
A comparison of native and
multiplatform development of mobile

applications following the MVVM
pattern

Bc. Veronika Dzúriková

Master’s thesis
2022

THESIS AUTHOR STATEMENT

I hereby declare that:

• I understand that by submitting my Master’s thesis, I agree to the publication of
my work according to Law No. 111/1998, Coll., On Universities and on changes
and amendments to other acts (e.g. the Universities Act), as amended by subse-
quent legislation, without regard to the results of the defence of the thesis.

• I understand that my Master’s Thesis will be stored electronically in the univer-
sity information system and be made available for on-site inspection, and that a
copy of the Master’s Thesis will be stored in the Reference Library of the Faculty
of Applied Informatics, Tomas Bata University in Zlín.

• I am aware of the fact that my Master’s Thesis is fully covered by Act No.
121/2000 Coll. On Copyright, and Rights Related to Copyright, as amended by
some other laws (e.g. the Copyright Act), as amended by subsequent legislation;
and especially, by §35, Para. 3.

• I understand that, according to §60, Para. 1 of the Copyright Act, Tomas Bata
University in Zlín has the right to conclude licensing agreements relating to the
use of scholastic work within the full extent of §12, Para. 4, of the Copyright
Act.

• I understand that, according to §60, Para. 2, and Para. 3, of the Copyright
Act, I may use my work – Master’s Thesis, or grant a license for its use, only if
permitted by the licensing agreement concluded between myself and Tomas Bata
University in Zlín with a view to the fact that Tomas Bata University in Zlín must
be compensated for any reasonable contribution to covering such expenses/costs
as invested by them in the creation of the thesis (up until the full actual amount)
shall also be a subject of this licensing agreement.

• I understand that, should the elaboration of the Master’s Thesis include the use
of software provided by Tomas Bata University in Zlín or other such entities
strictly for study and research purposes (i.e. only for non-commercial use), the
results of my Master’s Thesis cannot be used for commercial purposes.

• I understand that, if the output of my Master’s Thesis is any software product(s),
this/these shall equally be considered as part of the thesis, as well as any source
codes, or files from which the project is composed. Not submitting any part of
this/these component(s) may be a reason for the non-defence of my thesis.

I herewith declare that:

• I have worked on my thesis alone and duly cited any literature I have used. In the
case of the publication of the results of my thesis, I shall be listed as co-author.

• The submitted version of the thesis and its electronic version uploaded to IS/STAG
are both identical.

In Zlín; dated: Veronika Dzúriková mppria

Student’s Signature

ABSTRAKT

Práce se zaměřuje na porovnání implementace návrhového vzoru Model-View-View-
Model (MVVM) ve vývoji mobilních aplikací pro nativní vývoj pro platformy iOS a
Android, a pro multiplatformní vývoj v technologii Xamarin.Forms. Motivací pro tento
výzkum byl fakt, že v reálném pracovním prostředí se každý tým nebo firma potýká
s problémem jak správně tento návrhový vzor implementovat a jaký způsob (nativní
nebo multiplatformní) vybrat pro vývoj každé nové aplikace. Rešerše proběhla tak,
že pro každou platformu byl proveden výzkum platformních zásad, dokumentací a
možností, jak tento návrhový vzor implementovat, a pak byl vybrán nejčistší a ne-
jvíce doporučený způsob pro vývoj ukázkové aplikace. Pro tuto aplikaci byla zvolena
množina klíčových komponent a dat, která tvoří jejich obsah, a byly implementovány
tři aplikace – nativní iOS aplikace v programovacím jazyku Swift, nativní Android
aplikace v jazyku Kotlin a multiplatformní aplikace pro obě platformy v jazyku C# v
technologii Xamarin.Forms. Vývoj těchto tří aplikací byl následně detailně popsán s
hlavním zaměřením na popis implementace návrhového vzoru (MVVM). V závěru jsou
všechny tyto způsoby implementace vyhodnoceny a porovnány.

Klíčová slova: MVVM, iOS, Swift, SwiftUI, Android, Kotlin, Xamarin, Xamarin.Forms,
MvvmCross

ABSTRACT

Thesis focuses on comparison how the Model-View-ViewModel (MVVM) architecture
pattern is implemented for mobile applications in native iOS and Android development,
and in multiplatform development using Xamarin.Forms. Motivation for this research
was a fact that in real working environment, every team or company deals with this
problem how to correctly implement this architecture or which approach (native or
multiplatform) to choose for each new application. The research was conducted in
such way that guidelines, documentation and possibilities how this architecture can be
implemented were researched for each platform and then the most clean and recom-
mended way was chosen for development of an example application. For this example
application were set key components and example data to fill its content, and then
three applications were developed – native iOS in Swift programming language, native
Android in Kotlin, and multiplatform application for both iOS and Android in C#
using Xamarin.Forms. Development of these three applications was described in detail
with focus on MVVM architecture implementation. In the end all these implementation
approaches are evaluated and compared.

Keywords: MVVM, iOS, Swift, SwiftUI, Android, Kotlin, Xamarin, Xamarin.Forms,
MvvmCross

I would like to thank my thesis supervisor Ing. Erik Král, Ph.D. for allowing this
research and for supervision of this thesis.

TABLE OF CONTENTS

INTRODUCTION... 10

I THEORETICAL PART ... 10

1 CURRENT METHODS IN MOBILE APPLICATIONS DEVELOP-

MENT .. 12

1.1 Native single-platform approach ... 12
1.1.1 iOS .. 12
1.1.2 Android.. 17

1.2 Native multiplatform approach ... 20
1.2.1 Xamarin ... 20
1.2.2 Kotlin multiplatform .. 22
1.2.3 Flutter ... 26

1.3 Web-based multiplatform approach ... 27
1.3.1 Electron ... 27
1.3.2 React native ... 27
1.3.3 Ionic .. 28

2 MODEL-VIEW-VIEWMODEL .. 29

2.1 Application composition .. 29

2.2 MvvmCross .. 30
2.2.1 Project composition ... 31
2.2.2 Data binding... 32
2.2.3 Navigation .. 33
2.2.4 Inversion of Control ... 33

II ANALYTICAL PART ... 33

3 MVVM IMPLEMENTATION ... 35

3.1 MVVM in iOS .. 35

3.2 MVVM in Android .. 37

3.3 MVVM in Xamarin .. 39

III PRACTICAL PART .. 40

4 EXAMPLE APPLICATION DESIGN.. 42

4.1 Components... 42

4.2 Wireframe .. 42

4.3 Use-case diagram.. 43

4.4 Activity diagram.. 43

5 IOS APPLICATION.. 44

5.1 Models... 46

5.2 ViewModels .. 46

5.3 Views ... 47

5.4 Services ... 49

5.5 Resources.. 49

6 ANDROID APPLICATION... 51

6.1 Model .. 51

6.2 ViewModel .. 51

6.3 View ... 52

6.4 Services ... 55

6.5 Resources.. 55

7 XAMARIN.FORMS APPLICATION... 59

7.1 Core project .. 59
7.1.1 Services .. 59
7.1.2 Model .. 61
7.1.3 ViewModel ... 61

7.2 UI project ... 63

7.3 iOS project ... 64

7.4 Android project ... 66

8 EVALUATION AND COMPARISON .. 68

8.1 Comparison based on implementation complexity................... 68

8.2 Comparison based on implementation time 69

8.3 Comparison based on application size 69

8.4 Evaluation of advantages and disadvantages 70

CONCLUSION ... 71

REFERENCES .. 72

LIST OF ABBREVIATIONS ... 75

LIST OF FIGURES... 77

LIST OF APPENDICES ... 78

TBU in Zlín, Faculty of Applied Informatics 10

INTRODUCTION

This thesis is about comparison how the Model-View-ViewModel (MVVM) architec-
ture is implemented across currently available mobile platforms – iOS and Android.
In theoretical part are first described methods how mobile applications can be imple-
mented, then the description of the MVVM architecture and MvvmCross framework.
In analytical part is performed research how this architecture may be implemented
in native iOS, native Android and in Xamarin.Forms for multiplatform development.
Practical part includes description of the example application and its components
and behaviour which is then implemented for native iOS, native Android and in Xam-
arin.Forms in a way which demonstrates the MVVM implementation. Implementation
of all these three applications is then described in detail with examples of important
source code samples. In the end is explained which approaches are suitable for dif-
ferent use cases, summarized main differences between MVVM implementation across
these three approaches, and all three (respectively four) example applications are com-
pared.

TBU in Zlín, Faculty of Applied Informatics 11

I. THEORETICAL PART

TBU in Zlín, Faculty of Applied Informatics 12

1 Current methods in mobile applications development

As of January 2022, Android with 70.05 % of the worldwide market share and iOS with
29.21 % are the leading worldwide Operating Systems [1]. Manufacturers such as Nokia
with their not very triumphant Windows Phone and BlackBerry quickly switched their
environment to Android as well. So this thesis will further deal with these two mobile
OSs, Android and iOS.

Currently there are three approaches of how to develop mobile applications. The most
standard and oldest way is making native applications separately for each platform.
To cut time costs, lower human resources and eliminate code duplicity multi-platform
development increased its popularity. This approach still had not been enough for some
companies financial policies so they started to develop applications, which in reality
are just web sites wrapped into native application packages or single-use web browser
applications.

1.1 Native single-platform approach

This is the oldest and the most straightforward way of mobile applications development.
Separate native application for each platform using standard Software Development
Kit (SDK) provided by the corresponding platform maintainer. Native applications
generally have high performance and better User Experience (UX) as the User Interface
(UI) elements are tailor-made especially for each platform and there is direct access
to hardware interfaces through provided Application Programming Interface (API)
capabilities. Developers have immediate access to new features and do not have to wait
for secondary companies to prepare wrapping or plugins as is common in multi-platform
development. It is also easier to comply with the corresponding app store guidelines.

1.1.1 iOS

iOS is a mobile operating system developed in-house by Apple and used exclusively
in the company’s iPhone mobile devices. Apple tablets, iPads, use iPadOS which is
derived from iOS version 12. It is closed-source and written in various programming
languages: C, C++, Objective-C, Swift and Assembly. The kernel holds the name Dar-
win and is derived from Berkeley Software Distribution (BSD) 1), later NeXTSTEP

1)Discontinued OS based on Research Unix, developed and distributed by Computer Systems Re-
search Group (CSRG) at the University of California in Berkeley

TBU in Zlín, Faculty of Applied Informatics 13

2) and other projects [2]. Besides already mentioned iPadOS, Apple furthermore
uses other marketing names for their OSs for different devices – tvOS for Apple TV
and WatchOS for their wearable smartwatches. iOS and iPadOS both use same li-
braries provided by Apple in their SDK for developing applications, although tvOS
and watchOS use only some of the components and their UI is developed in a slightly
different way due to their nature.

Objective-C

Historically Objective-C programming language was used for developing iOS appli-
cations. It is object-oriented programming language based on the C programming
language. It uses message passing similar the the one in the Smalltalk 3) program-
ming language. The main difference between Simula-style model (used for example
in C++) is how the code referenced by a method of a message name is executed.
Simula-style method names are pointed to a section of code by the compiler, whereas
targets (receivers) of the messages (in Objective-C and Smalltalk) are resolved at run-
time, and the receiving object itself resolves the message [3]. Unlike in more traditional
languages, a function or a method is represented by the selector in Objective-C, which
is a unique identifier for each message name. So we can say that a selector is the mes-
sage’s signature. This is important because most of the OS and OS libraries still
use Objective-C selectors as their interface which developer needs to call from a more
current, modern, language which is used today.

Swift

Currently used language is Swift. It was first released in 2014 and quickly became
the main choice for developers for the Apple platform development. It’s current stable
version 5.6 released in March 2022. Unlike Objective-C, this programming is open-
source but mostly developed by Apple. It is multi-paradigm programming language,
supporting object-oriented approach with heavy focus on functional programming. It
is strongly typed, uses automatic reference counting (whereas Kotlin uses Garbage
collection) for its memory management and in later versions (5.5 and up) adds support
for concurrency and fully asynchronous code by introducing its own version of the actor
model [4]. It is built with the Low Level Virtual Machine (LLVM) compiler framework
as well, uses Objective-C runtime library which allows iOS and other systems to run

2)Discontinued object-oriented, multitasking OS based on the Mach kernel and BSD
3)Object-oriented, dynamically typed reflective programming language influenced by Simula

TBU in Zlín, Faculty of Applied Informatics 14

C, Objective-C, C++ and Swift code within one application.

Application development

Both Objective-C and Swift are supported by Xcode IDE which is main IDE for build-
ing applications for all Apple OSs. It is complete environment, providing editor, project
manager (along with certificate and other management tools), Git client, profiler, de-
bugger and compiler support for the whole iOS platform [5]. Secondary option is
AppCode from the Czech company JetBrains but developers still need to have Xcode
installed on their macOS computers to build iOS applications.

Main system libraries provided by Apple are:

• Foundation

This is the core SDK and provides basic data types and functions for working with
them, like Date, Calendar or APIQuery. It provides a base layer of functionality
for applications and frameworks, including data storage and persistence, text
processing, date and time calculations, sorting and filtering, and networking [6].

• UIKit

This is the most used UI library which contains not only basic UI elements,
but also more general objects and related functions like UIImage for images
or UIColors for colours.

• CGGraphics

This is lower level Graphics Processing Unit (GPU) accelerated 2D graphics li-
brary for drawing everything on the device’s screen, for example geometry, im-
ages, blur and other effects. It is also used by the UIKit as well and also provides
its own version of more optimized objects for representing colours – CGColor.

Application composition and UI implementation

Each application consists of at least the UIApplicationDelegate and one Scene.
UIApplicationDelegate is very similar to a main.hpp class in C++. it is an en-
try point of the application and along with other implementable protocols serves as
a main interface between the application and the OS itself. It receives application’s

TBU in Zlín, Faculty of Applied Informatics 15

launch parameters and also the application lifecycle events (like events about entering
background and foreground).

UIViewController is a controller class, instantiates UIViews, handles their lifecycle
and sometimes implements their delegates. UIView is any part of the UI, actually
the whole screen in an UIView, but also any smallest element on the screen is also
UIView [6]. There are four states that the UIViewController can acquire as show
in the figure 1.1. Historically iOS applications used to consist of at least one UIView

and one UIViewController, though it is no longer true since iOS 13 when SwiftUI was
introduced and UI implementation style transitioned from Window usage to Scene us-
age. Windows used to be an object representing the application drawing space in which
the UIViewControllers along with their UIViews were hosted. The caveat is that ev-
ery application could have only one Window so Apple transitioned to Scene usage
when they introduced support for multiple application windows and decided to call
them Scenes. That means that the application can now only contain one Scene with
one SwiftUI view, and without any UIViewControllers. However, when developing
applications with more than one screen developers usually choose some sort of archi-
tecture depending on their preferred frameworks. This also helps to separate objects’
responsibilities, therefore structure of the applications is usually more advanced and less
straightforward. So depending on the chosen technology developers must choose par-
ticular architecture because these technologies and frameworks usually require some
sort of objects to carry responsibilities defined by Apple, so the applicable architecture
patterns were designed around these requirements.

UI declaration

There are four ways how to create UI:

• xib files

They are actually XML-based files for storage of UI declaration made in Xcode
Interface Builder. This is the oldest way of defining UI for iOS applications,
and it is possible to use only one xib file per view – xib file represents single
isolated screen.

• Storyboards

These were introduced with iOS 5 and they facilitate development because they
allow prototyping and designing multiple view controller views within one file,

TBU in Zlín, Faculty of Applied Informatics 16

Fig. 1.1 UIViewController lifecycle
[7]

and also let developers create transitions between view controllers [8] which han-
dle the navigation. Declaration of UI is similar like with xib files, using UIKit
elements.

• Programmatically using UIKit

Defining the UI in the code provides absolute freedom, developers can completely
mix up objects’ responsibilities as they wish. Any object can implement any pro-
tocol, just needs to set proper references to the required properties. As UI ele-
ments are instantiated purely in the code, it is done so in the UIViewController
delegates. These delegates also instantiate the whole Views and their lifecycle.
AutoLayout can be used, usually with conjunction of Domain-specific Language
(DSL) and wrappers to set it up more easily.

• Programmatically using SwiftUI

This is the most modern way of defining the UI, from the code, possible since
iOS 13. It is completely different from the UIKit. There is declarative approach
instead of imperative – developers define how should something look instead
of setting up properties to make something look certain way. Views need to con-
form to predefined structure and there is less architectural freedom, yet still more

TBU in Zlín, Faculty of Applied Informatics 17

efficient than xib or Storyboards approach. Even though this is done program-
matically from the code, it supports real-time live previews in Xcode IDE using
PreviewProviders [6].

1.1.2 Android

Android is mobile OS based on Linux kernel and distributed as a free and open-source
project under Apache license, however most Android devices ship with pre-installed
proprietary software as well. The first device shipped with Android OS was HTC
Dream in 2008 [9]. It is being developed by Open Handset Alliance (OHA) consortium
though commercially sponsored and led by Google. With the annual trend, Google
releases its own smart phone called Pixel (previously Nexus) with pure Android OS,
and other phone manufacturers have to scale this system for their phones. Then they
often override its UI with their own, for example Samsung with its One UI or Xiaomi
with MIUI, and pre-install their proprietary vendors’ applications.

Kotlin

Developing native Android applications has been possible in Java and C++ program-
ming languages but in recent years Java has been gradually replaced by Kotlin. It is
actually a cross-platform supported language (same as Java) so there will be more in-
formation about this language in section about multiplatform development later in this
thesis.

Application composition

Each android application consist of app components. There are four types of compo-
nents [10]:

• Activities

An activity is the entry point for interacting with the user [10]. It is a basic
building block of an Android application and all the action happens there. Every
activity has to be declared in the manifest.xml file. Each activity can host one
or more fragments.

Fragment represents a reusable portion of the application UI. It is strongly depen-
dent on an activity and can not exist on its own, has to be hosted by an activity.

TBU in Zlín, Faculty of Applied Informatics 18

It manages its own layout, has its own lifecycle separate from an activity and can
handle its own input events [10]. During the development there must be sure
full understanding of connection between activity and fragment lifecycle (as seen
in figure 1.2) to ensure the proper functionality of the application.

• Services

A service handles performance of long-running operations in the background
while not blocking the UI and supplies functionality for the others applications
to use. It might continue running even after the application is not currently open
and/or the user is even interacting with different application.

• Broadcast receivers

Broadcast receivers are used to respond to system-wide and application events.
Basically they send or receive messages from the system, application itself or other
applications. These messages can be events or intents. All registered receivers
are notified when an event occurs by the Android runtime. An Android applica-
tion can then receive broadcasts in two ways, through static receivers (declared
in the manifest.xml file) and dynamic receivers (context-registered) [10].

• Content providers

Content providers are mostly used for supplying data from one application to an-
other by request. They manage access to a central repository of data. Data
stored by certain application or other applications stored in a database, files,
or over a network. They encapsulate these data and offer granular control over
the permissions for accessing them. This ensures full security over them. Then
obviously, they support all four basic CRUD operations – create, read, update
and delete the data.

UI implementation

Since the first Android released in 2008 applications UI has always been defined in XML
files in a flat structure. This supports creating different layouts for different screen
orientations or screen sizes. Android provides basic elements such as views, layouts,
textViews, buttons, et cetera, together with styling and theming definitions for develop-
ers to define UI of the applications. However, along with the release of Kotlin language
for Android and new Jetpack libraries, Jetpack Compose was released to replace XML
structure.

TBU in Zlín, Faculty of Applied Informatics 19

Fig. 1.2 Activity vs. Fragment lifecycle
[11]

TBU in Zlín, Faculty of Applied Informatics 20

Jetpack Compose is a new toolkit for building UI. In Jetpack Compose layouts are de-
fined in a completely different way in Kotlin classes. They are built around composable
functions. These functions let developers define the UI programmatically describing
how it should look and providing data dependencies, rather than focusing on the pro-
cess of the UI construction [12].

1.2 Native multiplatform approach

This approach takes advance of fast performance of native applications but at the same
time cuts costs by code reusability. These applications share core codebase between
both Android and iOS (but can be even more) platforms and only platform-specific
operations are implemented for each of them separately. This unintentionally follows
SOLID 4) architecture as it forces to use interfaces and keep the implementation in-
dependent and substitutable [13]. UI can be defined separately for the best visual
experience, however some frameworks (for example Xamarin) provide tools to define
single UI for both platforms. Though this way is not very popular between the com-
panies with strong focus on brand design and end-users because results of this way are
usually not very pleasant for a designer eye. But for basic use-cases such as internal
applications for company employees, this is usually enough and cost-effective way.

1.2.1 Xamarin

Xamarin is free and open-source .NET framework currently under the hood of Microsoft
corporation for developing Android, iOS, MacOS and Universal Windows Platform
(UWP) native applications. Xamarin enables developers to share an average of 80-
90 % of the application across these platforms [14]. Source code is written in C# pro-
gramming language using Visual Studio Integrated Development Environment (IDE).
Developing Xamarin applications using Visual Studio IDE is possible on any OS –
Windows, Linux and MacOS with limitation that iOS and MacOS applications can be
build and deployed only using Mac computers (directly or via network connection).
Usage of this framework has no negative effect on performance because Xamarin appli-
cations are build into native applications for each platform, but application package is
larger because of .NET libraries. What is interesting is that application is not compiled
into Dynamic-link Library (DLL) as is standard with Microsoft projects, but the code
is compiled into each platform package. All platforms APIs, services and methods are

4)Mnemonic acronym of five software design principles of object-oriented programming stated
by Robert C. Martin, also known as Uncle Bob

TBU in Zlín, Faculty of Applied Informatics 21

Fig. 1.3 Xamarin application architecture
[14]

available, just called from wrapped functions written in C# programming language.
There is usually no any delay with updates reflecting the platform maintainers changes
as Microsoft is responding to these changes immediately and updates use to be available
the same day as native platform releases. Some problems may happen when program-
mers want to use third party library written for native development, then they have
to rewrite it, find different one supposed for Xamarin, or use Xamarin Bindings library
which allows to connect third party library into C#.

Application composition

.NET Standard library version 2.0 is the preferred option for sharing source code be-
tween the platforms. It is uniform API for all .NET platforms including Xamarin
and .NET Core. Xamarin application consists of core project (.NET Standard library)
which includes data layer (all model classes), data access layer, service access layer,
business model layer and interfaces, and each platforms projects which consists of UI
layer, application layer and platform-specific implementation of above mentioned in-
terfaces. Examples of these platform specific implementations may be authentication,
permissions, I/O access and file storage or databases.

TBU in Zlín, Faculty of Applied Informatics 22

UI implementation

There are three approaches of how to handle UI implementation:

• Native

Project for each platform has its own platform’s native implementation which
means double (or triple) amount of work. For iOS it is using ViewController
classes and UI can be designed in Storyboards or xib files. Android has Fragment
classes and design is defined in XML files. This approach ensures the most
authentic native UI for each platform using native libraries and tools, and best
UX.

• Xamarin.Forms

When design of the application is not so important for the company and the project
budget is tight, the UI can be implemented in .NET Xamarin.Forms cross-
platform framework. UI is defined in Extensible Application Markup Language
(XAML) files, which are basically "smarter" standard XML. There is limitation
to the UI elements already defined in Xamarin.Forms so there may be some plat-
form specific missing. We simply use, for example <Button>, element and then
during the run time of the application, it is mapped into native component using
each platforms rendered. These renderers are extendable and it is also possi-
ble to develop own custom renderers for custom elements. With this approach
UI can be implemented only once for all platforms as a separate project next
to the iOS, Android (and UWP) project as can be seen in figure 1.4 - struc-
ture tree of the example application, or for each platform separately inside each
corresponding project.

• .NET MAUI

This is open-source and also cross-platform framework for creating mobile and desk-
top applications. It is an evolution of Xamarin.Forms currently still under the main
active development by Microsoft. Current version (12 by the time of writing this
thesis) of pre-release preview was published January 19th 2022 [15].

1.2.2 Kotlin multiplatform

Multiplatform programming in Kotlin language is currently still in alpha stage so its
API changes a lot and the most features are still experimental. It allows to share

TBU in Zlín, Faculty of Applied Informatics 23

Fig. 1.4 Structure tree of the example application in Xamarin.Forms

TBU in Zlín, Faculty of Applied Informatics 24

common codebase across various build targets and platforms. It is important to dis-
tinguish Kotlin multiplatform development of mobile applications for iOS and Android
from development for other platforms and environments (for example web or desktop).
This section will furthermore focus on Kotlin multiplatform development of mobile
applications as it is aim of this thesis.

This is provided by Kotlin Multiplatform Mobile (KMM) which is an SDK specially
designed for developing multiplatform applications for iOS and Android. According
to JetBrains, it combines benefits of both cross-platform and native applications devel-
opment and allows maintain a single codebase for networking, data storage, analytics,
and other logic of Android and iOS applications [16]. UI is then designed separately
using Jetpack Compose for Android and SwiftUI for iOS. Development is possible
in Android Studio IDE or Intellij IDEA using KMM plugin.

Application composition

Each KMM application consist of three basic components [16]:

• Shared module

A Kotlin module that contains common logic for both Android and iOS applica-
tions. It builds into an Android library and an iOS framework and uses Gradle
as a build system with the Kotlin Multiplatform plugin applied. There is housed
all the common codebase of the application. Because some logic may be platform
specific, Kotlin offers so-called "expect/actual" mechanism. Source code of this
shared module is then organized into three source assets:

– commonMain – Contains source code working for both platforms including
"expect" declarations

– androidMain – Contains Android-specific code including "actual" imple-
mentation

– iosMain – Contains iOS-specific code including "actual" implementation

• Android application

A Kotlin module that builds into native Android application. It uses Gradle as
a build system.

TBU in Zlín, Faculty of Applied Informatics 25

• iOS application

An Xcode project that builds into native iOS application. It uses its own build
system from Xcode.

Root project is Gradle project which holds these mentioned components: shared
module, Android and iOS applications and global configuration files (build.gradle,
gradle.properties, local.properties and settings.gradle). It does not hold
source code of the KMM application.

Kotlin

Kotlin is a modern, free and open-source statically typed programming language, yet
is still 100 % interoperable with Java and targets the Java Virtual Machine (JVM),
however can also compile into machine code (through LLVM) or JavaScript. It was
founded by JetBrains and announced as a main programming language for Android
applications by Google in 2019 [16]. It combines object-oriented and functional pro-
gramming. Kotlin was designed to eliminate danger of null pointer reference, so called
"the billion dollar mistake", by introducing nullable and non-nullable data types. De-
spite functional programming it also supports extension functions, usage of lambdas
and reflection. Asynchronous programming is solved by threading, callbacks, futures
and promises, and the most appraised coroutines.

Key differences between Kotlin and Java:

• Kotlin combines object-oriented and functional programming while Java is lim-
ited to object-oriented programming.

• Kotlin supports extension functions (also for primitive data types) but Java does
not.

• Kotlin does not support static members while Java uses them.

• Kotlin does not support implicit conversions but Java supports.

• Kotlin handles null-safety but Java does not.

• Kotlin handles variables of primitive types as objects whilst Java does not take
them as objects.

• Kotlin does not require any variable datatype specifications while Java requires.

TBU in Zlín, Faculty of Applied Informatics 26

• Kotlin supports lambdas and inline functions while Java supports only lambdas
(since Java version 8).

• Kotlin does not require semicolons whilst Java needs them.

• Kotlin does not support Java raw types.

• Kotlin does not have checked exceptions but Java does.

• Kotlin syntax is less verbose than Java.

1.2.3 Flutter

Flutter is an open-source framework developed by Google for multi-platform develop-
ment of applications. It was first released in May 2017 and currently supports Android,
iOS, macOS, Windows, Linux, Google Fuchsia and web applications. They are com-
piled into native code for each platform which results in super fast performance, same
as original native applications.

Development of Flutter applications is done in the Dart programming language which
is also developed and maintained by Google. Intellij IDEA, Android Studio, Visual
Studio and Eclipse IDE can be used as IDEs. On macOS, Windows and Linux Flutter
runs on Dart Virtual Machine (VM) which features Just-In-Time Compilation (JIT)
of source code allowing so-called "hot reload" which allows modification of the source
code and code injection into running application which saves a lot of development time
[17].

Dart

Dart is object-oriented and class-based programming language. Its syntax is quite sim-
ilar to C programming language but in addition it has garbage collection functionality.
Originally Dart was compilable only into JavaScript programming language but devel-
opers later added compilation into native code. Web applications are still compiling
into JavaScript in Chrome web browser, standalone applications are shipped together
with Dart SDK and Dart VM, and (multiplatform) native applications are compiled
into native code for iOS and Android OSs [18].

TBU in Zlín, Faculty of Applied Informatics 27

1.3 Web-based multiplatform approach

These applications are deployed in a native container that uses mobile WebView ob-
ject. They are in fact web sites and just adapted for mobile device display, typically
developed by web developers using basic web technologies such as Hypertext Markup
Language (HTML), HTML 5, Cascading Style Sheets (CSS), JavaScript and other pop-
ular web frameworks. This approach extremely cuts development costs for the com-
panies as they can use less human resources and also do not need to develop separate
applications for each platform. Popular web-based mobile applications frameworks are
Electron, React native and Ionic (previously Apache Cordova 5) and PhoneGap) [19]
[20] [21].

1.3.1 Electron

Electron is free and open-source framework for building web-based mobile applications.
It was originally developed for Atom code editor by GitHub, which is subsidiary of Mi-
crosoft, and initially released July 2013. Most of Electron’s APIs are written in C++
and Objective-C programming languages and then exposed directly to the application
code through JavaScript bindings [22]. The principle is to build standard web ap-
plication (with consideration of mobile devices display and resolution) in JavaScript,
HTML and CSS, and embed in Chromium 6) rendering engine and Node.js runtime.
This basically means that the application is a single-use web browser mobile applica-
tion (Google Chrome) displaying just one website (this application). Because of this,
these applications eat enormous amount of device’s Random-access Memory (RAM)
and their performance is much slower than performance of native applications.

1.3.2 React native

This is open-source UI framework developed and maintained by Facebook. It allows
developers to use React JavaScript framework along with each platform’s native APIs
for building mobile multi-platform applications [23]. But again, same to previous tech-
nologies, all applications can be developed on any OS, but iOS applications ca be build
and deployed only using Mac computers (directly or via network connection). It uses
declarative approach of programming. Core source code of each application is written
in React.js programming language and then the UI components are declared using this

5)Previously PhoneGap, mobile application development framework developed by Nitobi
6)Free and open-source web browser project, base of Google Chrome web browser

TBU in Zlín, Faculty of Applied Informatics 28

Fig. 1.5 Comparison of React and native UI elements
[24]

React native framework which provides correct translation of declared elements into
each platform’s native elements as seen in the figure 1.5. What is interesting is that
the core source code of the application in JavaScript is not compiled into native code,
but only the UI elements are compiled into native code – native elements [23]. Thanks
to this React native applications’ UI response is faster to the users’ interaction than
for example Electron applications.

1.3.3 Ionic

Ionic is open-source UI toolkit for building mobile and web applications again us-
ing HTML, CSS and JavaScript originally created by Drifty. Original version released
in 2013 was built on top of AngularJS 7) and Apache Cordova, nevertheless latest release
was rebuild as a set of web components to support other web JavaScript-based frame-
works such as Angular 8), previously described React and Vue 9) [25]. Alternatively,
it can be used standalone without any frontend framework. But access to hardware
interfaces through each platforms’ provided API capabilities is still provided through
Cordova. Development of Ionic applications was originally done in Ionic Studio IDE
however it is no longer supported and developers can use Microsoft’s Visual Studio
Code with installed Ionic plugin instead.

7)Discontinued free and open-source JavaScript-based web framework developed by Google
8)TypeScript-based free and open-source web application framework developed by Google, descen-

dant of AngularJS
9)Open-source MVVM frontend JavaScript framework developed by Evan You

TBU in Zlín, Faculty of Applied Informatics 29

2 Model-View-ViewModel

Model-View-ViewModel (MVVM) is a software architectural pattern first designed
by John Gossman, Windows Presentation Foundation (WPF) 1) and Silverlight 2) soft-
ware architect at Microsoft, in 2005 initially to use with WPF [26]. But usage of this
architectural pattern quickly spread from Windows applications into any other appli-
cations like web and mobile and it eventually made its way into almost every UI-based
framework.

The aim is to separate program logic from the UI controls – business layer from the pre-
sentation layer. It helps organize source code, separate it into modules and logical
concerns to make continuous development easier and faster, and enhances simplicity
and testability.

2.1 Application composition

The separation of source code is divided into Model, View and ViewModel components:

• Model

It represents the whole data access layer - all the data and their set of prop-
erties and methods, application data as a class objects, retrieved from Object-
Relational Mapping (ORM) or from the database. Model is responsible for man-
aging these data and to ensure its consistency and validity. These data are
retrieved by the ViewModel.

• View

View is the client interface of the application. It houses collection of all the visible
elements of the application and handles user’s input. This includes UI, animations
and all the text. The meaning is to make UI independent from the "code behind"
and also platform-independent. View is the simplest component because it does
not know about any other components and it does not control anything. It can
not obtain any data directly from the Model because it is unaware of the Model
and ViewModel, however ViewModel, despite it is generally unaware of the View,
is aware of the View’s needs and provides the desired data. One View is able
to communicate and obtain data only from one singe ViewModel.

1)Free and open-source graphical subsystem (similar to Windows Forms) developed by Microsoft
2)Discontinued rich web applications framework developed by Microsoft

TBU in Zlín, Faculty of Applied Informatics 30

Fig. 2.1 Model-View-ViewModel schema
[27]

• ViewModel

This is middle layer between Model and View, it has direct access to the Model,
but is unaware of the View. One ViewModel can have access to multiple Models,
as a one-to-many relation and encapsulates business logic and data for the View.
Communication with the View is provided through data binding.

Data binding is the key technology on which the whole MVVM architecture is
based on. It provides automated two-way connection between the ViewModel
and View. Additionally, a converter may be attached to the binder, for example
to format currency float value into user-friendly readable string with correspond-
ing globalization.

2.2 MvvmCross

MvvmCross is a cross-platform MVVM framework to create Xamarin.iOS, Xamarin.
Android, Xamarin.Mac, Xamarin.Forms, UWP and WPF applications following MVVM
architectural pattern [28]. To begin development of MvvmCross Xamarin application
there is NuGet plugin for Visual Studio called MvxScaffolding developed by Jonathan
Froom which is a customizable template used to scaffold a cross-platform MvvmCross
applications [29].

Typical MvvmCross application consists of two parts – Core and UI. Core project con-
tains all the ViewModels, Services, Models and business logic, and UI project contains
Views and platform specific code for interacting with the Core [28]. For multiplatform
applications, Core serves as a .NET Standard library and then there is (UI) project
for each target platform. Optionally, the application can be split into more project-
s/assemblies for better readability and reusability of the source code.

TBU in Zlín, Faculty of Applied Informatics 31

2.2.1 Project composition

Composition of the MvvmCross application (as seen in figure 1.4):

• Core project

– App

– AppStart

– Model + Services

– ViewModels

• Each platform (UI) project

– Application

– Setup

– Platform specific implementation of interfaces (declared in Core project),
for example biometric authentication, networking or data storage

– Resources (assets)

– Views and ViewPresenter

– UI declaration

App

This class inherits from MvxApplication and is responsible for registering custom
objects on the Inversion of Control (IoC) container – mostly services, for registering
main or root ViewModel and IMvxAppStart object. It should not be confused with
Application and ApplicationDelegate classes. They are native classes for each
platform and are part of each platform project [28].

AppStart

This is optional object which decides which ViewModel should be present as first.

TBU in Zlín, Faculty of Applied Informatics 32

ViewModels

In MvvmCross, all ViewModels have to inherit from MvxViewModel. They typically
contain properties (model classes), commands, navigation to other ViewModels and in-
jected dependencies.

Application

This handler object is responsible for native lifecycle events. For Android it is Main-

Activity or MainApplication and for iOS AppDelegate class. iOS AppDelegate class
inherits from MvxApplicationDelegate<MvxIosSetup<App>, App> and obviously reg-
isters Setup class. MainApplication then inherits from MvxAndroidApplication-

<MvxAndroidSetup<App>, App>, but if the Android application uses Android Support
packages, it must inherit from MvxAppCompatApplication and register MvxAppCompat-
Setup setup class instead [28].

Setup

Setup is responsible for bootstrapping MvvmCross and registering platform services.
It inherits from MvxIosSetup<Core.App, UI.App> for iOS and MvxAndroidSetup-

<Core.App, UI.App> for Android.

Views and ViewPresenter

These are classes which house code behind the UI. ViewController classes in iOS are al-
ways extending MvxViewController. In Android these are represented by Fragments.
ViewPresenters are singleton classes which act as a glue between Views and ViewMod-
els, they provide clear separation between the ViewModel and the View layer [28].

2.2.2 Data binding

Data binding provides automated two-way connection between ViewModel and View.
In MvvmCross optional converter – MvxValueConverter can be attached to the binder.

TBU in Zlín, Faculty of Applied Informatics 33

2.2.3 Navigation

Navigation between application screens is provided within ViewModels by injecting
IMvxNavigationService into ViewModel. Then this navigation service is usually
called from a command – IMvxAsyncCommand by the user click.

2.2.4 Inversion of Control

IoC is a programming principle essential in MvvmCross. It provides registration of ser-
vices and singletons in one place and simply injecting them into ViewModels. Typical
example is already mentioned navigation service, or any sorts of data service which
provides data from the Model.

TBU in Zlín, Faculty of Applied Informatics 34

II. ANALYTICAL PART

TBU in Zlín, Faculty of Applied Informatics 35

3 MVVM implementation

3.1 MVVM in iOS

MVVM implementation in iOS is fully dependent on the chosen technology for UI
implementation. There are three approaches:

• Storyboards and xib files

Implementation of the View is happening strictly in the Xcode Interface Builder.
Developers define which UI controls are used in the View, how they behave
and the layout itself by drag and drop mechanism here, along with choosing
of the various options in the Interface Builder.

ViewModel then connects Models and Views (and may add some business logic
related objects and functions) together. It must be implemented in the UIView-

Controller classes since these are used for binding the Interface Builder defined
UI elements to the code, thus creating the ViewModel.

• UIKit programmatically

If the developers choose to define application’s UI programmatically in the code
while still using the UIKit framework, Views are class objects sub-classed from
the UIKit’s View class and conforming to the UIKit’s prerequisites which are
used by the OS to layout the application’s UI. OS on that occasion calls over-
ridden functions that are used to layout and set up the defined UI components
to the display.

ViewModels are created implementing UIViewControllers for the UI screens
and components, however they contain UIViews directly and work by calling
their functions, embedding them, and they also handle interaction with the user.
Since the UI is defined solely in the code, there is a wider freedom in the possi-
bility of splitting up the responsibilities of each UIViewController into multiple
objects, thus the ViewModel can span multiple objects or ViewModels can be
nested easily if needed.

• SwiftUI framework

This is the most modern and clean approach outlining the View-ViewModel part
of the MVVM architecture very clearly. This is also the way which was chosen
for iOS example application for this thesis. Each screen must have its own View-
Model if it is supposed to have any kind of dynamic functionality and not used

TBU in Zlín, Faculty of Applied Informatics 36

only to display some static content, because then obviously ViewModel is not
needed. Each ViewModel can declare its own delegate (delegate is a protocol,
which has similar purpose as interface in Kotlin) with functional requirements
than have to be implemented by lower level objects:

1 protocol HomeViewModelDelegate: AnyObject {
2 func requestAuthentication ()
3 }
4

5 class HomeViewModel <DestinationView: View >
6 : ObservableObject {
7

8 weak var delegate: HomeViewModelDelegate?
9

10 func authenticate () {
11 delegate ?. requestAuthentication ()
12 }
13 }

Functions prescribed in the delegate are then implemented in AppCoordinator:

1 extension IosAuthentificationAppCoordinator
2 : HomeViewModelDelegate {
3

4 func requestAuthentication () {
5 .
6 .
7 .
8 }
9 }

Simple UI elements might contain only state properties (for example label would
contain just a string defining its state), whereas whole screen’s ViewModel is
a more complex structure containing many properties or even the screen logic.
Navigation is usually implemented using NavigationLink which is a SwiftUI
element, so it needs to contain hidden empty view, so it does not occupy any
visual space on the screen. For example this NavigationLink which is at-
tached to the Log In button is active only when the authentication was successful
and then navigate user inside the application:

1 NavigationLink(
2 isActive: $viewModel.wasAuthenticated ,
3 destination: viewModel
4 .destinationViewAfterAuthentification
5) { EmptyView (). hidden () }

Main difference between the UIKit approach and SwiftUI is that in the UIKit
implementation developers have to manually request to redraw the UI if the data

TBU in Zlín, Faculty of Applied Informatics 37

were displayed before they were changed, causing the ViewModel implementa-
tion to be very complex. Thanks to the SwiftUI framework approach relying
on the @ObservedObject mechanism along with the @State mechanism, each
ViewModel change causes the SwiftUI framework to recalculate which part need
to be updated and the framework automatically redraws only the relevant part
of the UI, behaving in a very optimised manner.

3.2 MVVM in Android

Unfortunately, unlike Xamarin, there are dozens ways how to implement MVVM in An-
droid and it is common that each company or each team handles this differently. Es-
pecially how ViewModels are used and responsible for. In the ideal world navigation
between ViewModels is declared in the nav_graph.xml and used programmatically
in the corresponding Views so ViewModels are free from navigation, and must be ini-
tialized in MainActivity class in onCreate() method. The following sample extracted
from the nav_graph.xml shows how navigation is defined from PersonsFragment.kt

into PersonDetailFragment.kt:

1 <fragment
2 android:id="@+id/persons_destination"
3 android:name="cz.verunka.example.views
4 .persons.PersonsFragment"
5 android:label="List of~persons"
6 tools:layout="@layout/fragment_persons">
7

8 <action
9 android:id="@+id/action_open_person_detail"

10 app:destination="@id/person_detail_destination" />
11 </fragment >
12

13 <fragment
14 android:id="@+id/person_detail_destination"
15 android:name="cz.verunka.example.views
16 .persons.PersonDetailFragment"
17 android:label="Person detail"
18 tools:layout="@layout/fragment_person_detail" />

Here is shown how it is then initialized in MainActivity class in onCreate() method:

1 val bottomNavigationView = binding.bottomNavigation
2 // list of all navigation graphs
3 val navGraphIds = listOf(R.navigation.nav_graph)
4

5 // setup bottom navigation
6 val controller = bottomNavigationView.setupWithNavController(

TBU in Zlín, Faculty of Applied Informatics 38

7 navGraphIds = navGraphIds ,
8 fragmentManager = supportFragmentManager ,
9 containerId = R.id.main_activity_fragment ,

10 intent = intent
11)
12

13 // setup action bar
14 controller.observe(this , Observer { navController ->
15 setupActionBarWithNavController(navController)
16 })
17 currentNavController = controller

And then it can be called from PersonsFragment.kt in OnItemClick method like this:

1 override fun onItemClick(person: Person) {
2 findNavController ()
3 .navigate(R.id.person_detail_destination , bundle)
4 }

The most clear way of implementation is to have own ViewModel for each screen
or item (again similarly to Xamarin) which is actually the original principle of MVVM.
However, in real world, Android developers often use one ViewModel for many screens
from the certain area to simplify the data flow. With just one ViewModel holding
data for many screens, there is no problem as all Views (Fragments) have access to this
ViewModel and its data. The caveat is that navigation must be fully independent from
the ViewModel, which is opposite to Xamarin implementation of MVVM. Surprisingly
developers overloads ViewModels with responsibilities which are not supposed to. Like
instead of calling navigation in Fragments and binding data in XML files, they throw
all this work into ViewModels. Then these ViewModels are huge and unreadable with
hundreds of lines of source code. This sample of code show how is navigation called
from the ViewModel:

1 fun onPersonClick(view: View) {
2 view.findNavController (). navigate(
3 PersonsFragmentDirections.actionOpenPersonDetail ()
4)
5 }

And then this method must be assigned to corresponding item in XML file like this:

1 android:onClick="@{viewModel::onPersonClick}"

TBU in Zlín, Faculty of Applied Informatics 39

3.3 MVVM in Xamarin

MVVM implementation in Xamarin is very easy and straightforward. Whole source
code must be split into Model, ViewModels and Views, whereas Model and View-
Model are housed in Core project and Views in Xamarin.Forms UI project or in each
platform (UI) project. Each screen has its own ViewModel where all the commands
and navigation are implemented. The most popular technology for implementation is
to use MvvmCross framework so it was chosen for this thesis as well. In pure Xam-
arin data binding is provided declaratively in XAML files using the keyword Binding

in front of binded value. It the following example of code is shown binding text value
CurrentUser.Email into text label, then OpenEmailCommand into tap gesture com-
mand with a command parameter CurrentUser.Email:

1 <Label Text="{Binding CurrentUser.Email}"
2 TextDecorations="Underline">
3

4 <Label.GestureRecognizers >
5

6 <TapGestureRecognizer
7 Command="{Binding OpenEmailCommand}"
8 CommandParameter="{Binding CurrentUser.Email}"/>
9

10 </Label.GestureRecognizers >
11

12 </Label>

In MvvmCross data binding is defined in the View classes programmatically for iOS
and Android project and declaratively in XAML for Windows project. However, if
the application is developed in Xamarin.Forms it is also defined declaratively in XAML
files. The following sample of code extracted from OnCreate() method in Android
project or from ViewDidLoad() method in iOS project shows how data binding is
implemented:

1 var set = this.CreateBindingSet <ExampleView , ExampleViewModel >();
2

3 set.Bind(this.FindViewById <EditText >(Resource.Id.example_edit))
4 .To(x => x.EditValue);
5

6 set.Bind(this.FindViewById <TextView >(Resource.Id.example_result))
7 .To(x => x.ResultValue);
8

9 set.Apply ();

Registration of services must be performed in App class in the Initialize() method
in the Core project:

TBU in Zlín, Faculty of Applied Informatics 40

1 this.CreatableTypes ()
2 .EndingWith("Service")
3 .AsInterfaces ()
4 .RegisterAsLazySingleton ();

TBU in Zlín, Faculty of Applied Informatics 41

III. PRACTICAL PART

TBU in Zlín, Faculty of Applied Informatics 42

4 Example application design

4.1 Components

For demonstration how MVVM is implemented across different platforms and for the sim-
plicity of the example application, there were selected following components:

• Biometric authentication

• Bottom navigation

• Notification card view

• Horizontal scroll view with images

• Carousel horizontal scroll view with complex card views

• Buttons opening external application

4.2 Wireframe

Wireframe of this application is displayed in figure 4.1.

Fig. 4.1 Wireframe of example application

TBU in Zlín, Faculty of Applied Informatics 43

4.3 Use-case diagram

Use-case of this application is displayed in figure 4.2.

Fig. 4.2 Use-case diagram of example application

4.4 Activity diagram

Activity diagram of this application is displayed in figure 4.3.

Fig. 4.3 Activity diagram of example application

TBU in Zlín, Faculty of Applied Informatics 44

5 iOS application

Example iOS native application was developed in XCode IDE using Swift programming
language and SwiftUI framework for UI implementation. The main App structure class
is IosAuthenticationApp which just sets the main coordinator and entry application’s
view:

1 @main
2 struct IosAuthenticationApp: App {
3

4 let mainCoordinator = IosAuthentificationAppCoordinator ()
5

6 var body: some Scene {
7 WindowGroup {
8 mainCoordinator.homeView
9 }

10 }
11 }

Main coordinator – IosAuthentificationAppCoordinator, which is a final class, ini-
tializes all the services, ViewModels and main View. In this file are also implemented
ViewModel delegates functions by their corresponding coordinators such as opening e-
mail and URL, or biometric authentication. This shows how biometric authentication
is implemented:

1 extension IosAuthentificationAppCoordinator:
2 HomeViewModelDelegate {
3

4 func requestAuthentication () {
5

6 let localAuthenticationContext = LAContext ()
7 localAuthenticationContext
8 .localizedFallbackTitle = "Use passcode"
9

10 var authError: NSError?
11 let reasonString = "We need Your biometric information
12 for authentication."
13

14 if localAuthenticationContext.canEvaluatePolicy(
15 .deviceOwnerAuthentication ,
16 error: &authError
17) {
18 localAuthenticationContext.evaluatePolicy(
19 .deviceOwnerAuthentication ,
20 localizedReason: reasonString
21) { [weak self] success , evaluateError in
22

23 if success {
24 self?. homeViewModel.wasAuthenticated = true

TBU in Zlín, Faculty of Applied Informatics 45

25 } else {
26 guard let error = evaluateError else {
27 return
28 }
29 print("Biometric authentication not enabled:
30 \(error._code),
31 \(error.localizedDescription)"
32)
33 }
34 }
35 } else {
36 guard let error = authError else {
37 return
38 }
39 print("Biometric authentication failed:
40 \(error._code), \(error.localizedDescription)"
41)
42 }
43 }
44 }

And this is how simple it is to open new e-mail or website in device’s default e-mail
and web browser applications:

1 func openEmail(_ email: String) {
2 if let url = URL(string: "mailto :\(email)") {
3 UIApplication.shared.open(url)
4 }
5 }
6

7 func openUrl(_ url: URL) {
8 UIApplication.shared.open(url)
9 }

Additionally there is Info.plist file with reasonable request for biometric authenti-
cation:

1 <key>NSFaceIDUsageDescription </key>
2 <string >
3 We need Your biometric information for authentication.
4 </string >

Main source code is then divided into so-called groups: Models, ViewModels, Views,
Services, and Resources.

TBU in Zlín, Faculty of Applied Informatics 46

5.1 Models

There are User and Starship model classes which are actually structs in Swift pro-
gramming language. Starship struct must additionally implement Identifiable

protocol so it can be later used in a list. Both need to have imported Foundation

and SwiftUI libraries.

5.2 ViewModels

Usually each ViewModel obeys its own defined delegate which is a protocol, and have
imported SwiftUI library. Exception is when ViewModel does not need any service
or request for any special function which must be implemented in the coordinator. This
iOS application consist of three ViewModels:

• HomeViewModel

This is an entry ViewModel of this application and its call for biometric authen-
tication request, which is prescribed in its HomeViewModelDelegate protocol,
is implemented in the IosAuthentificationAppCoordinator already explained
above.

• UserViewModel

UserViewModel is defining its UserViewModelDelegate protocol with prescribed
two functions: openEmail() and openUrl(). These functions are also imple-
mented in the IosAuthentificationAppCoordinator. Furthermore this View-
Model is obtaining data about User from ExampleDataService. The following
openUrl() function shows how a delegate function is called from a ViewModel
function:

1 func openUrl(_ url: URL?) {
2 guard let url = url else { return }
3 delegate ?. openUrl(url)
4 }

• DashboardViewModel

This ViewModel does not house any functions so it does not need a delegate.
There is only initialization where data (list of starships and fighters) are received
from data service.

TBU in Zlín, Faculty of Applied Informatics 47

5.3 Views

Views are implemented programmatically using SwiftUI framework, and same as View-
Models, they are structs. Each View can implement PreviewProvider so the defined
UI can be live previewed in the XCode IDE. Their corresponding ViewModel is anno-
tated as an @ObservedObject for effective redrawing when some date change. There
are three Views for this application plus TabBar container:

• Home

HomeView contains just a Log In button which triggers biometric authentica-
tion and then navigate user inside the navigation. Because of this, there is
NavigationLink attached to the button which takes destination View. This
shows how PreviewProvider is implemented here:

1 struct HomeView_Previews: PreviewProvider {
2 static var previews: some View {
3 HomeView(viewModel: HomeViewModel <EmptyView >(
4 destinationViewAfterAuthentification: {
5 EmptyView ()
6 }
7))
8 }
9 }

• TabBar

TabbarView is responsible for navigation bar at the top of the screen with ap-
plication name, and for bottom bar navigation with tabs. Tabs are first set up
in TabbarViewFactory class. TabbarView then contains TabView with Dashboard

and User Views, together with setup of navigation bar. Because we do not want
to be able to navigate back to the HomeView with the Log In button, BackButton
is disabled in the navigation bar. Images rendering mode is set to template, so
they can change color based on if the certain tab is selected or not:

1 var body: some View {
2 TabView {
3 dashboardView
4 .tabItem {
5 Image("home"). renderingMode (. template)
6 Text(Strings.dashboardView.rawValue)
7 }
8

9 userView
10 .tabItem {

TBU in Zlín, Faculty of Applied Informatics 48

11 Image("person"). renderingMode (. template)
12 Text(Strings.profileView.rawValue)
13 }
14 }
15 .navigationBarBackButtonHidden(true)
16 .navigationTitle(Text(Strings.appName.rawValue))
17 .navigationBarTitleDisplayMode (. inline)
18

19 }

• User

UserView displays information about example user. This sample of code shows
how data binding is done in SwiftUI Views – for example how user’s name is
binded into Text element:

1 Text(viewModel.user.name)
2 .frame(maxWidth: .infinity , alignment: .leading)
3 .font(. system(size: 24, weight: .regular))

On e-mail (and GitHub and STEAM card views) click is attached .onTapGesture

recognizer with a call to perform an action. In this case to open a new e-mail
to example user’s e-mail address:

1 .onTapGesture {
2 viewModel.openEmail(viewModel.user.email)
3 }

• Dashboard

DashboardView houses example notification card view, horizontal list of images,
and carousel list of complex cards about starships. It is very simple in SwiftUI
to define such lists, for example this is how starships list is defined and binded
using ForEach function:

1 ScrollView (.horizontal , showsIndicators: false) {
2 HStack {
3 ForEach(viewModel.starships) { starship in
4

5 // Starship card view.
6 VStack(spacing: 8) {
7

8 Image(starship.photo)
9 .resizable ()

10 .scaledToFill ()
11 .frame(width: 340, height: 160)
12 .clipped ()
13 .
14 .
15 .

TBU in Zlín, Faculty of Applied Informatics 49

5.4 Services

There is just one service – data service. It is prescribed in a ExampleDataService pro-
tocol which needs to have imported Foundation and also SwiftUI libraries. Example-
DataServiceImpl is then a class which implements this protocol. There are defined
example data for this application. User and Starship models are defined within
the same file but an extension. For example the following sample of code shows how
a starship entity is created. What is interesting is how easy it is to set image from
the Assets.xcassets catalogue, just by its name:

1 fileprivate extension Starship {
2 static var enterprise: Starship {
3 .init(
4 name: "USS Enterprise",
5 type: "NCC -1701 (Shuttlecraft)",
6 year: 2245,
7 length: "288.646 m",
8 photo: "enterprise"
9)

10 }
11 }

5.5 Resources

Just already mentioned Assets.xcassets catalogue contains all the images for the ap-
plication. Colours are defined in the Colors enum and string resources in the Strings

enum. Both these enums need to have imported SwiftUI library. For example this
shows how custom colours are defined in SwiftUI:

1 enum Colors {
2 static var dimGray: Color {
3 Color(red: 0.30, green: 0.33, blue: 0.35)
4 }
5

6 static var whiteSmoke: Color {
7 Color(red: 0.96, green: 0.96, blue: 0.96)
8 }
9 }

Screenshots of the native iOS application can be seen in figure 5.1.

TBU in Zlín, Faculty of Applied Informatics 50

Fig. 5.1 Native iOS application

TBU in Zlín, Faculty of Applied Informatics 51

6 Android application

Example Android native application was made in Android Studio IDE using its default
wizard. Source code is implemented in Kotlin programming language and UI is defined
in XML files. Main properties of the application are defined in manifest file – it was
already prepared by the setup wizard, so only permission for biometric authentication
request had to be defined. All the dependencies such as Material design, Biometric util-
ity, Lifecycle, Navigation, et cetera, with required version are defined in build.gradle

Gradle script file together with enabled data binding. The following sample of code
shows how such a dependency is defined:

1 dependencies {
2

3 implementation ’androidx.core:core -ktx :1.7.0 ’
4

5 // biometric auth
6 implementation "androidx.biometric:biometric :1.1.0"
7 .
8 .
9 .

Main source code of the application is divided into four directories: obviously model,
viewModel, view and services, and all the assets are located in the res (resources)
directory.

6.1 Model

There are User and Starship data classes. When there is image resource prop-
erty (for example photo of the starship), it must be annotated in constructor with
@DrawableRes annotation. Setters and Getters are no needed thanks to Kotlin, so
the whole class implementation is pretty succinct.

6.2 ViewModel

There are Dashboard and Profile ViewModels which both implement androidx-

.lifecycle.ViewModel. They contain methods for providing data from repository
for views (fragments).

TBU in Zlín, Faculty of Applied Informatics 52

6.3 View

View directory is composed of MainActivity and all the fragments. Fragments use
their corresponding ViewModels as a lazy property obtained from ViewModelProvider.

• MainActivity and MainFragment

This sample of code shows how MainViewModel is obtained in MainFragment:

1 private val viewModel: MainViewModel by lazy {
2 ViewModelProvider(this)[MainViewModel ::class.java]
3 }

Then binding is set up in the onCreateView() method by inflating the corre-
sponding XML fragment and then used to bind other properties, and launch bio-
metric authentication on button click (biometricPrompt and promptInfo are
also for simplicity implemented here in onCreateView() method, but usually
in corporate life it is done in separate service or use case):

1 val binding: MainFragmentBinding = DataBindingUtil.inflate(
2 inflater ,
3 R.layout.main_fragment ,
4 container ,
5 false
6)
7

8 binding.lifecycleOwner = viewLifecycleOwner
9 binding.viewModel = viewModel

10

11 binding.mainButtonLogIn.setOnClickListener {
12 biometricPrompt.authenticate(promptInfo)
13 }

If the biometric authentication fails, there are allowed other methods – creden-
tials (PIN code, password or pattern; depends on the certain device used). They
are listed and then set into promptInfo with .setAllowedAuthenticators-

(authenticators) method:

1 val authenticators =
2 BiometricManager.Authenticators.BIOMETRIC_STRONG or
3 BiometricManager.Authenticators.BIOMETRIC_WEAK or
4 BiometricManager.Authenticators.DEVICE_CREDENTIAL

TBU in Zlín, Faculty of Applied Informatics 53

• TabsRootFragment

Next important fragment is TabsRootFragment which is responsible for bottom
tab navigation when the user enters the application by successful authentication.
There is auxiliary method for loading chosen fragment:

1 private fun loadFragment(fragment: Fragment) {
2 val transaction = parentFragmentManager
3 .beginTransaction ()
4 transaction.replace(
5 R.id.tabs_layout_container ,
6 fragment
7)
8 transaction.addToBackStack(null)
9 transaction.commit ()

10 }

And these fragments are binded in the onCreateView() method:

1 binding.tabsNavigationView
2 .setOnNavigationItemReselectedListener {
3 when (it.itemId) {
4 R.id.menu_dashboard -> {
5 loadFragment(DashboardFragment ())
6 return@setOnNavigationItemReselectedListener
7 }
8 R.id.menu_profile -> {
9 loadFragment(ProfileFragment ())

10 return@setOnNavigationItemReselectedListener
11 }
12 }
13 }

• ProfileFragment

ProfileFragment does not contain anything special besides opening e-mail and
web browser applications as an intent on e-mail address or buttons click (e-
mail address needs to have "mailto:" prefix for working property as an input
parameter for this method):

1 private fun openUrl(url: String) {
2 val openURL = Intent(Intent.ACTION_VIEW)
3 openURL.data = Uri.parse(url)
4 startActivity(openURL)
5 }

• DashboardFragment

DashboardFragment is housing two recycler views, one with pictures of fighter
ships and second with more complex card views containing starship picture

TBU in Zlín, Faculty of Applied Informatics 54

and information. Adapters are required for these items to later bind them
in the fragment. Each adapter must implement RecyclerView.Adapter with
corresponding holder implementing RecyclerView.ViewHolder. Following sam-
ple of code shows how StarshipViewHolder is implemented as a inner class inside
the StarshipAdapter:

1 inner class StarshipViewHolder(
2 private val viewBinding: StarshipCardViewBinding
3) : RecyclerView.ViewHolder(viewBinding.root) {
4

5 fun onBind(position: Int) {
6 val item = starshipList[position]
7 viewBinding.starship = item
8 }
9 }

And then it can be used in the StarshipAdapter implementation:

1 class StarshipAdapter(val context: Context ?) :
2 RecyclerView.Adapter <
3 StarshipAdapter.StarshipViewHolder
4 >() {
5 var starshipList: List <Starship > = ArrayList ()
6

7 override fun onCreateViewHolder(
8 parent: ViewGroup , viewType: Int
9): StarshipViewHolder {

10

11 val viewBinding: StarshipCardViewBinding
12 = DataBindingUtil.inflate(
13 LayoutInflater.from(parent.context),
14 R.layout.starship_card_view ,
15 parent ,
16 false
17)
18 return StarshipViewHolder(viewBinding)
19 }
20

21 override fun getItemCount (): Int {
22 return starshipList.size
23 }
24

25 override fun onBindViewHolder(
26 holder: StarshipViewHolder ,
27 position: Int
28) {
29 holder.onBind(position)
30 }
31

32 .
33 .
34 .

TBU in Zlín, Faculty of Applied Informatics 55

DashboardFragment does not hold list of, for example, these starships, but just
this adapter. And this sample of code shows how is this adapter then binded
to fill recycler view with starships obtained from the repository:

1 starshipAdapter = StarshipAdapter(context)
2

3 binding.dashboardRecyclerStarships.layoutManager
4 = LinearLayoutManager(
5 activity ,
6 LinearLayoutManager.HORIZONTAL ,
7 false
8)
9

10 binding.dashboardRecyclerStarships.adapter = starshipAdapter
11

12 binding.dashboardRecyclerStarships
13 .isNestedScrollingEnabled = false
14

15 starshipAdapter.setStarships(viewModel.starships)

And because we want the bottom recycler view with starship cards to act as
a carousel view (otherwise called snapping), there is necessary to attach Snap-

Helper to recycler view:

1 val snapHelper: SnapHelper = PagerSnapHelper ()
2 snapHelper.attachToRecyclerView(
3 binding.dashboardRecyclerStarships
4);

6.4 Services

So called repositories are used for proper data management in Android. Because this
example application contains just little amount of data, there is only one repository.
Usually there are data obtained from some API or database, but here just for demon-
stration purposes are data created locally. Repository moreover contains public meth-
ods such as getUser() or getStarships() which are called by ViewModels.

6.5 Resources

Resource directory in Android is called res. Here very important resource is navigation
graph main-_navigation.xml. It contains list of fragments and their actions; where is
it possible to navigate further within the application. For example TabsRootFragment

has two actions: to open Dashboard and to open Profile fragment:

TBU in Zlín, Faculty of Applied Informatics 56

1 <fragment
2 android:id="@+id/tabs_root_destination"
3 android:name="cz.verunka.droid.authentication.view
4 .TabsRootFragment"
5 tools:layout="@layout/tabs_root_fragment">
6

7 <action
8 android:id="@+id/action_open_dashboard"
9 app:destination="@id/dashboard_destination"/>

10

11 <action
12 android:id="@+id/action_open_profile"
13 app:destination="@id/profile_destination"/>
14 </fragment >

Bottom bar navigation tabs are set up for the TabsRootFragment in the bottom_nav-

_menu.xml file:

1 <menu xmlns:android="http:// schemas.android.com/apk/res/android">
2 <item
3 android:id="@+id/menu_dashboard"
4 android:icon="@drawable/home"
5 android:title="@string/dashboard_view"/>
6 <item
7 android:id="@+id/menu_profile"
8 android:icon="@drawable/person"
9 android:title="@string/profile_view"/>

10 </menu>

Furthermore, there is values directory which houses themes, styles and colors of the ap-
plication, and string resources. drawable directory is housing all the image assets
(images for specific display resolutions may be placed in the corresponding resolutions
sub directories, or if there are different images for dark mode, they are also placed
in the specific night sub directories).

And last but not least is the layout directory where are all the fragments and an-
other UI items located. For example main_activity.xml serves as a navigation host
(container), so this XML is quite different than the others:

1 <androidx.fragment.app.FragmentContainerView
2 xmlns:android="http:// schemas.android.com/apk/res/android"
3 xmlns:app="http:// schemas.android.com/apk/res -auto"
4 android:id="@+id/nav_host_fragment"
5 android:name="androidx.navigation.fragment.NavHostFragment"
6 android:layout_width="match_parent"
7 android:layout_height="match_parent"
8 app:defaultNavHost="true"
9 app:navGraph="@navigation/main_navigation"/>

TBU in Zlín, Faculty of Applied Informatics 57

The rest of the files are defining the UI. What may be interesting is inserting reference
to ViewModel there, so data binding may be also executed from there, instead of pro-
grammatically in kotlin fragments. For example like this in profile_fragment.xml:

1 <data>
2 <variable
3 name="viewModel"
4 type="cz.verunka.droid.authentication
5 .viewModel.ProfileViewModel"/>
6 </data>

Also primitive data types or own Model classes may be inserted, like here in starship-

_card_view.xml, and then used for example for binding image resource:

1 <data>
2 <variable
3 name="starship"
4 type="cz.verunka.droid.authentication.model.Starship"/>
5 </data>

1 <ImageView
2 android:id="@+id/starship_image"
3 app:imageResource="@{starship.photo}"
4 .
5 .
6 .
7 />

Screenshots of the native Android application can be seen in figure 6.1.

TBU in Zlín, Faculty of Applied Informatics 58

Fig. 6.1 Native Android application

TBU in Zlín, Faculty of Applied Informatics 59

7 Xamarin.Forms application

Example application in Xamarin.Forms was set using MvxScaffolding plugin in Visual
Studio to set up basic MvvmCross source code structure and components. The struc-
ture can be already seen in figure 1.4 in the theoretical part of this thesis.

7.1 Core project

The Core project contains code base which is common for all platforms. There is
App class where IoC, services and the starting ViewModel is initialised plus addition
experimental feature – CarouselView used in the UI:

1 public override void Initialize ()
2 {
3 this.CreatableTypes ()
4 .EndingWith("Service")
5 .AsInterfaces ()
6 .RegisterAsLazySingleton ();
7

8 this.RegisterAppStart <HomeViewModel >();
9

10 Device.SetFlags(new string [] {"CarouselView_Experimental"});
11 }

EndingWith("Service").AsInterfaces().RegisterAsLazySingleton() means that
it will look for all the services in the Core project and then registers them as singletons.
Then these services can be injected and used in ViewModels.

7.1.1 Services

There are two custom services in this example application. Authentication service
which handles biometric authentication for this application and for both, iOS and An-
droid. If the device does not have these utilities, it ask for device’s PIN code, if device
has fingerprint utility, it asks for user’s fingerprint and if device has face ID, it scans
the user’s face. If these biometric authentication attempts fail, it is of course possible
to unlock with PIN code. Plugin.Fingerprint.CrossFingerprint plugin was used
for this utility. This sample of code shows how this plugin is used and configured in this
application:

1 public async Task <bool > Authenticate ()
2 {

TBU in Zlín, Faculty of Applied Informatics 60

3 var isAuthenticationAvailable = await CrossFingerprint
4 .Current.IsAvailableAsync(true);
5

6 if (! isAuthenticationAvailable) {
7 Debug.WriteLine("Error: Biometric authentication
8 is not available or is not configured.");
9 return false;

10 }
11

12 // configure authentication prompt
13 var conf = new AuthenticationRequestConfiguration(
14 "Authentication",
15 "We need Your biometric information for authentication."
16);
17

18 // allow PIN/pattern authentication
19 // if biometric is unsuccesfull
20 conf.AllowAlternativeAuthentication = true;
21

22 var authResult = await CrossFingerprint
23 .Current.AuthenticateAsync(conf);
24

25 if (authResult.Authenticated) {
26 Debug.WriteLine("Success: Authentication succeeded");
27 return true;
28 } else {
29 Debug.WriteLine("Error: Authentication failed");
30 return false;
31 }
32 }

Authentication method is asynchronous so it does not block the main thread of this
application and returns Boolean value if the authentication was successful or not. Only
successfully authenticated users can enter the application. First is check if the authen-
tication is possible on the device and then there is request for its usage. Furthermore is
configured favor which allows to use alternative form of authentication if there is lack
of biometric sensors or they are currently not working. Then the actual authentication
takes place and returns result if it was successful or not.

The second service is Data service which provides data to the ViewModel which is
responsible for their representation in the View. Data service can obtain data from
a database, JavaScript Object Notation (JSON) file or network (for example through
API). For the simplicity there are just local example data in this application which
live in the device’s primary storage only until the application is destroyed or killed
by the system.

Every application also needs navigation service. This is already implemented in Mvvm-
Cross framework and can be freely used for straightforward navigation between View-

TBU in Zlín, Faculty of Applied Informatics 61

Models, and there is no additional setup needed.

7.1.2 Model

Then there is Model package which houses all the Model classes which represents
the data. In this example application there are two Model classes: Starship(string

name, string type, int year, string length, string photo) and User(string

name, string hometown, string photo).

7.1.3 ViewModel

ViewModel is the largest and the most important part of the Core project. There are
five groups of ViewModels:

• !Base

There is BaseViewModel which inherits from MvxViewModel, and its extensions
.Param, .ResultAndParam and BaseViewModelResult. It serves as parent for
the other ViewModels.

• Home

HomeViewModel is the entry point of this application and there is above men-
tioned biometric authentication service run through the command which is called
when the user presses Log In button. If the user is successfully authenticated,
navigation service navigates user to TabsRootViewModel.

1 public IMvxAsyncCommand AuthenticateCommand
2 {
3 get {
4 if (this._authenticateCommand == null) {
5 this._authenticateCommand = new MvxAsyncCommand(
6 async () => {
7 var wasAuthenticated = false;
8

9 using (UserDialogs.Instance.Loading ()) {
10 wasAuthenticated = await this
11 ._authService.Authenticate ();
12 }
13

14 if (wasAuthenticated) {
15 await this._navigationService
16 .Navigate <TabsRootViewModel >();
17 }

TBU in Zlín, Faculty of Applied Informatics 62

18 }
19);
20 }
21 return this._authenticateCommand;
22 }
23 }

• Tabs

TabsRootViewModel houses bottom navigation menu of this application. Because
of this responsibility, it inherits from special MvvmCross navigation ViewModel
called MvxNavigationViewModel. This sample of code shows how the bottom
menu is configured. It houses list of ViewModels which represent tabs and sets
navigation for each of them:

1 this.AllTabs = new List <Type >
2 {
3 typeof(DashboardViewModel),
4 typeof(UserViewModel)
5 };
6

7 this.ShowTabsCommand = new MvxAsyncCommand(
8 this.InitializeTabs
9);

1 public Task InitializeTabs ()
2 {
3 var tasks = new List <Task >();
4

5 foreach (var tab in this.AllTabs) {
6 tasks.Add(this._navigationService.Navigate(tab));
7 }
8 return Task.WhenAll(tasks);
9 }

• Dashboard

DashboardViewModel is the first (and default) tab. There is displayed exam-
ple of static notification card view, small horizontal list of images (space fight-
ers) and carousel list of cards (spaceships) containing detailed information about
them.

• User

UserViewModel is the second tab. There are displayed user information, example
lorem impsum text and buttons. These buttons can open other application – web
browser with their corresponding Uniform Resource Locator (URL) address open.

TBU in Zlín, Faculty of Applied Informatics 63

When the user clicks on the e-mail address it initializes new e-mail in default mail
application. These are the methods which handle this functionality:

1 public IMvxCommand OpenEmailCommand
2 => new MvxCommand <string >(
3 async (email) => await Launcher
4 .OpenAsync($"mailto :{email}")
5);
6

7 public IMvxCommand OpenUrlCommand
8 => new MvxCommand <string >(
9 async (url) => await Launcher

10 .OpenAsync(url)
11);

7.2 UI project

Because this application is made in Xamarin.Forms there is only one UI declaration
for both (iOS and Android) platforms. And it is done so in XAML files where each
of them has code-behind partial C# class. These code-behind partial classes have
extension xaml.cs and initially are auto-generated but may need some attention. They
usually inherit from MvxContentPage with defined corresponding ViewModel and have
special annotations. DashboardPage and UserPage pages need such annotation:

1 [MvxTabbedPagePresentation(
2 WrapInNavigationPage = false ,
3 Title = "Dashboard"
4)]
5 public partial class DashboardPage
6 : MvxContentPage <DashboardViewModel >

However TabsRootPage page needs different one, and inherits from MvxTabbedPage:

1 [MvxTabbedPagePresentation(
2 TabbedPosition.Root ,
3 NoHistory = true
4)]
5 public partial class TabsRootPage
6 : MvxTabbedPage <TabsRootViewModel >

And additionally needs extra setup for Android application:

1 // set tabs to the bottom on Android
2 this.On<Xamarin.Forms.PlatformConfiguration.Android >()
3 .SetToolbarPlacement(ToolbarPlacement.Bottom);

TBU in Zlín, Faculty of Applied Informatics 64

4

5 // disable swiping tabs on Android
6 this.On<Xamarin.Forms.PlatformConfiguration.Android >()
7 .SetIsSwipePagingEnabled(false);

Data binding, as it was already explained in Analytical part of this thesis, is per-
formed in XAML files within the UI declaration. This sample of code shows how user’s
e-mail (CurrentUser.Email) is binded into text label, and tap gesture recognizer at-
tached with binded command (OpenEmailCommand) together with command parameter
(CurrentUser.Email) to recognize user’s click:

1 <Label Margin="16, 0, 16, 0" FontSize="16" VerticalOptions="End"
2 Text="{Binding CurrentUser.Email}" TextDecorations="Underline">
3

4 <Label.GestureRecognizers >
5

6 <TapGestureRecognizer
7 Command="{Binding OpenEmailCommand}"
8 CommandParameter="{Binding CurrentUser.Email}"/>
9

10 </Label.GestureRecognizers >
11 </Label>

7.3 iOS project

For iOS there must be Xamarin.Forms and PancakeView initialized in the AppDelegate
class in the FinishedLaunching() method:

1 global :: Xamarin.Forms.Forms.Init ();
2 Xamarin.Forms.PancakeView.iOS.PancakeViewRenderer.Init ();
3

4 LoadApplication(new App ());

Then image resources (assets) must be included in Media.xcassets package file, and re-
quest for the mentioned biometric authentication in Info.plist file:

1 <key>NSFaceIDUsageDescription </key>
2 <string >
3 We need Your biometric information for authentication.
4 </string >

Screenshots of the Xamarin.iOS application can be seen in figure 7.1.

TBU in Zlín, Faculty of Applied Informatics 65

Fig. 7.1 Xamarin.Forms iOS application

TBU in Zlín, Faculty of Applied Informatics 66

7.4 Android project

For Android, there is also almost nothing needed because application is made in Xa-
marin.Forms and biometric authentication is handled in the Core project as well. It
just needs to have images included in the resources, and declared request for biometric
authentication in AndroidManifest.xml file:

1 <uses -permission
2 android:name="android.permission.USE_FINGERPRINT" />
3 <uses -permission
4 android:name="android.permission.USE_BIOMETRIC" />

Additionally, this biometric authentication must be initialized in MainActivity class
in OnCreate() method together with usage of dialogs:

1 CrossCurrentActivity.Current.Init(this , bundle);
2 CrossFingerprint.SetCurrentActivityResolver(
3 () => CrossCurrentActivity.Current.Activity
4);
5 UserDialogs.Init(this);

Screenshots of the Xamarin.Android applications can be seen in figure 7.2.

TBU in Zlín, Faculty of Applied Informatics 67

Fig. 7.2 Xamarin.Forms Android application

TBU in Zlín, Faculty of Applied Informatics 68

8 Evaluation and Comparison

To decide which technology and frameworks to use for mobile applications develop-
ment for both iOS and Android platforms, consideration of complexity and robustness
of the back-end must take place together with setting of the requirements for the pro-
posed application. It is also important how much business logic will need to be im-
plemented directly in the application or if the application will serve predominantly as
a presentation layer for the back-end system.

When there is talk about simple presentational applications, web-based multiplatform
technologies such as Electron, Ionic or React native are more than enough, especially
when the application does not need to connect to any hardware interfaces through
provided platforms API capabilities, or there is not such strong emphasis on design.

Native multiplatform technologies are suitable when the proposed application already
requires some sort of business logic, work with hardware or platform’s peripherals,
but is still in a middle-range size. Such technologies are for example KMM, Xamarin
or Flutter. Developers can choose if they define UI for each platform separately to keep
the application look truly native, or they choose single conjunct UI definition. Typ-
ical middle-range suitable applications may be for travel agencies, shopping centres,
or warehouse employees.

Very complex and robust applications where there is big consideration of security
and hardware or platform’s peripherals should be developed fully native. Typical exam-
ple are smartbanking applications. This approach may be (at least) twice as expensive,
but often necessary. Native UI implementation provides the best UX, and developers
have all up-to-date platform libraries and tools at their disposal immediately.

8.1 Comparison based on implementation complexity

In terms of MVVM architecture implementation across the platforms, Xamarin (espe-
cially MvvmCross framework for Xamarin) is the most clean and straightforward way.
There is clear guideline and process of the project composition and architecture imple-
mentation. Also development time is abbreviated thanks to multiplatform approach,
additionally when also UI is created in Xamarin.Forms for all the platforms.

MVVM implementation in native iOS has a little looser guidelines, mainly in terms
of ViewModels responsibilities, but it is still quite clear and easy to implement. SwiftUI

TBU in Zlín, Faculty of Applied Informatics 69

toolkit facilitates the whole process providing its features.

Android implementation is the most difficult because there are dozens of ways how
to do it. Every development team or company interprets this architecture differently
and there are no any strict rules. Some follow original Microsoft’s way – single View-
Model per each View, and some share one ViewModel for more Views. Data binding
may be performed in Views (fragment classes in Kotlin) of in XML fragment files.
Methods may be called from Views or from ViewModels, and so on.

8.2 Comparison based on implementation time

In consideration of amount of code and time to implement pure MVVM architecture,
iOS native implementation is the complete winner, then is Android and the worst
in this case is Xamarin because of its greatest abstraction of ViewModels implemen-
tation. However it must not be forgotten that currently released new technologies
such as Jetpack Compose for Android, KMM for mutliplatform development in Kotlin,
or SwiftUI for iOS already consider MVVM architecture in their core design and bring
new paradigms – especially declarative and functional programming, which streamlines
the development significantly. In older technologies and frameworks such as Xamarin
or UWP this architecture could be only achieved with much of code around and ab-
straction.

8.3 Comparison based on application size

• Native iOS – 3.1 MB

• Native Android – 18.45 MB

• Xamarin.iOS – 65.5 MB

• Xamarin.Android – 31.71 MB

Xamarin applications are much larger in size than native iOS and Android applications
because of all the .NET libraries indispensable in Xamarin framework. This may cause
slower initialization when the application starts. Xamarin.iOS application’s double
size than Xamarin.Android is because iOS does not support Just-In-Time Compilation
(JIT) so the system has to compile all the .NET Intermediate Language (IL) code
into machine code ahead (so-called Ahead-of-Time Compilation (AOT)) [14]. Android

TBU in Zlín, Faculty of Applied Informatics 70

supports JIT so Android application’s compiled machine code is more compact. Na-
tive Swift application for iOS is using SwiftUI framework which significantly optimizes
rendering of the UI. Native Android application must be including all the necessary
androidx libraries and these add in size. Another aspect is how many OS versions is
each application targeting, because as the libraries and languages are continuously up-
dating by their maintainers, the application needs to contain them all for each version,
and it may cause significant growth in application’s size. Additionally when the OS
does not support JIT, like iOS.

8.4 Evaluation of advantages and disadvantages

Native applications development has advantage of receiving immediate platform’s li-
braries updates, higher security by not depending on third party libraries and frame-
works which also favors in a smaller application size, or better native UI and UX.
Disadvantage is double of development time spent for two separate applications which
results in higher development cost, and need of developers with programming skills
for each platform. iOS, unlike Android, has much cleaner OS architecture and tar-
gets less variety of devices so applications for iOS devices are also cleaner and nicer,
with less amount of code. Android implementation of APIs for hardware interfaces
and libraries often changes with every version, so developers have to implement couple
variations of methods to satisfy all supporting OS versions.

Multiplatform development is advancing in less amount of source code because of shared
codebase between platforms, so the development process takes less time. This also
means fewer developers and with just one required technology skills needed. Also,
in consideration of Xamarin.Forms framework, multiplatform development is very easy
for beginners or when companies need to come with a prototype of their new prod-
uct very quickly. However, these multiplatorm applications tend to be larger in size
with slower performance, may not provide such native UX, or may cause complica-
tions for developers if some new platform’s update is not yet available in the chosen
multiplatform development technology.

TBU in Zlín, Faculty of Applied Informatics 71

CONCLUSION

Theoretical part of this thesis contains description of current available methods in mo-
bile applications development – native, native multiplatform and web-based multiplat-
form. Furthermore, it contains explanation of the Model-View-ViewModel (MVVM)
architecture pattern development for iOS and Android, and MvvmCross framework
for multiplatform development in Xamarin.Forms. In analytical part was performed re-
search of the ways how this architecture pattern can be implemented for each platform.
In the practical part example application was designed to be developed for each plat-
form natively and in Xamarin.Forms to demonstrate MVVM implementation in the best
possible way. Three applications were developed and then their implementation de-
scribed in detail – native iOS application in Swift, native Android application in Kotlin
and multiplatform application for both these platforms in Xamarin.Forms in C# pro-
gramming language. Lastly, development of these applications and MVVM implemen-
tation were evaluated and compared.

TBU in Zlín, Faculty of Applied Informatics 72

REFERENCES

[1] StatCounter: Mobile Operating System Market Share Worldwide. 2021-11-15.
https://gs.statcounter.com/os-market-share/mobile/worldwide

[2] Apple: The Darwin Kernel. 2021-2-8.
https://github.com/apple/darwin-xnu

[3] John C. Mitchell: Concepts in Programming Languages . Cambridge University
Press, 2002, ISBN 9780511804175.

[4] Apple: Actors. 2021-2-8.
https://github.com/apple/swift-evolution/blob/main/proposals/0306-

actors.md

[5] Apple: Xcode. 2021-2-8.
https://developer.apple.com/documentation/xcode

[6] Apple: Apple Developer Documentation. 2021-2-8.
https://developer.apple.com/documentation

[7] Ekramul Hoque: iOS View Controller Life Cycle. 2021-4-23.
https://medium.com/good-morning-swift/ios-view-controller-life-cyc

le-2a0f02e74ff5

[8] Ehab Yosry Amer: iOS Storyboards: Getting Started. 2021-4-23.
https://www.raywenderlich.com/5055364-ios-storyboards-getting-star

ted

[9] Joel Joseph: Throwback Tech Thursday: World’s First Android Phone Revisited.
2021-1-17.
https://www.gizmochina.com/2019/06/06/worlds-first-android-phone-h

tc-dream-g1-revisited

[10] Google Developers: Android for Developers. 2021-12-10.
https://developer.android.com

[11] Steve Pomeroy: The complete Android activity/fragment lifecycle. 2021-1-17.
https://github.com/xxv/android-lifecycle

[12] Google Developers: Jetpack Compose Tutorial. 2022-1-16.
https://developer.android.com/jetpack/compose/tutorial

[13] Robert C. Martin: Clean Code: A Handbook of Agile Software Craftsmanship.
Prentice Hall, 2008, ISBN 978-0132350884.

https://gs.statcounter.com/os-market-share/mobile/worldwide
https://github.com/apple/darwin-xnu
https://github.com/apple/swift-evolution/blob/main/proposals/0306-actors.md
https://github.com/apple/swift-evolution/blob/main/proposals/0306-actors.md
https://developer.apple.com/documentation/xcode
https://developer.apple.com/documentation
https://medium.com/good-morning-swift/ios-view-controller-life-cycle-2a0f02e74ff5
https://medium.com/good-morning-swift/ios-view-controller-life-cycle-2a0f02e74ff5
https://www.raywenderlich.com/5055364-ios-storyboards-getting-started
https://www.raywenderlich.com/5055364-ios-storyboards-getting-started
https://www.gizmochina.com/2019/06/06/worlds-first-android-phone-htc-dream-g1-revisited
https://www.gizmochina.com/2019/06/06/worlds-first-android-phone-htc-dream-g1-revisited
https://developer.android.com
https://github.com/xxv/android-lifecycle
https://developer.android.com/jetpack/compose/tutorial

TBU in Zlín, Faculty of Applied Informatics 73

[14] Microsoft: Xamarin documentation. 2021-11-30.
https://docs.microsoft.com/en-us/xamarin

[15] Microsoft: What is .NET MAUI? 2021-11-30.
https://docs.microsoft.com/en-us/dotnet/maui/what-is-maui

[16] JetBrains: Kotlin for Android. 2022-1-16.
https://kotlinlang.org/docs/android-overview.html

[17] Flutter: Flutter documentation. 2022-3-4.
https://docs.flutter.dev/

[18] Google: Dart documentation. 2022-3-4.
https://dart.dev/guides

[19] Max Lynch: The Easiest Way for Web Developers to Build Mobile Apps. 2022-3-4.
https://dev.to/ionic/the-easiest-way-for-web-developers-to-build-m

obile-apps-1ih8

[20] InApp: Top 5 Cross-Platform Mobile App Development Frameworks in 2021.
2022-3-4.
https://inapp-inc.medium.com/top-5-cross-platform-mobile-app-devel

opment-frameworks-in-2021-ef9e74ab1b14

[21] Sophia Martin: 7 Popular Cross-Platform App Development Tools That Will Rule
in 2021. 2022-3-4.
https://medium.datadriveninvestor.com/7-popular-cross-platform-app

-development-tools-that-will-rule-in-2020-349c80fb51

[22] Shelley Vohr: From native to JavaScript in Electron. 2022-3-4.
https://www.electronjs.org/blog/from-native-to-js

[23] Meta Platforms: React Native. 2022-3-4.
https://reactnative.dev

[24] ITnetwork: Lekce 1 - React Native - Základy React Native. 2022-3-4.
https://www.itnetwork.cz/javascript/react/native/react-native-zakl

ady-react-native

[25] Ionic: Ionic Framework. 2022-3-4.
https://ionicframework.com

[26] Josh Smith: Patterns - WPF Apps With The Model-View-ViewModel Design
Pattern. 2021-11-30.

https://docs.microsoft.com/en-us/xamarin
https://docs.microsoft.com/en-us/dotnet/maui/what-is-maui
https://kotlinlang.org/docs/android-overview.html
https://docs.flutter.dev/
https://dart.dev/guides
https://dev.to/ionic/the-easiest-way-for-web-developers-to-build-mobile-apps-1ih8
https://dev.to/ionic/the-easiest-way-for-web-developers-to-build-mobile-apps-1ih8
https://inapp-inc.medium.com/top-5-cross-platform-mobile-app-development-frameworks-in-2021-ef9e74ab1b14
https://inapp-inc.medium.com/top-5-cross-platform-mobile-app-development-frameworks-in-2021-ef9e74ab1b14
https://medium.datadriveninvestor.com/7-popular-cross-platform-app-development-tools-that-will-rule-in-2020-349c80fb51
https://medium.datadriveninvestor.com/7-popular-cross-platform-app-development-tools-that-will-rule-in-2020-349c80fb51
https://www.electronjs.org/blog/from-native-to-js
https://reactnative.dev
https://www.itnetwork.cz/javascript/react/native/react-native-zaklady-react-native
https://www.itnetwork.cz/javascript/react/native/react-native-zaklady-react-native
https://ionicframework.com

TBU in Zlín, Faculty of Applied Informatics 74

https://docs.microsoft.com/en-us/archive/msdn-magazine/2009/februa

ry/patterns-wpf-apps-with-the-model-view-viewmodel-design-pattern

[27] Gerald Versluis: Using MVVM in your Xamarin.Forms app. 2021-11-30.
https://www.dotnetcurry.com/xamarin/1382/mvvm-in-xamarin-forms

[28] MvvmCross: MvvmCross documentation. 2021-11-30.
https://www.mvvmcross.com/documentation

[29] Plac3Hold3r: MvxScaffolding. 2021-11-30.
https://marketplace.visualstudio.com/items?itemName=Plac3Hold3r.Mv

xScaffolding

https://docs.microsoft.com/en-us/archive/msdn-magazine/2009/february/patterns-wpf-apps-with-the-model-view-viewmodel-design-pattern
https://docs.microsoft.com/en-us/archive/msdn-magazine/2009/february/patterns-wpf-apps-with-the-model-view-viewmodel-design-pattern
https://www.dotnetcurry.com/xamarin/1382/mvvm-in-xamarin-forms
https://www.mvvmcross.com/documentation
https://marketplace.visualstudio.com/items?itemName=Plac3Hold3r.MvxScaffolding
https://marketplace.visualstudio.com/items?itemName=Plac3Hold3r.MvxScaffolding

TBU in Zlín, Faculty of Applied Informatics 75

LIST OF ABBREVIATIONS

AOT Ahead-of-Time Compilation. 69

API Application Programming Interface. 12, 20–22, 27, 28, 55, 60, 68, 70

BSD Berkeley Software Distribution. 12, 13

CRUD Create, Read, Update and Delete. 18

CSRG Computer Systems Research Group. 12

CSS Cascading Style Sheets. 27, 28

DLL Dynamic-link Library. 20

DSL Domain-specific Language. 16

GPU Graphics Processing Unit. 14

HTML Hypertext Markup Language. 27, 28

IDE Integrated Development Environment. 14, 17, 20, 24, 26, 28, 44, 47, 51

IL Intermediate Language. 69

IoC Inversion of Control. 31, 33, 59

JIT Just-In-Time Compilation. 26, 69, 70

JSON JavaScript Object Notation. 60

JVM Java Virtual Machine. 25

KMM Kotlin Multiplatform Mobile. 24, 25, 68, 69

LLVM Low Level Virtual Machine. 13, 25

MVVM Model-View-ViewModel. 10, 28–30, 35, 37–39, 42, 68, 69, 71, 77

OHA Open Handset Alliance. 17

ORM Object-Relational Mapping. 29

OS Operating System. 12–14, 17, 20, 26, 27, 35, 70

TBU in Zlín, Faculty of Applied Informatics 76

PDF Portable Document Format. 78

RAM Random-access Memory. 27

SDK Software Development Kit. 12–14, 24, 26

UI User Interface. 12–18, 20–22, 24, 27–32, 35–37, 39, 44, 47, 51, 56, 57, 59, 63, 64,
68, 70, 77

URL Uniform Resource Locator. 44, 62

UWP Universal Windows Platform. 20, 22, 30, 69

UX User Experience. 12, 22, 68, 70

VM Virtual Machine. 26

WPF Windows Presentation Foundation. 29, 30

XAML Extensible Application Markup Language. 22, 39, 63, 64

XML Extensible Markup Language. 15, 18, 22, 38, 51, 52, 56, 69

TBU in Zlín, Faculty of Applied Informatics 77

LIST OF FIGURES

1.1 UIViewController lifecycle . 16
1.2 Activity vs. Fragment lifecycle . 19
1.3 Xamarin application architecture . 21
1.4 Structure tree of the example application in Xamarin.Forms 23
1.5 Comparison of React and native UI elements 28
2.1 Model-View-ViewModel schema . 30
4.1 Wireframe of example application 42
4.2 Use-case diagram of example application 43
4.3 Activity diagram of example application 43
5.1 Native iOS application . 50
6.1 Native Android application . 58
7.1 Xamarin.Forms iOS application . 65
7.2 Xamarin.Forms Android application 67

TBU in Zlín, Faculty of Applied Informatics 78

LIST OF APPENDICES

A I. This thesis in PDF format
A II. Source code of iOS application
A III. Source code of Android application
A IV. Source code of Xamarin.Forms application
A V. Screenshots of iOS application
A VI. Screenshots of Android application
A VII. Screenshots of Xamarin.Forms applications
A VIII. Screen record of running iOS application
A IX. Screen record of running Android application
A X. Screen record of running Xamarin.Forms applications

	Introduction
	[0.85cm]I Theoretical part
	Current methods in mobile applications development
	Native single-platform approach
	iOS
	Android

	Native multiplatform approach
	Xamarin
	Kotlin multiplatform
	Flutter

	Web-based multiplatform approach
	Electron
	React native
	Ionic

	Model-View-ViewModel
	Application composition
	MvvmCross
	Project composition
	Data binding
	Navigation
	Inversion of Control

	[0.85cm]II Analytical part
	MVVM implementation
	MVVM in iOS
	MVVM in Android
	MVVM in Xamarin

	[0.85cm]III Practical part
	Example application design
	Components
	Wireframe
	Use-case diagram
	Activity diagram

	iOS application
	Models
	ViewModels
	Views
	Services
	Resources

	Android application
	Model
	ViewModel
	View
	Services
	Resources

	Xamarin.Forms application
	Core project
	Services
	Model
	ViewModel

	UI project
	iOS project
	Android project

	Evaluation and Comparison
	Comparison based on implementation complexity
	Comparison based on implementation time
	Comparison based on application size
	Evaluation of advantages and disadvantages

	Conclusion
	References
	List of Abbreviations
	List of Figures
	LIST OF APPENDICES

