0,728743029</td>
</tr>
<tr>
<td>Normalita</td>
<td>Přijata</td>
<td>Přijata</td>
<td>Přijata</td>
</tr>
</tbody>
</table>
Tear strength - útek

Tabulka 4 K-S test (Zdroj: vlastní zpracování v programu QC Expert)

<table>
<thead>
<tr>
<th>Sloupec</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kritický kvantil chi2(22)</td>
<td>33,92443847</td>
<td>33,92443847</td>
<td>33,92443847</td>
</tr>
<tr>
<td>Testové kritérium D</td>
<td>24,0089868</td>
<td>20,5906657</td>
<td>18,30055543</td>
</tr>
<tr>
<td>p-hodnota</td>
<td>0,346758518</td>
<td>0,546143512</td>
<td>0,688027084</td>
</tr>
<tr>
<td>Normalita</td>
<td>Přijata</td>
<td>Přijata</td>
<td>Přijata</td>
</tr>
</tbody>
</table>

Z výsledků Kolmogorov-Smyrnova vyplývá, že byla normalita přijata. Z toho důvodu nezamítám hypotézu H_0, že data mají normální rozdělení. A tudíž je možné je použít při sestavení Shewhartových diagramů.

5.4 Korelace

Další podmínkou pro sestavení Shewhartových regulačních diagramů je nezávislost dat. Provedl jsem korelační analýzu všech třech úseků batche.

Obrázek 17 Tear strength osnova/útek (úsek č.1)

(Zdroj: Vlastní zpracování v programu QC Expert)

Párová korelace dat v prvním úseku batche je 0,409321.

Parciální korelace dat v prvním úseku je 0,258129
Obrázek 18 Tear strength osnova/útek (úsek č.2)
(Zdroj: Vlastní zpracování v programu QC Expert)

Párová korelace dat ve druhém úseku batche je 0,490888.

Parciální korelace dat ve druhém úseku je 0,249367.

Obrázek 19 Tear strength osnova/útek (úsek č.3)
(Zdroj: Vlastní zpracování v programu QC Expert)

Párová korelace dat ve třetím úseku batche je 0,397849.

Parciální korelace dat ve třetím úseku je 0,228622.

Z výsledků korelační analýzy lze říci, že ve všech třech úsecích batche jsou data lineárně závislá a tudíž bych nedoporučoval použití Shewhartových regulačních diagramů.

5.5 Homogenita

Jako třetí parametr pro rozhodnutí o použití Shewhartových diagramů jsem si stanovil homogenitu. Tedy nepřítomnost vybočujících dat.
Tabulka 5 Homogenita (Zdroj: vlastní zpracování v programu QC Expert)

<table>
<thead>
<tr>
<th>Tearstrength - osnova</th>
<th>Sloupce</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homogenita</td>
<td>Přijata</td>
<td>Přijata</td>
<td>Přijata</td>
<td></td>
</tr>
<tr>
<td>Počet vybočujících bodů</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Spodní mez</td>
<td>126,4545</td>
<td>125,598587</td>
<td>121,418587</td>
<td></td>
</tr>
<tr>
<td>Horní mez</td>
<td>155,1355</td>
<td>156,213413</td>
<td>152,051413</td>
<td></td>
</tr>
</tbody>
</table>

Jak můžete vidět výstup z programu QC Expert pro Tear strength - osnova ukazuje absenci vybočujících bodů a tudíž splňuje předpoklad pro sestavení regulačního diagramu.

Tabulka 6 Homogenita (Zdroj: vlastní zpracování v programu QC Expert)

<table>
<thead>
<tr>
<th>Tearstrength - útek</th>
<th>Sloupce</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homogenita</td>
<td>Zamítnuta</td>
<td>Přijata</td>
<td>Přijata</td>
<td></td>
</tr>
<tr>
<td>Počet vybočujících bodů</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Spodní mez</td>
<td>140,0769565</td>
<td>134,5919348</td>
<td>136,481587</td>
<td></td>
</tr>
<tr>
<td>Horní mez</td>
<td>171,5230435</td>
<td>170,5380652</td>
<td>169,608413</td>
<td></td>
</tr>
</tbody>
</table>

Naopak při testování homogenity u Tear strength - útek, byla homogenita v prvním úseku zamítnuta v důsledku jednoho vybočujícího bodu. Vzhledem k tomu, že se jedná pouze o jeden vybočující bod a to pouze v prvním úseku batche, přikláním se k tvrzení, že je možné použít Shewhartovy regulační diagramy.

5.6 Shewhartovy regulační diagramy

Před sestavením těchto diagramů musím říct, že jsem přijal pouze dvě podmínky ze tří pro sestavení diagramů. Z tohoto důvodu zde nastává určitá možnost, že budou výsledky částečně zkresleny.

Shewhartův regulační diagram (S)
Shewhartův regulační diagram (S) u osnovy nám ukazuje, že všechny body jsou uvnitř regulačních mezí, má se tedy za to, že proces je statisticky zvládnutý. Naopak diagram sestavený pro útek vykazuje bod mimo kontrolní meze u vzorku č. 16, což napovídá tomu, že se jedná o neshodný výrobek.

Analýzou Shewhartova regulačního diagramu (R) dospějeme k podobným závěrům jako tomu bylo u předchozího diagramu. Musíme tedy konstatovat, že u vzorku č. 16 došlo k nedodržení požadované pevnosti.

5.7 Hotellingův diagram

Pro konstrukci Hotellingova diagramu jsem zvolil charakteristiky kvality (Tear strength - osnova, Tear strength - útek). Hotellingův diagram předpokládá, že se jedná o vicerozměrné normální rozdělení. Hypotézu o tom, že data mají normální rozdělení jsem otestoval.
pomocí Kolmogorova-Smirnovova testu v předchozí kapitole. Z testu normality mi vyšlo, že data mají normální rozdělení. Vzhledem k tomu, že jsem ty samá data analyzoval pomocí Shewhartových diagramů, stanovím podle toho také hypotézy:

H₀: Hotellingův diagram se bude významně lišit od Shewhartových regulačních diagramů.

H₁: Hotellingův diagram se nebude významně lišit od Shewhartových regulačních diagramů.

Obrázek 22 – Hotellingův diagram – Tear strength

(Zdroj: vlastní zpracování v programu QC Expert)

Z grafu je jasně vidět, že data ve výběru č. 13 výrazně překračují horní regulační mez. Při porovnání Hotellingova diagramu se Shewhartovým regulačním diagramem (S) můžeme jasně vidět, že v Shewhartově regulačním diagramu (S) - osnova, není signalizováno žádné překročení regulačních mezí, kdežto v Shewhartově regulačním diagramu (S) - útek, je znázorněno překročení mezí.

To samé zjistíme při porovnání Hotellingova diagramu se Shewhartovými regulačními diagramy (R). To mluví v neprospech hypotézy H₀ a podporuje přijetí hypotézy H₁, která nám říká, že se nebude Hotellingův a Shewhartův regulační diagram významně lišit.
Z tohoto důvodu není nutné posuzovat tyto zkoumané znaky kvality pomocí obou metod a je na zvážení, která metoda je zde vhodnější. Toto tvrzení ovšem nevylučuje možnost použití obou porovnávaných metod při ověřování jiných testovaných znaků kvality výrobku.

5.8 EWMA

Výhodou diagramu EWMA je to, že ho lze použít i v případě, že data jsou závislá. Z tohoto důvodu jsem pro tento dynamický diagram použil data označovaná jako Dostava - osnova a Dostava - útek. Zde mi totiž znaménkový test provedený v programu QC Expert řekl, že data jedné testované veličiny jsou závislá, zatímco u druhé tomu tak není.

5.8.1 Test závislosti

Dostava - osnova

Tabulka 7 Test závislosti pro Dostava – osnova

(Zdroj: Vlastní zpracování v programu QC Expert)

<table>
<thead>
<tr>
<th>Znaménkový test :</th>
<th>Data jsou závislá</th>
<th>Data jsou závislá</th>
<th>Data jsou závislá</th>
</tr>
</thead>
<tbody>
<tr>
<td>Závěr :</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dostava - útek

Tabulka 8 Test závislosti pro Dostava – útek

(Zdroj: Vlastní zpracování v programu QC Expert)

<table>
<thead>
<tr>
<th>Znaménkový test :</th>
<th>Data jsou nezávislá</th>
<th>Data jsou nezávislá</th>
<th>Data jsou nezávislá</th>
</tr>
</thead>
<tbody>
<tr>
<td>Závěr :</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.8.2 EWMA diagram

Obrázek 23 EWMA, klasický diagram - Dostava
(Zdroj: Vlastní zpracování v programu QC Expert)

Obrázek 24 EWMA, dynamický diagram - Dostava
(Zdroj: Vlastní zpracování v programu QC Expert)
Dynamický diagram u Dostava-osnova nám u výběru č. 47 nenaznačuje přiblížení k tolerančním mezím. Naopak oproti předchozímu diagramu ukazuje, že data u hodnot č. 1 a 16 jsou mimo meze. Z čehož vyplývá, že by se mohlo jednat o statisticky nezvládnutý proces.

Obrázek 25 EWMA, rezidua – Dostava

(Zdroj: Vlastní zpracování v programu QC Expert)

5.9 CUSUM

Pro aplikaci metody CUSUM jsem použil dvě charakteristiky jakosti (váha, dynamická prodyšnost). A to z důvodu, že měření těchto charakteristik se provádí v kontrolovaném prostředí a pomocí speciálních přístrojů, cena této kontroly není zanedbatelná. Hlavním důvodem použití CUSUM je, že pokud se vyskytne výrobek nesplňující požadavky zákazníka, není možné ho nijak opravit a ztráta dosahuje 100% z ceny.
Jak můžete vidět diagram znázorňuje propad hmotnosti u výběru č.16 a zároveň vyšší hmotnost kolem hodnoty č.47. Nicméně hodnoty jsou uvnitř diagramu CUSUM a významně se nepřibližují mezi tolerance. Proto mám za to, že data jsou ve statisticky zvládnutém stavu.

Na diagramu určujícím dynamickou prodyšnost můžeme vidět vyšší prodyšnost u hodnoty č.16. Z toho můžeme vyvodit tvrzení, že u tohoto vzorku došlo k nějaké události, která snížila hmotnost vzorku. To mělo za následek vyšší prodyšnost. Pokud se podívám na diagramy EWMA, kde jsem testoval dostavu, zjistím, že tato odchylka je způsobená nižším počtem vláken ve vzorku.

Dle klasické interpretace CUSUM jsou data ve statisticky zvládnutém stavu a není třeba zasahovat do procesu. Pokud vezmu v úvahu i hodnoty získané pomocí dynamického dia-

Obrázek 26 Graf CUSUM - Váha

(Zdroj: Vlastní zpracování v programu QC Expert)

Obrázek 27 Graf CUSUM - Dynamická prodyšnost

(Zdroj: Vlastní zpracování v programu QC Expert)
gramu EWMA, doporučil bych přezkoumání údajů z výrobního procesu ze dne, kdy data z výrobku č. 16 vznikla. To by mohlo přinést odpověď na otázku, proč tyto dva digramy sestrojené pro různé znaky kvality zde signalizují odchylku. A do budoucna přinést důležité poznatky o chování výrobního procesu.
6 NADPIS TAGUCHIHO METODY

6.1 Vícerozměrná ztrátová funkce

Předpoklady, které by měly být splněny při použití ztrátové funkce:

1) U každého výrobku je sledována určitá charakteristika, podle které posuzujeme jeho kvalitu.
2) Tato charakteristika má stanovenou cílovou hodnotu T (Target value)
3) Nekvalita se projevuje odchylkami od T
4) Jakákoli odchylka od T představuje ztrátu odběratele, která se u něj projeví zvýšenými náklady na provoz, údržbu atd.

Vícerozměrná ztrátová funkce

\[TSL(Y_1,...,Y_n) = 4 \sum_{i=1}^{n} \left(\frac{Y_i - T_i}{USL_i - LSL_i} \right)^2 \]

Ve firmě se provádí 100% kontrola každého batche a standardně se testuje na třech místech. Na začátku, uprostřed a na konci, a to z toho důvodu, že bylo vypozorováno, že tkanina má v každém svém úseku trochu jiné vlastnosti. Největší rozdíly mezi naměřenými hodnotami jsou právě v těchto místech, kde se odebírají testovací vzorky.

Dosavadní praxe firmy je taková, že pokud se vyskytne nekvalitní úsek, nevyhodí celý batch. Naopak nekvalitní úsek se oddělí a nahradí se kvalitní látkou.

6.1.1 Vícerozměrná ztrátová funkce

<table>
<thead>
<tr>
<th>Úsek č.1</th>
<th>Y</th>
<th>T</th>
<th>USL</th>
<th>LSL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elongation - osnova</td>
<td>41,440</td>
<td>41,278</td>
<td>45,56</td>
<td>36,995</td>
</tr>
<tr>
<td>Elongation - útek</td>
<td>33,320</td>
<td>31,966</td>
<td>35,97</td>
<td>27,962</td>
</tr>
<tr>
<td>Edgecomb - osnova</td>
<td>692,050</td>
<td>729,7107</td>
<td>814,062</td>
<td>645,3594</td>
</tr>
<tr>
<td>Edgecomb - útek</td>
<td>624,790</td>
<td>599,426</td>
<td>663,9781</td>
<td>534,874</td>
</tr>
<tr>
<td>Dynamic air permeability</td>
<td>406,000</td>
<td>434,327</td>
<td>545,761</td>
<td>322,148</td>
</tr>
<tr>
<td>Tearstrength - osnova</td>
<td>142,620</td>
<td>139,441</td>
<td>146,557</td>
<td>132,325</td>
</tr>
<tr>
<td>Tearstrength - útek</td>
<td>150,520</td>
<td>153,5647</td>
<td>163,037</td>
<td>144,0924</td>
</tr>
<tr>
<td>Tensilestrength - osnova</td>
<td>3 069,950</td>
<td>3109,074</td>
<td>3347,148</td>
<td>2870,999</td>
</tr>
<tr>
<td>Tensilestrength - útek</td>
<td>3 425,660</td>
<td>3437,493</td>
<td>3713,937</td>
<td>3168,943</td>
</tr>
</tbody>
</table>
Ztráta za nekvalitu v rámci normy, pro první úsek (0 až 733 m²), se bude pohybovat kolem 2,45246 Kč/ m².

Tabulka 10 Vícerozměrná ztrátová funkce pro úsek č. 2 (Zdroj: interní materiály)

<table>
<thead>
<tr>
<th>Úsek č.2</th>
<th>Y</th>
<th>T</th>
<th>USL</th>
<th>LSL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elongation - osnova</td>
<td>42,080</td>
<td>41,278</td>
<td>45,56</td>
<td>36,995</td>
</tr>
<tr>
<td>Elongation - útek</td>
<td>33,400</td>
<td>31,966</td>
<td>35,97</td>
<td>27,962</td>
</tr>
<tr>
<td>Edgecomb - osnova</td>
<td>735,850</td>
<td>729,710</td>
<td>814,062</td>
<td>645,3594</td>
</tr>
<tr>
<td>Edgecomb - útek</td>
<td>512,560</td>
<td>599,426</td>
<td>663,9781</td>
<td>534,874</td>
</tr>
<tr>
<td>Dynamic air permeability</td>
<td>392,000</td>
<td>434,327</td>
<td>545,761</td>
<td>322,148</td>
</tr>
<tr>
<td>Tearstrength - osnova</td>
<td>139,830</td>
<td>139,441</td>
<td>146,557</td>
<td>132,325</td>
</tr>
<tr>
<td>Tearstrength - útek</td>
<td>148,560</td>
<td>153,5647</td>
<td>163,037</td>
<td>144,0924</td>
</tr>
<tr>
<td>Tensilestrength - osnova</td>
<td>3 117,510</td>
<td>3109,074</td>
<td>3347,148</td>
<td>2870,999</td>
</tr>
<tr>
<td>Tensilestrength - útek</td>
<td>3 404,210</td>
<td>3437,493</td>
<td>3713,937</td>
<td>3168,943</td>
</tr>
<tr>
<td>Dostava - osnova</td>
<td>230,000</td>
<td>231,1703</td>
<td>232,144</td>
<td>230,196</td>
</tr>
<tr>
<td>Dostava - útek</td>
<td>241,000</td>
<td>241,0543</td>
<td>243,236</td>
<td>238,872</td>
</tr>
<tr>
<td>Weight</td>
<td>182,100</td>
<td>182,748</td>
<td>181,108</td>
<td>184,338</td>
</tr>
</tbody>
</table>

\[
TSL(Y_1, ..., Y_n) = 4 \sum_{i=1}^{n} \left(\frac{Y_i - T_i}{USL_i - LSL_i} \right)^2
\]

TSL₁ (Y₁,...,Y₁₂) = 4* 0,612645 = 2,45246 Kč/ m²

Ztráta za nekvalitu v rámci normy, pro první úsek (0 až 733 m²), se bude pohybovat kolem 2,45246 Kč/ m².

Tabulka 11 Vícerozměrná ztrátová funkce pro úsek č. 3 (Zdroj: interní materiály)

<table>
<thead>
<tr>
<th>Úsek č.3</th>
<th>Y</th>
<th>T</th>
<th>USL</th>
<th>LSL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elongation - osnova</td>
<td>41,670</td>
<td>41,278</td>
<td>45,56</td>
<td>36,995</td>
</tr>
<tr>
<td>Elongation - útek</td>
<td>31,850</td>
<td>31,966</td>
<td>35,97</td>
<td>27,962</td>
</tr>
<tr>
<td></td>
<td>Edgecomb - osnova</td>
<td>Edgecomb - útek</td>
<td>Dynamic air permeability</td>
<td>Tearstrength - osnova</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------------</td>
<td>----------------</td>
<td>--------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td></td>
<td>781,010</td>
<td>729,710</td>
<td>814,062</td>
<td>645,359</td>
</tr>
<tr>
<td></td>
<td>466,000</td>
<td>434,327</td>
<td>545,761</td>
<td>322,148</td>
</tr>
<tr>
<td></td>
<td>137,960</td>
<td>139,441</td>
<td>146,557</td>
<td>132,325</td>
</tr>
<tr>
<td></td>
<td>3 138,460</td>
<td>3109,074</td>
<td>3347,148</td>
<td>2870,999</td>
</tr>
<tr>
<td></td>
<td>231,000</td>
<td>231,1703</td>
<td>232,144</td>
<td>230,196</td>
</tr>
<tr>
<td></td>
<td>183,020</td>
<td>182,748</td>
<td>181,108</td>
<td>184,338</td>
</tr>
</tbody>
</table>

\[
TSL(Y_1,\ldots,Y_n) = 4 \sum_{i=1}^{n} \left(\frac{Y_i - T_i}{USL_i - LSL_i} \right)^2
\]

\[TSL_3(Y_1,\ldots,Y_{12}) = 4 \times 0.5723 = 2.02892 \text{ Kč/ m}^2\]

Ztráta za nekvalitu v rámci normy, pro třetí úsek (1467 až 2200m²), se bude pohybovat kolem 2.02892 Kč/ m².

\[TSL = TSL_1 + TSL_2 + TSL_3\]

\[TSL = 2.45246 + 4.22496 + 2.02892\]

\[TSL = 8.70634 \frac{\text{Kč}}{\text{m}^2}\]

Celková ztráta za nekvalitu na jeden batch o rozměrech 2200m² bude tedy činit 8.70634 Kč/m².

Pokud tuto ztrátu porovnám s cenou za 1m² což je 43,70 Kč/m² zjistím, že ztráta v rámci tolerance tvoří přibližně 19,9% z ceny.

Při převedení ztráty v rámci tolerance na celý batch bude tato dosahovat výše 19 131,86 Kč/batch. Měsíční produkce ve sledovaném období činila 92 ks výrobků. Pro představu zminěná 19,9% ztráta vyčíslená měsíčně by dosahovala 1760131,12 Kč. To je dle mého názoru dostatečný důvod pro zvážení možnosti použití Taguchiho metodu.
7 NÁVRHY NA ZLEPŠENÍ

Úroveň kontroly jakosti je ve firmě Toray Textiles Central Europe s.r.o. na velmi vysoké úrovni. Je tomu tak proto, že technická polyamidová tkanina se dodává především do automobilového průmyslu a na výrobky jsou kladený vysoké požadavky a to hlavně z hlediska bezpečnosti.

Pro kontrolu kvality jsou zde používány klasické Shewhartovy diagramy. Tato metoda je ve firmě ověřena léty praxe, tudíž by se mohlo zdát, že upustit od metody, která se osvědčila není moudré. S tím musí částečně souhlasit. Na druhou stranu ve firmě se každý den zkouší množství vzorků a jejich analýza zabere bezpochyby množství času. Když ještě vezmeme v úvahu, že pro technickou polyamidovou tkaninu kvality 3660 se měří 16 různých veličin, které ovlivňují kvalitu, je dle mého názoru vhodnější použít Hotelligových diagramů a to alespoň u charakteristik, které mezi sebou vzájemně korelují. Jak jsem zjistil v praktické části Hotellingovy diagramy, pro veličinu Tear strength - osnova a Tear strength - útek se od Shewhartových diagramů významně neliší a tudíž je možné Shewhartovy diagramy nahradit Hotellingovými bez větších obav z nedodržení požadované kvality výrobků. Pokud by se toto opatření osvědčilo mohlo by mít za následek výrazné ušetření času stráveného při kontrole a analyzování dat z diagramů.

Obrázek 28 Hotellingův diagram v porovnání se Shewhartovým diagramem (Zdroj: vlastní zpracování v programu QC Expert)

Diagram EWMA je možno použít jako alternativu ke Shewhartovým diagramům. Tento diagram je vhodný pro identifikaci malých, ale přetrvávajících změn v procesu. Použití diagramu by mělo své opodstatnění, pokud by firma chtěla optimalizovat výrobní proces a úroveň kvality výrobků. Vzhledem k tomu, že se v TTCE používají osvědčené Shewharto-
vy diagramy není dle mého názoru nutná náhrada stávající metody ani souběžné používání obou metod.

CUSUM metoda má oproti metodám používaným ve firmě několik výhod. Za zmínku stojí především rychlost při detekci změn v procesu a přesnější určení okamžiku vzniku změny parametrů, velikosti a směru působení. Pokud by se ve firmě začala tato metoda používat mohlo by to mít za následek rychlejší zjištění odchylky od optimální hodnoty. V důsledku toho by mohl operátor zasáhnout do procesu, čímž by se snížila šance na produkci nekvalitního výrobku, pokud vezmeme v úvahu, že nekvalitní výrobek se nedá opravit a těžší ztráta činí 100% z ceny. Je dle mého názoru vhodné, alespoň zauvažovat nad použitím této metody. Protože v diagramu CUSUM jsou jasně významné posuny od střední čáry, kdežto u Shewhartova diagramu x určenému pro práci s individuálně naměřenými hodnotami je variabilita naměřených hodnot tak vysoká, že pokud by program QC Expert nezaznal porušení pravidel červenými body, neměl bych šanci tento posun z grafu zachytit.

Obrázek 29 CUSUM ve srovnání se Shewhartovým diagramem x-individual (Zdroj vlastní zpracování v programu QC Expert)

Ač se může zdát, že ztráta počítaná pomocí Taguchiho ztrátové funkce není reálná, protože firmě vlastně žádná ztráta nevznikne, použití této metody ve firmě má dle mého názoru své opodstatnění. A to proto, že pracovníci získají jasnou představu o tom nakolik je samotná výroba nepřesná. Navíc v penězích vyjádřená ztráta v rámci normy určitě značně zapůsobí na každého, kdo si myslel, že úroveň kvality výrobků je ve výborném stavu. To by mělo mít pozitivní dopad na neustálé zlepšování kvality výrobků v důsledku optimalizace výroby.
Pokud se na tuto ztrátovou funkci podíváme ještě z trochu jiného úhlu a použijeme ji při hodnocení kvality vstupních materiálů, dalo by se nejen zamezit použití nekvalitního materiálu a tím znemožnění výroby nekvalitních výrobků, ale zároveň by se pomocí těchto dat dal vyvinout tlak na dodavatele a tím zajistit zvýšení kvality nakupovaného materiálu, případně snížení ceny. To by v každém případě mělo pozitivní dopad na hospodaření firmy.
ZÁVĚR

Jako cíl práce jsem si zvolil analýzu úrovně kvality výrobků pomocí statistických metod ve firmě Toray Textiles Central Europe s.r.o. a následně vyvodit doporučení, které by měla mít za následek zvýšení počtu kvalitních výrobků, snížení nákladů na kvalitu a zjednodušení procesu analýzy dat získaných z výroby.

Nejprve jsem zjistil jaké statistické metody se ve firmě běžně používají při kontrole jakosti. Z tohoto důvodu jsem sestrojil Shewhartovy regulační diagramy pro vybrané charakteristiky. Ty slouží jako základ pro posouzení výsledků analýz, které jsem provedl. Samozřejmě jsem nejprve otestoval vhodnost použití jednotlivých metod pomocí testů normality, homogenity a v neposlední řadě jsem zjistil úroveň korelace dat. Pokud bych tyto testy neprovedl mohlo by dojít k porušení pravidel pro sestavování použitých regulačních diagramů, což by mohlo mít neblahý vliv na výsledky. Jelikož se firma TTCE s.r.o. zabývá výrobou zboží, které se následně dále používá při výrobě v automobilovém průmyslu, kladou se zde veliký důraz na dodržování úrovně kvality. To mělo za následek to, že mnou zpracovaná data byla téměř ve statisticky zvládnutém stavu. To se samozřejmě podepsalo na výsledcích zkoumaných dat.

Nutno ještě říci, že ač je ve firmě proces zajišťování kvality ve značně pokročilém stavu, firma splňuje ISO i ČSN normy, nepoužívá pro zlepšování úrovně výrobních procesů a kvality výrobků Taguchiho metody. Pokud by se firma v budoucnu rozhodla, že začne tyto metody používat, mohlo by to mít pozitivní vliv na inovaci a neustálé zlepšování kvality výrobků, což je v dnešní době určitě jeden z předpokladů pro úspěšné podnikání.
SEZNAM POUŽITÉ LITERATURY

SEZNAM POUŽITÝCH SYMBOLŮ A ZKRATEK

A Ztráta za překročení tolerance d

C Kovariační matice

CL Střední čára

CUSUM Kumulovaný součet

EWMA Exponenciální vážený klouzavý průměr

d Funkční tolerance

L(Y) Ztráta způsobená odchylnkou od T

LCL Dolní regulační mez

LWL Dolní výstražná mez

n Rozsah výběru

Q (Roční) náklady na 100% kontrolu

r Váha

R (Roční) produkce v kusech

SPC Statistická regulace procesu

T Cílová hodnota

\(x_j \) Naměřená hodnota

\(\bar{x}_j \) vektor výběrových průměrů všech znaků jakosti v j-tém výběru

\(\bar{x} \) vektor, pomocí něhož se odhadují hodnoty \(\mu \) pro simultánně sledované znaky jakosti
SEZNAM OBRÁZKŮ

Obrázek 1 Základní struktura regulačního diagramu .. 15
Obrázek 2 Graf korelace ... 22
Obrázek 3 Obostranná rozhodovací V - maska ... 29
Obrázek 4 Taguchiho ztrátová funkce ... 31
Obrázek 5 Ztrátová funkce se symetrickou toleranci ... 32
Obrázek 6 Ztrátová funkce s nesymetrickou toleranci ... 32
Obrázek 7 Vzorkovnice ... 38
Obrázek 8 Tkalcovna ... 39
Obrázek 9 Hliníkové desky pro polygrafický průmysl ... 39
Obrázek 10 Organizační struktura Toray Textiles Central Europe s.r.o. 40
Obrázek 11 QC Expert - Data .. 41
Obrázek 12 QC Expert - Grafy ... 42
Obrázek 13 QC Expert - Protokol ... 42
Obrázek 14 Kruhový graf – Tear strength (Zdroj: vlastní zpracování QC Expert) 44
Obrázek 15 Q-Q graf – Tear strength (Zdroj: vlastní zpracování QC Expert) 44
Obrázek 16 Graf hustoty pravděpodobnosti – Tear strength (Zdroj: vlastní zpracování QC Expert) .. 45
Obrázek 17 Tear strength osnova/útek (úsek č.1) .. 46
Obrázek 18 Tear strength osnova/útek (úsek č.2) ... 47
Obrázek 19 Tear strength osnova/útek (úsek č.3) ... 47
Obrázek 20 regulační diagram (S) pro Tear strength ... 49
Obrázek 21 Shewhartův regulační diagram (R) pro Tear strength - osnova 49
Obrázek 22 Hotellingův diagram – Tear strength ... 50
Obrázek 23 EWMA, klasický diagram - Dostava ... 52
Obrázek 24 EWMA, dynamický diagram - Dostava ... 52
Obrázek 25 EWMA, rezidua – Dostava ... 53
Obrázek 26 Graf CUSUM - Váha .. 54
Obrázek 27 Graf CUSUM - Dynamická prodyšnost ... 54
Obrázek 28 Hotellingův diagram v porovnání se. Shewhartovým diagramem (Zdroj: vlastní zpracování v programu QC Expert) ... 59
Obrázek 29 CUSUM ve srovnání se Shewhartovým diagramem x-individual (Zdroj vlastní zpracování v programu QC Expert) ... 60
Obrázek 30 Vývojový diagram procesu pro hodnocení způsobilosti.......................... 70
SEZNAM TABULEK

Tabulka 1 Nejčastěji používané testy nenáhodných seskupení .. 17
Tabulka 2 Členění regulačních diagramů .. 18
Tabulka 3 K-S test (Zdroj: vlastní zpracování v programu QC Expert) .. 45
Tabulka 4 K-S test (Zdroj: vlastní zpracování v programu QC Expert) .. 46
Tabulka 5 Homogenita (Zdroj: vlastní zpracování v programu QC Expert) 48
Tabulka 6 Homogenita (Zdroj: vlastní zpracování v programu QC Expert) 48
Tabulka 7 Test závislosti pro Dostava – osnova ... 51
Tabulka 8 Test závislosti pro Dostava – útek .. 51
Tabulka 9 Vícerozměrná ztrátová funkce pro úsek č. 1 (Zdroj: interní materiály) 56
Tabulka 10 Vícerozměrná ztrátová funkce pro úsek č. 2 (Zdroj: interní materiály) 57
Tabulka 11 Vícerozměrná ztrátová funkce pro úsek č. 3 (Zdroj: interní materiály) 57
Tabulka 12 Elongtation (Zdroj: interní materiály) .. 71
Tabulka 13 Edgecomb (Zdroj: interní materiály) .. 73
Tabulka 14 Weight, dynamic air permeability (Zdroj: interní materiály) 75
Tabulka 15 Tear strength (Zdroj: interní materiály) ... 77
Tabulka 16 Tensile strength (Zdroj: interní materiály) ... 79
Tabulka 17 Dostava (Zdroj: interní materiály) ... 81
SEZNAM PŘÍLOH

<table>
<thead>
<tr>
<th>Příloha</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>Vývojový diagram procesu pro hodnocení způsobilosti</td>
</tr>
<tr>
<td>PII</td>
<td>Elongtation</td>
</tr>
<tr>
<td>PIII</td>
<td>Edgecomb</td>
</tr>
<tr>
<td>PIV</td>
<td>Weight, dynamic air permeability</td>
</tr>
<tr>
<td>PV</td>
<td>Tear strength</td>
</tr>
<tr>
<td>P VI</td>
<td>Tensile strength</td>
</tr>
<tr>
<td>P VII</td>
<td>Dostava</td>
</tr>
</tbody>
</table>
Obrázek 30 Vývojový diagram procesu pro hodnocení způsobilosti
(Zdroj: Kovářík, 2012, str. 236)
PŘÍLOHA P II: ELONGTATION

Tabulka 12 Elongtation (Zdroj: interní materiály)

<table>
<thead>
<tr>
<th>vzorek</th>
<th>elongation - osnova</th>
<th>elongation - útek</th>
</tr>
</thead>
<tbody>
<tr>
<td>č.</td>
<td>kraj</td>
<td>střed</td>
</tr>
<tr>
<td>1</td>
<td>41,440</td>
<td>42,080</td>
</tr>
<tr>
<td>2</td>
<td>41,250</td>
<td>40,580</td>
</tr>
<tr>
<td>3</td>
<td>40,390</td>
<td>41,810</td>
</tr>
<tr>
<td>4</td>
<td>40,090</td>
<td>42,380</td>
</tr>
<tr>
<td>5</td>
<td>41,750</td>
<td>41,250</td>
</tr>
<tr>
<td>6</td>
<td>42,830</td>
<td>41,420</td>
</tr>
<tr>
<td>7</td>
<td>39,530</td>
<td>42,600</td>
</tr>
<tr>
<td>8</td>
<td>41,080</td>
<td>42,330</td>
</tr>
<tr>
<td>9</td>
<td>41,600</td>
<td>42,420</td>
</tr>
<tr>
<td>10</td>
<td>41,340</td>
<td>43,420</td>
</tr>
<tr>
<td>11</td>
<td>40,750</td>
<td>40,610</td>
</tr>
<tr>
<td>12</td>
<td>39,920</td>
<td>41,580</td>
</tr>
<tr>
<td>13</td>
<td>42,210</td>
<td>42,480</td>
</tr>
<tr>
<td>14</td>
<td>39,670</td>
<td>43,330</td>
</tr>
<tr>
<td>15</td>
<td>42,670</td>
<td>42,330</td>
</tr>
<tr>
<td>16</td>
<td>40,580</td>
<td>42,260</td>
</tr>
<tr>
<td>17</td>
<td>39,180</td>
<td>39,830</td>
</tr>
<tr>
<td>18</td>
<td>38,735</td>
<td>41,973</td>
</tr>
<tr>
<td>19</td>
<td>42,420</td>
<td>42,250</td>
</tr>
<tr>
<td>20</td>
<td>40,644</td>
<td>41,345</td>
</tr>
<tr>
<td>21</td>
<td>40,580</td>
<td>42,680</td>
</tr>
<tr>
<td>22</td>
<td>41,670</td>
<td>40,920</td>
</tr>
<tr>
<td>23</td>
<td>41,000</td>
<td>40,420</td>
</tr>
<tr>
<td>24</td>
<td>40,000</td>
<td>40,250</td>
</tr>
<tr>
<td>25</td>
<td>40,080</td>
<td>41,080</td>
</tr>
<tr>
<td>26</td>
<td>41,830</td>
<td>43,080</td>
</tr>
<tr>
<td>27</td>
<td>40,500</td>
<td>42,080</td>
</tr>
<tr>
<td>28</td>
<td>42,630</td>
<td>40,000</td>
</tr>
<tr>
<td>29</td>
<td>40,420</td>
<td>40,750</td>
</tr>
<tr>
<td>30</td>
<td>39,080</td>
<td>41,750</td>
</tr>
<tr>
<td>31</td>
<td>40,580</td>
<td>42,170</td>
</tr>
<tr>
<td>32</td>
<td>39,170</td>
<td>42,420</td>
</tr>
<tr>
<td>33</td>
<td>38,750</td>
<td>42,920</td>
</tr>
<tr>
<td>34</td>
<td>39,830</td>
<td>39,750</td>
</tr>
<tr>
<td>35</td>
<td>38,780</td>
<td>42,490</td>
</tr>
<tr>
<td>36</td>
<td>39,000</td>
<td>39,080</td>
</tr>
<tr>
<td>37</td>
<td>40,500</td>
<td>42,580</td>
</tr>
<tr>
<td>38</td>
<td>39,490</td>
<td>41,950</td>
</tr>
<tr>
<td>39</td>
<td>41,150</td>
<td>41,310</td>
</tr>
<tr>
<td>40</td>
<td>41,250</td>
<td>40,170</td>
</tr>
<tr>
<td>41</td>
<td>39,420</td>
<td>41,420</td>
</tr>
<tr>
<td>42</td>
<td>38,830</td>
<td>39,500</td>
</tr>
<tr>
<td>43</td>
<td>40,000</td>
<td>40,250</td>
</tr>
<tr>
<td></td>
<td>44</td>
<td>45</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
</tr>
</tbody>
</table>
PŘÍLOHA P III: EDGECOMB

Tabulka 13 Edgecomb (Zdroj: interní materiály)

<table>
<thead>
<tr>
<th>edgecomb - osnova</th>
<th>edgecomb - útek</th>
</tr>
</thead>
<tbody>
<tr>
<td>692,050</td>
<td>624,790</td>
</tr>
<tr>
<td>680,480</td>
<td>563,700</td>
</tr>
<tr>
<td>634,900</td>
<td>632,600</td>
</tr>
<tr>
<td>642,200</td>
<td>650,500</td>
</tr>
<tr>
<td>699,190</td>
<td>571,150</td>
</tr>
<tr>
<td>671,600</td>
<td>569,790</td>
</tr>
<tr>
<td>700,900</td>
<td>605,400</td>
</tr>
<tr>
<td>654,080</td>
<td>543,850</td>
</tr>
<tr>
<td>741,720</td>
<td>570,410</td>
</tr>
<tr>
<td>678,600</td>
<td>550,000</td>
</tr>
<tr>
<td>709,200</td>
<td>579,800</td>
</tr>
<tr>
<td>747,260</td>
<td>617,390</td>
</tr>
<tr>
<td>631,000</td>
<td>646,900</td>
</tr>
<tr>
<td>734,470</td>
<td>591,730</td>
</tr>
<tr>
<td>748,590</td>
<td>582,380</td>
</tr>
<tr>
<td>702,170</td>
<td>625,390</td>
</tr>
<tr>
<td>594,000</td>
<td>549,700</td>
</tr>
<tr>
<td>632,200</td>
<td>624,600</td>
</tr>
<tr>
<td>725,000</td>
<td>526,210</td>
</tr>
<tr>
<td>708,900</td>
<td>592,800</td>
</tr>
<tr>
<td>631,050</td>
<td>530,780</td>
</tr>
<tr>
<td>671,550</td>
<td>502,890</td>
</tr>
<tr>
<td>684,120</td>
<td>543,420</td>
</tr>
<tr>
<td>697,900</td>
<td>667,800</td>
</tr>
<tr>
<td>3 167,020 3 146,950 3 230,030 3 404,990 3 490,400 3 380,930</td>
<td></td>
</tr>
<tr>
<td>732,420</td>
<td>526,450</td>
</tr>
<tr>
<td>688,110</td>
<td>541,220</td>
</tr>
<tr>
<td>718,050</td>
<td>566,320</td>
</tr>
<tr>
<td>714,970</td>
<td>579,120</td>
</tr>
<tr>
<td>666,250</td>
<td>511,610</td>
</tr>
<tr>
<td>661,850</td>
<td>574,320</td>
</tr>
<tr>
<td>697,720</td>
<td>549,040</td>
</tr>
<tr>
<td>698,170</td>
<td>514,920</td>
</tr>
<tr>
<td>659,820</td>
<td>494,340</td>
</tr>
<tr>
<td>631,000</td>
<td>582,500</td>
</tr>
<tr>
<td>632,460</td>
<td>496,910</td>
</tr>
<tr>
<td>641,760</td>
<td>615,220</td>
</tr>
<tr>
<td>740,700</td>
<td>524,100</td>
</tr>
<tr>
<td>700,900</td>
<td>457,350</td>
</tr>
<tr>
<td>689,060</td>
<td>553,840</td>
</tr>
<tr>
<td>704,890</td>
<td>498,060</td>
</tr>
<tr>
<td>721,380</td>
<td>561,540</td>
</tr>
<tr>
<td>635,720</td>
<td>572,310</td>
</tr>
<tr>
<td>745,960</td>
<td>527,150</td>
</tr>
<tr>
<td>715,690</td>
<td>654,270</td>
</tr>
<tr>
<td>632,060</td>
<td>745,340</td>
</tr>
<tr>
<td>684,670</td>
<td>770,120</td>
</tr>
<tr>
<td>619,300</td>
<td>668,930</td>
</tr>
<tr>
<td>678,220</td>
<td>781,530</td>
</tr>
<tr>
<td>724,800</td>
<td>734,700</td>
</tr>
<tr>
<td>700,900</td>
<td>602,600</td>
</tr>
<tr>
<td>615,050</td>
<td>673,110</td>
</tr>
<tr>
<td>716,800</td>
<td>696,800</td>
</tr>
<tr>
<td>716,140</td>
<td>708,470</td>
</tr>
<tr>
<td>683,600</td>
<td>726,070</td>
</tr>
<tr>
<td>619,190</td>
<td>648,380</td>
</tr>
<tr>
<td>678,160</td>
<td>673,160</td>
</tr>
<tr>
<td>714,800</td>
<td>646,900</td>
</tr>
<tr>
<td>692,600</td>
<td>731,800</td>
</tr>
<tr>
<td>719,500</td>
<td>726,300</td>
</tr>
<tr>
<td>693,200</td>
<td>731,200</td>
</tr>
<tr>
<td>668,380</td>
<td>744,720</td>
</tr>
<tr>
<td>656,100</td>
<td>718,500</td>
</tr>
<tr>
<td>626,900</td>
<td>659,400</td>
</tr>
<tr>
<td>640,090</td>
<td>645,020</td>
</tr>
<tr>
<td>739,080</td>
<td>686,290</td>
</tr>
<tr>
<td>685,210</td>
<td>733,630</td>
</tr>
<tr>
<td>650,370</td>
<td>753,600</td>
</tr>
<tr>
<td>717,390</td>
<td>639,770</td>
</tr>
<tr>
<td>563,940</td>
<td>581,080</td>
</tr>
<tr>
<td>704,500</td>
<td>758,300</td>
</tr>
<tr>
<td>634,100</td>
<td>717,900</td>
</tr>
<tr>
<td>723,000</td>
<td>646,700</td>
</tr>
<tr>
<td>705,400</td>
<td>675,600</td>
</tr>
<tr>
<td>723,200</td>
<td>643,800</td>
</tr>
<tr>
<td>653,100</td>
<td>693,900</td>
</tr>
<tr>
<td>753,900</td>
<td>665,600</td>
</tr>
<tr>
<td>650,000</td>
<td>688,200</td>
</tr>
<tr>
<td>641,700</td>
<td>696,800</td>
</tr>
<tr>
<td>714,750</td>
<td>734,000</td>
</tr>
<tr>
<td>638,180</td>
<td>694,910</td>
</tr>
<tr>
<td>662,000</td>
<td>597,100</td>
</tr>
<tr>
<td>766,680</td>
<td>751,960</td>
</tr>
<tr>
<td>692,660</td>
<td>755,550</td>
</tr>
<tr>
<td>671,840</td>
<td>660,850</td>
</tr>
<tr>
<td>685,090</td>
<td>661,670</td>
</tr>
<tr>
<td>651,230</td>
<td>652,130</td>
</tr>
<tr>
<td>687,000</td>
<td>691,200</td>
</tr>
<tr>
<td>705,100</td>
<td>726,300</td>
</tr>
<tr>
<td>679,710</td>
<td>700,330</td>
</tr>
<tr>
<td>634,590</td>
<td>660,330</td>
</tr>
<tr>
<td>735,410</td>
<td>657,910</td>
</tr>
</tbody>
</table>
PŘÍLOHA P IV: WEIGHT, DYNAMIC AIR PERMEABILITY

Tabulka 14 Weight, dynamic air permeability (Zdroj: interní materiály)

<table>
<thead>
<tr>
<th>weight</th>
<th>dynamic air permeability</th>
</tr>
</thead>
<tbody>
<tr>
<td>182,100 181,780 183,020</td>
<td>406,000 392,000 466,000</td>
</tr>
<tr>
<td>181,870 181,600 182,000</td>
<td>434,000 442,000 493,000</td>
</tr>
<tr>
<td>183,400 183,480 183,800</td>
<td>383,000 400,000 473,000</td>
</tr>
<tr>
<td>181,830 181,850 182,700</td>
<td>380,000 402,000 479,000</td>
</tr>
<tr>
<td>182,500 181,870 182,900</td>
<td>396,000 404,000 463,000</td>
</tr>
<tr>
<td>183,700 183,900 184,500</td>
<td>443,000 421,000 472,000</td>
</tr>
<tr>
<td>183,380 183,300 183,500</td>
<td>395,000 417,000 426,000</td>
</tr>
<tr>
<td>182,720 182,390 182,900</td>
<td>407,000 411,000 459,000</td>
</tr>
<tr>
<td>183,800 183,900 184,100</td>
<td>417,000 404,000 460,000</td>
</tr>
<tr>
<td>182,620 182,900 183,500</td>
<td>387,000 404,000 418,000</td>
</tr>
<tr>
<td>183,200 182,700 182,900</td>
<td>388,000 432,000 422,000</td>
</tr>
<tr>
<td>183,520 182,960 183,020</td>
<td>389,000 389,000 425,000</td>
</tr>
<tr>
<td>183,310 183,100 183,200</td>
<td>422,000 405,000 477,000</td>
</tr>
<tr>
<td>183,110 182,140 182,480</td>
<td>506,000 444,000 493,000</td>
</tr>
<tr>
<td>180,910 181,120 181,240</td>
<td>423,000 426,000 551,000</td>
</tr>
<tr>
<td>180,980 181,140 181,260</td>
<td>425,000 451,000 541,000</td>
</tr>
<tr>
<td>181,160 180,970 181,460</td>
<td>407,000 425,000 480,000</td>
</tr>
<tr>
<td>183,430 183,660 184,840</td>
<td>419,000 434,000 503,000</td>
</tr>
<tr>
<td>181,380 181,360 181,560</td>
<td>415,000 424,000 505,000</td>
</tr>
<tr>
<td>182,470 182,100 182,700</td>
<td>420,000 400,000 454,000</td>
</tr>
<tr>
<td>183,100 182,670 183,170</td>
<td>409,000 430,000 461,000</td>
</tr>
<tr>
<td>182,100 181,310 182,300</td>
<td>403,000 416,000 521,000</td>
</tr>
<tr>
<td>183,280 183,310 183,960</td>
<td>389,000 426,000 450,000</td>
</tr>
<tr>
<td>181,580 181,420 181,920</td>
<td>383,000 402,000 443,000</td>
</tr>
<tr>
<td>184,200 183,810 184,370</td>
<td>404,000 411,000 505,000</td>
</tr>
<tr>
<td>182,340 182,220 182,680</td>
<td>400,000 411,000 506,000</td>
</tr>
<tr>
<td>182,220 183,140 183,260</td>
<td>381,000 416,000 466,000</td>
</tr>
<tr>
<td>182,110 181,840 182,180</td>
<td>452,000 449,000 484,000</td>
</tr>
<tr>
<td>182,560 182,840 182,540</td>
<td>460,000 436,000 500,000</td>
</tr>
<tr>
<td>180,960 180,810 181,140</td>
<td>438,000 414,000 507,000</td>
</tr>
<tr>
<td>181,560 181,130 182,260</td>
<td>429,000 431,000 514,000</td>
</tr>
<tr>
<td>183,910 182,830 183,060</td>
<td>390,000 430,000 487,000</td>
</tr>
<tr>
<td>183,660 183,420 183,440</td>
<td>394,000 411,000 488,000</td>
</tr>
<tr>
<td>181,770 181,260 181,930</td>
<td>383,000 372,000 430,000</td>
</tr>
<tr>
<td>182,710 182,410 183,120</td>
<td>385,000 434,000 479,000</td>
</tr>
<tr>
<td>181,140 181,480 181,560</td>
<td>436,000 435,000 500,000</td>
</tr>
<tr>
<td>182,770 182,060 182,380</td>
<td>414,000 410,000 469,000</td>
</tr>
<tr>
<td>181,960 181,610 182,070</td>
<td>413,000 444,000 473,000</td>
</tr>
<tr>
<td>184,030 183,390 183,850</td>
<td>403,000 424,000 547,000</td>
</tr>
<tr>
<td>181,470 181,860 181,990</td>
<td>447,000 440,000 478,000</td>
</tr>
<tr>
<td>182,210 181,860 181,920</td>
<td>387,000 401,000 450,000</td>
</tr>
<tr>
<td>183,660 182,810 182,860</td>
<td>395,000 410,000 468,000</td>
</tr>
<tr>
<td>182,260 181,830 181,480</td>
<td>390,000 402,000 525,000</td>
</tr>
<tr>
<td>182,860 182,210 182,760</td>
<td>437,000 426,000 464,000</td>
</tr>
</tbody>
</table>
PŘÍLOHA P V: TEAR STRENGTH

Tabulka 15 Tear strength (Zdroj: interní materiály)

<table>
<thead>
<tr>
<th>tearstrength - osnova</th>
<th>tearstrength - útek</th>
</tr>
</thead>
<tbody>
<tr>
<td>142,620 139,830 137,960</td>
<td>150,520 148,560 151,270</td>
</tr>
<tr>
<td>135,500 143,160 138,860</td>
<td>158,580 151,810 158,120</td>
</tr>
<tr>
<td>139,410 134,790 136,050</td>
<td>157,450 149,750 146,840</td>
</tr>
<tr>
<td>141,560 134,090 131,110</td>
<td>153,210 142,220 148,200</td>
</tr>
<tr>
<td>142,410 140,370 136,620</td>
<td>156,050 155,320 161,250</td>
</tr>
<tr>
<td>146,750 141,950 136,020</td>
<td>161,330 150,900 153,010</td>
</tr>
<tr>
<td>135,920 140,370 135,780</td>
<td>151,380 139,990 143,960</td>
</tr>
<tr>
<td>150,190 144,720 141,090</td>
<td>152,900 149,480 157,810</td>
</tr>
<tr>
<td>143,640 145,240 137,700</td>
<td>161,400 160,020 160,330</td>
</tr>
<tr>
<td>144,220 138,890 132,880</td>
<td>149,360 146,670 148,500</td>
</tr>
<tr>
<td>140,850 137,440 144,730</td>
<td>143,460 143,170 148,680</td>
</tr>
<tr>
<td>143,520 141,610 146,600</td>
<td>158,850 154,210 156,020</td>
</tr>
<tr>
<td>142,180 149,390 137,630</td>
<td>139,330 157,060 157,580</td>
</tr>
<tr>
<td>140,480 139,090 142,880</td>
<td>154,900 158,420 154,630</td>
</tr>
<tr>
<td>140,560 142,540 137,440</td>
<td>152,990 155,880 153,830</td>
</tr>
<tr>
<td>139,050 135,470 142,550</td>
<td>156,080 150,100 149,140</td>
</tr>
<tr>
<td>131,580 129,710 126,740</td>
<td>145,990 141,160 150,430</td>
</tr>
<tr>
<td>130,130 131,480 126,070</td>
<td>147,460 143,990 142,460</td>
</tr>
<tr>
<td>144,700 133,570 136,480</td>
<td>160,250 150,000 154,100</td>
</tr>
<tr>
<td>138,630 138,090 130,300</td>
<td>151,720 146,490 142,270</td>
</tr>
<tr>
<td>134,010 137,970 127,220</td>
<td>166,020 153,860 157,170</td>
</tr>
<tr>
<td>143,190 141,500 140,360</td>
<td>155,910 155,880 156,760</td>
</tr>
<tr>
<td>146,250 143,000 137,100</td>
<td>161,570 149,320 150,980</td>
</tr>
<tr>
<td>138,650 138,510 132,810</td>
<td>155,810 154,610 155,410</td>
</tr>
<tr>
<td>140,470 147,240 137,160</td>
<td>155,030 153,560 154,840</td>
</tr>
<tr>
<td>138,940 152,520 140,630</td>
<td>159,570 156,080 154,270</td>
</tr>
<tr>
<td>141,230 143,940 143,000</td>
<td>157,880 159,540 157,050</td>
</tr>
<tr>
<td>139,450 140,100 135,960</td>
<td>158,700 157,150 155,530</td>
</tr>
<tr>
<td>138,570 140,460 137,780</td>
<td>159,860 153,490 159,110</td>
</tr>
<tr>
<td>146,290 142,170 139,360</td>
<td>155,740 153,000 153,290</td>
</tr>
<tr>
<td>145,860 145,720 133,910</td>
<td>155,890 153,390 151,640</td>
</tr>
<tr>
<td>138,540 139,560 142,230</td>
<td>158,180 148,330 153,850</td>
</tr>
<tr>
<td>143,840 152,530 136,950</td>
<td>161,120 152,500 154,920</td>
</tr>
<tr>
<td>145,010 141,440 134,870</td>
<td>163,360 162,910 157,040</td>
</tr>
<tr>
<td>138,170 139,120 133,590</td>
<td>151,180 153,960 150,340</td>
</tr>
<tr>
<td>149,590 147,960 141,230</td>
<td>165,340 157,720 164,960</td>
</tr>
<tr>
<td>139,490 140,770 135,530</td>
<td>157,290 155,220 150,740</td>
</tr>
<tr>
<td>138,230 133,630 133,190</td>
<td>153,990 148,880 154,130</td>
</tr>
<tr>
<td>139,000 138,380 140,820</td>
<td>148,540 155,030 148,080</td>
</tr>
<tr>
<td>142,420 139,120 137,520</td>
<td>149,950 152,560 155,440</td>
</tr>
<tr>
<td>141,070 143,740 138,390</td>
<td>155,070 157,020 151,650</td>
</tr>
<tr>
<td>143,230 142,300 138,560</td>
<td>156,610 162,870 152,380</td>
</tr>
<tr>
<td>142,760 140,880 139,230</td>
<td>159,320 154,050 156,100</td>
</tr>
<tr>
<td>143,440 144,520 133,800</td>
<td>160,340 157,410 159,630</td>
</tr>
<tr>
<td>143,460</td>
<td>141,010</td>
</tr>
<tr>
<td>137,950</td>
<td>144,230</td>
</tr>
<tr>
<td>134,880</td>
<td>143,100</td>
</tr>
<tr>
<td>138,130</td>
<td>145,940</td>
</tr>
<tr>
<td>137,810</td>
<td>140,410</td>
</tr>
<tr>
<td>133,470</td>
<td>136,480</td>
</tr>
<tr>
<td>133,540</td>
<td>141,930</td>
</tr>
<tr>
<td>145,080</td>
<td>140,640</td>
</tr>
<tr>
<td>147,570</td>
<td>137,530</td>
</tr>
<tr>
<td>141,620</td>
<td>140,770</td>
</tr>
<tr>
<td>139,680</td>
<td>146,340</td>
</tr>
<tr>
<td>144,150</td>
<td>142,750</td>
</tr>
<tr>
<td>138,420</td>
<td>134,650</td>
</tr>
<tr>
<td>149,090</td>
<td>139,530</td>
</tr>
<tr>
<td>138,280</td>
<td>136,260</td>
</tr>
<tr>
<td>141,770</td>
<td>141,540</td>
</tr>
<tr>
<td>134,990</td>
<td>135,370</td>
</tr>
<tr>
<td>138,150</td>
<td>139,640</td>
</tr>
<tr>
<td>139,550</td>
<td>138,430</td>
</tr>
<tr>
<td>142,010</td>
<td>137,940</td>
</tr>
<tr>
<td>141,050</td>
<td>148,530</td>
</tr>
<tr>
<td>144,850</td>
<td>147,740</td>
</tr>
<tr>
<td>139,650</td>
<td>138,940</td>
</tr>
<tr>
<td>142,090</td>
<td>140,390</td>
</tr>
<tr>
<td>139,450</td>
<td>149,950</td>
</tr>
<tr>
<td>145,110</td>
<td>145,440</td>
</tr>
<tr>
<td>142,840</td>
<td>134,350</td>
</tr>
<tr>
<td>139,070</td>
<td>137,090</td>
</tr>
<tr>
<td>126,650</td>
<td>140,610</td>
</tr>
<tr>
<td>134,760</td>
<td>133,780</td>
</tr>
<tr>
<td>134,780</td>
<td>135,210</td>
</tr>
<tr>
<td>137,350</td>
<td>141,750</td>
</tr>
<tr>
<td>127,640</td>
<td>134,460</td>
</tr>
<tr>
<td>133,220</td>
<td>143,800</td>
</tr>
<tr>
<td>140,180</td>
<td>139,790</td>
</tr>
<tr>
<td>147,370</td>
<td>144,010</td>
</tr>
<tr>
<td>150,990</td>
<td>143,160</td>
</tr>
<tr>
<td>138,150</td>
<td>133,520</td>
</tr>
<tr>
<td>142,840</td>
<td>140,820</td>
</tr>
<tr>
<td>138,620</td>
<td>143,260</td>
</tr>
<tr>
<td>138,850</td>
<td>146,690</td>
</tr>
<tr>
<td>141,540</td>
<td>143,420</td>
</tr>
<tr>
<td>147,500</td>
<td>143,100</td>
</tr>
<tr>
<td>140,890</td>
<td>138,800</td>
</tr>
<tr>
<td>134,370</td>
<td>133,440</td>
</tr>
<tr>
<td>137,020</td>
<td>143,760</td>
</tr>
<tr>
<td>146,250</td>
<td>147,210</td>
</tr>
<tr>
<td>135,020</td>
<td>144,890</td>
</tr>
</tbody>
</table>
PŘÍLOHA P VI: TENSILE STRENGTH

Tabulka 16 Tensile strength (Zdroj: interní materiály)

<table>
<thead>
<tr>
<th>tensilestrength - osnova</th>
<th>tensilestrength - útek</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 069,950 3 117,510 3 138,460</td>
<td>3 425,660 3 404,210 3 286,480</td>
</tr>
<tr>
<td>3 071,000 3 054,970 3 157,580</td>
<td>3 412,360 3 400,620 3 374,670</td>
</tr>
<tr>
<td>2 971,800 3 185,600 3 175,600</td>
<td>3 493,000 3 467,300 3 408,400</td>
</tr>
<tr>
<td>3 044,200 3 183,300 3 202,500</td>
<td>3 528,000 3 447,300 3 332,100</td>
</tr>
<tr>
<td>2 964,700 3 087,650 3 041,320</td>
<td>3 381,710 3 437,810 3 289,860</td>
</tr>
<tr>
<td>3 079,590 3 017,480 3 008,880</td>
<td>3 468,280 3 416,710 3 366,370</td>
</tr>
<tr>
<td>2 966,800 3 197,300 3 174,300</td>
<td>3 322,700 3 387,500 3 367,200</td>
</tr>
<tr>
<td>3 137,120 3 060,080 3 143,750</td>
<td>3 301,660 3 464,180 3 371,710</td>
</tr>
<tr>
<td>2 994,500 3 116,820 3 086,050</td>
<td>3 434,860 3 387,880 3 377,220</td>
</tr>
<tr>
<td>3 131,300 3 133,900 3 255,900</td>
<td>3 519,500 3 452,400 3 462,700</td>
</tr>
<tr>
<td>3 159,800 3 184,800 3 278,600</td>
<td>3 295,600 3 326,800 3 379,700</td>
</tr>
<tr>
<td>3 121,590 3 165,340 3 216,980</td>
<td>3 356,210 3 372,160 3 375,100</td>
</tr>
<tr>
<td>3 223,100 3 275,000 3 283,400</td>
<td>3 497,100 3 494,400 3 444,900</td>
</tr>
<tr>
<td>3 044,220 3 274,070 3 307,550</td>
<td>3 463,960 3 415,330 3 445,980</td>
</tr>
<tr>
<td>3 241,490 3 234,460 3 235,250</td>
<td>3 514,540 3 423,300 3 353,110</td>
</tr>
<tr>
<td>3 041,140 3 181,550 3 225,450</td>
<td>3 537,500 3 396,800 3 390,180</td>
</tr>
<tr>
<td>2 940,900 3 073,400 3 097,300</td>
<td>3 394,500 3 508,300 3 406,100</td>
</tr>
<tr>
<td>2 997,400 3 156,700 3 089,000</td>
<td>3 530,900 3 515,600 3 399,800</td>
</tr>
<tr>
<td>3 162,640 2 993,130 3 239,810</td>
<td>3 474,350 3 463,060 3 410,850</td>
</tr>
<tr>
<td>3 143,300 3 186,500 3 197,500</td>
<td>3 377,200 3 404,500 3 386,300</td>
</tr>
<tr>
<td>2 924,700 3 083,310 3 091,060</td>
<td>3 372,780 3 465,610 3 326,990</td>
</tr>
<tr>
<td>3 238,290 3 193,930 3 214,820</td>
<td>3 464,090 3 349,890 3 427,690</td>
</tr>
<tr>
<td>3 100,000 3 110,320 3 295,930</td>
<td>3 521,330 3 432,510 3 451,600</td>
</tr>
<tr>
<td>3 139,410 3 069,810 3 120,240</td>
<td>3 461,100 3 411,930 3 437,360</td>
</tr>
<tr>
<td>3 167,020 3 146,950 3 230,030</td>
<td>3 404,990 3 490,400 3 380,930</td>
</tr>
<tr>
<td>3 167,610 3 257,250 3 234,480</td>
<td>3 533,600 3 498,220 3 414,340</td>
</tr>
<tr>
<td>3 108,260 3 205,210 3 098,530</td>
<td>3 464,140 3 380,120 3 357,120</td>
</tr>
<tr>
<td>3 095,230 3 091,450 3 227,810</td>
<td>3 536,590 3 506,930 3 419,110</td>
</tr>
<tr>
<td>3 083,370 3 113,500 3 195,920</td>
<td>3 499,450 3 435,490 3 412,450</td>
</tr>
<tr>
<td>3 051,320 3 175,480 3 244,730</td>
<td>3 418,670 3 355,530 3 345,610</td>
</tr>
<tr>
<td>3 153,070 3 201,070 3 290,410</td>
<td>3 462,240 3 475,950 3 466,370</td>
</tr>
<tr>
<td>3 009,670 3 222,170 3 141,130</td>
<td>3 419,660 3 436,730 3 349,630</td>
</tr>
<tr>
<td>2 997,550 3 121,260 3 247,450</td>
<td>3 517,780 3 413,920 3 403,340</td>
</tr>
<tr>
<td>3 135,880 3 101,600 3 274,750</td>
<td>3 363,560 3 404,520 3 355,600</td>
</tr>
<tr>
<td>3 001,600 3 165,900 3 202,900</td>
<td>3 431,000 3 374,200 3 410,100</td>
</tr>
<tr>
<td>3 080,360 3 099,500 3 096,840</td>
<td>3 419,850 3 444,640 3 471,920</td>
</tr>
<tr>
<td>3 100,620 3 154,660 3 213,950</td>
<td>3 517,930 3 494,490 3 399,280</td>
</tr>
<tr>
<td>3 025,500 3 167,000 3 141,900</td>
<td>3 462,700 3 462,400 3 462,400</td>
</tr>
<tr>
<td>3 194,800 3 215,100 3 135,000</td>
<td>3 329,100 3 261,400 3 463,500</td>
</tr>
<tr>
<td>3 018,550 3 197,170 3 203,700</td>
<td>3 407,480 3 459,830 3 394,500</td>
</tr>
<tr>
<td>3 197,230 3 111,570 3 272,800</td>
<td>3 489,300 3 475,050 3 304,510</td>
</tr>
<tr>
<td>3 049,910 2 977,180 3 224,400</td>
<td>3 504,210 3 507,340 3 433,930</td>
</tr>
<tr>
<td>3 136,080 3 019,190 3 072,810</td>
<td>3 493,810 3 472,750 3 479,140</td>
</tr>
<tr>
<td>3 242,150 3 244,410 3 210,740</td>
<td>3 530,750 3 493,950 3 411,070</td>
</tr>
<tr>
<td></td>
<td>3 129,540</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>3 099,730</td>
<td>3 141,560</td>
</tr>
<tr>
<td>2 950,620</td>
<td>3 141,030</td>
</tr>
<tr>
<td>3 058,460</td>
<td>3 076,360</td>
</tr>
<tr>
<td>2 947,720</td>
<td>3 149,150</td>
</tr>
<tr>
<td>2 982,400</td>
<td>3 191,500</td>
</tr>
<tr>
<td>3 178,100</td>
<td>3 153,600</td>
</tr>
<tr>
<td>3 035,170</td>
<td>3 166,920</td>
</tr>
<tr>
<td>3 091,200</td>
<td>3 206,000</td>
</tr>
<tr>
<td>2 934,960</td>
<td>2 973,360</td>
</tr>
<tr>
<td>3 138,330</td>
<td>3 192,080</td>
</tr>
<tr>
<td>3 060,510</td>
<td>3 138,560</td>
</tr>
<tr>
<td>2 985,330</td>
<td>3 130,430</td>
</tr>
<tr>
<td>3 151,400</td>
<td>3 213,400</td>
</tr>
<tr>
<td>3 143,600</td>
<td>3 194,900</td>
</tr>
<tr>
<td>3 099,300</td>
<td>3 171,200</td>
</tr>
<tr>
<td>2 950,000</td>
<td>3 177,000</td>
</tr>
<tr>
<td>2 921,500</td>
<td>3 143,440</td>
</tr>
<tr>
<td>3 119,600</td>
<td>3 108,200</td>
</tr>
<tr>
<td>3 117,600</td>
<td>3 207,100</td>
</tr>
<tr>
<td>3 013,610</td>
<td>3 099,000</td>
</tr>
<tr>
<td>3 033,560</td>
<td>3 161,510</td>
</tr>
<tr>
<td>2 955,000</td>
<td>3 097,250</td>
</tr>
<tr>
<td>3 043,760</td>
<td>2 978,540</td>
</tr>
<tr>
<td>2 952,300</td>
<td>3 092,580</td>
</tr>
<tr>
<td>2 996,060</td>
<td>3 248,030</td>
</tr>
<tr>
<td>3 081,200</td>
<td>2 969,500</td>
</tr>
<tr>
<td>3 096,790</td>
<td>3 082,360</td>
</tr>
<tr>
<td>3 069,000</td>
<td>3 139,700</td>
</tr>
<tr>
<td>3 110,500</td>
<td>3 219,300</td>
</tr>
<tr>
<td>3 067,600</td>
<td>3 071,700</td>
</tr>
<tr>
<td>3 081,500</td>
<td>3 126,100</td>
</tr>
<tr>
<td>3 066,700</td>
<td>3 004,100</td>
</tr>
<tr>
<td>3 056,400</td>
<td>3 272,000</td>
</tr>
<tr>
<td>3 051,100</td>
<td>3 107,400</td>
</tr>
<tr>
<td>3 055,310</td>
<td>3 135,510</td>
</tr>
<tr>
<td>3 128,430</td>
<td>3 190,690</td>
</tr>
<tr>
<td>3 199,000</td>
<td>3 139,700</td>
</tr>
<tr>
<td>3 055,000</td>
<td>3 160,560</td>
</tr>
<tr>
<td>3 097,740</td>
<td>3 152,450</td>
</tr>
<tr>
<td>3 021,920</td>
<td>3 080,160</td>
</tr>
<tr>
<td>3 010,590</td>
<td>2 903,090</td>
</tr>
<tr>
<td>3 086,180</td>
<td>2 964,960</td>
</tr>
<tr>
<td>3 050,800</td>
<td>3 149,200</td>
</tr>
<tr>
<td>3 002,700</td>
<td>3 099,000</td>
</tr>
<tr>
<td>2 965,640</td>
<td>3 176,990</td>
</tr>
<tr>
<td>3 109,940</td>
<td>3 069,900</td>
</tr>
<tr>
<td>3 050,520</td>
<td>3 104,750</td>
</tr>
</tbody>
</table>
PŘÍLOHA P VII: DOSTAVA

Tabulka 17 Dostava (Zdroj: interní materiály)

<table>
<thead>
<tr>
<th>dostava - osnova</th>
<th>dostava - útek</th>
</tr>
</thead>
<tbody>
<tr>
<td>230,000</td>
<td>230,000</td>
</tr>
<tr>
<td>231,000</td>
<td>231,000</td>
</tr>
<tr>
<td>232,000</td>
<td>232,000</td>
</tr>
<tr>
<td>230,000</td>
<td>230,000</td>
</tr>
<tr>
<td>231,000</td>
<td>231,000</td>
</tr>
<tr>
<td>232,000</td>
<td>232,000</td>
</tr>
<tr>
<td>230,000</td>
<td>230,000</td>
</tr>
<tr>
<td>231,000</td>
<td>231,000</td>
</tr>
<tr>
<td>232,000</td>
<td>232,000</td>
</tr>
<tr>
<td>230,000</td>
<td>230,000</td>
</tr>
<tr>
<td>231,000</td>
<td>231,000</td>
</tr>
<tr>
<td>232,000</td>
<td>232,000</td>
</tr>
<tr>
<td>230,000</td>
<td>230,000</td>
</tr>
<tr>
<td>231,000</td>
<td>231,000</td>
</tr>
<tr>
<td>232,000</td>
<td>232,000</td>
</tr>
<tr>
<td>230,000</td>
<td>230,000</td>
</tr>
<tr>
<td>231,000</td>
<td>231,000</td>
</tr>
<tr>
<td>232,000</td>
<td>232,000</td>
</tr>
<tr>
<td>230,000</td>
<td>230,000</td>
</tr>
<tr>
<td>231,000</td>
<td>231,000</td>
</tr>
<tr>
<td>232,000</td>
<td>232,000</td>
</tr>
<tr>
<td>230,000</td>
<td>230,000</td>
</tr>
<tr>
<td>231,000</td>
<td>231,000</td>
</tr>
<tr>
<td>232,000</td>
<td>232,000</td>
</tr>
<tr>
<td>230,000</td>
<td>230,000</td>
</tr>
<tr>
<td>231,000</td>
<td>231,000</td>
</tr>
<tr>
<td>232,000</td>
<td>232,000</td>
</tr>
<tr>
<td>230,000</td>
<td>230,000</td>
</tr>
<tr>
<td>231,000</td>
<td>231,000</td>
</tr>
<tr>
<td>232,000</td>
<td>232,000</td>
</tr>
<tr>
<td>230,000</td>
<td>230,000</td>
</tr>
<tr>
<td>231,000</td>
<td>231,000</td>
</tr>
<tr>
<td>232,000</td>
<td>232,000</td>
</tr>
<tr>
<td>230,000</td>
<td>230,000</td>
</tr>
<tr>
<td>231,000</td>
<td>231,000</td>
</tr>
<tr>
<td>232,000</td>
<td>232,000</td>
</tr>
<tr>
<td>230,000</td>
<td>230,000</td>
</tr>
<tr>
<td>231,000</td>
<td>231,000</td>
</tr>
<tr>
<td>232,000</td>
<td>232,000</td>
</tr>
<tr>
<td>230,000</td>
<td>230,000</td>
</tr>
<tr>
<td>231,000</td>
<td>231,000</td>
</tr>
<tr>
<td>232,000</td>
<td>232,000</td>
</tr>
<tr>
<td>230,000</td>
<td>230,000</td>
</tr>
<tr>
<td>231,000</td>
<td>231,000</td>
</tr>
<tr>
<td>232,000</td>
<td>232,000</td>
</tr>
<tr>
<td>230,000</td>
<td>230,000</td>
</tr>
<tr>
<td>231,000</td>
<td>231,000</td>
</tr>
<tr>
<td>232,000</td>
<td>232,000</td>
</tr>
<tr>
<td>230,000</td>
<td>230,000</td>
</tr>
<tr>
<td>231,000</td>
<td>231,000</td>
</tr>
<tr>
<td>232,000</td>
<td>232,000</td>
</tr>
<tr>
<td>230,000</td>
<td>230,000</td>
</tr>
<tr>
<td>231,000</td>
<td>231,000</td>
</tr>
<tr>
<td>232,000</td>
<td>232,000</td>
</tr>
<tr>
<td>230,000</td>
<td>230,000</td>
</tr>
<tr>
<td>231,000</td>
<td>231,000</td>
</tr>
<tr>
<td>232,000</td>
<td>232,000</td>
</tr>
<tr>
<td>230,000</td>
<td>230,000</td>
</tr>
<tr>
<td>231,000</td>
<td>231,000</td>
</tr>
<tr>
<td>232,000</td>
<td>232,000</td>
</tr>
<tr>
<td>230,000</td>
<td>230,000</td>
</tr>
<tr>
<td>231,000</td>
<td>231,000</td>
</tr>
<tr>
<td>232,000</td>
<td>232,000</td>
</tr>
<tr>
<td>232,000</td>
<td>232,000</td>
</tr>
<tr>
<td>231,000</td>
<td>230,000</td>
</tr>
<tr>
<td>232,000</td>
<td>232,000</td>
</tr>
<tr>
<td>233,000</td>
<td>232,000</td>
</tr>
<tr>
<td>232,000</td>
<td>230,000</td>
</tr>
<tr>
<td>231,000</td>
<td>231,000</td>
</tr>
<tr>
<td>231,000</td>
<td>231,000</td>
</tr>
<tr>
<td>232,000</td>
<td>231,000</td>
</tr>
<tr>
<td>232,000</td>
<td>230,000</td>
</tr>
<tr>
<td>231,000</td>
<td>230,000</td>
</tr>
<tr>
<td>231,000</td>
<td>231,000</td>
</tr>
<tr>
<td>231,000</td>
<td>231,000</td>
</tr>
<tr>
<td>231,000</td>
<td>230,000</td>
</tr>
<tr>
<td>231,000</td>
<td>231,000</td>
</tr>
<tr>
<td>232,000</td>
<td>231,000</td>
</tr>
<tr>
<td>231,000</td>
<td>230,000</td>
</tr>
<tr>
<td>231,000</td>
<td>231,000</td>
</tr>
<tr>
<td>232,000</td>
<td>231,000</td>
</tr>
<tr>
<td>231,000</td>
<td>230,000</td>
</tr>
<tr>
<td>231,000</td>
<td>230,000</td>
</tr>
<tr>
<td>232,000</td>
<td>231,000</td>
</tr>
<tr>
<td>232,000</td>
<td>230,000</td>
</tr>
<tr>
<td>232,000</td>
<td>230,000</td>
</tr>
<tr>
<td>231,000</td>
<td>231,000</td>
</tr>
<tr>
<td>231,000</td>
<td>231,000</td>
</tr>
<tr>
<td>231,000</td>
<td>231,000</td>
</tr>
<tr>
<td>232,000</td>
<td>231,000</td>
</tr>
<tr>
<td>231,000</td>
<td>231,000</td>
</tr>
<tr>
<td>232,000</td>
<td>232,000</td>
</tr>
<tr>
<td>230,000</td>
<td>230,000</td>
</tr>
<tr>
<td>231,000</td>
<td>230,000</td>
</tr>
<tr>
<td>230,000</td>
<td>231,000</td>
</tr>
<tr>
<td>230,000</td>
<td>231,000</td>
</tr>
<tr>
<td>231,000</td>
<td>231,000</td>
</tr>
<tr>
<td>231,000</td>
<td>231,000</td>
</tr>
<tr>
<td>231,000</td>
<td>231,000</td>
</tr>
<tr>
<td>231,000</td>
<td>230,000</td>
</tr>
<tr>
<td>231,000</td>
<td>231,000</td>
</tr>
<tr>
<td>231,000</td>
<td>231,000</td>
</tr>
<tr>
<td>231,000</td>
<td>230,000</td>
</tr>
</tbody>
</table>