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ABSTRAKT 

V této diplomové práci byly implementovány čtyři modely hlubokého učení - DenseNet-

121, Inception-v3, ResNet50 a VGG-16 - k detekci potenciálního násilného chování pomocí 

principů transfer learningu. V teoretické části byl proveden rozsáhlý přehled literatury v 

oblasti detekce násilí na lidech s cílem identifikovat převažující silné stránky a mezery ve 

stávajících výzkumných pracích. Výsledky experimentů provedených v této práci ukázaly 

nejlepší výsledky s hodnotami přesnosti 98 %. Tato práce kromě jiných klíčových zjištění 

doporučuje, aby se budoucí výzkum zaměřil na zkoumání zobecnění výsledků tohoto 

experimentu na větší soubory dat s přizpůsobením širší doméně. Velkým přínosem pro 

budoucí práci bude také další ladění hyperparametrů modelů s více konfiguracemi. 

 

Klíčová slova: Detekce násilí, Umělá inteleigence, Ladění hyperparametrů, Rozpoznávání 

vzorů, Konvoluční neuronové sítě 

 

ABSTRACT 

In this master’s thesis, four deep learning models – DenseNet-121, Inception-v3, ResNet50, 

and VGG-16 were implemented to detect potential violent behavior by applying transfer 

learning principles. In the theoretical part, a comprehensive review of literature in the field 

of human violence detection was conducted to identify prevalent strengths and gaps in 

existing research work. The results of the experiments conducted in this work showed the 

best performance with accuracy values of 98%. This work recommends, among other key 

findings, that future research be geared towards exploring the generalization of results from 

this experiment across larger datasets with adaptations to a broader domain. The future work 

will also benefit greatly from further hyperparameter tuning of models with more 

configurations. 

 

Keywords:  Violence detection, AI, Hyperparameter tuning, Pattern recognition, 

Convolutional Neural Networks
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INTRODUCTION 

Artificial Intelligence (AI) is a computing concept designed to enable machines to think, 

solve problems, and learn from mistakes like humans [1]. While traditional robots are limited 

by fixed programming, AI aims to simulate human-like creative thinking and problem-

solving abilities. The field of AI encompasses machine learning, deep learning, and more. 

Machine learning includes supervised, unsupervised, and reinforcement learning. AI 

applications range from personal assistants to cybersecurity and healthcare. Despite concerns 

about AI's impact on jobs and ethics, it offers significant opportunities for new specialized 

roles and business growth [1]. 

Within the landscape of AI, the field of deep learning as a subset of machine learning is 

currently undergoing a lot of development and new ‘intelligent’ systems are now utilising 

this technology. There is also a new advancement towards finding the intersection between 

machine learning and behavioral analysis. This intersection point examines various concepts 

such as feature engineering, predictive modelling, anomaly detection, development of 

recommendation systems, user profiling and segmentation systems, sentiment analysis as 

well as other systems requiring continuous learning and adaptation. 

Deep learning itself stems from architectures like deep neural networks, deep belief 

networks, recurrent networks, convolutional neural networks and transformers [2]. These 

deep learning architectures have been applied to research areas of computer vision, natural 

language processing, machine translation, speech recognition, bioinformatics and many 

other prominent fields. 

Deep learning then utilises various machine learning algorithms to progressively extract 

higher-level features from raw input [2]. This is commonly seen in image processing where 

lower layers may identify edges, and higher layers identifying human concepts like digits 

and faces. 

Building intelligent machines is at the core of deep learning. The human brain in its innate 

form can be considered an intelligent system [3]. This is largely because the brain dictates 

how we see, small, taste and hear. The brain then stands out as the most remarkable 

component of the body, governing our interpretation of the world through our senses, 

memory retention, emotional experiences, and even the phenomenon of dreaming. Its 

absence would reduce us to primitive organisms devoid of any complexity, solely reliant on 

instinctive responses. This is the objective of deep learning: to replicate an intelligent system. 
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Detecting potential violent incidents for purpose of assisting crime investigations and 

consequently preventing re-occurrences remains an ever-present challenge in the world we 

live in today. Processing visual information is natural for humans, but the manual analysis 

involved makes manual process a daunting task [4]. Deep learning can play a significant role 

in automating the detection of potential violent incidents as we have seen with many 

intelligent systems in use today [5]. 

Traditional methods of identifying cases of violence rely heavily on reactive measures, only 

responding to incidents after they occur as opposed to proactively identifying and addressing 

the risk factors. This reactive way of potential violent behavior detection underscores the 

importance of adopting deep learning as a means to better anticipate and prevent violent 

behavior before it escalates into a more severe harm [6]. 

Various methods for violence detection have been developed in past few years [6]. 

Convolutional Neural Networks (CNN) are well suited for feature recognition as they can 

categorize image frames extracted from video clips based on data set and retrieved features. 

 Figure 1 below shows the fundamental stages of most video-based detection systems. 

 

Figure 1 Fundamental stages of video-based violence detection1 

 

Spatio-Temporal Interest Points (STIP) represent a specific category of local invariant 

features utilised in video analysis. These features can withstand alterations such as rotation, 

changes in scale, affine transformations, and shifts in viewpoint [7]. Among the most 

commonly employed local invariant features are Harris corners, Scale Invariant Feature 

 

1 https://ars.els-cdn.com/content/image/3-s2.0-B9780128163856000118-f11-01-9780128163856.jpg 
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Transform (SIFT), and Speeded Up Robust Features (SURF). These features demonstrated 

widespread and effective utilization across tasks including object detection and recognition, 

image registration, image classification, and image analysis [7]. 

Histogram of Oriented Gradients (HOG) is a feature descriptor widely used in image 

processing and computer vision tasks. It quantifies the distribution of gradient orientations; 

HOG captures information about the local edge and texture patterns in an image [8]. 

CNNs have disrupted the field of computer vision, offering powerful tools for image 

recognition and analysis [3]. The four model architectures being considered in this work 

ResNet (Residual Network), VGG (Visual Geometry Group), DenseNet and Inception-v3 

have been instrumental in spatial data processing and feature extraction. 

This project work focuses on an examination of the effectiveness and accuracy of the four 

selected CNNs – specifically, ResNet, VGG, DenseNet, and Inception-v3 in detecting 

potential violent behavior by processing frames from video clips. 

In this work, the Real-Life Violence Situations Dataset from Kaggle was utilized for 

evaluating and comparing different models. This dataset consists of 1,000 videos depicting 

violence and 1,000 videos showing non-violent situations, sourced from various public 

platforms.  

During the training phase, data augmentation techniques were applied, and consistent 

optimal weights were employed. Comparative analysis was conducted to assess the 

performance of four different models in classifying these video frames. A web-based 

application was developed in Python using Streamlit framework with the primary objective 

of evaluating the trained models through analysis of the sample videos and facilitating the 

visualisation of corresponding predictions. 
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 I  THEORY 
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1 ARTIFICIAL NEURAL NETWORKS 

ANNs are like computer brains inspired by how our brains work. They help solve tough 

problems. This section looks at history of ANNs, how ANNs are built, what they do, and 

where they're used in the real world [9]. 

The history of ANNs goes back to the 1940s. That was when people first started talking 

about them [10]. One of the first ideas was the McCulloch-Pitts neuron, suggested by Warren 

McCulloch and Walter Pitts in 1943 [10]. But things really started moving in the 1950s and 

1960s. That was when Frank Rosenblatt came up with the perceptron in 1957 [11]. It was an 

important moment because it showed that ANNs could be good at recognizing patterns. 

During the period spanning 1970s to the 1980s, the interest in ANNs reduced within the 

academic and scientific circles [12]. This decline in ANN adoption was largely because 

computers then were not as powerful as they are today. Many scientists during that period 

also did not have rudimentary understanding of ANNs yet so there was not much drive to 

advance ANN in this period. 

In the late 1980s and early 1990s, we witnessed a growth in the adoption of ANNs. This 

time, it was because computers were getting better, and we had new ways to teach ANNs 

how to learn [12]. One important thing was the backpropagation training algorithm. This 

was invented by a few different people, like Paul Werbos, David Rumelhart, Geoffrey 

Hinton, and Ronald Williams [12]. Backpropagation made it easier to train ANNs with many 

layers, so they could solve more complicated problems [12]. 

The 21st century saw ANNs really take off. This was because we had big sets of data to train 

them on, and computers were super powerful. We also got better at using deep learning, 

which means training ANNs with lots of layers. This made ANNs good at tasks like 

recognizing pictures, understanding language, and even driving cars [13]. 

Table 1 below summarises the evolution of major events in AI history. 
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Table 1 Major Events in AI History 

Year Key Researchers Events in AI History 

1943 Warren McCulloch and Walter Pitts Simplified model of a neuron 

1957 Frank Rosenblatt Perceptron [11] 

1970s – 1980s - Decline in interest in ANNs 

Late 1980s Paul Werbos, David Rumelhart, Geof-

frey Hinton and Ronald Williams 

Backpropagation allowing 

training of multi-layer ANNs 

21st Century - Big Data, Deep learning 

 

ANNs are pivotal in modern computing, functioning similarly to the human brain and 

solving very complex problems. The basic form of an ANN is the Neuron which is 

instrumental in processing information and producing outputs. The Neurons act as decision 

makers that take in data as input, perform computations on the data and then produce the 

processed output [3]. 

In an ANN, neurons are arranged in layers: input layer, multiple hidden layers, and an output 

layer. Each neuron receives input signals from neurons in the previous layer, processes them 

using an activation function such as the Sigmoid function shown in Figure 2, and produces 

and output. 

 

 

Figure 2 Schematic for a neuron in an ANN [3] 
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Figure 3 Simple example of a feed-forward neural network with three layers and 

three neurons per layer2 

Figure 3 above describes the structure of a feed-forward neural network with three layers 

and three neurons per layer. These connections between neurons are weighted. The weights 

represent the strength of each connection. During the training, the network adjusts these 

weights to minimise the difference between its predicted outputs and the actual outputs, a 

process known as optimization. This adjustment is typically done using algorithms like 

backpropagation, where the network iteratively corrects its predictions based on the errors it 

makes.  

The equation labelled (1) below describes the sigmoid activation function with the graph in 

Figure 4 taking the form of the characteristic S-shape. 

𝑓(𝑥) =  
1

1 + 𝑒−𝑧
 

(1) 

 

 

2 https://www.researchgate.net/figure/Structure-of-a-typical-3-layer-feed-forward-multilayer-perceptron-arti-

ficial-neural_fig3_259319882 
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Figure 4 The plot of a sigmoid activation function3 

In the field of ANN, there are other common activation functions such as Tanh (Hyperbolic 

Tangent) and ReLU (Rectified Linear Unit). 

ReLU is most popular due to its simplicity and effectiveness. It solves the vanishing gradient 

problem which remains a problem associated with sigmoid and tanh activation functions [3]. 

ReLU is computationally efficient and most commonly used in the hidden layers of deep 

neural networks.  

ReLU uses a different type of nonlinearity as represented in the equation (2) below and the 

resulting plot in Figure 5 takes a hockey-stick-shaped output. 

 

𝑓(𝑥) = max(0, 𝑧) (2) 

 

 

3 https://ambrapaliaidata.blob.core.windows.net/ai-storage/articles/Untitled_design_13.png 
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Figure 5 The plot of a ReLU activation function4 

 

Tanh is similar to the sigmoid function and use a similar S-shaped nonlinearity in Figure 4, 

but instead of ranging from 0 to 1, the output of tanh neurons range from -1 to 1 [3].  

The mathematical equation for the tanh activation function is given below in equation (3) 

with the resulting relationship between the output y and the logit z shown in Figure 6 below. 

 

𝑓(𝑥) = tanh(𝑧) (3) 

 

 

4 https://vidyasheela.com/web-contents/img/post_img/40/ReLU-activation-function-new.png 



TBU in Zlín, Faculty of Applied Informatics   18 

 

 

Figure 6 The plot of a tanh activation function5 

 

While ReLU is commonly used in hidden layers due to the simplicity and effectiveness in 

solving the vanishing gradient problem,  

I have focused mainly on the Sigmoid activation function for this research due to some 

reasons below: 

a. The sigmoid activation function forces the input values to fall between 0 and 1 which 

is very helpful in this work because violent behavior detection is a binary 

classification problem where outputs are interpreted as probabilities 

 

b. Despite the drawbacks from the vanishing gradient problem, it still functions well as 

the output layer of binary classification problems where the goal is simply to predict 

probabilities for event occurrence. 

 

 

5 https://images.squarespace-cdn.com/content/v1/5acbdd3a25bf024c12f4c8b4/1524687495762-

MQLVJGP4I57NT34XXTF4/TanhFunction.jpg 
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The adoption of the Sigmoid activation function in this work has helped me to normalise 

prediction outputs between the range of 0 and 1. When the value of x is large and positive, 

the sigmoid function approaches 1, indicating a high probability, while x is large and 

negative, the sigmoid function approaches 0, indicating a low probability. 

The derivative of the sigmoid function with respect to its input x is computed in the equation 

(4) below: 

 

𝑑

𝑑𝑥
𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑥) . (1 − 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥)) 

(4) 

   

The gradient of the sigmoid function approach 0 for large positive or negative values of input 

x, and this affects the rate of convergence during training for Deep Neural Networks (DNNs). 

ANN learns input data by adjusting the weights and improving its ability to make correct 

predictions and classification. 

The history of this approach is marked by several milestones as summarised in Table 1 in 

the earlier chapter. The works of McCulloch and Pitts were pivotal in pushing the 

breakthroughs in Deep Learning (DL). Since the beginning of AI research, ANNs have seen 

a lot of changes in its framework for tackling computational problems. 

The advancements seen in ANN today is largely due to the efforts of the researchers from 

the various academic institutions. Their joint efforts towards new research areas and 

discovery of new approaches in computer vision, natural language processing, healthcare 

and robotic engineering presents a bright future for ANN.  

1.1 NEURAL NETWORKS FOR IMAGE PROCESSING 

CNNs are widely used in various domains of image processing [14]. CNNs stand out as a 

crucial tool in various domains including image analysis, natural language processing and 

image classification tasks. What sets CNN apart is its remarkable capability to discern and 

interpret intricate patterns within both visual and textual data. 

In the area of image classification, CNNs have reached high levels of accuracy nearly 

human-level performance. CNNs have be run against benchmark datasets like ImageNet, 
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allowing for performance of computationally demanding tasks such as object and scene 

detection, and disease identification in medical scans [15]. 

Yann LeCun in his groundbreaking paper in 1998 introduced the LetNet architecture [16]. 

The inception of the LeNet architecture marked a pivotal moment in the quest to efficiently 

classify 2D images [16]. It emerged as a response to the challenges faced by both overly 

simplistic neural networks struggling to grasp complex training sets and unwieldy, 

parameter-heavy networks. LeNet aimed to strike a balance, offering a streamlined 

convolutional network capable of navigating intricate data landscapes [16]. 

Two important ideas behind LeNet are feature map system and cascading local convolutional 

feature maps applied to several hidden layers.  

As shown in Figure 7 below, a feature map is generated by initiating a convolution operation 

on the initial matrix. Equation (5) shows the relationship between the feature map and the 

input and kernel matrices per the LeNet system architecture.  

 

Figure 7 Feature map system for LeNet architecture 6 

 

 

6 https://acodez.in/anatomy-of-the-lenet-1-neural-network/ 
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Feature map = input matrix * kernel matrix (5) 

 

In the equation (5) above, the convolution operator is represented as ‘*’. For this convolution 

operation, only weights inside the kernel matrix will be considered. 

The rationale behind favoring local connectivity in neural network architectures, particularly 

for classifying 2D maps like images, stems from the inefficiency of fully connected layers 

in capturing the spatial intricacies of the data [16].  

Unlike fully connected networks that indiscriminately consider all input pixels regardless of 

their spatial proximity, architectures like LeNet-1 employ localized connections, 

emphasizing specific regions through local receptive fields, essentially convolution kernels 

[16]. By focusing on these small, adjacent subsets of the input, convolutional neural 

networks (CNNs) efficiently extract relevant features, effectively addressing the spatial 

nature of the data while reducing computational overhead [16]. 

In the realm of image recognition, bespoke neural network designs tailored specifically for 

2D maps have proven invaluable [16]. These specialized architectures excel at sifting 

through noise, tackling distortions, and smoothing out fluctuations within input data. 

Convolutional networks stand out as the cornerstone of such tailored approaches. They 

possess the unique ability to hone in on localized patterns, seamlessly integrating these 

insights to construct a holistic understanding of the input. LeNet embodies this concept, 

leveraging the power of convolutional networks to distil intricate visual data into actionable 

insights [16]. 
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Figure 8 Large Scale Visual Recognition Challenge (LSVRC) 2012 Results [17] 

 

The LSVRC for which results are shown in Figure 8 above is an annual competition aimed 

at advancing the state-of-the-art in visual recognition tasks, especially in the field of object 

detection and image classification [17]. 

Organized by academic and industry leaders in the field, including institutions like Stanford 

University and Google, LSVRC attracts participation from researchers worldwide. The 

challenge typically involves tasks such as object localization, where algorithms must identify 

and precisely locate objects within images, and object classification, where algorithms 

categorize objects into predefined classes. Participants are provided with large datasets for 

training their models, which often include millions of labeled images spanning numerous 

object categories. The competition evaluates submissions based on their accuracy in 

recognizing objects in unseen images, with a focus on robustness, efficiency, and scalability. 

LSVRC serves as a benchmark for assessing the progress of computer vision techniques and 

fostering innovation in the development of algorithms for real-world visual recognition 

applications. 
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AlexNet emerged victorious with its innovative architecture featuring five convolutional 

layers and three fully connected layers. With a total weight of 61 million parameters and 724 

million multiply-accumulate operations (MACs), AlexNet showcased its prowess in 

handling large-scale visual recognition tasks [17].  

The convolutional layer configuration for AlexNet is summarised in Table 2 below. 

 

Table 2 AlexNet Convolutional Layer Configurations [17] 

Layer Filter Size # Filters (M) # Channels (C) Stride 

1 11x11 96 3 4 

2 5x5 256 48 1 

3 3x3 384 256 1 

4 3x3 384 192 1 

5 3x3 256 192 1 

 

One of its key strengths lay in its use of ReLU activation functions, which introduced non-

linearity to the network, enhancing its ability to capture complex patterns in image data. This 

groundbreaking achievement solidified AlexNet's status as a milestone in the field of 

computer vision, setting the stage for further advancements in deep learning and image 

recognition technologies [17]. 

VGG-16, a prominent deep convolutional neural network, is renowned for its robust 

architecture designed for image classification tasks. With a staggering 13 convolutional 

layers as shown in Figure 9 below, followed by three fully connected layers, VGG-16 excels 

in extracting hierarchical features from input images at various levels of abstraction [17]. Its 

substantial weight of 138 million parameters enables it to capture intricate details within 

images, contributing to its impressive performance [17].  
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Figure 9 Architecture of VGG-16 CNN model 7 

 

Moreover, with a remarkable computational efficiency reflected in its 15.5 billion multiply-

accumulate operations (MACs), VGG-16 demonstrates its capability to handle large-scale 

visual recognition tasks with speed and accuracy. This combination of depth, 

parameterization, and computational efficiency has positioned VGG-16 as one of the leading 

models in the field of deep learning, inspiring further advancements in image analysis and 

computer vision applications [17]. 

The future of neural networks in image processing holds promise, with ongoing research 

focusing on improving model efficiency, interpretability, and generalization. Techniques 

like attention mechanisms and self-supervised learning aim to enhance the performance of 

neural networks in understanding complex visual content. However, challenges such as data 

privacy, ethical considerations, and the environmental impact of large-scale training remain 

pertinent. 

 

7 https://www.researchgate.net/figure/Architecture-of-the-modified-VGG16-model_fig1_350828239 
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1.2 LIMITATIONS OF TRADITIONAL NEURAL NETWORKS IN 

IMAGE PROCESSING 

The advent of traditional neural networks, particularly CNNs, has significantly reshaped the 

landscape of image processing. However, amid their notable achievements, these models 

exhibit inherent limitations that hinder their efficacy in specific contexts [18].  

Traditional neural networks operate hierarchically, progressively extracting abstract features 

from input images. Despite their proficiency in capturing local patterns, they often fail in 

achieving a comprehensive understanding of spatial relationships within the image [18]. 

Consequently, tasks requiring nuanced spatial reasoning, such as semantic segmentation or 

image manipulation, present formidable challenges [17]. 

A prominent limitation of traditional neural networks lies in their susceptibility to variations 

and distortions in input images. Minor disruptions, such as rotations or occlusions, can 

significantly affect model performance. This vulnerability emanates from the fixed receptive 

fields of convolutional filters, thereby impeding the models' generalization capacities to 

novel data or variations in image characteristics [19]. 

The opaque and intricate nature of internal representations learned by traditional neural 

networks presents a formidable challenge in interpretation. While good at extracting 

hierarchical features from raw pixel data, discerning the semantic underpinnings of these 

representations remains difficult to catch. This dearth of interpretability creates doubts 

regarding the reliability of neural network predictions, particularly in domains requiring high 

interpretative fidelity, such as medical diagnosis or autonomous driving [14]. 

The training and deployment of traditional neural networks, notably deep CNNs, exact 

substantial computational overheads and memory requisites [19]. The magnitude of 

parameters and layers mandates adequate computational resources, constraining 

accessibility to researchers and practitioners lacking access to high-performance computing 

infrastructure. Additionally, the deployment of such models on resource-constrained devices 

poses logistical challenges due to memory and power constraints [3]. 

Traditional neural networks are susceptible to adversarial attacks, wherein small changes to 

input images can induce misclassification or erroneous predictions. This susceptibility, 

rooted in the linear and non-robust nature of neural network activations, enables attackers to 

exploit small deviations in the input to manipulate model outputs. Consequently, traditional 

neural networks may not be reliable in situations where security is very important [19]. 



TBU in Zlín, Faculty of Applied Informatics   26 

While traditional neural networks have sparked big changes in how we process images, their 

limits show that we still need to keep coming up with new ideas in this area. To deal with 

these limits, we need to work together across different fields like machine learning, computer 

vision, and cognitive science. If we can solve these problems, we can make models for image 

processing that are stronger, easier to understand, and use less computing power. This would 

make them useful in many different real-world situations [19]. 
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2 OVERVIEW OF AI TECHNIQUES IN VIDEO AND IMAGE 

PROCESSING 

Artificial Intelligence (AI) has witnessed a lot of advancements in recent years, significantly 

impacting video and image processing domains. This work addresses the main AI techniques 

used in these fields, highlighting their principles, applications, and implications [15].  

In the following chapters, CNNs, Recurrent Neural Networks (RNNs), Generative 

Adversarial Networks (GANs), Transfer Learning, and Attention Mechanisms are discussed, 

describing their roles in reshaping visual information processing [15]. As reviewed in [15], 

CNNs have been instrumental in image classification tasks, marking a pivotal advancement 

in AI-driven image processing. 

 

Figure 10 Diagram of a convolutional neural network architecture8 

 

Figure 10 above describes a basic CNN consisting of several layers that process input data 

in a hierarchical manner, extracting features at different levels. The input layer is where we 

feed raw input into the network. In the context of image processing, each pixel from the 

image dataset is considered an input neuron. The convolutional layer serves to apply a set of 

filters known as kernels to the input data. Convolution is performed on this layer to produce 

 

8 https://www.researchgate.net/figure/Schematic-diagram-of-a-basic-convolutional-neural-network-CNN-

architecture-26_fig1_336805909 
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feature maps [18]. The purpose of feature maps is to capture spatial hierarchies of patterns 

in the input data. Activation functions like ReLU is applied to the network to introduce non-

linearity thereby allowing the model learn very complex patterns. The pooling layer serves 

to reduce the spatial dimensions through a method of downsampling [18]. Fully connected 

layers allow a strong interconnection between the current layer and all previous layers 

enabling the model to learn global patterns in the feature maps extracted by the convolutional 

layers [18]. 

CNNs have emerged as foundational tools in image processing due to their use in 

automatically extracting hierarchical features from images [15]. Krizhevsky et al. [15] 

pioneered this domain with the seminal work on AlexNet, showcasing CNNs' applicability 

in image classification tasks. Since then, architectures like VGGNet [18] and ResNet [14] 

have further propelled CNNs' capabilities, fostering breakthroughs in object detection and 

semantic segmentation [18]. 

RNNs on the other hand are good at interpreting sequential information. In video processing, 

RNNs, particularly Long Short-Term Memory (LSTM) networks, play an important role in 

capturing temporal dependencies. Hochreiter and Schmidhuber [20] introduced LSTM 

networks, enabling applications such as action recognition and video captioning. By 

modeling sequential data, RNNs facilitate nuanced analysis of video content, augmenting 

comprehension and descriptive capabilities. 

 

Figure 11 Diagram of a recurrent neural network architecture9 

 

9 https://medium.com/@poudelsushmita878/recurrent-neural-network-rnn-architecture-explained-

1d69560541ef 
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Figure 11 above shows the most basic form of a RNN architecture which is made up of three 

components: an input layer, hidden layer, and an output layer. The input layer serves to 

accept input represented in vectors and fed into the system one at a time. The hidden layer 

is made up of recurrent connections which creates the concept of memory and information 

retention. The hidden layer takes both current input and output from prior states to compute 

the hidden state. The hidden state is used in running predictions an fed back into the network 

for subsequent steps in the network. 

GANs have revolutionized content generation tasks by learning to generate realistic images 

and videos. Goodfellow et al. [9] introduced GANs as a novel framework comprising a 

generator and a discriminator network trained adversarially. This paradigm has fostered 

advancements in video synthesis, super-resolution, and prediction, heralding a new era of 

visual content creation. 

Transfer Learning has gained prominence in scenarios with limited labeled data, leveraging 

pre-trained models to enhance performance on specific tasks. Yosinski et al. [21] 

demonstrated the efficacy of transfer learning in image processing, reducing computational 

costs while maintaining competitive performance. By fine-tuning pre-trained models on 

domain-specific data, practitioners expedite model training and mitigate data scarcity 

challenges. 

Attention Mechanisms is inspired by human visual attention and enable models to focus on 

salient regions within images and videos. Vaswani et al. [22] introduced Transformer 

architectures, employing attention mechanisms to selectively weigh different parts of input 

data. In image processing, attention mechanisms have bolstered tasks like image captioning 

and object detection, enhancing model interpretability and performance [22].  

 

Table 3 below summarises the various AI techniques and applications. 
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Table 3 AI Techniques and Applications [13] 

AI Technique Applications 

CNNs 

Image classification 

Object detection 

Semantic segmentation 

Facial recognition 

RNNs 

Action recognition 

Video captions 

Video summary 

GANs 

Image generation 

Video synthesis 

Super-resolution 

Transfer learning 

Fine-tuning pre-tuned models for specific 

tasks 

Addressing data securely 

Attention Mechanisms 

Image caption 

Object detection with attention 

Video summary with attention 

 

AI has brought about significant changes in how we process videos and images. With 

techniques like CNNs, RNNs, GANs, Transfer Learning, and Attention Mechanisms, 

machines can now understand, create, and analyze visual content more accurately and 

efficiently than ever before [14]. 

CNNs, for instance, help in recognizing objects in images, while RNNs are great at 

understanding videos by looking at the sequence of frames [18]. Generative Adversarial 

Networks are excellent at creating realistic images and videos, and Transfer Learning allows 

machines to learn from one task and apply it to another, saving time and resources. Attention 
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Mechanisms help models focus on the most important parts of an image or video, improving 

their performance in tasks like image captioning and object detection [13]. 

As these AI techniques continue to evolve, we can expect even more breakthroughs in video 

and image processing. This means better quality images, more accurate object detection, and 

even more realistic video synthesis. With AI, the possibilities in visual content creation and 

analysis are endless, promising a future where machines can truly see and understand the 

world around us in remarkable ways [5]. 
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3 APPLICATION OF AI IN DETECTING VIOLENT BEHAVIOR 

AI has transformed many sectors, but most importantly in the safety and security sector, a 

crucial role is being played in detecting violent behavior. This is possible due to the huge 

amounts of datasets and advanced deep learning model capable of studying patterns across 

visual datasets depicting violence behaviors. 

AI assists greatly in violent behavior detection through deep learning, a subset of machine 

learning. Detecting violence can be useful in many places like soccer stadiums, cameras 

watching streets, and various video sharing platforms such as YouTube and Vimeo [23]. 

More practical applications of AI in violence detection include monitoring platforms like 

Facebook, Snapchat, Instagram, TikTok as well as many other popular sites, where AI tools 

flag potentially violent content for review [24]. There have been cases in the past where AI 

had spotted violent user-generated content on Facebook and aided law enforcement in 

responding quickly to de-escalate the situation10. 

However, it is sometimes difficult for people to monitor these videos in real-time because 

there is so much of these videos to looks at. AI excels at this by quickly spotting violence 

through automated image processing and informing the authorities so they can act fast in 

cases that require immediate attention [23]. 

 

Figure 12 Steps involved in developing AI-based systems11 

 

The processes involved in building AI systems as shown in Figure 12 above outlines the 

sequential steps necessary for system development. These steps are very important for 

making AI systems work well and be trustworthy [2]. Starting from collecting and preparing 

 

10 https://about.fb.com/news/2021/12/metas-new-ai-system-tackles-harmful-content/ 

11 https://kvalito.ch/taking-shape-artificial-intelligence-regulation-and-its-impact-on-csv-csa-iii/ 
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data to training the model and checking how well it works, each part is crucial for making 

the system better. Also, after putting the system into use, it's important to keep an eye on it 

and make improvements over time. Due to the number of steps involved, it is important that 

we are careful and evaluate every step to get the results we want [3]. 

AI technologies have shown significant potential in augmenting traditional methods of 

violence detection, offering innovative solutions to identify patterns and indicators of violent 

behavior [25]. Violence, whether physical or verbal, poses significant challenges to societies 

worldwide, making its detection and prevention crucial [26]. 
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4 REVIEW OF RELATED AND EXISTING STUDIES ON VIOLENT 

BEHAVIOR DETECTION USING AI 

This chapter contains extensive research I conducted on existing literature and systems. 

Previous efforts in visual processing in deep learning were acknowledged, and their strengths 

and potential gaps examined. 

Out of numerous papers of relevance, the following were deemed directly relevant to this 

work: 

I A Machine Learning Approach to Detect Violent Behaviour from Video [5]. 

In this paper, the authors use a machine learning approach to identify violent 

behavior in videos by encoding visual features into a vector, processed by a 

convolutional LSTM network, followed by classification through fully con-

nected layers. Alongside traditional features like angles, velocity, and contact 

between individuals, the authors incorporated temporal information to construct 

a feature vector for a binary classification SVM model, aiming to predict violent 

behavior. 

The study utilizes the ISR-UoL 3D Social Activity Dataset, encompassing 

93660 RGB images of multi-person actions across 10 sessions, each featuring 8 

distinct acts performed by unique pairs of individuals. The dataset captures per-

sonal nuances during actions to enhance generalization, with acts sometimes 

split into four mini-recordings. Various human actions like handshake, hug, 

fight, push, talk, and draw attention performed by a group of 6 individuals serve 

as the basis for classification. Notably, actions deemed aggressive or violent, 

such as push and fight, are considered around 31% of frames, while others are 

categorized as non-violent. 

Potential gaps in the research on action recognition include the need for more 

focus on real-world applications and practical implementations. 
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II State-of-the-art Violence Detection Techniques in Video Surveillance Security 

Systems: A Systematic Review [6]. 

The systematic review by Omarov et al. provides a comprehensive assessment 

of video violence detection techniques. The study analyzes 80 research papers 

from 2015 to 2021, sourced from digital libraries and computer vision confer-

ences. The paper categorizes methods into conventional, deep learning-based, 

and machine learning-based approaches, highlighting the importance of datasets 

and evaluation criteria in violence detection. Notably, the review captures the 

increasing trend of deep learning techniques, especially convolutional neural 

networks, in addressing violence detection challenges. 

In examining the presented datasets, the paper identifies the popular datasets for 

violence detection and the methods used for abnormal behavior classification. 

However, a potential gap lies in the limited focus on datasets directly relevant 

to violence detection, leaving room for a more detailed analysis of dataset suit-

ability and diversity in violence detection research. 

III Transfer Deep Learning Along with Binary Support Vector Machine for Abnor-

mal Behavior Detection [27]. 

Abnormal behavior detection in various scenarios has been a subject of signifi-

cant research efforts in recent literature. Studies such as the one by Zenati et al. 

introduce novel frameworks like Bidirectional GAN, emphasizing the im-

portance of encoder E, generator G, and discriminator D in mapping latent rep-

resentations during training. Furthermore, the work by the authors explores ab-

normal behavior detection in diverse environments using CNN, showcasing the 

adaptability of models to different background settings and subject numbers. 

On the other hand, Gnouma et al. propose an innovative approach centered 

around the history of binary motion images (HBMI) for human activity recog-

nition. This method leverages silhouettes of human activities based on charac-

teristics represented through background subtraction techniques like MOF and 

GMM. Additionally, the utilization of stacked sparse autoencoders (SSAE) in 
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automating human activity detection underscores the significance of unsuper-

vised feature learning in capturing high-level pixel intensity features efficiently. 

Despite the progress made in abnormal behavior detection literature, there exist 

potential gaps that warrant further investigation. One apparent gap is the need 

for research focusing on the integration of multiple modalities for enhanced de-

tection accuracy. Incorporating sensor data, textual information, or contextual 

cues alongside visual data could potentially enrich the existing detection models 

and improve overall performance. 

IV Violent Interaction Detection in Video Based on Deep Learning [26]. 

The paper by Peipei Zhou et al. ventures into the burgeoning field of automated 

video surveillance by leveraging deep learning techniques to detect violent in-

teractions in video footage. This study incorporates advanced computational 

models that exhibit the capability to analyze visual content for aggressive be-

havior detection, thus enhancing security and surveillance systems. The work 

primarily integrates deep learning frameworks which are adept at handling large 

and complex datasets, allowing for more nuanced and accurate interpretations 

of dynamic scenes.  

The paper focuses on the detection of violent interactions using deep learning, 

but it does not emphasize the efficiency and speed of these detections in real-

time applications. Real-time processing is crucial for immediate intervention in 

security systems. 

While the paper by Peipei Zhou et al. marks significant advancements in using 

deep learning for detecting violent interactions in videos, addressing these gaps 

can propel the research forward, making it more applicable and robust in real-

world scenarios. 

V Violent Flows: Real-Time Detection of Violent Crowd Behavior [25]. 

The paper on violence detection contributes significantly to the field by propos-

ing a method that efficiently labels ViF descriptors as either violent or non-vio-

lent using a standard linear Support Vector Machine (SVM). The authors 
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assembled their own collection of videos, encompassing both violent and non-

violent crowd behaviors, to test the accuracy of their method. They compared 

their approach with existing state-of-the-art techniques on violence classifica-

tion and detection benchmarks designed using this collection, showcasing a 

clear performance advantage in favor of their proposed method. 

Despite the valuable contributions made by the paper, several potential gaps and 

areas for further exploration emerge. One such gap revolves around the limited 

availability of comprehensive video collections for testing violence detection 

performance, as highlighted by the authors themselves. The lack of focused 

benchmarks specifically addressing the described problem poses a challenge for 

researchers in this domain. 

While the paper presents a valuable contribution to violence detection method-

ologies, addressing the identified gaps could further elevate the robustness and 

applicability of violence detection techniques in diverse real-world setting. 

VI Weakly-Supervised Violence Detection in Movies with Audi and Video Based 

Co-training [28]. 

In the presented paper by Jian Lin and Weiqiang Wang, the authors introduce a 

novel methodology for detecting violent content in movie scenes by deploying 

a dual-view (audio and video) weakly-supervised approach which leverages co-

training to increase detection accuracy. This study significantly contributes to 

the domain of content moderation and multimedia processing by integrating dis-

tinct yet complementary sensory data streams—a strategy that remains under-

explored in the field. 

While the paper outlines a robust framework for violence detection, certain gaps 

can be explored further. Firstly, the granularity of violence levels is not ad-

dressed. All violent incidents are treated with the same severity, which may not 

be suitable for all applications. Future research could focus on classifying the 

intensity or type of violence, providing a more nuanced content moderation tool. 
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VII Person-on-Person Violence Detection in Video Data [29]. 

The system's methodology and assumptions are backed by a range of studies 

indexed in the provided references. For example, the work by Kuno et al. on the 

automated detection of humans is fundamental in formulating algorithms that 

can discern human figures and activities within a video feed. Similarly, Stauffer 

and Grimson's exploration of activity patterns using real-time tracking has likely 

contributed to refining the motion detection algorithms and enhancing temporal 

consistency, which is key to the detection system’s effectiveness in dynamic 

environments. In the domains of video content characterization and scene recog-

nition, contributions by Vasconcelos and Lippman, along with Nam and Al-

ghoniemy, provide critical frameworks and methodologies that contribute to un-

derstanding the semantically meaningful feature spaces necessary for accurate 

activity detection. 

The system tested across various scenarios, including determining the difference 

between violent and non-violent human interactions, indicates a robust applica-

tion of the aforementioned studies. The focus on not just static imagery but con-

tinuous video feeds allow for a comprehensive approach to surveillance, a dis-

tinct improvement over traditional systems that may rely more heavily on static 

image analysis. The introduction of dual analytical methods further exhibits an 

innovative approach by enhancing the system’s reliability in real-world scenar-

ios, allowing it to handle varied environmental and human factors effectively. 

Despite the advancements, the document clearly outlines several limitations and 

potential areas for future development. One major gap is the system's inability 

to accurately handle scenarios where individuals are not upright or are engaging 

in complex interactions like wrestling. This highlights a need for advanced al-

gorithms capable of understanding more complex human postures and interac-

tions beyond basic violent actions. 
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VIII Audio-Visual Content-based Violent Scene Characterization [30]. 

The paper by Nam, Alghoniemy, and Tewfik introduces a novel technique for 

characterizing and indexing violent scenes in TV dramas and movies. The au-

thors address the existing reliance on low-level visual feature analysis in video 

indexing schemes, emphasizing the need for higher-level features to enable se-

mantically meaningful information retrieval. They highlight the limitations of 

current approaches in capturing conceptual meanings, particularly in identifying 

specific events of interest across different film genres. 

The authors propose a high-level indexing scheme that merges multiple audio-

visual signatures to create a perceptual relation for identifying violent scenes, 

aiming to support video indexing at a more substantial conceptual level. They 

underscore the importance of effectively combining different low-level audio-

visual features and associating them with conceptually meaningful violent con-

tent, illustrating a practical example of query by semantic subject. 

One notable gap in the existing research, as highlighted by the authors, is the 

limited focus on detecting action or violent content using a single source of in-

formation (either audio or visual track data alone). For instance, while some 

studies have used video shot activity and duration as features to categorize mov-

ies based on violence, these criteria may not be sufficient to differentiate violent 

actions from highly active non-violent content, such as sports videos. Similarly, 

relying solely on audio-based violence detection may lead to false positives due 

to the complexity of background audio tracks mixing various sounds. 

The proposed technique by Nam et al. addresses this gap by integrating cues 

from both video and audio tracks to characterize violent scenes, acknowledging 

the high correlation between these modalities during violent events. This ap-

proach leverages spatio-temporal dynamic activity signatures in video shots and 

sound effects embedded in the soundtrack to provide a more comprehensive 

analysis of violent content. 

The work by Nam, Alghoniemy, and Tewfik contributes significantly to the 

field of audio-visual content-based violent scene characterization by proposing 
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a novel technique that bridges the gap between existing single-source ap-

proaches. Future research could focus on enhancing the robustness and scalabil-

ity of the proposed method across diverse genres and settings to further advance 

the field of violent scene identification in audio-visual media. 

IX Detection of Violent Events in Video Sequences based on Census Transform 

Histogram [31]. 

The paper under review presents a comprehensive analysis of various methods 

applied to the Hockey Fights Dataset, focusing on different feature descriptors 

and classification techniques. The study evaluates the performance of methods 

such as HOG + BoW, HOF + BoW, MoSIFT + BoW, and more, in terms of 

accuracy percentage. These analyses shed light on the efficacy of the different 

combinations in accurately classifying instances within the dataset. 

The work done in this paper showcases a meticulous exploration of feature ex-

traction and classification methods in the context of analyzing hockey fight vid-

eos. By testing various combinations such as MoWLD + SparseCoding, 

MoIWLD + KDE + SparseCoding, and SRC among others, the researchers pro-

vide a detailed comparison of the effectiveness of each method in achieving high 

accuracy levels. 

However, despite the thorough investigation conducted in the study, there are 

potential gaps that warrant further attention. One notable gap is the limited ex-

ploration of deep learning techniques, which have shown promising results in 

various computer vision tasks. Integrating deep learning models, such as con-

volutional neural networks (CNNs) or recurrent neural networks (RNNs), could 

potentially enhance the classification performance on the Hockey Fights Da-

taset. 

Moreover, the paper primarily focuses on traditional feature-based methods and 

lacks exploration of the latest advancements in the field of computer vision, such 

as attention mechanisms or transformer models. Incorporating these modern ap-

proaches could possibly lead to improved accuracy and robustness in classifying 

violent interactions in hockey videos. 
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While the paper provides a valuable insight into the performance of different 

feature descriptors and classifiers for analyzing hockey fight videos, there exist 

opportunities for future research to delve into incorporating deep learning and 

cutting-edge techniques to address the identified gaps and further enhance the 

accuracy and efficiency of violence detection in sporting events. 

X Recognizing Human Actions in Surveillance Videos [32]. 

The paper focuses on developing a robust human action recognition system for 

real-world surveillance videos. The authors address the importance of local spa-

tio-temporal features around interest points for effective video analysis and mo-

tion recognition. They introduce an algorithm named MoSIFT, which goes be-

yond traditional approaches by explicitly capturing local motion information in 

addition to local appearance. By detecting distinctive local features and con-

structing MoSIFT feature descriptors akin to SIFT descriptors, the authors aim 

to enhance robustness to small deformations through grid aggregation. Moreo-

ver, the incorporation of a bigram model to establish correlations between local 

features signifies an attempt to capture the global structure of actions. The pro-

posed method achieves a notable improvement in accuracy on the KTH dataset, 

reaching 95.8%. Furthermore, the application of the approach to 100 hours of 

surveillance data in the TRECVID Event Detection task shows promising results 

in human action recognition in real-world surveillance scenarios. 

While the paper presents significant advancements in human action recognition 

in surveillance videos, several potential gaps merit consideration for future re-

search. Firstly, a deeper exploration of the scalability and real-time performance 

of the MoSIFT algorithm could enhance its practical utility in large-scale sur-

veillance systems. Secondly, assessing the algorithm's performance across di-

verse environmental conditions, such as varying lighting or occlusions, would 

provide insights into its robustness in challenging real-world scenarios. Addi-

tionally, further investigation into the adaptability of MoSIFT to different types 

of actions and movements could broaden its applicability beyond the current 

scope. 
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XI Violence Detection using Oriented Violent Flows[33]. 

In the realm of violence detection in videos, previous studies have shown a com-

bination of vision and acoustic technologies. While some surveillance systems 

incorporate both modalities, audio cues are often unavailable, leading to a pre-

dominant reliance on visual methods. Early efforts by Datta et al. focused on 

violence detection through background subtraction. However, limitations arose 

when violence occurred in crowded environments, indicating potential chal-

lenges with this approach. 

Furthermore, the presence or absence of blood has been identified as a crucial 

cue for violence recognition in some studies. Nevertheless, when surveillance 

cameras only provide grayscale videos, the effectiveness of blood-based ap-

proaches may diminish. Recent advancements have seen the use of local inter-

est-point methods by Clarin et al. for detecting fights. Additionally, Nievas et 

al. introduced a novel descriptor, ViF, tailored for real-time crowd violence de-

tection. 

Notably, the creation of benchmark datasets such as Hockey Fights and Violent-

Flows has significantly contributed to the evaluation of violence detection algo-

rithms. These databases provide a standardized platform for testing different ap-

proaches in violence detection, thus enhancing the reproducibility and compa-

rability of research outcomes. However, there remains a gap in the literature 

regarding the adaptation and evaluation of these vision-based methods in real-

world scenarios outside controlled environments. Future research should focus 

on the robustness and generalizability of these algorithms in diverse settings to 

enhance the practical applicability of violence detection technologies. 

XII Abnormal Behavior Recognition for Intelligent Video Surveillance Systems: A 

Review [34]. 

Previous studies have predominantly focused on human action recognition 

within the realm of computer vision. Noteworthy research has been conducted 

in areas like video surveillance, scene modeling, and video content annotation 

and retrieval. Various surveys have delved into human motion detection, 
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behavior analysis, and activity recognition, emphasizing the significance of 

these endeavors across different applications. Surveys by Aggarwal & Cai, Ji & 

Liu, Pantic et al., and Shian-Ru et al. have laid the foundation for understanding 

human actions in video contexts. Furthermore, recent reviews by Dawn et al., 

Hassan et al., and Bux et al. have explored computer vision techniques for rec-

ognizing simple activities and phases of human activity recognition. Notably, 

certain studies by Sarvesh & Anupam and Mishra & Bhagat have concentrated 

on motion analysis and activity recognition specifically in video surveillance 

applications. 

However, despite the intense focus on human action recognition, there exists a 

noticeable research gap concerning abnormal behavior detection - a crucial facet 

of ensuring safety in surveillance settings. With the proliferation of surveillance 

cameras, the challenge of detecting abnormal events has intensified, prompting 

the need for automated surveillance systems capable of identifying anomalies 

and triggering alerts. While some literature reviews have touched on anomaly 

detection within surveillance systems, such as Valera & Velastin and Olu-

watoyin & Kejun, the concentration on abnormal behavior detection remains 

relatively limited. The scarcity of in-depth exploration in this area presents a 

promising avenue for further research to enhance the efficacy and accuracy of 

abnormal event detection in video surveillance setups. 

XIII Recognizing Violent Activity Without Decoding Video Streams [35]. 

In the paper "Recognizing Violent Activity without Decoding Video Streams" 

by Xie et al., the authors propose a novel method for recognizing violent activ-

ities based on motion vectors extracted directly from compressed video data. 

The approach involves analyzing motion vectors to generate a Region Motion 

Vectors descriptor (RMV) and utilizing Support Vector Machine (SVM) classi-

fication with a radial basis kernel to determine the presence of violent activities 

in videos with high accuracy (96.1%) and low false probability (5.1%). The 

method's efficiency also allows for potential integration into embedded systems, 

showcasing practical applicability. 
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The work builds upon existing activity recognition methods by focusing on vi-

olent activity detection, which is crucial for enhancing video surveillance sys-

tems' effectiveness. By leveraging motion vectors from compressed video data, 

the proposed method bypasses the need for intensive target detection and track-

ing processes, addressing limitations present in traditional recognition ap-

proaches. Furthermore, the study conducts experiment on diverse datasets, 

showcasing the method's robustness and high performance in identifying violent 

activities. 

While the paper presents a significant advancement in violent activity recogni-

tion, there are potential gaps that future research could address. One key area 

for further exploration could be the enhancement of feature extraction tech-

niques from motion vectors to improve the method's precision and adaptability 

to a wider range of violent activities. Additionally, investigating the scalability 

of the proposed method to handle real-time video streams in large-scale surveil-

lance systems could offer valuable insights for practical implementations. Fur-

thermore, exploring the integration of other machine learning algorithms or fu-

sion strategies with SVM for enhanced classification accuracy may provide av-

enues for further optimization and generalization of the method. 

XIV Fight Recognition in Video Using Hough Forests and 2D Convolutional Neural 

Network [36]. 

The study presented in this paper significantly contributes to the field of video 

analysis by introducing a method that achieves notable results on datasets with 

various frame sizes. By conducting a comprehensive comparison with hand-

crafted and deep learning methods from the literature, the proposed approach 

stands out, particularly on the Movies and Behave datasets. Notably, the use of 

a 2D Convolutional Neural Network trained from scratch with specific parame-

ters demonstrates the method's effectiveness in comparison to existing tech-

niques. 

In the literature, the work done includes evaluating handcrafted feature methods 

such as Violent Flows (ViF), LMP, and MoIWLD, along with the application of 
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different classifiers like SVM, Adaboost, and Random Forests. Deep feature 

learning methods like 3D Convolutional Neural Networks (3D-CNN) and C3D 

are also considered, each showcasing varying levels of success. Additionally, 

the incorporation of the BRISK descriptor with Hough Forest classifier provides 

insights into alternative approaches for video analysis. 

Despite the advancements presented, some potential gaps warrant further explo-

ration. Firstly, while the proposed method excels on the Movies and Behave 

datasets, more detailed insights into the method's performance on larger or more 

diverse datasets could enhance the generalizability of the results. Secondly, a 

deeper investigation into the robustness of the method across different input data 

characteristics and scenarios would provide a more comprehensive understand-

ing of its applicability. Future research could focus on optimizing the method's 

parameters to potentially enhance its efficiency and effectiveness in real-world 

applications. 

 

The summary of reviewed existing literature is shown in Table 4 below. 
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Table 4 Summary of existing literature on violence behavior detection 

S/No. Author(s) Title Methodology Proposed Strength(s) Gap(s) 

1 Nova D, Fer-

reira A, Cor-

tez P 

A Machine Learning Ap-

proach to Detect Violent 

Behaviour from Video 

The study utilizes Python, 

OpenPose, and other libraries 

like Numpy and scikit-learn 

to experiment with SVM for 

violent behavior detection 

via feature extraction from 

video frames 

The methodology offers high 

true positive and negative 

rates, showcasing robust clas-

sification accuracy using the 

SVM mode 

Limited information on the 

scalability and real-world 

applicability of the model, 

such as in different or more 

complex environments 

2 Omarov B, 

Narynov S, 

Zhumanov 

Z, Gumar A, 

Khassanova 

M 

State-of-the-art Violence 

Detection Techniques in 

Video Surveillance Secu-

rity Systems: A System-

atic Review 

A systematic literature re-

view integrating both quali-

tative and quantitative analy-

sis, utilizing five digital li-

braries and key conferences, 

focused on violence detec-

tion techniques in video sur-

veillance 

Comprehensive review 

scope, inclusion of high-

value conferences, and inte-

gration of advanced machine 

learning and deep learning 

methods 

Exclusion of non-English 

and non-journal papers may 

overlook relevant studies; 

focus on video surveillance 

limits broader application in-

sights 

3 Al-Dhamari 

A, Sudirman 

Transfer Deep Learning 

Along with Binary 

Researchers introduced a 

framework for anomaly 

The methodology effectively 

identifies unusual behaviors 

Limited scalability and po-

tential high false positives in 
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R, 

Mahmood N 

Support Vector Machine 

for Abnormal Behavior 

Detection 

detection in dense scenes us-

ing dynamic scene modeling 

and anomaly localization 

techniques 

in crowded scenes, enhancing 

security and monitoring sys-

tems 

extremely diverse crowd be-

haviors need addressing 

4 Zhou P, 

Ding Q, Luo 

H, Hou X 

Violent Interaction De-

tection in Video Based on 

Deep Learning 

A ConvNet named FightNet 

was developed to detect vio-

lent interactions by modeling 

long-term temporal struc-

tures, pretrained on the 

UCF101 dataset and tested 

on various public datasets 

like Hockey and Movies 

FightNet achieved 100% ac-

curacy on the Movies dataset 

and showed high adaptability 

across different datasets with 

reasonable computational 

costs 

Despite its high perfor-

mance, the robustness across 

all tested datasets was not 

uniform, suggesting a need 

for further enhancement in 

feature detection under var-

ied conditions 

5 Hassner T, 

Itcher Y, 

Kliper-

Gross O 

Violent Flows: Real-

Time Detection of Vio-

lent Crowd Behavior 

The methodology involves 

using ViF descriptors with 

SVMs for violence detection 

in videos from crowd envi-

ronments under uncon-

strained conditions 

ViF outperforms other meth-

ods with significant margin, 

especially effective for vid-

eos displaying crowd behav-

iors 

Limited by the type and vari-

ety of crowd videos availa-

ble, which may affect gener-

alizability of findings 
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6 Lin J, Wang 

W 

Weakly-Supervised Vio-

lence Detection in Mov-

ies with Audi and Video 

Based Co-training 

Audio violence is detected 

by segmenting audio into 

clips, extracting low-level 

features, clustering these into 

an audio vocabulary, and us-

ing probabilistic latent se-

mantic analysis (pLSA) with 

Expectation Maximization 

(EM) for classification 

Leverages proven speech 

recognition features and ro-

bust clustering via k-means 

algorithm, enhancing precise 

categorization in audio analy-

sis 

The scalability in varied 

real-world scenarios and 

sensitivity to diverse audio 

contexts are not deeply ex-

plored 

7 Datta A, Sha 

M, Da N, 

Lobo V 

Person-on-Person Vio-

lence Detection in Video 

Data 

Analyzes scenes for violence 

using motion history, object 

handling, and orientation 

data. Checks skin presence 

and adjusts for non-visible 

object elements 

Effective in detecting intri-

cate violent and non-violent 

activities using silhouette-

based orientation and object 

interaction analysis 

Challenges remain in identi-

fying objects as potential 

weapons and in distinguish-

ing smaller objects during 

handovers 

8 Nam J, Al-

ghoniemy 

M, Tewfik A 

Audio-Visual Content-

based Violent Scene 

Characterization 

The technique integrates au-

dio and visual tracks to de-

tect violence, using dynamic 

Enhances accuracy by com-

bining both audio and visual 

cues, covering a broader 

Potential for false positives 

due to mixed sounds; differ-

entiation from non-violent 
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activity signatures and sound 

effects analysis 

aspect of violent scenes char-

acterization 

high-action scenes remains 

challenging 

9 Souza F, 

Pedrini H 

Detection of Violent 

Events in Video Se-

quences based on Census 

Transform Histogram 

Introduced a video analysis 

method using CENTRIST 

features for detecting vio-

lence, involving prepro-

cessing, feature extraction, 

and classification with ma-

chine learning algorithms 

Effective on two datasets, 

competitive accuracy with 

simple yet robust features, 

enhanced with preprocessing 

techniques 

Did not surpass top existing 

methods, limited novelty in 

the conceptual approach 

10 Chen M, 

Hauptmann 

A 

Recognizing Human Ac-

tions in Surveillance Vid-

eos 

The MoSIFT algorithm cap-

tures local spatio-temporal 

features through interest 

points detection and encodes 

local appearance and motion 

using histograms of gradients 

and optical flow, integrated 

with a bigram model for 

structural correlation 

MoSIFT effectively enhances 

human action recognition in 

surveillance videos, showing 

a significant improvement 

over traditional models with 

a robust feature descriptor 

and a bigram approach for 

global structure analysis 

While MoSIFT advances ac-

tion detection, it struggles 

with actions that have subtle 

motions (e.g., CellToEar), 

and its performance on cer-

tain complex actions remains 

uncertain due to the lack of 

detailed annotations 
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11 Gao Y, Liu 

H, Sun X, 

Wang C, Liu 

Y 

Violence Detection using 

Oriented Violent Flows 

The methodology employs a 

Histogram of Oriented Opti-

cal Flow (HOOF) designed 

for violence detection, which 

concatenates histograms 

from magnitude and angle 

measurements of flow vec-

tors into a vector H, followed 

by binary indicators based on 

magnitude changes 

The approach integrates tra-

ditional machine learning al-

gorithms, SVM and Ada-

Boost, for enhanced classifi-

cation performance. This 

combination effectively se-

lects features and improves 

classifier training, leveraging 

the strengths of both method-

ologies 

The methodology lacks nor-

malization and specific de-

tails on the counting of ori-

entations may limit its adapt-

ability to different scenarios. 

Additionally, there is no 

mention of validation across 

diverse video datasets which 

might affect generalized per-

formance 

12 Ben Ma-

brouk A, 

Zagrouba E 

Abnormal Behavior 

Recognition for Intelli-

gent Video Surveillance 

Systems: A Review 

The methodology involves 

detecting the interest region 

using low-level features, fol-

lowed by describing the re-

gion with generated primi-

tives to provide semantic in-

formation about human ac-

tions 

The approach effectively 

combines low-level feature 

detection with semantic anal-

ysis, enhancing understand-

ing and classification of hu-

man actions 

The methodology faces chal-

lenges in feature robustness 

against transformations, im-

pacting the accurate behav-

ior representation of the in-

terest object 
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13 Xie J, Yan 

W, Mu C, 

Liu T, Li P, 

Yan S 

Recognizing Violent Ac-

tivity Without Decoding 

Video Streams 

The proposed methodology 

involves detecting violent 

behavior in video streams by 

analyzing motion vectors ex-

tracted directly from these 

streams, streamlining pro-

cessing for real-time applica-

tions 

This approach uses direct 

video stream analysis, ensur-

ing faster processing suitable 

for real-time systems 

The extraction relies on mo-

tion vectors which might not 

capture all aspects of violent 

behaviors, potentially affect-

ing accuracy 

14 Serrano I, 

Deniz O, Es-

pinosa-Ar-

anda J, 

Bueno G 

Fight Recognition in 

Video Using Hough For-

ests and 2D Convolu-

tional Neural Network 

A 2D Convolutional Neural 

Network (CNN) utilizes 

handcrafted images, high-

lighting motion details from 

video frames to detect fight 

sequences effectively 

The method leverages simpli-

fied CNN architecture for ef-

ficient processing, achieving 

high accuracy with optimized 

frame resolution and parame-

ters 

Relies heavily on predefined 

handcrafted features, poten-

tially limiting adaptability to 

different, unstructured video 

content. Lacks real-time pro-

cessing capabilities. 
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5 SELECTED DEEP LEARNING MODELS FOR VISUAL DATA 

PROCESSING 

In this chapter, I explore four (4) prominent deep learning models used for the experiments 

in this work: ResNet50, VGG-16, DenseNet-121 and Inception-v3, explaining their 

architectural differences, contributions and practical applications. The key concept applied 

here is known as Transfer learning. This allows for pretrained models to be enhanced and 

fine-tuned on a domain-specific dataset for purpose of achieving optimal performance. 

The field of deep learning has undergone a lot of research and new areas of application have 

come up as a result [37]. Among the different types of deep learning architectures, CNNs 

have been instrumental in tasks related to image classification, object detection, and 

semantic segmentation. Most common CNN models in use today are best known for their 

performance and effectivity. 

CNNs play a significant role in image processing which is central to recognising patterns in 

images and videos alike. CNNs mainly excel in learning hierarchical representations of 

visual data through convolutional layers, pooling operations and non-linear activations [37]. 

Various deep learning systems have surpassed human-level performance in image 

recognition benchmarks, thereby pushing the boundaries of what is possible today with 

advancements in medical field, self-driving cars, robotics as well as many other intelligent 

systems [17]. 

ResNet architecture introduced by He et al. in 2015 addresses the challenges of training deep 

networks by introducing skip connections, allowing for gradients to be propagated more 

effectively through the network [38]. This approach makes it possible to train exceptionally 

deep networks, removing the limitations faced by older models. The vanishing gradient 

problem is also minimised allowing for convergence and enabling the exploration of deeper 

architectures. 

The VGG-16 model proposed by Simonyan and Zisserman in 2014 is a system of multiple 

convolutional layers interspersed with max-pooling layers, resulting in several fully 

connected layers for classification [39]. It is quite simple when compared to other 

contemporary architectures, but demonstrates a good performance on various image 

recognition tasks. The ability to learn discriminative features from visual data is something 

that sets it apart from other models [39]. 
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DenseNet architecture is based on a connectivity pattern known as dense connections. The 

idea behind dense connections is that each layer of the network receives input from all 

preceding layers within a dense block [40]. This densely connected architecture makes it 

possible to reuse features, while facilitating gradient flow and enhancing the model’s 

compactness. DenseNet has a distinctive connectivity pattern that solves the vanishing 

gradient problem, while maintaining feature propagation and recording a good performance 

on image classification benchmarks [40]. 

In 2015, Inception-v3 model architecture was proposed by Szegedy et al. This model makes 

use of inception modules which uses multiple parallel convolutional pathways with different 

kernel sizes to capture spatial hierarchies of features at different scales [41]. This multi-scale 

processing capability allows Inception-v3 to effectively capture both local and global 

features. Inception-v3 performs well in feature extraction and can discern very intricate 

patterns from images [41]. 

In the following chapters, each model is described in details, showing relevant architectural 

components, training methodologies and general performance indicators. 

5.1 RESIDUAL NETWORK (RESNET) 

ResNet introduces a novel architecture element called residual block, which changed the 

way in which deep networks are constructed [38]. While traditional CNNs relied on stacking 

multiple layers to learn, ResNet uses the concept of residual blocks in order to solve the 

problem of vanishing gradient commonly associated with models that use multiple layers. 

ResNet introduces a concept known as ‘skip connections’ which means that activations of 

layers can be connected to further layers by skipping some layers in between. 

One of the major breakthroughs in the 2015 ImageNet Large Scale Visual Recognition 

Challenge (ILSVRC) was the debut of ResNet. ResNet achieved groundbreaking success by 

tackling the difficulties of training extremely deep neural networks. It surpassed other 

architectures by a significant margin, winning the image classification task in ILSVRC 2015 

with a top 5 error rate of 3.57% and delivering remarkable performance 12. 

 

12 https://medium.com/@ibtedaazeem/understanding-resnet-architecture-a-deep-dive-into-residual-neural-net-

work-2c792e6537a9 
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Researchers have long discovered that more layers in a CNN implied a greater flexibility to 

adapt to various datasets due to the expanded parameter space. However, newer studies have 

shown that beyond a certain depth, performance begins to decline in models with several 

layers [38]. This limitation is prominent in VGG models which loses its generalization 

ability for deeper configurations. 

As shown in Figure 13, the residual block acts as a key component of the ResNet 

architecture. It takes the input to the block and adds it to the output of the block creating a 

residual connection. 

 

Figure 13 Residual block in a ResNet model architecture [38] 

Residual blocks usually are made up of convolutional layers with batch normalization and 

ReLU activations, followed by a skip connection that adds the input to the output of the 

second convolutional layer. This design allows the network to retain information from earlier 

layers without being diluted or transformed excessively by subsequent layers [38]. 

From the equation (6) below, relationship between the input and output shows that NNs are 

good function approximators. They are able to solve functions where the output of the 

function becomes the input itself as shown in equation (6). 

 

𝑓(𝑥) = 𝑥 

 

(6) 
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Having established this logic, if the input to the first layer is bypassed to be the output of the 

last layer, we should see the model predict the previous function it learnt before the input 

was passed to it.  

This relationship is expressed in equation (7) below. 

𝑓(𝑥) + 𝑥 = ℎ(𝑥) (7) 

ResNet-18 and ResNet-34 represent the earlier iterations of ResNet architectures, 

characterized by their relatively shallow depths compared to later variants. ResNet18 

comprises 18 layers, while ResNet34 extends this to 34 layers. These architectures primarily 

consist of basic residual blocks, each containing two convolutional layers [38]. They are 

commonly employed in scenarios where computational resources are limited or for tasks 

with moderate complexity, such as image classification on small to medium-sized datasets. 

ResNet50 introduces a significant departure from its predecessors by leveraging bottleneck 

residual blocks. With a depth of 50 layers, ResNet50 strikes a balance between model 

complexity and computational efficiency [38]. These bottleneck blocks utilize 1x1 

convolutional layers to reduce and then restore the dimensions of feature maps, effectively 

reducing computational complexity while maintaining expressive power. As a result, 

ResNet50 finds widespread use across various computer vision tasks, including image 

classification, object detection, and semantic segmentation [38]. 

Building upon the success of ResNet50, ResNet101 further extends the depth of the 

architecture to 101 layers. By incorporating additional residual blocks, ResNet101 enhances 

the representational power of the network, making it suitable for more challenging tasks or 

scenarios where higher accuracy is required [38]. This deeper architecture enables the model 

to capture increasingly complex patterns and features from the input data, leading to 

improved performance on a wide range of tasks. 

At the pinnacle of the ResNet hierarchy lies ResNet152, the deepest variant among its 

counterparts. With a staggering depth of 152 layers, ResNet152 offers the highest level of 

representational capacity within the ResNet family [38]. This architecture is particularly 

well-suited for tasks demanding very high accuracy, such as fine-grained image 

classification or medical image analysis, where intricate details and subtle distinctions are 

crucial for decision-making. 

Table 3 below summarises the evolution of ResNet architectures – from ResNet18 to 

ResNet152, showing the progression in the number of parameters supported. 
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Table 5 ResNet architectures for ImageNet13 

Number of Layers Number of Parameters 

ResNet 18 11.174 M 

ResNet 34 21.282 M 

ResNet 50 23.521 M 

ResNet 101 42.513 M 

ResNet 152 58.157 M 

 

ResNet architectures offer several benefits with the most significant being the improved 

training process for deep networks which leads to faster convergence and a simplified model 

overall. ResNet is able to achieve this without any major performance hits as observed in 

plain networks. 

The incorporation of skip connections allows the model to easily identify identity functions 

as illustrated in equation (7). This same logic is applied by the model to better generalise 

data it had not been exposed to as the network is able to skip information not required for 

decision making. All these highlighted features are what makes ResNet desirable for deep 

learning tasks such as the experiment conducted in this work. 

 

5.2 VISUAL GEOMETRY GROUP (VGG-16) 

VGG-16 is a CNN model widely used in image classification tasks. This model is known for 

its simplicity and efficient performance in image classification and recognition. The creators 

of this model – Karen Simonyan and Andrew Zisserman from Visual Geometry Group, in a 

paper titled “Very Deep Convolutional Networks for Large-Scale Image Recognition” 

evaluated the networks while increasing the depth using an architecture with convolution 

filters of 3 x 3 [39]. The depth was set to 16-19 weight layers and this allowed up to 138 

parameters to be trained. 

 

13 https://towardsdatascience.com/understanding-and-visualizing-resnets-442284831be8 



TBU in Zlín, Faculty of Applied Informatics   57 

𝑌(𝑙) = 𝜎(𝑊(𝑙) ∗ 𝑌(𝑙−1) +  𝑏(𝑙)) (8) 

 

In the equation (8) above, the output of the l-th convolutional layer is represented as a 

mathematical expression. 𝑌(𝑙) represents the output feature map, 𝑊(𝑙) denotes the filter 

weights, * denotes the convolution operation, 𝑏(𝑙) is the bias term, and 𝜎 represents the 

activation function which in most cases is ReLU. 

For the max-pooling operation, equation (9) and equation (10) below describe the 

relationship at the fully connected layers with 𝑊(𝑙) denoting the weight matrix and 𝑏(𝑙) 

representing the bias vector. 

𝑌(𝑙) = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑌(𝑙−1)) (9) 

𝑌(𝑙) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊(𝑙) ∗ 𝑌(𝑙−1) +  𝑏(𝑙)) (10) 

 

The max-pooling operation above down-samples the feature maps by selecting the maximum 

value within a defined window. The fully connected layers at the end of the network perform 

classification using SoftMax activation function. 

Training VGG-16 usually involves stochastic gradient descent (SGD) optimization with 

momentum, cross-entropy loss function, and weight decay regularization. At the beginning 

of training, preprocessing of dataset is essential before feeding into the model. This process 

involves tasks such as resizing of images, and normalizing the individual pixel values [39]. 

As soon as the dataset is prepared, VGG-16 is initialised and assigned random weights. As 

explained in the model paper [39], there are a number of initialisation techniques that ensure 

the model starts with reasonable weights which speeds up convergence during training. 

During the training process, the choice of loss function is pivotal, particularly for 

classification tasks. Cross-entropy loss is commonly employed, measuring the disparity 

between the predicted probability distribution and the actual distribution of labels. This loss 

function guides the optimization process by quantifying the model's performance and 

facilitating gradient-based updates to the parameters [42]. 

Optimization algorithms play a fundamental role in training deep neural networks like VGG-

16. Stochastic Gradient Descent (SGD) with momentum is a popular choice due to its ability 

to efficiently navigate the parameter space while mitigating oscillations [42]. The 
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momentum term accelerates convergence by incorporating past gradients, enhancing the 

optimization process. 

Regularization techniques are essential for preventing overfitting and improving the 

generalization of deep learning models. Weight decay regularization, also known as L2 

regularization, penalizes large weights in the model to prevent excessive complexity. 

Dropout, another regularization technique, randomly drops a fraction of neurons during 

training, forcing the network to learn more robust features. 

Data augmentation is a critical aspect of training deep learning models, especially when 

working with limited datasets [42]. Techniques such as random cropping, flipping, and color 

jittering introduce variability into the training data, enabling the model to learn invariant 

features and improve its generalization capability. 

The training loop iteratively feeds batches of training data into the model, computes the loss, 

and updates the model parameters using backpropagation. Throughout training, it's essential 

to monitor the model's performance on a separate validation set to prevent overfitting and 

fine-tune hyperparameters accordingly [39]. 

Finally, the trained model is evaluated on a held-out test set to assess its performance on 

unseen data and validate its generalization capability. This rigorous evaluation ensures that 

the model's performance is robust and reliable for real-world applications. 

Leveraging pretrained models like VGG-16 significantly enhances the performance of image 

classification tasks, especially when the training data is sparse. VGG-16 as a pretrained 

model is extensively trained on diverse datasets such as ImageNet, which include millions 

of images across thousands of categories. With transfer learning, VGG-16 can effectively 

transfer the learned features to new classes, bypassing the need to learn from scratch. 

VGG-16 remains one of the best vision model architectures for image classification and 

feature extraction. The analysis chapter of this work delves more into the results I obtained 

from the VGG-16 model after training it for purpose of identifying potential violent 

behavior. 

5.3 DENSELY CONNECTED CONVOLUTIONARY NETWORKS 

(DENSENET) 

DenseNet started as a significant deep learning model which performs very well with 

computer vision tasks. Introduced by Huang et al. in their paper titled “Densely Connected 
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Convolutional Networks” [40], DenseNet moves away from the traditional CNN by 

introducing the concept of dense connectivity among layers. 

In terms of model architecture, DenseNet network layers receive direct inputs from all 

preceding layers within a dense block [40]. This is achieved by creating paths between the 

different layers of the network. The growth rate parameter controls the model’s capacity and 

influences its ability to correctly identify complex patterns in visual data. 

Figure 14  below shows the full DenseNet architecture with different number of dense layers 

for each dense block. 

 

Figure 14 Full DenseNet Architecture14 

The architectural design above makes it possible to reuse features and for gradient flow 

throughout the network thereby addressing the vanishing gradient problem common with 

some traditional CNNs. From Figure 14, the parameter-efficient design can be observed. 

This design style makes it possible to perform training on smaller datasets while reducing 

the memory requirements and computational costs involved [40]. 

Due to the feed-forward nature of DenseNet, every layer is able to receive feature maps from 

the previous layer. This process of back propagation is done through concatenation, unlike 

ResNet that performs this through summation [40].  

The implication of having dense connections between layers as is done in DenseNet is that 

the model then does not require as much layers because the feature maps which do not 

improve the overall results are discarded. 

The DenseNet architecture puts emphasis on the importance of dense connections between 

layers in a CNN. This brings about various improvements in gradient flow, reduced 

 

14 https://miro.medium.com/v2/resize:fit:720/format:webp/1*CE11_lfEz00aoOjLiw5sdw.png 
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parameter counts and a much better feature mapping across the network. Overall, DenseNet 

is computationally efficient and well suited for visual data processing [40]. 

 

5.4 INCEPTION-V3 

Inception-v3 is a deep learning model developed by researchers at Google for the purpose 

of performing various computer vision tasks [43]. This model was developed from the earlier 

Inception models which were built to optimise computational resources without 

compromising on overall performance. The idea was to scale up networks not just by the 

addition of layers to make them deeper, but by ensuring that computations are as efficient as 

possible [43]. 

Inception-v3 makes use of inception modules in capturing multi-scale features correctly. 

These modules are made up to parallel convolutional layers with different kernel sizes [43] 

as represented in Figure 15 below.  

 

Figure 15 Schematic representation of an Inception module in Inception-v3 

Inception-v3 utilises several methods in achieving more performance and these include the 

introduction of Label smoothing, introduction of factorization into smaller convolution 

layers, bottleneck layers and an auxiliary classifier in propagating label information in the 

network15 

 

15 https://medium.com/@sravanthigoalla917/convolutional-neural-network-in-deep-learning-4d8777a5831f 
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Factorization helps improve computational efficiency without necessarily increasing the 

number of parameters. The concept of “bottleneck” layers is introduced in Inception-v3 to 

refer to a case where 1 x 1 convolutions are used to reduce the dimensionality before 

performing more computationally intensive operations. One benefit of this approach is that 

it encourages feature reuse and allows for a better generalisation and learning robustness 

[43]. 

Auxiliary classifiers play an important role in Inception-v3 architecture as they help to 

prevent the vanishing gradient problem during the model training. There are usually loss 

functions at different layers to promote feature propagation and help improve the 

convergence speed and accuracy of the model. 
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 II  ANALYSIS 
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6 EXPERIMENTAL METHODOLOGY 

In this work, a dataset of videos labelled as violent and non-violent have been collected from 

Kaggle Real Life Violence and Non-Violence dataset. This dataset contained 1,000 violence 

and 1000 non-violence video clips originating from publicly available online sources. The 

dataset features real street fight situations under varying conditions and settings, from urban 

to suburban environments. 

 

Figure 16 Sample image frames extracted from violence and non-violence videos 

 

As shown in Figure 16 above, each video clip went through preprocessing where frames 

were extracted and resized to 224 x 224 pixels. These pixel values were further normalised 

to a range between 0 and 1. Labelling was carried out to categorise the frames as either 

violent or non-violent. This process ensured that the dataset was suitable for the analysis that 

followed. 

Incorporating pretrained models such as ResNet50, VGG16, DenseNet-121 and Inception-

v3 was essential due to several reasons. Firstly, these models have been previously trained 

on the ImageNet dataset containing millions of data points, allowing the models to learn 

intricate features from different domains. This was instrumental in saving considerable time 

and computing resources that would have gone into training from scratch. 
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Using the concept of transfer learning, I effectively utilised knowledge that already existed 

in the four (4) models, but fine-tuning it to apply to the violence detection domain. Transfer 

learning allowed me to repurpose the four (4) selected pre-trained models to the specific task 

of detecting violence in videos. I was able to adapt the learned representations to suit the 

nuances of the violent detection problem domain, and enhancing the performance of the 

model in the process. 

DenseNet-121, Inception-v3, ResNet50 and VGG-16 are high performant CNNs widely 

accepted for use in image classification tasks. The highly optimised architectural design, and 

computational requirements influenced my decision to use them in my experiments. 

DenseNet-121 stood out in the area of feature reuse as it incorporates feature propagation 

throughout the network. This architectural design proved to be helpful in capturing intricate 

patterns that were useful in differentiating between violent and non-violent scenes. 

Inception-v3 through inception modules excelled at efficiently capturing features at multiple 

scales. The benefit of this architectural design was evidenced in this work as it allowed the 

model to focus on both fine-grained details and global context within the image frames 

extracted from violent and non-violent scenes. 

ResNet introduced a deep architecture with residual connections helping solve the vanishing 

gradient problem. In this work, I saw ResNet50’s ability to capture hierarchical features from 

violent actions which contributed to the high accuracy rates obtained from the model. 

VGG-16’s simple architecture showed strong signs of computational efficiency while also 

maintaining high accuracy levels in its predictions. The stacked convolutional layers in 

VGG-16 facilitated the learning of discriminative features relevant to violence detection. 

I developed an experiment pipeline to systematically evaluate the performance of all four 

(4) models selected for the purpose of detecting potential violent behavior. Data 

preprocessing was first carried out on the Kaggle dataset The dataset was then split into 

training and validation ration of 75/25.  

Each selected model was trained on the preprocessed dataset using the Adam optimizer with 

a learning rate of 0.001 and binary cross-entropy loss function. Data augmentation 

techniques such as random rotation, resizing of images and normalisation of pixel values 

were applied to the image frames to add to the diversity of the training set. The models were 

trained for seven (7) epochs with a batch size of 32. 



TBU in Zlín, Faculty of Applied Informatics   65 

Grid search was performed to tune the hyperparameters of each model. The hyperparameters 

tuned were learning rate, momentum and decay. I ran the hyperparameter tuning process to 

retrain and evaluate the models with different combinations of hyperparameters to observe 

the optimal model configuration. My hyperparameter tuning process did not yield better 

results than the results originally obtained due to the limited number of training data. I also 

observed that the limited hyperparameter space, high complexity of the selected models 

combined with a relatively compact dataset used for transfer learning will require a more 

extensive tuning on larger datasets to see any improvements from hyperparameter tuning. 

I performed an evaluation of the four (4) selected deep learning models using metrics such 

as accuracy, precision, recall and F1-score. Confusion matrices were extracted to visualise 

each model’s performance in differentiating violent and non-violence frames in uploaded 

video clips. Classification reports were generated for each model and details of the results 

are discussed in the following chapters. DenseNet-121, Inception-v3, Resnet50 and VGG-

16 recorded accuracy values of 98%, 98%, 97% and 96% respectively. 

Additionally, I have developed a web application using a Python framework known as 

Streamlit16 for purpose of utilising my trained models in performing real-time predictions on 

videos. The decision to use Streamlit framework came as a result of its robust API 

documentation, which significantly streamlined the learning process required to deploy my 

application for testing the models. 

The developed application as shown in  Figure 17 below provides a user-friendly interface 

where videos can be uploaded, with a selected trained model running on the backend to 

provide real-time predictions on uploaded videos. The detailed source code of this 

application is made available in Appendix A. 

 

16 https://streamlit.io/ 
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Figure 17 Screenshot from developed violence detection system based on four se-

lected DL models 

The core of this project was built in Python using various machine learning and data science 

libraries. The main dependencies for this work are numpy version 1.26.4, pandas version 

2.2.1, and tensorflow version 2.16.1.  

Numpy was fundamental for the numerical computations performed in this work. It provided 

me with the functionality to use large multi-dimensional arrays and matrices, along with a 

collection of mathematical functions to operate on my arrays more efficiently. 

Pandas is used in this work for data manipulation and analysis. I utilised it for loading my 

dataset, cleaning and transforming the pixel values from the video frames generated. 
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Tensorflow as an open-source deep learning framework was instrumental in providing the 

low-level functionalities I used in this work to build and train my deep learning models. 

A more detailed list of dependencies and software versions are provided in Appendix B. 

6.1 DENSENET-121 EXPERIMENT 

This chapter outlines the steps I took to perform the experiment on DenseNet-121 for the 

purpose of the detection of violent versus non-violent content within the video dataset. The 

main objective here was to evaluate the performance of DenseNet-121 under specific 

configurations, and determining its predictive accuracy and efficacy for the task. 

6.1.1 DATA COLLECTION AND PREPROCESSING 

The primary dataset used for this experiment for the Real Life Violence Situations Dataset 

(RLVS) available on Kaggle17. The dataset is a collection of videos aimed at training and 

evaluating machine learning models for the purpose of violence classification. 

RLVS contains two thousand (2000) videos equally divided into two (2) categories. The first 

thousand shows real-life violence situations with emphasis on street fights under varying 

environmental conditions. The other thousand represents non-violent human actions such as 

eating, walking, dancing as well as other casual activities. The dataset forms the baseline for 

transfer learning performed in this work. 

The decision to use this dataset was based on the fact that it contains both violent and non-

violent video scenes which directly apply to my classification problem. The decision to use 

a balanced dataset helped me to avoid bias in my classifier. 

The preprocessing procedures involved the extraction of frames from the videos, sampling 

the frames to ensure consistent image size and pixel values.  

The result of this procedure is shown in Figure 18 below. 

 

17 https://www.kaggle.com/datasets/mohamedmustafa/real-life-violence-situations-da-

taset/data 

https://www.kaggle.com/datasets/mohamedmustafa/real-life-violence-situations-dataset/data
https://www.kaggle.com/datasets/mohamedmustafa/real-life-violence-situations-dataset/data
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Figure 18 Extracted frames from a sample violent video 

In this work, I devised a strategy to capture relevant frames at intervals, and subsequently 

saving them as individual images. The individual frames were then resized to a uniform 

dimension with their pixel values normalised to ensure input consistency. These processed 

images have been stored in dedicated directories for violence and non-violence categories, 

providing a base for the subsequent analysis that followed. 

6.1.2 MODEL SELECTION AND IMPLEMENTATION 

The decision to use DenseNet-121 was largely due to its efficient architecture that supports 

feature reuse. When compared with VGG and ResNet, I found that DenseNet was more 

parameter-efficient. This is because the architecture of DenseNet allows for each layer to be 

connected to every other layer in a feed-forward manner, maximising feature reuse and 

supporting feature propagation across the entire network. 

DenseNet consists of densely connected blocks each with multiple convolutional layers. 

Using Tensorflow, I leveraged pre-built layers such as tf.keras.layers.Conv2D, 

tf.keras.layers.BatchNormalization, and tf.kera.layers.Dense to construct the DenseNet 

architecture. 

6.1.3 TRAINING AND EVALUATION 

The model training was conducted over 7 iterations/epochs with the hyperparameters values 

of Learning rate set to 0.0001, Momentum: 0.9, and Decay set to 0.0001 

I chose these parameters based on their ability to stabilise and optimise the training process. 

In order to prevent the model from over-correcting, I decided to choose a very small learning 
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rate. This small step size allowed the model to train with a high level of precision accounting 

for small adjustments in the training set. 

Momentum of 0.9 was chosen to accelerate the SGD in the relevant direction. This high 

momentum value allows my model to heavily factor in previous update directions leading to 

a smoother and faster convergence. 

The accuracy and loss metrics over epochs for DenseNet-121 showed a predominantly 

positive trend, with validation accuracy reaching as high as 1.0000 and the stabilising around 

0.9725. The validation loss decreased significantly, showing that learning and generalisation 

was effective over epochs. This model yielded a final accuracy value of 98%. 

6.1.4 HYPERPARAMETER TUNING 

I performed hyperparameter tuning using DenseNet-121 in an attempt to further improve the 

experimental outcome. I iterated over learning rates of 0.1, 0.01 and 0.001. Momentum 

values of 0.5, 0.7, 0.8 and 0.9 were also iterated over as well along with Decay options for 

0.00001, 0.1, 0.001 and 0.001. The best performing result obtained from hyperparameter 

tuning yielded an accuracy value of 82% which is significantly lower than the 98% value 

obtained from the initial hyperparameters chosen. 

The hyperparameter tuning did not yield any improvements mainly because the model was 

not highly sensitive to the hyperparameters being tuned. It appeared that the initially chosen 

hyperparameters that yielded the accuracy of 98% were already near-optimal for the dataset. 

The limited dataset quantity also reduced the overall benefits of hyperparameter tuning. 

6.1.5 RESULTS AND ANALYSIS 

Results from the DenseNet-121 model shows an accuracy value of 98% as shown in the 

classification report in Figure 19 below. 
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Figure 19 DenseNet-121 Classification report 

The precision and recall are both high indicating that the model had a balanced capability in 

differentiating between violent and non-violent frames without bias. 

The F1-score of 0.98 for both violence and non-violence frames show that there was a good 

balance between precision and recall, suggesting that the model is robust. 

The training accuracy and loss for the model is shown in Figure 20 below.  
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Figure 20 DenseNet-121 Plot of training loss and accuracy  

The confusion matrix for DenseNet-121 is shown in Figure 21 below. 

 

Figure 21 DenseNet-121 Plot of confusion matrix 
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The DenseNet-121 model correctly predicted 734 instances as positive. 16 instances were 

predicted as positive when they were actually negative. 

The model further correctly predicted 730 instances as negative. 20 instances were wrongly 

predicted as negative when they were actually positive. 

From these metrics, the DenseNet-121 model performs well with high accuracy, precision, 

recall and F1-score showing a good classification performance. 

 

Figure 22 DenseNet-121 Violin plot 

The violin plot for DenseNet-121 in Figure 22 above visualises the distribution of the 

predictions. As expected, the wider sections of the violin plot tend more towards 0 and 1 

with not many visible outliers due to the fact that the work is a binary classification problem. 

6.2 INCEPTION-V3 EXPERIMENT 

In this chapter, I evaluate the performance of Inception-v3 as was done for DenseNet in the 

previous chapter. The information obtained helped to determine predictive accuracy and 

efficiency of the Inception-v3 for the specific task of predicting violent behavior. 
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6.2.1 DATA COLLECTION AND PREPROCESSING 

The data collection and preprocessing steps for the Inception-v3 experiment follows the 

same procedure already described in the experiment for DenseNet-121 in chapter 6.1.1 

above. 

6.2.2 MODEL SELECTION AND IMPLEMENTATION 

The choice to use Inception-v3 in this experiment is largely due to the balance Inception-v3 

brings between computational efficiency and performance. Unlike the other selected models 

– VGG and ResNet, Inception-v3 uses multiple parallel convolutional pathways within each 

module, which allows it to perform feature selection at different scales. 

The main innovation behind Inception-v3 is the integration of different convolutional layers 

of sizes 1 x 1, 3x 3, and 5 x 5 together with pooling layers to make feature selection more 

efficient. Inception-vs is able to perform factorisation on smaller convolutions by replacing 

single 5 x 5 convolutions into multiple 3 x 3 convolutions. This made a huge difference in 

the area of computational power utility as I was able to get similar performance out of this 

model with a reduced processing power. 

In TensorFlow, I constructed the Inception-v3 architecture using TensorFlow’s high level 

APIs. I made use of pre-built layers such as tf.keras.Conv2D, tf.keras.MaxPooling2D, and 

tf.keras.layers.Concatenate. 

6.2.3 TRAINING AND EVALUATION 

Similar to the training approach used in chapter 6.1.3, Inception-v3 was trained using similar 

hyperparameters. The choice of hyperparameters is also justified in chapter 6.1.3. 

The accuracy and loss metrics over epochs for Inception-v3 showed a positive trend, with 

validation accuracy reaching 1.0000 on 2 epochs and finally stabilising around 0.9738. The 

validation loss decreased indicating that the model was good at learning the data. Overall, 

this model yielded an accuracy value of 98%. 

6.2.4 HYPERPARAMETER TUNING 

For the hyperparameter tuning of Inception-v3, I kept the learning rate, momentum and 

decay rates consistent with the values used for DenseNet-121 experiment as described in 

chapter 6.1.4. 
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I iterated over learning rates of 0.1, 0.01 and 0.001. Momentum values of 0.5, 0.7, 0.8 and 

0.9 were also iterated over along with Decay options for 0.00001, 0.1, 0.001 and 0.001. The 

best performing result obtained from hyperparameter tuning yielded an accuracy value of 

74% which is significantly lower than the 98% value obtained from the default 

hyperparameters. 

The hyperparameters did not yield any improvements mainly because the model being pre-

trained with millions of data points is not highly sensitive to the hyperparameters being 

tuned. The hyperparameters that yielded 98% were already near-optimal for the dataset. 

6.2.5 RESULTS AND ANALYSIS 

Results from the Inception-v3 model shows an accuracy value of 98% as shown in the clas-

sification report in Figure 23 below. 

 

Figure 23 Inception-v3 Classification report 

With a precision value of 0.99 and 0.97 in violence and non-violence respectively, the model 

shows a relatively balanced capability to differentiate between violent and non-violent 

scenes. 

The F1-score of 0.98 for both violence and non-violence frames show that there was a good 

balance between precision and recall, suggesting that the model is robust. 

The training accuracy and loss for the Inception-v3 model is shown in Figure 24 below. 
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Figure 24 Inception-v3 Plot of training loss and accuracy 

The confusion matrix for the Inception-v3 model is shown in Figure 25 below. 

 

Figure 25 Inception-v3 Plot of confusion matrix 
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The Inception-v3 model correctly predicted 744 instances as positive. 6 instances were 

wrongly predicted as positive when they were actually negative. 

The model further correctly predicted 730 instances as negative. 20 instances were wrongly 

predicted as negative when they were actually positive. 

From these metrics, the Inception-v3 model performs well with high accuracy, precision, 

recall and F1-score showing a good classification performance just like the other selected 

models. 

 

Figure 26 Inception-v3 Violin plot 

The violin plot for Inception-v3 in Figure 26 above shows the distribution of the predictions. 

The shape of the violin plot is as expected with the wider sections tilted more towards values 

of 0 and 1. 
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6.3 RESNET50 EXPERIMENT 

This chapter details the results I obtained from the experiment conducted on ResNet50 

model. The results are discussed with relevant tables and figures analysed to provide insights 

into the model’s performance. 

6.3.1 DATA COLLECTION AND PREPROCESSING 

The data collection and preprocessing steps for the ResNet50 experiment follows the same 

procedure already described in the experiment for DenseNet-121 in chapter 6.1.1 above. 

6.3.2 MODEL SELECTION AND IMPLEMENTATION 

I selected ResNet50 for this experiment due to the efficient nature of the model’s 

architectural design. The ResNet architecture is made of a lot of convolutional layers which 

allows direct propagation of gradients throughout the network. The vanishing gradient 

problem observed with the VGG model is not present in ResNet. 

In TensorFlow, I implemented the ResNet50 architecture using TensorFlows intuitive API 

to construct the residual blocks using pre-built layers such as tf.keras.layers.Conv2D and 

tf.keras.layers.BatchNormalization. Additionally, the tf.keras.layers.Add layer facilitates the 

merging of the main pathway with the shortcut connection, ensuring seamless information 

flow throughout the network. 

6.3.3 TRAINING AND EVALUATION 

In a similar training approach used in chapter 6.1.3, ResNet50 was trained using similar 

hyperparameters. The choice of hyperparameters was justified in the same chapter. 

The accuracy and loss metrics over epochs for ResNet showed a positive trend, with 

validation accuracy reaching 1.0000 on 3 epochs and finally stabilising around 0.9722. The 

validation loss decreased indicating that the model was good at learning the data. Overall, 

this model yielded an accuracy value of 97% which is slightly lower than the values obtained 

for DenseNet-121 and Inception-v3. 

6.3.4 HYPERPARAMETER TUNING 

I performed hyperparameter tuning on ResNet50 model. No significant improvement was 

observed after the hyperparameter tuning process. 
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I experimented with learning rates of 0.1, 0.01 and 0.001. Momentum values of 0.5, 0.7, 0.8 

and 0.9 were also iterated over along with Decay options for 0.00001, 0.1, 0.001 and 0.001. 

The best performing result obtained from hyperparameter tuning yielded an accuracy value 

of 65% which is significantly lower than the 97% value obtained from the default hyperpa-

rameters. 

The hyperparameters did not yield any improvements mainly because the pre-trained model 

was not highly sensitive to the hyperparameters being tuned. The hyperparameters that 

yielded 97% were already near-optimal for the dataset. The limited dataset used in the trans-

fer learning could have contributed to the hyperparameter tuning failing to discover a better 

configuration. 

6.3.5 RESULTS AND ANALYSIS 

Results from the ResNet50 experiment shows an accuracy of 97% as shown in the classifi-

cation report in Figure 27 below. 

 

Figure 27 ResNet50 Classification report 

With a precision value of 0.96 for non-violence is relatively lower than the value of 0.99 

obtained for violence scenes. F1-score of 0.97 for both violence and non-violence frames 

show that there is a relatively good balance between precision and recall. The ResNet50 

model can be considered robust as a result. 

The training accuracy and loss for the ResNet50 model is shown in Figure 28 below.  
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Figure 28 ResNet50 Plot of training loss and accuracy 

 

The confusion matrix for the ResNet50 model is shown in Figure 29 below. 

 

Figure 29 ResNet50 Plot of confusion matrix 



TBU in Zlín, Faculty of Applied Informatics   80 

 

The ResNet50 model correctly predicted 740 instances as positive. 10 instances were 

wrongly predicted as positive when they were actually negative. 

The model further correctly predicted 716 instances as negative. 34 instances were wrongly 

predicted as negative when they were actually positive. 

From these metrics, the ResNet50 model, though less accurate than DenseNet-121 and 

Inception-v3 in this experiment performs relatively well with high accuracy, precision, recall 

and F1-score showing a good classification performance. 

 

Figure 30 ResNet50 Violin plot 

The violin plot for ResNet50 model in Figure 30 above has the wider sections of the violin 

plot spread more across values of 0 and 1. This is expected as this work deals with a binary 

classification problem. 

6.4 VGG-16 EXPERIMENT 

This chapter details the results from the experiment on VGG-16 model. The results obtained 

provide insights into the model performance on the specific task of predicting violence. 
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6.4.1 DATA COLLECTION AND PREPROCESSING 

The data collection and preprocessing steps for the VGG-16 experiment follows the same 

procedure already described in the experiment for DenseNet-121 in chapter 6.1.1 above. 

6.4.2 MODEL SELECTION AND IMPLEMENTATION 

The selection of VGG-16 for this experiment was mainly influenced by the model’s 

simplicity and ease of implementation. VGG-16 has a straight-forward architecture with 

multiple convolutional layers stacked on top of each other. 

This simplicity in the architecture also came at the cost of the vanishing gradient problem 

which was observed in this model. This model performed slightly worse than the other three 

(3) models considered in this work with an overall accuracy of 96%. 

In TensorFlow, I constructed the VGG-16 architecture by utilizing the 

tf.keras.layers.Conv2D and tf.keras.layers.MaxPooling2D layers to sequentially stack the 

convolutional and pooling layers. 

6.4.3 TRAINING AND EVALUATION 

The training approach used for VGG-16 is similar to the techniques already described in 

chapter 6.1.3 for the DenseNet-121 model architecture. The choices of hyperparameters 

were also justified in chapter 6.1.3. 

The accuracy and loss metrics over epochs for VGG-16 again showed a positive trend like 

previous selected models, with validation accuracy reaching 1.0000 on 3 epochs and finally 

stabilising around 0.9722. The validation loss decreased indicating that the model was good 

at learning the data. Overall, this model yielded an accuracy value of 96%, this being the 

worst performing model of all the models considered in this experiment. 

 

6.4.4 HYPERPARAMETER TUNING 

I performed hyperparameter tuning on this model in an attempt to further improve the model 

performance. As observed with previous selected models, hyperparameter tuning of this 

model did not yield any improvements. 

I iterated over learning rates of 0.1, 0.01 and 0.001. Momentum values of 0.5, 0.7, 0.8 and 

0.9 were also iterated over along with Decay options for 0.00001, 0.1, 0.001 and 0.001. The 
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best performing result obtained from hyperparameter tuning yielded a record low accuracy 

value of 56% which is significantly lower than the 96% value obtained from the default 

hyperparameters. 

It appeared that the pre-trained VGG-16 model was not highly sensitive to the 

hyperparameters being tuned. The hyperparameters that yielded 96% were already near-

optimal for the dataset, and this explains why there was no improvement after the 

hyperparameter tuning process. 

6.4.5 RESULTS AND ANALYSIS 

Results from the VGG-16 model shows an accuracy value of 96% as shown in the classifi-

cation report in Figure 31 below. 

 

Figure 31 VGG-16 Classification report 

With a value of 0.96, the precision values are high and consistent across violence and non-

violence scenes. This demonstrates that the model is able to correctly differentiate between 

violence and non-violence. This result is also consistent with values recorded in previous 

selected models used in this experiment. 

F1-score for both violence and non-violence have both values set at 0.96 indicating a very 

good balance between precision and recall. The VGG-16 can be considered a robust model 

as a result. 
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The graph for training accuracy and loss for the VGG-16 model is as shown in Figure 32 

below. 

 

Figure 32 VGG-16 Plot of training loss and accuracy 

The confusion matrix for the VGG-16 model is shown in Figure 33 below. 

 

Figure 33 VGG-16 Plot of confusion matrix 
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The VGG-16 model correctly predicted 723 instances as positive. 27 instances were wrongly 

predicted as positive when they were actually negative. 

The model further correctly predicted 720 instances as negative. 30 instances were wrongly 

predicted as negative when they were actually positive. 

From these metrics, the VGG-16 model performs relatively well with high accuracy, 

precision, recall and F1-score of 96% showing a good classification performance. 

 

Figure 34 VGG-16 Violin plot 

 

The violin plot for the VGG-16 model as shown in Figure 34 above is consistent with what 

was seen with previous selected models in this experiment. The violin plot tends more 

towards 0 and 1 and appear more spread out at those points due to the binary classification 

task in this experiment. 
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7 SUMMARY RESULTS AND DISCUSSION 

In this chapter, a summary of the results obtained in the earlier chapters for each model is 

put together with comparisons made to determine how they performed in relation to one 

another. 

7.1.1 COMPARATIVE ANALYSIS OF ACCURACY, CONFUSION MATRICES, 

PRECISION, RECALL, AND F1-SCORE 

In terms of model accuracy, DenseNet-121 and Inception-v3 models performed best across 

all metrics as summarised in Table 6 below. 

Table 6 Comparative analysis of accuracy, precision, recall and F1-score 

Model Accuracy Confusion Matrix Precision Recall F1-score 

DensetNet-121 0.98 [[734 16] [20 730]] 0.98 0.98 0.98 

Inception-v3 0.98 [[744 6] [20 730]] 0.98 0.98 0.98 

ResNet50 0.97 [[740 10] [34 716]] 0.97 0.97 0.97 

VGG-16 0.96 [[723 27] [30 720]] 0.96 0.96 0.96 

 

ResNet50 followed closely with slightly lower scores in the area of accuracy, precision, 

recall and f1-scores. VGG-16 recorded the least values in accuracy, precision, recall and f1-

scores. 

The confusion matrix revealed an interesting pattern. DenseNet-121 and Inception-v3 had 

very identical confusion matrices showing a consistent performance in correctly classifying 

data points. ResNet50 also performs well, but with a slightly higher number of false 

negatives when compared to DenseNet-121 and Inception-v3. VGG-16 recorded the highest 

number of false positives and false negatives among the models considered in this 

experiment. 

7.2 INTERPRETATION OF RESULTS 

This chapter provides the analysis of the performance of the selected models – DenseNet-

121, Inception-v3, ResNet50, and VGG-16. The strengths and weaknesses observed in each 

model is discussed to provide insights into model’s overall applicability. 
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7.2.1 STRENGTHS AND WEAKNESSES OF SELECTED MODELS 

DenseNet-121 and Inception-v3 had the best performance based on the performance metrics 

in Table 6. The identical confusion matrices obtained for both models further show their 

ability to make accurate predication on data points. Both models were the best at maintaining 

high accuracy and precision while reducing the number of false positives and false negatives 

when making predictions. 

DenseNet-121 and Inception-v3 despite the impressive performance in this experiment may 

not be well suited for use on complex datasets where computational resources are limited. 

These two (2) models have very deep and complex architectural structures that demands 

significant computational resources. 

ResNet50 showed a strong performance as well, although with slightly lower values than 

DenseNet-121 and Inception-v3. It evidently maintains high levels of accuracy, precision, 

recall and f1-score proving to be suitable for the task of violent behavior detection. ResNet50 

when compared to DenseNet-121 and Inception-v3 has a shallower model architecture which 

makes it more computationally efficient. 

ResNet50 demonstrated some weaknesses in the area of predicting a high number of false 

negatives when put side-by-side with DenseNet-121 and Inception-v3. This slight weakness 

can however be corrected by further fine-tuning to improve the model’s sensitivity to the 

data points. 

VGG-16 also demonstrated decent performance across most metric. Considering the fact 

that the VGG-16 model has the simplest architecture when compared with other models in 

this experiment, the performance is impressive with a relatively high accuracy, precision, 

recall and f1-scores. 

VGG-16 likely suffered slightly from the vanishing gradient problem as it falls short when 

compared to DenseNet-121, Inception-v3, and even ResNet50. It recorded the highest 

number of false positives and false negatives suggesting that the model might require further 

hyperparameter tuning with a different combination of hyperparameters. 
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7.2.2 INSIGHTS INTO MODEL PERFORMANCE 

The comparative analysis done presents a lot insights into the performance of selected 

models. 

DenseNet-121 and Inception-v3 emerged as the best performing models for the violent 

behavior detection task in this experiment. Both models had very consistent performance 

across the different matrices presented in Table 6 in the earlier chapter. 

ResNet50 performance is not very far off when compared with the leading models in this 

experiment. The shallow architecture of ResNet50 provided computational advantage which 

was missing from the top performing models. 

VGG-16 given the simple architecture performed well, but with significantly higher number 

of false positives and false negatives than other models considered in this experiment. 
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8 CONCLUSION 

Within the thesis, four (4) deep learning models; DenseNet-121, Inception-v3, RestNet50 

and VGG-16 were implemented for purpose of detecting potential violent behavior using 

transfer learning principles. 

A comprehensive review of existing literature in the field of human violence detection using 

deep learning techniques was conducted. The models evaluated in this thesis were selected 

based on suitability for this work. Experimental results for different model configurations 

were presented. 

A comprehensive comparative analysis of the four (4) selected CNN models was presented 

along with an evaluation of their performance using metrics such as accuracy, precision, 

recall and f1-score.  

8.1 SUMMARY OF FINDINGS 

The analysis showed that DenseNet-121 and Inception-v3 were the most suited for violence 

behavior detection task in this work. Both models were the most reliable as shown in their 

identical confusion matrices. ResNet50 and VGG-16 performed well also, but with more 

noticeable weaknesses. 

8.2 CONTRIBUTIONS AND IMPLICATIONS 

This work serves as a contribution to the existing literature in the field of human violent 

behavior detection. The discoveries made in this work will be particularly helpful for 

researchers in the area of computer vision and robotics. The analysis of the performance of 

the models offers great insights into the applicability of the models and will help researchers 

make informed decisions when choosing models for their specific applications. 

8.3 FUTURE DIRECTIONS FOR RESEARCH 

While this work offers insights into the performance of the four (4) selected CNN models, 

there are still key areas future research works can explore. 

Future research can be targeted at exploring how to generalise the findings of this work 

across larger datasets and adapting it to wider domains to better understand how the models 

perform under different conditions. More optimization and hyperparameter tuning can be 

done with different configurations with a goal to further to improve model performance. 
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