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ABSTRAKT 

Cílem této diplomové práce je prostudovat a popsat vzájemnou souvislost mezi dynamikou 

evolučních algoritmů a komplexními sítěmi. Pro samotné testování byl pořízen soubor 

reálných dat týkajících se citací mezi členy katedry FAI UTB k vytvoření reálné citační síě. 

V rámci řešení této diplomové práce byl poté prověřen a implementován systém pro 

zachycení dynamiky algoritmu PSO (Particle Swarm Optimization) a především pak 

transformace zachycené dynamiky do podoby komplexní sítě. Originálním přínosem této 

práce je, že hyperparametry algoritmu PSO jsou optimalizovány pomocí různých technik 

tak, aby zachycená dynamika algoritmu PSO co nejblíže odpovídala citační síti vytvořené z 

reálných dat. Nakonec jsou porovnány provedené předpovědi dynamiky zachycené 

algoritmem PSO a pomocí regresních modelů za krátké období. 

 

Klíčová slova: Optimalizace rojením částic, evoluční algoritmy, regresní modely, komplexní 

sítě, citační sítě.  

 

ABSTRACT 

The goal of this thesis is to study and understand the mutual connection between 

evolutionary algorithms and complex networks. To begin with, a set of real data is taken 

related to citation between the faculty members from department of Informatics and 

Artificial Intelligence, UTB and a citation network is created. Then a system is implemented 

to capture the dynamics of Particle Swarm Optimization (PSO) algorithm and transform the 

captured dynamics into complex network. The original contribution of this work is that the 

hyperparameters of the PSO algorithm are then optimized using different techniques, so that 

the captured dynamics of the PSO algorithm correspond closer to citation network created 

from real data. At last predictions are made about the dynamics captured from the PSO 

algorithm using regression models over a period. 

 

Keywords: Particle Swarm Optimization, Evolutionary Algorithms, Regression models, 

Complex network, Citation network. 
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INTRODUCTION 

Considering real-world problems like traffic optimization, internet routing, supply chain 

optimization, epidemiology, and so on, these problems affect our daily lives in one way or 

another. Therefore, solving these categories of problems is essential to improve our living 

standards and sustainability. All these problems and many others can be transformed into 

networks by abstracting the underlying details and using some general methods for solving 

and analysis. This analysis can help us understand the problem in detail and improve the 

existing solution. Solutions using a complex network to solve such problems and analysis is 

of growing interest among the research community [1]. 

Complex networks are everywhere, from artificial networks like railway and social networks 

to natural networks like protein-protein interaction networks, neural networks, etc. On the 

other hand, evolutionary algorithms are inspired by biological evolution and are powerful 

computational tools for problem-solving and optimization. Understanding the connection 

between the two fields of study can help us solve the problem better by converting the 

problem as a network, and the algorithm could be better fine-tuned to a specific problem or 

improve the overall robustness or performance. 

The primary objective of this thesis is to examine the mutual relationship between 

Evolutionary algorithms and complex networks. The intention is to leverage the 

characteristics of complex networks to understand the dynamics of Evolutionary algorithms 

better and make predictions concerning the dynamics of the network structures captured 

from these algorithms. The goals of this thesis are divided as follows: 

• Develop a literature search on the given topic. 

• Build a complex network model based on real data. 

• Design a system for transforming the dynamics of the selected evolutionary 

algorithm into a suitable representation using a complex network. 

• Analyze the settings of the control parameters of the algorithm and the choice of test 

problems so that the dynamics of the algorithm transformed into the form of a 

complex network correspond to the real network model.  

• Verify the possibilities of predicting the dynamics of a complex network based on 

the created model and make a conclusion. 
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The thesis starts with the literature survey, where all the theoretical concepts needed in the 

thesis are presented in detail. The literature part mainly deals with complex networks and 

concepts related to heuristics. The practical part begins with section 3, where a citation 

network is created based on real data. It is followed by section 4, using a methodology for 

capturing the dynamics of evolutionary algorithms and creating a complex network based 

on the dynamics. The parameters of the evolutionary algorithms are then optimized using 

different techniques in section 5. Finally, section 6 focuses on predicting the complex 

network's behavior by applying various methods over a designated timeframe. 

The research presented in this thesis may help other readers to gain knowledge about 

understanding the usage of complex networks along with evolutionary algorithm to capture 

dynamics and make some predictions about the dynamics of evolution algorithms.  
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1 COMPLEX NETWORKS 

This section concerns the theory related to complex networks [2]. It starts with a background 

about networks in general and the history behind the usage of networks, important 

terminologies, and parameters concerning networks and network models. It also focuses on 

the characteristics of network models. The section also discusses complex networks, their 

characteristics, and network centralities.  

1.1 Networks - meaning and definition. 

As per the definition of the word network from the Cambridge dictionary [3] “a large system 

consisting of many similar parts that are connected together to allow movement or 

communication between or along the parts, or between the parts and a control center” 

With the definition mentioned above, the general opinion about a network is that it is viewed 

as several objects connected. Referring to this basic definition, the connection or 

interconnection of objects is the most crucial attribute of a network. [3] 

Networks are everywhere railways, friends, phone networks, electric grids, friends 

connected on social media representing the social network, and many networks out there. 

Therefore, networks are an excellent universal abstract representation of a particular system. 

The crucial property of networks is that there is a general method to represent any given 

system (natural or artificial) by abstracting the underlying details, which helps understand 

the system's behavior - Universal Abstract representation. Most networks from real-world 

data represent some part with regularity and others with randomness; hence such networks 

are not regular but not random. The networks can help us understand the system's behavior 

and the reason for these regularities and differences. Surprisingly, networks from various 

fields of science and biology, like social networks, metabolic networks, biological networks, 

transportation networks, and so on, possess very similar properties (Global Properties of 

Networks). Networks, in general, are complex systems, which means if one takes the system 

and cuts it into pieces, one can study each piece separately. But we need to find out how the 

system works overall. Therefore, one needs to study the system wholistically as in its 

entirety. For example: like humans are complex systems, you can study how the kidneys, 

eyes, brains work, etc. But studying each of the organs does not tell how humans work. [4] 

Generalizing the concept of a network in technical terms: Most systems can be graphically 

represented as a network consisting of nodes(vertices) that designate entities, and these 
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nodes are connected using links (edges, relations); for example, a network of computers 

where computers are nodes and the connection between them are cables. The entities (or 

nodes) represent any object like railway stations connected by railway lines (links), routers 

connected by cables, hyperlinks of webpages connected by URL, and so on. [4] 

Network and graph are the terms that are used interchangeably in the literature. Euler was 

the first who introduce the concept of a graph in 1735 to solve the problem related to the 

seven bridges in the East Prussian city of Königsberg. The problem was finding a path 

through the seven bridges traversing over the river Pregel and an island, Kneiphof, such that 

one should cross each bridge once and only once. Figure 1 shows Euler's idea of 

transforming the seven-bridge problem into a graph. [5] 

 

 

    Figure 1: Representing Euler’s idea transforming seven bridge problem into a graph [6] 

 

Euler abstracted the real problem as a graph with nodes representing a piece of land on the 

island and edges representing bridges connecting the island. Euler suggested two solutions 

to the seven-bridge problem mentioned above: Firstly, a graph can be traversed without 

passing twice on the same edge if all its nodes have an even number of connections (degree 

of the node). Secondly, if two of them have an odd number of connections, it is necessary 

for this second solution that one starts from one of the two nodes with an odd number of 

connections ending the walk on the other one. This concept of abstraction into a graph 

introduced by Euler was so elegant that it could help solve a wide range of similar classes of 

problems that fall under this category. [5] 

Links or connection between the nodes plays a major role in network classification. This 

classification depends on the weight of the link and the type of link. The weight of a link is 

some positive number assigned to the link, and the network is called a weighted 

network. Weight can represent various real-world concepts like the interaction between the 
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entities, the transfer of information in a certain time interval, etc. The type of link also differs 

in a network; if two nodes are connected using a simple line, then it is a simple network. If 

nodes are connected using some directed lines, then it is called a directed network, and 

similarly undirected network for undirected links between the nodes. There are also a pseudo 

networks in which one node is connected to itself using links, and such links are called self-

loops. [7] 

 

 

 

Figure 2: Types of networks based on links between the nodes - top leftmost 

is simple network, top rightmost is multi-link network, bottom leftmost is directed 

network and bottom rightmost is self-loop or pseudo network. 
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Figure 3: Network with weights on edges. 

The weight of the edge can also be used to represent the number of links or interactions 

between the two nodes. The thicker the edge between the node the more is the interaction 

between the nodes. As shown in the Figure 3, the red line indicates the edge with more 

weight and hence more edges between the nodes 4 and 5, than other nodes. Apart from nodes 

and edges, some other vital concepts help understand a network. These include a description 

of nodes, their connections, and their role in a network. [7] 

 

1.2 Network models 

Network models are graph models with specific characteristics that help us categorize a 

network. Some of the standard network models are as follows: 

1.2.1 Random Network model 

This model is also called the Erdős-Rényi network after the name of the mathematicians that 

helped in understanding this network [8]. Random networks are the networks created by 

randomly placing links between the nodes. It has two definitions proposed: 

a) G (N, L) model: The number of nodes N are randomly connected to links L. The 

average node degree is fixed for a particular node and is calculated as ‹k› = 2m/n. 

b) G (N, p) model: The set of nodes N are connected based on probability p. The 

probability that two nodes are connected is fixed. 

The steps to construct a random network are as follows: 

• Given N disconnected nodes. 

• For each pair of nodes, randomly generate a number between 0 and 1. If the number 

exceeds fixed probability p, then the nodes are connected; otherwise, they are not. 
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• The second step is repeated for each N(N-1)/2 pairs of nodes. 

 

Figure 4: Random networks with same probability and number of nodes  [9] 

 

Random networks are truly random in nature, the above Figure 4 shows three networks with 

the same probability and number of nodes as p=1/6 and N=12 but different networks are 

created even though there are same parameters. [9] 

The typical characteristics of a Random Network are as follows  [9]: 

• High node degree, which corresponds to a short average path length. 

• Degree distribution follows Normal Distribution. 

• Small Betweenness centrality. 

• High Transitivity. 
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Figure 5: Degree distribution for Random networks  [9] 

 

The above Figure 5 shows degree distribution for random networks, as shown the 

distribution follows Normal distribution. 

 

1.2.2 Small World Network 

The small-world networks are based on the small-world phenomenon (also named as six 

degrees of separation), which states that everyone in this world can meet any other 

individual with just six acquaintances (handshakes) between them. And the individuals 

living in the same city are just a few handshakes away from each other.  [9] 

The small world networks generate lattice, nodes are initially linked to k closest neighbors 

and apply rewiring probability. 
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Figure 6: Degree distribution for typical small world network [9] 

 

The Figure 6 above shows degree distribution of a sample small world network, as seen 

from the figure the degree distribution follows Poisson Distribution. 

The characteristics of small-world networks are: [9] 

• Small node degree because they follow “six-degree separation” principle. 

• Degree distribution follows Poisson Distribution. 

• Betweenness smaller than Scale free. 

• Transitivity: smaller than Random, Higher than scale-free. 

 

1.2.3 Scale Free Networks 

Scale-free networks have few nodes with large node degrees and many nodes with small 

node degrees (80/20 rule). This node degree distribution is an essential feature for a scale-

free network, and it makes the scale-free networks robust and resilient, as the failure of one 

node will not lead to the collapse of the entire network. [9] 

The scale-free networks are the networks with following properties [9] 

• Relatively smallest node degrees.  

• The degree distribution follows a Power law. 

• Highest betweenness centrality and  
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• Smallest transitivity. 

 

The scale-free network working principle is as follows: taking nodes and start connecting 

these nodes with the main idea that if a node has a high degree, then the probability that a 

new link is attached to that node is higher than what it is for a node that has a lower degree. 

In short, the probability that a node is connected to another node is proportional to its degree. 

Forming a scale-free network using the above method translates into the Preferential 

Attachment principle, where the rich get richer. [9] 

 

Figure 7: Degree Distribution for sample scale free network  [9] 

 

Using this approach, generating a network whose degree distribution follows a Power law. 

The power law is essentially what is seen in the Figure 7. If a network is directed, the scale-

free property applies separately to the in- and the out-degrees. 

 

1.3 Important terminology about networks/graphs. 

This sub-section is related to important terminology and properties of a network. These 

properties help in understanding the behavior of the network and make some estimations. 

Adjacent nodes: Adjacent nodes are the ones which are connected by the same common 

edge. [9] 

Incident node: If a node is placed on an edge, then it is called incident. [9] 
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Degree: The total number N of edges or links connected to a node represents degree 𝑘𝑖 of a 

node 𝑣𝑖. The equation (1) Error! Reference source not found. shows the degree of a node. 

[9] 

 

    𝑘𝑖 = |𝑁(𝑣𝑖)|  (1) 

 

Average node degree: Average node degree is the average of degrees of all the nodes in a 

graph. If average node degree is represented by <k> then it also equals to twice the total 

degree m of the node divided by the number of nodes n. Average node degree can even be 

shown as twice the number of edges 𝐸 divided by the number of total number of vertices V. 

The equation (2) shows all the relations mentioned. [9] 

 

 < k >=
1

𝑛
∑ 𝑘𝑖 =

2𝑚

𝑛
=

2|𝐸|

|𝑉|𝑖
 

 

(2) 

 

Incoming degree: Incoming node degree is the total count of edges directed to node. 

Outgoing degree: Outgoing node degree is the total count of edges directed away from the 

node. 

In a directed graph total node degree 

 𝑘𝑖 = Incoming degree (𝑘𝑖
𝑖𝑛) + Outgoing degree (𝑘𝑖

𝑜𝑢𝑡)) 

 

(3) 

 

The average of incoming degrees < 𝑘𝑖
𝑖𝑛 > and outgoing degrees < 𝑘𝑖

𝑜𝑢𝑡 > in a directed 

graph are also equal.  [9] 

 

 

 < 𝑘𝑖
𝑖𝑛 >=

1

𝑛
∑ 𝑘𝑖

𝑖𝑛 =< 𝑘𝑖
𝑜𝑢𝑡 >=

1

𝑛
∑ 𝑘𝑖

𝑜𝑢𝑡 =
𝑚

𝑛
=

𝐸|

|𝑉|𝑖
   

𝑖
 

 

(4) 

 

Degree distribution: Degree distribution in simple terms is counting how many nodes of 

which node degree is present in a graph. In a connected graph minimum degree of each node 

is 1 (because each node is connected at-least once) and with every degree there will be certain 
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number of nodes with that degree. So degree distribution 𝑃(𝑘) 𝑜𝑟 𝑃𝑘 is just fraction of nodes 

with a particular degree. If 𝑘𝑖 is node degree and 𝑛𝑘 is number of nodes which has degree k 

and total nodes 𝑛 = ∑ 𝑛𝑘𝑘  then degree distribution is a ratio of nodes with degree k to the 

total number of nodes n. 

 𝑃(𝑘) = 𝑃𝑘 =
𝑛𝑘

∑ 𝑛𝑘𝑘
=

𝑛𝑘

𝑛
 

 

(5) 

The node degree is important in a graph with small number of nodes and degree distribution 

is important when there are large number of nodes. The Figure 8 shows a sample network 

and corresponding degree distribution. 

 

Figure 8: Sample network and corresponding degree distribution 

Path: A path is a track of edges that connects two vertices. A graph is called connected if 

there is a path in between two vertices in that network. Graph may have one portion as 

connected and some portion not connected to the main graph, then the maximum portion of 

the graph which is connected (leaving smaller portion which is not connected) is called 

Connected component.   [9] 

Distance: In a connected component (or connected graph), the distance 𝑑𝐺(𝑣𝑖 , 𝑣𝑗)between 

the nodes is the count of edges in the shortest path between two nodes 𝑣𝑖 and 𝑣𝑗  in a graph. 

[9] 

Diameter: Diameter is a parameter for a graph denoted by D, it is the longest shortest path 

in that graph for a pair of nodes. The diameter represents any longest path (smallest path) 

between two nodes in a particular graph. The diameter of a graph can be misleading 

sometimes because it gives information only about the largest shortest path in a graph while 

other parts of the graph may have smaller diameter. [9] 

 𝐷 = 𝑚𝑎𝑥𝑖.𝑗𝑑𝐺(𝑣𝑖 , 𝑣𝑗) 
(6) 
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Average path length: Average path length denoted by <L> for a graph is the average number 

of edges needed to travel from one node to another. This parameter is preferred over the 

diameter of a graph because average path length can smaller while still diameter is higher. 

 < 𝐿 >=
1

𝑛(𝑛 − 1)
∑ 𝑑𝐺(𝑣𝑖, 𝑣𝑗)

𝑖≠𝑗
 

 

(7) 

Transitivity or global clustering coefficient: Transitivity T of a graph is a property that tells 

us how many triangles there in a graph are. If the node i is connected to j and j is connected 

to h, then i is connected to h. Transitivity is a global matric and gives information about the 

entire graph. [9] 

 𝑇 =
3 x 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠(𝑡𝑟𝑖𝑎𝑑𝑠)

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑠 𝑜𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠
 

 

(8) 

 

Figure 9:  Graphs representing transitive and intransitive networks. 

 

Clustering coefficient or Local clustering coefficient: Clustering coefficient parameter is 

related to nodes in a network. It is a fraction of the number of links between nodes in the 

neighborhood to the maximum possible (total possible) number of nodes. In simple terms 

clustering coefficient is about how the triangles are present around a particular node i.e., if 

a particular node belongs to all possible triangles that could exist around it or not. As an 

analogy to understand the clustering coefficient, for example, in a social network like 

Facebook, a friend of your friend may be your friend, or two of your friends might be direct 

friends. [9] 
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 𝐶𝑖 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑖𝑛𝑘𝑠 𝑖𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑖𝑛𝑔 𝑛𝑜𝑑𝑒𝑠 𝑜𝑓 𝑎 𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟 𝑛𝑜𝑑𝑒 𝑖

𝑘𝑖(𝑘𝑖 − 1)
2⁄

 

 

(9) 

 

 

Figure 10: Sample graphs for clustering coefficients [12] 
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𝑛

𝑖=1

 
(10) 

1.4 Characteristics of Complex Networks and Centralities 

This sub-section is concerned with characteristics of complex networks, followed the 

different centrality measured used in this thesis. The centralities discussed are limited and 

specific to what is used in the practical part, there are other centralities, but they are out of 

scope for this study. 

The distinct properties that most complex networks possess are as follows  [9]: 

• Scale-free networks: In mathematical terms, the graph of the node degree distribution 

follows a specific shape known as the Power law. So most complex networks show 

a resemblance to power law distribution shape. 

• Small-world networks: Complex networks generally have small diameters and small 

average path lengths, which means these networks are generally very tight. That 

means traveling from one node to another will take very few steps. 

• Transitive networks: Complex networks possess a high clustering coefficient, which 

means there are seen many triangles in a complex network. 
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1.4.1 Node centrality 

Node centrality is a measure that helps understand the node's role in each network. These 

centrality measures are essential for analyzing various network tasks like the importance of 

nodes, network behavior, how individual nodes are arranged in a network, and understanding 

what's happening in the network. There are many centrality measures in the literature and 

the usage of each measure depends on what is being looked for in the network; the most 

common and important ones are as follows. [7] 

1.4.1.1 Degree Centrality 

The most basic centrality measure for a node is the degree centrality 𝐶𝐷. It is calculated as 

the number of edges 𝑘 connected from the node i to node j. The following are the 

mathematical expressions to calculate the degree centrality for an undirected graph is shown 

in equation (11). 

 𝐶𝐷(𝑖) = 𝑘(𝑖) = ∑ 𝐶𝑗𝑖

𝑗

=  ∑ 𝐶𝑖𝑗

𝑗

 (11) 

Normalized degree centrality 𝐶𝐷
∗  is given by equation (12) for n nodes in the network: 

 

 𝐶𝐷
∗ (𝑖) =

1

𝑛 − 1
𝐶𝐷(𝑖) =

𝑘(𝑖)

𝑛 − 1
 

 

(12) 

Normalized degree centrality is used when comparing two graphs, one with many nodes and 

the other with a relatively small number of nodes. If a normalized value is not taken, then 

the larger network will have incomparable values (as it will have nodes with higher degrees) 

relative to the smaller network. The normalized value is calculated by dividing the degree 

centrality of a node by the number of nodes in the network (neglecting the node under 

consideration) hence n-1 (maximum number of connections a node can have). 

In case of a directed graph, the total degree is the total sum of in-degree 𝑘𝑖𝑛 and out-degree 

𝑘𝑜𝑢𝑡. In-degree is the number of edges directed towards the node and out-degree is the 

number of edges pointing away from the node. The normalized form of degree centrality for 

directed graph is shown below equation 12). 

 

 𝐶𝐷
𝑖𝑛(𝑖) =

𝑘𝑖𝑛(𝑖)

𝑛 − 1
;    𝐶𝐷

𝑜𝑢𝑡(𝑖) =
𝑘𝑜𝑢𝑡(𝑖)

𝑛 − 1
 

 

(13) 
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A node with a higher degree centrality means that the node is in direct contact with many 

other nodes in the network. 

 

 

           Figure 11: Network displaying nodes with degree and closeness centralities   

 

As seen in the above           Figure 11, the pink node has a high degree centrality, and the 

blue node has a lower degree centrality. A higher degree centrality does not mean that the 

node is at the center of the network; a node with a higher degree centrality can be anywhere 

in the network. [7] 

 

1.4.1.2 Closeness Centrality 

Closeness centrality is used to know whether the node is at the geometric center of the 

network or not. In other words, closeness of the node with other nodes in the network. It is 

calculated as the ratio of the shortest path length from the current node to every other node 

in the network divided by the total number of nodes (leaving the current node in 

consideration). The shortest path length is the least number of hopes to reach from current 

node to desired node in the network.  

The general mathematical formula to calculate the closeness centrality 𝐶𝐶  is as follows: 

 𝐶𝐶(𝑖) =
1

∑ 𝑑(𝑖, 𝑗)𝑗
 

 

(14) 

As seen the closeness centrality is the reciprocal of sum of shortest path length d, that means 

greater the shortest path length smaller is the closeness centrality and vice versa. 



TBU in Zlín, Faculty of Applied Informatics 26 

The normalized value of closeness centrality 𝐶𝐶
∗ is used when comparing two networks and 

is calculated as follows: 

 𝐶𝐶
∗(𝑖) = (𝑛 − 1)𝐶𝐶(𝑖) =

𝑛 − 1

∑ 𝑑(𝑖, 𝑗)𝑗
 

 

(15) 

For directed graphs, the closeness centrality calculation is a bit different as it depends on the 

direction of path being used. So, in most cases to calculate the closeness centrality the 

directionality is dropped of the network and compute the same way as undirected graph. 

 𝐶𝐶(𝑖) =
𝑛 − 1

∑ 𝑑(𝑖, 𝑗)𝑗
 

(16) 

 

In the case of disconnected networks, there is usage of harmonic centrality which is same as 

closeness centrality by used for computing closeness centrality for disconnected networks. 

 𝐶𝐻(𝑖) = ∑
1

𝑑(𝑖, 𝑗)
𝑗

 

 

(17) 

In            Figure 11, the node blue is at two steps away from white nodes and one step away 

from the pink nodes. Hence blue nodes have the highest closeness centrality. This signifies 

that nodes with high closeness centrality are the geometric center of the network. [7] 

 

1.4.1.3 Betweenness Centrality 

Betweenness centrality 𝐶𝐵 is used to measure the significance of a node i when there is a 

transfer of information between the networks. It is measured by the number of shortest paths 

passing through the node. Let 𝜎𝑠𝑡is the total number of shortest paths from node s to node t 

and 𝜎𝑠𝑡(𝑖)  is the number of those paths that pass-through i. 

The mathematical formula gives betweenness centrality is given by equation (18). 

 

 𝐶𝐵(𝑖) = ∑
𝜎𝑠𝑡(𝑖)

𝜎𝑠𝑡
𝑠≠𝑡≠𝑖

 

 

(18) 

 

Normalized value of betweenness centrality 𝐶𝐵
∗  is given by: 
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 𝐶𝐵
∗(𝑖) =

2

(𝑛 − 1)(𝑛 − 2)
𝐶𝐵(𝑖) =

2

(𝑛 − 1)(𝑛 − 2)
∑

𝜎𝑠𝑡(𝑖)

𝜎𝑠𝑡
𝑠≠𝑡≠𝑖

 (19) 

 

 

Figure 12: Sample graph explaining betweenness centrality. 

 

High betweenness centrality indicates that nodes lies on many shortest paths. As seen in the 

above Figure 12 node A lies in many shortest paths between the nodes in the network and 

hence is of high importance.  [7] 

1.4.1.4 Eigenvector Centrality 

In simple terms, Eigenvector centrality states that a node is important if it is connected to 

other nodes which are important. If one makes an analogy with respect to social networks 

like Facebook, a person who is a friend of a celebrity is considered more important than 

another user with many non-famous users. The Eigenvector centrality is calculated using 

matrix calculation to find the principal eigenvector using an adjacency matrix. [7] 

Mathematically, let's consider a simple case where there is a graph with N nodes and an 

adjacency matrix A (where 𝐴𝑖𝑗 = 1 if there is a link from node i to node j, and 0 otherwise). 

The eigenvector centrality x of node i can be defined as: 

𝑥𝑖 =
1

𝜆
∑ 𝐴𝑖𝑗

𝑛

𝑗=1

𝑥𝑗 
(20) 

 

 

Where: the sum is over all nodes j, 𝑥𝑗 is the centrality of node j, 𝜆 is a constant (the eigen 

value). In matrix form, this can be written as: 
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 𝐴𝑥 =  𝜆 𝑥 (21) 

where x is the vector of centralities for each node in the network, A is the network's adjacency 

matrix, and is the eigenvalue connected to eigenvector x. The centrality scores are the 

components of the eigenvector of the adjacency matrix A, which is the vector x that satisfies 

this equation. The greatest eigenvalue's corresponding eigenvector determines the 

eigenvector centrality scores. The centrality of the associated node in the network is then 

determined by each component of this eigenvector. [14] 
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2 HEURISTIC ALGORITHMS 

This section discusses theoretical background about heuristics and metaheuristic algorithms. 

The sub-section related to evolutionary algorithms with general working principles, Particle 

Swarm Optimization explains the detailed working of algorithm which is later used in the 

practical part of the thesis. 

2.1 Heuristics – meaning and definition.  

The word heuristics has dictionary meaning as follows: a way of solving problems by 

discovering things yourself and learning from your own experience.  [15] 

Heuristic algorithms are used to find quick solutions to a time-consuming problem, 

otherwise with traditional computational approach needs more time or even impossible to 

get a solution at all. Heuristics algorithms are used to solve problems which are too complex 

(both in time and nature) or require large memory usage. Examples of these problems include 

Hamiltonian-cycle problem, Travelling Salesman problem and so on [16]. These problems 

are time-consuming in nature and hence need a relatively faster solution.  But there are 

certain trade-offs for working with heuristics like accuracy (what is the threshold level for 

error), and optimality (reasonably optimal solution over best solution). [17] 

Heuristics algorithms are basically problem dependent and change from one problem to 

another. Meta-heuristics refers to a class of algorithms that can be applied to a broad range 

of problems, meta-heuristics are high-level optimization algorithms and they do not have 

specific knowledge about the problem being solved [18]. 

2.2 Evolutionary algorithms 

Evolutionary Algorithms (EA) or evolutionary techniques is sub-field of artificial 

intelligence inspired by the Darwinian principles of natural selection and Mendel’s law of 

heredity. Even though significant amount of research is done on EA, these algorithms still 

face the hurdle of No Free Lunch Theorem  [19] [20] and this theorem states that there is no 

single universal algorithm that can be used to solve all the problems. Evolutionary 

Algorithms (EA) are class of heuristics that are concerned with population of solutions rather 

than a single solution and this population is evolved over time to get optimal solution for the 

problem.  
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The evolutionary algorithms follow following sequence of operations: 

Initial population of solutions is generated randomly; 

Calculate objective (fitness) value for each solution in the population;  

while stopping criterion not met  

Select solutions with best cost values for reproduction (parents);  

Recombination of parents (crossover);  

Mutation the resulting offspring;  

Evaluate cost value for the new solutions;  

Replace the solutions with lower cost value in the population with the new solutions;  

end while; 

At the start of the algorithm the population is initialized randomly. The population is usually 

initialized using standard deviation. However, in some cases the population is initialized 

with solution or knowledge from previous runs and this initialization is known as warm start  

[21].  During the evolution of population certain individual solutions may cross the boundary 

of the search space, to overcome this situation boundary strategies are used, these strategies 

are called Random Clipping, Reflection, Periodic.  [22] [23] [24] and based on the strategies 

used individual solution is either modified or replaced with another random solution.  

In this thesis the focus is only on one algorithm and especially swarm intelligence algorithm 

like is Particle Swarm Optimization (PSO) algorithm is selected, due to the fact, that it 

"moves" above search space, i.e., the process is dynamic and can imitate the dynamical 

changes in social (complex network) and mainly is modelled by "movement" equation. (i.e., 

dynamics of PSO-created network can be also described by equation). The PSO also has 

proven record of usage in various fields like cloud computing  [25], routing problems [26] 

[27], medical diagnosis  [28] and many more. The next sub-section introduces the working 

and implementation of PSO. 

2.3 Particle Swarm Optimization Algorithm 

In 1995 Kennedy and Eberhart suggested an algorithm named Particle Swarm 

Optimization (PSO) that is motivated by the behavior of some living being in a swarm, like 

fishes in school and birds in a flock [29]. Swarm intelligence algorithms show the 
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phenomenon called collective intelligence in which swarm acts as a whole without having 

any central control.   

 

Figure 13: Particle Motion in PSO [30] 

 

 The above Figure 13 shows the particle's motion in PSO. PSO is a population-based 

stochastic optimization algorithm strategy which means the initial population is maintained 

and evolved over time to get the best solution. The particle position update is affected by 

two factors: cognitive influence and social influence. Cognitive influence is due to the 

particle's personal best (pBest) position, and social influence is due to the best-found (gBest) 

solution in the swarm.  [30] 

The Standard PSO algorithm usually has few input parameters like NP (number of 

individuals in the population), D (dimension of each particle in the population), CF (cost 

(objective) function to check the fitness of each particle), maxIt (maximum iterations 

allowed for the algorithm), w (inertia which controls the influence of velocity), c1 (cognitive 

coefficient) and c2 (social coefficient).  

Each particle is associated with position x and velocity v. The position of each particle is 

randomly initialized within the specified boundary. The fitness is calculated for each 

initialized position. The initial velocity is set to zero for all particles as suggested in  [31]. 

The initial personal best (pBest) of each individual is fitness at the initial position. The 

swarm's initial global best (gBest) is calculated from all the personal best values. 
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 Once the initialization is complete, the algorithm is repeated for a certain number of 

iterations maxIt. During each iteration, the velocity of each individual is calculated using the 

following equation: 

 
𝑣𝑖𝑘

𝑡+1 = 𝑤 ∙ 𝑣𝑖𝑘
𝑡 + 𝑐1 ∙ 𝑟1 ∙ (  𝑝𝐵𝑒𝑠𝑡𝑖𝑘 − 𝑥𝑖𝑘

𝑡   ) + 𝑐2 ∙ 𝑟2 ∙ (  𝑔𝐵𝑒𝑠𝑡𝑘 − 𝑥𝑖𝑘 
𝑡 ) 

(22) 

 

here r1 and r2 are random variables in the range from 0 to 1. Using these random variables 

ensures that the particle changes its path slightly, searching for more possibilities in the 

search space. The initial velocity is set to 0 according to authors in  [32] 

The position of each particle is updated using the equation: 

 

 𝑥𝑖𝑘
𝑡+1 = 𝑥𝑖𝑘

𝑡 + 𝑣𝑖𝑘
𝑡+1 

 

(23) 

 

where 𝑣𝑖𝑘
𝑡+1 represents the updated velocity of the particle and is calculated using current 

position of the particle and the updated velocity. 

The Figure 13 gives a graphical representation of the particle moving in the search space.  

[30] 

The pseudo-code for standard PSO is as follows. 
 

Table 1: Pseudo code for PSO algorithm 

 

 
 1: Initialization of particle position 

 2: Calculate fitness of each particle 

 3: Calculate gBest  

 4:  while it < max_iterations do 

 5:   for i = 1 to NP do 

 6:    calculate vi 

 7:    calculate xi 

 8:    if fitness(xi) < fitness(pBesti)then 

 9:      pBesti = xi 

 10:   if fitness(pBesti) < fitness(gBest)then 

 11:   gBest = pBesti 

 12:        end if 

     13:          end if 

 14:      end for 

 15: end while 
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General PSO working with simplified flow-chart is shown in Figure 14. The algorithm starts 

with random initialization of the population within the boundary specified for each particle. 

Calculate fitness for each particle and corresponding pBest and gBest. Based on the number 

of iterations the algorithm’s inner loop is repeated for maximum number of iterations 

mentioned initially. For each iteration the particle’s velocity, position and pBest, gBest are 

updated. The algorithm ends after executing required number of iterations. [33] 

 

Figure 14: Flow chart for working of PSO [33] 
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2.4 Hyper-Heuristics 

Numerous problem-independent algorithmic frameworks (Heuristics and Metaheuristics) 

are used for decision and optimization problems. Still, applying the currently available 

algorithms to newly countered issues or even to new occurrences of an existing problem 

might take time and effort. Generally, tweaking parameters requires a lengthy process. The 

parameters are frequently inaccurately defined and prevent a reasonable resolution of the 

problem (producing acceptable solutions). To tackle specific circumstances, one must often 

create new algorithms. There have been some recent attempts to automate the process of 

tuning the parameters by designing algorithms. The fundamental concept is to design an 

approach that is general and adaptable to minor changes and learns which suitable changes 

should be made at each phase of solving procedure. Hyper-heuristics are suitable for these 

types of scenarios. [34] 

The term Hyper-heuristics [35]  [36]  [37]  [38]   was coined by Peter Cowlingin. The hyper-

heuristic approach does not need problem-specific information apart from a bunch of simple-

to-build heuristics. The hyper-heuristics can select between low-level heuristics using 

performance indicators; these performance indicators are independent of the problem 

domain and hence used by hyper-heuristics to decide whenever a low-level heuristic needs 

to be called for particular instance in the space. The communication between low-level 

heuristics and hyper-heuristics uses typical problem-independent interface architecture. 

Hyper-heuristics can examine the results returned by low-level heuristics used, or to change 

the current solution itself. The hyper-heuristics may also provide basic data to the low-level 

heuristics, like duration allowed to run. When hyper-heuristics are called low-level 

heuristics, it returns important information like solution quality and total CPU execution 

time. It is to note that hyper-heuristic has limited information about the objective function 

(just whether it is a minimization or maximization function), the architectural barrier 

facilitates the information transfer between the low-level and the hyper-heuristic. Domain 

knowledge is not allowed to cross the barrier. [34] 
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Figure 15: General scheme of how hyper-heuristics work [34] 

A typical hyper-heuristic framework is composed of two levels of heuristics algorithms, 

hyper-heuristic and low-level heuristics, separated by a domain barrier. The hyper-heuristic 

algorithm monitors the performance of low-level heuristics and selects the appropriate low-

level heuristics to either change the current solution itself or get performance metrics. The 

performance is measured using several factors like the objective function value (increase or 

decrease) for the given problem domain, CPU computation time, or last-time usage of 

particular heuristics. Single-point solutions and multi-point solutions are also possible using 

hyper-heuristics. In a single-point solution case, the initial solution goes through several 

steps to output the final solution. In multi-point solutions, a few solutions from a population 

are processed in parallel. The acceptance mechanism, the decision to accept or reject a 

solution from low-level heuristics, is an essential step in hyper-heuristics. The acceptance 

mechanism can be deterministic (same all the time) or non-deterministic (sometimes 

different, like decision-based on time elapsed to compute solution). The hyper-heuristic 

algorithm iteratively repeats this process of selecting the low-level heuristics from the 

available set of heuristics using the acceptance mechanism mentioned above. Once a low-

level heuristic is selected, it is applied to the solution until the stopping criterion is achieved. 

As opposed to meta-heuristics (which work on the solution space), hyper-heuristics operates 

only on the search space and has no information about the problem being solved. Typical 

scheme for hyper-heuristics work is shown in above Figure 15. [34] 

Tunning and controlling the parameters of another evolutionary algorithm is also alternative 

used to define Hyper-heuristic technique [39]. Since PSO is the only algorithm used for this 

thesis work, the hyper-heuristic technique to tune the parameters of PSO is employed.  
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2.5 Regression models 

This section concerns the theoretical part for the regression model. Two model are 

considered linear regression model and multiple regression model. 

2.5.1 Linear regression 

Linear regression is a statistical model that is used to predict or analyze the relationship 

between two variables i.e., dependent, and independent variable. For linear regression the 

equation is given by  

  𝑦 = 𝑚 ∗ 𝑥 + 𝑐 

 
(24) 

Where y is the dependent variable, x is the independent variable, c is the intercept on y-axis, 

m is the slope of the regression line.  

2.5.2 Multiple Linear Regression 

Multiple linear regression is a statistical model that is used to predict or analyze the 

relationship between two or more independent variables and one dependent variable. The 

equation for multiple regression is given by. 

 

𝑦 = 𝑐 + 𝑚1 ∗ 𝑥1 + 𝑚2 ∗ 𝑥2 + ⋯ + 𝑚𝑛𝑥𝑛 

 
(25) 

 

Where c is the intercept on y-axis, m1 and m2 are the coefficients of the predictor variables 

x1 and x2 respectively. 𝑚𝑖estimates the expected change in the dependent variable y for one-

unit change in the corresponding predictor 𝑥𝑖, holding all other predictors constant.  
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  ANALYSIS 
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3 COMPLEX NETWORK CREATION BASED ON REAL DATA 

This section is related to the practical part of building a complex network based on real data. 

The citation network was used for this study, and the data was taken considering citations 

between the faculty members of the Department of Artificial Intelligence, Tomas Bata 

University in Zlín (UTB), FAI.  

 

Figure 16: Visualization of the citation network based on real data at the end of 2020. 

 

The citation network in Figure 16 is drawn using the data collected from the Scopus [40] 

database. The data is processed to get citation information from 2015-2020. The processed 

data in form of an excel format can be found in the repository 1. The tables Table 2 to Table 

5 represent the processed data in adjacent matrix form. 

The nodes in the citation network represent the faculty members of the department of 

informatics and artificial intelligence, FAI, UTB and the edges represent the paper citation 

between the authors. The thickness of the edge (weight of the edge) represents the number 

of citation references between the authors or the author citing himself or herself. Citation 

data for 14 authors was collected. Each table's row indicates an author who referenced 

another author, while the column represents the cited author. For instance, in Table 2, by the 

 
1 https://shorturl.at/lHR36 

https://shorturl.at/lHR36
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end of 2015, the number 3 in the first row means that the author with ID 1 referenced the 

author with ID 10 three times.  Figure 16 shows the graphical visualization of the citation 

network towards the end of 2020. The circular loop or self-loops around some of the nodes 

represents authors who cited themselves in their previous work. The color and thickness of 

edges represent the weights of the edges, thinner edges indicated less citation between the 

authors and darker and thicker edges indicated relatively heavy interaction between the 

authors. There is one singleton node in the graph that represents there was no citation 

information gathered for that particular author over a specific period of time. 

The captured data was visualized using software Mathematica  [41] and code is available in 

the repository2 . As seen from the Figure 16 the most self-citation was recorded for the author 

with node 5 followed by authors with node 4. There was highest citation between the authors 

nodes 5 with 10, followed by relatively weak interaction between nodes 5 with 12, 5 with 11 

and 5 with 4. 

 

 
2 https://shorturl.at/lHR36 

    

  Table 2: Data at the end of year 2015 

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14   

1 9 2 2 4 4 0 0 3 0 3 0 1 0 0  

2 0 2 0 0 0 0 0 0 0 0 0 0 0 0  

3 0 1 1 1 1 0 0 0 0 0 0 0 0 0  

4 5 0 0 11 5 0 0 0 0 3 0 0 0 0  

5 6 0 0 12 18 0 0 0 0 3 0 0 0 0  

6 1 0 0 0 0 2 3 0 0 0 0 0 0 0  

7 1 0 0 0 0 0 1 0 0 0 0 0 0 0  

8 1 0 0 0 0 0 0 0 0 0 0 1 0 0  

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

12 0 0 0 0 0 0 0 0 0 0 0 1 0 0  

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

                

 

 

     

Table 3: Data until the year 2016 

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14  

1 13 4 2 4 5 0 0 4 0 3 0 2 0 0  

2 1 3 0 0 0 0 0 0 0 0 0 0 0 0  

3 0 1 2 3 2 0 0 0 0 0 0 0 0 0  

4 6 0 0 18 10 0 0 0 0 4 0 0 0 0  

5 11 3 1 32 51 0 0 0 0 5 0 0 0 0  

6 1 0 0 0 0 4 3 0 0 0 0 0 0 0  

7 1 0 0 0 0 2 1 0 0 0 0 0 0 0  

8 3 0 0 0 0 0 0 1 0 0 0 2 0 0  

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

11 2 1 0 12 19 0 0 0 0 11 0 0 0 0  

12 1 0 0 0 0 0 0 1 0 0 0 2 0 0  

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

                

 

 

https://www.wolfram.com/mathematica/
https://shorturl.at/lHR36
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Table 4: Data until the year 2017. 

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14  

1 14 4 2 4 5 0 0 5 0 3 0 4 0 0  

2 1 3 0 0 0 0 0 0 0 0 0 0 0 0  

3 0 2 3 4 3 0 0 0 0 0 0 0 0 0  

4 7 0 0 23 13 0 0 0 0 5 2 0 0 0  

5 12 4 1 32 72 0 0 0 0 6 12 0 0 0  

6 1 0 0 0 0 5 4 0 0 0 0 0 0 0  

7 1 0 0 0 0 3 2 0 0 0 0 0 0 0  

8 4 0 0 0 0 0 0 2 0 0 0 3 0 0  

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

11 3 2 0 23 39 0 0 0 0 3 11 0 0 0  

12 2 0 0 0 0 0 0 2 0 0 0 5 0 0  

13 1 0 0 7 14 0 0 0 0 1 7 0 0 0  

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

                

 

 

 

Table 5: Data until the year 2018. 

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14  

1 16 5 2 4 6 0 0 5 0 3 0 5 0 0  

2 2 4 0 1 1 0 0 0 0 0 0 1 0 0  

3 1 3 3 4 3 0 0 0 0 0 0 1 0 0  

4 9 0 0 30 20 0 0 0 0 6 8 0 3 0  

5 14 4 1 57 51 103 0 0 0 7 37 0 18 0  

6 1 0 0 0 0 5 4 0 0 0 0 0 0 0  

7 1 0 0 0 0 3 2 0 0 0 0 0 0 0  

8 5 0 0 0 0 0 0 2 0 0 0 3 0 0  

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

11 5 2 0 35 62 0 0 0 0 4 34 0 17 0  

12 4 1 0 0 0 1 0 2 0 0 0 6 0 0  

13 1 0 0 17 36 0 0 0 0 1 29 0 17 0  

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

                

 

 

 

 

Table 6: Data until year 2019. 

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14  

1 18 5 2 4 8 0 0 5 0 3 0 5 0 0  

2 3 6 0 2 2 0 0 0 0 0 0 1 0 0  

3 1 3 3 4 3 0 0 0 0 0 0 1 0 0  

4 9 0 0 36 25 0 0 0 0 6 12 1 6 0  

5 15 4 1 57 122 0 0 0 0 7 52 0 32 0  

6 1 0 0 0 0 5 4 0 0 0 0 0 0 0  

7 1 0 0 0 0 3 2 0 0 0 0 0 0 0  

8 6 0 0 0 1 0 0 2 0 0 0 3 0 0  

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

11 5 2 0 40 76 0 0 0 0 4 46 0 28 0  

12 5 1 0 0 1 1 0 2 0 0 0 6 0 0  

13 1 0 0 21 49 0 0 0 0 1 41 0 28 0  

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

                

 

 

     

 

Table 7: Data until the year 2020. 

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14  

1 18 5 2 4 9 0 0 5 0 3 1 5 0 0  

2 3 6 0 2 2 0 0 0 0 0 0 1 0 0  

3 1 3 3 4 3 0 0 0 0 0 0 1 0 0  

4 9 0 0 68 25 0 0 0 0 6 12 0 6 0  

5 19 4 1 57 139 0 0 0 0 7 62 0 44 0  

6 1 0 0 0 0 5 4 0 0 0 0 0 0 0  

7 1 0 0 0 0 3 2 0 0 0 0 0 0 0  

8 6 0 0 0 1 0 0 2 0 0 0 3 0 0  

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

11 8 2 0 44 85 0 0 0 0 4 53 0 35 0  

12 8 1 0 0 1 1 0 2 0 0 0 6 0 0  

13 1 0 0 25 59 0 0 0 0 1 47 0 37 0  

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
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4 METHODOLOGY TO REPRESENT SWARM ALGORITHM 

DYNAMICS AS A COMPLEX NETWORK 

This practical section is concerned with transforming the dynamics of the selected 

evolutionary algorithm (PSO in this case) and representing the captured information as a 

complex network.  

PSO is employed for this experiment with settings 𝑐1 = 𝑐2 = 1.49445 and w=0.729. Test 

function used in this experiment is Schwefel's function. The swarm's population size was 

selected as NP = 14, with maximum iterations maxIt =10,000 and dimension D=5. The 

resulting complex network created is depicted in Figure 17 below. 

 

Figure 17: Complex network created by capturing the dynamics of PSO. 

 

It is vital to identify the communication inside the swarm to establish a network related to 

the inner dynamic of PSO. It is evident (from PSO) that the only communication route within 

the swarm is shared knowledge of the global optimal solution's position (gBest). A few 

assumptions are used to capture the dynamics of the PSO. Firstly, each particle is represented 
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by position (or index) in the swarm. Second, the information is captured based on the 

position (or index) in the swarm and not the actual particle's position. 

Based on this knowledge, two methods for capturing the dynamics of the PSO algorithm 

were considered. The first method captured just the communication between the particle 

which updates the new gBest and the particle which updated the previous gBest. Therefore, 

while creating the complex network, a link is created between the particle that previously 

updated the gBest and the particle that created the new gBest, self-loops were ignored. The 

inspiration for this method of complex network creation is from the article  [42]. This method 

did not consider the weights of the edges between the particles and was unsuitable for this 

study, hence was ignored. 

The second method, with a slightly different approach, was used. Two links were used for 

communication between the particles. The first link was created between the particle that 

updated the previous gBest and all the particles that updated their pBest because of this 

particle (the particle that updated the gBest previously). Furthermore, the second link was 

created between the particle which updated the new gBest and the particle which previously 

updated the gBest. This way of capturing the communication was inspired by the article  

[43]. This method was preferred for the study as it provided information about the weights 

of the edges between the nodes of the complex network created. 

As observed in the Figure 17, there are 14 nodes in the network, and edges connect these 

nodes. The thickness of the edge signifies the weight of the edge or, in this case, the 

communication between the particles. The circular loop indicates self-loop means the 

particle at this position updated its pBest based on its previous gBest update. 

 

Figure 18: Degree distribution for the complex network based on captured dynamics. 
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As shown in the  Figure 18 the degree distribution of the complex network created from the 

captured dynamics. The degree distribution indicates that the network does not follow power 

law. [41] 

The complete code for this practical section can be found on the GitHub repository 3, for 

code considering self-loop for singleton nodes. 

Another experimental setup was done for captured data without considering information 

about authors which cited themselves from the previous work and correspondingly in the 

PSO, particles which updated their own pBest. This work was neglected as the real network 

had self-citation information and was to use this network. The code can be found in the 

repository4. 

4.1 Calculating difference between the real and modelled network 

The difference between the two networks (modelled network and the real network from data) 

is calculated using the difference in centralities for the two networks. This is implemented 

in the form of function in Mathematica with general equation as follows: 

 

 

𝑝𝑡𝑠 = [(
𝐷𝐶𝑟 − 𝐷𝐶𝑚

𝐷𝐶𝑟
)

2

+ (
𝐵𝐶𝑟 − 𝐵𝐶𝑚

𝐵𝐶𝑟
)

2

+ (
𝐶𝐶𝑟 − 𝐶𝐶𝑚

𝐶𝐶𝑟
)

2

+ ⋯

+ (
𝐸𝐶𝑟 − 𝐸𝐶𝑚

𝐸𝐶𝑟
)

2

] ∙ 1000 

(26) 

 

The sub-scripts, r represents centralities for real network and m is for modelled network from 

the captured dynamics. The ideal or perfect value of pts in equation (26) is zero (meaning 

the modelled network is identical to the real network). The measured centralities in the 

equation (26) are abbreviations as follows: 

• Degree Centrality (DC) 

• Closeness Centrality (CC), 

• Betweenness Centrality (BC), 

• Eigenvector Centrality (EC). 

 
3 https://shorturl.at/klASZ 

4 https://shorturl.at/klASZ 
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5 HYPER-HEURISTICS MODEL 

This practical section is concerned with the analysis and finding the optimal parameter 

settings for the EA so that the complex network created from the dynamics of the EA 

corresponds as close as possible to the actual network. The actual network was created from 

real data from the previous section 3 – Complex network creation based on real data. 

As mentioned in the previous section, the EA used for the experiment to capture the 

dynamics is PSO. The important parameters that can be optimized to improve the 

performance of PSO are c1 (cognitive component), c2 (social component), and w (inertia), 

and test functions.  

Two approaches were used to optimize the parameters of PSO:  

• Method 1: Using another PSO to optimize the parameters for the PSO generating the 

dynamics. 

• Method 2: Local search was added to the method 1 to improve performance. 

5.1 Using metaheuristics to optimize the parameters for the PSO 

generating the dynamics of CN. 

In this experiment, another PSO (outerPSO) was employed to find the optimal parameters 

for the PSO (innerPSO) generating the dynamics for Complex Network. The inspiration for 

this method of optimizing the parameters of PSO was taken from  [44] . 

The outerPSO has a population of particles (c1, c2, and w) that act as input to the innerPSO. 

These three parameters act as three dimensions of a particle for the outerPSO. So innerPSO 

uses each set of parameters from outerPSO and generates a random population, captures the 

dynamics, and calculates the difference with the real network. 

The flow chart below shows the working of outerPSO and innerPSO Figure 19. 
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Figure 19: Optimizing the parameters of PSO using another PSO 
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The code for the experiment mentioned in Figure 19 was written in Mathematica and is 

available in the repository5. The workflow shows that a random set of population is generated 

for the outerPSO, this population contains only the three parameters (𝑐1, 𝑐2, and w). For each 

combination of 𝑐1, 𝑐2, and w, a call to the innerPSO is made. The innerPSO takes these 

parameters, generates random population, and performs further functions of PSO to update 

the population. At the end of iterations for innerPSO, the dynamics of the innerPSO are 

captured, and the difference from the real network is calculated. This difference between the 

real network and network created from the dynamics acts as a cost function for the outerPSO, 

which further evolves its population (𝑐1, 𝑐2, and w) to achieve minimum difference between 

the two networks. 

The cost function for the innerPSO is initially used as Schwefel's Function. And the cost 

function for the outerPSO is the difference between the two networks. 

The experiment was done with the following details, the same details can also be found in 

the code with the variable outputFromOuterPSO. The experiment was repeated several times 

to make comparison and the results are present in the repository as mentioned above. 

For outerPSO:  

• Control parameters: 𝑐1 = 𝑐2 = 1.49445, w=0.729, 

• Population dimension: D = 3 (since only three parameters 𝑐1, 𝑐2, and w), 

• Population size: NP=30, 

• Max iterations: iterationsForOuterPSO= 1000, 

• Cost function: difference between the real network and the modelled network 

generated from the dynamics of PSO. 

For innerPSO: 

• Control parameters:  𝑐1, 𝑐2, and w, comes from outerPSO, 

• Population dimension: D =5, 

• Population size: NP=14, 

• Max iterations: iterationsForInnerPSO= 50, 

 
5 https://shorturl.at/efmAC 
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• Starting Cost function:  f= Schwefel's function. 

With further improvements to method 1, logic to find the best test function for the innerPSO 

was implemented. The innerPSO is employed on seven different test functions and their 

results are compared to find the test function which produced the minimum difference 

between the two networks. These test functions include Rosenbrock's Saddle, Sphere, 3rd 

De Jong, Schwefel's, Rastrigin, Ackley's 1, and Ackley's 2. 

5.1.1 Results for method 1 

This sub-section is concerned with the results for method 1 mentioned in section 5.1 - Using 

another PSO to optimize the parameters for the PSO generating the dynamics of CN.  

The setting for the experiment is already explained for both innerPSO and outerPSO above. 

The results for method 1 aiming to find best test function and parameter setup for each run 

are both summarized in the Table 8 below. This table shows the best obtained results from 

seven independent runs. The results along with the implementation code are available in the 

repository6. 

Table 8: Results for optimizing the parameters of PSO using method 1 along with test 

function selection. 

Experiment serial 

number-output 

File Name 

C1  C2  W  Test function Pts (difference 

between real and 

modelled network) 

1, output.log 1.34 1.42 0.114 3rd De Jong 1114 

2, output1.log 1.37 1.13 0.14 3rd De Jong 3764.6 

3, output2.log 1.24 1.30 1.58 Rosenbrock's Saddle 1418.32 

4, output3.log 1.440 1.47 0.75 Rastrigin 4126.38 

5, output4.log 1.216 1.022 0.32 Ackley's 2 4098.87 

6, output5.log 1.266 1.165 0.378 3rd De Jong 3314.0 

7, output6.log 1.21 1.21 1.23 Sphere 1152.73 

 
6 https://shorturl.at/tFJMS 
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The Table 8 displays optimal values of 𝑐1, 𝑐2 and 𝑤, which produced minimum value of pts 

during the respective experiment run. As evident from the results table function 3rd De Jong 

produced the minimum value for pts and was preferred in three out of seven runs. The value 

of pts showed large variations with small changes in 𝑐1, 𝑐2 and 𝑤. Due to the extreme time 

complexity of hyper-heuristic approach, only seven independent runs were carried out. 

5.2 Local search addition to improve the performance of outerPSO. 

A local search was added to improve the performance of the algorithm mentioned in  Figure 

19. The flow chart for the algorithm to find optimal parameters for PSO along with local 

search algorithm addition is shown in the Figure 20  below. The inspiration for this method 

was taken from  [45]. 

With the addition of local search, the algorithm now has the possibility to search for better 

solutions in a region with specified radius. Another change in the previous algorithm is the 

usage of warm start for initialization of population for the inner PSO. This means the 

population is initialized just once in the outer PSO and the inner PSO uses the same 

population. 

The results for algorithm with outer PSO optimizing the parameters for inner PSO with few 

sample runs can be found on the repository7 and the algorithm with local and warm start can 

be found in the same code repository as both methods are used together. 

For outerPSO:  

• Control parameters: 𝑐1 = 𝑐2 = 1.49445, w=0.729, 

• Population dimension: D = 3 (since only three parameters 𝑐1, 𝑐2, and w), 

• Population size: NP=30, 

• Max iterations: iterationsForOuterPSO= 1000, 

• Cost function: difference between the real network and the modelled network 

generated from the dynamics of PSO. 

• Local search iterations: 50 

 

 
7 https://shorturl.at/tyJLZ 
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For innerPSO: 

• Control parameters:  𝑐1, 𝑐2, and w, comes from outerPSO, 

• Population dimension: D =5, 

• Population size: NP=14, 

• Max iterations: iterationsForInnerPSO= 100, 

• Starting Cost function:  f = Schwefel's function. 
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Figure 20: Optimizing the parameters of PSO by using another PSO along with Local 

Search algorithm. 
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5.2.1 Results for method 2 

This sub-section is concerned with the results for method 2 done in section 5.2 – Local search 

addition to improve the performance of outerPSO.  

Table 9: Results for optimizing the parameters of PSO using method 2 

Experiment number – output 

file name 

C1  C2  W  pts (difference between real 

and modelled network) 

1, outputA1.log 1.224 1.38 0.49 1231 

2, outputA3.log 1.545 1.027 0.568 1099 

3, outputA4.log 1.49 1.962 0.822 1113.9 

4, outputA5.log 1.60 1.619 0.462 1141 

5, outputA6.log 1.69 1.52 0.824 1113 

 

The results are displayed in Table 9 for method 2. The table displays optimal values of 

𝑐1, 𝑐2 and 𝑤 which produced minimum value of pts during the respective experiment run 

(total five independent runs). As shown from the results from Table 8 and Table 9, a 

conclusion can be made that method 2 with local search and warm start produced a relatively 

better result than the experiment with method 1. The value of pts was relatively stable in 

method 2 results than in method 1 results. Since the experiments were run with small number 

of iterations (because of high time complexity) with further increasing number of iterations 

better results are expected. 
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6 PREDICTING THE DYNAMICS OF A COMPLEX NETWORK   

This practical section is concerned with predicting the dynamics of modelled network 

captured from the PSO. The methodology to capture the dynamics of PSO was done in 

section 4, and network created from real data was done in section 3. In section 3 real data 

was taken from the Scopus database with citations between the faculty members of AI 

department at FAI, UTB. 

 

 

For example, if we consider the data from section 3 until end of 2019 as shown in above 

Table 10.  This table represents an adjacency matrix with weights representing the citation 

between the authors. So, predicting the dynamics of the complex network is nothing but 

predicting the weights between the nodes and hence pts value (equation (26)) of the modelled 

(captured) network is calculate using the centralities of the nodes. 

Three separate methods were employed for prediction.  

1. Using PSO-based regression. 

2. Using Linear regression technique. 

3. Using multiple linear regression techniques. 

 

Table 10: Data until year 2019. 

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14  

1 18 5 2 4 8 0 0 5 0 3 0 5 0 0  

2 3 6 0 2 2 0 0 0 0 0 0 1 0 0  

3 1 3 3 4 3 0 0 0 0 0 0 1 0 0  

4 9 0 0 36 25 0 0 0 0 6 12 1 6 0  

5 15 4 1 57 122 0 0 0 0 7 52 0 32 0  

6 1 0 0 0 0 5 4 0 0 0 0 0 0 0  

7 1 0 0 0 0 3 2 0 0 0 0 0 0 0  

8 6 0 0 0 1 0 0 2 0 0 0 3 0 0  

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

11 5 2 0 40 76 0 0 0 0 4 46 0 28 0  

12 5 1 0 0 1 1 0 2 0 0 0 6 0 0  

13 1 0 0 21 49 0 0 0 0 1 41 0 28 0  

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

                

 

 

     

Table 11: Data until the year 2020. 

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14  

1 18 5 2 4 9 0 0 5 0 3 1 5 0 0  

2 3 6 0 2 2 0 0 0 0 0 0 1 0 0  

3 1 3 3 4 3 0 0 0 0 0 0 1 0 0  

4 9 0 0 68 25 0 0 0 0 6 12 0 6 0  

5 19 4 1 57 139 0 0 0 0 7 62 0 44 0  

6 1 0 0 0 0 5 4 0 0 0 0 0 0 0  

7 1 0 0 0 0 3 2 0 0 0 0 0 0 0  

8 6 0 0 0 1 0 0 2 0 0 0 3 0 0  

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

11 8 2 0 44 85 0 0 0 0 4 53 0 35 0  

12 8 1 0 0 1 1 0 2 0 0 0 6 0 0  

13 1 0 0 25 59 0 0 0 0 1 47 0 37 0  

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

                

 

 



TBU in Zlín, Faculty of Applied Informatics 53 

Each method is mentioned in detail in respective sections 6.1 – 6.3 with final evaluation in 

chapter 6.4. 

6.1 Using PSO based regression. 

This method of prediction uses the algorithm mentioned in section 5.2 as the baseline and 

continues to make predictions using PSO-based regression using just the control parameters 

from the outerPSO i.e., 𝑐1, 𝑐2 and 𝑤, then captures the dynamics from the innerPSO and 

calculates the difference between the real network and the network modelled using the 

dynamics of innerPSO which is pts. 

Firstly, the PSO with tuned parameters is used to learn on data until 2019 mentioned in Table 

6 , the difference between the 2020 real data in Table 7 and modelled network from the PSO 

(for 2020 prediction) was found to be 3713.9. The predicted network for this experiment is 

as follows: 

 

Figure 21: Result for prediction using PSO-based regression. 

The code for this is available in the repository8. The results for this experiment are measured 

using the following: 

 
8 https://shorturl.at/mJKP3 

https://shorturl.at/mJKP3
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6.2 Using Linear regression technique. 

In this experiment a linear regression technique is employed to predict the dynamics of the 

modelled network.  In this method the adjacency matrix data was used as mentioned in 

section 3 until year 2019 as test data and train the linear model. And the data consists of IDs 

of the authors, year of citation and the number of citations. 

 {𝐼𝐷1, 𝐼𝐷2, 𝑦𝑒𝑎𝑟, 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑠} (27) 

The dataset for test is presented in Error! Reference source not found. where the ID r

epresents the id for nodes in the network. Therefore, from equation (27) author with id 1 

citing author with 2 in the year 2019 with number of citations as 5. The corresponding dataset 

for this example is {1, 2, 2019, 5} 

The model was trained and tested on data from section 3 until the year 2020, which is the 

following year for training data. The resulting model resembles the real model as shown in  

Figure 22 below. 

 

Figure 22: Predicted model using linear regression. 
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Figure 23: Real data network for comparison with predicted network mentioned above. 

 

The difference between the networks is calculated using the pts equation (26) and is 

calculated as 997.25 which is closest among all the other prediction models used. 

The code for this linear regression model in available on the repository9.  

 

6.3 Using multiple linear regression technique 

In this section of the experiment multiple linear regression was employed. The dataset used 

for this network is the same as in the section 6.2 for testing and learning. The structure of 

the dataset is in equation (27). In this experiment there is python code used to create a 

multiple linear regression model because of its ease of use and libraries available. Code for 

the created model is available in the repository 10. Predicted network and the difference from 

the real network is as shown Figure 24 below. 

  

 
9 https://shorturl.at/DOR04 

10 https://shorturl.at/hs259 

https://shorturl.at/DOR04
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Figure 24: Model created for dynamics using multiple regression model. 

 

 

Figure 25: Real network for comparison with above mentioned network using multiple 

regression. 
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6.4 Results 

This section is related to the results obtained from the experiments for section 6 – Predicting 

the dynamics of modelled network based on created model.  

The experiment in section 6.1 i.e., using the PSO-based regression, the pts value of 3713.9 

as the difference the real network and the one using the modelled data. This technique should 

results better than experiment involving multiple regression discussed in section 6.2. 

 

Table 12: Results for predicting the dynamics of modelled network for sections 6.2 and 6.3. 

Experiment 

section # 

Algorithm/Model Pts (difference between real and modelled 

network) 

6.1 Hyper heuristic PSO model 3713.9 

6.2 Linear regression 997.25 

6.3 Multiple linear regression 26864.4 

 

As shown from the Table 12 the results from the experiments convey that experiment in 

section 6.2 was closest in predicting the dynamics of the modelled network. The experiment 

in section 6.3 produced the worst results. The result for hyper-heuristic approach seems to 

be promising (compared to the multiple linear regression) and surely open for further future 

investigations. The better results may be achieved by redesigning the workflow, 

parallelization and speeding up calculation towards higher effectiveness of whole 

methodology. It is necessary to mention that only canonical PSO was selected, out of 

plethora of available swarm algorithms. 
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CONCLUSION 

The thesis initiates with theoretical study of network basics, history behind network and 

graph theory, network models which serves as model for comparison, important terminology 

related to network with associated equations, characteristics of complex networks and node 

centralities which helps us understand behavior of nodes in the network. Then literature 

study about heuristics was done, this includes general study about heuristics, evolutionary 

algorithms, and the basic principles on which evolutionary algorithms work and some 

population clipping and reflection concepts while building the algorithm were considered. 

The evolutionary algorithm, specifically PSO, was studied in detail with its working and 

implementation. Some regression models like linear regression and multiple regression   

were also studied.  

The practical part was done by implementing most of the concepts learned in the theoretical 

section. In section 3 of the practical part, a citation network was created with real data 

collected from the online database. This network created in section 3 of the practical part 

was used as reference for further experiments. This was followed by implementation of PSO 

algorithm in Mathematica. In section 4 of the practical part a methodology was implemented 

to capture the dynamics from the PSO algorithm and transform the dynamics into a network. 

In section 5, the hyper-heuristics strategy was implemented which used one PSO to optimize 

the parameters for another PSO. Section 5 also used some variation like selecting the optimal 

function, local search algorithm and warm start. These variations produced a better result for 

parameter optimization.  The last part of the practical section dealing with predicting the 

dynamics of the EA (PSO) was implemented. The prediction was done using three 

techniques, one technique was using the control parameters from the outer PSO as 

independent variables and difference between the networks as dependent variable. The 

second technique was implemented using linear regression and the last technique of multiple 

linear regression was implemented.  

During the work on this thesis topic, a better understanding of the evolutionary algorithms 

and complex network was achieved. The wide area of usage of complex networks and their 

importance in understanding evolutionary algorithms was realized. 
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