

MAUI and Blazor Frameworks Possibilities for
Creating Cross-platform Applications

Aleksei Gaas

Bachelor's thesis
2023

I hereby declare that:

• I understand that by submitting my Bachelor´s Thesis, I agree to the publication of my

work according to Law No. 111/1998, Coll., On Universities and on changes and

amendments to other acts (e.g. the Universities Act), as amended by subsequent

legislation, without regard to the results of the defence of the thesis.

• I understand that my Bachelor´s Thesis will be stored electronically in the university

information system and be made available for on-site inspection, and that a copy of the

Bachelor´s Thesis will be stored in the Reference Library of the Faculty of Applied

Informatics, Tomas Bata University in Zlín, and that a copy shall be deposited with my

Supervisor.

• I am aware of the fact that my Bachelor´s Thesis is fully covered by Act No. 121/2000

Coll. On Copyright, and Rights Related to Copyright, as amended by some other laws

(e.g. the Copyright Act), as amended by subsequent legislation; and especially, by §35,

Para. 3.

• I understand that, according to §60, Para. 1 of the Copyright Act, TBU in Zlín has the

right to conclude licensing agreements relating to the use of scholastic work within the

full extent of §12, Para. 4, of the Copyright Act.

• I understand that, according to §60, Para. 2, and Para. 3, of the Copyright Act, I may use

my work - Bachelor´s Thesis, or grant a license for its use, only if permitted by the

licensing agreement concluded between myself and Tomas Bata University in Zlín with

a view to the fact that Tomas Bata University in Zlín must be compensated for any

reasonable contribution to covering such expenses/costs as invested by them in the

creation of the thesis (up until the full actual amount) shall also be a subject of this

licensing agreement.

• I understand that, should the elaboration of the Bachelor´s Thesis include the use of

software provided by Tomas Bata University in Zlín or other such entities strictly for

study and research purposes (i.e. only for non-commercial use), the results of my

Bachelor´s Thesis cannot be used for commercial purposes.

• I understand that, if the output of my Bachelor´s Thesis is any software product(s),

this/these shall equally be considered as part of the thesis, as well as any source codes,

or files from which the project is composed. Not submitting any part of this/these

component(s) may be a reason for the non-defence of my thesis.

I herewith declare that:

• I have worked on my thesis alone and duly cited any literature I have used. In the case

of the publication of the results of my thesis, I shall be listed as co-author.

• That the submitted version of the thesis and its electronic version uploaded to IS/STAG

are both identical.

In Zlín; dated: May 15, 2023 Aleskei Gaas v. r.

 Student´s Signature

ABSTRAKT

Cílem práce je zhodnocení možností frameworků MAUI a Blazor pro tvorbu multiplatformních
aplikací. V teoretické části se popisuje současný stav technologií pro vývoj multiplatformních
aplikací a zaměřuje se na frameworky Microsoft MAUI a Blazor. V praktické části je navrhována
aplikace, která demonstuje možnosti tvorby multiplatformních aplikací ve frameworku MAUI s
využitím Blazor, provádí se vývoj navržené aplikace a předvádějí se klíčové části řešení. Na závěr
jsou hodnoceny dosažené výsledky a formulují se možnosti dalšího rozvoje aplikace.

Klíčová slova: .NET, C#, MAUI, Blazor, WebAssembly, Multiplatformní vývoj,

Progresivní Webová Aplikace

ABSTRACT

The main goal of this thesis is to evaluate the possibilities of MAUI and Blazor frameworks for
creating multiplatform applications. The theoretical part describes the current state of the art for
multiplatform application development and focuses on the Microsoft MAUI and Blazor frameworks.
In the practical part, an application is designed that demonstrates the possibilities of creating
multiplatform applications in the MAUI framework using Blazor, the development of the proposed
application is carried out and the key parts of the solution are demonstrated. Finally, the achieved
results are evaluated and possibilities for further development of the application are formulated.

Keywords: .NET, C#, MAUI, Blazor, WebAssembly, Cross-Platform development,

Progressive Web Application

I would like to thank my thesis supervisor Ing. et Ing. Erik Král, Ph.D. for their advices and

supervision of this thesis.

CONTENTS

INTRODUCTION ... 9

I THEORY .. 10

1 MODERN WAYS TO DEVELOP AN APPLICATION .. 11

1.1 NATIVE .. 11

1.1.1 ADVANTAGES .. 11

1.1.2 DISADVANTAGES .. 12

1.2 HYBRID .. 13

1.2.1 ADVANTAGES .. 13

1.2.2 DISADVANTAGES .. 14

1.3 CROSS-PLATFORM .. 14

1.3.1 ADVANTAGES .. 15

1.3.2 DISADVANTAGES .. 16

1.4 SUMMARY .. 17

2 CURRENT STATE OF TECHNOLOGIES FOR CROSS-PLATFORM

APPLICATION DEVELOPMENT .. 18

2.1 POPULAR CROSS-PLATFORM FRAMEWORKS ... 18

2.1.1 . NET MAUI ... 18

2.1.2 KOTLIN MULTIPLATFORM MOBILE ... 18

2.1.3 FLUTTER ... 18

2.1.4 REACT NATIVE .. 19

2.1.5 IONIC ... 19

2.2 POPULAR OPERATING SYSTEMS FOR DESKTOP AND MOBILE

DEVICES ... 20

2.2.1 WHAT IS AN OPERATING SYSTEM? ... 20

2.2.2 WINDOWS ... 21

2.2.3 MACOS.. 21

2.2.4 LINUX ... 21

2.2.5 ANDROID ... 21

2.2.6 IOS .. 22

3 .NET MAUI ... 23

3.1 HOW DOES MAUI WORK? .. 23

3.2 BENEFITS OF USING MAUI .. 23

3.3 DIFFERENCES BETWEEN XAMARIN AND MAUI .. 25

4 BLAZOR .. 27

4.1 WHAT IS BLAZOR? ... 27

4.2 WEBASSEMBLY ... 28

4.2.1 WHAT IS WEBASSEMBLY? .. 28

4.2.2 ADVANTAGES OF USING WEBASSEMBLY .. 28

4.2.3 DISADVANTAGES OF USING WEBASSEMBLY ... 29

II ANALYSIS .. 30

5 OVERVIEW .. 31

6 SOLUTION STRUCTURE .. 32

6.1 BUDGETTRACKER.SHARED ... 33

6.1.1 OVERVIEW .. 33

6.1.2 STACK ... 34

6.1.3 DOMAIN .. 35

6.1.4 INFRASTRUCTURE .. 36

6.1.5 PROVIDERS .. 38

6.1.6 PAGES AND COMPONENTS ... 39

6.2 BUDGETTRACKER.NATIVE... 54

6.2.1 OVERVIEW .. 54

6.2.2 STACK ... 54

6.2.3 ENTRY POINT ... 55

6.2.4 PLATFORMS ... 58

6.2.5 SERVICES .. 60

6.2.6 RESOURCES ... 64

6.3 BUDGETTRACKER.WEB ... 67

6.3.1 OVERVIEW .. 67

6.3.2 STACK ... 68

6.3.3 ENTRY POINT ... 69

6.3.4 SERVICES .. 70

6.3.5 VIEWS ... 71

7 SUMMARIZING .. 73

7.1 ACHIEVED RESULTS ... 73

7.2 FURTHER DEVELOPMENT POSSIBILITIES .. 73

CONCLUSION .. 74

BIBLIOGRAPHY .. 75

LIST OF ABBREVIATIONS ... 79

LIST OF FIGURES ... 80

APPENDICES .. 81

TBU in Zlín, Faculty of Applied Informatics 9

INTRODUCTION

The demand for universal and practical applications has significantly increased in recent

years. As a result, developers must choose the most relevant approach and technology to

create an application that meets the needs of a wide range of users on different devices and

platforms. This thesis examines the theoretical and practical aspects of various modern

application development methodologies, including native, hybrid, and cross-platform

approaches. It provides a detailed analysis of their advantages and disadvantages and

considers the current state of the technologies and frameworks for cross-platform application

development. Next, the thesis focuses on the popular cross-platform framework .NET

MAUI, highlighting its work under the hood, advantages, and differences between MAUI

and its predecessor Xamarin. Furthermore, the thesis examines Blazor, an advanced

framework that can be used for developing web applications and cross-platform and hybrid

applications. It presents WebAssembly as the key technology underlying it, analyzing its

advantages and disadvantages.

In the Analysis part, it is proposed to create an application such as Budget Tracker using

.NET MAUI and Blazor. The application will help users manage their finances by allowing

them to track their expenses and income. The thesis will provide a complete analysis of the

application development process, providing insight into the key steps and considerations

associated with cross-platform application development. The Budget Tracker app

exemplifies how cross-platform app development can be used to create apps that meet users'

needs on different platforms.

The main goal of the thesis is to provide valuable insights into modern application

development methodologies and technologies by comparing different frameworks, operating

systems, and underlying technologies with focusing on .NET MAUI and Blazor.

TBU in Zlín, Faculty of Applied Informatics 10

 THEORY

TBU in Zlín, Faculty of Applied Informatics 11

1 MODERN WAYS TO DEVELOP AN APPLICATION

Applications have become essential to our lives, with people relying on them for

communication, entertainment, education, and more. As a result, companies are increasingly

turning to app development to engage with their customers, improve brand presence and

increase revenue. However, with multiple platforms and operating systems available,

choosing the right approach to development can take time and effort. This is where the

concepts of native, hybrid, and cross-platform development come to the rescue. Each

scenario has unique advantages and disadvantages, and understanding the differences is

crucial for businesses to make informed decisions about their mobile app development

strategy.

1.1 Native

You can create native apps for desktops, smart TVs, and so on - but because the most popular

target devices are smartphones, native app development is often used to refer to mobile app

development.

Native apps are software applications created using a particular programming language for

a specific device platform. For example, native apps for iOS are developed using

Objective-C or Swift, and native apps for Android are developed using Java or Kotlin. [1]

1.1.1 Advantages

Native application development has several advantages over other approaches, such as

hybrid and cross-platform application development. Here are some of the key benefits of

developing native applications [2][3]:

• Performance

Native apps are developed using platform-specific languages and APIs, allowing

them to take full advantage of the device's hardware and software. This provides

better performance, smoother animations, and a better user experience.

• User experience

Native apps deliver a high-quality user experience with faster load times, smoother

scrolling, and a responsive user interface. This results in a more engaged and satisfied

user experience.

TBU in Zlín, Faculty of Applied Informatics 12

• Access to Device Features

Native apps have access to a wide range of device features, such as camera, GPS,

and sensors, allowing for advanced and sophisticated functionality.

• Security

Native apps are built to meet the strict security standards of app stores and operating

systems, giving users a safer environment to download and use apps.

• Ecosystem integration

Native apps can be easily integrated with the operating system and other native apps,

improving user experience and visibility.

1.1.2 Disadvantages

Although native development has a variety of advantages, it also has certain disadvantages

that should be considered before deciding on this approach, such as [4][5]:

• Cost

Native application development can be expensive because it requires separate

development teams for each platform and specific skills in platform-specific

programming languages and APIs.

• Development time

Developing a native application for multiple platforms requires more time than other

approaches, such as hybrid and cross-platform development.

• Maintenance

Native apps require separate updates for each platform, which increases the cost and

effort of maintenance.

• Limited audience reaches

Native apps are developed for a specific platform, which limits the audience reach to

users of that platform.

• Approval process

Native apps go through a rigorous approval process with app stores, which can lead

to delays and additional costs.

TBU in Zlín, Faculty of Applied Informatics 13

• Fragmentation

Fragmentation of operating systems and devices can make native app development a

challenge, as developers need to ensure compatibility with different gadgets and

platform versions.

1.2 Hybrid

Hybrid application development involves creating applications that run on multiple

platforms using a single code base. Hybrid apps are developed using web technologies such

as HTML, CSS, and JavaScript and then wrapped in a native container that allows them to

be installed and run on mobile devices [6].

1.2.1 Advantages

Here are some of the key advantages of developing applications in a hybrid way [6][7][8]:

• Cost-effective

Hybrid application development is cost-effective because it allows developers to

write code once and deploy it to multiple platforms, reducing development costs and

time.

• Faster development time

Hybrid application development provides a faster development cycle than native

application development because a single code base can be used across multiple

platforms.

• Ease of maintenance

Hybrid applications can be updated with a single codebase, making it easy and cost-

effective to maintain and update the application across multiple platforms.

• Easy integration with web technologies

Hybrid apps are created using web technologies such as HTML, CSS, and JavaScript,

making them easy to integrate with web technologies and third-party tools.

• Huge audience reaches

Hybrid apps can be deployed across multiple platforms, providing wider audience

reach and market penetration.

TBU in Zlín, Faculty of Applied Informatics 14

1.2.2 Disadvantages

Here are some of the important disadvantages of hybrid app development [6][7][8]:

• Performance

Hybrid applications are developed using web technologies, which may result in

lower performance than native applications, especially for complex and resource-

intensive applications.

• User experience

Hybrid apps may not provide the same level of user experience as native apps,

especially for platform-specific functionality and user interface elements.

• Limited access to device features

Hybrid apps have limited access to devise features and APIs compared to native apps,

which can restrict the creation of advanced and complex functionality.

• Platform limitations

Hybrid apps are limited by the web technologies' capabilities, which can lead to

limitations for advanced functionality and user interface elements.

• Dependence on third-party tools

Hybrid application development heavily depends on third-party tools, which can lead

to compatibility issues and require additional time and effort for integration and

maintenance.

• Approval process

Hybrid apps are subject to the same rigorous app store approval process as native

apps, which can cause delays and additional costs.

1.3 Cross-platform

Cross-platform application development involves creating applications that run on multiple

platforms using a single codebase. Cross-platform applications are developed using cross-

platform frameworks and libraries, which allow developers to write code once and deploy it

to various platforms. Cross-platform applications provide a balance between performance,

cost-effectiveness, and development speed, making them an attractive option for many

companies [9].

TBU in Zlín, Faculty of Applied Informatics 15

1.3.1 Advantages

Cross-platform application development and hybrid application development are similar in

that they both allow developers to create applications that run on multiple platforms.

However, cross-platform application development has some advantages over hybrid

development. Here are some of the key benefits of cross-platform application development

over hybrid development [9][10][11]:

• Performance

Cross-platform application development can offer better performance than hybrid

application development because the code is compiled initially for each platform,

while hybrid applications are run in a web preview.

• Access to platform-specific features

Cross-platform applications can have full access to platform-specific functions and

APIs, while hybrid applications may have limited access to those functions.

• Code reusability

Cross-platform application development provides more code reuse across platforms

than hybrid application development, resulting in cost savings and reduced

development time.

• Native-like user experience

Cross-platform app development allows for a native-like user experience with

smooth animations, fast load times, and a responsive user interface. In contrast,

hybrid apps cannot provide the same level of user experience.

• Easier maintenance

Cross-platform apps are easier to maintain than hybrid apps because the code base is

common to all platforms, making implementing updates and bug fixes easier.

• A larger developer community

Cross-platform application development has a larger developer community and more

tools and resources than hybrid application development, making it easier for

enterprises to find qualified developers and resources.

TBU in Zlín, Faculty of Applied Informatics 16

1.3.2 Disadvantages

Here are the key disadvantages of cross-platform app development [10][11]:

• Development tools

Cross-platform application development requires specialized development tools,

which can be more complex and challenging to use than tools used for hybrid

application development.

• Learning curve

Cross-platform application development can be more challenging for developers

than hybrid application development because of the complexity of development tools

and the need to maintain compatibility across multiple platforms.

• Limited access to platform-specific features

Although cross-platform application development can provide full access to

platform-specific features, some cannot be accessed or integrated seamlessly.

• Performance

Although cross-platform application development can offer better performance than

hybrid application development, performance may still be lower than a fully native

application, especially for complex and resource-intensive applications.

• Debugging and Troubleshooting

Debugging and troubleshooting in cross-platform application development can be

more complicated than in hybrid application development due to the complex nature

of development tools and the need to maintain compatibility across multiple

platforms.

• Customization

Cross-platform application development may not allow the same level of

customization as hybrid application development because the development tools are

designed to create a consistent user experience across multiple platforms.

TBU in Zlín, Faculty of Applied Informatics 17

1.4 Summary

Following all the above should be noted that the development of native, hybrid, and cross-

platform applications has its advantages and disadvantages, and the choice of the best

approach depends on the specific needs of the business and the target audience. Native

applications provide the best performance and usability, but their development can be

expensive and time-consuming. Hybrid apps offer faster development time and cost savings

but may not give the same user experience as native apps. Cross-platform application

development balances these two options, providing access to platform-specific features, a

native-like user experience, and cost savings through the ability to reuse code.

Although cross-platform application development has some drawbacks, it remains a popular

and effective approach for companies looking to provide better audience reach and ease of

maintenance. Moreover, thanks to the ongoing development of tools and frameworks, the

gap between cross-platform and native development is getting smaller, and cross-platform

app development is becoming more powerful, flexible, and customizable, allowing

developers to create apps that work just as well as native apps.

TBU in Zlín, Faculty of Applied Informatics 18

2 CURRENT STATE OF TECHNOLOGIES FOR CROSS-

PLATFORM APPLICATION DEVELOPMENT

The current state of technology for cross-platform app development is diverse and dynamic.

Many tools and frameworks allow developers to create apps that run on different platforms

using a single codebase. Some popular technologies for cross-platform app development are

.NET MAUI, Kotlin Multiplatform Mobile, Flutter, React Native, and Ionic, as shown in

Figure 1. Each tool has its advantages and disadvantages, depending on project requirements

and developer preferences. [12]

2.1 Popular cross-platform frameworks

2.1.1 . NET MAUI

. NET Multiplatform App User Interface (.NET MAUI) is open source and is an evolution

of Xamarin.Forms, which is a popular framework for creating cross-platform mobile

applications on .NET. In fact, the .NET MAUI extends Xamarin by adding support for

Windows, macOS, and Linux through the Uno Platform, improving performance,

productivity, and toolset. .NET MAUI also integrates with other .NET technologies, such as

Blazor for UI, ASP.NET Core for web services, and Orleans for distributed systems. [13]

2.1.2 Kotlin Multiplatform Mobile

Kotlin Multiplatform Mobile (KMM) is an SDK for iOS and Android app development that

offers all the combined benefits of creating cross-platform and native apps. It allows you to

share code for logic elements that often fall out of sync while keeping the advantages of

native programming, including excellent app performance and full access to the Android and

iOS SDKs. [14]

2.1.3 Flutter

Flutter is an open-source framework developed by Google for building beautiful, natively

compiled mobile, web, desktop, and embedded mobile applications from a single codebase.

It is used with Dart, an object-oriented programming language by Google. Flutter uses its

own graphics engine named Skia, which bypasses platform UI libraries and communicates

directly with Skia in the engine layer providing instructions for GPU. [15]

TBU in Zlín, Faculty of Applied Informatics 19

2.1.4 React Native

React Native is an open-source framework developed by Meta (Facebook), used to build

natively rendered applications for mobile platforms from a single codebase using the React

JavaScript library. React Native allows the creation of iOS and Android apps and other

platforms like the web and desktop without writing platform-specific code. [16]

2.1.5 Ionic

Ionic is an open-source toolkit for building high-quality cross-platform mobile apps from a

single codebase using JavaScript. It is designed to work quickly with hardware-accelerated

transitions and touch-optimized gestures by default. It has built-in support for JavaScript

frameworks such as React, Angular, or Vue. Ionic applications can run as Android, iOS,

Electron, and PWA from the same codebase. [17]

Figure 1 Cross-platform mobile frameworks used by software developers worldwide from

2020 to 2021 [18]

TBU in Zlín, Faculty of Applied Informatics 20

2.2 Popular operating systems for desktop and mobile devices

2.2.1 What is an operating system?

The operating system (OS) is the software that controls computer hardware and provides

services to computer programs. It is the most important type of system software that runs on

a computer or mobile device; without it, the device would be unable to perform any

functional tasks.

The primary purpose of the operating system is to provide an interface between the user and

the computer hardware, allowing the user to interact with the computer more intuitively and

efficiently. It manages computer resources such as memory, storage, and processing power

and ensures that every program running on the computer has fair and efficient access to these

resources.

The operating system also provides several services, including file management, security,

networking, and device drivers. These services are essential to the operation of most

computer programs, and the operating system provides a consistent and reliable way for

programs to access these services.

There are many popular operating systems, as shown in Figure 2, including desktop

operating systems such as Windows, macOS, and Linux and mobile operating systems such

as Android and iOS. Each operating system has features and characteristics, but all aim to

provide a stable and reliable platform for running computer programs [19][20].

Figure 2 Operating System Market Share Worldwide [21]

TBU in Zlín, Faculty of Applied Informatics 21

2.2.2 Windows

Windows is a popular operating system for desktops and laptops. It has a user-friendly

interface and supports a wide range of software applications. Windows also supports a

variety of hardware configurations, making it easy to find the suitable device for your needs.

It has a significant market share, which means that software developers are more likely to

create applications that are compatible with the system. Windows is also known for its

vulnerability to malware and viruses, so it is essential to ensure proper security criteria. [22]

2.2.3 macOS

macOS is the operating system used on Apple's Mac computers. It has an elegant and

intuitive user interface known for its reliability and security. macOS also comes with a

variety of built-in applications. One of the main advantages of macOS is its tight integration

with other Apple devices, such as the iPhone and iPad. This makes it easy to share files and

use apps across devices. However, macOS is less common than Windows, so some programs

may not be compatible with it. [23] [24]

2.2.4 Linux

Linux is an open-source operating system popular with developers and technology

enthusiasts. It is highly customizable and can be used for various applications, including

servers, desktops, and embedded devices. One of the main advantages of Linux is its security

and stability. It is also free to use, making it a cost-effective option for businesses and

organizations. However, Linux can be more difficult to use than other operating systems,

especially for people unfamiliar with the command-line interface. [25] [26]

2.2.5 Android

Android is the operating system used by most mobile devices that Apple does not

manufacture. It is based on the Linux kernel and is known for its flexibility and

customization options. One of the main advantages of Android is the wide range of

applications that can be downloaded from the Google Play store. Android also supports a

variety of hardware configurations, making it a popular choice for device manufacturers.

However, like Windows, Android is also vulnerable to malware and viruses. [27] [28]

TBU in Zlín, Faculty of Applied Informatics 22

2.2.6 iOS

iOS is the operating system in Apple's mobile devices, including the iPhone, iPad, and iPod

Touch. It comes with various default apps and is known for its ease of use and security

features, including biometric authentication (Face ID or Touch ID) and app sandboxing. iOS

devices are also tightly integrated with other Apple devices, making it easy to share files and

use apps across devices. One of the main advantages of iOS is the app ecosystem, which is

known for its high quality and security standards. However, iOS devices are more expensive

than Android devices, which can be a barrier for some users. Also, iOS is not as customizable

as Android, which can be a drawback for some users who prefer more control over their

devices. [29] [30]

TBU in Zlín, Faculty of Applied Informatics 23

3 .NET MAUI

3.1 How does MAUI work?

MAUI provides a set of APIs and toolsets that allow developers to write user interface code

in platform-agnostic mode using .NET and C# programming languages. Developers can use

Visual Studio to create and edit MAUI applications, and the MAUI toolkit generates the

platform-specific code needed to run the application on different operating systems.

Under the hood, MAUI uses several platform-specific renderers and controls to make the

user interface look and feel native to each platform. MAUI also provides support for device-

specific features such as biometric authentication, camera access, and notifications through

a set of cross-platform APIs.

One of the key advantages of MAUI is that it allows developers to share much of their code

base across multiple platforms, which can result in significant time and cost savings. In

addition, MAUI applications can be deployed to various app stores and distribution channels,

making it easier to reach a broad audience [31][32].

3.2 Benefits of using MAUI

Using the .NET ecosystem, MAUI offers developers a wide range of benefits, which are

listed below [31][32][33]:

• Performance

MAUI applications provide native-like performance because the framework uses

native APIs of each platform, resulting in smoother animations, faster loading times,

and a more responsive user interface.

• Single Codebase

Like other cross-platform frameworks, MAUI allows developers to write a single

codebase that can be compiled for multiple platforms, resulting in cost savings,

reduced development time, and simplified maintenance.

• Unified development experience

With MAUI, developers can create apps for all major platforms using a single set of

tools and APIs, simplifying the development process and reducing training time.

TBU in Zlín, Faculty of Applied Informatics 24

• UI capabilities

MAUI provides an advanced UI experience with improved support for complex

layouts, better theming capabilities, and the ability to create custom controls. For UI,

you can use XAML markup language or the Blazor hybrid to write in HTML instead.

It allows developers to easily convert their web applications written in Blazor into

native applications for various platforms.

• Flexibility

With MAUI, developers gain greater flexibility and control over the user interface,

allowing them to create more customizable and adaptable applications that meet the

unique needs of businesses and audiences.

• .NET ecosystem

MAUI is built on .NET 6, which provides improved performance, security, and

compatibility with the wide range of libraries, tools, and resources available in the

.NET, making integrating the existing code base into MAUI applications easier.

TBU in Zlín, Faculty of Applied Informatics 25

3.3 Differences between Xamarin and MAUI

As mentioned earlier, .NET MAUI is an evolution of Xamarin, so it adds new features and

improvements to make development easier [34][35][36]:

• Scope

Xamarin is a cross-platform development environment that allows developers to

create native mobile apps for iOS and Android using a single codebase. Conversely,

MAUI is a multiplatform framework that enables developers to create native apps

for iOS, Android, macOS, and Windows using a single codebase.

• Project structure

Xamarin uses a shared code architecture that allows developers to write a single

codebase that can be used across platforms. MAUI builds on this architecture and

introduces a new multitargeting capability to allow developers to use multiple

platforms in a single project file.

• Toolkit

MAUI introduces a new set of tools to simplify the development process, including

a new Visual Studio extension that provides a unified application creation experience

for all supported platforms. Xamarin, on the other hand, has its own set of tools and

extensions specifically designed for mobile development.

• User interface

Although Xamarin and MAUI use XAML to define user interfaces, MAUI

introduces new features that improve the user interface, such as support for flexible

layout containers, adaptive icons, and a new theme engine.

• Compatibility

MAUI is designed to be fully compatible with existing Xamarin.Forms applications,

allowing developers to migrate their existing codebase to the new framework without

major changes. However, some features and APIs may need to be updated to take

full advantage of the new features presented in MAUI.

TBU in Zlín, Faculty of Applied Informatics 26

• Hot Reload

In Xamarin, Hot Reload is available for XAML-based UIs, allowing developers to

make changes to the UI and instantly see those changes without having to rebuild the

application. However, changes made to the code underlying the UI still require

reassembly and redeployment of the application. MAUI takes this further by

extending the Hot Reload feature to cover both the user interface and the underlying

code. This means that developers can make changes to both the UI and the code and

see an instant reflection of those changes without rebuilding or redeploying the

application.

• Renderer and Handler Architectures

Xamarin uses renderers to create controls, as shown in Figure 3, and developers must

use custom renderers to customize the user interface of native controls. However,

these renderers can affect application performance and size. On the other hand, .NET

MAUI uses a handler architecture that is loosely related to native assembly, as shown

in Figure 4. The result is a lightweight application with improved performance on

the native platform.

Figure 3 Xamarin Renderer Architecture [36]

Figure 4 .NET MAUI Handler Architecture [36]

TBU in Zlín, Faculty of Applied Informatics 27

4 BLAZOR

4.1 What is Blazor?

Blazor is a web interface framework for creating interactive client-side web applications

using C# instead of JavaScript. Blazor and MAUI are part of the .NET ecosystem and can

be used together to create hybrid applications that share code and functionality between web

and native platforms.

Blazor allows developers to write Web UI code using Razor and C# syntax and then compile

that code into WebAssembly, which can be run in a browser according to the principle shown

in Figure 5. MAUI allows developers to write native UI code using Blazor, .NET, and C#

and then deploy that code to different platforms.

To connect Blazor and MAUI, developers can use the Blazor WebView component, a hybrid

solution that allows developers to host a Blazor web application inside their MAUI

application. The Blazor WebView component bridges the web and native worlds, allowing

developers to share code and functionality between their web and native applications.

With the Blazor WebView component, developers can write business logic and UI code once

in Blazor and reuse that code in their web and native applications. This saves time and effort

and makes it easier to create and maintain hybrid applications running on different platforms

[37][38][39][40].

Figure 5 The working principle of Blazor WebAssembly [39]

TBU in Zlín, Faculty of Applied Informatics 28

4.2 WebAssembly

4.2.1 What is WebAssembly?

WebAssembly is a low-level binary format that allows developers to run compiled code in

the browser. It is designed to be fast, efficient, and secure and can be used to build complex

applications running near-native speeds. WebAssembly provides a virtual machine that can

execute code compiled from a wide range of programming languages, including C/C++, C#,

Rust, and others. When a developer compiles their code into WebAssembly format, the

resulting binary file can be loaded into the browser and executed by the WebAssembly

runtime [40].

4.2.2 Advantages of using WebAssembly

There are several advantages of using WebAssembly for web development [40][41][42][43]:

• Performance

WebAssembly is designed to run at near-native speed, making it a powerful tool for

building complex web applications that require high performance.

• Security

WebAssembly provides a sandbox-like execution environment that helps improve

security by preventing malicious code from accessing the user's computer or data.

• Portability

WebAssembly is designed to be platform-independent, which means that code

compiled in the WebAssembly format can run on different platforms, including

desktop and mobile devices.

• Language flexibility

WebAssembly can be used with a variety of programming languages, including

C/C++, Rust, and C#, allowing developers to use whichever language best suits their

needs.

• Code Reuse

WebAssembly allows developers to reuse existing code written in other

programming languages, saving time and resources.

TBU in Zlín, Faculty of Applied Informatics 29

• Compatibility

WebAssembly is supported by all major web browsers, meaning that code written in

WebAssembly can run in any modern browser without plugins or extensions.

4.2.3 Disadvantages of using WebAssembly

Although WebAssembly offers many advantages, it may not be the best choice for every

web development project, and developers should carefully consider the potential drawbacks

before deciding to use it because [40][44][45]:

• Limited browser support

Although all major browsers now support WebAssembly, older browsers may not

have it, which may limit the number of users who can access your application.

• Debugging

Debugging WebAssembly code can be more difficult than traditional web

development languages such as JavaScript, as debugging tools are not as well

developed.

• Code size

Because WebAssembly is designed to run at near-native speeds, the code can be

larger than in traditional web development languages, affecting page load times and

requiring more bandwidth.

• Learning curve

Using WebAssembly requires learning new tools and concepts, making it more

challenging for developers used to working with traditional web development

languages.

• Limited ecosystem

Because WebAssembly is a relatively new technology, the ecosystem of libraries and

tools is not as well developed as traditional web development languages, which may

limit what developers can do.

TBU in Zlín, Faculty of Applied Informatics 30

 ANALYSIS

TBU in Zlín, Faculty of Applied Informatics 31

5 OVERVIEW

As we have already found out, the development of cross-platform applications has become

increasingly popular in recent years as the demand for applications running on different

platforms continues to grow. In this part, we look at how these frameworks can be used to

develop a cross-platform Budget Tracker application.

Budget Tracker is an important tool for managing personal finances. It allows users to track

their income and expenses and monitor their financial progress.

In this part, we will discuss the process of developing the Budget Tracker application using

the .NET MAUI and Blazor frameworks. We will look at the development process of each

framework, including the tools and resources required.

Overall, this analysis will provide valuable insights into the potential of MAUI and Blazor

frameworks for creating cross-platform applications and their suitability for Budget Tracker

application development.

TBU in Zlín, Faculty of Applied Informatics 32

6 SOLUTION STRUCTURE

Solution has listed projects, as shown in Figure 6:

• BudgetTracker.Shared

The project provides a shared user interface written in Blazor and service definitions.

• BudgetTracker.Native

The project with .NET MAUI for native communication with different platforms.

• BudgetTracker.Web

The project allows us to run this application not only on native platforms but also on

web pages and use it as PWA.

This approach enables the application to be accessed from a wide range of devices, providing

flexibility and accessibility to users.

Figure 6 Solution structure

TBU in Zlín, Faculty of Applied Informatics 33

6.1 BudgetTracker.Shared

6.1.1 Overview

This project contains the user interface, service definitions, and domain models for the

Budget Tracker application written in C# using Blazor. It provides a shared code base for

the application functionality and is used in native and web projects. UI components define

the structure and appearance of the application's user interface, service definitions represent

communication with business logic, and domain models represent application data objects.

The project acts as a shared library between other parts of the application. You can see the

project structure in Figure 7.

Figure 7 BudgetTracker.Shared project structure

TBU in Zlín, Faculty of Applied Informatics 34

6.1.2 Stack

The project uses the following technologies:

• .NET 6

• Blazor

• MudBlazor as NuGet package

MudBlazor is an open-source library of ready-to-use UI components for creating web

applications using Blazor. It offers many customizable components, such as buttons,

forms, and data grids, providing a consistent user experience across devices and

platforms. MudBlazor prioritizes accessibility and performance and can be easily

integrated into a Blazor project using the NuGet package. It is widely used in the

.NET community to create responsive and visually appealing applications [46][47].

TBU in Zlín, Faculty of Applied Informatics 35

6.1.3 Domain

The folder contains all the necessary domain entities used in the application.

• Transaction.cs

The main entity, which represents any transaction that the user can make.

public record Transaction
{
 public int Id { get; set; } = -1;

 public string Description { get; set; } = string.Empty;

 public TransactionType Type { get; set; }

 public double? Amount { get; set; }

 public DateTime UpdatedAt { get; set; }
}

• TransactionType.cs

Enumerator, which represents the possible types of the user’s transactions.

public enum TransactionType
{
 Income,
 Housing,
 Transportation,
 Food,
 Personal,
 Health,
 Entertainment,
 Education,
 Miscellaneous,
 Savings,
 ChildCare,
 Technology,
 Insurance,
 Taxes,
 Pets,
 Travel
}

• DeviceType.cs

Enumerator, which represents the possible types of the user’s device.

public enum DeviceType
{
 Unknown,
 NativeMobile,
 NativeDesktop,
 Web
}

TBU in Zlín, Faculty of Applied Informatics 36

6.1.4 Infrastructure

The folder contains all the interfaces that define the necessary functionality that must be

implemented by other projects to provide a shared codebase for the application. These

interfaces act as a contract between the different parts of the solution and ensure consistency

and compatibility between them.

• IDeviceInfoService.cs

This interface defines a method for getting the type of device the application runs on.

public interface IDeviceInfoService
{
 Task<DeviceType> GetDeviceTypeAsync();
}

The GetDeviceTypeAsync method returns a task that contains a DeviceType enum

value, which can be used to determine the type of the user’s device.

• IShareService.cs

This interface defines several methods for sharing, importing, and downloading data

in the application.

public interface IShareService
{
 Task ShareDataAsync();

 Task ImportDataAsync();

 Task ImportDataAsync(IBrowserFile browserFile);

 Task DownloadDataAsync();
}

The ShareDataAsync method allows users to share data on native platforms.

The ImportDataAsync method allows users to import data into the application.

The ImportDataAsync method accepting the IBrowserFile argument, enables the

user to import data from a file selected through the browser.

The DownloadDataAsync method allows the user to download data from the

application on web.

TBU in Zlín, Faculty of Applied Informatics 37

• ITransactionStorageService.cs

This interface defines methods to access, add, update, and delete transaction data

from the repository.

public interface ITransactionStorageService
{
 Task<Dictionary<TransactionType, List<Transaction>>>
GetTransactionsByYearMonthAsync(DateTime date);

 Task<Dictionary<TransactionType, List<Transaction>>>
GetTransactionsByYearAsync(DateTime date);

 Task<Transaction> GetTransactionByIdAsync(int id);

 Task AddNewTransactionAsync(Transaction transaction);

 Task UpdateTransactionAsync(int id, Transaction transaction);

 Task RemoveTransactionAsync(int id);

 string GetDirectory();

 Task SaveTransactionsAsync(IEnumerable<Transaction> transactions);
}

The GetTransactionsByYearMonthAsync method returns a dictionary containing

lists of transactions grouped by transaction type for a given year and month.

The GetTransactionsByYearAsync method returns a dictionary containing lists of

transactions grouped by transaction type for a given year.

The GetTransactionByIdAsync method returns a single transaction with the

specified ID.

The AddNewTransactionAsync method adds a new transaction to the storage.

The UpdateTransactionAsync method updates an existing transaction in the

repository.

The RemoveTransactionAsync method removes the transaction from the storage.

The GetDirectory method returns the path to the directory where transaction data is

stored.

The SaveTransactionsAsync method saves transaction collection to the storage.

TBU in Zlín, Faculty of Applied Informatics 38

6.1.5 Providers

Providers can be considered as specific static classes that provide the application with a

particular simple service or functionality. In the context of this application, we have only

one TypeIconProvider, which provides the functionality of mapping a TransactionType

to the corresponding icon. It can be easily accessed from other parts of the application that

need this functionality. It is a centralized and reusable way of providing this functionality

rather than duplicating code in different application parts.

TypeIconProvider.cs

public static class TypeIconProvider
{
 public static string GetIcon(TransactionType type)
 => type switch
 {
 TransactionType.Income
 => Icons.Material.Rounded.AttachMoney,

 TransactionType.Housing
 => Icons.Material.Rounded.Home,

 TransactionType.Transportation
 => Icons.Material.Rounded.DirectionsBus,

 TransactionType.Food
 => Icons.Material.Rounded.Fastfood,

 TransactionType.Personal
 => Icons.Material.Rounded.AccountCircle,

 TransactionType.Health
 => Icons.Material.Rounded.LocalHospital,

 TransactionType.Entertainment
 => Icons.Material.Rounded.SportsEsports,

 TransactionType.Education
 => Icons.Material.Rounded.School,

 TransactionType.Miscellaneous
 => Icons.Material.Rounded.Interests,

 ...

 TransactionType.Travel
 => Icons.Material.Rounded.FlightTakeoff,

 _ => string.Empty,
 };
}

All icons are taken from the MudBlazor Icons [48].

TBU in Zlín, Faculty of Applied Informatics 39

6.1.6 Pages and components

This folder contains the Blazor pages and components for the application. These elements

are responsible for defining the user interface and the behavior of the various views and

components in the application. In the context of a Blazor application, a page is a module that

represents a route in the application. The corresponding page component is rendered and

displayed when a user navigates to a particular route.

The Budget tracker application has only one page, Index.razor.

Each page and component can be divided into a visual part (.razor) and a logical part

(.razor.cs). Writing all these parts in one .razor file is also possible, but it is more convenient

and readable when separated.

Figure 8 Main window for month transactions displaying

TBU in Zlín, Faculty of Applied Informatics 40

• Index.razor and Index.razor.cs

The file represents the main application window. Let's have a look at some interesting parts

of the file.

Index.razor

<MudSwipeArea Style="min-height: 100%; max-height: fit-content; overflow:
visible"
 OnSwipe="@(async (d) => await OnSwipe(d))">
...
</MudSwipeArea>

Index.razor.cs

private async Task OnSwipe(SwipeDirection d)
{
 if (TransactionDialogOpened || PickerOpened)
 return;

 switch (d)
 {
 case SwipeDirection.RightToLeft:
 await MoveMonth(SelectedMenu == 0 ? 1 : 12);
 break;

 case SwipeDirection.LeftToRight:
 await MoveMonth(SelectedMenu == 0 ? -1 : -12);
 break;
 }
}

The MudSwipeArea element is from the MudBlazor library and provides easy tracking of

the user’s swipes on any device with a touchscreen. It simply invokes the function OnSwipe

from Index.razor.cs with the direction of the swipe. In the Budget tracker application’s

context, it is used for the faster change of the month the user is currently looking at. So when

the user swipes from right to left, it changes the current month to the next and otherwise to

the previous month.

TBU in Zlín, Faculty of Applied Informatics 41

Index.razor

@if (SelectedMenu == 0)
{
 ...
}
else
{
 ...
}

Here you can see how easy it is to display different parts of the user interface code by adding

a simple if-else statement directly to the .razor file. In the context of this file, this statement

renders different components, the graph for the monthly display and all transactions for this

month will be rendered when the SelectedMenu property is set to 0, and the graph for the

yearly display will be rendered otherwise, as you can see in Figures 8 and 9.

Figure 9 Main window for year transactions displaying

TBU in Zlín, Faculty of Applied Informatics 42

Index.razor

@foreach (var item in MonthTransactionsDictionary)
{

<TransactionComponent Type="item.Key"
Values="item.Value"
OnButtonClickEvent="OpenDialogForEditTransactionAsync" />

}

Here you can see how several identical parts can be rendered using the foreach statement.

The TransactionComponent is the application's own component, which will be described

a little later, but you can already see them in Figures 8 and 10.

Figure 10 TransactionComponent components inside of the main window

TBU in Zlín, Faculty of Applied Informatics 43

Index.razor

<div class="Footer rounded-pill">
 <MudMenu Icon="@Icons.Material.Rounded.Share"
 Size="Size.Large"
 ActivationEvent="@(MouseEvent.LeftClick)"
 TransformOrigin="@Origin.TopCenter"
 AnchorOrigin="@Origin.CenterCenter">
 ...
 </MudMenu>

 <MudIconButton Class="FooterButton"
 Icon="@(SelectedMenu == 1 ?
Icons.Material.Rounded.DonutLarge : Icons.Material.Rounded.DateRange)"
 Size="Size.Large"
 OnClick="SwitchWindow" />

 <MudIconButton Class="FooterButton"
 Icon="@Icons.Material.Rounded.Add"
 Size="Size.Large"
 OnClick="OpenDialogForNewTransactionAsync" />
</div>

Here is the footer, with three elements inside it, as shown in Figures 8 and 9.

MudIconButton is a component of the MudBlazor library, which is a simple button with no

text but a specified icon.

The second element calls the SwitchWindow method, when the user clicks on it, which is

responsible for correctly selecting the window menu and providing the necessary data for

the graphs.

Index.razor.cs

private async Task SwitchWindow()
{
 SelectedChartIndex = -1;

 if (SelectedMenu == 0)
 {
 SelectedMenu = 1;
 await RefreshYearChartData();
 }
 else if (SelectedMenu == 1)
 {
 SelectedMenu = 0;
 await RefreshMonthDictionary();
 }
}

The third element calls the OpenDialogForNewTransactionAsync method when the user

clicks on it. It is responsible for opening the TransactionDialog component, where the user

can add new transactions, which you can see in Figure 11.

TBU in Zlín, Faculty of Applied Informatics 44

Figure 11 TransactionDialog component for creating a new transaction

The first element is the most difficult of these. Let's look at it a little deeper.

Index.razor

<MudMenu Icon="@Icons.Material.Rounded.Share"
 Size="Size.Large"
 ActivationEvent="@(MouseEvent.LeftClick)"
 TransformOrigin="@Origin.TopCenter"
 AnchorOrigin="@Origin.CenterCenter">

 <ActivatorContent>
 <MudIconButton Class="FooterButton"
 Icon="@Icons.Material.Rounded.Share"
 Size="Size.Large" />
 </ActivatorContent>

 <ChildContent>
 @if (CurrentDevice == DeviceType.NativeMobile || CurrentDevice ==
DeviceType.NativeDesktop)
 {
 <MudMenuItem OnClick="ShareData">

... Share
 </MudMenuItem>
 <MudMenuItem OnClick="ImportData">

... Import
 </MudMenuItem>
 }
 else if (CurrentDevice == DeviceType.Web)
 {
 <MudMenuItem OnClick="DownloadData">
 <MudIcon Icon="@Icons.Material.Rounded.Download" /> Download
 </MudMenuItem>
 <MudFileUpload T="IBrowserFile" FilesChanged="ImportDataWeb"
Accept="@(".bdtr")">

... Import
 </MudFileUpload>
 }
 </ChildContent>
</MudMenu>

TBU in Zlín, Faculty of Applied Informatics 45

This is the MudBlazor menu component that creates a drop-down menu with options for

sharing, importing, and downloading data.

The component has two main sections, defined by the ActivatorContent and ChildContent

tags. The ActivatorContent section contains a button that, when clicked, activates the menu.

The ChildContent section contains menu items displayed when the menu is opened.

The menu items are provisionally displayed depending on the type of device in use. The

menu items for sharing and importing data are displayed if the device is native mobile or

native desktop. The menu items for downloading and importing data are displayed if the

device is a web device.

To find out which user device is currently in use, the GetDeviceTypeAsync method from

the IDeviceInfoService interface is called on the page initialization:

Index.razor.cs

[Inject]
private IDeviceInfoService DeviceInfoService { get; set; } = default!;

private DeviceType CurrentDevice { get; set; } = DeviceType.Unknown;

protected async override Task OnInitializedAsync()
{
 ...
 CurrentDevice = await DeviceInfoService.GetDeviceTypeAsync();
 ...
 await base.OnInitializedAsync();
}

• DateMover.razor and DateMover.razor.cs

DateMover is a application component that allows the user to select a date or year from a

calendar. You can see it on the top of the main application window in Figures 8 and 9. It

consists of MudDatePicker and MudPaper library components. MudDatePicker is hidden

and used to choose a date, and MudPaper displays the selected month or year along with

two buttons to jump to the previous or next month or year.

Index.razor

<DateMover Date="SelectedDate"
 OnClickLeft="@(() => MoveMonth(SelectedMenu == 0 ? -1 : -12))"
 OnClickRight="@(() => MoveMonth(SelectedMenu == 0 ? 1 : 12))"
 OnDatePicked="SetDateFromPicker"
 IsForYear="@(SelectedMenu == 1)"
 OnPickerClosed="@(() => PickerOpened = false)"
 OnPickerOpened="@(() => PickerOpened = true)" />

TBU in Zlín, Faculty of Applied Informatics 46

Figure 12 Opened date picker on DateMover component for month transactions displaying

Figure 13 Opened date picker on DateMover component for year transactions displaying

TBU in Zlín, Faculty of Applied Informatics 47

• TransactionComponent.razor and TransactionComponent.razor.cs

TransactionComponent displays a card containing MudTreeView library component,

which is used to display the transaction list in the tree structure. The component accepts three

parameters: transaction type, transaction value list, and an event callback for edit button

click. You can look at the component in Figures 8, 10 and 14.

TransactionComponent.razor

<MudCard ...
Class="@("my-2 RadiusTransition " + (Expanded ? "rounded-b-xl" : ""))">

 <MudTreeView ...>
 <MudTreeViewItem ...

ExpandedChanged="@((x) => Expanded = x)" >
 <div class="ValuesFrame">
 @foreach (var item in Values)
 {
 <MudGrid ...>
 <MudItem xs="3" sm="1" Class="align-self-center">
 $ @item.Amount
 </MudItem>
 <MudItem xs="8" s sm="10" Class="align-self-center">
 @item.Description
 </MudItem>
 <MudItem xs="1" Style="text-align:end">
 <MudIconButton Size="Size.Small"
 Icon="@Icons.Material.Rounded.Edit"
 OnClick="@(() =>
OnButtonClick(item.Id))" />
 </MudItem>
 </MudGrid>
 }
 </div>
 </MudTreeViewItem>
 </MudTreeView>
</MudCard>

Thanks to the in-line if else statement with the Expanded variable, rendering the same

element with different classes and styles is possible. You can see that the border radius is

bigger for expanded elements.

Figure 14 TransactionComponent

TBU in Zlín, Faculty of Applied Informatics 48

• TransactionDialog.razor and TransactionDialog.razor.cs

The TransactionDialog is a dialog component that allows users to enter transaction data,

such as transaction type, amount (price), date, and description. It includes several child input

library components, such as MudSelect, MudNumericField, MudDatePicker, and

MudTextField, responsible for displaying and validating a particular input field. You can

see this component in Figure 11.

The component takes several parameters, including ForEdit, Transaction, and

SelectedDate. ForEdit is a boolean value that determines whether the dialog is used to edit

an existing transaction or to create a new one. A Transaction is an object representing

transaction data for editing. SelectedDate is a DateTime object representing the currently

selected date.

TransactionDialog.razor

<MudSelect @bind-Value="Transaction.Type"
 T="TransactionType"
 Label="Type"
 Variant="Variant.Outlined">
 @foreach (var item in Enum.GetValues<TransactionType>())
 {
 <MudSelectItem Value="@item">
 <MudIcon Icon="@TypeIconProvider.GetIcon(item)" Size="Size.Small"/>
 @(" " + item)
 </MudSelectItem>
 }
</MudSelect>

Here you can see how all enumeration values can be shown so that the user can select one,

as in Figure 15.

Figure 15 Selecting a transaction type in the TransactionDialog component

TBU in Zlín, Faculty of Applied Informatics 49

TransactionDialog.razor

<MudNumericField @ref="MudNumericPrice"
 @bind-Value="Transaction.Amount"
 T="double?"
 Label="Amount"
 Min="1"
 Max="99999999"
 Format="F2"
 HideSpinButtons="true"
 Required
 RequiredError=""
 Variant="Variant.Outlined">
</MudNumericField>

Here you can see that the Amount field is required and has its minimum and maximum

possible values, so the user cannot input the incorrect data, as in Figure 16.

It is also not allowed to enter a description longer than 25 characters, but the field can be

completely empty.

Figure 16 Invalid input in the TransactionDialog component

As already mentioned, this component is also used to edit a transaction by clicking on the

Pen button in the TransactionComponent from Figure 14, as shown in Figure 17.

Figure 17 TransactionDialog component for transaction editing

TBU in Zlín, Faculty of Applied Informatics 50

• KeyboardEventsProvider.razor

The KeyboardEventsProvider is a custom component that enables registering and invoking

actions when a keyboard event occurs. It uses a CascadingValue component to provide the

current instance of the KeyboardEventsProvider to all the child components.

The component is a simple wrapper around a div element with a tabindex attribute to enable

focus and an @onkeyup event handler to capture keyboard events. The BindOnKeyUp

method is used to register an action to be executed when a keyboard event occurs. When a

keyboard event is triggered, the OnKeyUpInvoke method is called and iterates over all

registered actions, invoking them with the event argument.

KeyboardEventsProvider.razor

<CascadingValue Value="this">
 <div tabindex="0" class="FullScreen" @onkeyup="OnKeyUpInvoke">
 @ChildContent
 </div>
</CascadingValue>

@code {
 [Parameter]
 [EditorRequired]
 public RenderFragment ChildContent { get; init; } = default!;

 private List<Action<KeyboardEventArgs>> OnKeyUps { get; set; } = new();

 public void BindOnKeyUp(Action<KeyboardEventArgs> target)
 {

 ...
 OnKeyUps.Add(new Action<KeyboardEventArgs>(target));
 }

 private void OnKeyUpInvoke(KeyboardEventArgs e)
 {
 foreach (var item in OnKeyUps)
 {
 item.Invoke(e);
 }
 }
}

TBU in Zlín, Faculty of Applied Informatics 51

For this component to work, it must be placed on top of all other elements in

MainLayout.razor, which is the component used as the layout template for application

pages. It defines the layout structure and any common components that should be included

on all pages:

MainLayout.razor

@inherits LayoutComponentBase

<KeyboardEventsProvider>
 <MudThemeProvider IsDarkMode="true" Theme="CustomTheme" />
 <MudDialogProvider />
 <MudSnackbarProvider />

 <div class="page">
 <main>
 <div class="d-flex justify-content-center main">
 <div class="content">
 @Body
 </div>
 </div>
 </main>
 </div>
</KeyboardEventsProvider>

Then it is possible to get the instance of the KeyboardEventsProvider in all childs like this:

Index.razor.cs

[CascadingParameter]
public KeyboardEventsProvider KeyboardEvents { get; set; } = default!;

And bind the necessary method on the needed event:

Index.razor.cs

protected async override Task OnInitializedAsync()
{
 KeyboardEvents.BindOnKeyUp(async (e) => await OnKeyUp(e));
 ...
 await base.OnInitializedAsync();
}

TBU in Zlín, Faculty of Applied Informatics 52

As a result, it is possible to handle all events from the keyboard in a custom method:

Index.razor.cs

private async Task OnKeyUp(KeyboardEventArgs e)
{
 ...
 switch (e.Key)
 {
 case "ArrowRight":
 await MoveMonth(SelectedMenu == 0 ? 1 : 12);
 break;

 case "ArrowLeft":
 await MoveMonth(SelectedMenu == 0 ? -1 : -12);
 break;

 case "ArrowUp":
 await MoveMonth(12);
 break;

 case "ArrowDown":
 await MoveMonth(-12);
 break;

 default:
 return;
 }
}

In the context of this application, if the user presses the arrow keys (up, down, left, or right),

the method calls the MoveMonth method with a parameter specifying the direction and

number of months to move the calendar. Otherwise, the method returns and does not perform

any further actions.

Also this component is used in the TransactionDialog, so if the Enter key was pressed, it

calls the Submit method which is responsible for submitting the data and closing the dialog

box. If the Escape key was pressed, it calls the Cancel method which is responsible for

cancelling the dialog box without submitting any data:

TransactionDialog.razor.cs

[CascadingParameter]
public KeyboardEventsProvider KeyboardEvents { get; set; } = default!;

protected async override Task OnInitializedAsync()
{
 KeyboardEvents.BindOnKeyUp(async (e) => await OnKeyUpDialog(e));
 ...
 await base.OnInitializedAsync();
}

TBU in Zlín, Faculty of Applied Informatics 53

public async Task OnKeyUpDialog(KeyboardEventArgs e)
{
 switch (e.Key)
 {
 case "Enter":
 await Submit();
 break;

 case "Escape":
 Cancel();
 break;

 default:
 return;
 }
}

TBU in Zlín, Faculty of Applied Informatics 54

6.2 BudgetTracker.Native

6.2.1 Overview

This project is built using the .NET MAUI framework and provides a cross-platform

implementation for both Windows and Android operating systems. It allows for direct

communication with the underlying hardware and operating system APIs, providing access

to device-specific features and capabilities. The project handles interactions with hardware

components, such as storage, sensors, etc. To communicate with the UI, it implements the

service interfaces defined in BudgetTracker.Shared. You can see the project structure in

Figure 18.

Figure 18 BudgetTracker.Native project structure

6.2.2 Stack

The project uses the following technologies:

• .NET 6

• .NET MAUI

• BudgetTracker.Shared as project reference

TBU in Zlín, Faculty of Applied Informatics 55

6.2.3 Entry point

• MauiProgram.cs

public static class MauiProgram
{
 public static MauiApp CreateMauiApp()
 {
 var builder = MauiApp.CreateBuilder();
 builder
 .UseMauiApp<App>()
 .ConfigureFonts(fonts =>
 {
 fonts.AddFont("OpenSans-Regular.ttf", "OpenSansRegular");
 });

 builder.Services.AddMauiBlazorWebView();

#if DEBUG
 builder.Services.AddBlazorWebViewDeveloperTools();
 builder.Logging.AddDebug();
#endif

 builder.Services.AddMudServices();

 builder.Services.AddScoped<ITransactionStorageService,
TransactionStorageService>();
 builder.Services.AddScoped<IShareService, ShareService>();
 builder.Services.AddScoped<IDeviceInfoService, DeviceInfoService>();

 return builder.Build();
 }
}

MauiProgram.cs is the file responsible for configuring the MauiApp instance, which is the

starting point for the application. It configures various parameters and adds services and

dependencies to the application's dependency injection container.

The code configures the app's fonts by adding a custom font file to the app's font collection.

It then adds the MauiBlazorWebView service to the application's services collection, which

ensures that Blazor web components are integrated into the Maui application.

The code adds developer tools for the Blazor web representation in debug mode, which can

be very useful in the development and testing phases of the application life cycle. These tools

give developers additional insight and visibility into the application's inner workings,

allowing them to identify and diagnose problems and bugs.

Finally, the code adds services to the application's collection of injections, including the

ITransactionStorageService, IShareService, and IDeviceInfoService, which are defined

in the BudgetTracker.Shared project.

TBU in Zlín, Faculty of Applied Informatics 56

• MainPage.xaml

<ContentPage xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:BudgetTracker"
 x:Class="BudgetTracker.MainPage"
 BackgroundColor="{DynamicResource PageBackgroundColor}">

 <BlazorWebView x:Name="blazorWebView" HostPage="wwwroot/index.html">
 <BlazorWebView.RootComponents>
 <RootComponent Selector="#app" ComponentType="{x:Type local:Main}" />
 </BlazorWebView.RootComponents>
 </BlazorWebView>

</ContentPage>

The file MainPage.xaml is a XAML file defining the main page of the MAUI application,

which is the content page hosting the BlazorWebView component. This component allows

the Blazor application to run inside the MAUI application, as discussed earlier in the

theoretical part of the thesis.

BlazorWebView is configured with the HostPage property, which defines the location of

the HTML file of the starting point of the Blazor application. The RootComponents

property represents the main Blazor component displayed in the web view.

• Index.html

<body>
 ...

 <div id="app">
 </div>

 <div id="blazor-error-ui">
 An unhandled error has occurred.
 Reload
 🗙
 </div>

 ...
</body>

This code represents the body section of the index.html file, which is the starting point of

the Blazor WebAssembly application.

The div with the id "app" is the root element where the Blazor WebAssembly application is

displayed. It is used to hold all of the application's user interface components.

The div with the id "blazor-error-ui" is used to display an error message if raw errors occur

during the execution of the application. The message will contain an option to reload the

application or skip the message.

TBU in Zlín, Faculty of Applied Informatics 57

• Main.razor

<Router AppAssembly="@typeof(Main).Assembly" AdditionalAssemblies="new[]
{typeof(BudgetTracker.Shared.MainLayout).Assembly}">
 <Found Context="routeData">
 <RouteView RouteData="@routeData"
DefaultLayout="@typeof(MainLayout)" />
 <FocusOnNavigate RouteData="@routeData" Selector="h1" />
 </Found>
 <NotFound>
 <LayoutView Layout="@typeof(BudgetTracker.Shared.MainLayout)">
 <p role="alert">Sorry, there's nothing at this address.</p>
 </LayoutView>
 </NotFound>
</Router>

This file is responsible for defining the top-level routing and layout of the application. It sets

up the Router component, which is responsible for handling URL-based navigation to

different pages on the client side.

The MainLayout component is defined in the BudgetTracker.Shared project, which is a

separate assembly from the Main component defined in the BudgetTracker.Native project.

By specifying typeof(MainLayout).Assembly in the AdditionalAssemblies parameter, the

Router component can find and display the MainLayout component in the

BudgetTracker.Shared assembly.

The Found block represents the content that should be displayed when the requested URL

matches a particular route and uses the RouteView component to display relevant content

based on the route data. It also includes a FocusOnNavigate component that sets the focus

to the first h1 element when navigating the page.

The NotFound block represents content displayed when the requested URL does not match

any defined route and uses the LayoutView component with a simple error message.

TBU in Zlín, Faculty of Applied Informatics 58

6.2.4 Platforms

The Platforms folder has subfolders for each specific platform that contain different

resources and manifests. In the context of Budget tracker, I only use Android and Windows

platforms because I don't have a machine with iOS installed, which is necessary for iOS

development, so I just removed the folders for the unused platforms. Still, you can see the

default Platforms folder structure in Figure 19.

Figure 19 default Platforms folder structure

• Android

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android">
 <application android:allowBackup="true" android:icon="@mipmap/appicon"
android:roundIcon="@mipmap/appicon_round"
android:supportsRtl="true"></application>
 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE" />
</manifest>

TBU in Zlín, Faculty of Applied Informatics 59

AndroidManifest.xml is a file that contains essential information about an Android app. It

acts as a blueprint for the app's entire structure and functionality and is used by the Android

operating system to determine how to launch, interact with, and manage the app.

colors.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <color name="colorPrimary">#757575</color>
 <color name="colorPrimaryDark">#212121</color>
 <color name="colorAccent">#757575</color>
</resources>

In the colors.xml file, it is possible to define colors for some native values, such as the color

of the notification panel at the top of the screen of an Android device.

• Windows

For Windows, Visual Studio 2022 has a menu interface, so you can access all the settings

through this window, as shown in Figure 20.

Figure 20 Package.appxmanifest window

TBU in Zlín, Faculty of Applied Informatics 60

6.2.5 Services

• ShareService.cs

The ShareService.cs is an implementation of the IShareService interface from the

BudgetTracker.Shared project.

ShareService.cs

public async Task ShareDataAsync()
{
 var file = await GetTransactionsFile();

 await Share.Default.RequestAsync(new ShareFileRequest
 {
 File = file
 });
}

Here you can see, that MAUI provides a Share class, whis allows to share any file by simply

calling the RequestAsync method. It is also possible to share text and multiple files. In

Figures 21 and 22 you can see the share menu on Windows and Android.

Figure 21 share menu on Windows

TBU in Zlín, Faculty of Applied Informatics 61

Figure 22 share menu on Android

ShareService.cs

private async Task<ShareFile> GetTransactionsFile()
{
 var directory = StorageService.GetDirectory();

 if (!File.Exists(directory))
 File.Create(directory).Close();

 var fileText = await File.ReadAllTextAsync(directory);

 string cacheFilePath = Path.Combine(FileSystem.Current.CacheDirectory,
"MyTransactions.bdtr");

 await File.WriteAllTextAsync(cacheFilePath, fileText);

 return new ShareFile(cacheFilePath, "application/bdtr");
}

Here is an example of using the FileSystem class, which provides easy access to specific

directories without worrying about different systems with different storage architectures.

TBU in Zlín, Faculty of Applied Informatics 62

ShareService.cs

public async Task ImportDataAsync()
{
 PermissionStatus status = await
Permissions.RequestAsync<Permissions.StorageRead>();

 if (status == PermissionStatus.Denied)
 return;

 var result = await FilePicker.Default.PickAsync(new PickOptions()
 {
 FileTypes = CustomFileType
 });

 if (result == null || result.FileName.Split('.').LastOrDefault() !=
"bdtr")
 return;

 using var streamReader = new StreamReader(await result.OpenReadAsync());

 var data = await streamReader.ReadToEndAsync();

 var transactions = ParseData(data);

 if (transactions == null)
 return;

 await StorageService.SaveTransactionsAsync(transactions);
}

Here you can see an example of using the Permissions class. It allows a developer to request

permissions from the user, such as storage reading, and validate them.

The next MAUI class here is the FilePicker, which is used to select a file with any custom

options, such as a custom file type, which can be declared as follows:

ShareService.cs

private readonly FilePickerFileType CustomFileType =
new(new Dictionary<DevicePlatform, IEnumerable<string>>

{
 { DevicePlatform.Android, new[] { "application/bdtr" } }, // MIME type
 { DevicePlatform.WinUI, new[] { ".bdtr" } }, // file extension
});

TBU in Zlín, Faculty of Applied Informatics 63

• TransactionStorageService.cs

This class is an implementation of the ITransactionStorageService interface from the

BudgetTracker.Shared project. For BudgetTracker.Native project it uses the external

storage of the user’s device. All transactions are saved in the MyTransactions.bdtr file,

which represents a JSON object.

The only thing here specifically from MAUI is the FileSystem class, which has already been

described before. In this service, it is used to get the direction of the application data folder.

TransactionStorageService.cs

private string TransactionsDirection { get; } =
 Path.Combine(FileSystem.Current.AppDataDirectory, "Transactions.bdtr");

Other methods just implement the usual CRUD operations (Create, Read, Update, Delete),

and there is nothing special about it.

• DeviceInfoService.cs

This class implements the IDeviceInfoService interface from the BudgetTracker.Shared

project.

DeviceInfoService.cs

public Task<DeviceType> GetDeviceTypeAsync()
{
 var deviceType = DeviceInfo.Current.Idiom;

 if (deviceType == DeviceIdiom.Phone || deviceType == DeviceIdiom.Tablet)
 return Task.FromResult(DeviceType.NativeMobile);

 else if (deviceType == DeviceIdiom.Desktop)
 return Task.FromResult(DeviceType.NativeDesktop);

 else
 return Task.FromResult(DeviceType.Unknown);
}

Here is an example of using the DeviceInfo class. This MAUI class allows you to read

information about the device on which the application is running. It can provide information

such as device platform (Android, Windows, iOS etc.), device idiom (phone, tablet, desktop

etc.), and device type (physical or virtual).

TBU in Zlín, Faculty of Applied Informatics 64

6.2.6 Resources

In this folder developers can store application icon, splash screen image, fonts and all

application images, as shown in Figure 23.

Figure 23 Resources folder structure

Then it is possible to bind the resources in the .csproj file:

BudgetTracker.Native.csproj

<ItemGroup>
 <!-- App Icon -->
 <MauiIcon Include="Resources\AppIcon\appicon.svg"
ForegroundFile="Resources\AppIcon\appiconfg.svg" Color="#FFFFFF" />

 <!-- Splash Screen -->
 <MauiSplashScreen Include="Resources\Splash\splash.svg" Color="#32333d"
BaseSize="1024,1024" />

 <!-- Images -->
 <MauiImage Include="Resources\Images*" />
 <MauiImage Update="Resources\Images\dotnet_bot.svg" BaseSize="168,208" />

 <!-- Custom Fonts -->
 <MauiFont Include="Resources\Fonts*" />

 <!-- Raw Assets (also remove the "Resources\Raw" prefix) -->
 <MauiAsset Include="Resources\Raw**"
LogicalName="%(RecursiveDir)%(Filename)%(Extension)" />
</ItemGroup>

You can see the App Icon on different platforms and the Splash Screen in Figures 25, 26 and

27.

TBU in Zlín, Faculty of Applied Informatics 65

Also in this file you can specify the application name, identifier and version:

<!-- Display name -->
<ApplicationTitle>Budget tracker</ApplicationTitle>

<!-- App Identifier -->
<ApplicationId>com.Gaas.budgettracker</ApplicationId>
<ApplicationIdGuid>E3DF3561-60A9-48DB-B558-1402A656330B</ApplicationIdGuid>

<!-- Versions -->
<ApplicationDisplayVersion>1.0</ApplicationDisplayVersion>
<ApplicationVersion>1</ApplicationVersion>

The Budget Tracker application icon is shown in Figure 24 and was taken from

svgrepo.com, where you can find a lot of free SVG images.

Link to the used icon: https://www.svgrepo.com/svg/223080/dollar-money

Figure 24 Budget tracker application icon

Figure 25 Budget tracker application icon on Windows

https://www.svgrepo.com/svg/223080/dollar-money

TBU in Zlín, Faculty of Applied Informatics 66

Figure 26 Budget tracker application icon on Android

Figure 27 Budget tracker splash screen on Android

TBU in Zlín, Faculty of Applied Informatics 67

6.3 BudgetTracker.Web

6.3.1 Overview

This project is a web version of the Budget Tracker application created using Blazor. It

allows you to host and access the application on a web server through a web browser,

providing cross-platform support for desktop and mobile devices. The project can also be

used to create a PWA, which allows you to install and use the app as a standalone application

on mobile devices. To communicate with the UI, it implements the service interfaces defined

in BudgetTracker.Shared.

The main goal of this project is to show that if you already have some UI written in Blazor,

you can quickly build two types of applications without difficulty. For example, you have a

web application written in Blazor, and one day you want it to be natively installed on your

phone, and this is where MAUI comes into play. It also works in reverse, and you can easily

create a web application from an existing MAUI Blazor project. You can see the project

structure in Figure 28.

Figure 28 BudgetTracker.Web project structure

TBU in Zlín, Faculty of Applied Informatics 68

6.3.2 Stack

The project uses the following technologies:

• .NET 6

• Blazor WebAssembly

• BudgetTracker.Shared as project reference

• BlazorDownloadFile as NuGet package

That library allows to download files from the browser without any JavaScript library

or dependency [49].

• Blazored.LocalStorage as NuGet package

That library provides access to the browsers local storage APIs for Blazor

applications. An additional benefit of using this library is that it will handle

serializing and deserializing values when saving or retrieving them [50].

TBU in Zlín, Faculty of Applied Informatics 69

6.3.3 Entry point

• Program.cs

var builder = WebAssemblyHostBuilder.CreateDefault(args);

builder.RootComponents.Add<App>("#app");
builder.RootComponents.Add<HeadOutlet>("head::after");

builder.Services.AddMudServices();

builder.Services.AddScoped(sp => new HttpClient { BaseAddress = new
Uri(builder.HostEnvironment.BaseAddress) });

builder.Services.AddBlazoredLocalStorage();
builder.Services.AddBlazorDownloadFile();

builder.Services.AddScoped<ITransactionStorageService,
TransactionStorageService>();
builder.Services.AddScoped<IShareService, ShareService>();
builder.Services.AddScoped<IDeviceInfoService, DeviceInfoService>();

await builder.Build().RunAsync();

This file is responsible for setting up the WebAssembly host and configuring services for

the application.

It first creates the default WebAssemblyHostBuilder and adds an App component as the

root component for the application that will be rendered in the index.html page with the

identifier "app". It also adds a HeadOutlet component to render header elements.

It then adds all the services the application needs, such as MudServices to use the MudBlazor

user interface library, BlazoredLocalStorage to handle the browser's local storage, and

BlazorDownloadFile to download files. It also registers custom services for the application,

such as ITransactionStorageService, IShareService, and IDeviceInfoService, defined in

the BudgetTracker.Shared project.

Finally, it builds the WebAssembly host and runs the application asynchronously.

• App.razor

This file is the same as the Main.razor file from the BudgetTracker.Native project, so here

is nothing new to discuss.

TBU in Zlín, Faculty of Applied Informatics 70

6.3.4 Services

• ShareService.cs

Since it is impossible to use the same share logic on the web, I have decided to allow users

to download the application data from the browser.

public async Task DownloadDataAsync()
{
 var keyName = StorageService.GetDirectory();

 if (!await LocalStorageService.ContainKeyAsync(keyName))
 return;

 var fileText = await LocalStorageService.GetItemAsStringAsync(keyName);

await FileDownloadService.DownloadFileFromText("MyTransactions.bdtr",
fileText, System.Text.Encoding.Unicode, "application/bdtr");

}

Here you can see how the BlazorDownloadFile and Blazored.LocalStorage packages

work. The developer can easily retrieve and install data in the browser's local storage and

then download any file using the needed method.

• DeviceInfoService.cs

The implementation just returns that the device type is Web.

public class DeviceInfoService : IDeviceInfoService
{
 public Task<DeviceType> GetDeviceTypeAsync()
 => Task.FromResult(DeviceType.Web);
}

• TransactionStorageService.cs

The only difference between the implementation here and the implementation in the

BudgetTracker.Native project is that here it is not possible to use external storage of the

user's device, so here we can only use the local storage of the browser like this:

var fileText = await LocalStorageService.GetItemAsStringAsync(KeyName);

for reading the data from storage.

await LocalStorageService.SetItemAsStringAsync(KeyName, serializedData);

for writing the data to storage.

TBU in Zlín, Faculty of Applied Informatics 71

6.3.5 Views

The following figures show how the application looks on the web and as a PWA.

Figure 29 Main window on web

As shown in Figure 29, you can install the application as a PWA, which you can see in

Figure 30. And this application will have a normal app icon, as shown in Figure 31.

TBU in Zlín, Faculty of Applied Informatics 72

Figure 30 Main window as PWA application

Figure 31 Budget tracker PWA icon on Windows

TBU in Zlín, Faculty of Applied Informatics 73

7 SUMMARIZING

7.1 Achieved results

The project has been successfully completed with the delivery of a fully functional and

standalone application capable of performing all its tasks. It has been developed using

modern development methodologies and best practices to ensure its stability, efficiency, and

ease of maintenance, ensuring that any future changes or upgrades can be easily

implemented without disrupting the existing system's functionality. The application is now

ready to be deployed and used by its target users, providing a reliable and effective tool for

tracking their budget.

7.2 Further development possibilities

Although the application is functional and appropriate, there is always room for

improvement, such as:

• Additional features

The current version of the app includes the essential features needed to track and manage

budgets, but there may be additional features that users would find helpful. For example,

providing multiple account support or the ability to create custom categories or generate

reports based on spending patterns may increase the app's usefulness.

• Integration with external services

The application can be enhanced by integrating with external services, such as banks or

financial institutions, to track transactions and update the budget automatically. This

would require secure data transfer and API integration.

• Localization

The application can be translated into several languages to suit users' needs in different

regions to increase its user base. This would require additional language resources and

adjustment of the user interface.

Thanks to the use of .NET MAUI and Blazor, adding these features and updating the

application will not be a problem. The modular architecture and shared code base of the

solution structure allow for easy implementation of new functionality through all platforms.

TBU in Zlín, Faculty of Applied Informatics 74

CONCLUSION

In this thesis, various modern application development methodologies have been reviewed.

A detailed analysis of their advantages and disadvantages was presented, and the current

state of technologies and frameworks for cross-platform application development was

reviewed. The focus was on the popular cross-platform framework .NET MAUI,

highlighting its work under the hood and the advantages and differences between MAUI and

its predecessor Xamarin. Furthermore, we looked at Blazor, an advanced framework that can

be used to develop web, cross-platform, and hybrid applications, and analyzed

WebAssembly as the key technology behind it.

In the analytical part, the Budget Tracker application using .NET MAUI and Blazor was

created to help users manage their finances by allowing them to track their expenses and

income. The thesis presented a complete analysis of the application development process,

providing insight into the key steps and considerations involved in developing cross-

platform applications. The Budget Tracker application demonstrated how cross-platform

application development can be used to create applications that meet users' needs on different

platforms.

Overall, this thesis has achieved its goal of providing valuable insight into current

application development methodologies and technologies, as well as demonstrating how

cross-platform application development can be used to create applications that meet the

users' needs on different platforms. The achieved results have provided an excellent

foundation for further development opportunities in this area.

TBU in Zlín, Faculty of Applied Informatics 75

BIBLIOGRAPHY

[1] What Is a Native App and How It Is Different from Hybrid and Web Apps? [online]. [cit.

2023-03-22]. Available from: https://www.mobileapps.com/blog/what-is-a-native-app

[2] Seven Reasons Why Native App Development is a Better Solution [online]. [cit. 2023-

03-22]. Available from: https://appinventiv.com/blog/seven-reasons-native-app-

development-better-solution/

[3] Native App Development vs Hybrid and Web App Building [online]. [cit. 2023-03-22].

Available from: https://mlsdev.com/blog/native-app-development-vs-web-and-hybrid-app-

development

[4] Explore Advantages and Disadvantages of Native App Development [online]. [cit. 2023-

03-22]. Available from: https://www.tigren.com/blog/advantages-and-disadvantages-of-

native-app-development/

[5] The Pros and Cons of Native Apps [online]. [cit. 2023-03-22]. Available from:

https://clutch.co/app-developers/resources/pros-cons-native-apps

[6] What are the Pros and Cons of Hybrid App Development? [online]. [cit. 2023-03-22].

Available from: https://www.rswebsols.com/tutorials/software-tutorials/pros-cons-hybrid-

app-development

[7] Advantages & Disadvantages of Hybrid App Development [online]. [cit. 2023-03-22].

Available from: https://www.appoly.co.uk/2021/01/10/advantages-disadvantages-of-

hybrid-app-development/

[8] The biggest advantages and disadvantages of hybrid apps [online]. [cit. 2023-03-22].

Available from: https://zudu.co.uk/blog/hybrid-apps-pros-and-cons/

[9] 11 Advantages of Cross-Platform App Development [online]. [cit. 2023-03-22].

Available from: https://blog.felgo.com/cross-platform-app-development/advantages

[10] Q&A on Cross-Platform App Development: Pros & Cons Revealed [online]. [cit. 2023-

03-22]. Available from: https://www.rishabhsoft.com/blog/pros-cons-cross-platform-

mobile-app-development

[11] Advantages & Disadvantages Of Developing Cross-Platform Apps [online]. [cit. 2023-

03-22]. Available from: https://www.exeideas.com/2022/01/advantages-disadvantages-of-

cross-platform-apps.html

https://www.mobileapps.com/blog/what-is-a-native-app
https://appinventiv.com/blog/seven-reasons-native-app-development-better-solution/
https://appinventiv.com/blog/seven-reasons-native-app-development-better-solution/
https://mlsdev.com/blog/native-app-development-vs-web-and-hybrid-app-development
https://mlsdev.com/blog/native-app-development-vs-web-and-hybrid-app-development
https://www.tigren.com/blog/advantages-and-disadvantages-of-native-app-development/
https://www.tigren.com/blog/advantages-and-disadvantages-of-native-app-development/
https://clutch.co/app-developers/resources/pros-cons-native-apps
https://www.rswebsols.com/tutorials/software-tutorials/pros-cons-hybrid-app-development
https://www.rswebsols.com/tutorials/software-tutorials/pros-cons-hybrid-app-development
https://www.appoly.co.uk/2021/01/10/advantages-disadvantages-of-hybrid-app-development/
https://www.appoly.co.uk/2021/01/10/advantages-disadvantages-of-hybrid-app-development/
https://zudu.co.uk/blog/hybrid-apps-pros-and-cons/
https://blog.felgo.com/cross-platform-app-development/advantages

TBU in Zlín, Faculty of Applied Informatics 76

[12] The Six Most Popular Cross-Platform App Development Frameworks [online]. [cit.

2023-03-22]. Available from: https://kotlinlang.org/docs/cross-platform-

frameworks.html#react-native

[13] What is .NET MAUI? [online]. [cit. 2023-03-22]. Available from:

https://learn.microsoft.com/en-us/dotnet/maui/what-is-maui?view=net-maui-7.0

[14] What is Kotlin Multiplatform Mobile (KMM)? [online]. [cit. 2023-03-22]. Available

from: https://kotlinlang.org/lp/mobile/

[15] Flutter [online]. [cit. 2023-03-22]. Available from: https://flutter.dev/

[16] React Native [online]. [cit. 2023-03-22]. Available from: https://reactnative.dev/

[17] Ionic [online]. [cit. 2023-03-22]. Available from: https://ionic.io/framework

[18] Cross-platform mobile frameworks used by software developers worldwide from 2020

to 2021 [online]. [cit. 2023-03-22]. Available from:

https://www.statista.com/statistics/869224/worldwide-software-developer-working-hours/

[19] What is an Operating System? [online]. [cit. 2023-03-22]. Available from:

https://www.howtogeek.com/361572/what-is-an-operating-system/

[20] What is Operating System? Explain Types of OS, Features and Examples [online]. [cit.

2023-03-22]. Available from: https://www.guru99.com/operating-system-tutorial.html

[21] Operating System Market Share Worldwide [online]. [cit. 2023-03-22]. Available from:

https://gs.statcounter.com/os-market-share#yearly-2010-2023

[22] What is Windows? [online]. [cit. 2023-03-22]. Available from:

https://www.computerhope.com/jargon/w/windows.htm

[23] macOS [online]. [cit. 2023-03-22]. Available from:

https://en.wikipedia.org/wiki/MacOS

[24] What is macOS? [online]. [cit. 2023-03-22]. Available from:

https://www.techtarget.com/whatis/definition/Mac-OS

[25] What is Linux? [online]. [cit. 2023-03-22]. Available from:

https://www.linux.com/what-is-linux/

[26] What is Linux? [online]. [cit. 2023-03-22]. Available from:

https://www.redhat.com/en/topics/linux/what-is-linux

https://kotlinlang.org/docs/cross-platform-frameworks.html#react-native
https://kotlinlang.org/docs/cross-platform-frameworks.html#react-native
https://learn.microsoft.com/en-us/dotnet/maui/what-is-maui?view=net-maui-7.0
https://kotlinlang.org/lp/mobile/
https://flutter.dev/
https://reactnative.dev/
https://ionic.io/framework
https://www.statista.com/statistics/869224/worldwide-software-developer-working-hours/
https://www.howtogeek.com/361572/what-is-an-operating-system/
https://gs.statcounter.com/os-market-share#yearly-2010-2023
https://www.computerhope.com/jargon/w/windows.htm
https://en.wikipedia.org/wiki/MacOS
https://www.techtarget.com/whatis/definition/Mac-OS
https://www.linux.com/what-is-linux/
https://www.redhat.com/en/topics/linux/what-is-linux

TBU in Zlín, Faculty of Applied Informatics 77

[27] What is Android? [online]. [cit. 2023-03-22]. Available from:

https://www.android.com/what-is-android/

[28] Android [online]. [cit. 2023-03-22]. Available from:

https://en.wikipedia.org/wiki/Android_(operating_system)

[29] iOS [online]. [cit. 2023-03-22]. Available from:

https://www.techopedia.com/definition/25206/ios

[30] iOS [online]. [cit. 2023-03-22]. Available from: https://en.wikipedia.org/wiki/IOS

[31] Benefits of using .NET MAUI [online]. [cit. 2023-03-22]. Available from:

https://www.slideshare.net/narolainfotechnarola/benefits-of-using-net-maui

[32] What Is .NET MAUI And Should You Use It? [online]. [cit. 2023-03-22]. Available

from: https://xam.com.au/what-is-net-maui-and-should-you-use-it/

[33] Why is .NET MAUI the best tool for cross-platform mobile development? [online]. [cit.

2023-03-22]. Available from: https://luismts.com/dotnet-maui-best-tool-for-mobile-

development/

[34] .NET MAUI and the future of Xamarin [online]. [cit. 2023-03-22]. Available from:

https://innowise-group.com/blog/net-maui-vs-xamarin/

[35] .NET MAUI Vs Xamarin.Forms: A Comparison of Cross-Platform Frameworks

[online]. [cit. 2023-03-22]. Available from: https://grialkit.com/blog/learn-the-key-

differences-between-net-maui-vs-xamarin-forms-for-cross-platform-mobile-and-desktop-

development

[36] Xamarin Versus .NET MAUI [online]. [cit. 2023-03-22]. Available from:

https://www.syncfusion.com/blogs/post/xamarin-versus-net-maui.aspx

[37] Blazor Hybrid Web Apps with .NET MAUI [online]. [cit. 2023-03-22]. Available from:

https://www.codemag.com/Article/2111092/Blazor-Hybrid-Web-Apps-with-.NET-MAUI

[38] Sharing Code with Blazor & .NET MAUI [online]. [cit. 2023-03-22]. Available from:

https://www.telerik.com/blogs/sharing-code-blazor-dotnet-maui

[39] ASP.NET Core Blazor [online]. [cit. 2023-03-22]. Available from:

https://learn.microsoft.com/en-us/aspnet/core/blazor/?view=aspnetcore-3.1

[40] WebAssembly FAQ [online]. [cit. 2023-03-22]. Available from:

https://webassembly.org/docs/faq/

https://www.android.com/what-is-android/
https://en.wikipedia.org/wiki/Android_(operating_system)
https://www.techopedia.com/definition/25206/ios
https://en.wikipedia.org/wiki/IOS
https://www.slideshare.net/narolainfotechnarola/benefits-of-using-net-maui
https://xam.com.au/what-is-net-maui-and-should-you-use-it/
https://luismts.com/dotnet-maui-best-tool-for-mobile-development/
https://luismts.com/dotnet-maui-best-tool-for-mobile-development/
https://innowise-group.com/blog/net-maui-vs-xamarin/
https://grialkit.com/blog/learn-the-key-differences-between-net-maui-vs-xamarin-forms-for-cross-platform-mobile-and-desktop-development
https://grialkit.com/blog/learn-the-key-differences-between-net-maui-vs-xamarin-forms-for-cross-platform-mobile-and-desktop-development
https://grialkit.com/blog/learn-the-key-differences-between-net-maui-vs-xamarin-forms-for-cross-platform-mobile-and-desktop-development
https://www.syncfusion.com/blogs/post/xamarin-versus-net-maui.aspx
https://www.codemag.com/Article/2111092/Blazor-Hybrid-Web-Apps-with-.NET-MAUI
https://www.telerik.com/blogs/sharing-code-blazor-dotnet-maui
https://learn.microsoft.com/en-us/aspnet/core/blazor/?view=aspnetcore-3.1

TBU in Zlín, Faculty of Applied Informatics 78

[41] What Is WebAssembly, and Should You Use It? [online]. [cit. 2023-03-22]. Available

from: https://www.howtogeek.com/devops/what-is-webassembly-and-should-you-use-it/

[42] What Is WebAssembly and Why Do You Need It? [online]. [cit. 2023-03-22]. Available

from: https://thenewstack.io/what-is-webassembly-and-why-do-you-need-it/

[43] Why WebAssembly? Top 11 Wasm benefits [online]. [cit. 2023-03-22]. Available

from: https://www.theserverside.com/tip/Why-WebAssembly-Top-Wasm-benefits

[44] Webassembly vs. JavaScript: How Do They Compare [online]. [cit. 2023-03-22].

Available from: https://snipcart.com/blog/webassembly-vs-javascript

[45] What are disadvantages of WebAssembly compared to current HTML/JS? [online]. [cit.

2023-03-22]. Available from: https://www.quora.com/What-are-disadvantages-of-

WebAssembly-compared-to-current-HTML-JS

[46] MudBlazor [online]. [cit. 2023-04-18]. Available from: https://mudblazor.com/

[47] MudBlazor GitHub [online]. [cit. 2023-04-18]. Available from:

https://github.com/MudBlazor/MudBlazor/

[48] MudBlazor Icons [online]. [cit. 2023-04-20]. Available from:

https://mudblazor.com/features/icons#icons

[49] BlazorDownloadFile [online]. [cit. 2023-04-25]. Available from:

https://github.com/arivera12/BlazorDownloadFile

[50] BlazoredLocalStorage [online]. [cit. 2023-04-25]. Available from:

https://github.com/Blazored/LocalStorage

https://www.howtogeek.com/devops/what-is-webassembly-and-should-you-use-it/
https://thenewstack.io/what-is-webassembly-and-why-do-you-need-it/
https://snipcart.com/blog/webassembly-vs-javascript
https://www.quora.com/What-are-disadvantages-of-WebAssembly-compared-to-current-HTML-JS
https://www.quora.com/What-are-disadvantages-of-WebAssembly-compared-to-current-HTML-JS
https://mudblazor.com/
https://github.com/MudBlazor/MudBlazor/
https://mudblazor.com/features/icons#icons
https://github.com/arivera12/BlazorDownloadFile

TBU in Zlín, Faculty of Applied Informatics 79

LIST OF ABBREVIATIONS

API - Application Programming Interface

CRUD - Create, Read, Update, Delete

CSS - Cascading Style Sheets

GPU - Graphics Processing Unit

GPS - Global Positioning System

HTML - Hypertext Markup Language

MAUI - Multi-platform App User Interface

PWA – Progressive Web Application

SDK - Software Development Kit

SVG - Scalable Vector Graphics

UI - User Interface

XAML - Extensible Application Markup Language

TBU in Zlín, Faculty of Applied Informatics 80

LIST OF FIGURES

Figure 1 Cross-platform mobile frameworks used by software developers worldwide from

2020 to 2021 [18] ... 19

Figure 2 Operating System Market Share Worldwide [21] ... 20

Figure 3 Xamarin Renderer Architecture [36] ... 26

Figure 4 .NET MAUI Handler Architecture [36] .. 26

Figure 5 The working principle of Blazor WebAssembly [39] ... 27

Figure 6 Solution structure .. 32

Figure 7 BudgetTracker.Shared project structure .. 33

Figure 8 Main window for month transactions displaying .. 39

Figure 9 Main window for year transactions displaying ... 41

Figure 10 TransactionComponent components inside of the main window 42

Figure 11 TransactionDialog component for creating a new transaction 44

Figure 12 Opened date picker on DateMover component for month transactions displaying

 ... 46

Figure 13 Opened date picker on DateMover component for year transactions displaying 46

Figure 14 TransactionComponent ... 47

Figure 15 Selecting a transaction type in the TransactionDialog component 48

Figure 16 Invalid input in the TransactionDialog component ... 49

Figure 17 TransactionDialog component for transaction editing .. 49

Figure 18 BudgetTracker.Native project structure .. 54

Figure 19 default Platforms folder structure .. 58

Figure 20 Package.appxmanifest window ... 59

Figure 21 share menu on Windows ... 60

Figure 22 share menu on Android ... 61

Figure 23 Resources folder structure ... 64

Figure 24 Budget tracker application icon ... 65

Figure 25 Budget tracker application icon on Windows ... 65

Figure 26 Budget tracker application icon on Android ... 66

Figure 27 Budget tracker splash screen on Android .. 66

Figure 28 BudgetTracker.Web project structure ... 67

Figure 29 Main window on web .. 71

Figure 30 Main window as PWA application .. 72

Figure 31 Budget tracker PWA icon on Windows .. 72

TBU in Zlín, Faculty of Applied Informatics 81

APPENDICES

Appendix P I: CD with the source code of the application.

