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ABSTRACT 

The doctoral thesis summary deals with microbial degradation of chlorinated 

ethenes and its potential application for in-situ bioremediation. The theoretical 

part of the work shortly explains the main reasons for soil and groundwater 

contamination by chloroethenes along with their transport and a fate in a 

subsurface environment. The work then outlines common procedures that must 

be undertaken prior to selecting a suitable remediation method at contaminated 

sites. Further, the work summarizes various microbial processes leading to a 

transformation and degradation of all chlorinated ethenes and outlines several 

options for the use of these processes within in-situ bioremediation of affected 

sites. Special attention is paid to aerobic cometabolic degradation of all three 

dichloroethenes by pure bacterial strains in a mineral salt medium. The theoretical 

part of the work ends with an overview of the possible field applications for in-

situ bioremediation of sites polluted by chloroethenes. 

A following experimental part of the work deals with degradation of selected 

chlorinated ethenes by Comamonas testosteroni strain RF2 and by several 

consortia in the mineral salt medium. At first, strain RF2 was tested to investigate 

its capacity for degrading 1,2-cis-dichloroethene (cDCE), 1,2-trans-

dichloroethene (tDCE), and 1,1-dichloroethene (1,1DCE). Degradation assays 

were performed for single DCEs, as well as for a mixture of DCEs with TCE, 

which resembled contaminated plume in groundwater. Strain RF2 was capable of 

efficiently removing all three dichloroethenes (DCEs) at the initial aqueous 

concentrations of 6.01 mg L-1 for cDCE, 3.80 mg L-1 for tDCE and 0.65 mg L-1 

for 1,1DCE, with a removal efficiency of 100 % for cDCE, 65.8 % for tDCE, and 

46.8 % for 1,1DCE. Furthermore, complete removal of TCE, cDCE and 1,1DCE 

(122.5 µg L-1, 84.3 µg L-1 and 51.4 µg L-1, respectively) were observed in a 

mixture sample that also contained 72.33 µg L-1 of tDCE, which was removed to 

the amount of 72.3%. Moreover, degradation of cDCE (6.01 mg L-1) led to a 92.2 

% release of inorganic chloride, and 2,2-dichloroacetaldehyde was determined as 

the first intermediate of cDCE transformation. Further, a consortium composed of 

the strain RF2 and vinyl chloride (VC) utilizing Mycobacterium aurum DSM-

6695 was tested to investigate its capacity for degrading TCE (115.7 µg L-1), 

cDCE (662 µg L-1), tDCE (42.01 µg L-1), 1,1DCE (16 µg L-1), and VC (7 mg L-1; 

“all in a liquid phase”) in mixed samples. The consortium was able to nearly 

completely remove all the compounds in the mixed sample within 21 days of the 

assay. 

The findings of this thesis suggest that the consortium composed of the strain 

RF2 and M. aurum DSM-6695 exhibits the potential to remediate groundwater 

contaminated with chlorinated ethenes. 

 

Keywords: Chlorinated ethenes, microbial degradation and transformation,  

in-situ bioremediation, Comamonas testosteroni RF2 
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ABSTRAKT 

Teze dizertační práce krátce shrnuje problematiku mikrobiální degradace 

chlorovaných ethylenů a jejím potenciální využití pro in-situ bioremediace. V 

teoretické části práce jsou stručně popsány hlavní důvody kontaminace půd a 

podzemních vod chlorovanými ethyleny i jejich následný transport v podzemním 

prostředí. Práce dále stručně shrnuje běžné postupy při monitorování znečištěných 

lokalit, jež vedou k zvolení vhodné sanační metody. Následně jsou popsány různé 

mikrobiální procesy vedoucí k transformaci a degradaci chlorovaných ethylenů, 

načež jsou nastíněny známé způsoby využití těchto procesů pro in-situ 

bioremediace znečištěných lokalit. Zvláštní pozornost je věnována aerobní 

kometabolické degradaci všech tří dichloroethenů čistými bakteriálními kmeny v 

prostředí minerálního média. Teoretická část práce je zakončena kapitolou, která 

shrnuje možnosti technického řešení in-situ bioremediací, cílených na odstranění 

chlorovaných ethylenů z půd a podzemních vod. 

Navazující experimentální část práce se zabývá degradací vybraných 

chlorovaných ethylenů kulturou Comamonas testosteroni RF2 a několika 

bakteriálními konsorcii v prostředí minerálního média. Kmen RF2 byl zvolen pro 

pokusy kometabolické degradace 1,2-cis-dichlorethylenu (cDCE), 1,2-trans-

dichlorothylenu (tDCE), 1,1-dichlorethylenu (1,1DCE) a vinyl chloridu (VC). 

Degradační testy byly provedeny jednak pro jednotlivé dichlorethyleny (DCEs) a 

rovněž pro směs DCEs s TCE, simulující podzemní vodu znečištěnou těmito 

látkami. Kmen RF2 byl schopen odstraňovat všechny DCEs (dávkovány 

samostatně) při počátečních koncentracích v kapalné fázi: 6,01  

mg L-1 cDCE, 3,80 mg L-1 tDCE a 0,65 mg L-1 1,1DCE, s účinností odstranění 

100% pro cDCE, 65,8 % pro tDCE a 46,8 % pro 1,1DCE. Úplné odstranění cDCE 

vedlo k uvolnění 92,2% anorganických chloridů. Dále bylo zjištěno úplné 

odstranění TCE, cDCE a 1,1DCE (122,5 µg L-1, 84,3 µg L-1 a 51,4 µg L-1) ve 

vzorcích obsahujících modelovou podzemní vodu. Ve stejných vzorcích rovněž 

došlo k odstranění 72,3 % tDCE o koncentraci 72,33 µg L-1. Sledování kinetiky 

degradace cDCE ukázalo na existenci dvou metabolitů rozkladu, přičemž jako 

první meziprodukt transformace cDCE byl zjištěn 2,2-dichloracetaldehyd. 

V neposlední řadě bylo studováno konsorcium kmene RF2 s bakterií 

Mycobacterium aurum DSM-6695, jež metabolicky rozkládá VC.  

Toto konsorcium bylo podrobeno experimentu současné degradace TCE (115,7 

µg L-1), cDCE (662 µg L-1), tDCE (42,01 μg L-1), 1,1DCE (16 µg L-1) a VC (7 mg 

L-1, „vše v kapalné fázi“) a ukázalo schopnost téměř úplně odstranit všechny 

sloučeniny ve směsném vzorku do 21 dnů, čímž prokázalo značný potenciál pro 

jeho případné využití v rámci čištění podzemních vod znečištěných chlorovanými 

ethyleny. 

 

Klíčová slova: Chlorované etheny, mikrobiální degradace a transformace, in-

situ bioremediace, Comamonas testosteroni RF2 
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1. CURRENT STATE OF THE ISSUES DEALT WITH  

  Structure and toxicity of CEs  

Chlorinated ethenes (CEs) are represented by tetrachloroethene, commonly 

referred as perchloroethene (PCE); trichloroethene (TCE); cis-1,2-dichloroethene 

(cDCE); trans-1,2-dichloroethene (tDCE); 1,1-dichloroethene (1,1-DCE);  

and vinyl chloride (VC). CEs possess two carbon centres joined by a carbon-

carbon double bond known as a π-bond system, which does not allow covalently 

bonded chlorine substituents to rotate freely in the plane perpendicular  

to the direction of the π –bond (Cwiertny and Scherer, 2010). Also, due to the 

double-bonded carbon centres of CEs, they can accommodate at most two 

chlorine substituents. Thus, PCE with its four chlorine substituents is the most 

chlorinated ethene; chemical structures of all CEs are depicted in Fig. 1.1. 

 

 
Fig 1.1 Chemical structure of chlorinated ethenes 

 

CEs have several undesirable properties that include high toxicity, 

environmental resistance, and ability to accumulate in living and non-living 

components of an environment, including humans. PCE and TCE are the 

suspected human carcinogens, DCEs are highly toxic compounds, and VC is well 

known as the human carcinogen (Binbin et al., 2014) 
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  Industrial uses of CEs and their occurrence in the 

environment 

Generally, CEs are volatile organic compounds that belong to a class of 

chlorinated organic solvents, which are used for a variety of commercial and 

industrial purposes, especially as degreasers, cleaning solutions, and paint 

thinners (Cwiertny and Scherer, 2010; Cloelle et al., 2010; Nishino et al., 2013). 

Because of their chlorine-containing chemical structure, CEs can efficiently 

dissolve organic materials like fats and greases and to serve as raw materials  

or intermediates in the production of other chemicals (NSW, 2011) 

The extensive use of perchloroethene (PCE) and trichloroethene (TCE) as dry 

cleaning and degreasing solvents for industrial purposes has caused world-wide 

contamination of soils and groundwater. In particular, TCE has become a major 

groundwater contaminant on a global scale. Moreover, natural attenuation of PCE 

and TCE often leads to the formation of less-chlorinated cis-1,2-dichloroethene 

(cDCE) and vinyl chloride (VC), which may persist in soils and particularly 

groundwater plumes. Also, to a lesser extent, trans-1,2-dichloroethene (tDCE) 

and 1,1-dichloroethene (1,1DCE) may be formed as well. Therefore, 

contaminated groundwater with prevailing anaerobic conditions may contain a 

mixture of residual TCE, DCEs, and VC even after a period of several years or 

even decades. 

 

  Fate and transport of CEs in a subsurface environment 

The fate and transport of CEs in a subsurface environment along with their 

degradability by both biotic and abiotic processes are all closely related to their 

physicochemical parameters as well as to the geochemical and hydrological 

conditions of contaminated sites, such as organic matter content of the subsurface, 

soil porosity, hydraulic conductivity, and hydraulic gradient (Huling and Weaver, 

1991; Pant and Pant, 2010; Kret et al., 2015). Appendix 1.1 summarizes some of 

the most important physicochemical parameters of CEs, which influence their 

distribution in an unsaturated zone (vadose zone) and groundwater, i.e. their 

partitioning between soil, water, air, and non-aqueous phase liquids (NAPLs), 

occurring as dense (DNAPLs) and light (LNAPLs) (Cwiertny and Scherer, 2010). 

Typically, the resulting distribution of CEs in the contaminated subsurface is a 

highly complex process that results in their non-uniform occurrence in soils and 

groundwater, which is caused by limited water solubility, high volatility, 

moderate hydrophobicity, and relative density of these compounds (Fig 1.2).  

Given the severity and extent of the environmental pollution caused by 

chlorinated ethenes, innovative remediation technologies ensuring efficient, low-

cost, and environmentally friendly clean-up methods for their removal are 

essential. In-situ bioremediation of CEs-polluted sites, which includes techniques 

universally based on the use of microorganisms capable of degrading the targeted 
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compounds seems like a promising clean-up method due to its relatively low cost 

and environmentally-friendly character.  

 

Fig. 1.2 Likely transport of CEs in the subsurface①

  Site investigation and monitoring 

A site investigation is an integral part of a whole in-situ bioremediation process 

and plays an irreplaceable role in the selection of an appropriate clean-up method. 

The principal objectives of the site investigation should be as follows: (1) gather 

information about the extent of soil and groundwater contamination including 

horizontal and vertical subsurface distribution of CEs in all phases, i.e. 

groundwater, soil gas, DNAPL, LNAPL and portions adsorbed on organic matter; 

(2) examine prevailing environmental conditions and likely degradative processes 

of CEs; (3) a determination of a cost-effective clean-up strategy that ensures 

sufficient removal of contaminants within an acceptable time frame (EPA 

Victoria, 2006; WDNR, 2014; Kret et al., 2015). 

 

 Bacterial strategies for degradation and transformation of 

CEs 

Bacteria have evolved several strategies for enzyme-catalysed dechlorination 

and degradation of CEs; specifically, anaerobic reductive dechlorination 

(organohalide respiration), aerobic metabolic degradation, and aerobic 

cometabolic degradation are the best known processes, which may be applied for 

in-situ bioremediation of polluted sites.  

                                           
① Inspired by US EPA, 1991; DNAPLCEs: chlorinated ethenes as dense non-aqueous phase liquids; 

LNAPLVC: vinyl chloride as light non-aqueous phase liquids 
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1.5.1 Anaerobic reductive dechlorination (organohalide respiration) 

Organohalide respiration, also known under the term metabolic reductive 

dehalogenation, is a process in which CEs serve as the only electron acceptors 

that accept electrons from other compounds, e.g. propionate, butyrate, lactate, 

methanol, or ethanol, which are fermented in a subsurface to H2 or acetate and 

serve as the actual electron donors utilized by dechlorination bacteria (Aulenta et 

al., 2006, 2007; Frascari et al., 2013). In other words, organohalide respiration of 

CEs is a replacement of the chlorine substituent in the chloroethene molecule with 

a hydrogen atom; each dechlorination step consumes two electrons and two 

protons and releases H+ and Cl- (Loffler et al., 2013) Further, reductive 

dehalogenase enzymes (RDases) are the key enzymes responsible for catalysing 

a cleavage of the carbon-chlorine bond in CEs during organohalide respiration 

(Futamata et al., 2009).  

In general, organohalide respiration of CEs often leads to the accumulation of 

less chlorinated ethenes, particularly cDCE and VC, that may accumulate at sites 

where PCE and TCE are degraded through this process; however, anaerobic 

reduction of an entire range of CEs to ethene has been observed (Bourg et al., 

1992; Fennell et al., 2001; Aeppli et al., 2010; Imfeld et al., 2011; Frascari et al., 

2015). Typically, a number of bacterial strains of the Dehalococcoides genus are 

involved in the complete dechlorination of CEs (He et al., 2005; Lee et al., 2008). 

Nevertheless, reduction of DCEs and VC has been found to be very limited not 

only because of the lower potential of these compounds for accepting electron(s) 

but also due to the fact that Dehalococcoides are very sensitive to oxygen, and 

generally less robust towards changes in environmental conditions than other 

organohalide-respiring bacteria (Smidt and de Vos, 2004; Tiehm and Schmidt, 

2011).  

 

1.5.2 Aerobic metabolic degradation (direct aerobic oxidation)  

Aerobic metabolic degradation, also known as direct aerobic oxidation, is a 

process in which bacteria utilize CEs as their growth substrate, i.e. CEs serve as 

the sole sources of organic carbon and energy. Oxidative dechlorination is a result 

of mono and/or dioxygenases that catalyse the incorporation of one or two oxygen 

atom(s) into the molecule of chloroethene (Frascari et al., 2015).  

Generally, several bacteria have been identified as capable of aerobic metabolic 

degradation, mostly of VC (Dolinova et al., 2017). Indeed, VC has been found to 

be directly oxidized by a variety of bacterial strains, such as Mycobacterium 

aurum strain L1 (Hartmans et al., 1985), Mycobacterium sp. strains JS60, JS61, 

JS616, and JS617 (Coleman et al., 2002) or Pseudomonas putida strain AJ (Danko 

et al., 2004). On the contrary, direct aerobic TCE and DCEs oxidation occur 

rarely, but some studies on their direct oxidation exist (Schmidt and Tiehm 2008; 

Dey and Roy 2009; Kim et al., 2010).  
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1.5.3 Aerobic cometabolic degradation  

Aerobic cometabolism occurs when the enzymes originally produced for the 

degradation of bacterial growth substrates (auxiliary/primary substrates) 

fortuitously catalyses the oxidation of a non-growth substrate (CEs) (Semprini, 

1997). Key enzymes involved in the cometabolic oxidation of CEs are different 

mono and/or dioxygenases; their production is initiated by variety of suitable 

growth substrates, such as isoprene (van Hylckama Vlieg  et al., 1998), methane 

(Kim et al., 2008), o-xylene (Li et al., 2014), propene (Ensign et al., 1992; Kim et 

al., 2008), toluene (Azizian et al., 2007), phenol (Hopkins and McCarty, 1995) 

and many others (Findlay et al., 2016). Among the commonly produced 

cometabolic enzymes belongs methane monooxygenase (Fox et al., 1990), 

ammonia monooxygenase (Arciero et al., 1989), phenol monooxygenase (Fries et 

al., 1997), toluene monooxygenase, toluene-2,3-dioxygenase (Byrne et al., 1995; 

Johnson and Olsen, 1995), and alkene monooxygenase (Ensign et al., 1992), all 

of which have relatively broad substrate specificity and are produced by a variety 

of bacteria.  

Many bacteria are capable of cometabolic oxidation of TCE, cDCE and VC, 

though fewer strains are capable of the same process in the case of tDCE and 

1,1DCE, and only Pseudomonas stutzeri OX1 has been reported to be able to 

degrade PCE cometabolically (Ryoo et al., 2000). Up to date list of bacteria 

capable of degrading TCE, cDCE and VC via cometabolic oxidation can be found 

in a study published by Dolinova et al. (2017). In most cases, tDCE and 1,1DCE 

are not the major contaminants in a subsurface compare to PCE, TCE, cDCE and 

VC; which might be a reason why less research has been devoted to the 

degradation of 1,1DCE, tDCE, or mixtures of all DCEs and their potential mutual 

interactions. Indeed, the presence of tDCE and 1,1DCE in a subsurface might 

influence a rate of the degradation of other CEs, especially cDCE and VC (Verce 

et al., 2002).  

In general, the cometabolic oxidation of CEs is slower (and usually time-

limited) than their direct oxidation, however, it has a potential to degrade a 

broader spectrum of CEs, such as TCE, and particularly all DCEs. Hence, its 

potential for removal of these chloroethenes by bacterial strains utilizing different 

primary substrates should be studied. 

 

 Bacterial cometabolic degradation of DCEs in mineral salt 

medium (MSM) 

Several studies have described cometabolic oxidation of all DCEs in MSM by 

pure cultures and obtained various results (Ewers et al., 1990; Ensign et al., 1992; 

Hartmans and De-Bont, 1992; Chang and Alvarez-Cohen, 1996; Vardar and 

Wood, 2005). Therein, it was found that two isoprene (2-methyl-1,3-butadiene) 

utilizing bacteria, Alcaligenes denitrificans ssp. xylosoxidans JE 75 and 



12 

Rhodococcus erythropolis JE 77, could oxidize all the given DCEs. Primarily,  

a high initial specific rate of conversion was discerned for 1,1DCE. However, 

degradation of the compound caused an 80% reduction in cell activity within the 

first 20 min of the process (Ewers et al., 1990). As distinct from it, Xanthobacter 

cells (strain Py2) utilizing propene as a growth substrate were able to degrade 

cDCE and tDCE, although degradation of 1,1DCE proved less efficient (Ensign 

et al., 1992). Similarly, Mycobacterium aurum L1, growing on VC, removed 

1,1DCE less efficiently; this showed initial oxidation rates for cDCE > tDCE > 

1,1DCE (30, 25 and 10 nmol min-1 (mg of dry weight)-1, respectively) (Hartmans 

and De-Bont, 1992). Also, methane-oxidizing Methylosinus trichosporium OB3b 

expressing the particulate methane monooxygenase showed a transformation 

capacity (Tc) for all DCEs; the highest Tc was observed for tDCE, while  

the levels of Tc for 1,1DCE and cDCE were significantly lower (Chang and 

Alvarez-Cohen, 1996). Finally, Pseudomonas stutzeri OX1, possessing toluene-

o-xylene monooxygenase, degraded all DCEs individually as well as in different 

mixtures when it was grown either on toluene or o-xylene (Vardar and Wood, 

2005).  

 

  Main approaches for in-situ clean-up of CEs-polluted sites 

Monitored natural attenuation (MNA), biostimulation, and bioaugmentation 

belong among the three main clean-up approaches based on the ability of 

microorganisms to degrade CEs at polluted sites. While MNA relies on 

monitoring of spontaneous natural processes that reduce concentrations of CEs, 

biostimulation and bioaugmentation, both bioremediation techniques, are based 

on enhanced degradation process(es) using microorganisms (indigenous or 

introduced) along with other manipulations to remove CEs within a delimited and 

controlled subsurface environment. Therefore, for the purpose of this work, MNA 

relying on natural processes is not considered as a bioremediation technique for 

sites clean-up; although MNA is commonly referred as a passive bioremediation 

approach in a scientific community (US EPA, 2000). Hence, in view of the above-

mentioned, MNA is seen as a stand-alone clean-up strategy that is based on 

monitoring of a contamination plume and its surrounding area in terms to 

determine whether the natural attenuation of CEs is occurring at sufficient rates 

to attain site-specific treatment goals (US EPA, 1998). 

At sites, where MNA is not sufficient enough to meet treatment goals, 

biostimulation and/or bioaugmentation must be applied (Lacinova et al., 2013; 

Dolinova et al., 2016). Firstly, biostimulation includes modification of existing 

conditions in a subsurface environment in a manner favouring specific 

degradation process controlled by indigenous microbial populations (Mihopoulos 

et al., 2002). For instance, to enhance organohalide respiration of PCE and TCE, 

injection of suitable electron donor(s) is crucial. On the other hand, to 

support/initiate aerobic degradation processes of less chlorinated ethenes, a 

supply of electron acceptors (predominantly O2) is essential and may be followed 
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by the addition of carbon source(s) and nutrients (N, P) if necessary. Whereas 

enhancing the direct oxidation of CEs requires a supply of only oxygen and 

nutrients, aerobic cometabolism must include additional injection of the primary 

substrate(s) that induce production of a catabolic enzyme(s). Secondly, for in-situ 

bioremediation of sites that do not harbour suitable indigenous microbial 

population(s) capable to degrade CEs, bioaugmentation is the only option. This 

approach involves all the aspects of the biostimulation along with an addition of 

a pre-cultured exogenous bacterial strain or consortium with proven degradation 

activity towards CEs (Steffan et al., 1999; Ellis et al., 2000). 

 

 Field application of the main in-situ clean-up approaches 

1.8.1 In-situ MNA of CEs-polluted sites 

MNA generally employs a network of monitoring wells that are installed at a 

site in a manner to cover the largest possible plume area with respect to the likely 

migration paths of the plume in the future. Typically, at least one monitoring well 

is placed directly in a source zone and several other wells are placed downstream 

and upstream of the zone with respect to regional hydrological conditions as 

shown in Fig. 1.3 

 
Fig. 1.3 Schematic of a site monitoring using a network of monitoring wells 

 Such network of monitoring wells ensures collection of field data, which are 

ideally used to document the loss of CEs and formation of their daughter 

compounds, presence and distribution of biogeochemical indicators of natural 

attenuation, and direct microbiological evidence (Witt et al., 2002). Only the 
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collection of these heterogeneous data ensures sufficient evidence about ongoing 

natural attenuation of CEs at the site. The loss of CEs and formation of their 

daughter compounds are predominantly monitored by analysing collected 

samples of soil, soil gases, groundwater, and alternatively from samples of tree 

cores; however, three core sampling is restricted to only shallow subsurface layers 

containing tree roots (Larsen et al., 2008). While the loss of CEs and formation of 

their daughter compounds is a primary line of evidence about ongoing natural 

attenuation at the site, monitoring of biogeochemical indicators, such as redox 

potential (Eh), redox state, specific conductance, pH, dissolved oxygen (DO), 

total organic carbon (TOC), presence of hydrogen, methane, and dissolved 

chloride can be used to determine under what conditions natural attenuation of 

CEs is occurring (Holmes et al., 1998; Witt et al., 2002). Further, identification of 

microbial species and/or their functional genes involved in CEs degradation 

serves as a third line of evidence about ongoing natural attenuation, which allows 

assessing the biodegradation potential (capacity) of indigenous microbial 

populations. Besides these three crucial lines of evidence, an approximate time 

needed to achieve attenuation goals at sites may be estimated by using Natural 

Attenuation Software that models variety of attenuation processes, e.g. 

contaminant concentration changes, redox processes, advection, dispersion, 

sorption, and diffusion and dissolution of NAPLCEs (Mendez et al., 2004).  

MNA generally requires much longer time frames to achieve clean-up 

objectives in comparison with bioremediation approaches, biostimulation and 

bioaugmentation.  Moreover, MNA is not appropriate where imminent site risks 

are present, i.e. humans or environmental receptors exposure (US EPA, 2012b). 

Also, if possible, groundwater clean-up should ensure drinking water standards 

within a reasonable timeframe, which is not applicable in the case of MNA (US 

EPA, 2012b). 

 

1.8.2 Biostimulation of CEs-polluted sites 

Biostimulation allows considerable flexibility in technical design of clean-up 

systems, which depends on a part of subsurface that is treated, i.e. vadose zone or 

aquifer as well as on the method selected to establish a bioreactive zone, the part of 

a subsurface environment in which microbial degradation of CEs is stimulated 

(Das and Dash, 2014). The remedy systems for biostimulation commonly contain 

a variety of injection wells used to deliver biostimulative agents (electron 

acceptors, electron donors, primary substrates or nutrients) into a subsurface 

environment along with a network of monitoring wells. In general, the systems 

should be designed in a manner ensuring the formation of an extensive bioreactive 

zone in the subsurface and sufficient retention of CEs within the zone (Semprini, 

1997, Frascari et al., 2015). In the last few decades, many studies have examined 

a variety of systems for biostimulation of either anaerobic reductive 

dechlorination or cometabolic aerobic degradation of CEs in a vadose zone and 

groundwater. (Hopkins et al., 1993; Bennett et al., 2007; Kim et al., 2008; Dugat-
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Bony et al., 2012). This effort has led to the development of three main strategies 

for establishment of the bioreactive zone; (1) direct injection of biostimulative 

agents into the treatment zone; (2) groundwater extraction amendment and 

reinjection in a closed loop system; (3) recirculation of amended groundwater 

using recirculation wells (Semprini, 1997; Frascari et al., 2015).  

 

Systems for a direct injection of biostimulative agents 

This strategy uses injection wells for direct introduction of biostimulative agents 

into a delimited zone of the contaminated subsurface and thus allowing to 

establish a bioreactive zone through which contamination plume gradually 

migrates. Simplified wells that are commonly used to stimulate the microbial 

degradation of CEs in a subsurface environment are shown in Fig. 1.4. 

 
Fig. 1.4 Wells for biostimulation of microbial degradation of CEs in a 

subsurface environment② 

    

This strategy appears as the only option to stimulate microbial degradation  

of CEs in a vadose zone by using bioventing wells for direct injection of gaseous 

substrates and oxygen into the bioreactive zone (Frascari et al., 2015). Also,  

the systems for direct injection of biostimulative agents (both liquid and gaseous) 

can be used for bioremediation of CEs-polluted aquifers. Whilst it is  

                                           
② The position of the monitoring boreholes is not shown for simplicity 
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a common practice that a variety of injection wells are used to introduce liquid 

agents into aquifers, gaseous agents are delivered through biosparging wells. 

The main disadvantage of the systems for direct injection of biostimulative 

agents is the formation of a narrow bioreactive zone that is typically formed in the 

immediate vicinity of each injection well. Hence, further migration of 

contaminants beyond the treatment zone is highly likely (Hoelen et al., 2006). 

 

Closed loop systems 

These systems are utilized for bioremediation of aquifers and generally consist 

of a pair of injection and extraction wells connected to a surface gas-tight tank for 

amendment of groundwater extracted from an aquifer prior to its re-injection into 

the aquifer.  A simplified scheme of a typical closed loop system is shown in Fig. 

1.5. 

 
Fig. 1.5 Closed loop system③ 

 

Closed loop systems promote recirculation of polluted groundwater through an 

established bioreactive zone within a delineated part of an aquifer that usually 

extends several meters between the injection and extraction wells.  

A full-scale application of these systems as the only remedy strategy is unlikely 

due to two main reasons. First of all, only a limited bioreactive zone can be 

                                           
③ The position of the monitoring boreholes is not shown for simplicity 
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established within these systems (1 to 2 meters from the injection well) and 

second, pumping of groundwater to the surface is costly.   

 

Systems employing recirculation wells 

Another strategy for in-situ bioremediation of aquifers is an application of 

systems employing subsurface recirculation wells equipped with a submersible 

pump installed between two screens, one of which serves for extraction of 

groundwater and second for its discharge (Semprini, 1997). A simplified scheme 

of a system employing two recirculation wells for treatment of two underlying 

aquifers is illustrated in Fig. 1.6. 

 
Fig. 1.6 System employing two recirculation wells④ 

 

Biostimulative agents are introduced into the wells through feed lines and 

mixed with CEs-contaminated groundwater using mixers placed inside the wells; 

each well ensures the formation of a bioreactive zone around the discharge screen 

as well as recirculation of groundwater across the zone allowing more time for 

biological reactions to occur (McCarty et al., 1998). In general, these systems 

ensure a treatment of aquifers without a need to pump groundwater on the surface, 

hence the complete process occurs in-situ, which is less expensive compared to 

the previously reviewed closed loop systems (Frascari et al., 2015). Also, the 

                                           
④ Inspired by the work of Hoelent et al. (2006), and Bennett et al. (2007); the position of the monitoring boreholes 

is not shown for simplicity 
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bioreactive zones formed within the systems employing recirculation wells are 

broader and thus offering more efficient removal of targeted CEs. 

 

1.8.3  Bioaugmentation of CEs-polluted sites 

Two different bioaugmentation approaches have been developed for in-situ 

bioremediation of CEs-polluted sites. While in the first approach, large amounts 

of microbial suspensions are injected to the subsurface with the aim to achieve 

rapid removal of contaminants before the injected cells are inactivated or perished 

(Duba et al., 1996), the second approach aims to achieve prolonged survival and 

growth of the added microorganisms along with long-term degradation of targeted 

contaminants within an established bioreactive zone in the subsurface (Semprini 

et al., 2007). Whereas the rapid clean-up approach can only be applied for 

treatment of aquifers, the second approach, relying on the establishment of the 

bioreactive zone, allows treating not only aquifers but also low permeable 

matrices, such as clay layers.  

 For the purpose of this work, the two bioaugmentation approaches are further 

referred to as a rapid bioaugmentation approach and a long-term bioaugmentation 

approach. 

At first, rapid bioaugmentation of aquifers is an efficient clean-up strategy 

ensuring significant removal of CEs within a few days of operation (Duba et al., 

1996). In comparison, biostimulation may require several months of operation to 

achieve the same removal efficiency. However, the high efficiency of the fast 

bioaugmentation approach is time-limited and its application seems to be 

restricted to only highly contaminated parts of aquifers underlying the source of 

contamination. Secondly, the long-term bioremediation approach has shown to be 

a promising clean-up strategy for CEs-polluted aquifers and low permeable 

matrices (Scheutz et al., 2010; Verce et al., 2015). Especially bioaugmentation of 

clay deposits showed a great promise for reducing contamination within the 

matrix and so diminishing the risk of secondary contamination of aquifers. On the 

other hand, the efficiency of the site bioaugmentation containing 1,1DCE showed 

to be only temporal and so not suitable as the long-term clean-up strategy 

(Semprini et al., 2007). 
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2. OBJECTIVES OF THE THESIS 

A theoretical part of the doctoral thesis aimed to write a comprehensive 

summary dealing with an influence of the physicochemical properties of CEs on 

their transport and a fate in a subsurface environment, and to outline common 

procedures of a site investigation as well as to review different bacterial strategies 

for degradation and transformation of CEs, and the possible use of these strategies 

for in-situ bioremediation of contaminated soils and groundwater. Within this aim 

was also to summarize field studies (not included in the Doctoral Thesis 

Summary) that have achieved significant removal of chloroethenes at polluted 

sites. Such a review should be later published in an appropriate scientific journal 

with an impact factor. 

In an experimental part of the thesis, the main aim was to investigate the 

microbial degradation of all three dichloroethene isomers (DCEs), trichloroethene 

(TCE), and vinyl chloride (VC) in a mineral salt medium (MSM) by Comamonas 

testosteroni RF2.  Within that objective were performed studies focusing on the 

degradation of single compounds as well as on degradation of the compounds in 

mixed samples. Degradation studies investigating the ability of C. testosteroni 

RF2 to degrade various mixtures of the chloroethenes were performed in terms to 

imitate model conditions in contaminated groundwater. In addition, kinetics of 

single DCEs in C. testosteroni RF2 along with tracking transformation 

intermediates of the compounds were studied too.  Also, in order to find a suitable 

consortium capable of degrading VC and other chloroethenes in mixed samples, 

several bacterial consortia containing C. testosteroni RF2 and one of the following 

strains capable of degrading VC, Mycobacterium aurum DSM-6695, 

Pseudomonas putida DSM-7189, and Rhodococcus ruber DSM-7511, were 

studied for their degradation potential.  
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3. METHODOLOGY OUTLINE 

  Important chemicals 

TCE (99%), cDCE (99.1%), tDCE (99.7%), 1,1DCE (99.9%), VC (99.5%), 

chloroacetyl chloride (min. 99.0%), Mercury(II) thiocyanate, and sodium lactate 

were obtained from Sigma-Aldrich. Ordinary chemicals were purchased from 

local suppliers. 

 

  Bacterial strains  

Comamonas testosteroni RF2 isolated from activated sludge fed by phenol 

(Ruzicka et al., 2002). 

Mycobacterium aurum DSM-6695 isolated from contaminated soil; purchased 

from German Collection of Microorganisms and Cell Cultures (DSMZ).  

Pseudomonas putida DSM-7189 isolated from a sample of soil; purchased from 

DSMZ.  

Rhodococcus ruber DSM-7511 isolated from contaminated subsurface 

sediments; purchased from DSMZ. 

 

  Degradation assays 

The assays were performed in 40 mL sterile glass vials sealed with sterile (UV 

irradiated) gas-tight septum caps (WHEATON). Experiments were always 

conducted at least in two duplicates, in addition to which abiotic blanks were 

always carried out. Each vial contained 10 mL of mineral salt medium (MSM), a 

cell suspension (10 µL), phenol (100 mg L-1), lactate sodium (100 mg L-1) and the 

methanolic solutions of chlorinated ethenes. All the chloroethene concentrations 

listed are intended as actual concentrations in a liquid phase unless otherwise 

stated. Test vials were incubated in darkness on a shaker (150 rpm) set to semi-

continuous mode at 25 ºC for 7- 23 days, according to the objective of the 

research. 

 

  Analysis of samples containing chloroethenes 

The chloroethenes were first extracted by the Purge and Trap method in the 

concentrator Teckmar LSC 2000 and monitored on a Hewlett Packard 5890 Series 

II GC device equipped with a Quadrex capillary column (Methyl phenyl 

cyanopropyl silicone) at 29.87 m length, 0.53 mm (inner diameter) and 3 µm in 

film thickness, supplemented with an electron-capture detector (ECD),  

as previously described (Ruzicka et al., 2011). Initial concentrations of CEs in 

prepared samples, as well as the determination of the achieved removals of the 

compounds, were performed by using previously assembled calibration curves.  
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  Analysis of samples containing vinyl chloride 

Samples containing VC were prepared and cultivated identically as described 

in section 3.3. The analysis of samples was carried out at the Institute of 

Chemistry at the Tomas Bata University in Zlín using an internal standard method 

with propane-2-ol as the internal standard. Samples analysis was performed by 

using GC-MS Shimadzu QP-2010 equipped with the Equity-1 (30 m, 0.32 mm, 

1µm) column, and He as carrier gas at constant linear velocity (58.8 cm·s–1) was 

used; GC method: 40 °C/10 min, 20 °C/min to 250 °C, hold for 14.5 min, 

IS 200 °C/70 eV; MS method: acquisition was started at 0.41 min and two mass-

selected ions were detected (SIM mode).  

 

  Cell survival after dichloroethene degradation 

The preparation of samples was identical to the degradation assays described 

above. Samples were prepared in duplicates for each dichloroethene tested. 

Colony-forming units (CFUs) grown on Tryptone Yeast Agar were directly 

counted and compared with the number of CFUs determined in parallel samples 

without the given dichloroethene(s). 

  Determination of intermediates of cDCE and tDCE 

degradation  

Degradation samples were prepared as described in section 3.3; however, the 

determination of the intermediates was performed in cooperation with two 

institutes, namely: Institute for testing and certification (ITC) in Zlín, Czech 

Republic; and Regional Hygiene Station of the Olomouc Region based in 

Olomouc, Czech Republic. 

Solid Phase Microextraction (SPME) and Purge and Trap extraction were used 

along with GC-MS to determine the intermediates produced during cometabolic 

degradation of cDCE and tDCE in C. testosteroni RF2 

 

  Determination of chloride release 

Conditions during dichloroethene degradation resembled those in the 

degradation assays described above; with the exception of MSM that was replaced 

by the chloride-free mineral medium. After a certain period of degradation, the 

liquid phases of the samples were analysed for the presence of inorganic chlorides. 

Prior the determination of chloride concentration in the samples according to the 

Iwasaki method (Iwasaki et al., 1952), bacterial cells were removed by filtration 

through a 0.22 µm pore-sized syringe filter (Millex). Also, blank tests without the 

appropriate dichloroethene as well as tests without cells and with the 

dichloroethene were performed in parallel; obtained results were subtracted. 
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4. RESULTS AND DISCUSSIONS 

 

 Cometabolic aerobic degradation of single DCEs 

C. testosteroni RF2 was subjected to degradation assays of cDCE, tDCE and 

1,1DCE separately. Phenol and lactate were applied throughout all the assays with 

RF2 because the application of these substrates ensured sufficient multiplication 

of the bacterial cells as well as induction of the desired enzyme in previous assays 

with cDCE (data not shown). Each degradation test lasted for seven days, and at 

least two different concentrations of each isomer were applied. The data obtained 

on removing the DCEs and subtracted numbers of CFUs at the end of the chosen 

tests are given in Table 4.1. 

Table 4.1 Cometabolic degradation of single DCEs by Comamonas testosteroni 

RF2 (means ± SD), including abiotic blanks⑤ 

CE 

 

Initial 

concentration 

“all in liquid 

phase” 

 (mg L-1) 

Actual 

initial 

concentra-

tion  

(mg L-1) 

Compound 

removal 

(%) 

Cell number 

 (107 CFU mL-1) 

DCE 

degradation 

Blank test 

without 

dichloro-

ethene 

cDCE 

cDCE 

cDCEa 

1.93 1.72  100 11  ± 1.5 11 ± 2.5 

7.06 6.01  100 N N 

7.06 6.01  <0.5 N N 

tDCE 

tDCE 

1.35 0.97  72.2 ± 3.0 8 ± 0.5 5 ± 0.5 

6.92 3.80  65.8 ± 1.0 N N 

tDCEa 6.92 3.80  <0.5 N N 

1,1DCE 

1,1DCE 

0.91 0.25  100 N N 

1.33 0.37  65.5 ± 7.9 3 ± 1.0 28 ± 1.0 

1,1DCE 6.91 1.77  1.6 ± 0.9 0.001 28 ± 1.0 

1,1DCEa 6.91 1.77  1.6 ± 0.9 N N 

 

The results listed in Table 4.1 showed that the strain is able to degrade all three 

DCE isomers with prominent activity towards cDCE, as the entire 6.01 mg L-1 of 

this compound was removed at the end of the assay. In comparison to cDCE 

                                           
⑤ a Abiotic blank (without cells); N: not tested; * Initial concentration “all in a liquid phase”: 

calculated and injected dosage of chloroethenes into test vials; Actual initial concentration: 

measured concentrations of chloroethenes in a liquid phase after equilibrium partitioning using 

GC-ECD system 
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degradation, efficiencies for removing 1,1DCE and tDCE were significantly 

lower, yet still interesting for potential strain utilization in bioremediation 

processes. Despite tDCE did not influence RF2 growth, this compound was not 

fully degraded in any of the assays. In contrast, 1,1DCE appeared to be the only 

dichloroethene with a toxic effect against RF2 cells under higher tested 

concentrations. While cDCE and tDCE degradation led to the same or slightly 

reduced cell counts as the blank tests without cDCE and tDCE enrichments, 

samples with higher 1,1DCE concentrations showed significantly reduced 

numbers of living cells. This reduction was especially dramatic if 1.77 mg L-1 of 

1,1DCE was applied; under such a condition, bacterial growth was completely 

inhibited. Above all, 1,1DCE (1.77 mg L-1) completely inhibited the degradation 

of cDCE (6.01 mg L-1) in mixed samples (data not shown).  The results of 1,1DCE 

degradation (1.77 mg L-1) highlighted a key importance of RF2 growing cells for 

the degradation and this fact was fostered by abiotic blanks in which no or 

negligible reductions in DCEs concentrations were observed. 

 

 Cometabolic degradation of a quaternary mixture 

containing TCE and all three DCEs 

The RF2 strain was examined for its ability to degrade all DCEs along with 

TCE in a prepared mixture that included 1,1DCE, cDCE, tDCE and TCE (51.4 

µg L-1; 144.3 µg L-1; 91.6 µg L-1; 122.5 µg L-1, respectively). The composition of 

the mixture and the chloroethene concentrations were chosen to resemble 

groundwater pollution at a site affected by chlorinated ethenes. The results for 

removing the chloroethenes after seven days of the assay are given in Table 4.2  

Table 4.2 Cometabolic degradation of a quaternary mixture of chloroethenes 

by Comamonas testosteroni RF2 (means ± SD)⑥ 

Compound Initial concentration 

“all in a liquid phase” 

(µg L-1) * 

Actual initial 

concentration 

(µg L-1) * 

Compound 

removal 

(%) 

TCE 154.2 122.5 ±1.70 100 

cDCE 170.7 144.3 ± 3.46 100 

tDCE 151.4 91.6 ± 5.86 79.0 ± 3.7 

1,1DCE 158.6 51.4 ± 4.21 100 

 

When all the chloroethenes were used at concentrations corresponding to 

approx. 150 µg L-1 “all in liquid phase”, C. testosteroni RF2 was able to 

                                           
⑥ * Initial concentration “all in a liquid phase”: calculated and injected dosage chloroethenes 

into test vials; Actual initial concentration: measured concentrations of chloroethenes in a 

liquid phase after equilibrium partitioning using GC-ECD system 
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completely remove 1,1DCE, cDCE and TCE and a significant portion of tDCE 

(79.0 ± 3.7 %). The results obtained can be considered valuable proof that RF2 

bacterium is able to degrade not only single DCEs but also all three isomers along 

with TCE in the given mixture of CEs. Furthermore, no abiotic reductions in TCE 

and DCEs concentrations were observed during the assay (data not shown). 

 

  Chloride production during cDCE degradation 

Chloride release after degradation of chloroethenes is an important indicator of 

DCE dechlorination. cDCE was chosen for this assay as it is one of the most 

significant pollutants occurring in groundwater. Moreover, this compound was 

readily degraded by RF2 in previous experiments. In order to investigate the 

dechlorination of potentially formed chlorinated intermediates, the assay lasted 

22 days and the course of the assay over time is shown in Fig. 4.1. 

 

Fig. 4.1 Release of inorganic chlorides during cDCE degradation⑦ 

Generally, a decrease in cDCE concentration was clearly accompanied by the 

production of chlorides. However, although cDCE was completely removed in 7 

days, a further increase in chloride concentration occurred in the next few days. 

Based on these results, the formation of the two unstable chlorinated intermediates 

that appeared on the chromatogram during the assay is the most probable 

explanation for the chloride release observed in the later stage of the experiment. 

Finally, over 92 % mineralization of the chlorine originally bound in cDCE was 

discerned after 22 days of the assay (Fig. 4.1). 

                                           
⑦ (●) cDCE; (ο) inorganic chlorides (abiotic blanks subtracted); cDCE concentrations are 

actual concentrations of the compound in a liquid phase at given times 
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 DCEs degradation kinetics and metabolites monitoring 

So as to monitor the formation of cDCE and tDCE intermediates, further assays 

on the degradation kinetics of these DCEs were performed. Monitoring the cDCE 

and tDCE intermediates lasted until no intermediate was detected by GC-ECD. 

The resultant unknown intermediates were named I1 and I2 respectively; their 

formation and dissipation along with cDCE and tDCE degradation are given in 

Fig. 4.2. 

 

Fig. 4.2 cDCE (A) and tDCE (B) degradation kinetics 

and formation of intermediates⑧ 

Fig. 4.2 shows that during individual degradation of both cDCE and tDCE, 

certain amounts of the two unknown intermediates (I1 and I2) transiently 

accumulated during the first few days of the assays but subsequently disappeared 

later. In the course of cDCE degradation, I1 had a major response on GC-ECD, 

                                           
⑧ (●) cDCE and tDCE; (□) intermediate I1; (∆) intermediate I2; both intermediates are 

expressed as peak areas; (x) abiotic tests; cDCE and tDCE concentrations are actual 

concentrations of the compounds in a liquid phase at given times 
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followed by a considerably reduced response of I2, whereas degradation of tDCE 

resulted in exactly the reverse formation of peaks, with the main response for I2 

and a significantly lesser response for I1. 

Moreover, interestingly, whereas degradation of cDCE and tDCE resulted in 

the formation of the two intermediates, degradation of 1,1DCE (under the 

identical conditions) did not result in any of the two intermediates produced 

during degradation of cDCE and tDCE even though 1,1DCE was completely 

degraded as shown Fig. 4.3. 

 

Fig. 4.3 Degradation kinetics of 1,1DCE⑨ 

 

 Determination of cDCE and tDCE intermediates in the RF2 

strain 

A great effort was made to identify the I1 and I2 intermediates. To this end, I1, 

which showed a major peak in GC-ECD chromatograms during cDCE 

degradation, was detected by both SPME-GC-MS and Purge and Trap-GC-MS as 

2,2-dichloroacetaldehyde; however, I2 was not detected by these methods.  

Considering the possible reactions for the initial steps of cDCE degradation 

controlled by monooxygenase would mean that various amounts of an aldehyde, 

such as 2,2-Dichloroacetaldehyde and cDCE epoxide, could be produced (Nishino 

et al., 2013); the proposed pathways for cDCE transformations in RF2 strain are 

described in Fig. 4.4. 

 

                                           
⑨ (●) 1,1DCE; (x) abiotic tests; 1,1DCE concentrations are actual concentrations of the 

compound in a liquid phase at given times 
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Fig. 4.4 Potential degradation pathways for cDCE degradation in RF2⑩ 

Consequently, it can be hypothesized that I2 might be 1,2-dichloroethane-1,2-

diol, which was described as a product of hydrolysis of the cDCE epoxide 

(Nishino et al., 2013). However, this could not be clearly proven due to the fact 

that the compound is not commercially available, hence was not tested in this 

study. On the basis of the results obtained, it is not possible to state which of the 

two pathways, as described in Fig. 4.4, prevails during cDCE degradation. This is 

because the responses of both intermediates in the ECD chromatograms are 

significantly influenced by their molecular structure. Nevertheless, the previously 

reported 92.31 ± 2.26 % release of chlorides clearly demonstrates the high level 

of desired mineralization of organically bound chlorine. 

Further, it may be supposed that tDCE degradation pathways proceed similarly 

as in the case of cDCE, except the tDCE epoxide formation instead of the cDCE 

epoxide in the II. pathway. However, even though the removal of tDCE (6.92  

mg L-1; 65.8 ± 1.0 %) was lower than the removal of cDCE (7.06 mg L-1; 100 %) 

under same conditions, its transformation resulted in the more significant 

production of the unknown intermediate (I2) than in the case of cDCE 

transformation. Hence, it might be speculated that other degradation pathway, 

such as the proposed II. pathway in Fig. 4.4, is more preferred than the I. pathway 

with 2,2-dichloracetaldehyde as the main transformation intermediate. Therefore, 

it can be stated that a position of chlorine atoms in the DCE molecules not only 

plays a crucial role in the removal efficiency of the compounds, but it may also 

be a key factor in determining a distribution of degradation pathways. 

Nevertheless, to the best knowledge of the author of the thesis, the exact 

determination of tDCE degradation pathways in aerobic bacterial strains has yet 

not been done by any study. 

                                           
⑩ Solid lines: degradation steps based on the results of the present study; Dashed lines: 

degradation steps proposed by Nishino et al. (2013)   
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 Cometabolic degradation of binary mixtures containing VC 

and cDCE 

VC and cDCE are commonly formed at the edges of contamination plumes in 

groundwater originally polluted by PCE and TCE. Thus, bacterial strains capable 

of degrading both compounds are of interest for bioremediation purposes. 

Several assays were performed in terms to evaluate the ability of RF2  

to cometabolically degrade VC and cDCE in binary mixtures. While the applied 

concentration of cDCE (1.18 mg L-1) was the same throughout all the assays, the 

concentration of VC (0.67 mg L-1; 0.93 mg L-1), as well as the duration of the 

assays, differed. Despite the variety of the assays, none of the applied 

concentrations of VC in binary mixtures with cDCE (1.18 mg L-1) resulted in 

neither an inhibitory nor a toxic effect against bacterial cells. Most importantly, it 

exerted no influence on cDCE degradation, which was completely removed (data 

not shown). 

 

  cDCE and VC degradation kinetics by different bacterial 

consortia 

Degradation kinetics of cDCE (6.09 mg L-1) and VC (10 mg L-1; “all in a liquid 

phase”) in binary mixtures were examined by three consortia, each of which 

contained the strain RF2 and one of the DSMZ strains. Growth substrates for the 

consortia were selected based on the results of the previous tests (not shown) and 

are listed in Table 4.3 along with consortia designations.  

 

Table 4.3 Bacterial consortia used for degradation of cDCE and VC in a binary 

mixture 

Consortium 

designation 

Composition of a bacterial 

consortium 

Used organic substrates  

RF2-Rr RF2 + R. ruber DSM-7511 phenol (200 mg L-1) 

RF2-Pp RF2 + P. putida DSM-7189 
phenol (150 mg L-1) + 

3-chloropropan-1-ol (50 mg L-1) 

RF2-Ma RF2 + M. aurum DSM-6695 
phenol (100 mg L-1) + 

lactate (100 mg L-1) 

 

Unfortunately, due to the technical issue with GC-ECD, monitoring the loss of 

VC using the system appeared to be tricky and no VC removal could be confirmed 

as no peak in a retention time for VC appeared on chromatograms, including  

the initial concentrations of the compound (10 mg L-1; “all in a liquid phase”).  

In contrast, degradation kinetics of cDCE (6.09 mg L-1) was well  

monitored and the results obtained for each consortium are shown in  

Fig. 4.5.  
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Fig. 4.5 Degradation kinetics of cDCE in a binary mixture 

with VC by different bacterial consortia⑪ 

Although the results showed that cDCE in a binary mixture with VC was 

efficiently degraded by the strain RF2 in all three consortia, the degradation 

kinetics of the compound by each consortium differed as seen in Fig. 4.5. Whereas 

cDCE was completely removed within the first four days of the assay by a 

consortium composed of RF2 and M. aurum DSM-6695, the removal of the 

compound by other two consortia, composed of RF2 and R. ruber DSM-7511 or 

P. putida DSM-7189, took more time. The faster removal of cDCE may be 

attributed to the partial degradation of the compound by the M. aurum DSM-6695. 

Indeed, the strain was described to be able to partially degrade all three 

dichloroethenes when grown on VC (Hartmans and De-Bont, 1992). Also, there 

is no substrate competition between the strain RF2 and M. aurum DSM-6695, 

which cannot utilize phenol. In comparison, P. putida DSM-7189 and especially 

R. ruber DSM-7511 can compete with RF2 for phenol as well as RF2 can compete 

with P. putida DSM-7189 for 3-chloropropan-1-ol. 

 

  Degradation kinetics of TCE, all DCEs and VC in mixed 

samples 

Degradation kinetics of TCE (115.7 µg L-1), all DCEs (662 µg L-1 of cDCE; 

42.01 µg L-1 of tDCE; 16.02 µg L-1 of 1,1DCE), and VC (7 mg L-1; “all in a liquid 

phase”) in mixed samples by a consortium composed of the strain RF2 and M. 

aurum DSM-6695 was examined with the aim to ideally achieve a complete 

removal of all chloroethenes. The consortium was selected based on the previous 

                                           
⑪ (○) C. testosteroni RF2 and M. aurum DSM-6695; (□) C. testosteroni RF2 and P. putida 

DSM-7189; (∆) C. testosteroni RF2 and R. ruber DSM-7511; cDCE concentrations are actual 

concentrations of the compound in a liquid phase at given times 
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results obtained from the degradation kinetics of cDCE in a binary mixture with 

VC. While removals of TCE and DCEs were monitored by GC-ECD, the system 

that has already been proven to be a reliable analytical method for monitoring of 

these compounds, VC removals were monitored by GC-MS as described in 

methods. Results of all measurements are given in Fig. 4.6.  

 

 

Fig. 4.6 Degradation kinetics of TCE, all DCEs, and VC 

in mixed samples by a bacterial consortium composed of 

C. testosteroni RF2 and M. aurum DSM-6695⑫ 

Fig. 4.6 shows that all chloroethenes were practically fully removed after  

21 days of the assay. Whereas TCE and all DCEs were removed during first  

6 days, complete removal of VC lasted longer. However, a real degradation time 

required for the complete removal of VC could have been shorter than 21 days as 

                                           
⑫ (□) TCE; (●) cDCE; (○) tDCE; (◊) 1,1DCE; (∆) VC; (x) abiotic tests; CEs concentrations 

are actual concentrations of the compounds in a liquid phase at given times 
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no sample analyses were made between days 7 and 21. The decision to not analyse 

the samples during the mentioned period was made intentionally as only 

negligible removal of VC was observed between days 2 and 7 (4.32 %). Among 

others, 99.6 % of tDCE (42 µg L-1), the compound that was not fully degraded in 

previous assays, was removed which could be explained either by its lower 

concentration applied in the assay or due to its partial cometabolic degradation by 

M. aurum DSM-6695. Furthermore, Fig. 4.11 shows that degradation of tDCE 

(42.01 µg L-1) was initiated only after the complete removal of cDCE (662 µg L-

1) and 1,1DCE (16.02 µg L-1) and significant removal of TCE (115.7 µg L-1; 74.8 

± %) and VC (7 mg L-1; 62.8 ± 2.98). Thus, the results suggest that cells of the 

strain RF2 and, perhaps to a lesser extent, M. aurum DSM-6695 have a lower 

affinity towards tDCE than cDCE, 1,1DCE, and TCE. 

Further, with regard to investigate a possible influence of VC degradation by 

M. aurum DSM-6695 on degradation efficiency of other chloroethenes by RF2, 

the previous assay was repeated but no VC nor M. aurum DSM-6695 was added 

into degradation samples containing TCE (117.2 µg L-1), cDCE (671 µg L-1), 

tDCE (44.09 µg L-1), 1,1DCE (16.13 µg L-1), and cells of RF2; results are shown 

in Fig. 4.7.  

 

 

Fig. 4.7 Degradation kinetics of TCE and all DCEs by RF2 

Degradation kinetics of chloroethenes in Fig. 4.7 shows that RF2 could alone 

remove all the compounds. Furthermore, all chloroethenes were removed in 

significantly shorter times if compared with results, where VC and M. aurum 

DSM-6695 were applied. Especially efficient degradation was observed for cDCE 

(671 µg L-1) and 1,1DCE (16.13 µg L-1), which were both completely removed 

during the first day. Also, TCE (117.2 µg L-1) was nearly fully removed after 2 

days of the assay, which is 1 day less than its degradation in the previous case. 

Finally, tDCE (44.09 µg L-1) degradation was initiated during the first day when 

28.7 ± 4.69 % of the compound was removed. 
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Based on these findings, it could be suggested, though unexpectedly, that RF2 

itself can completely degrade low concentrations of tDCE. Moreover, it seems 

that rather than M. aurum DSM-6695 itself, but transformation intermediates of 

VC might have a temporary adverse effect on degradation kinetics of 

chloroethenes by RF2, i.e. reduction of degradation rates of the compounds. The 

most probable transformation intermediate with such an impact on RF2 cells 

could be chlorooxirane, which was described to be formed during the initial step 

in VC metabolism in M. aurum L1 that is catalysed by alkene (Hartmans and De-

Bont, 1992).  

Nevertheless, even though the reactive epoxide chlorooxirane could be formed 

during degradation of VC in M. aurum DSM-6695, and thus might also adversely 

affect degradation rates of chloroethenes by RF2, its effect was not significant 

enough to prevent the complete degradation of chloroethenes in this thesis. 

Therefore, the consortium composed of RF2 and M. aurum DSM-6695 displays 

potential for in-situ bioremediation of CEs-polluted subsurface.  
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5. CONCLUSION 

The results of this thesis proved that phenol growing cells of the strain RF2 

could degrade all DCEs along with TCE either as single compounds or in a 

mixture of these chloroethenes. The strain showed prominent activity towards 

cDCE, as the entire 6.01 mg L-1 of this compound was removed at the end of the 

assay. Further, despite tDCE (3.80 mg L-1) did not influence RF2 growth, this 

compound was not fully degraded, which was most probably due to deficient 

molecular “lock and key” conformation between the molecules of phenol-2-

monooxygenase of the strain RF2 and tDCE. Nevertheless, very low 

concentrations of tDCE (44.09 ± 2.52) in samples with other chloroethenes were 

almost completely degraded. Next, 1,1DCE turned out to be the most troublesome 

isomer, as only the low concentration of 0.25 mg L-1 was degraded completely 

and just partial removal of 0.37 mg L-1) was observed. Furthermore, higher 

concentrations of 1,1DCE (1.77 mg L-1) proven to be toxic towards RF2 cells and 

completely inhibited the degradation of cDCE (6.01 mg L-1) in mixed samples 

with 1,1DCE.  

Among others, the strain RF2 could not degrade any of the applied VC 

concentrations. Nevertheless, the ability of strain RF2 to degrade other 

chlorinated ethenes remained unaffected in presence of VC, which enabled 

construction of a consortium composed of strains RF2 and M. aurum DSM-6695. 

The consortium efficiently removed TCE, all DCEs and VC in a subsequent assay; 

although degradation of VC in M. aurum DSM-6695 temporarily affected 

degradation rates of other chloroethenes in strain RF2, nearly complete removal 

of the applied compounds was observed within three weeks of the assay. 

The importance of these results can be supported by the fact that the application 

of phenol as the primary substrate for a field remediation has already been 

successfully tested (Hopkins and McCarty, 1995). Furthermore, it should be noted 

that all the assays performed herein resembled natural conditions and that cDCE, 

which is the most common intermediate produced during PCE and TCE anaerobic 

dehalogenation in groundwater, was efficiently removed both by strain RF2 and 

its consortium with M. aurum DSM-6695. In addition, the ability of the strain RF2 

to degrade only low 1,1DCE concentrations should not pose a serious issue, as 

the production of this compound during natural attenuation of higher chlorinated 

ethenes was rarely observed (Schmidt and Tiehm, 2008; Tiehm and Schmidt, 

2011). Also, M. aurum DSM-6695 could degrade VC in consortium with strain 

RF2 in a mixed sample containing TCE and all DCEs including toxic 1,1DCE. 

Therefore, the degradation of dichloroethenes and TCE in strain RF2 and the 

degradation of their mixture with VC in a consortium of the above-mentioned 

strains appeared to be a practical process for sufficient remediation of 

contaminated groundwater.   
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6. CONTRIBUTION OF THE THESIS TO SCIENCE 

AND PRACTICE 

This thesis focused on the bacterial degradation of chlorinated ethenes (CEs) in 

mineral salt medium (MSM); the compounds, which are a significant source of 

soil and groundwater pollution worldwide. Although many studies have 

investigated the bacterial degradation of the compounds in MSM, the number of 

strains and consortia capable to degrade a broader range of chloroethenes is very 

limited. Hence, it is obvious that the research aiming to isolate new strains or 

consortia and further examine their degradation ability towards chloroethenes is 

desirable, and it might potentially lead to the application in practice for in-situ 

bioremediation of polluted sites by chloroethenes. 

 

The contribution of the thesis to science and practice is as follow: 

 

- It is the very first study describing the cometabolic degradation of all three 

dichloroethenes by a pure bacterial strain, Comamonas testosteroni RF2, 

utilizing phenol. 

- Degradation of cDCE, the most common isomer found in polluted 

groundwater by perchloroethene and trichloroethene, in the RF2 lead to the 

high production of inorganic chlorides (92.2 %).  

- 2,2-dichloroacetaldehyde was determined as one of the main 

transformation intermediates in RF2, and one of the degradation steps in 

cDCE degradation catalysed by monooxygenase was shown. 

- Phenol-growing cells of the strain RF2 could degrade all three 

dichloroethenes along with trichloroethene, which is not usual for a pure 

bacterial strain, and it indicates its potential suitability for in-situ 

bioremediation applications. 

- Most importantly, the consortium composed of the strain RF2 and M. 

aurum DSM-6695 could remove trichloroethene, all three dichloroethenes 

and vinyl chloride in mixed samples.   

- The result shown in the thesis could be used for a further study focusing on 

improving the degradation efficiency of vinyl chloride by the consortium 

used in the present study. 

- The degradation ability of the consortium towards chloroethenes could 

potentially be examined in a pilot-scale study.  
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LNAPLs  light non-aqueous phase liquids 
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TCE-RDase  trichloroethene reductive dehalogenase enzyme 

1,1DCE  1,1-dichloroethene 

cDCE   cis-1,2-dichloroethene 
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DCEs   dichloroethenes 

DNAPLCEs  chlorinated ethenes as dense non-aqueous phase liquids 

ECD   electron capture detector 

GC   gas chromatography 

I1   intermediate 1 

I2   intermediate 2 

KH   Henry’s law constant 
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MS   mass spectroscopy 
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12. APPENDIXES 

 

Appendix 1.1 Summary of some important physicochemical properties of CEs at 25 ºC 

Compound Molar 

weight  

(g mol-1) 

Carbon 

oxidation 

state 

Density 

(g cm-3) 

Solubility 

in water 

(g L-1) 

Log 

(Kow) 

Log 

(Koc) 

Vapour 

pressure 

(kPa) 

Henry’s Law 

Constant K(H)  

(x 10-3 atm.m3 

mol-1) 

Relative 

vapour 

density 

Boiling 

point 

(°C) 

PCE 165.8 + II 1.63 

 

0.15 

 

2.9 2.42 2.41 26.3 1.12 121.1 

 

TCE 131.4 + I 1.46 

 

1.10 

 

2.42 1.81 9.87 11.7 1.35 87.2 

cDCE 96.9 0 1.28 

 

3.50 2.0 1.77 27 

 

7.40 

 

1.63 60.2 

tDCE 96.9 0 1.26 

 

6.26 

 

2.09 - 44.3 

 

9.38 

 

1.97 48.5 

1,1DCE 96.9 0 1.22 

 

3.34 

 

1.32 - 80.3 23.0 2.86 32.0 

VC 62.5 - I 0.91 2.76 1.38 0.39 353.8 79.2 2.2 -13.4 
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