Návrh vstřikovací formy pro tělo airsoftové zbraně

Jiří Macka
ZADÁNÍ BAKALÁŘSKÉ PRÁCE
(PROJEKTU, UMĚLECKÉHO DÍLA, UMĚLECKÉHO VÝKONU)

Jméno a příjmení: Jiří Macka
Osobní číslo: T13813
Studijní program: B3909 Procesní inženýrství
Studijní obor: Technologická zařízení
Forma studia: prezenční
Téma práce: Návrh vstřikovací formy pro tělo airsoftové zbraně

Zásady pro vypracování:

1. Vypracujte literární studii na dané téma.
2. Proveďte konstrukci 3D modelu vstřikovaného dílu.
3. Vytvořte konstrukční návrh vstřikovací formy pro zadaný plastový díl.
4. Nakreslete řez sestavy formy a příslušné pohledy včetně kusovníku.
Rozsah bakalářské práce:
Rozsah příloh:
Forma zpracování bakalářské práce: tištěná/elektronická

Seznam odborné literatury:
Dle doporučení vedoucího bakalářské práce.

Vedoucí bakalářské práce: Ing. Michal Staněk, Ph.D.
Ústav výrobního inženýrství
Datum zadání bakalářské práce: 30. ledna 2015
Termín odevzdání bakalářské práce: 22. května 2015

Ve Zlíně dne 9. února 2015

doc. Ing. Roman Čermák, Ph.D.
děkan

prof. Ing. Berenika Hausnerová, Ph.D.
ředitel ústavu
PROHLÁŠENÍ

Prohlašuji, že

• beru na vědomí, že odevzdaním bakalářské práce souhlasím se zveřejněním své práce podle zákona č. 111/1998 Sb. o vysokých školách a o změně a doplnění dalších zákonů (zákon o vysokých školách), ve znění pozdějších právních předpisů, bez ohledu na výsledek obhajoby;
• beru na vědomí, že bakalářská práce bude uložena v elektronické podobě v univerzitním informačním systému dostupná k nahlédnutí, že jeden výtisk bakalářské práce bude uložen na příslušném ústavu Fakulty technologické UTB ve Zlíně a jeden výtisk bude uložen u vedoucího práce;
• byl jsem seznámen s tím, že na moji bakalářskou práci se plně vztahuje zákon č. 121/2000 Sb. o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon) ve znění pozdějších právních předpisů, zejm. § 35 odst. 3;
• beru na vědomí, že podle § 60 odst. 1 autorského zákona má UTB ve Zlíně právo na uzavření licenční smlouvy o užití školního díla v rozsahu § 12 odst. 4 autorského zákona;
• beru na vědomí, že podle § 60 odst. 2 a 3 mohu užít své dílo – bakalářskou práci nebo poskytnout licenci k jejímu využití jen s předchozím písemným souhlasem Univerzity Tomáše Bati ve Zlíně, která je oprávněna v takovém případě ode mne požadovat přiměřený příspěvek na úhradu nákladů, které byly Univerzitou Tomáše Bati ve Zlíně na vytvoření díla vynaloženy (až do jejich skutečné výše);
• beru na vědomí, že pokud bylo k vypracování bakalářské práce využito softwaru poskytnutého Univerzitou Tomáše Bati ve Zlíně nebo jinými subjekty pouze ke studijním a výzkumným účelům (tedy pouze k nekomerčnímu využití), nelze výsledky bakalářské práce využít ke komerčním účelům;
• beru na vědomí, že pokud je výstupem bakalářské práce jakýkoliv softwarový produkt, považuji se za součást práce rovněž i zdrojové kódy, popř. soubory, ze kterých se projekt skládá. Neodevzdaní této součásti může být důvodem k neobhájení práce.

Ve Zlíně 20. 5. 2015

[podpisy]

1) zákon č. 111/1998 Sb. o vysokých školách a o změně a doplnění dalších zákonů (zákon o vysokých školách), ve znění pozdějších právních předpisů, § 47 Zveřejňování závěrečných prací:
(1) Vysoká škola nevydělečně zveřejňuje disertační, diplomové, bakalářské a rigorózní práce, u kterých proběhla obhajoba, včetně posudků oponentů a výsledku obhajoby prostřednictvím databáze kvalifikačních prací, kterou spravuje. Způsob zveřejnění stanoví vnitřní předpis vysoké školy.
(2) Disertační, diplomové, bakalářské a rigorózní práce odevzdané uchazečem k obhajobě musí být též nejméně pět pracovních dnů před konáním obhajoby zveřejněny k nahlášení veřejnosti v místě určeném vnitřním předpisem vysoké školy nebo není-li tak určeno, v místě pracoviště vysoké školy, kde se má konat obhajoba práce. Každý si může ze zveřejněné práce pořizovat na své náklady výpisy, opisy nebo rozmažleniny.
(3) Platí, že odevzdané práce autor souhlasí se zveřejněním své práce podle tohoto zákona, bez ohledu na výsledek obhajoby.

2) zákon č. 121/2000 Sb. o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon) ve znění pozdějších právních předpisů, § 35 odst. 3:
(3) Do práva autorského také nezasahuje škola nebo školské či vzdělávací zařízení, užívající nikoli za účelem přímého nebo nepřímého hospodářského či obchodního prospěchu k výuce nebo k vlastní potřebě dílo vytvořené žákem nebo studentem ke splnění školních nebo studijních povinností vyplývajících z jeho právního vztahu ke škole nebo školskému či vzdělávacímu zařízení (školní dílo).

§ zákona č. 121/2000 Sb. o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon) ve znění pozdějších právních předpisů, § 60 školní dílo:

1) Škola nebo školské či vzdělávací zařízení mají za obvyklých podmínek právo na uzavření licenční smlouvy o užití školního díla (§ 35 odst. 3). Odpíra-li autor takového díla udělit svolení bez vážného důvodu, mohou se tyto osoby domáhát nahrazení chybějícího projevu jeho vůle u soudu. Ustanovení § 35 odst. 3 zůstává nedotčeno.

2) Není-li sjednáno jinak, může autor školního díla své dílo užít či poskytnout jinému licenci, není-li to v rozporu s oprávněnými zájmy školy nebo školského či vzdělávacího zařízení.

3) Škola nebo školské či vzdělávací zařízení jsou oprávněny požadovat, aby jim autor školního díla z výdělu jím dosaženého v souvislosti s užitím díla či poskytnutím licence podle odstavce 2 přiměřené příspěv na úhradu nákladů, které na vytvoření díla vynaložily, a to podle okolností až do jejích skutečných výše; případě se přihlédne k výši výdělu dosaženého školou nebo školským či vzdělávacím zařízením z užití školního díla podle odstavce 1.
ABSTRAKT

Cílem této bakalářské práce je vytvořit návrh vstřikovací formy pro tělo airsoftové zbraně, které se skládá ze dvou dílů.

Teoretická část se zabývá rozdělením polymerů pro vstřikování, popisu vstřikovacích strojů a forem včetně jejich částí. Větší pozornost však věnuje vstřikovací formě, včetně jejího konstrukčního řešení pro různé aplikace.

Praktická část se zabývá vytvořením vstřikovaného výrobku pomocí 3D skeneru a návrhem vstřikovací formy s použitím 3D modelovacího programu CATIA V5R19.

Klíčová slova: vstřikování, vstřikovací forma, CATIA, konstrukce

ABSTRACT

The aim of this bachelor work is to design an injection mold for the body of airsoft gun, which consists of two parts.

Theoretical part deals with the division of polymers into the groups for injection molding, description of machines and injection molds including their parts. Attention is given to injection mold, including its design solution for various applications.

The practical part deals with design of injection molded parts with using a 3D scanner and design of injection mold by using 3D modeling program CATIA VR19.

Keywords: injection molding, injection mold, CATIA, design
Velmi rád bych poděkoval vedoucímu bakalářské práce panu Ing. Michalu Staňkovi, Ph.D. za poskytnuté užitečné rady při vypracovávání bakalářské práce. Mé díky patří i rodičům, kteří mi umožnili studium na vysoké škole, i všem blízkým za podporu.

Prohlašuji, že odevzdaná verze bakalářské/diplomové práce a verze elektronická nahrána do IS/STAG jsou totožné.
OBSAH

ÚVOD .. 11

<table>
<thead>
<tr>
<th>I TEORETICKÁ ČÁST</th>
<th>.. 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 POLYMERY PRO VSTŘÍKOVÁNÍ</td>
<td>... 13</td>
</tr>
<tr>
<td>1.1 TEPLOPLASTY</td>
<td>.. 13</td>
</tr>
<tr>
<td>1.1.1 Amorfnní termoplasty</td>
<td>... 13</td>
</tr>
<tr>
<td>1.1.2 Semikrystalické termoplasty</td>
<td>.. 14</td>
</tr>
<tr>
<td>1.1.3 Možnosti modifikace termoplastů</td>
<td>.. 15</td>
</tr>
<tr>
<td>1.2 TEPLOPLASTICKÉ ELASTOMERY</td>
<td>... 15</td>
</tr>
<tr>
<td>1.3 REAKTOPLASTY</td>
<td>.. 16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 ZÁSADY KONSTRUKCE VÝSTŘÍKŮ Z PLASTŮ</th>
<th>... 17</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 ZAFOREMOVATELNOST</td>
<td>.. 17</td>
</tr>
<tr>
<td>2.2 TLOUŠTKY STĚN, ŽEBER, NÁLITKY, RÁDIUSY</td>
<td>... 18</td>
</tr>
<tr>
<td>2.2.1 Tloušťky stěn</td>
<td>.. 18</td>
</tr>
<tr>
<td>2.2.2 Tloušťky Žebere</td>
<td>.. 19</td>
</tr>
<tr>
<td>2.2.3 Ostré rohy na výlisku – vrub</td>
<td>.. 20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3 VSTŘÍKOVÁNÍ POLYMERU</th>
<th>.. 22</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 POSTUP VSTŘÍKOVÁNÍ</td>
<td>.. 22</td>
</tr>
<tr>
<td>3.2 TOK POLYMERNÍ TAVENTINY</td>
<td>... 23</td>
</tr>
<tr>
<td>3.3 POPIS JEDNOTLIVÝCH ČASŮ VSTŘÍKOVÁČÍHO CYKLU</td>
<td>.. 24</td>
</tr>
<tr>
<td>3.3.1 Strojní časy</td>
<td>.. 24</td>
</tr>
<tr>
<td>3.3.2 Doba vstřikování</td>
<td>.. 24</td>
</tr>
<tr>
<td>3.3.3 Doba dotlaku</td>
<td>.. 24</td>
</tr>
<tr>
<td>3.3.4 Doba plastikace</td>
<td>.. 25</td>
</tr>
<tr>
<td>3.3.5 Doba chlazení</td>
<td>.. 25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4 VSTŘÍKOVACÍ STROJE</th>
<th>.. 26</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 VSTŘÍKOVACÍ JEDNOTKA</td>
<td>... 26</td>
</tr>
<tr>
<td>4.2 UZAVÍRACÍ JEDNOTKA</td>
<td>.. 27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5 VSTŘÍKOVACÍ FORMA</th>
<th>.. 29</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 SPRÁVNÉ POSTUPY PŘI KONSTRUKCI FORMY</td>
<td>... 29</td>
</tr>
<tr>
<td>5.2 JAKOST POVRCHU FORMY</td>
<td>.. 30</td>
</tr>
<tr>
<td>5.3 VTKOVÉ SYSTÉMY</td>
<td>.. 30</td>
</tr>
<tr>
<td>5.3.1 Studené vtkové systémy</td>
<td>... 31</td>
</tr>
<tr>
<td>5.3.2 Vyhřívané vtkové systémy</td>
<td>... 33</td>
</tr>
<tr>
<td>5.4 TEMPERAČNÍ SYSTÉMY</td>
<td>.. 33</td>
</tr>
<tr>
<td>5.5 VYHAZOVAČÍ SYSTÉMY</td>
<td>.. 34</td>
</tr>
<tr>
<td>5.5.1 Mechanické vyhazování</td>
<td>.. 34</td>
</tr>
<tr>
<td>5.5.2 Pneumatické vyhazování</td>
<td>.. 35</td>
</tr>
<tr>
<td>5.5.3 Hydraulické vyhazování</td>
<td>.. 35</td>
</tr>
<tr>
<td>5.6 ODVZDUŠNĚNÍ FOREM</td>
<td>.. 35</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>II PRAKTICKÁ ČÁST</th>
<th>.. 36</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 STANOVENÍ CÍLŮ BAKALÁŘSKÉ PRÁCE</td>
<td>... 37</td>
</tr>
<tr>
<td>7 VSTŘÍKOVANÝ DÍL</td>
<td>.. 38</td>
</tr>
<tr>
<td>8 MATERIÁL VSTŘÍKOVANÉHO VÝROBHU</td>
<td>.. 41</td>
</tr>
<tr>
<td>9 VSTŘÍKOVACÍ STROJ</td>
<td>.. 42</td>
</tr>
</tbody>
</table>
ÚVOD

V praktické části je popis konstrukce formy pro tělo airsoftové zbraně. Během konstrukce budu využívat software CATIA V5R19 od francouzské společnosti Dassault Systemes. Pro import normalizovaných dílců bude využít DAKO modul od firmy HASCO.
I. TEORETICKÁ ČÁST
1 POLYMERY PRO VSTŘIKOVÁNÍ

V oblasti polymerní chemie dochází stále k novým objevům a tak i vývoj plastů jde neustále dopředu. Neustále se zdokonaluje velkotonážní výroba komoditních plastů i vývoj plastů pro speciální aplikace. [6]

1.1 Termoplasty

V dnešní době tvoří termoplasty přibližně 80% všech plastů dostupných na trhu. Termoplasty jsou výhodné jak z ekonomického, tak i z ekologického hlediska. Výrobky z termoplastů jsou totiž recyklovatelné a případně i dále při recyklaci modifikovatelné. Svoji pozici na trhu si získaly především tím, že jsou to materiály tepelně tvárné a tím snadno zpracovatelné. Z technologií používaných pro velkosériovou výrobu je dominantní technologie vstřikování. [1] [6]

Termoplasty se dělí na semikrystalické a amorfní. Toto rozdělení je důležité z hlediska procesu vstřikování, ale i z hlediska aplikačního použití, neboť se při zahřívání i následném vstřikování chovají odlišně. Mají proto i odlišné vlastnosti. Množství vyráběných amorfních plastů je větší než u semikrystalických polymerů, avšak u technicky náročných aplikací je tento poměr opačný. Mezi konstrukčními termoplasty jsou semikrystalické polymery v průmyslu zastoupeny až 75 procenty. [1] [6]

1.1.1 Amorfní termoplasty

Amorfní termoplasty jako např. PMMA, PS, SAN, PC mají možnost transparentního provedení. Smrštění amorfních polymerů oproti dutině formy je velmi nízké (přibližně 1%). Tato vlastnost je důležitá při výrobě rozměrově přesných dílů. Při jejich zpracování technologií vstřikování je pro ně důležitá teplota zeskelnění „Tg“. Teplota zeskelnění limituje teplotu vytahování výstřiku z formy a hranici teplotního použití výstřiku. Pouhých 20% z celkového množství vyráběných amorfních polymerů je určeno pro vstřikování. Jsou nepostradatelné v elektrotechnických aplikacích, ale i v automobilovém průmyslu, kde se používají zejména pro výrobu světloretů kvůli jejich vynikajícím optickým i mechanickým vlastnostem (především PMMA a PC). [1] [6]
1.1.2 Semikrystalické termoplasty

Důležitou vlastností semikrystalických polymerů je schopnost vytvářet z taveniny strukturu ve formě krystalů (např. POM, PE, PP, PA PBT a další). V závislosti na technologických podmínkách vstřikování a chemické stavbě polymeru může obsah krystalického podílu dosáhnout až 80%. Následek této vlastnosti je však větší smrštění výstřiku oproti dutině formy. Smrštění má velikost od 1 do 2,5%. V důsledku tvorby sférolitické struktury u výstříků ze standardních, částečně krystalických polymerů nemohou být transparentní (na rozdíl od amorfních polymerů). [6]

1.1.3 Možnosti modifikace termoplastů

1.2 Termoplastické elastomery

Termoplastické elastomery vznikají kopolymerací, nebo mísením základního polymeru s elastickou složkou. Takto vzniklé elastomery sice nemají vlastnosti klasických síťovaných elastomerů (kaučuků), ale jejich zásadní výhodou je snadné vstřikování na běžných vstřikovacích strojích. I proto dnes tvoří významnou oblast polymerních materiálů v současné době. Mezi elastomery vzniklé kopolymerací se používají například kopolyestery, polyeteramidy, termoplastické polyolefiny a další. Mezi elastomery vzniklé mísením se používají například PP, PA s elastomerní složkou například EPDM, NR. [6]
1.3 Reakttoplasty

V technologii vstřikování jsou reakttoplasty méně používány než termoplasty. Za to může jejich nízká rázová a vrubová houževnatost. Širší využití mají v oblasti elektroizolačních součástí.
2 ZÁSADY KONSTRUKCE VÝSTŘÍKŮ Z PLASTŮ

Správné navržení plastového výstříku je nejdůležitější etapou jeho realizace a to jak z pohledu technologie vstřikování, tak i z pohledu funkčního. I když je dobré koncepčně řešená forma i správně zvolená technologie výroby, tak záleží vždy na správné konstrukci dílu, zdali bude forma fungovat či nikoliv. Konstrukce výstříku proto musí splňovat dvě hlavní hlediska. [2] [4]

Druhým hlediskem je technologie zpracování. Záleží na plastikáři, který přebírá a posuzuje dokumentaci konstruktéra a dle ní volí správnou technologii zpracování. [2] [4]

2.1 Zaformovatelnost

Zaformovatelností se rozumí způsob optimálního zaformování ve formě pomocí správné volby dělících rovin, tak aby byl výstřík odformovatelný za pomoci různých konstrukčních
prvků, jako jsou čelisti apod. a zároveň mohl být ekonomicky vyráběn nejlépe v plně automatickém chodu. Správná technika zaformování by měla být známa i konstruktérům plastových dílů. [2]

2.2 Tloušťky stěn, žeber, nálitky, rádiusy

2.2.1 Tloušťky stěn

Tloušťka stěny musí být dostatečně tuhá, tak aby byla funkční v provozním zatížení. Volba materiálu je důležitá pro tuhost výstřiku, stejně tak i tloušťka stěny a tvar namáhaného profilu. Výstřik musí splňovat požadavek z hlediska tečení plastu uvnitř formy. Tento požadavek se liší s ohledem na použitý materiál. U tvarově složitých výstřiků se provádí tzv. analýza plnění v počítačových aplikacích. Většina problémů se zatékavostí se řeší tak, že se zesílí pouze určité partie výstřiku. Například u kruhových nádob, kde je vtok veden na dně, bývá dno oproti obvodovým stěnám zesílené. U výrobků z termoplastů bývají tloušťky stěny s ohledem na velikost vstřikovaného dílu do 5 mm, výjimečně do 6 mm. Pro větší tloušťky stěn se používají technologie s použitím nadouvladla. [2] [4]
2.2.2 Tloušťky žeber

Hlavním účelem použití žeber je zvýšení tuhosti a pevnosti výstřiku. Z technologického hlediska musejí žebra mít určitý poměr k hlavní tloušťce stěny. Tento poměr tlouštěk je důležitý pro eliminování vtaženin, neboli objemových kontrakcí při chladnutí výstřiku. [2] [4]

Objemové kontrakce jsou patrné především na tmavých lesklých plochách. Řešením tohoto problému bývá obvykle použití dezénu. K výběru dezénu používáme vzorkovnice a vyřábí se fotochemicky, elektroerozivně, nebo popřípadě otryskáváním. [2] [4]
Obr. 5. Poměr tloušťky žebra k hlavní tloušťce stěny [4]

- U amorfních polymerů se používá z praxe poměr tlouštěk stěn $a \leq 0.75 \times s$
- U semikrystalických polymerů se používá z praxe poměr tlouštěk stěn $a \leq 0.5 \times s$

Obecně platí, že objemová koncentrace u semikrystalických plastů je vyšší a to z důvodu krystalizace při tuhnutí taveniny. [4]

Obr. 6. Příklady správné konstrukce žebů [4]

2.2.3 Ostré rohy na výlisku – vruby

Důležitým kritériem pro vznik vrubů je vlastnost zvaná vrubová houževnatost materiálu. Je to spotřebovaná práce za přesně daných podmínek potřebná k přeražení zkušebního tělesa. Zkušební těleso je dáno normou a práce pro přeražení tělesa je vztažená k jeho průřezu. [2] [4]

Podobným způsobem jako u vrubové houževnatosti se měří i rázová houževnatost. Rázovou houževnatost se značí a_n a je měřítkem náchylnosti k lomu při rázovém namáhání. Jediný rozdíl je u zkušebního tělesa, které nemá vrub. Důležitý je ovšem ale poměr mezi rázovou a
vrubovou houževnatostí, který nám určuje vrubovou citlivost materiálu. Čím je tento poměr větší, tím je větší pravděpodobnost vzniku vrubů a koncentrací napětí. [2] [4]

Odstraněním ostrých přechodů a rohů na výstřicích tento problém ze značné části dokážeme eliminovat. [4]

\[R = \max 0,5 \] a
Na druhé straně, zase velké \(R \) mohou způsobovat úzkostiny.

Obr. 7. Zásady eliminace ostrých přechodů a rohů [4]
VSTŘIKOVÁNÍ POLYMERU

Vstřikování se řadí mezi způsoby tváření polymerních materiálů za tepla. Zjednodušeně řečeno, jde o vstřikování polymerní taveniny vysokou rychlostí do uzavřené dutiny formy. Takto vyrobené výrobky jsou charakterizovány velmi dobrou tvarovou i rozměrovou přesností. Vstřikováním se může zpracovávat většina druhů termoplastů, ale i reaktoplasty a kaučuky. [7] [8]

Jedná se o proces diskontinuální, neboli cyklický. Tento proces lze dalekosáhle automatizovat a tak vyrábět tak požadované výrobky velmi ekonomicky. Při správném a pečlivém navržení formy se můžeme vyhnout dalšímu opracování výstřiku. Nevýhodou technologie vstřikování jsou však vysoké investiční náklady, dlouhý čas nutný pro výrobu formy a nutnost použití vstřikovacích strojů, které jsou neúměrně velké a drahé vzhledem k vstřikovanému dílu, proto je tato technologie ekonomická pouze pro velkosériovou výrobu. [7]

3.1 Postup vstřikování

3.2 Tok polymerní taveniny

Při správném zaplňování dutiny formy polymerem dochází k tzv. valení taveniny. Jedná se o laminární tok, nazývá se taktéž fontánový tok taveniny. Při fontánovém toku se vytváří ztuhlá vrstva taveniny přímo na stěně dutiny formy. [7]

Výrazný vliv na kvalitu výstřiku má vznik studených spojů. K těm dochází, když se sejdou dva proudy taveniny. Studené spoje mají výrazný vliv na mechanické vlastnosti výstřiku a řeší se vhodnějším uspořádáním vtoků. [7]
3.3 Popis jednotlivých časů vstřikovacího cyklu

Jednotlivé časové úseky vstřikovacího cyklu jsou ovlivněny například geometrií výstřiku a technologickými podmínkami, možnostmi použitého stroje a proto trvají různě dlouho. Moderní stroje umožňují programovat v čase průběh rychlostí plnění formy, tlak (dotlak), teplotu formy, vtoku a vstřikovaného materiálu. [7]

3.3.1 Strojní časy

Z ekonomického hlediska je snaha zkracovat strojní časy na minimum. Z těchto důvodů například není rychlost uzavření formy konstantní. Z počátku se totiž forma pohybuje rychle a zpomalí až těsně před dosednutím, aby na sebe obě části formy lehce dosedly a nepoškodily se. Tento čas nazýváme doba na zavření formy a značíme ho t_{s1}. [1] [9]

Na stejném principu funguje i otevírání formy, kde je rychlost zpočátku vysoká, ale sníží se před dojezdem na doraz. To z důvodu, aby vyhození výstřiku z formy probíhalo pomalu. Tento čas nazýváme doba na otevření formy a značíme ho t_{s2}. Kromě strojních časů, jež jsou součásti vstřikovacího cyklu, jsou další strojní časy překryty dobou chlazení. [1] [9]

3.3.2 Doba vstřikování

Jedná se o dobu, kterou zabere plnění dutiny formy polymerní taveninou. Čas vstřikování t_v je přímo úměrný rychlosti vstřikování, potažmo pohybu šneku vpřed. Nejdůležitějšími faktory ovlivňující dobu vstřikování jsou teplota polymerní taveniny a vstřikovací tlak. Neméně důležitými faktory jsou teplota formy, řešení vtoku soustavy, druh vstřikovaného plastu, ale i objem výstřiku a jeho tvar. Doba plnění dutiny formy musí být co nejkratší, protože polymer při kontaktu s temperovanou formou ztrácí svoji tekutost. [1]

3.3.3 Doba dotlaku

Poté co se dutina formy naplní polymerní taveninou, dochází k tzv. dotlaku. U dotlaku prudce stoupne tlak a klesne rychlost. Přepnout na dotlak lze, buď pomocí dráhy šneku, nebo až tlak ve formě, nebo hydraulice nabude určité hodnoty, nebo podle vstřikovacího času. Doba dotlaku se značí t_d a může trvat několik sekund a u větších výstříků až několik desítek sekund. Závisí především na průřezu vtokových kanálů. Účelem dotlaku je zabránění vzniku propadlin, stažení a kompenzování smrštění, především u semikrystalických polymerů a zajišťuje rozměrovou přesnost výstřiku. [1]
3.3.4 Doba plastikace

Je to doba potřebná ke zplastikování a následnému zhomogenizování dávky plastu. Zplastikovaná dávka musí zaplnit dutinu formy a vtokový systém, ale i kompenzovat změnu objemu vyvolanou smrštěním. Dobu plastikace se značí t_{pl}. Teplo k připravení jedné dávky plastu je přibližně ze dvou třetin tvořeno třením a z jedné třetiny pomocí elektricky odporového topení. [1]

![Diagram](image)

Obr. 10. Možné dávkovací dráhy u vstřikovacích strojů [1]

3.3.5 Doba chlazení

Jedná se o nejdélší část vstřikovacího cyklu. Odvíjí se od tvaru výstřiku především od jeho tloušťky stěny a druhu vstřikovaného plastu. Další ovlivňující faktory jsou teplota polymerní taveniny, teplota formy a vyhazovací teplotě výstřiku. Doba chlazení ovlivňuje strukturu polymeru, krystalizaci a vnitřní pnutí. [1]
4 VSTŘIKOVACÍ STROJE

Proces vstřikování probíhá většinou plně automaticky na vstřikovacích strojích. Produktivita práce je proto velmi vysoká. Technologie vstřikování je vhodná pro velkosériovou výrobu, protože pořizovací cena stroje a formy je značná. [3]

Hlavní části vstřikovacího stroje jsou vstřikovací jednotka, uzavírací jednotka a řídící jednotka. Každý výrobce je schopen dobrovělně vybavit vstřikovací stroj manipulátory, temperačními zařízeními, roboty, misicím i dávkovacím zařízením, dopravníky, sušírními atd., tak aby byla výroba částečně, nebo plně automatizována. [3]

![Obr. 11. Schéma vstřikovacího stroje](image)

4.1 Vstřikovací jednotka

Úkolem vstřikovací jednotky je přeměnit granulovaný plast na homogenní taveninu s požadovanou viskozitou a následně vstřikování plastu vysokou rychlostí a pod vysokým tlakem do dutiny formy. V dnešní době se používají šnekové vstřikovací jednotky, dříve to byly však pistové, jejichž princip byl převzat z lití kovu pod tlakem. [1] [3]

Granulát z hrdla násypky je nabírán otáčejícím se šnekom. Granulovaný plast se následně stlačuje a je dopravován do vytápěné části tavící komory. V tavící komoře granulát taje a hromadí se před čelem šneku, který v průběhu otáčení ustupuje dozadu. Jakmile se takhle zplastikuje potřebné množství materiálu, tak se šnek přestane otáčet a podobně jako píst se začne posouvat dopředu a vstříkne polymerní taveninu do dutiny formy. Plastikace další dávky plastu probíhá během fáze chlazení. [1] [3]
Vstřikovací jednotka je charakterizována několika základními parametry:

- Průměr šneku \(D \) [mm]
- Délka šneku \(L \) [mm]
- Vstřikovací kapacita \(Q_v \) [cm³]
- Plastikační kapacita \(Q_p \) [kg.hod⁻¹]
- Maximální vstřikovací tlak \(p_{vstř} \) [MPa]

Délka šneku se nicméně obvykle vyjadřuje jako poměr délky šneku a jeho průměru, tedy \(L/D \). U běžných vstřikovacích strojů na termoplasty se pohybujeme v rozmezí 15 až 20 \(D \).

4.2 Uzavírací jednotka

Uzavírací jednotka otevírá a zavírá formu dle procesu vstřikování. Musí formu uzavřít dostatečnou silou tak, aby se při vstřikování polymerní taveniny do dutiny formy neotevřela. Rozlišuje se síla přisouvací \(F_p \) a uzavírací \(F_u \). U moderních strojů se dají velikosti sil a rychlosti otevírání a uzavírání formy libovolně programovat. [1]

Hlavními částmi uzavírací jednotky jsou opěrné desky, pohyblivé desky a upínací desky. Opěrné desky jsou pevně spojeny s ložem vstřikovacího stroje. Na pohyblivých deskách je upnuta pohyblivá část formy. Pevná část formy se upne na upínací desky, které mají otvor pro vstřikovací jednotku. [1]
Používají se různé uzavírací systémy jako elektrické, hydraulické, mechanické a jejich kombinace. Uzavírací jednotka a vstřikovací jednotka má ji vůči sobě vzájemnou polohu – nejčastěji jsou konstruovány jako horizontální. Vstřikování pak probíhá kolmo na dělící rovinu. Vzájemné uspořádání se ale může ve speciálních případech lišit. [1]
5 VSTŘIKOVACÍ FORMA

Vstřikovací formy pro zpracování plastů jsou náročné z hlediska odborných znalostí, co se konstruktérské práce týče, tak i z finančního hlediska. Forma musí splňovat po celou dobu své životnosti určité požadavky. Mezi ně například patří odolnost proti vysokým tlakům, zajištění stálého požadovaného rozměru a kvality, dobrou odformovatelnost, snadný a nejlépe plně automatizovaný provoz atd.. [7]

Vstřikovací forma se skládá z temperačního systému, vtokového systému, vyhazovacího systému a různých upínacích, nebo vodících elementů. Části vstřikovací formy se dále rozdělují na konstrukční a funkční. Správnou činnost formy mají na starost konstrukční části a funkční části jsou ve styku s polymerní taveninou a udávají jí konečný tvar. [7]

Z hlediska konstrukce jsou vstřikovací formy velmi rozmaité, ale v základě je lze rozdělit do několika skupin. Dle násobnosti (počtu tvarových dutin) je dělíme na jednonásobná a více-násobné nebo dle způsobu zaformování na dvoudeskové, třídeskové, čelisťové, etážové, vytáčecí a podobně. [7]

Správnou volbou materiálu a jeho tepelným zpracováním lze z velké části ovlivnit životnost formy a to až už se jedná o materiál desek, nebo dílů, které jsou v přímém kontaktu s polymerní taveninou jako je tvárník a tvárnice. Materiál se volí podle vstřikovaného polymeru, tepelné odolnosti, odolnosti proti korozii, odolnosti proti opotřebení, velikosti výrobku, složitosti výrobku, použité technologii a tak dále. [7]

5.1 Správné postupy při konstrukci formy

Konstruktér, který formu navrhuje poté, co obdrží výkres součásti, je mu známá násobnost formy a stroj na kterém se bude dílec vstřikovat, tak musí zvážit následující kroky. [1] [2]

Musí zvážit vhodné umístění dělících rovin, s ohledem na způsob zaformování a umístění vtoku. Dělící plocha musí být co nejjednodušší na výrobu a musí procházet hranami vstřiku. To kvůli funkčním a vzhledovým vadám. [1] [2]

Určit rozměry tvarové dutiny popřípadě dutin s ohledem na opotřebení, výrobní toleranci a smrštění výstřiku. Velikost výrobní tolerance formy se volí jako 20% ze smrštění. Pokud se nepoužívá při vstřikování plnivo s abrazivními účinky a o formu se řádně peče, tak lze opotřebení dutiny formy zanedbat. [1] [2]
Navrhnout vhodnou konstrukci temperovacího a vyhazovacího systémů. Jeli to nutné tak musí navrhnout i vhodný systém odvzdušnění. [1] [2]

Jako další je nutné zvolit správně materiály, ze kterých bude forma vyrobená dle výše uvedených stanovisek. [1] [2]

Dle druhu vstřikovacího stroje musí navrhnout vhodný způsob upnutí formy a jejího vy-
středění. Na závěr následuje kontrola všech funkčních parametrů formy s ohledem na vstřiko-
vací stroj. [1] [2]

5.2 Jakost povrchu formy

Jakost povrch dutiny formy je velmi důležitým parametrem pro konečný vzhled výstřiku. Při návrhu se řídíme doporučenými drsnostmi obráběných ploch. Vysoká drsnost povrchu může mít za následek špatné odformování výstřiku.

Tab. 1 – Jakosti povrchů forem

<table>
<thead>
<tr>
<th>Drsnost Rₐ</th>
<th>Požadovaná jakost obrobených ploch</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,05</td>
<td>Nejpřesnější tvárníky a tvárnice s opracováním na vysoký lesk</td>
</tr>
<tr>
<td>0,1</td>
<td>Tvárníky a tvárnice s opracováním na běžný lesk</td>
</tr>
<tr>
<td>0,2</td>
<td>Tvárníky a tvárnice s dokonalým povrchem</td>
</tr>
<tr>
<td>0,4</td>
<td>Tvárníky a tvárnice s matným povrchem opracování dosedacích ploch</td>
</tr>
<tr>
<td>0,8</td>
<td>Opracování tvárníků a tvárnice u běžných forem a u dosedacích ploch</td>
</tr>
<tr>
<td>1,6</td>
<td>Opracování tvárníků a tvárnice méně náročných forem a dosedacích ploch</td>
</tr>
</tbody>
</table>

5.3 Vtokové systémy

Účelem vtokového systému je zajistit správné naplnění všech dutin formy pokud možno ve stejném čase za pomocí kanálů a ústí vtoku. To vše v nejkratším možném čase při minimálních odporech. Výstřik musí být snadno oddělitelný od vtokového systému. Vtokové systémy se rozdělují podle toho, jestli jsou konstruovány pro malosériovou, nebo velkosériovou až hromadnou výrobu. Pro výstřiky vyráběné velkosériově se používají vyhřívané vtokové systémy. Pro malosériovou výrobu jsou to studené vtokové systémy. [1] [4]

Násobnost formy nám určuje celkové uspořádání vtokové soustavy. Velký význam má umístění a druh vtokového systému zejména u termoplastů. Má totiž vliv na tok taveniny ve
formě a to má za následek i utváření takzvaných studených spojů. Existuje několik nejčastěji používaných uspořádání vtokových soustav u vícenásobných forem, buď do hvězdy, nebo v řadě. Uspořádání do hvězdy je výhodnější z pohledu rovnoměrného plnění dutin formy polymerní taveninou. [1] [4]

![Obr. 14. Uspořádání vtokových systémů [4]](image)

5.3.1 Studené vtokové systémy

Jelikož je forma oproti tavenině poměrně studená tak dochází ke zvýšení viskozity taveniny, což má za následek nárůst tlaku. Tlak se pohybuje v rozmezí 40 až 200 MPa v závislosti na velikosti dutiny. [2]
Obr. 15. Průřez vtokových kanálů – a) funkčně výhodné, b) funkčně nevýhodné, 1,6-výrobně nevýhodné, 2,3,4,5 výrobně výhodné [7]

To jak je jednotlivý průřez vhodný určuje tak zvaná velikost smáčivého čísla, což je poměr průtočného průřezu ke smáčenému povrchu. Čím je číslo vyšší, tím je průřez vhodnější. [7]

Vtokový systém má tři hlavní části. Je to hlavní vtokový kanál, rozváděcí kanály a vtokové ústí. Velikost hlavního vtokového kanálu se určuje empiricky podle hmotnosti výstřiku. Navazuje přímo na trysku vstřikovacího stroje a je kuželový s úkosem 1,5°. Rozváděcí kanál má stejný, nebo nepatrně vyšší průměr než vtokové kanálu. Velikost vtokového ústí musí být co nejmenší kvůli co nejmenší stopě na výstřiku, ale musí zajistit i spolehlivé naplnění formy. [7]

Obr. 16. Hlavní části vtokového systému [4]
5.3.2 Vyhřívané vtokové systémy

Formy s vyhřívaným vtokovým systémem jsou tužší a vyrobeny s větší přesností, jelikož jsou značně tepelně i mechanicky namáhány. Nejsou proto vhodné pro malosériovou výrobu, protože výroba takovéto formy je mnohem nákladnější. Výhodou je ale její snadná údržba a ekonomika provozu, jelikož u forem s vyhřívaným vtokovým systémem nezbyde žádný odpad ve formě zbytků po vtokových kanálech. Vstřikovací tryska totiž ústí přímo do dutiny vstřikovací formy. [9]

5.4 Temperační systémy

Účelem temperace je udržení konstantního teplotního pole formy. Ovlivňuje zaplnění formy polymerní taveninou a zajišťuje optimální chladnutí plastu až na vyhazovací teplotu. Temperační systém je systém kanálů a dutin, ve kterých cirkuluje temperační kapalina (voda, olej, atd.) a umožňuje přestup, prostup tepla z polymerní taveniny do kapaliny. Ideální případ by byl, kdyby se tavenina ochlazovala všech místech stejně. Pokud by se výstřik ochlazoval nerovnoměrně, hrozilo by, že se výstřik deformuje důsledkem vnitřního pnutí, nebo na něm vzniknou trhliny. Délka temperačního kanálu se volí tak, aby rozdíl teplot na vstupu a na výstupu temperačního média byl maximálně 3 až 5°C. [7]

Obr. 17. Vliv rozmístění temperačních kanálů na průběh teploty ve formě a) u stejné tloušťky výstřiku, b) u rozdílné tloušťky výstřiku [2]
Pro konstrukci temperačních kanálů platí tyto pravidla:

- Kanály nesmí ohrozit tuhost tvarové dutiny formy.
- Kanály musí být konstruovány tak, aby dostatečně odváděly teplo v okolí vtoku taveniny do dutiny.
- Průtok chladicího média musí proudit z nejteplejšího místa formy k nechladnějšímu.
- Pokud možno, tak volit z výrobních důvodů kruhový průřez kanálů.
- S ohledem na tvar výstřiku se volí rozmístění kanálů.
- Spoje temperačních kanálů musí být dobře utěsněny. Pokud není možné dostatečně utěsnění, tak se temperační kanál nahradí drážkou, do které se vloží trubka z materiálu o vysoké tepelné vodivosti.
- Zamezit vzniku mrtných koutů.
- Kanály nesmí být umístěny v blízkosti hran výstřiku.
- Umístění kanálů řešíme tak, aby se daly propojit hadicemi.

5.5 Vyhazovací systémy

Jelikož se plasty během chlazení v dutině formy smršťují a při otevírání formy zůstává plastový výstřik na tvárniku, tak pro oddělení výstřiku od tvárníku se zavádí vyhazovací systém. Pohyb vyhazovacího systému můžeme rozdělit do dvou fází. Při pohybu vpřed probíhá vlastní vyhazování a pohybem vzad se systém vrací do původní polohy. Nejčastěji používaným způsobem vyhazování je mechanický pomocí vyhazovacích kolíků, nebo pomocí stíracích desek. Vyhazovače mají různý tvar a jejich rozmístění záleží na tvaru výstřiku. Dalšími typy vedle mechanického vyhazování je pneumatické a hydraulické. [2]

5.5.1 Mechanické vyhazování

Vyhazování probíhá na mechanickém principu za pomoci vyhazovacích kolíků, stíracích desek, kroužků a podobně. Velmi často se tyto způsoby mezi sebou různě kombinují.

Nejlevnějším a nejčastějším způsobem je vyhazování za pomocí vyhazovacích kolíků. Osvědčil se především kvůli své jednoduchosti a spolehlivé funkčnosti. Nevýhodou je však to, že zanechává stopy na výstřiku. [2]
Způsob vyhazování pomocí stírací desky funguje na principu stírání výstřiku po celém jeho obvodu a tak nezanechá žádnou stopu po vyhození z dutiny formy. Kvůli své velké styčné ploše se používá u výstříků s velmi tenkou stěnou, jelikož tolik nedeformuje výrobek na rozdíl od vyhazovacích kolíků. [2]

Speciálním způsobem mechanického vyhazování je šikmé vyhazování. Využívá se pro vytvoření mělkých vnitřních, nebo vnějších zápichů u malých výstříků. [2]

5.5.2 Pneumatické vyhazování

Je nejvhodnější pro výstříky s velmi tenkou stěnou a velkými rozměry. Na rozdíl od mechanického vyhazování nevyžaduje velký zdvih a tak nemá vliv na délku formy. Po pneumatickém vyhazování nevznikají stopy po vyhazovačích, jelikož je stlačený vzduch přiveden mezi výstřík a líc formy. Použití je omezeno pouze na výstříky s tvarem nádoby. Přívod vzduchu do formy je řízen talířovými ventily. [2]

5.5.3 Hydraulické vyhazování

Hydraulický vyhazovač je zabudován přímo do místa připraveného ve formě. Používá se k ovládání mechanických vyhazovačů. Hydraulický vyhazovač má velikou vyhazovací sílu, avšak pomalejší zdvih. [2]

5.6 Odvzdušnění form

Před vstřikováním polymerní taveniny se v dutině formy nachází vzduch. Při vstřikování tedy dochází k jeho stlačování a tím roste tlak. Takto stlačovaný vzduch se může zažehnout a vzniká tak zvaný Dieselův efekt, který je patrný spáleným místem na výstřiku. Může také docházet k výskytu bublin, které zůstávají na stěně dutiny formy a tím pádem i k deformaci výstříku. [2]
II. PRAKTICKÁ ČÁST
6 STANOVENÍ CÍLŮ BAKALÁŘSKÉ PRÁCE

V teoretické části je zpracována literární studie zabývající se polymery pro vstřikování, zásadami konstrukce výstřiku z plastů, strojními časy, konstrukcí vstřikovacích strojů a forem.

V praktické části se bude provedena konstrukce vstřikovací formy za pomocí softwaru Catia V5R19 od firmy Dassault Systemes. Bude využito i digitálního katalogu od firmy HASCO. Z takto zhotovených 3D modelů bude vytvořena sestava formy a z ní následně výkresová dokumentace.

Zadání bakalářské práce:

1. Vypracujte literární studii na dané téma.
2. Proveďte konstrukci 3D modelu vstřikovaného dílu.
3. Vytvořte konstrukční návrh vstřikovací formy pro zadaný plastový díl.
4. Nakreslete řez sestavy formy a příslušné pohledy včetně kusovníku.
7 VSTŘIKOVANÝ DÍL

Zadaný díl je tělo airsoftové zbraně, konkrétně se jedná o typ G36C. Tělo se skládá ze dvou tenkostěnných dílců. Základní rozměry výstřiku jsou uvedeny na Obr. 21. Objem pravé poloviny je 76,7 cm³ a levé 83,8 cm³. Tloušťka dílců je průměrně 3 mm.

Obr. 18. Airsoftová zbraň G36C

Tvorba 3D modelu probíhala tak, že se dílce nejdříve naskenovaly na 3D skeneru a za pomocí získaných 3D skenů se následně dílce domodelovaly v programu CATIA V5R19.
Naskenována byla pouze lícová plocha zadané součásti. Bylo tomu učiněno proto, aby se zjistilo prohnutí součásti, které bylo nezměřitelné pomocí posuvného měřidla. Každá barva na obrázku znázorňuje jeden sken, který byl následně za pomocí softwaru spojen s ostatními skeny tak, aby tvořil celistvou vnější plochu výstřiku.

Obr. 20. Výsledný 3D sken

Obr. 21. 3D model zadané součásti
Obr. 22. Sestavení levé a pravé poloviny výstřiku (pohled zprava)

Obr. 23. Sestavení levé a pravé poloviny výstřiku (pohled zleva)
8 MATERIÁL VSTŘIKOVANÉHO VÝROBku

Jako materiál výstřiku byl zvolen PA6 s obchodním názvem Ultramid BU50I. Jedná se o termoplast s vysokou odolností oděru, vysokou pevností v tahu a velkou houževnatostí. Jako jeden z mála materiálů si dokáže zachovat rázovou houževnatost i při nižších teplo-
tách. Nejčastější použití tohoto polymeru je v automobilovém průmyslu a u výrobků pro
zimní sporty, jako jsou lyže, helmy, snowboardy a podobně. Výrobcem doporučená teplota
formy je 60-85°C. Materiál je dodáván v uzavřených nádobách a sušení před vstřikováním
není nutné, nicméně doporučené, jelikož doba tuhnutí je závislá na vlhkosti materiálu. [11]
9 VSTŘIKOVACÍ STROJ

Pro navrženou formu byl zvolen vstřikovací stroj od německé společnosti Arburg. Stroj má označení ALLROUNDER 470C GOLDEN EDITION. Uzavírací část stroje je řízená hydraulikou s maximální uzavírací silou 1500 kN, maximální vyhazovací silou 40 kN, průměrem šneku 45mm a maximálním objemem dávky 254 cm³.

Obr. 24. Schéma vstřikovacího stroje
Tab. 2. Technické parametry uzavírací jednotky [10]

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Hodnota</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. uzavírací síla [kN]</td>
<td>2500</td>
</tr>
<tr>
<td>Max. otevírací zdvih [mm]</td>
<td>600</td>
</tr>
<tr>
<td>Výška formy [mm]</td>
<td>300-700</td>
</tr>
<tr>
<td>Max. hmotnost pohyblivé části formy [kg]</td>
<td>2500</td>
</tr>
<tr>
<td>Max. vyhazovací zdvih [mm]</td>
<td>225</td>
</tr>
</tbody>
</table>

Tab. 3. Technické parametry vstřikovací jednotky [10]

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Hodnota</th>
</tr>
</thead>
<tbody>
<tr>
<td>Průměr šneku [mm]</td>
<td>45</td>
</tr>
<tr>
<td>Poměr L/D šneku [-]</td>
<td>22</td>
</tr>
<tr>
<td>Max. zdvih šneku [mm]</td>
<td>200</td>
</tr>
<tr>
<td>Max. objem vstřikované taveniny [cm³]</td>
<td>318</td>
</tr>
<tr>
<td>Max. vstřikovací tlak [bar]</td>
<td>2470</td>
</tr>
<tr>
<td>Max. rychlost vstřikování [cm³/s]</td>
<td>242</td>
</tr>
</tbody>
</table>
10 POUŽITÝ SOFTWARE

Pro konstrukci výstřiku i vstřikovaného dílu byl použit software od společnosti Dassault Systemes. Vývoj systému CATIA původně značeného CATI z francouzského Conception Assistée Tridimensionnelle, začal v roce 1977 pro vlastní potřebu letecké společnosti Avions Marcel Dassault. CATIA je programový systém, podporující trojrozměrný interaktivní návrh součástí, výrobu a inovace složitých strojírenských výrobků.

Pro samotnou konstrukci formy bylo využito normálií od společnosti HASCO. Pro import normalizovaných dílců do programu CATIA byl použit HASCO DAKO 3D-modul normalí R1/2015, který obsahuje veškeré 3D modely dílců z firemního katalogu. HASCO je německá firma, která se zabývá konstrukcí, výrobou a prodejem všech možných dílců týkajících se vstřikovacích forem.

Obr. 25. Prostředí HASCO DAKO modulu
11 KONSTRUKCE FORMY

Při návrhu formy byl kladen co největší důraz na použití normalizovaných dílů, konkrétně od firmy HASCO. Jedná se tedy až na výjimky o všechny díly, jako jsou šrouby, středící trubky, čepy, desky a další. Důvodem volby normalizovaných dílů je urychlení a zlevnění výroby formy.

Obr. 20. Řestava vstřikovací formy
11.1 Pravá polovina formy

Pravá polovina formy, nebo vstřikovací strana je nepohyblivá, pevně uložená na rámu vstřikovacího stroje a vystředěná pomocí středícího kroužku. Slouží ke vstřikování polymerní taveniny do dutiny formy. Vystředění mezi pravou a levou polovinou formy je dosaženo za pomocí vodících čepů. V pravé polovině formy se dále nachází tvárnice, vtokový systém, temperační systém pro tvárnice a dva hydraulické tahače sloužící k odformování děr na vnějších stranách výstřiků.

Obr. 21. Pravá polovina formy
11.2 Levá polovina formy

Levá polovina formy je na rozdíl od pravé pohyblivá v horizontálním směru. Nejdůležitějšími částmi levé poloviny formy jsou tvárníky, vodící a středící trubky, temperační systém pro tvárníky a vyhazovací systém. Účelem levé části formy je po vstřiknutí polymerní taveniny a jejím ochlazení odjet od pravé pevné poloviny formy a vyhodit výstřik i s vtokovým systémem.

Obr. 22. Levá polovina formy
11.3 Rám formy

Rám formy je skupina navzájem spojených desek. Desky jsou k sobě spojeny vodicím, středicím a spojovacím příslušenstvím. Rám musí umožnit správné ustavení na vstřikovacím stroji včetně dokonalého a bezpečného upnutí na stroji, přesné vedení pohyblivých dílů formy a snadné upevnění tvarových vložek a ostatních funkčních dílů.

Obr. 23. Popis desek formy

Rozměry desek [mm]:

- Rozpěrná deska: 496 x 90 x 60
- Kotevní deska levá: 496 x 496 x 27
- Vyhadovací deska kotevní: 368 x 496 x 36
- Vyhadovací deska opěrná: 368 x 496 x 27
- Upínací deska levá: 596 x 496 x 36
- Izolační deska levá: 596 x 496 x 4
- Kotevní deska pravá: 496 x 496 x 55
- Upínací deska pravá: 596 x 496 x 36
- Izolační deska pravá: 596 x 496 x 4

11.4 Násobnost formy

Pro určení násobnosti formy je třeba zohlednit několik důležitých parametrů. Je to přesnost výstřiku, požadované množství, velikost a kapacita vstřikovacího stroje, ekonomika výroby a v neposlední řadě i termín dodávek. Pro tento dílec byla zvolena forma dvounásobná.

11.5 Tvárník a tvárnice

Obr. 26. Pravé a levá tvárnice

Obr. 27. Pravý a levý tvárník
11.6 Odformování

Obr. 28. Hydraulický tahač Z2301/16 x 20

Obr. 29. Detail odformování oka pro připnutí popruhu
11.7 Temperace formy

Velikosti temperačních kanálů jsou voleny v závislosti na rozměrech rámu formy, velikosti výstřiku a druhu vstřikovaného plastu. Nejčastěji používaným průřezem je průřez kruhový. Temperační kanály nesmí ovlivnit tuhost formy. Doporučené průměry kanálů jsou uvedeny v tabulce Tab. 4., dle které by byl zvolen průměr temperačního kanálu 10 mm. Zvětšování průřezů je zbytečné, jelikož by se zvětšením průřezu intenzita výměny tepla zvýšila jen o nepatrnou hodnotu, naopak by vzrostla spotřeba temperačního média.
Tab. 4. Orientařní hodnory volby průměru kanálů v závislosti na výstřiku a rámů formy [2]

<table>
<thead>
<tr>
<th>rámc</th>
<th>výstřik [g]</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>8</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>30</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>500</th>
<th>800</th>
</tr>
</thead>
<tbody>
<tr>
<td>160x160</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>160x230</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>230x230</td>
<td>8</td>
</tr>
<tr>
<td>230x300</td>
<td>8</td>
</tr>
<tr>
<td>300x300</td>
<td>8</td>
</tr>
<tr>
<td>300x370</td>
<td>8</td>
</tr>
<tr>
<td>370x370</td>
<td>8</td>
</tr>
<tr>
<td>370x440</td>
<td>8</td>
</tr>
<tr>
<td>440x440</td>
<td>8</td>
</tr>
<tr>
<td>440x510</td>
<td>8</td>
</tr>
<tr>
<td>510x510</td>
<td>8</td>
</tr>
<tr>
<td>510x650</td>
<td>8</td>
</tr>
</tbody>
</table>

Pro každý tvárník tvárník a tvárnici by byl navržen jeden oběh temperačních kanálů. Kanály jsou spojeny zvnějšku formy pomocí spojek od společnosti HASCO. Dráha toku temperačního média je vymezena pomocí zátek.
Obr. 32. Rozmístění temperačních kanálu u tvárníku (levý)

Obr. 33 Rozmístění temperačních kanálu u tvárnice (pravá)
11.8 Vtokový systém

11.9 Vyhazovací systém

Výstřik musí být po otevření formy přichycen k levé posuvné polovině formy. K tomu dochází z důvodu smrštění výstřiku na tvárníku. Pokud je tato základní podmínka splněna, tak může dojít k vyhození výstřiku. Forma je navržená tak, aby se vyhazovače dotkly při vyhození rubové strany výstřiku. Vyhazovací systém tvoří 38 válcových vyhazovačů o průměru 4 mm a 1 válcový vyhazovač o průměru 9 mm sloužící k vyhození vtoku.
11.10 Odvzdušnění formy

Po zavření formy je dutina naplněna vzduchem. Tento vzduch musí po vstřiknutí polymerní taveniny uniknout, nebo může dojít k narušení tvaru a povrchu výstřiku. Při konstrukci formy bylo uvažováno s únikem vzduchu dělící rovinou a přes vůli mezi vyhazovači.

11.11 Transportní systém

Z důvodu lepší manipulace pomocí jeřábu s formou je umístěn na upínacích deskách umístěn transportní můstek se závěsným okem od firmy HASCO s označením Z70 Typ2 210-300. Můstek je konstruován tak, aby se po usazení formy na vstřikovací stroj nemusel demonstrovat.
Obr. 37. Transportní systém
12 DISKUZE VÝSLEDKŮ

Cílem této bakalářské práce byl návrh vstřikovací formy pro tělo airsoftové zbraně. Tělo zbraně se skládá ze dvou podobných tenkostěnných dílů. Rozměry jednoho jsou 387x100 mm a druhého 358x100 mm. Tloušťka stěn je proměnná, pohybující se okolo 3 mm.

Při konstrukci formy se vycházelo z předpokladu, že forma bude dvounásobná a tvárnice s tvárníky budou konstruovány jako vyměnitelné vložky. Pomocí funkcí v programu CATIA V5R19 byly vytvořeny oba tvárníky s tvárnicemi, jejichž tvarové části byly zvětšeny o hodnotu smrštění polymeru po ztuhnutí. Po vytvoření tvárníků s tvárnicemi následovala vhodná volba velikosti rámu z normálie HASCO a volba vhodného vtokového systému. Následně byl vybrán materiál, který vyhovuje požadavkům na mechanické namáhání výstřiku. Jako materiál výstřiku byl zvolen PA6 Ultramid BU50I kvůli svým mechanickým vlastnostem.

Byl zvolen studený vtokový systém s tunelovým vtokem. Po usazení tvarových prvků formy na místo v rámu a vytvoření vtokového systému bylo nutné vymyslet odformování děr na lícové straně výrobku. Pro tento účel byl zvolen hydraulický tahač z normálie HASCO s označením Z2301/16 x 20, protože nejčastěji používané odformování pomocí šikmých kolíků nebylo v tomto případě možné, jelikož je nutné díru odformovat ještě před otevřením formy.

Následovala tvorba temperačního systému, který byl u tvárníků tvořen s ohledem na vyhazovací systém a na tuhost formy. Temperační systém tvoří 4 samostatné okruhy pro každý tvárník a tvárnici. Průřez temperačních kanálů je kruhový z důvodu jednoduché výroby. Kapašina v temperačních kanálech při vstřikování polymerní taveniny do dutiny formy proudí od nejteplejšího místa k nejchladnějšímu místu formy.

Správné vyhození výstříků zajišťuje 38 válcových vyhazovačů o průměru 4 mm od firmy HASCO s označením Z40/4 x 160 a 1 válcový vyhazovač o průměru 9 mm s označením Z40/9 x 160 sloužící k vyhození vtoku.

Na závěr byl podle velikosti formy, velikosti výstříku a typu zvoleného vstřikovaného polymeru zvolen vstřikovací stroj. Pro navrženou formu byl zvolen vstřikovací stroj od německé společnosti Arburg a to ALLROUNDER 470C GOLDEN EDITION.
ZÁVĚR

Vypracování této bakalářské práce vycházelo z oficiálního zadání. Toto zadání stanovilo cíle pro teoretickou i praktickou část.

Literární studie se věnuje technologii vstřikování plastů, typům plastů pro vstřikování, vstřikovacím strojům, zásadám konstrukce výstřiků a forem. Větší část literární studie je věnována zásadám konstrukce vstřikovacích forem.

V praktické části je řešena problematika konstrukce vstřikovací formy pro tělo airsoftové zbraně s označením G36. Jako materiál výstřiku byl zvolen PA6 Ultramid BU50I kvůli svým mechanickým vlastnostem. Na základě vyhotovení formy za pomocí normalizovaných dílů od firmy HASCO byl navržen vstřikovací stroj od firmy Arburg s označením ALLROUNDER 470C GOLDEN EDITION. Na závěr byla z 3D sestavy zhotovené v programu CATIA V5R19 vytvořena výkresová dokumentace.
SEZNAM POUŽITÉ LITERATURY

[7] STANĚK, M. přednášky T5KF

[8] MAŇAS, M. přednášky T5SZ

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Znění</th>
<th>Příklad použití</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D</td>
<td>Trojrozměrný prostor</td>
<td></td>
</tr>
<tr>
<td>ABS</td>
<td>Akrylonitril-butadién-styrén</td>
<td></td>
</tr>
<tr>
<td>aₐ</td>
<td>Rázová houževnatost [kJ]</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Průměr šneku [mm]</td>
<td></td>
</tr>
<tr>
<td>Fₚ</td>
<td>Přisouvací síla [kN]</td>
<td></td>
</tr>
<tr>
<td>Fₚ</td>
<td>Uzavírací síla [kN]</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Délka šneku [mm]</td>
<td></td>
</tr>
<tr>
<td>PA</td>
<td>Polyamid</td>
<td></td>
</tr>
<tr>
<td>PBT</td>
<td>Polybutylentereftalát</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>Polycarbonate</td>
<td></td>
</tr>
<tr>
<td>PC/ABS</td>
<td>Polykarbonát/akrylonitril-butadién-styrén</td>
<td></td>
</tr>
<tr>
<td>PE</td>
<td>Polyetylen</td>
<td></td>
</tr>
<tr>
<td>PMMA</td>
<td>Polymethylmethakrylát</td>
<td></td>
</tr>
<tr>
<td>POM</td>
<td>Polyoxymetylen</td>
<td></td>
</tr>
<tr>
<td>PP</td>
<td>Polypropylen</td>
<td></td>
</tr>
<tr>
<td>PS</td>
<td>Polystyren</td>
<td></td>
</tr>
<tr>
<td>pᵥstř</td>
<td>Maximální vstříkovací tlak [MPa]</td>
<td></td>
</tr>
<tr>
<td>Qₚ</td>
<td>Plastikační kapacita [kg.hod⁻¹]</td>
<td></td>
</tr>
<tr>
<td>Qᵥ</td>
<td>Vstříkovací kapacita [cm³]</td>
<td></td>
</tr>
<tr>
<td>Ra</td>
<td>Hodnota drsnosti [µm]</td>
<td></td>
</tr>
<tr>
<td>SAN</td>
<td>Styrene-akrylonitrilová pryskyřice</td>
<td></td>
</tr>
<tr>
<td>SB</td>
<td>Styren-butadien</td>
<td></td>
</tr>
<tr>
<td>T₉</td>
<td>Teplota zeskelnění [°C]</td>
<td></td>
</tr>
<tr>
<td>Tₘ</td>
<td>Teplota tání krystalického podílu [°C]</td>
<td></td>
</tr>
</tbody>
</table>
t_{s1} Doba na zavření formy [s]

t_{s3} Doba na otevření formy [s]
SEZNAM OBRÁZKŮ

Obr. 1. Výrobky z amorfních termoplastů: 1 - styrenové polymery (PS, SB, SAN); 2 - terpolymer ABS; 3 - polymerní blend PC/ABS; 4 - polymetylmetakrylát PMMA; ...14

Obr. 2. Semikrystalické termoplasty: 1 – polyformaldehyd POM; 2 – polyamidy PA 6, PA 6,6; 3 – polypropylen a kopolymery PP; 4 – polyetyleny PE [6].........................15

Obr. 3. Zásady správného zaformování plastového výrobku [4] ...17

Obr. 4. Správná konstrukční řešení tvarů výstřiků [4] ..19

Obr. 5. Poměr tloušťky zebra k hlavní tloušťce stěny [4] ..20

Obr. 6. Příklady správné konstrukce žebra [4] ...20

Obr. 7. Zásady eliminace ostrých přechodů a rohů [4] ..21

Obr. 9. Tok polymerní taveniny [5] ..23

Obr. 10. Možné dávkovací dráhy u vstřikovacích strojů [1] ...25

Obr. 11. Schéma vstřikovacího stroje [1] ..26

Obr. 12. Vstřikovací jednotka v řezu [1] ..27

Obr. 13. Uzavírací jednotka [1] ...28

Obr. 15. Průřez vtokových kanálů – a) funkčně výhodné, b) funkčně nevýhodné, 1,6- výrobně nevýhodné, 2,3,4,5 výrobně výhodné [7] ..32

Obr. 17. Vliv rozmístění temperačních kanálů na průběh teploty ve formě a) u stejné tloušťky výstřiku, b) u rozdílné tloušťky výstřiku [2] ...33

Obr. 18. Airsoftová zbraň G36C ...38

Obr. 19. Zadaná součást ..38

Obr. 20. Výsledný 3D sken ..39

Obr. 21. 3D model zadané součásti ..39

Obr. 22. Sestavení levé a pravé poloviny výstřiku (pohled zprava)40

Obr. 23. Sestavení levé a pravé poloviny výstřiku (pohled zleva)40

Obr. 24. Schéma vstřikovacího stroje ...42

Obr. 25. Prostředí HASCO DAKO modulu ..44

Obr. 26. Pravé a levá tvárnice ...50

Obr. 27. Pravý a levý tvárník ...50
Obr. 28. Hydraulický tahač Z2301/16 x 20...51
Obr. 29. Detail odformování oka pro připnutí popruhu..................................51
Obr. 30. Detail odformování oka pro připevnění pažby.....................................52
Obr. 31. Rozmístění temperačních kanálů u tvárníku (pravý)..............................53
Obr. 32. Rozmístění temperačních kanálů u tvárníku (levý)...............................54
Obr. 33 Rozmístění temperačních kanálů u tvárnice (pravá)..............................54
Obr. 34 Rozmístění temperačních kanálů u tvárnice (levá).................................55
Obr. 35. Tunelový vtok ..56
Obr. 36. Vyhazovací systém..57
Obr. 37. Transportní systém..58
SEZNAM TABULEK

Tab. 1 – Jakosti povrchů forem ...30
Tab. 2. Technické parametry uzavírací jednotky [10]......................................43
Tab. 3. Technické parametry vstřikovací jednotky [10]43
Tab. 4. Orientační hodnory volby průměru kanálů v závislosti na výstřiku a rámů formy [2]..53
SEZNAM PŘÍLOH

P I: MATERIÁLOVÝ LIST

P II: TECHNICKÉ DATA VSTŘIKOVACÍHO STROJE

P III: VÝKRESOVÁ DOKUMENTACE

- Kusovník
- Sestava
- Výkres s pohledem do pravé poloviny formy
- Výkres s pohledem do levé poloviny formy

P IV: CD DISK OBSAHUJÍCÍ:

- Textovou část bakalářské práce
- Model vstřikovací formy a výrobku ve 3D s příslušnými výkresy
PŘÍLOHA P I: MATERIÁLOVÝ LIST

Ultramid® BU50I BK-106

Polyamide 6

Product Description
Ultramid UltraRough Nylon BU50I BK-106 is an unreinforced PA6, impact modified, pigmented black, injection molding product that maintains its impact strength and ductility to -40 deg F (-40 deg C). The extreme low temperature tolerance of Ultramid BU50I BK106 makes it ideal for applications in which the weldline impact strength at low temperatures is critical.

Applications
Ultramid BU50I BK-106 is generally recommended for automotive components, small engines, power tool parts and casings, cost weather and high impact sports gear, such as snowboards, ski components, helmets and hockey masks.

PHYSICAL

<table>
<thead>
<tr>
<th>Property Value</th>
<th>ASTM Test Method</th>
<th>Property Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Gravity</td>
<td>D-792</td>
<td>1.06</td>
</tr>
<tr>
<td>Mold Shrinkage (1/8" bar, in/"")</td>
<td>D-570</td>
<td>0.016</td>
</tr>
<tr>
<td>Moisture, %</td>
<td></td>
<td>2.1</td>
</tr>
<tr>
<td>(50% RH)</td>
<td></td>
<td>7.3</td>
</tr>
</tbody>
</table>

MECHANICAL

<table>
<thead>
<tr>
<th>Property Value</th>
<th>ASTM Test Method</th>
<th>Dry</th>
<th>Conditioned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile Strength, Yield, MPa (psi)</td>
<td>D-638</td>
<td>48 (6,950)</td>
<td>-</td>
</tr>
<tr>
<td>Elongation, Break, %</td>
<td>D-638</td>
<td>>100</td>
<td>-</td>
</tr>
<tr>
<td>Flexural Modulus, MPa (psi)</td>
<td>D-790</td>
<td>1,750 (250,000)</td>
<td>-</td>
</tr>
<tr>
<td>Flexural Strength, MPa (psi)</td>
<td>D-790</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

IMPACT

<table>
<thead>
<tr>
<th>Property Value</th>
<th>ASTM Test Method</th>
<th>Dry</th>
<th>Conditioned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notched Izod Impact, J/m (ft-lb/in)</td>
<td>D-256</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

THERMAL

<table>
<thead>
<tr>
<th>Property Value</th>
<th>ASTM Test Method</th>
<th>Dry</th>
<th>Conditioned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melting Point, °F</td>
<td>D-3418</td>
<td>220 (428)</td>
<td>-</td>
</tr>
</tbody>
</table>

Processing Guidelines

Max. Water Content: 0.15%

- Product is supplied in sealed containers and drying prior to molding is not required. If drying becomes necessary, a dehumidifying or desiccant dryer operating at 80 deg C (176 deg F) is recommended. Drying time is dependent on moisture level, but 2-4 hours is generally sufficient. Further information concerning safe handling procedures can be obtained from the Safety Data Sheet. Alternatively, please contact your BASF representative.

Typical Profile
- Mold Temperature: 270-300 deg C (518-572 deg F)
- Mold Temperature: 50-55 deg C (140-185 deg F)
- Injection and Packing Pressure: 35-125 bar (500-1500 psi)
Ultrad® BU501 BK-106

Mold Temperatures
A mold temperature of 60-85 degC (140-185 degF) is recommended, but temperatures of 10-35 degC (50-165 degF) can be used where applicable.

Pressures
Injection pressure controls the filling of the part and should be applied for 30% of ram travel. Packing pressure affects the final part and can be used effectively in controlling sink marks and shrinkage. It should be applied and maintained until the gate area is completely frozen off.

Fill Rate
Fast fill rates are recommended to ensure uniform melt delivery to the cavity and prevent premature freezing. Injection speeds of one inch of ram travel per second are typical.

Note
Although all statements and information in this publication are believed to be accurate and reliable, they are presented gratis and for guidance only, and risk and liability for results obtained by use of the products or application of the suggestions described are assumed by the user. NO WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE MADE REGARDING PRODUCTS DESCRIBED OR DESIGNS, DATA OR INFORMATION SET FORTH. Statements or suggestions concerning possible use of the products are made without representation or warranty that any such use is free of patent infringement and are not recommendations to infringe any patent. The user should not assume that toxicity data and safety measures are indicated or that other measures may not be required.
Příloha P II: Technické data vstřikovacího stroje

<table>
<thead>
<tr>
<th>Clamping unit with clamping force</th>
<th>max. kN</th>
<th>470 C Golden Edition</th>
<th>1500</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opening force</td>
<td>stroke</td>
<td>max. kN</td>
<td>mm</td>
<td>350</td>
</tr>
<tr>
<td>Mould height, fixed</td>
<td>variable</td>
<td>min. mm</td>
<td></td>
<td>250</td>
</tr>
<tr>
<td>Platen daylight fixed</td>
<td>variable</td>
<td>max. mm</td>
<td></td>
<td>750</td>
</tr>
<tr>
<td>Distance between tie bars (w x h)</td>
<td>mm</td>
<td></td>
<td></td>
<td>470 x 470</td>
</tr>
<tr>
<td>Mould mounting plates (w x h)</td>
<td>max. mm</td>
<td></td>
<td></td>
<td>650 x 650</td>
</tr>
<tr>
<td>Weight of movable mould half</td>
<td>max. kg</td>
<td></td>
<td></td>
<td>800</td>
</tr>
<tr>
<td>Ejector force</td>
<td>stroke</td>
<td>max. kN</td>
<td>mm</td>
<td>40</td>
</tr>
<tr>
<td>Dry cycle time EUROMAP 2</td>
<td>min. 5 - mm</td>
<td></td>
<td></td>
<td>1.8 - 329</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Injection unit with screw diameter mm</th>
<th>400</th>
<th>800</th>
<th>43</th>
<th>50</th>
<th>53</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective screw length UD</td>
<td>23</td>
<td>20</td>
<td>18</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>Screw stroke</td>
<td>max. mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calculated stroke volume max. cm³</td>
<td>154</td>
<td>201</td>
<td>254</td>
<td>318</td>
<td>392</td>
</tr>
<tr>
<td>Shot weight max. g PS</td>
<td>141</td>
<td>184</td>
<td>232</td>
<td>291</td>
<td>359</td>
</tr>
<tr>
<td>Material throughput max. kg/h PS</td>
<td>25</td>
<td>29</td>
<td>35</td>
<td>46</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>max. kg/h PA6 6</td>
<td>12.5</td>
<td>15</td>
<td>17.5</td>
<td>23</td>
</tr>
<tr>
<td>Injection pressure max. Bar</td>
<td>2500</td>
<td>2000</td>
<td>1580</td>
<td>2470</td>
<td>2000</td>
</tr>
<tr>
<td>Holding pressure max. bar</td>
<td>2500</td>
<td>2000</td>
<td>1580</td>
<td>2470</td>
<td>2000</td>
</tr>
<tr>
<td>Injection time max. m³/min</td>
<td>128</td>
<td>168</td>
<td>212</td>
<td>174</td>
<td>214</td>
</tr>
<tr>
<td>Screw circumferenceal speed max. mm/min</td>
<td>47</td>
<td>53</td>
<td>60</td>
<td>54</td>
<td>60</td>
</tr>
<tr>
<td>Screw torque max. Nm</td>
<td>480</td>
<td>550</td>
<td>610</td>
<td>880</td>
<td></td>
</tr>
<tr>
<td>Nozzle contact force</td>
<td>retraction stroke max. kN</td>
<td>60</td>
<td>300</td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>Heating capacity</td>
<td>zones kW</td>
<td>9.4</td>
<td>5</td>
<td>19.9</td>
<td>8</td>
</tr>
<tr>
<td>Feed hopper</td>
<td>i</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drive and connection with injection unit</th>
<th>2 pumps</th>
<th>400</th>
<th>800</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net weight of machine</td>
<td>kg</td>
<td>4550</td>
<td>5200</td>
</tr>
<tr>
<td>Emiss. sound press. level DIN EN 201:1997 dB(A)</td>
<td></td>
<td>69</td>
<td>73</td>
</tr>
<tr>
<td>Oil</td>
<td>filling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drive power max. kW</td>
<td>18.5</td>
<td>22</td>
<td>30</td>
</tr>
<tr>
<td>Electrical connection A</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Total Machine Heating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooling water connection</td>
<td>max. °C</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>min. Δp bar</td>
<td></td>
<td>1.5</td>
<td></td>
</tr>
</tbody>
</table>

All specifications relate to the basic machine version. Deviations are possible depending on variants, process settings and material type. Depending on the drive, certain combinations, e.g. max. injection pressure and max. injection flow may be mutually exclusive.

1) Clamping force (kN) - large injection unit = max. stroke volume (cm³) x max. injection pressure (kbar)
2) Specifications depend on the drive variant / drive configuration.
3) Specifications relate to 400 V/50 Hz.
4) Specifications apply to alternative equipment.
Theoretical shot weights for the most important injection moulding materials

<table>
<thead>
<tr>
<th>Injection units according to EUROMAP</th>
<th>400</th>
<th>45</th>
<th>45</th>
<th>50</th>
<th>55</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screw diameter (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polystyrene</td>
<td>max. g PS</td>
<td>141</td>
<td>184</td>
<td>232</td>
<td>291</td>
</tr>
<tr>
<td></td>
<td>max. g ST</td>
<td>137</td>
<td>179</td>
<td>227</td>
<td>284</td>
</tr>
<tr>
<td></td>
<td>max. g SAN, ABS</td>
<td>135</td>
<td>176</td>
<td>223</td>
<td>278</td>
</tr>
<tr>
<td>Cellulose acetate</td>
<td>max. g CA</td>
<td>158</td>
<td>207</td>
<td>262</td>
<td>327</td>
</tr>
<tr>
<td>Cellulose acetobutyrate</td>
<td>max. g CAB</td>
<td>147</td>
<td>192</td>
<td>243</td>
<td>304</td>
</tr>
<tr>
<td>Polymethyl methacrylate</td>
<td>max. g PMMA</td>
<td>145</td>
<td>190</td>
<td>240</td>
<td>300</td>
</tr>
<tr>
<td>Polyphenylacetylene ether, misc.</td>
<td>max. g PTE</td>
<td>131</td>
<td>171</td>
<td>216</td>
<td>270</td>
</tr>
<tr>
<td>Polycarbonate</td>
<td>max. g PC</td>
<td>148</td>
<td>193</td>
<td>244</td>
<td>305</td>
</tr>
<tr>
<td>Polyarylate</td>
<td>max. g PA 6,6, PA 6</td>
<td>153</td>
<td>199</td>
<td>252</td>
<td>316</td>
</tr>
<tr>
<td>Polymides</td>
<td>max. g PA 6,10, PA 11</td>
<td>140</td>
<td>183</td>
<td>231</td>
<td>280</td>
</tr>
<tr>
<td>Polytetrafluoroethylene (PTFE)</td>
<td>max. g FEP, PFA, PCTFE</td>
<td>106</td>
<td>139</td>
<td>176</td>
<td>219</td>
</tr>
<tr>
<td>Polysulfide</td>
<td>max. g PP</td>
<td>110</td>
<td>143</td>
<td>181</td>
<td>227</td>
</tr>
<tr>
<td>Fluropolymers</td>
<td>max. g ETFE</td>
<td>112</td>
<td>146</td>
<td>185</td>
<td>232</td>
</tr>
<tr>
<td>Polyvinyl chloride</td>
<td>max. g PVC-U</td>
<td>225</td>
<td>294</td>
<td>372</td>
<td>465</td>
</tr>
<tr>
<td></td>
<td>max. g PVC-U1</td>
<td>196</td>
<td>256</td>
<td>324</td>
<td>408</td>
</tr>
</tbody>
</table>

1) average value