JavaScript Ecosystem and Node Package Management

Shobowale Tola Joshua

Tomas Bata University in Zlin

Master’s Thesis 2024 . .
Faculty of Applied Informatics

Tomas Bata University in Zlin
Faculty of Applied Informatics
Department of Informatics and Artificial Intelligence

Academic year: 2023/2024

ASSIGNMENT OF DIPLOMA THESIS

(project, art work, art performance)

Name and surname: Tola Joshua Shobowale
Personal number: A21788
Study programme: N0613A140023 Information Technologies

Specialization: Software Engineering
Type of Study: Full-time
Work topic: JavaScript ekosystém a Node Package Management

Work topicin English: JavaScript Ecosystem and Node Package Management

Theses guidelines

1. Understand the programming language JavaScript, its structure, frameworks, and production usage.

2. Take an insight into previous related works.

3. Analyze the management of JavaScript codes and data using Node Package Manager.

4. Build a movie-app application using numerous APIs e.g., Netflix, ReactJS, NPM, GitHub, Mongo DB for the database.

5. Evaluate the obtained results from the application, and suggest the best practices for using JavaScript and any of its
frameworks and dependencies in software development.

Form processing of diploma thesis: printed/electronic
Language of elaboration: English

Recommended resources:

1. GANDHI, Raju. JavaScript next: your complete guide to the new features Introduced in JavaScript, starting from ES6
to ES9. [United States]: Apress, [2019]. ISBN 978-1-4842-5393-9.
2. CROCKFORD, Douglas. JavaScript: the good parts. Sebastopol: 0 Reilly, 2008. ISBN 978-0-596-51774-8.
3. Software Engineering — lan Sommerville: Tenth Edition [online], 2015. [cit. 2022-01-13]. Available from:
https://iansommerville.com/software-engineering-book/.
4. DOOLEY, John F. Software Development, Design and Coding: With Patterns, Debugging, Unit Testing, and Refactoring.
2nd ed. 2017, Imprint; Apress, 2017. ISBN 9781484231524
. ECO, Umberto, Caterina MONGIAT FARINA a Geoff FARINA. How to write a thesis. Cambridge, Massachusetts: MIT
Press, [2015]. ISBN 978-0262527132.

w

Supervisors of diploma thesis: Ing. Bc. Pavel Varacha, Ph.D.
Department of Informatics and Artificial Intelligence

Date of assignment of diploma thesis: ~ November 5, 2023
Submission deadline of diploma thesis: May 13, 2024

doc. Ing. Jii Vojtések, Ph.D. m.p. prof. Mgr. Roman Jasek, Ph.D., DBA m.p.
Dean Head of Department

InZlin January 5,2024

I hereby declare that:

I understand that by submitting my Master’s thesis, I agree to the publication of my
work according to Law No. 111/1998, Coll., On Universities and on changes and
amendments to other acts (e.g. the Universities Act), as amended by subsequent legis-
lation, without regard to the results of the defence of the thesis.

I understand that my Master’s Thesis will be stored electronically in the university in-
formation system and be made available for on-site inspection, and that a copy of the
Master’s Thesis will be stored in the Reference Library of the Faculty of Applied Infor-
matics, Tomas Bata University in Zlin, and that a copy shall be deposited with my Su-
pervisor.

I am aware of the fact that my Master’s Thesis is fully covered by Act No. 121/2000
Coll. On Copyright, and Rights Related to Copyright, as amended by some other laws
(e.g. the Copyright Act), as amended by subsequent legislation; and especially, by §35,
Para. 3.

I understand that, according to §60, Para. 1 of the Copyright Act, TBU in Zlin has the
right to conclude licensing agreements relating to the use of scholastic work within the
full extent of §12, Para. 4, of the Copyright Act.

I understand that, according to §60, Para. 2, and Para. 3, of the Copyright Act, I may use
my work - Master’s Thesis, or grant a license for its use, only if permitted by the licens-
ing agreement concluded between myself and Tomas Bata University in Zlin with a
view to the fact that Tomas Bata University in Zlin must be compensated for any rea-
sonable contribution to covering such expenses/costs as invested by them in the creation
of the thesis (up until the full actual amount) shall also be a subject of this licensing
agreement.

I understand that, should the elaboration of the Master’s Thesis include the use of soft-
ware provided by Tomas Bata University in Zlin or other such entities strictly for study
and research purposes (i.e. only for non-commercial use), the results of my Master’s
Thesis cannot be used for commercial purposes.

I understand that, if the output of my Master’s Thesis is any software product(s),
this/these shall equally be considered as part of the thesis, as well as any source codes,
or files from which the project is composed. Not submitting any part of this/these com-
ponent(s) may be a reason for the non-defence of my thesis.

I herewith declare that:

I have worked on my thesis alone and duly cited any literature I have used. In the case
of the publication of the results of my thesis, I shall be listed as co-author.

That the submitted version of the thesis and its electronic version uploaded to IS/STAG
are both identical.

In Zlin;

dated:

Student’s Signature

ABSTRAKT
Czech abstract

Tato prace se zabyva ekosystémem JavaScriptu a disledky spravy balickli Node, pfi¢emz
se zamétuje na rozhodovaci procesy pii vybeéru rdmct JavaScriptu a na omezeni, ktera jsou
vlastni aplikacim zaloZenym na JavaScriptu. Hlavnim cilem bylo zodpovédét dve klicové
obchodni otazky:

1. Jaké faktory ovliviiuji vybér frameworku/knihovny JavaScriptu softwarovymi inzenyry pfi
jejich obchodnim rozhodovani o vytvoteni webové aplikace zalozené na JavaScriptu?

2. Jakym omezenim dnes Celi aplikace vytvofené pomoci programovaciho jazyka Ja-
vaScript?

Pro ziskani informaci o téchto otdzkach byl proveden priizkum v rdmci komunity uZzivatelii
jazyka JavaScript, ktery pfinesl vyrazné preference frameworku React. Studie ukazala, ze
rozsahléd podpora komunity, bohaty ekosystém nastrojli a Skalovatelnost jsou vyznamnymi
faktory, které podporuji piijeti frameworku React mezi vyvojafi.

Jako prakticka aplikace vysledkd vyzkumu byla vyvinuta aplikace pro streamovani filma s
nazvem "Wura". Aplikace byla vytvofena pomoci frameworku Next.js React, pfi¢emz in-
terakce na strané serveru byly feSeny pomoci PrismaDB a MongoDB. Funkce ovéfovani,
vcetné prihlaSovani a odhlasovani, byly implementovany pomoci Google a GitHub OAuth.
Vyzkum poukazuje na faktory, kterymi se softwarovi inZenyfi tidi pti vybéru frameworkda,
a zdlraziiuje vyznam podpory komunity, flexibility a integranich schopnosti. Zabyva se
také béZnymi omezenimi, jako jsou bezpecnostni rizika v open-source bali¢cich a vykon-
nostni omezeni, a poskytuje poznatky o osvéd¢enych postupech pro vytvaieni robustnich
aplikaci JavaS-cript. Tato prace ptispiva k hlubs§imu pochopeni ekosystému JavaScriptu a
nabizi cenné voditko pro obchodni rozhodovani pti vyvoji softwaru.

Klicova slova: Balicky s otevienym zdrojovym kdédem, NPM, Google Oauth, Github
Oauth, MongoDB, React Js

ABSTRACT
English abstract

This thesis explores the JavaScript ecosystem and the implications of Node package man-
agement, focusing on the decision-making processes behind selecting JavaScript frame-
works and the limitations inherent to JavaScript-based applications. The primary objective
was to address two key business questions:

1. What factors influence software engineers' choice of JavaScript framework/library when
making business decisions for building a JavaScript-based web application?

2. What limitations do applications built with the JavaScript programming language face
today?

To gain insights into these questions, a survey was conducted within the JavaScript commu-
nity, yielding a strong preference for the React framework. The study revealed that React's
extensive community support, rich ecosystem of tools, and scalability are significant factors
that drive its adoption among developers.

As a practical application of the research findings, a movie streaming application called
"Wura" was developed. The app was built using a Next.js React framework, with server-side
interactions handled via Prisma DB and MongoDB. Authentication features, including sign-
in and sign-out, were implemented using Google and GitHub OAuth.

The research highlights the factors that guide software engineers' framework choices, em-
phasizing the importance of community support, flexibility, and integration capabilities. It
also addresses common limitations, such as security risks in open-source packages and per-
formance constraints, providing insights into best practices for building robust JavaScript
applications. This thesis contributes to a deeper understanding of the JavaScript ecosystem,
offering valuable guidance for business decision-making in software development.

Keywords: Open Source Packages, NPM, Google Oauth, Github Oauth, MongoDB, React

ACKNOWLEDGEMENTS

I am highly grateful to Ing. Pavel Varacha, Ph.D. for his invaluable contribution and immerse
support to the completion of my master’s Thesis. His Expertise have been very instrumental
to the outcome of my research and I am truly honoured for the opportunity to have worked
under his supervision.

I hereby declare that the print version of my Master's thesis and the electronic version of my

thesis deposited in the IS/STAG system are identical.

CONTENTS

INTRODUCTION ...cciiiivuricrcnnccssnnessnsesssssessssssssasssssasssssasssssasssssasssssassssssssssssssssasssssssssssassss 11
BACKGROUND ...ttt e et e e et e e e e aae e e e e aaaeeeennnns 11
RESEARCH OBJECTIVES ...t e e 12
THESIS STRUCTUREoooiieeeeeeeeeee et e 12

L. THEORY .eeiiiiieeiiciinnniicnssnsiecssssssccssssssscssssssssssssssssssssssassssssssssssssssssssssssssssssssssssasens 14

1 THE EMERGENCE OF JAVASCRIPT .15
1.1 STANDARDIZATION OF JAVASCRIPT PROGRAMMING

LANGUAGE (ECMASCRIPT) ..ottt 15
1.1.1 ECMASCRIPT 1 (ES 1) = 1997 ...ttt 16
1.1.2 ECMASCRIPT 2 (ES2) = 1998......ooiieieeeetteeteeeett et 17
1.1.3 ECMASCRIPT 3 (ES3) = 1999.....utiiiieieieeeeeeee ettt 17
1.1.4 ECMASCRIPT 4 (ES4) — DISCONTINUED........cccectteerireeerieenrreenneeesreeennseesnneens 18
1.1.5 ECMASCRIPT 5 (ES5) = 2000......ccci ettt ettt 18
1.1.6 - ECMASCRIPT 6 (ES6) - 2015.....ciiiiiiiieiieiiecieee ettt 19
1.2 JAVASCRIPT A SCRIPTING LANGUAGE (HIGH LEVEL
PROGRAMMING LANGUAGE) ...ooooiiieeieeeeeeee e 21
1.3 DISTINCT FEATURES OF THE LANGUAGE.......cccccooiiiiiiiiieeeeceeeee 22
1.3.1 JSON (JAVASCRIPT OBJECT NOTATION) ..cuveeruiieiieaiiieniieeieenireenieeneneeneesneeenne 22
1.3.2 JAVASCRIPT EVENTSuttiiiiiiiiiee ettt ettt e e siaee e e e sievee e s e anaeeeeeaaaaaeeneees 23
1.3.3 "NON-BLOCKING" OPERATIONS (ASYNCHRONOUS PROGRAMMING) 23
1.3.4 JAVASCRIPT PROTOTYPE INHERITANCE........ccccouvrrreeeeeeeeecinrrereeeeeeeeeeennrreeeeaens 24
1.3.5 FUNCTIONAL PROGRAMMINGccccuviieeeriiiieeenierreeeenirreeesssseeesssssnesesssseeessnnnnns 24
1.4 REGISTRY MANAGEMENT SYSTEMcccoiiiiiiiiiieee et 25
1.4.1 REGISTRY AS A COMPONENTccceiiuriieeeiirrieeeninrreeeesnrreeesssseeesanssseeesssssseeeennens 25
1.4.2 COMPONENT ARCHITECTURE IN PUBLIC REPOSITORIESccvveeeeeeeeennrrrenennnnn. 26
1.5 ADVANCE REASONS TO CONSIDER REPOSITORY SYSTEM WHEN
BUILDING A SOFTWARE APPLICATIONccoooiiiiieeeceeecee e 27

2 RELATED LITERATURE REVIEWuiiiinniicnnnicnsnsecssascssssesssssssssssssnsssssnsess 29
2.1 METEORt e e e et e e e aaeea s 29
2.2 BOA LANGUAGE ARCHITECTUREcoooviiiieeeeeeeceeeeeeeeee e 30
2.3 GITHUB ACTIVITY DATA ..o 31
2.4 MODEL CORE J2EE PATTERNSoootiiie e 32
2.5 MODEL-VIEW-CONTROLLER (MVC)...ccccoiiiiiieiieiiecieeieeeee et 33

3 PART A - CLIENT-SERVER ARCHITECTURE (JS ECOSYSTEM)....cccceceeeueees 34
3.1 NODE PACKAGE MANAGER (NPM).....ccceiiiiiieiieiiecie et 34

3.2 UNDERSTANDING THE JAVASCRIPT CLIENT — SERVER-SIDE
SYSTEM ... 37

321 NODETS M0 oo, 37

3.2.2 REACT e et e e e e et e e a e e e e 39
3.2.3 ANGULAR FRAMEWORK T ..o 41
324 VUETS Y e, 44
TL AINNALYSIS aaeeiiiiineiicinnnniicsnssnsiesssssssssssssssssssssnsssssssssssssssssassssssssssssssssssssssssssssssssssnssssss 47
3.3 PART B - RESEARCH APPROACH (QUALITATIVE MODEL)..................... 48
3.3.1 RESEARCH QUESTIONoooiiiiiiiiiiiee ettt 48
3.3.2 QUALITATIVE RESULT OF THE SURVEYccceviiuiiieeiiiieeeeirieeeeecinreeeeeinneeeeeennes 49
4 WIURA APPtrericiinnniicnnnnnnicsssssssscssssssssossssssssssssssssssssssasss 59
4.1.1 FUNCTIONAL REQUIREMENTS: (WHAT THE APP MUST DO) ...c.vveevrveernreeninennns 59
4.2 IMPLEMENTATION PHASE ... 60
4.2.2 APPLICATION MAIN BUILD STRUCTUREceceeiiiiieeiirieeeeiiieeeeeeieeeeeeiraee e 60
4.2.3 DATABASE SCHEMA MODEL (PRISMA).......ctiiiiiiniieeniieeieeeeiee e eeieee e 74
4.2.4 DATABASE URL, GOOGLE AND GITHUB AUTH TOKEN (CONFIDENTIAL
INFORMATION) ..eiiiuiieeiiieetieeeteeesiteeessteeessseeesseeessseesssseessseaessseeesssesenssessnsseenns 75
4.2.5 RUNNING THE APPLICATION USING NPM (.ENV FILE)......ccceeerueeerrrieenreeseneanns 76
4.2.6 MOVIECARD COMPONENT (MOVIECARD.TSX) ...cuvveerrieenireeenireeennreeennneeennnenens 76
4.2.7 WATCH CURRENT PLAYED MOVIE ([MOVIEID-TSX]) c.vveeeveeerureeerrreeeinreeeinneaens 78
4.2.8 TAILWIND WORKFLOWouuttiiiiiiiiiieiciiieeeee ettt 79
4.2.9 APPLICATION PACKAGE.JSON FILE.......uuvviiieeeeeieiiiirreeeeeeeeeeeeinrrereeeeeeeeeeennnnnens 80
43 MY DEVELOPMENT WORKFLOW.......coooiiiiiiiieee e, 81
5 DISCUSSION AND FINDINGS ..cuuuiiiiiirenicnscsnnsccsssssssscssssnssssssssssssssssssssssssssssssssssssassss 82
5.1 DISCUSSION. ...ttt e e e e e e eae e e e et e e e e eareeeeesaaeeaas 82
5.1.1 GUIDELINE 1: UNDERSTAND THE PROGRAMMING LANGUAGE
JAVASCRIPT, ITS STRUCTURE, FRAMEWORKS AND PRODUCTION USAGE 82
5.1.2 GUIDELINE 2: TAKE AN INSIGHT INTO PREVIOUS RELATED WORKS 82
5.1.3 GUIDELINES 3: ANALYZE THE MANAGEMENT OF JAVASCRIPT CODES AND
DATA USING NODE PACKAGE MANAGER.cccooiiiitiiiiieeeeeeeciireeee e e e e e 82

5.1.4 GUIDELINE 4: BUILD A MOVIE-APP APPLICATION USING NUMEROUS APIs
E.G., NETFLIX, REACTJS, NPM, GITHUB, MONGODB FOR THE

DATABASE. .iiiiiiittieeee e e ee ettt et e e e e e e e e etaaaeeeaeeeeaeatstaaareeeaeeeanstaaaeeeeeeeeannssnraens 83

5.2 FINDINGS. ... oottt e et e e e e e et e eeateeeeareeenns 83

6 CONCLUSION...cuutiircnreccsnnecsssnessnsesssssessssssssasssssasssssasssssasssssasssssasssssassssssssssasssssasssssasass 85
6.1 OVERALL PERFORMANCE ANALYSIS OF THE WURA

APPLICATION ..ottt et et ete e e s e e e e e eaneeenaneas 85

6.1.1 USER AUTHENTICATION AND ACCOUNT MANAGEMENTcccoeevvrvrereeeeeennnns 85

6.1.2 USER INTERFACE AND EXPERIENCE..........utttiieiiiieeeeiiieeeeivreeeeeineeeeesneveeeeeennas 85

6.1.3 RESPONSIVENESS AND CROSS-PLATFORM COMPATIBILITYccocevvrvvereeeeeennnns 86

6.2 GUIDELINES FOR FUTURE RESEARCHcccovvioiiiiiieicieeeeeeee e, 86

7 BIBLIOGRAPHY ...cuuuiiiiriinnnnninssnncsssnnessassossassossassossasssssasssssasssssasessssssssasssssasssssssssssassss 87

ABBREVIATIONS ...cuuiiiieiinnnicnssicssassossassossasssssasssssasssssasssssasssssssssssssessasssssasssssasssssasssssnss 90

LIST OF FIGUREScoitiiiintintnntenntisnennnecsssecsnssssessssssssesssssssssssssssssesssssssassssassns 91

APPENDIX

INTRODUCTION

This chapter provides the Background, Research Objectives and the Thesis Structure

BACKGROUND

JavaScript has become extremely dynamic, running client-side single-page applications,
powering server-side applications with technologies like Node.js, contributing to desktop
applications through Electron, and even being employed in single-board computers like
Raspberry Pi. It plays a role in training machine-learning models in browsers using frame-
works like TensorFlow.js. With its capability to run on every desktop, laptop, and phone
with an embedded browser, JavaScript is arguably the most widely deployed language glob-
ally.

In 2015, the introduction of ECMAScript 2015 (ES6) marked a significant milestone. ES6
brought a host of new features and syntactic changes, aiming to modernize JavaScript for
the web. The goal was to enhance the developer experience, incorporating constructs famil-
iar to developers from other languages. The establishment of a yearly release cadence for
future editions signaled a commitment to ongoing evolution and maturation of the language.
However, JavaScript's journey spans 24 years, evolving from a scripting language for web
page animation to a language used across various domains. Initially criticized for being
quirky and error-prone, its reputation prompted the attention of the TC39, the committee
responsible for JavaScript's evolution.

The analysis of extensive codebases, such as those found on GitHub, provides valuable in-
sights into how programmers utilize or misapply programming languages, the prevalent pro-
gramming patterns in different development ecosystems, and opportunities for language or
runtime enhancements. Researchers have been focusing on software repositories since the
mid-2000s, exploring aspects like code history in version control systems, build artifacts,
library dependencies, developer activity, and popularity indicators of files and projects.

JavaScript, the universal language of the web, plays a crucial role in shaping the digital land-
scape. It's a versatile scripting language primarily executed on the client-side of web brows-
ers. JavaScript enables developers to create dynamic and interactive web pages, offering a
wide range of functionalities such as DOM manipulation, event handling, asynchronous re-
quests, and data validation. These capabilities empower developers to build captivating and
responsive web applications, enhancing the user experience.

The Internet and World Wide Web are essential aspects of daily life, hosting billions of
websites and connecting countless devices. JavaScript plays a pivotal role in enabling dy-
namic and interactive web experiences, ranging from basic text to multimedia content.
JavaScript's ecosystem has expanded significantly, with its application in server-side devel-
opment through Node.js, native desktop applications using GitHub's Electron, and mobile
apps via technologies like Facebook's React Native or Apache Cordova. The prevalence of
NPM as the primary module repository underscores its importance, surpassing other repos-
itories like Maven Central, Rubygems, or Packagist by a considerable margin.

Research Objectives

Since the inception of the JavaScript language, the landscape of website content management
has undergone a transformative shift, revolutionizing the way modern websites are utilized.
Effectively managing website content is crucial for security and user-friendliness. However,
achieving an efficient content management system often entails extensive and time-consum-
ing development, leading to code rewriting and reuse in subsequent projects. As developers
invest countless hours in building from scratch, the need for expedited and streamlined de-
velopment methods becomes apparent.

Web frameworks have emerged as indispensable tools for crafting powerful web applica-
tions, not just for content management but for overall system effectiveness. The JavaScript
programming language boasts an extensive array of frameworks such as Angular, ReactJs,
Vuels, Svelte to name a few. Each offering unique approaches to development challenges.
These frameworks empower software engineers to create sophisticated web applications
swiftly, freeing them from the arduous task of constructing individual system cores from the
ground up.

This paper aims to dissect the extensive functionality of the JavaScript language and its pop-
ular frameworks, exploring their profound impact on modern web and desktop application
development. The analysis will delve into the distinctions among these frameworks, show-
casing diverse development approaches. Given the abundance of frameworks—numbering
over a hundred—this paper will focus on a representative sample, providing insights into
their advantages for specific application types based on the requirements of each application.

The aim of these thesis Research is to answer these following Questions;
e What Factors affects the choice of JavaScript framework/library according to Soft-
ware Engineers in Making Business Decision when Building a JS Web application?
e What Limitations does Application built with the JavaScript programming language
face today?

Thesis Structure

In the initial chapter, the paper introduces essential terminology needed for understanding
the procedures and technologies pivotal in the development of JavaScript-based web appli-
cations. The chapter also outlines the specified criteria chosen for assessing the quality of
the selected frameworks.

Chapter 2 delves into an in-depth exploration of prior works related to languages similar to
JavaScript and their respective architectures.

Chapter 3, the emphasis now lies in elucidating the criteria utilized in this thesis to assess
the JavaScript Stack System, encompassing JavaScript Codes, along with its frameworks,
libraries, compilers, and bundlers. We will delve into research regarding the preferred Ja-
vaScript framework among developers for Web Application development and elucidate the
reasons behind its popularity. The insights gleaned from this chapter will serve as the foun-
dation for our argument in Chapter 4, where we advocate for the utilization of the aforemen-
tioned framework in constructing the Movie App.

Chapter 4 is dedicated to the design of the Movie web application. It explains the software
and other resources utilized, providing insights into the chosen development process for
building the application.

As we progress to Chapter 5, 6 , the paper reviews the project results, reflecting on errors
made during the development process and suggesting alternative approaches. The findings
are then applied to address the questions posed in the research Objectives, offering a sea-
soned perspective on contemporary software development. Additionally, the chapter fur-
nishes recommendations for aspiring developers embarking on their future projects.

I. THEORY

1 THE EMERGENCE OF JAVASCRIPT

Initially called LiveScript, JavaScript underwent a name change by Netscape, possibly in-
fluenced by the buzz surrounding Java. JavaScript debuted in Netscape 2.0 in 1995 under
the name LiveScript. The language's versatile core has been integrated into Netscape, Inter-
net Explorer, and various other web browsers [1].

JavaScript's history traces back to the early days of the Internet. Even with the creation of
the first browser, Worldwide Web, in 1990 by Tim Berners-Lee, the Internet remained a
relatively unfamiliar concept to the mainstream audience. In 1993, the Internet witnessed
significant growth with the launch of the commercial Mosaic browser. Developed by Marc
Andreessen and Eric Bina during their tenure at the National Center for Supercomputing
Applications, the Mosaic browser made its debut in January 1993 for the UNIX system,
followed by releases for the Macintosh and Windows systems in September of the same
year. Distinguished by a graphical interface enabling inline image display with document
text, it also introduced the concept of the Document Object Model (DOM) structure within
the browser [2].

document

Root element:

<html=>=

Element:

<=head=>

Element:

<title=>

Text:
"My title"

Element:

<body=>=

Element:

<hl>

Document Object Model

Text:
"A heading"

Element: Attribute:
<a> href
Text:
"Link text"

Figure 1. DOM Architecture

1.1 Standardization of JavaScript Programming language
(ECMASCRIPT)

During the inception of JavaScript, Netscape led its development while Microsoft
introduced their own version known as JScript. This led to a push for standardization.
Netscape, being cautious of Microsoft's influence, enlisted Brendan Eich in 1996 to create a
specification. Eich revamped the initial JavaScript engine, Mocha, into SpiderMonkey and
established the JavaScript 1.2 specification.

From the outset of the JavaScript project in 1995, it was evident that an open scripting stand-
ard for the web was necessary. Microsoft's involvement underscored this need. Netscape and
Sun Microsystems aimed to collaborate with Microsoft without succumbing to domination
by Microsoft's technologies like VBScript. While organizations like W3C and IETF were
considered for standardization, they weren't the right fit for JavaScript. Netscape eventually

connected with (Ecma) through a personal contact, which proved to be a suitable partnership

[1].
1.1.1 EcmaScript 1 (ES 1) - 1997

The inaugural gathering of the Technical Committee 39 (TC39) took place in September
1996, with a total of thirty attendees. David Stryker, representing Netscape, put forward a
proposal during the meeting. He suggested that the primary objective should be to develop
a specification that closely aligns with existing implementations at that time. Stryker empha-
sized that any additions or extensions to the language should be postponed for future con-
sideration. This approach aimed to accurately capture the current state of the language with-
out introducing significant deviations. At the outset, Thomas Reardon of Microsoft advised
the committee against redundant efforts by suggesting that the standardization of an HTML
object model should be delegated to the W3C. This recommendation stemmed from the ob-
servation that while the core features of both Netscape and Microsoft were similar, their
respective HTML APIs differed. These initial limitations significantly influenced TC39's
focus, directing efforts toward the development of platform-independent features, a principle
that continues to guide the group today. The intention was to establish a formal language
definition while allowing room for competitive innovation outside of it. This approach has
proven effective in practice, fostering healthy competition, particularly in areas such as in-
terpreter performance.

The early challenges surrounding the creation of the initial specification were characterized
by a narrative of political maneuvering and intrigue. Initially, Netscape, Borland, and Mi-
crosoft each presented their own specifications, necessitating the amalgamation of these dis-
parate documents into a single cohesive standard. The central issue revolved around deter-
mining which specification would serve as the foundation for further refinement. Given
Ecma's familiarity with Microsoft Word, they opted to commence work based on Microsoft's
version of the initial specification, rather than Netscape's.

The timeline for the specification work was established, aiming for an initial draft by January
1997 and a final version by April 1997. Features common to all three proposals were readily
accepted, while discrepancies required reconciliation. Unique features were earmarked for
consideration under Proposed Extensions at a later stage. Additionally, a key priority was to
minimize changes that would necessitate alterations to existing applications, establishing a
guiding principle for subsequent standard editions. One unique aspect of the JavaScript
standard was its use of a pseudocode-style definition language. This language helped people
understand how JavaScript functions without needing to learn a specific programming lan-
guage. It acted as a bridge between written language and programming, making it easier to
grasp the concepts.

To meet the April deadline for finalizing the standard, the TC39 group met regularly. They
created test cases for any unclear situations and tested them with different software systems
to see how JavaScript behaved. If there were differences in behavior among these systems,
the group had to agree on a consistent behavior and specify it. Some of these decisions still
influence how programmers write JavaScript code today.

Although the group missed the April deadline by a month, they finished their work on May
2, 1997. The resulting document became known as ECMA Standard 262, or ECMA-262 for
short. After some minor edits, it was submitted for the ISO fast-track process. The first ver-
sion of the standard, called ES1, was published on September 10, 1997 [3].

1.1.2 ECMAScript 2 (ES2) - 1998

ES2 represented a minor update aimed at refining existing features and providing clarity to
the language's specification. This version did not introduce any significant new features but
instead focused on enhancing the functionality and coherence of JavaScript.

1.1.3 ECMASCRIPT 3 (ES3) — 1999

ECMAScript 3 (ES3) was launched in late 1999 — early 2000, marking a significant mile-
stone in the evolution of JavaScript. This version brought forth several crucial features that
greatly enhanced the language's capabilities [4].
Firstly, ES3 introduced the try/catch/finally statement. This provided developers with a pow-
erful mechanism for handling errors and exceptions within their code, improving the robust-
ness and reliability of JavaScript applications.
ES3 incorporated support for Regular Expressions. Regular Expressions are powerful tools
for pattern matching and text manipulation, allowing developers to perform complex string
operations with ease.
Another notable addition in ES3 was the ability to define functions using both function dec-
laration and function expression syntax. This flexibility provided developers with more op-
tions for structuring their code and expressing logic, contributing to improved code organi-
zation and readability.
In ES3, objects are created using the constructor function pattern. This involves defining a
function that serves as a constructor for the object, and then using the new keyword to in-
stantiate new instances of the object. This method remains prevalent in modern JavaScript
development practices. ES3 retains significance within the JavaScript ecosystem. It contin-
ues to be utilized extensively in legacy codebases and older web applications. Moreover,
modern JavaScript engines maintain support for ES3 syntax, ensuring compatibility with
both past and present versions of the language [5].
Limitations

e [t lacked support for contemporary programming concepts like classes and modules.

Additionally, it contains certain idiosyncrasies such as the with statement and im-
plicit global variables, which can complicate the writing of maintainable code.

Notable features
e New Object Methods
=> Oject.Create
= Object.Keys
=>» Object.defineProperty

e Regular Expressions(Regex)

It introduced support for regular expressions, empowering developers with advanced ca-
pabilities for matching text patterns.

Js

function escapeRegExp(string) {

return string.replace(/ [.*+77${}() | [N]1\\]/g, Y; // $& means the whole matched

“This function, ‘escapeRegExp’, takes a string as input and returns a new string with
special characters escaped using backslashes. The regular expression
[E2780 0| [\J\\] " matches any of the characters ", “*°, *+°, 2%, N8N 0,
‘()L []V and | Within the replacement string ""\\8& ", the "$& signi-
fies the entire matched substring. This ensures that any special characters within
the input string are properly escaped, preventing them from being interpreted as
metacharacters in a regular expression. [6]”

e Try/Catch

ES3 brought in structured error handling with the introduction of the try, catch, and fi-
nally statements.

EcmaScript 3 played a crucial role in advancing the JavaScript language, introducing key
features that continue to be foundational elements of modern JavaScript development.

1.1.4 ECMAScript 4 (ES4) — Discontinued

Initially planned for release, ES4 never saw the light of day due to disagreements and diffi-
culties encountered during its development. Instead, the focus shifted towards crafting
smaller, more manageable incremental updates.

1.1.5 ECMAScript S (ESS) - 2009
ESS represented a significant advancement for JavaScript, introducing several pivotal fea-
tures:
e Strict Mode: ESS introduced "strict mode," implementing stricter rules to identify
common coding errors and elevate code quality.

e JSON Support: ESS5 elevated JSON (JavaScript Object Notation) to a primary sta-
tus, streamlining data interchange processes.

e Higher-Order Functions: ESS5 bolstered support for higher-order functions, simpli-
fying the creation of expressive and succinct code

e Array Methods: ESS enriched the language with potent array methods such as fo-
rEach, map, filter, and reduce, enhancing array manipulation capabilities.

e Function Bind: The introduction of the bind method allowed functions to be pre-
cisely bound to specific contexts, granting developers meticulous control over the
behavior of the this keyword.

Summary of the ES5 Features according to (w3schools.com) [7].
- "use strict"

- String[number] access
- Multiline strings

- String.trim()

- Array.isArray()

- Array forEach()

- Array map()

- Array filter()

- Array reduce()

- Array reduceRight()

- Array every()

- Array some()

- Array indexOf()

- Array lastIndexOf()

- JSON.parse()

- JSON.stringify()

- Date.now()

- Date toISOString()

- Date toJSON()

- Property getters and setters
- Reserved words as property names
- Object methods

- Object defineProperty()
- Function bind()

- Trailing commas

1.1.6

ECMAScript 6 (ES6) - 2015

ES6, also known as ES2015, revolutionized JavaScript by introducing a wealth of features
that modernized the language:

Classes: ES6 introduced class syntax, providing a more structured way to create and
inherit object prototypes.

Promises: Promises were introduced in ECMAScript 2015, offering a cleaner syntax
for handling asynchronous operations and improving readability in asynchronous
programming.

Arrow Functions: Arrow functions offer a concise syntax for writing anonymous
function expressions, particularly useful for simplifying code and enhancing reada-
bility, especially in scenarios with straightforward functions.

Modules: ES6 introduced modules, enabling developers to organize code into reus-
able and maintainable components. Modules facilitate the structuring of large code-
bases and encourage best practices such as separation of concerns and code reusabil-

1ty.

Template Literals: Template literals brought string interpolation to JavaScript,
streamlining dynamic string creation.

Destructuring Assignment: ES6 introduced destructuring assignment, allowing val-
ues to be extracted from arrays and objects with ease.

1.1.6.1 Features of ES6 and Subsequent Version Updates to the language
JavaScript has continued to evolve beyond ES6, with ES7, ES8, and subsequent versions
introducing features such as:
e Object and Array Methods: Improved data manipulation with new methods like Ob-
ject.entries(), Object.Values(), and array methods like includes().

e (lass Improvements: More robust class-based code organization with features like
class fields and private methods.

e Optional Chaining: Safe access to nested object properties using optional chaining.

e Nullish Coalescing: Simplified default value assignment for potentially undefined
variables with nullish coalescing.

e Proxies: Fine-grained control over object behavior enabled by proxies.
e Biglnt: Representation of arbitrary-precision integers facilitated by Biglnt.

e Async/Await: Revolutionized asynchronous programming in JavaScript, async and
await keywords simplify asynchronous code by resembling synchronous code. Built
on top of promises, async/await provides an elegant approach to working with asyn-
chronous operations, introduced as part of ECMAScript 2017 (ES8) [4].

At its essence, a webpage is constructed with three fundamental components: Hypertext
Markup Language (HTML), Cascading Style Sheets (CSS), and JavaScript. Regardless of
the intricacy and sophistication of the applied technologies and architectural design, every-
thing ultimately converges into HTML, CSS, and JavaScript blocks post the compilation
phase. HTML serves as the foundational blueprint, providing structure and content to the
webpage, while CSS is employed to craft the visual appearance of its components. Crucially,
JavaScript functions as a versatile tool for manipulating all the elements within the webpage.

JavaScript stands as a pioneer in front-end development, evolving into a robust and flexible
tool accessible to developers of various backgrounds. As of the present, the landscape allows
for the creation of diverse applications exclusively using JavaScript. This singular language
empowers developers to craft a server with a database and select the front-end for various
platforms, including web, mobile, and desktop applications. Remarkably, JavaScript even
facilitates the development of machine learning applications.

JavaScript is commonly described as a high-level, multi-paradigm, non-blocking, and asyn-
chronous programming language. These terms, along with others like garbage-collected, in-
terpreted, single-threaded, and concurrent, encapsulate the essential characteristics of JavaS-
cript. Nevertheless, these descriptors can be overly abstract, making it challenging for aver-
age readers or individuals new to programming to grasp the full scope of the language.

“JavaScript is very powerful and can be used to create almost any kind of browser-based
app, it can be time-consuming and repetitive to code every app from scratch. That's where
libraries and frameworks come in—they encode some common patterns and best practices
for creating apps. By creating a platform to build apps on top of, JavaScript libraries and
frameworks save developers a lot of time” [2].

Given its considerable impact on technologys, it is evident that JavaScript has played a pivotal
role in driving innovation within the field. Despite its modest origins a quarter-century ago
as a prototype scripting language, JavaScript has evolved into a powerhouse that fuels nu-
merous emerging technology domains on the Internet. Beyond its initial role, it has become
a versatile tool, extending its influence to various programming aspects outside its original

purpose.

1.2 JavaScript a Scripting Language (High Level Programming language)

JavaScript, as a scripting language, proves advantageous for web developers due to its less
complex and smaller scripts compared to other desktop languages like Java or C++. The use
of a scripting language results in a faster development process.

JavaScript operates as an interpreted language, eliminating the need for pre-compilation of
the source code before transmitting it to the browser. With an interpreter, the raw JavaScript
code can be directly executed. Moreover, JavaScript is dynamically typed, distinguishing it
from languages such as C and C++. In this context, variables declared using the 'var' keyword
can accommodate various data types, including integers, strings, Booleans, and more intri-
cate data types like objects and arrays [3].

All web browsers are designed to comprehend HTML and CSS and execute these languages
to display content on the computer screen. Additionally, browsers come equipped with a
built-in JavaScript interpreter, allowing the execution of JavaScript code.

To incorporate JavaScript into a webpage, it is necessary to inform the browser using the
‘<script>" tag. The browser recognizes the end of JavaScript code when it encounters the
closing "</script>" tag, reverting to its normal behavior thereafter.

L o e v g
~ MEALFINDERAPP-MAIN [E7 © & | B index.html > ...
5 history 14 <link
N vscode 15 rel="stylesheet"
) 16 href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.108.2/css/all.min.cs5"
® appJs 17 /=
& index.html 18 <link rel="icon" href="1lunch.png" />
B lunch.png 19 <link rel="stylesheet" href="main.css" />
main.css 20 <title>Meal Finder</title=
21 </head>
README.md 2 <bodys
23 <div class="container's>
24 <hl>Meal Finder</hl=
25 <div class="flex">
26 <form class="fTlex" id="submit"=>
27 <input
28 type="text"
29 id="search"
30 placeholder="Search for meals or keywords"
31 /=
32 <button class="search-btn" type="submit" id="search-btn">
33 <i class="fas fa-search"s</i>
34 </button=
35 </form=
36 <button class="random-btn" id="random"=
37 <1 class="fas fa-random"></i>
38 </button=
39 </div>
40
41 <div id="result-heading"></div=
42 <div id="meals" class="meals"></div>
43 <div id="single-meal"></div>
44 </div>
45
46 <script src="app.js"></script>
47 </body>
48 </himl>
49

Figure 2. JS Script Tag in HTML Workflow Architecture

Programming languages at a high level, like JavaScript, are considered less intricate because
they leverage abstraction, incorporating features such as a garbage collector or dynamic typ-
ing to simplify the programming process for developers. In contrast, machine code languages
utilize binary expressions directly executable by the computer's central processing unit
(CPU). When constructing an application in a high-level language, programmers are relieved
of the responsibility to manually handle memory or processor details, eliminating concerns
about concepts like pointers [3].
[JAVASCRIPT ENGINE |

= =
AST a

Interpreter

SO S M
)-—) Compiler _-—--'-;.tg ________/
Optimized code Machine

Figure 3. Google V8 JS Engine Architecture

In the JavaScript engine, code is first parsed into an Abstract Syntax Tree (AST), a structured
representation. This step identifies syntax errors and serves as the basis for generating ma-
chine code. The next step involves compilation, where the AST is transformed into machine
code. Modern engines use just-in-time (JIT) compilation, executing the code in the Call
Stack. Clever optimization strategies involve creating an unoptimized version initially for
quick execution, with further optimizations applied as needed. Google's V8, optimize and
recompile code in the background during execution. This continuous process enhances
speed, with parsing, compilation, and optimization occurring in specialized threads inacces-
sible from user code [6].

1.3 Distinct Features of the Language

1.3.1 JSON (Javascript Object Notation)

JSON, known as JavaScript Object Notation, provides a straightforward, text-based method
for storing and transmitting structured data. With its simple syntax, users can store various
data types, including numbers, strings, arrays, and objects, using plain text strings. It also
supports nesting of arrays and objects, enabling the creation of conlplex data structures.

;j EXPLORER settings.json X

“ MEALFINDERAPP-MAIN [EF U & | wscode » settings.json » ...

3 b .history . Click here to ask Blackbox to help you code faster
G= .vscode 1
~ n N Py n
2 "git.ignoreLimitWarning": true
9 settings.json 3 h

& app.js

[T T "

Figure 4.Json Format

https://medium.com/jspoint/how-javascript-works-in-browser-and-node-ab7d0d09ac2f

1.3.2 JavaScript Events
JavaScript strongly emphasizes event-driven programming. When users interact with ele-
ments like buttons or links, the browser generates events that JavaScript listens for and re-
sponds to with predefined actions. This capability enables extensive manipulation of a web
page's DOM, resulting in more interactive and dynamic web applications.
Event-driven programming operates on the premise that program flow is dictated by events
like user actions, sensor outputs, or messages from other programs (Enyinnaya, 2019). Ra-
ther than following a linear sequence, event-driven programs react to specific occurrences,
making them suitable for environments where external factors influence software behavior.
playAgain.addEventListener("click", () == {

ff we have to empty the arrays

correctLetters.splice(@d);

wronglLetters.splice(d);

i
selectedWords = words [Math. floor(Math. random() #* words.length)];

displayWord():
updateWronglLettersEl(]);

poplp.style.display = "none";
1

Figure 5.Event coding in VanillaJS.

1.3.3 '"non-blocking'" operations (Asynchronous Programming)

Handling asynchronous operations used to be challenging, often resulting in "callback hell"
- a situation where multiple nested callbacks lead to cumbersome code (Ecma International,
2015). This issue was addressed with the introduction of Promises in ECMAScript 6 in 2015.
Promises represent values that may not be immediately available but will resolve in the fu-
ture, offering a structured approach to dealing with asynchronous operations. Developers
can chain operations using the .then() method for successful resolutions and handle errors
with the .catch() method (Ayondip, 2023).

// Fetch meal Api by ID

function getMealById(meallID) {
fetch(https://www.themealdb. com/api/json/v1l/1/ lookup.php?i=§{meallD}")
.then{(res) => res.json())
.then{(data) = {
const meal = data.meals[@];

addMealToDom(meal) ;
3

Figure 6.JavaScript Promise Code sample

ECMAScript 8 introduced the async and await syntax, building upon Promise principles.
Async functions always return a Promise, with the await keyword pausing execution until
resolution. This synchronous-like coding style improves code readability (Ecma Interna-
tional, 2017).

<script>
async function getFile() {
let myPromise = new Promise(function(resolve) {
let req = new XMLHttpRequest();
req.open('GET', "mycar.html");
req.onload = function() {
if (req.status == 200) {
resolve(req.response);
} else {
resolve("File not Found");
+
T
req.send();

I3
document.getElementById(''demo"”).innerHTML = await myPromise;

}
getFile();
Figure 7. Async Await Typing

1.3.4 Javascript prototype Inheritance

In JavaScript, objects utilize prototype-based inheritance, inheriting directly from other ob-
jects, rather than through traditional classes. Each object has a linked prototype, from which
it inherits properties and methods. JavaScript searches an object's prototype chain to access
properties or methods, traversing linked prototypes until it finds the desired property or
reaches a null prototype.

<script>
function Person(first, last, age, eye) {
this.firstName = first;
this.lastName = last;
this.age = age;
this.eyeColor = eye;

}
Person.prototype.name = function{) {

return this.firstName + " " + this.lastName
¥

const myFather = new Person("John", "Doe", 5@, "blue");
document.getElementById("demo").innerHTML =

"My father is " + myFather.name();

</script>

</body>
</html>

Figure 8.Prototype inheritance

1.3.5 Functional Programming

Functional programming systems, characterized by less coupling and fewer side effects due
to the absence of shared state between components, utilize higher-order functions, which
accept functions as inputs. This stands in contrast to object-oriented programming (OOP),
where only data or objects can be passed through.

Functional programming, falling under the declarative paradigm, has gained traction along-
side JavaScript's widespread adoption, particularly with the rise of UI libraries like React
and Angular. It revolves around mathematical functions, known as pure functions, which
produce consistent output based solely on input.

45

46 // this function will be used to get data from the local storage and to populate the Ui
47 function populatelI() {

48 const selectedSeats = JSON.parse(localStorage.getIten("selectedSeats"));
49

50 if (selectedSeats !== null && selectedSeats.length = @) {

51 seats. forEach((seat, index) => {

52 if (selectedSeats.index0f(index) = -1) {

53 seat.classList.add("selected");

54 }

55 I3H

56

Figure 9. A JavaScript function to get Data from local storage

1.4 Registry Management System

In today's software landscape, where open source, proprietary, and third-party components
are integral to development, repository management plays a crucial role. Organizations rely
on repository management systems to efficiently source, store, share, and deploy these com-
ponents. The sheer volume and pace at which these components are utilized in software
development create what can be termed as a 'software supply chain.' In this context, a repos-
itory manager serves as the official warehouse for these components.

Furthermore, repository managers offer invaluable insight into component quality, enabling
development teams to make informed decisions upfront. By doing so, teams can mitigate the
risk of accumulating technical debt and reduce the need for unplanned or unscheduled work
downstream.

It's worth noting that a significant portion—80-90%—of a typical application comprises var-
1ous component formats and types. These include libraries, frameworks, modules, packages,
assemblies, and other parts. As development paradigms shift towards microservices and con-
tainers, the usage of components becomes even more pronounced.

14.1 Registry as a Component

A component is essentially a piece of software or resource that your application relies on.
These resources could be anything from a library or framework that helps your application
function to an image file that adds visual elements. Components are utilized at different
stages of your application's lifecycle, such as when the application is running, during testing,
or as part of the process of building and deploying the application. They can take various
forms, ranging from small code snippets to entire applications or even larger entities like an
entire operating system when used in certain environments like container-based systems
such as Docker. In essence, components are the building blocks that make up your software
application.

Components typically consist of a diverse array of files, ranging from Java bytecode in class
files to C object files, as well as binary files like images, PDFs, and audio files, among others.
These files are packaged into archives using various formats such as Java JAR, WAR, EAR,
plain ZIP, tar.gz, as well as other package formats like NuGet packages, RubyGems, npm
packages, Docker images, and more.

Moreover, components can themselves be composed of multiple nested components. For
instance, a Java web application packaged as a WAR component may contain numerous JAR
components and JavaScript libraries. While these nested components are standalone entities
in their own right, they are included as part of the larger WAR component. Essentially,

components can be thought of as self-contained units that encapsulate a collection of related
files and resources necessary for a specific functionality within a software application.

A diverse range of components is developed by both the open-source community and pro-
prietary vendors, forming a vast and rapidly expanding ecosystem. As an illustration, con-
sider the Central Repository of Maven/Java components, which boasts over 120,000 unique
components and more than 1 million total component versions. This indicates the extensive
scale of the ecosystem and its continuous growth over time. In essence, it highlights the
abundance of resources available to developers, catering to a wide array of needs and pref-
erences within the software development landscape [8].

External Repositories

L Nexus Server Hudson Server
Internal External Internal ~/.m2/repository
Releases Repository Snapshot

Repository Cache Repository » D DF

L [~
src
Developer Machine

w 7
~/.m2 frepasitory /

0 O)J:I / Git Server

Source Repository

5IC |4

Figure 10. Maven Registry Architecture

14.2 Component Architecture in Public repositories

In order to make components easily accessible to developers, the open-source community
organizes collections of these components into what are known as "public repositories."
These repositories are typically hosted on the Internet and are freely accessible. Different
platforms may use terms like "registry" to refer to the same concept. Some well-known re-
positories include The Central Repository, NuGet Gallery, RubyGems.org, npmjs.org, and
Docker Hub. Components stored in these repositories can be accessed by various tools, such
as package managers, build tools, IDEs (Integrated Development Environments), provision-
ing tools, and custom integrations using scripting languages.

Public repositories offer a more efficient solution compared to simple directory structures or
download websites. Instead of manually searching for components and their dependencies
and then storing them in their own infrastructure, users can simply declare the components
they need, and tools will take care of the rest, handling tasks such as locating the components
and managing their dependencies automatically.

‘a Jenkins {;Bamboo /\pupHEF &rdocter

[Hudmnﬁm TG Teamcity L =RUNDECK
CHEF
< git ESonatype ‘@nuget
R # python ﬂﬂllh}'
PERFORCE
Ej(%h’ m
T |
S eclipse
~ P A Mmaven sonarqube
N ineelijiDEA .
& gradle *vy-' XIIRA
¢ Visual Studio

Figure 11. Repository managers in a DevOps Setup

complexity has escalated as components are now ubiquitous across various development
stacks, leading to a blend of technologies within most applications. For instance, a server-
side application might employ Java technologies to implement a REST API, accessing com-
ponents through Maven. However, the web application utilizing these APIs to create a user
interface may opt for a purely JavaScript-based approach, sourcing its components via npm
[29].

1.5 Advance Reasons to consider Repository system when building a

software Application
We will take a quick look into various importance of the repository system and how efficient
it aids software development using the JavaScript programming language [9]
e Component intelligence

Certain professional editions of Repository Managers offer health checks, which offer im-
mediate insight into potential security, licensing, and quality risks associated with compo-
nents. This empowers development teams to swiftly and proactively address any issues that
arise.

e Authentication

Given that the Repository Manager houses project-related binaries, it's prudent to apply the
same permissions as those enforced for the projects themselves, including source code access
permissions, to safeguard the resulting binaries. In certain scenarios, access to the binaries
may be granted independently of access to the source code, and this can be managed at the
repository level.

e Efficient Use in Distributed system
When teams accessing repositories are geographically dispersed, it becomes crucial to en-
sure access to all components, whether internal or third-party. Given that a Repository Man-
ager essentially functions as a caching proxy, it's essential to have one deployed in each
physical location where there's a significant developer presence. Without this setup, devel-
opers may encounter slow and unreliable build times, as they fetch components from the
internet or across wide area networks (WANS).

e Efficient High availability

Relying on a Repository Manager to store all development dependencies makes it a vital
component of your infrastructure. Any downtime experienced by the repository disrupts de-
velopment activities, leading to potentially severe consequences. In a Continuous Integra-
tion/Continuous Deployment (CI/CD) environment, the unavailability of a Repository Man-
ager prevents builds from executing and deployments to production, posing significant risks
to the business or organization.

e Building High Level Projects

When constructing an application with Maven or similar build tools, it retrieves components
from a designated location, configured through Maven settings, and compiles them. This
process can yield an application or another binary or component. Jenkins facilitates this au-
tomation by enabling the integration of a Maven build step for both freestyle and multi-
configuration projects.

Our Movie app in chapter 4 will based solely on Client-Server System architecture (CSA).
The CSA will be solely explained in chapter 3.

Before delving deeper into the expansive JavaScript ecosystem and exploring the myriad
factors influencing the selection of an appropriate JavaScript tech stack for web application
development, our primary focus in this project, let's explore some of the relevant literature
that precedes this thesis topic.

2 RELATED LITERATURE REVIEW

Numerous studies and initiatives have delved into the realm of Big Code and code reposito-
ries, aiming to enhance development practices. Researchers and practitioners have explored
ways to leverage vast code repositories to improve the efficiency and effectiveness of devel-
opment tools. This work involves addressing the challenges posed by the sheer scale and
complexity of Big Code, seeking innovative solutions to extract meaningful insights, facili-
tate code reuse, and enhance overall development processes. These efforts underscore a col-
lective pursuit to harness the potential of extensive code repositories for advancing software
development methodologies.

A subset of information sourced from the GitHub and StackOverflow APIs is included in
publicly accessible datasets within Google BigQuery. The GitHub segment comprises re-
pository metadata, encompassing details such as programming languages and licenses,
alongside the actual contents of the repositories. These BigQuery datasets are open to any
user with a Google account, allowing them to execute SQL queries and run arbitrary JavaS-
cript code on the data. An illustrative instance of data analysis on these datasets can be found
in [18], where the authors parsed a billion files from 400,000 repositories across 14 program-
ming languages, focusing on the comparison of tabs and spaces for indentation. For JavaS-
cript, the results indicate that 18% of files use tabs, while the remaining majority use spaces.
Additional analyses of a similar nature are discussed in [10].

Decan et al. (2016) try to identify the differences in software package ecosystems (CRAN,
PyPI, NPM), though package dependency graphs. In light of their outcomes, it can be as-
serted that NPM stands out as an ecosystem that fosters an ethos of extreme reusability and
micropackaging culture. This is achieved through adherence to the single-responsibility prin-
ciple at the package level. In (Kikas et al., 2017) The authors demonstrated that the JavaS-
cript ecosystem is indeed experiencing the fastest growth and exhibits significant intercon-
nectivity among its packages. Finally, Bogart et al. (2016) Through interviews, it was ob-
served that developers, to ensure the stability of their packages and due to a lack of constant
awareness regarding the status of their dependencies, tend to minimize their reliance on
them. Instead, they opt for the adoption of packages that are considered "best-practice." [11].
UnuglifyJS, an implementation of a JavaScript deminifier, is introduced to extract properties
and features from code. This client serves as a valuable starting point for researchers and
developers interested in utilizing the Nice2Predict framework. The open-source implemen-
tation is accessible on GitHub at: https://github.com/eth-srl/UnuglifyJS.

The responsibilities of this client encompass three key aspects: 1) defining known and un-
known properties, i1) specifying features, and ii1) acquiring training data. It commences by
articulating known and unknown properties. Known properties encompass constants, object
properties, methods, and global variables—elements of a program that cannot be (soundly)
renamed, such as DOM APIs. Conversely, unknown properties involve all local variables.

2.1 Meteor

Meteor is a JavaScript-based platform designed for developing web applications entirely in
JavaScript. It offers a distinctive approach to web application development, enabling devel-
opers to write JavaScript functions that execute on the server, the client, or both. Geared
towards single-page web applications, Meteor integrates core features such as collaboration
and data synchronization. A standout feature of Meteor is its capability to provide database
access from anywhere. This means developers can execute the same database queries on
both the client and the server.

2.2 Boa Language Architecture

Boa emerges as a specialized language and infrastructure tailored for simplifying the extrac-
tion of insights from software repositories. Distinguished by its domain specificity, Boa's
infrastructure harnesses the power of distributed computing techniques to adeptly execute
queries across a vast landscape of software projects, ensuring remarkable efficiency. Posi-
tioned at the intersection of language design and infrastructure, Boa serves a pivotal role in
facilitating the testing of hypotheses related to mining software repositories (MSR).

B

Cached Data input reader

Runti
untime Query Result

{Section 4.5)

Boa's Data Infrastructure
{Sections 4.2/4.4)

| Boa Language {Section 3) : : Submit Query
[[B Program SourceForge.net
: MapReduce” Quantifiers* : L - [Saction 4.2)
! - User-defned | =~ o & bo______
i Visitors Functions* : b } :
e N & Wi : :
~ aplicator '
: “pravided by Sawzall : L l‘ : 1
___________________ s 1 :
- < . 1
- 1 1
L < Quary Plan 1 | Caching Translator | :
’ [
F - ! :
SR I A ! .
| Boa's Compiler (Secfion 4,1) : Deploy : ¥ :
I i 1
]
: MapReduce* Quantifiars : { i :
[-] ! |
: Domain-specific | User Functions : Expeirbs B I "
Types Hadoop Cluster Local Cache i
: Visitars ! (Protocel Buffers) !
[1
| . l
1 1 L]
|
[: :
l

Figure 12.Boa build Infrastructure

The impetus behind the creation of Boa arose as the authors endeavored to address a perva-
sive challenge on an extensive scale, delving into intricate details with complete historical
information. This comprehensive approach reflects Boa's ambition to provide a versatile so-
lution for mining software repositories, offering a fine-grained exploration of data and a
nuanced understanding of software project evolution [12].

Code Snippet of Boa Architecture:

Source Code Download Source Edit Source
Counting the 1@ most used progromming languages
counts: output top(l@) of string weight int;
p: Project = input;

foreach (i: int; def(p.programming_languages[i]})
counts << p.programming_languages[i] weight 1;

=1 I S T N

Output of the result:

counts = JavaScript, 1473096.0
counts = Ruby, 889738.0
counts = Shell, 700831.0
counts = Python, 620213.0
counts = Java, 554864.0

counts = PHP, 489082.0
counts = C, 419044.0

counts = CSS, 354715.0
counts = C++, 333877.0
counts = Perl, 274174.0

result can be accessed here: https://boa.cs.iastate.edu/boa/?q=boa/job/107801

Github Dataset 2019

1600000 1473096

1400000

1200000

1000000 889738

800000 700831 0013

600000 >>48%% 489082 419044

400000 354715 333877 574174

= TIIT
0

Javascript Ruby Shell Python Java Perl

Figure 13. project counts obtained from Boa's September 2019 GitHub dataset

In the ever-evolving realm of software development and infrastructure, the choice of pro-
gramming languages plays a pivotal role in shaping the technological landscape. As 0f2019,
data sourced from GitHub through the boa architecture reveals a clear leader among the top
10 most used languages — JavaScript. With a staggering count of 1,473,096 repositories,
JavaScript not only dominates the charts but also stands as a testament to its unparalleled
influence in the developer community.

23 GitHub Activity Data

GitHub Activity Data is a project that provides a public dataset on Google Big Query con-
taining a record of public GitHub events. It's a collaborative effort between GitHub and
Google, allowing developers and data enthusiasts to analyze and gain insights into the vast
amount of data generated on GitHub.

A straightforward query offers a glimpse into the dataset, providing insights. For instance, a
query counting the number of repositories committed so far currently yields a result of
265,419,190.

Code snippet for total repo commit 2023:
SELECT

COUNT(*) AS total commits FROM ‘bigquery-public-data.github repos.commits’
LIMIT 1000

24 Model Core J2EE patterns
The Java Sun team introduced a 5-tier architecture [13] to embody the Core J2EE Patterns
Architecture [14], as depicted in Table 8. Java further facilitates the implementation of the
Model-View-Controller architecture through the utilization of the Observer Interface and
Observable classes, collectively realizing the observer pattern. The Observable class serves
as a representation of an observable object, essentially the "data" within the model-view
paradigm. It can be extended to signify an object that the application intends to be observed.
An observable object has the capacity to enlist one or more observers. In this context, an
observer is any object that adheres to the Observer.

Figure 14. core J2EE Patterns structure

The proposed Java team 5-tier architecture to model the J2EE is explained below;

e Browser
This segment is frequently not indicative of the overall architecture, but it is plausible that it
includes application components commonly referred to as "First-Level Tests." First-level
tests primarily involve verifying the contents of input forms, ensuring the accurate input of
all mandatory fields, for example. However, it is imperative that these tests are categorized
within the presentation layer. This designation is crucial because end-users may opt to disa-
ble JavaScript functionality in their browsers. Additionally, this layer serves the purpose of
rendering dynamic pages, such as those in DHTML format.

e Presentation
This tier is responsible for managing navigation logic and frequently employs JSP/Servlets
technologies.

e Logical Subject
Implemented through Java Beans or EJB, this layer encompasses all the processes within an
application.

e Middleware
This segment of the architecture addresses interactions with other patterns at the same level
or composite patterns across different levels.

e Persistence
This segment of the architecture addresses interactions with other patterns at the same level
or composite patterns across different levels.

Expanding upon the principles of the Model Core J2EE patterns, we will take a look at the
Model-View-Controller (MVC) pattern also.

2.5 Model-View-Controller (MVC)

The MVC pattern, a widely adopted structure for web applications with substantial pro-
cessing demands. This choice enhances the coding and maintenance aspects, leveraging
MVC as a 3-tier architecture to delineate the core elements of web application architecture.
In this context, MVC serves to describe the fundamental components of web applications,
with its 3-tier structure commonly utilized by designers to manage multiple views of identi-
cal data. At the design level, the MVC pattern emphasizes a clear segregation of three types
of objects.
Expanding upon the principles of the Model-View-Controller (MVC) pattern [15]. This is
how the 3 core models affect the development of web applications;

e Model
A model component serves as a repository for both data and logic. For example, a Controller
object might fetch customer information from a database. Data interchange occurs among
controller components or various business logic elements. It handles data manipulation and
either returns it to the database or employs it for rendering the same information.
Moreover, it reacts to requests from views and receives directives from the controller, ena-
bling it to self-update. It stands as the lowest level of the pattern, tasked with overseeing data
maintenance.

e View
The View is responsible for depicting how data appears within the application. Views are
generated using data obtained from the model. When the user requests information from the
model, the output presentation is presented to them. In addition to visualizing data through
charts, diagrams, and tables, the view can also showcase data from various sources. All user
interface elements, including text boxes, drop-down menus, etc., are visible in any customer
view.

e Controller

Controllers are the elements within an application responsible for managing user interac-
tions. The controller interprets user input, leading to changes in both the model and view
based on the received information. Through interaction with a controller's associated view,
users have the ability to alter the view's presentation (such as scrolling through a document)
and update the state of the connected model (such as saving a document).

Client Side Server Side

1. Request 2. Invokes

3. Access/Modifies

7. Response
PO DataBase Server

Figure 15. Illustration of the System Applying the MVC Architecture Pattern

3 PART A - CLIENT-SERVER ARCHITECTURE (JS ECOSYSTEM)

Back End Front End

Device

] — Nodejs | +— | HTTP Server
e
—

Document

/é vaScript\ T
N/

(vee | [wra)
|

/

| React
"\ Anguilai r//" \,_7_,

=
\

e
(css)
NI

Figure 16.Client-Server Illustration for a JS Web Application

Client-server architecture is a model used in building web applications where client devices,
such as web browsers, interact with a server to access and manipulate data. In this architec-
ture, the client is responsible for displaying the user interface and handling user interactions,
while the server stores and manages data, processes requests from clients, and sends back
responses. JavaScript is commonly used on both the client and server sides to enhance inter-
activity and functionality as seen in the figure, there are 3 popular JavaScript frameworks
used in building a scalable web application. This architecture allows for scalable, distributed
systems where clients and servers communicate over a network, enabling dynamic and re-
sponsive web applications. We will explain further the various build tools used frequently
by professionals in building an industry standard application.

In this chapter, our goal is to explore popular build tools for creating scalable JavaScript
applications. Following that, we will conduct a survey to gather opinions from software de-
velopers on their choice of primary frameworks used for building web applications and why?
what factors do they consider? efficiency? speed? performance? maintenance? Or is it solely
due to Client Business Decision? Analyzing the survey data will guide our decision in se-
lecting the appropriate framework for developing our own web application in Chapter 4.

3.1 NODE PACKAGE MANAGER (NPM)

User-contributed Open Source Software (OSS) ecosystems have gained prominence in the
software engineering realm, attracting attention from both practitioners and researchers. No-
tably, ecosystems comprising 'collections of third-party software,' such as the node package
manager (npm) in the JavaScript package ecosystem [10], play a pivotal role in the develop-
ment of extensive server-side NodeJS and client-side JavaScript applications. As of 2016, a

study reported that the npm ecosystem for the NodeJS platform accommodates over 230
thousand packages [10], witnessing 'hundreds of millions of package installations every

week.'

v E-COMMERCEAPP-MAIN |} Ci U B
> node_modules
> ® public
> I src

package-lock.Json 2 .

package-lock json

package json
B postcss.config.is
<+ README-template.md
© README.md
w+ style-guide.md
tailwind.config js

@ e W e

9
10
1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
10
41
H
43
44
45
46
47
8
49
50
51

Click nere ta ask Blackbox 10 help you code faster

“name": "e-commerceapp",
“"version": "1.0.0",
"lockfileversion": 2,
“requires": true,
"packages": {

: q{

"name": “e-commerceapp”,
“version": "1.0.0",
“license": "IsC",

“tailwindcss":

N
"node_modules/@babel/code-frame": {

"version": "7.16.7",

“resolved": "https://registry.npmjs.org/@babel/code-frame/~/code-frame-7.16.7.tgz",

“integrity": "sha512-iAXqUn8ITeBTNG72xsFlgaXHKMBMt6y4HIp1tIaKa65CWLT/ TG1aqB7ykra5gHHmBAGhFeW yBANIOnmeIg=="
"dev": true,
"dependencies": {
"@babel/highlight": "~7.16.7"
h
“engines": {
“node": “>=6.9.0"
}
N
"node_modules/@babel/helper-validator-identifier": {
“wersion": "7.16.7",
“resolved": "https://registry.npmjs.org/@babel/helper-validator-identifier/-/helper-validator-identifier-7.16.7.tgz",
"integrity": "sha512-hsEnFemeiWADB8A5gUAZxLBTXpZ39P+a+DGDsHwlyxqyQ/]zFEnx fSuTEGp+3bzAbNOXU1paTgYS4ECU/TgfDw==",
"dev": true,
"engines": {

"node": ">=6.9.0"
b
h
"node_modules/@babel/highlight": {
“version: "7.16.7",
“resolved": "https://registry.npmjs.org/@babel/highlight/=/highlight=7.16.7.tgz",
“integrity": "sha512-aKpPMfLvG0O3097VBghw/VZSWNWLwfIknuwAunU7wZLS f rMdxTBvg7ESepUVilkITBKihE3BCPg4nBigX83PWYw==",
“dev': true,
"dependencies": {
"@babel/helper-validator-identifier": "~7.16.7",
"chalk": "~2.8.8",
"js-tokens": "~4.08.0"

h

“engines": {
“node": “>=6.9.0"
b

}

Figure 17.a package.json file

According to Jansen et al. , ecosystems emerge when 'large computation tasks are split up
and shared by a collection of small, nearly independent, specialized units depending on each
other.' Building upon this concept, we posit that third-party software ecosystems like npm
foster the philosophy of specialized software within these self-organizing ecosystems.

A micro-package is the outcome when a package adopts a 'minimalist' approach in size and
focuses on a single task [11]. For example, the negative-zerol package addresses the
straightforward task of determining whether an input number has a negative-zero value. Mi-
cro-packages operate as individual units, establishing 'transitive' dependencies between de-
pendent packages (i.e., dependency chains) across the ecosystem.

npm

Docker

Yarn

Homebrew

Kubernetes

Terraform
Unity 3D
Ansible
Unreal Engine
Puppet

Chef

Pulumi

Flow

Figure 18. Stack overflow chart 2022 (NPM)

NPM (Node Package Manager) has evolved significantly since its initial release on January
13th, 2010. Initially included as part of the Node.js framework, it has become the leading
package manager for JavaScript, commanding over 65.17% of the userbase as 0f 2022 (Stack
overflow User Survey 2022). This dominance is largely attributed to its integration with
Node.js.

Presently, NPM is overseen by NPM Inc., a company established in 2014 dedicated to main-
taining the NPM software and package repository. They also offer paid services and support
tailored for enterprise usage (NPM Inc. 2019).

init-author-name 'Your Name'
init-author-email 'your.email@yourdomain.com'
init-author-url 'yourdomain.com'

init-license 'MIT'
save—-exact true

Configuring npm and creating a package.json [16]

The development of NPM remains highly active, with the latest stable version, 10.4.0, re-
leased on January 24th, 2024 (NPM GitHub 2024).

As 0f 2022, the NPM registry stands as the largest online package registry. It hosts packages
submitted by developers and boasts more a significant importance to its nearest competitor,
the Docker (Linux.com 2017).

25,000,000 EEACEIEIM ExpressS,
22,040,391 21,961,276

20,000,000
15,000,000
B Weekly Nom Download as at 15-02-
2024
10,000,000 Jquery, 7,546,056
Angualrls,
5,000,000 2,683,838
. VuelS, 3,496,954
0 T T T

REACTJS ANGUALRJS VUEIS JQUERY EXPRESSJS

Source -> https://www.npmjs.com/package/express

3.2 Understanding the JavaScript Client — Server-Side System

Developing a comprehensive JavaScript software product using a single technology is nearly
impractical, leading to the rise of frameworks and libraries. Typically, this entails utilizing
tech stacks, which are combinations of JavaScript programming language, it’s frameworks,
libraries, database system, templates, and other tools.

3.2.1 NodeJS "**

Node.js® stands as an open-source JavaScript runtime environment constructed upon
Chrome’s V8 engine. It operates in an event-driven manner with non-blocking I/O, rendering
it lightweight, efficient, and exceptionally rapid for crafting web applications.

Widely adopted across various industries such as I'T and Finance sector, Node.js has emerged
as the preferred choice. Its inherent simplicity is difficult to overlook. Nevertheless, like
every technology, Node.js comes with its own set of pros and cons. Therefore, let us delve
into the advantages and disadvantages of Node.js, empowering you to align your require-
ments and make a well-informed decision.

const http = require('node:http');

st hostname = '127.0.0.1"';
st port = 3000;

st server = http.createServer((req, res) => {
.statusCode = :
.setHeader('Content-Type', 'text/plain');

.end('Hello World\n');
3);

server.listen(port, hostname, () => {
console.log('Server running at

Figure 19. An Example of Node.js Application

“To run this snippet, save it as a server.js file and run node server.js in your terminal.
This code first includes the Node.js

https://www.npmjs.com/package/express
https://nodejs.org/api/http.html

Node.js has a fantastic , including first-class support for networking.

The createServer() method of http creates a new HTTP server and returns it.

The server is set to listen on the specified port and host name. When the server is ready, the
callback function is called, in this case informing us that the server is running.

Whenever a new request is received, the is called, providing two objects: a
request (an object) and a response (an object)”
[17].
NODE.JS SERVER
LIBUV
(async 1/0)
EVENT
QUEUE =
REQUEST 1 BLOCKING =]
P E— - —_ OPERATIONS o
EVENT — o
REQUEST 2 LOOP o
_— =
EXECUTE =
CALLBACK (E
~
REQUEST n o
—_—) KERNEL

THREADS

Figure 20. NodeJS Server Architecture

Node.js utilizes non-blocking I/O and asynchronous request handling to manage operations
efficiently. This means that instead of waiting for a function to complete before moving on,
Node.js processes requests concurrently, allowing it to handle multiple tasks simultaneously.
This is made possible through the use of call-backs and promises, which manage asynchro-
nous operations by executing functions when certain tasks are completed. Node.js applica-
tion remains responsive and can handle incoming requests effectively.

3.2.1.1 Logical Reasons to use NodeJS
e Robust Technology
e Fast Processing for web tasks — asynchronous Thread (Non-Blocking I/O Model)
e Scalable technologies for microservice applications
e Seamless JSON support

3.2.1.2 Issues with Building an Application with NodeJS
e (Call-back Hell issue

e The asynchronous programming model of Node.js poses challenges in code mainte-
nance.

e Performance is compromised when tasked with heavy computing operations.

e Node.js opens up a lot of code changes due to Unstable application programming
interface (API)

https://nodejs.org/api/
https://nodejs.org/api/http.html#http_event_request
https://nodejs.org/api/http.html#http_class_http_incomingmessage
https://nodejs.org/api/http.html#http_class_http_serverresponse

3.2.2 REACT

React]S, commonly referred to as React, is a front-end JavaScript library pioneered by Fa-
cebook, specifically by (Jordan Walke) [18]. It is designed for constructing highly respon-
sive user interfaces and finds extensive application in the web applications.

B Terminal

npm install react r

Figure 21. installing React on an existing project using NPM

React operates on a declarative paradigm, employing components to structure user inter-
faces. It maintains a "virtual" representation of the UI in memory, which synchronizes with
the "real" DOM. Integrating React into an already-existing web page is feasible, allowing
developers the flexibility to incorporate as much or as little as desired. Putting JSX markup
close to related rendering logic makes React components easy to create, maintain, and delete
[19].

Writing user interface with React requires a bit of a shift in how you think about web appli-
cations.

/I ISX to express Ul components.

Let dropdown =
<dropdown>
A dropdown list
<Menu>
<Menultem> Do This </Menultem>
<Menultem> Do This </Menultem>
<Menultem> Do This </Menultem>
</Menu>
</Dropdown>
render(dropdown);

ReactDom

React DOM is the essential engine behind the efficiency of React-based user interfaces in
handling the multitude of screen changes demanded by modern web applications. It achieves
this feat by leveraging a Virtual DOM, which optimizes the process of updating the user
interface.

=div id="app" =
DO T esdive

React React.render() Virtual ReactDOM.render(}
Componant - "

Figure 22. React DOM Structure

Between 2022 and 2024, the React library has seen significant popularity and usage, with
over 22 million downloads recorded via npm. This trend underscores React's continued rel-
evance and widespread adoption within the development community for building web ap-
plications [20]. The illustration below proves our point.

. react

25,000,000
20,000,000
15,000,000
10,000,000

5,000,000

[
Apr 2023 Jul 2023 Oct 2023 Jan 2024

Figure 23. React Library download (NPM trend stat 2024)

3.2.2.1 Logical Reasons to use React framework

e React Components — Build once and use in multiple projects.
React facilitates rapid project development through reusable components, which are isolated
pieces of code utilized within an app or across various projects.

e One directional data flow
In React, data flows unidirectionally from parent to child components. The parent compo-
nent's data, known as state, dictates the screen content. The state portion passed to a child is
called a prop, which is read-only.

e React VirtualDOM - Reduces reloads in applications
Introduced for React-based apps, the virtual DOM enhances speed and interactivity.

e React Hook
React Hooks simplify complex logic which Improves code readability, testability, and logic
reusability, while also reducing app bundle size.

e A large community of React Devs — awesome community support

3.2.2.2 Issues with Building an Application with ReactJS

e Excessive use of additional technologies
While React itself is lightweight and user-friendly, incorporating numerous additional tech-
nologies is often necessary before starting work with it. A general guideline is to refrain from
adding new technologies on top of React unless absolutely necessary.

e Excessive liberty
React lacks a definitive roadmap for web app development, offering considerable freedom
but with associated drawbacks.

e Excessively wordy code
Due to the abundance of technologies and approaches, combined with the absence of strict
guidelines, the code can be challenging for newcomers to grasp. As a result, onboarding new
developers for large React projects may require additional time.
The most fascinating thing about React is its huge Ecosystem of developer communities
whom are always willing to help other developers answers questions and concerns encoun-
tered during the course of using the framework to build an application.
According to the survey;

Hashnode: 47,000+ followers

Reddit: 250,000+ React developers
X(formerly twitter): 477,000+ followers
Facebook: 106,000+ followers

Dev.to: 15,000+ posts published
Reactiflux: 100,000+ developers

React]S Community Ecosystem

15,000, 1%
47,000, 5%
100,000,20% | I

250,000} 25%

477,000,,48%
10 11%

= Dev.io = HashNode Reddit = Facebook Twitter(Now X) ReactiFlux

React is part of the MERN stack, which encompasses four key technologies:
M - MongoDB: A NoSQL (non-relational) database

E - Express: A back-end middleware

R - React: A front-end framework

N - Node.js: A runtime environment

3.2.3 Angular Framework A

Angular, backed by Google, is an open-source JavaScript-based platform for front-end user
interface development. Its origins can be traced back to 2009, when Google engineers Misko
Hevery and Adam Abrons developed the framework, initially known as AngularJS, and of-
ficially released it in 2010 [21]. Angular is an open-source JavaScript framework written in

TypeScript. Its main focus is on building single-page applications (SPAs).

In Angular applications, the architecture is based on foundational concepts. Angular com-
ponents serve as the fundamental building blocks [22]. These components define views,
which represent sets of screen elements that Angular can dynamically modify based on pro-
gram logic and data. Components utilize services for background functionalities like data
fetching, decoupling view-related tasks. Services, injected as dependencies into components,
enhance code modularity, reusability, and efficiency. Currently 93k stars on github.

Installation of Angular on local machine

npm install -g @angular/cli

Set-ExecutionPolicy -Scope CurrentUser -ExecutionPolicy RemoteSigned
ng new my-app

cd my-app

ng serve —open

Angular Architecture

Module Madule Metadata
component service

Template Directive
Madule Module
Value 314 Fn < > { }
Property Event binding

Injector binding Metadata

Service

{} Components
{}
& 38
%% . o8
24

Figure 24. Angular Building Architecture

3.2.3.1 The Building Blocks of Angular

e Modules
In Angular, an app features a root module called AppModule. This module serves as the
bootstrap mechanism for launching the application.

e Angular Components
Each component defines a class containing application logic and data, typically representing
a portion of the user interface (UI).

e Services
When there's data or logic not tied to the view but needs to be shared across components, a
service class is created, always marked with the @Injectable decorator.

e Injection Dependency
Dependency Injection (DI) facilitates providing components with necessary services and
data. In Angular, DI is integrated into the framework, eliminating the need to fetch data from
the server, validate user input, or perform console logging. Services can be injected into
components seamlessly, as the injector manages a container of service instances. If an in-
stance is absent, the injector creates and adds it to the container for future use.

e Data Binding
It synchronizes and coordinates components and templates, establishing a communication
channel between template parts and component parts.
Angular Code sample for Data binding
<p>Topic: {{angular.Architecture}} </p>
<p>Place: {{Data.Flair} } </p>

e Angular Directives
A directive, marked by the @Directive decorator, guides Angular in transforming the DOM
as templates render dynamically. Angular components consist of both templates and direc-
tives. There are two types of directives: Structural, which adjust layout by modifying DOM
elements, and Attribute, which alter the behavior of existing elements.

- Ng— Model Directives

- Ng-Bind Directive

e MetaData
Metadata, often referred to as data about data, in Angular is represented by decorators. It
serves as a guiding principle for Angular in processing a class, configuring it according to
its intended behavior. Decorators, such as @Component, are attached to TypeScript code,
like AppComponent, indicating to Angular that it's a component.

A metadata code sample [42].

export class AppComponent {

constructor(@Environment(‘test” private appTitle:string) { }
v
S

“@Environment metadata is applied to the property appTitle with the value 'test'.”
Template

The template is essential for formatting and enhancing the application prior to display. It
merges Angular Markup with HTML, allowing for manipulation of elements pre-display. It
also facilitates program logic and links application data with the DOM using binding
markup. Two types of data binding are employed:

a. Event Binding: Responds to user input by updating application data.
b. Property Binding: Reflects computed values based on application data into the HTML.
Installing Angular CLI with NPM to start a new Project

3.2.3.2 Logical Reasons to Adopt Angular

e Browser Compatibility

e Highly Comprehensive Framework
Angular offers built-in solutions for server communication, application routing, and more,
making it a comprehensive framework.

e Testing
Tests are integral to Angular, designed for comprehensive testability. It's highly recom-
mended to test every part of your application.

e Angular CLI facilitates seamless updates.
The Angular command-line interface (CLI) is popular among engineers for several reasons.
It's easy to set up, newbie-friendly, includes testing tools out of the box, and offers simple
commands.

3.2.3.3 Issues with Building an Application with Angular

e Migrating from Angular]JS to Angular takes time.
Lazy loading allows rendering parts of the AngularJS app within the Angular application.
Migrating from AngularJS to Angular is a significant task, unlike updating between Angular
versions. It can be challenging, especially with legacy systems.

e Can be difficult to learn
The learning curve is steep due to the array of topics like modules, dependency injection,
components, services, and more. Additionally, mastering RxJS for asynchronous program-
ming is essential but daunting. TypeScript, while beneficial for code maintainability, adds
another layer of complexity to the learning process.

e Complex Angular Component Structure
Managing components in Angular can be overly complex. Each component may require up
to five files, involving dependency injection and lifecycle interface declarations. Addition-
ally, Angular-specific third-party libraries and syntax add further complexity.
ANGULAR is a key component of the MEAN stack, encompassing four essential technol-
ogies for software product development:
M - MongoDB: A NoSQL (non-relational) database
E - Express: A back-end middleware
A - Angular: A front-end framework
N - Node.js: A runtime environment

324 VuelSY

VuelS is a dynamic JavaScript framework tailored for crafting engaging web interfaces. It
prioritizes front-end development, offering seamless integration with various projects and
libraries. Installation is straightforward, making it accessible even to beginners who can

swiftly embark on creating their own user interfaces. Vue has over 3.5 million downloads
in December 2023 and over 180,000 stars on Github.

3.2.4.1 Vue installations
B Using NPM
npm install vue
B Using CDN(content delivery network)

The latest version of VuelJS can be accessed via the link: . Addition-
ally, VuelS is available on jsDelivr) and cdnjs
(

B CLI command Line Installation
npm install --global vue-cli
B HTML Script Tag

<htmlI>
<head>
<script type = "text/javascript" src = "vue.min.js"></script>
</head>
<body></body>
</html>

3.2.4.2 Vuex

Vuex, described on its official site, serves as a state management pattern and library for
Vue.js applications. It establishes a central store accessible by any component, promoting
better state management and security. Developers can create rules and methods to control
state mutations, ensuring data changes adhere to a specified pattern to prevent conflicts and
unwanted behavior. As Vue.js applications expand, passing data between components via
props can become cumbersome and time-consuming. Vuex alleviates this complexity and
facilitates easier maintenance.

https://cdnjs.cloudflare.com/ajax/libs/vue/2.4.0/vue.js

ViewModel

DOM Listeners

View

v
DOM ' Plain JavaScript
Objects

Figure 25. Vue View Structure (vuejs.org 2024) [23]

ViewModel

The Vue.js ViewModel is the core instance of a Vue application that connects the data and
logic defined in the Vue component with the DOM. It manages the data and state of the
application, and acts as a bridge between the data model and the view, enabling reactive and
declarative rendering of the user interface. In essence, the ViewModel represents the appli-
cation's state and behavior, allowing for efficient data binding and manipulation [23].

var vin = new Vue({ }) #-> code snippet from vuejs.org

View

Vue.js employs DOM-based templating, associating each Vue instance with a DOM ele-
ment. Upon creation, a Vue instance traverses its root element's child nodes, establishing
data bindings. Once compiled, the View becomes reactive to data alterations.

vm.$el -> snippet from vuejs.org 2024

Model

VuelS excels in reactivity, simplifying data binding between HTML and JavaScript. Its
seamless handling of two-way reactive data binding ensures that changes in data reflect in
the DOM effortlessly. This feature makes VuelS ideal for SPAs and any application neces-
sitating real-time updates.

vm.$data // -> snippet from vuejs.org

3.2.4.3 Logical Reasons to Adopt VueJS
e Easy to Learn
Experienced developers transitioning from other JavaScript frameworks find Vue easy to
pick up due to its simplicity and clarity. Vue's straightforward syntax combines HTML and
JavaScript seamlessly in its components, making the structure intuitive. This simplicity fa-
cilitates the development of large-scale templates while maintaining ease of error tracking.
e Virtual DOM rendering enhances performance.
Vue.js leverages a virtual DOM to efficiently track and update changes in data and UI, min-
imizing DOM operations and enhancing performance. Additionally, its reactivity system au-
tomatically detects dependencies between data and U, updating the Ul dynamically upon
data changes.

e Vue Components
Components and views are small, interactive app parts seamlessly integrated into existing
infrastructure without compromising the system.

e Browser Dev Tools
The Vue team has developed excellent browser devtools extensions for their framework.
These tools enable programmers to inspect Vuex state, components, and views, modify data,
and analyze events in depth.

3.2.4.4 Issues with Building an Application with Vuels
e Limited Plugins, Extensions and Libraries
e Not Enough support from Vuejs community of developers
e Too flexible leading to code errors and irregularities

is part of the , which encompasses four key technologies:
M - MongoDB: A NoSQL (non-relational) database
E - Express: A back-end middleware
V- Vue: A front-end framework
N - Node.js: A runtime environment

As we can see below, React]S seems to be the favorite amongst JavaScript developers. Our
qualitative assessment in the part B would give us a better understanding why the React
Framework is a popular choice amongst JavaScript and its community of developers.

angular vs react vs vue

Enter an npm package
angular react ‘ vue ‘

Downloads in past 1 Year

— N T N\

Figure 26. popularity between the 3 major frameworks [npmtrends.com Jan 2024]

II. ANALYSIS

33 PART B - RESEARCH APPROACH (Qualitative Model)

As part of this research, a survey (consisting of 14 Questions) has been distributed to JavaS-
cript users through various channels such as FreeCodeCamp forums, CodeAcademy Forums,
workplace employees, Discord JavaScript Forums, and WhatsApp groups. The aim is to
collect valuable insights on JavaScript developers' attitudes and thoughts regarding the Ja-
vaScript Tech Stack.

The survey was created using Google Forms for its user-friendly interface and automatic
graphing of submitted results, facilitating efficient data analysis for this thesis.

I'm presently engaged in qualitative research on the JavaScript ecosystem within the Euro-
pean and African tech communities. The insights being gained and analyzed from this re-
search are driving my decision towards adopting the MERN STACK for building the web
application discussed in Chapter 4.

All Research documents used will be included in the final version of this Thesis.

3.3.1 RESEARCH QUESTION

- Developer Bio (KYD- know your developer)
- Kindly state your name (Information to be kept anonymous due to data confidential-
ity)
State your nationality
Select your employment status
- What is your job role?

- Main Research Questions
e What is your JavaScript programming experience level?

Are you currently working in software development?

What is your job Role?

What industry do you work in and where is your company located?

Why did you decide to adopt JavaScript as a programming language for develop-

ment?

Do you currently use a JavaScript Framework for development?

e Which of the Listed Frameworks do you use mostly professionally?
=>» React]S
=> Angular
= VuelS

e How often do you switch between JavaScript Frameworks when developing a soft-
ware and why?

e Which of the package Manager do you use in development?

e How Important has Package Managers been to your development lifecycle?

e What security concerns have you encountered using NPM and what do you think can
be improved?

e How would you rank the learning curve of your preferred Framework?

e How Important has the developer community of your framework of choice been to
your development workflow?

e What are the drawbacks you encounter in production when using your preferred
Framework?

e What do you personally think could be improved in the ever-growing JavaScript eco-
system?

e Do you have any Additional Thoughts that you think is not been covered in this sur-
vey questions?

3.3.2 Qualitative Result of the Survey
The survey didn't randomly select participants, and it only included people who were
willing to take it, which naturally limits how representative the results are of all de-
velopers. So, we can't use these results to say much about the broader developer com-
munity in the grand scheme of things. These results are solely of the basis of this
Thesis research.

3.3.2.1 Know Your Developer (KYD)

State your Nationality
39 responses

15

13 (33.3%)
12 (30.8%) |
10
5
2 (5.1%)

1(2.6%)1 (2.6%)1 (2.6%1 (2.6%)1 (2.6%)1 (2.6%)1 (2.6%) 1(2.6%)1 (2.6%1 (2.6%)1 (2.6%}1 (2.6%)

0
China Iraq Nigeria Wales, United Kingdom.
German Italian Romania ethiopia

Survey Results:

26 developers stated Nationality as Nigeria/Nigerian
2 Chinese surveyed developers

1 czech/Czechia developer

1 German developer

1 Ghanaian developer

1 Iraqi developer

1 Irish developer

1 Ttalian developer

1 Romanian developer

1 Welsh developer

1 Trinidad and Tobaggo developer
1 Zimbabwean developer

1 Ethiopian developer

Select your Employment status
39 responses

@ Employed

@ Unemployed

) Self employed

@ Student

@ Student and working too
@ Student and self employed

Survery Results:

21 (53.8%) of the respondents were gainfully employed. 15.4% (6 developers) were self-
employed, 11 respondents (28.3%) were students/looking for work/part-time work/stu-
dent/coding for fun e.t.c, 1 respondent (2.6%) was unemployed.

What is your Job role ?
39 responses

8
6
4 3(7.7%)
2(5.1%) 2(5.1%)
2 T2 (2B21(2.092.6%)]] (2.112.5(2:5'(211(2:6%) 1} (2.1(2.0(2:5(2:10(2:69
0
Al researcher Cybersecurity Auditor Makeup artist Quality analyst Technical Lead | Soft...

Backend developer Fullstack developer None Software developer frontend d...

Survey Results:

The survey results revealed that 2 respondents work as Al researchers, 2 respondents are
Backend Developers, 1 respondent is a Freelancer, 1 is a Human Resource/Business Data
Analyst, 1 is a CEO, 1 works as a Developer for McDonald's enterprise, 1 is a Cybersecurity
Auditor, 1 is a Full Stack Developer, 1 works as a Graphic/Web Designer, 1 is an IT Admin-
istrator, 1 is a Makeup Artist currently transitioning to tech, 3 did not specify a job role
(N/A), 1 works in operations, 1 is a Product Consultant, 1 works in QA (Quality Assurance),
1 is a Social Media Marketer, 6 are Software Engineers/Software Developers/Technical
Leads, 4 are Front-End Developers/Front-End Engineers, and 7 are students.

3.3.2.2 QI- Q14 Experience with Javasript, FrameWorks and Node Package Man-
ager(npm)

The purpose of these questions was to assess the significance of the JavaScript ecosystem,
including its frameworks, to the surveyed developers, as well as to evaluate their perceived
ease of use.

The percentages indicate the distribution of respondents in each category.

Q1

Are you currently working in software development ?
39 responses

@ Yes
@ No

@ Computer science

Figure 27. Q1 survey result

Out of the total respondents:

21 (53.8%) are somewhat working in or have recently worked in software development.
17 (43.6%) are currently not working in software development but in other fields.

Q2

What is your JavaScript programming experience level ?
39 responses

@ Beginner
@ Intermediate
Senior level
@ | don't work in JavaScript programming
@ | have no experience in JacaScript
® NA
@ No experience

Figure 28. Q2 survey result

Among the respondents, 9 (23.1%) listed senior-level experience, while 19 (46.2%) have
intermediate experience in the JavaScript language, and 8 (20.5%) have a beginner-level
knowledge of the language.

Q3 — (“Why did you decide to adopt JavaScript as a programming language for develop-
ment”)?

The following responses was submitted from 22 respondents.

For upgrade

It was the most suitable for my job role

Because of its asynchronous nature.

It is easy to understand

JavaScript’s flexibility and robust ecosystem make it an ideal choice for develop-
ing modern web applications that meet our project requirements.

I adopted JavaScript because it is the language of the web. It works on all major
web browsers, making it the front-end development language. JavaScript is also
used on the server side (Node.js), for the development of mobile applications (Re-
act Native, Native Script) and desktop applications (Electron). It's versatility and
wide adoption make it an invaluable technology for developers.

I enjoy using JavaScript because it has a diverse ecosystem of libraries, frame-
works, and tools that facilitate development across multiple domains. Whether I'm
creating a simple website, a complex web application, or a mobile application,
there is likely a JavaScript library or framework that I can use to develop these
additional processes and work.

With the advent of frameworks like React Native and Electron, I can use JavaS-
cript to create cross-platform applications that run on a variety of devices and plat-
forms. This allows me to use JavaScript technology to create a variety of applica-
tions without having to learn another language.

Easy to use

The adoption of JS started off as a need to add interactivity to websites.

Because of its versatility

Easy to learn and was a widely used language

Because fasting my work

I was learning to become a frontend developer and it was the next logical step in
my path

Convenience of deployment, availability of talent pool

because of its functionality

It was kind of what I had available to me at the time. The only Udemy course |
had access to back then was NodeJS so JavaScript was the way forward.

because it is basically useful for frontend programming and user-friendly

it is dynamic with static pages. Also, JavaScript is very useful in websites devel-
opment implementation 3Js, which develops websites in 3D.Our startup company
also uses CSS, html and JavaScript on its website. i am sending you the address
https://association-for-engineering-in-science.webflow.io

For its versatility, as it's a widely supported language that can be used for both
front-end and back-end development. Its ecosystem and community support also
contribute to its popularity.

Cause my interest was mainly on the frontend part of the website

I wanted to have a skill

Q4

Do you currently use a JavaScript Framework for development ?
39 responses

@ Yes
5% ® No

Figure 29. Q4 survey Result

Out of the respondents, 24 (61.5%) currently utilize JavaScript in some capacity for devel-
opment, whether professionally or for research purposes, while 15 (38.5%) are currently
employing other programming languages instead of JavaScript.

Q5

Which of the listed frameworks do you use most professionally ?
39 responses

@ ReactJs
@ Angular
@ Vueds
@ Nil

@ None
@ Nothing
® NA

@ Nill

12V

Figure 30. Q5 Survey Result

Among the respondents, 22 (56.4%) utilized ReactJS the most, 5 (12.8%) used Angular pro-
fessionally, 2 (5.1%) used VuelS, while the remainder utilized ExpressJS or jQuery.

Q6 — (“Why do you use the above selected frame work “)?
The following responses was submitted from 18 respondents

e that is what the company I work uses in building their applications

e Cos it offers two-way features like data binding and dependency injections for
building single page applications.

e ReactlS is user friendly, allowing developers like myself reuse codes at will.

e [t has a virtual DOM and integration framework that helps improve performance
by reducing the number of DOM manipulations. React also provides tools like

React, memo and Pure Component to optimize actions and avoid unnecessary rep-
etition.

e | make use of React because it follows a unidirectional data flow, where data flows
in only one direction: from the parent component to the child component. This
makes data easier to manage and reduces the chance of bugs due to inconsistent
state.

e [prefer React]S because of its virtual DOM and integration framework which can
help improve performance by reducing the number of DOM manipulations. React
also provides tools like React, memo and Pure Component to optimize actions and
avoid unnecessary repetition.

e Because Vue.js has an easy learning curve, making it accessible to both beginners

and experienced developers. Simplicity allows developers to speed up content and

start building applications efficiently.

It’s the one I’m best familiar with.

Vue felt natural to pick up and was quite easy to pick up.

Building user interfaces on React is quite interesting and innovative

It's very good for frontend web development

Easier to navigate

It is the current industry standard and has more opportunities

It’s the framework with very available jobs

We use React because it’s a combination of JavaScript, HTML and CSS. This

allows us to create an integrated website

e For its component-based architecture, virtual DOM for efficient updates, and a
strong community. It simplifies building interactive user interfaces and enables
the creation of reusable UI components.

e Reusable component, great state management, declarative design

e itisapowerful library for building web and native user interfaces. Whether you’re
creating a simple web page or a complex application, ReactJS allows you to con-
struct user interfaces by combining individual pieces called components.

Q7 — (“How often do you switch between JavaScript Frameworks when developing a
software and Why”)?

The following responses was submitted from 13 respondents

e quite often due to the vast range of projects we work on

e Not really often, I stick to React]JS

e Not so often, React]S serves me better.

e not so often, I prefer VuelS

e ['ve only used one framework till date; Vue.

e [don't develop much, but when I do ReactJS does it for me Same reasons as the
above

e (an't use react]S for everything I'm doing

e Not often. Requirements are defined before project starts

e We don't switch because Express is sufficient for all our needs so far

e [seldom do so since I had experience with a vast majority of them so I can easily
plan which to use and why to use.

e [do not switch between JavaScript frameworks

e [hardly switch because ReactJS is enough for now

e Sometimes, the requirements of a project may evolve in such a way that the current
framework becomes less suitable or efficient. In such cases, we might switch to
another framework that better aligns with the new requirements.

Q8 — (“What package Manager do you use in development™)?

10 respondents listed npm, 3 listed Yarn, 1 listed Jenkins, and 1 listed webpack.

Q9 — (“How Important has Package Managers been to your development lifecycle™)?
The following responses was submitted from 11 respondents

e As my projects increased in size and complexity, manually managing dependen-
cies became increasingly difficult for me. Package managers are a great solution
for managing dependencies, making it easy to manage large code, refactor code,
and introduce new features without unnecessary hassle or expense.

e Package managers maintain control to ensure that I use the same set of dependen-
cies across different environments. This improves the consistency and reproduci-
bility of the development process, reducing the possibility of bugs or bad behavior
due to version conflicts.

e The package manager integrates with development automation tools like npm
scripts, webpack, or Gradle, allowing developers to perform tasks like installing
dependencies, bundling, minifying, and optimizing the coded. This automation
helps improve efficiency and consistency, especially for large projects.

e Package managers improve development performance by providing a central re-
pository of reusable components, libraries, and tools. Developers can quickly find
and install the packages they need, saving time and effort compared to download-
ing and managing dependencies.

e They provide essential software and easily install those packages for use

e They simplify dependency management, making it easier to install, update, and
share libraries or packages. Package managers streamline the development pro-
cess, enhance collaboration, and ensure consistency across different environments.
They contribute significantly to the efficiency and reliability of software develop-
ment.

e Made development easier

e It's impossible to do anything without them.

e Very helpful

e [t has helped me reuse codes at my own free will, easy to use, easy for sharing of
codes, and easy to manage.

e makes development faster.

Q10 — (“What security concerns have you encountered in using NPM and what do you
think can be improved™)?

The following responses was submitted from 12 respondents

Vulnerability Malicious package Lack of package verification

NPM requires developers to authenticate when publishing packages or accessing
private domain names. However, credential leakage, such as breach of sensitive
information (such as an authentication token or API key) to an administrative au-
thority, may result in not being authorized to access your npm account or your
private packages.

I've had an experience where an attacker published a package with the same name
as a package used by my company. If an organization's internal package, json file
does not specify the package, NPM may download the wrong package from the
public registry instead of the internal registry, leading to security violations. A
way I think the security of NPM can be improved is by carefully reviewing a reli-
able and reputable package before including it as a dependency.

The NPM open-source registry allows anyone to publish packages, which can
sometimes lead to faulty or broken packages. These packets may contain malicious
code, such as backdoors, malware, or code designed to steal sensitive information.
When i used older versions of packages that have known security vulnerabilities
due to compatibility issues or rejected updates. Constantly updating dependencies
made my project vulnerable to exploits because attackers started targeting these
vulnerabilities to compromise my application

I've not faced any till now. They already allow me audit packages that I plan to
use.

I haven't encountered any issues so far

dependency vulnerability

Outdated packages and packages with known security vulnerabilities. For im-
provement, auto updating of know vulnerabilities option should be provided
Security concerns in npm include the risk of installing malicious packages and
vulnerabilities in dependencies. Improvements can be made through continuous
monitoring, tools like npm audit, code reviews, access controls, and maintaining
transparency in package information.

Poor audit of npm packages

Dependency Vulnerabilities,Package Hijacking and for Malicious Package.

Q11 — (How Important has the developer community of your framework of choice been
to your development workflow)?

The following responses was submitted from 14 respondents

without the community i would not be a professional developer today
They've been of great importance and support

The developer community provides me with valuable feedback and peer reviews
to help developers like myself improve their code quality, design decisions, and
solutions. Peer review promotes accountability, transparency, and continuous im-
provement, resulting in better software products and practices.

The developer community has provided a platform for sharing knowledge, expe-
riences, best practices, tips, and tricks. Forums, online communities, meetups, con-
ferences, and workshops allow developers to learn from each other, collaborate to
solve problems and stay up to date with the latest trends and new technologies
The developer community provides support and training to me in all experience.
The developer community champions important values such as diversity and in-
clusion, accessibility, appropriate software development, and environmental sus-
tainability. By raising awareness and encouraging positive change, developers can
use their voices to benefit me, people, and the tech industry as a whole.

Very important! It's quite easy to find solutions to problem on the web.

Well, for the community bit, it's a small group of friends and former colleagues
who just assist when certain issues are encountered

Feedback and critique

Very important, it's important to have access to resources when you need them
Very important

The developer communities have been essential components of the software de-
velopment ecosystem, fostering collaboration, innovation, and continuous im-
provement. Active engagement with the community can enhance the development
workflow, accelerate learning, and contribute to the success of projects built using
a particular framework or technology.

Fresh ideas

They've been of great importance and support.

Q12 — (“What are the drawbacks you encounter in production when using your preferred
Framework™) ?

The following responses was submitted from 5 respondents

limited flexibility and bloated code

Limited pool of experienced developer

Incompatibility of packages with Node version when updates to the deployment
server have to be made

Common issues include performance bottlenecks, framework updates affecting
compatibility, and potential security vulnerabilities. Additionally, a steep learning
curve or lack of certain features may pose challenges. It's crucial for developers to
stay informed, address these issues promptly, and adapt their strategies to ensure
smooth production experiences.

Minification size of production Build

Q13 — (“What do you personally think could be improved in the ever-growing JavaScript
ecosystem”)?

The following responses was submitted from 10 respondents

e The language needs to be strongly typed like python

e JavaScript's standard library lacks many functions and data structures found in
other languages. Enhanced standard libraries with more comprehensive and con-
sistent APIs for operations such as string processing, data processing, and data
structures reduce reliance on third-party libraries and improve production.

e Dynamic typing in JavaScript can cause errors that are only discovered at runtime.
Adding options like typing, like those found in TypeScript or Flow, can help you
catch more errors during development and provide better support for code naviga-
tion and refactoring

e Since Javascript's ecosystem still relies heavily on CommonJS modules, which
have different syntax and behavior. Improved support for ES modules across all
environments and libraries will help unify the module ecosystem and improve in-
teroperability.

e JavaScript engines have seen significant improvements over the years, but there is
still room for improvement, particularly in areas such as garbage collection,
memory management, and just-in-time (JIT) compilation compatibility. . Addi-
tional JavaScript performance optimization can improve the responsiveness and
performance of your website.

e Standardization: Enhancing standardization across libraries and frameworks to
promote consistency and reduce fragmentation.

e Libraries with less steep learning curves would be a welcome development

e Performance Improvement

e Package Security: Strengthening package security to minimize the risk of in-
stalling malicious or compromised dependencies.

e Documentation: Enhancing and maintaining comprehensive, up-to-date documen-
tation for libraries and frameworks to facilitate easier adoption and troubleshoot-
ing.

Q14 — (Do you have any Additional Thoughts that you think is not been covered in this
survey questions)? If yes, kindly state them (optional)

The respondents largely ignored this last question and in some cases their responses were
inconsequential to our research statement, hence Q14 not going to be taking into consid-
eration.

4 WURAAPP

In this chapter, we're diving into WURA APP, an online platform for movie lovers. It's a
real-life example of how we combine what we learn in the previous chapters about JavaS-
cript with actually building something useful.

WURA started with our understanding of JavaScript, the programming language behind it
all. We studied its basics like data types and how it handles events. With this knowledge, we
decided to create a platform that solves a real problem.

In the last chapter, we looked at what other experts have said about programming languages
like JavaScript. This helped us see the bigger picture and understand where WURA fits in.

Then, we got practical. We compared three popular JavaScript frameworks to figure out
which one would work best for WURA. We even surveyed professionals who use JavaScript
daily to make sure we were on the right track.

Now, it's time to get our hands dirty with WURA. We'll explore how it's built, what features
it has, and how users interact with it. This will show how frameworks not only make coding
easier but also improve the user experience.

As we wrap up this chapter, we want to think about why WURA matters. It's not just about
building cool stuff; it's about how frameworks shape the internet and empower developers
like us.

In the next chapter, we'll bring everything together. We'll share what we've learned from
building WURA and give some advice on using frameworks effectively. Our goal is to in-
spire others and keep pushing the boundaries of web development.

4.1.1 Functional Requirements: (What the app must do)
e Feature a SignUp Screen for a user to create account

e A login Screen for a user to login after creating the account

e A Signup feature with Google Auth

e A Sign Up feature with Github Auth

e An Error Popup to indicate Incorrect Credentials

e Registered User information is automatically saved in MongoDB using PrismaClient
e A profile Screen that shows the registered User

o The HomeScreen of the application

e A play Button that Plays the movie selected by the User

e An Info Button that displays the selected Movie details

e A modal screen Linked to the (Info button)

e A SignOut Feature on the HomePage

e A UserInfo section displaying the name of the registered User
e A trending Movie section

e [t is responsive on mobile Screen

Tools used in development

React, TypeScript, React-Icons, NextJS, Next-auth, MongoDB, Mongoose, PrismaDB, Ver-
cel, Npm, Tailwind CSS, NodeJS.

4.2 Implementation Phase

4.2.1.1.1 App Logo

This is the application logo.

VVURA

4.2.2 Application Main Build Structure

import Mevielist from "@/components/Movielist";

import { ,getSession, } from "next-auth/react™;
import { MextPageContext } from "next";

import Mavbar from "“@/compoments/Navbar";

import Billbeard from ", onents/Billboard"”;

import useMovielist from "@/hooks/useMovielist";

import wseFavorites from wwoks/useFavorites"”;

import InfoModal from @ ponents/InfoModal";

import wseInfoModal from "@/hooks/useInfoModal"™;

export async function getServerSideProps(context: MextPage

const session = await getSession({context];

if(!session){
return {
redirect: {
destination: 'fauth',
permanent: false,

by

return {
props: {},

export default fumctionm Home()
const {data: movies = []}
const {data: faver
const {isOpen, ¢

{
useMovielist();

= useFavorites();
useInfoModal();

return |

onClose={closeModal}/>

<Mavbar/=

"Trending" data={
=="My List" data={

ovies}/>
avorites}/=

4.2.2.1 SignUp section
Client Side:

This page is for handling authentication in the application. It includes functionality for both
signing in and registering new users. The user interface allows switching between the login
and registration forms. It supports signing in with Google and GitHub accounts as well. The
page layout is responsive, adjusting to different screen sizes. Overall, it provides a straight-
forward and visually appealing way for users to authenticate and access the application's
features.

Code Sample: Auth.tsx

import Input from “@/components/input™;
import { useCallback, useState } from “react";
import axies from "axios";

import { signIn } from “next-auth/react";
import { FcGoogle } from “react-icons/fc";
import { FaGithub } from “react-icons/fa";
import { useSessiom } from “next-auth/react";

const Auth = () == {
const [email, setEmail] = useState("");
const [name, sethame] = useState("");
const [password, setPassword] = useState("");

/f lets switch between login and signup page

const {data} = useSession();
console. logidata);

const [moveVarianmt, setMoveVariant] = useState("legin");

const toggleVariant = useCallback(() == {
setMoveVariant ({currentVariant) =»

currentVariant === "login"™ ? "register" : "login"
IH
hoan
const login = usefallback(async () == {
try {
await signIn("credentials", {
email,
password,
callbackUrl: “/Profiles™,
I

} catch lerror) {
console. loglerror);

¥, [email, password]);

const Register= usefallback(async () == {
try {

await axios.post("/api/Register", {
email,
name,
password,

3

login();

catch lerror) {

consgle. loglerror);

b, lemail. name. nasswnrd.loninl):

ServerSide: Register.ts

import berypt from "berypt";
import prismadb from "@/lib/prismadb";
import { MextApiRequest, NextApiResponse } from "next";

1
2
3
4
5 export default async function handler{req:MextApiRequest, res:NextApiRespanse){
6 ifireg.methed !== 'POST'){

7 return res.status{485).end(};

8 }

9

18 try{

11 const {email, name, password} = req.body;

12 const existinglser = await prismadb.user.findUnique({

13 where: {

14 L) email,

15

16 }

17 3

18 if(existingUser){

19 return res.status{422).json{{error: "Email is already taken"});
28 }

1

22 const hashedPassword = await berypt.hashipassword, 12);
23

24 const user = await prismadb.user.create({
25

6 data:{

27 email,

28 name,

29 hashedPassword,

EL image: "",

i1 emailVerified: new Date(},

32

33 }

ELN

15 return res.status(200).json{user);

6 } catchierror}{

7 consale, Loglerrorl;

8 return res.status{484).end(};

39 }

°)

11

import MextAuth from “next-auth";

import { PrismaClient } from “@prisma/client"; // Correct import

import Credentials from “pep+ oushinenuidare fomndontialot

import { compare } from 'bc module “/Users/devcamp/wura/wura/node_modules/next-auth/providers/
import GithubProvider from “next-auth/providers/github”;

import GoogleProvider from “next-auth/providers/google”;

import { PrismaAdapter } from “@next-auth/prisma-adapter";

/4 Initialize Prisma client
const prismade = new PrismaClient();

export default NextAuth({
providers: [
GithubProvider({

clientId: process.env.GITHUB_ID || ',
clientSecret: process.env.GITHUB_SECRET || '*
oy
GoogleProvider({

clientId: process.env.GOOGLE_CLIENT_ID || *°,
clientSecret: process.env.GOOGLE_CLIENT_SECRET || '*
Hy

#® Credentials({
id: "credentials"”,
name: “"credentials”,
credentials: {
email: {
label:
type:

“Email”,
email",

'
password: {
label: "Password",
type: "password”,

'
h
async authorizel{credentials) {
try {
if (leredentials?.email || 'credentials?.password) {
throw new Error{"Invalid credentials");

}
const user = awalt prismadb.user.findUnique({
where: {
email: credentials.email,
h
13N

if (luser || !'user.hashedPassword) {
throw new Error{"Invalid credentials");

}

Figure 31.Credentials authenticator.

Code for the Input feature:input.tsx (Input button component)

interface Inp

= = [{ id, onChange, value, label, type }}

== {

return |
=div classMame=

<input

={onChange}
k rounded-md px-6 pt-6 pb-1 w-full text-md text-whit

bg-black appearance-none focus:outline-n ocus: ring-8 peer”

<label

e text-md text-white duration-15@ transform -translate-y-3 scale-75 top-4 z-18 origib-[@] left-6 r—placeholder-shown:scale-188

ranslate-y-@

peer-placeho
peer-focus:isca
peer-focus:-transla

htmlFor={id}>
{label}
</label=
=/div=

export default Input;

Register

Username

Password

Already have an account

Figure 32. User on the SignUp Session

Password

Ny

First Time using WURA ?

Figure 33. User on the Login Screen

provider: {
id: "google’,
name: "Google®,
type: "oauth®,
wellKnown: “https:/faccounts.google.com/.well-known/openid-configuration®,
authorization: { params: [Object] %,
idToken: true,
checks: [“pkce*, ‘state®],
profile: [Function: profile],
Link Generate Commit Message Explain Code CommentCode Find Bugs Code Chat Blackbox

Figure 34. Next-Auth Provider Response after successful SignIn.

4.2.2.2 Registered User Profile Screen

This code handles user authentication and redirects users to the login page if they are not
authenticated. Once authenticated, it displays a user profile page with the option to go back
to the home page. It also fetches the current user's data and displays their name.

Client Side:

1
2 import {MextPageContext} from 'next';

3 import { useSession, getSession } from 'next-auth/react';
4 useCurrentlser H

5

import { useRouter } from 'next/navigation';

6
7 export async function getServerSideProps(context: NextPageContext){
8 const session = await getSession{context);
9
10 if(!session){
11 return{
12 redirect:{
13 destination: '/auth',
14 permanent: false,
15 ’
18 }
18 returnd
19 props: {}
2
21}
2
23 const Profiles = () =» {
24 const router = useRouter();
25 const {data} = useSession(};
26
27 return {
28§ <div className="bg-black h-full">
29 <nav className="px-12 py-5">
38 <img
3 hiteba.png?
32
33
Ll Z
35 </nav>
36
37 <div className="flex items-center justify-center mt-10">
38
33 <div classMame="flex flex-col">
48 <hl className="text-3xL md:text-6x1 text-white text-center">Whe is Watching ?</hl>
a1 <div className="flex items—center justify-center gap-8 nt-18">
a2 <div onClick={{}=> router.push("/"}}>
43
44 <div className="group flex-row w-44 mx-auto"s
45
46 <div className="
7 mt-18
43 wW-44
49 h-44
5@ rounded-md
51 flex
52 items-center
e AR
! 48 ext-3x1 md:text-6x1 text-white text-center">Who is Watching
41 flex items—center justify-center gap-8 nt-18"s>
42 <div onClick={{}=> router.push("/")}>
43
M 44 <div className="group flex-row w-44 mx-auto">
45
46 <div className="
2 7 mt-18
48 w-d4
Lw 9 h-a4
58 rounded-md
51 flex
52 items—center
53 justify-center
54 border-2
55 overflow-hidden
56 border-transparent
57 group-hover:cursor-pointer
58 group-hover:border-white
59 e
68
61
62 <div className="
63 mt-4
64 text-gray-400
65 text-2x1
66 text-center
67 group-hover: text-white
68 e
69 {data?.user?.name}
78 <fdiv>
s </div>
72 </div>
73 <fdiv>
74 <fdiv>
7= =/div>
. 76
f 77
78 </div>
I !
LM e}
81
82 export default Profiles;
83

Server Side: current.ts

The code defines an API route handler using Next.js. It only accepts GET requests; if any
other method is used, it returns a 405 status code. It then attempts to authenticate the user
using a server-side authentication function. If successful, it fetches the current user's data;
otherwise, it logs an error and returns a 400 status code.

import { MextdpiRequest, NextipiResponse } from "next";
import serverAuth from “@/Llib/Serverauth";

gxport default async function handlerlreg:MextApiRequest, res:NextldplResponse)

ifireg.method '== "GET" 4
return res.status{4@5).end();

tryd

const = awalt serverAuthlireq)
yecatchierror){

console. loglerror);

return res.status(48@).end(};

import useSWR from "swr";
import fetcher from “@flib/Tetcher®;

const useCurrentlser = {} == {
const {data, error, mutate, islLoading, } = useSWR{'/fapi/current', fetcher)
return 1
data,
errer,
isLeading,
mutate

export default uselCurrentlUser;

Who is Watching ?

novak josh

Figure 33. A logged In user Profile Screen

4.2.2.3 Navigation Bar Section
Client side : navbar.tsx (Navbar Component)

This code creates a navigation bar component for a web application. It includes features
like a mobile menu, account menu, and icons for search and notifications. The background
color changes when scrolling down the page. It also displays different navigation items based
on screen size.

import { useCallback, useEffect, useState } from "react";
import MavbarItem from "./NavbarItem";
import MobileMenu from "./MobileMenu';
import AccountMenu from . /AccountMenu";
import {
BiSolidChevronDownCircle,
BiSearchAlt,
BiSolidBell,
} from “react-icons/bi";

const TOP_OFFSET = 66;

const Mavbar = () =» {
const [showMobileMenu, setShowMobileMenul = useStatelfalse);
const [showAccountMenu, setShowAccountMenul = useState(false);
const [showBackground, setShowBackground] = useStatelfalse);

useEffect(() =» {
const handleScroll = ()} == {
if (window.scrollY == TOP_OFFSET) {
setShowBackground(true);
|} else]
setShowBackground(false);
H
}
window.addEventListener{"scroll", handleScroll);
return () == window. removeEventListener("scroll", handleScrolll);
0

const toggleMobileMenu = wselallback(() == {
setShowMobileMenul (current) == !current);
o0

const togglefccountMenu = wselallback(() == {
setShowhccountMenul {current) == !current);
IR H

return |
<nav classMame="w-full fixed z-4@"=
=div
className={"
md : px-16
flex
flex-row
items-center
px—4
py-6

transition
duratien-588
s{showBackground ? 'bo-zinc-98@ bg-opacity-98' : "'}
'}

=1

=<fdiv=
<div
onClick={toggleMobileMenu}
className="
lg:hidden flex flex-row items—center relative gap-2 ml-8 cursor-pointer

=
t-white text-sm">Browse</p>

rcle classMame={""text-white bg-white transition" ${showMobileMenu 7 “rotate-188" : "rotate-@"} }/=
e={showMobileMenu} />

</div>
=div
className="flex flex-row gap-7 item-center ml-auto">
<div className="text-gray-280 hover:text-gray-388 cursor-pointer"=
<BiSearchAlt className="text-white relative top-1 md:size-8" />
</div=
<div className="text-gray-280 hover:text-gray-38@ cursor-pointer™s
<BiSolidBell classMame="text-white relative top-1 md:size-8" />
<fdiv>

<div onClick={toggleAccountMenu} className="flex flex-row items-center gap-2 cursor-pointer relative=
=div clas 18 lg:h-18 rounded-md overflow-hidden"=

<img c P L Jimages/user.pna’l alt="" /=
</div>
<BiSolidChevronDownCircle className={'text-slate-48@ transition ${showAccountMenu ? ‘rotate-188' : ‘rotate-@'}"} /=

<AccountMenu visible = {showAccountMenu}/>

e ddivs

WURA Home My List O\ ‘ [

Figure 35.Navbar Item

4.2.2.4 Account Menu Screen and SignOut Feature

A signedIn User on the application Main Screen

Q A

novak josh

Sign Out of Wura App

This code defines a component for the account menu in the application. It displays the user's
name and provides an option to sign out. The menu is only visible when the “visible® prop
is true.

Client Side: AccountMenu.Tsx (AccountMenu Component)

1 useCurrentlUser
2 import { signOut } from “mext-auth/react";
3 import { useSession} from 'next-auth/react’;
4 import React from “react;

5

sutha
& interface Account!
7 visible: bool

8}

10 const AccountMenu: React.FC<AccountMenuProps> = ({
11 visible

12

13 H={

14

15 const {data} = useSession(}

16 if (lvisible){

17 return null;

13 }

19 return (

20 <div classNam order-gray-808 flex bg-black w-56 absolute top-14 right-8 py-5 flex-col border-2"=
21 <div className="flex flex-col gap-3">

22 «div className="px-3 group/item flex flex-row gap-3 items—center u—full">
-8 _rounded-md" /=
nderline"s{data?.user?.name}</p>

24 <p className='
25 </div=

26 <hr className="bg-sky-60@ border-8 h-px my-4" />

27 <div onClick={{) =» signOut(}} classMame="px-3 text-center text-white text-sm hover;underline"s>
28 Sign Qut of Wura App

29 </div=

38 <fdiv=

31 <fdivs

32)

33 }

“text-white text-sm group-hover/it

35 export default AccountMenu;

useBillbeard from “@/hooks/useBillboard”;
React, { useCallback } from “rea
{ TiInfe } from "react-icons/ti";
PlayButton from "./PlayButton";

import useInfoModal from "@/hooks/useInfoModal”;

const Billboard = () == {
const { data } = useBillboard(};
const { openModal } = useInfoModal();

const handleOpenModal = useCallback((}) == {
openModalidata?. id);
¥, lopenModal, data?.idl};

return (
<div classMame=" relative h—[56.25vw]">

=video
poster={data?.thumbnailUrl}
src={data?.videolrl}
autoPlay
muted
loop
className="

h—[56.25vw]

w—full

object-cover

brightness—[6@%]

></video=
=div classMame="absclute top-[3@%] md:top—[48%] ml-4 md:ml-16"=
<p
className="text-white
font—black
text-1x1
w—[58%]
h—full
font-mono
text-emerald-58
md:text-5xl
lo:text—6x1
drop-shadow-1g"
>
{data?.title}
=/p=
<p
className="
text—emerald-5@
text—[Bpx]
md: text-lg

This code defines a component for a billboard section in the application. It displays a video
background with dynamic content such as title, description, and buttons for playing the video

and accessing more information. The video is fetched dynamically using the ‘useBillboard
hook, and the information modal is triggered using the "useInfoModal" hook.

Tears of Steel

In an apocalyptic future, a group of soldiers and scientists takes refuge

in Amsterdam to try to stop an army of robots that threatens the

planet.

m More Movie Info

Figure 36. rendering a BillBoard on the Homescreen

Billboard hook

import useSWR from "swr';

import fetcher from "@/Llib/fetcher";

const useBillboard = ()} =={

const{data,error,isLoading} = useSWR('/api/random’', fetcher, {
revalidateIfStale: false,

revalidateOnFocus: false,
revalidateOnBeconnect : false,

i

returnd
data,
Brror,
isloading

}

X

export default useBillboard;

This code defines a custom hook called "useBillboard™ using SWR (Stale-While-Revalidate),
a React hook for data fetching. It fetches data from the '/api/random' endpoint using the
“fetcher’ function defined elsewhere. The hook returns the fetched data, any errors encoun-
tered during fetching, and a boolean indicating whether the data is still loading. It also con-
figures SWR to not automatically revalidate the data when it becomes stale, when the win-
dow regains focus, or when the connection is reestablished.

4.2.2.6 InfoModal Component (VideoPlayer) — InfoModal.tsx

Tears of Steel

e 6

12 minutes

Action

In an apocalyptic future, a group of soldiers and scientists takes refuge in
Amsterdam to try to stop an army of robots that threatens the planet.

Client Side :

This code defines a React component called "InfoModal” that represents a modal window
displaying detailed information about a movie. It takes two props: ‘visible', a boolean indi-
cating whether the modal should be visible, and "onClose’, a function to close the modal.

Inside the component, it manages the visibility of the modal using local state (‘isVisible").
It uses custom hooks "useInfoModal™ and "useMovie’ to fetch and manage movie data and
modal state.

The modal contains a video player with the movie's poster and plays the movie's trailer. It
also displays the movie's title, duration, genre, and description. Users can play the movie,
add it to favorites, and close the modal. The modal is styled with a black background and
appears in the center of the screen.

import React, { us 2l lback, useEffect, useState } from “react™;
-

import { TfiClese } from "react—iconss/tfi";

import PlayButton from "./PlayButton';

import FawvoriteButtonm from *./FavoriteButton';
import useInfoModal from "@/hooks/uselnfoModal";
import useMovie from "@/hooks/useMowvie’™;

You, 4 days aga | 1 author [You)

interface InfoModalProps {
wisible: boolean;
onClose: any;

const InfoModal: React.FC<InfoModalProps= = ({ wisible, onClose })} == {
const [" 1 = useState(!lvisible);

const { movieId, isOpen, closeModal } = useInfoMedal(); // Destructure
const { data = {} } = useMowie(mowvieId);

useEffect(() => {
if (!wisible && isOpen) {
#f Close moedal if i1t's open but should be invisible
closeModall);
¥

¥, [wisible, isOpen, closeModall]l;

if (lvisible) {
return null;

¥

return
=diwv
className="
z-58
duration-38@
bg—-black
flex
justify—center
items-center
owverflow—x—hidden
overflow—y—auto
transition
fiwed
inset-@
bo-opacity-88

=
=<diw
className="'
relative
w—auto

UseMovie Hooks to manage the movie data when rendering the information in the modal.

import useSWR from "swr";

import fetcher from "@/Llib/fetcher™;

const useMovie = (id?: string) =»{

const {
data,
Error ,
isleading
} = useSWRiid 7 "fapifmovies/${id}" : null, fetcher, {
revalidateIfStale : false,
revalidateOnFocus: false,
revalidateOnReconnect: false

s

return {
data,
Brror,
isleading,
h

dport default useMovie;

4.2.2.7 PlayButton Feature — (PlayButton Component)

» Play

This code defines a React component called "PlayButton®, which represents a button used
to play a movie. It takes a single prop ‘'movield’, which is a string representing the ID of the
movie to be played.

Inside the component, it utilizes the "useRouter’ hook from Next.js to access the router
object. When the button is clicked, it triggers a navigation to the '/watch/[movield]' route,
where ‘[movield]" is replaced by the actual ID of the movie. This allows users to navigate
to the page dedicated to watching the specific movie.

The button is styled with a white background, rounded corners, and text indicating "Play".
It also includes a play icon from the TiMediaPlay component. When hovered over, the back-
ground color changes to a neutral shade to provide visual feedback.

import { TiMediaPlay } froem "react-icons/ti";
import React from "react";
import {useRouter} from “mext/router”;
You, 4 days aga | 1 author [Youl
interface PlayButtonProps{
movield: string;

}
const PlayButton: React.F{<PlayButtonPropss = ({movield}) == {

const router = useRouter();

return |{

<button

onClick={({} == router.push(’ /watch/${movield})}

classMName="

bg-white

rounded-md

py=1 md:py-2

px—-2 md:px-4

w-auto

text-ms lg:text-lg

font-semibold

flex

flex—-row

items—center

hover:bg-neutral-380

transition

e
<TiMediaPlay size={25} className="mr-1"/>
Play

= button>

}

export default PlayButton;

4.2.3 Database Schema Model (Prisma)

generator client {
provider = "prisma-client-js"
H
datasource db {
provider = "mongodb"
url =env("DATABASE URL")
H
model User{
id String @id @default(auto()) @map("_id") @db.Objectld
name String
image String?
email String? @unique
emailVerified DateTime?
hashedPassword String?
createAt DateTime @default(now())
updateAt DateTime @updatedAt
favoritelds String[] @db.Objectld
sessions Session|[]

accounts Account[]

model Account{

id String @id @default(auto()) @map("_id") @db.Objectld

userld String @db.Objectld

type String

provider String

providerAccountld String

refresh_token String? @db.String

access_token String?@db.String

expires_at Int?

token_type String?

scope String?

id token String? @db.String

session_state String?

user User @relation(fields: [userld], references: [id], onDelete: Cascade)
(@@unique([provider, providerAccountld])

}

model Session{
id String @id @default(auto()) @map("_id") @db.Objectld
sessionToken String (@unique
userld String @db.Objectld
expires DateTime
user User @relation(fields: [userld], references: [id], onDelete: Cascade)
}
model VerificationToken {
id String @id @default(auto()) @map("_id") @db.Objectld
Identifier String
token String @unique
expires DateTime

(@(@unique([Identifier, token])
}
model Movie{
id String @id @default(auto()) @map("_id") @db.Objectld
title String
description String
videoUrl String
thumbnailUrl String
genre String

duration String

4.2.4 DataBase Url, Google and Github Auth Token (Confidential Information)
DATABASE_URL= "mongodb-+srv://Tolani:Informativewuraolamil23@cluster0.58aqsth.mongodb.net/test"

NEXTAUTH _JWT SECRET="NEXT-JWT-SECRET"
NEXTAUTH_SECRET="NEXT-SECRET"

Google and Github Oauth sign on providers for the app
GITHUB_ID = e8d4b74a095687a71cfd

GITHUB_SECRET = 4d7776754d5328fe5f54274856382be22b4064¢3

GOOGLE_CLIENT _ID = 1098359435879-11g04rqr2p4uks9at1iudkte4tglqft2.apps.googleusercontent.com
GOOGLE_CLIENT SECRET = 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

4.2.5 Running the Application using Npm (.env file)

(base) devcamp@Shobowales-MBP wura % npm run dev

= wuraed, 1.8 dev

= next dew

a Next.js 14.1.4
- Local: http://localhost: 3668
- Environments: .env

_+ Ready in 4.6s

4.2.6 MovieCard Component (MovieCard.tsx)

o ageo |1 author [You)
import React from “react™;
import { TiMediaPlay } from "react-icons/ti";

ere to ask Blackbox 10 help you code Taster

import FavoriteButton from “./FavoriteButton';
import { useRouter } from “nextfrouter”;
import useInfoModal from "@/hooks/useInfoModal™;
import { IoChevronDownSharp } from “react—icons/inS5";
You, 7 days age | 1 auther (You)
interface MovieCardProps {

data: Record<string, any=;

¥

const MovieCard: React.FCsMovieCardProps=> = ({ data }) == {
const router = useRouter();
const { openModal } = useInfoModall);
return (

=div classMName="group bg—-zinc—-988 col-span relative h—[12vw]"=>
<img

={data.thumbnaillrl}

< lassName="

opacity—@

transition

absolute

top-@

delay-38@

w—full

scale-@
group—hover:scale-118
group—hover:—translate—y— [6ww]
group—hover: translate—x—[2vw]
group—hover:opacity—188
sm:visible

invisible

z-18@

duration-20@

=

>
<div className="flex flex-row items-center gap-3">
=div
onClick={{} == {
router.pushi’ /watch/${data?.id}" };

curser-pointer
W
h-6
lg:w-18
lg:h-1@
bg-white
rounded-full
flex

tton movield={data?.id} />

=div

onClick={{} == openModalidata?.id)}

wE

h-&

lg:w-10

lg: h-18
border-2
rounded-full
justify-center
flex
items-center
transition
hover:border-neutral-48a
border-white

</dive

2023

10 minutes

Comedy

This code defines a React component called "MovieCard’, representing a card displaying
information about a movie. It takes a prop ‘data’, which contains details of the movie.

Inside the component, it renders an image of the movie's thumbnail, and when hovered over,
it displays additional information such as a play button, a favorite button, and an icon to
open a modal with more details about the movie.

The play button allows users to navigate to the watch page of the movie, the favorite button
lets users add the movie to their favorites, and the icon triggers the modal displaying more
information about the movie.

Overall, it provides a visually appealing way to showcase movie details and interact with
them.

4.2.7 Watch Current Played Movie ([movieid-tsx])

1mportT HKeaCt Trom Treacit;

import { useRouter } from “next/router";
import { TiArrowLeftOutline } from “react-icons/ti";
import useMovie from "@/hooks/useMovie™;

const Watch = () =» {
const router = useRouter();
const { movield } = router.query;
const { data } = useMovie(movield as string);

return |
<div
className="
h-screen
w-screen
bg-black

=nav
className="

fixed
w-full
p—4
z-18
flex
flex-row
items—center
gap-8
bg-black
th-opacity-78

M
<TiArrowLeftOutline onClick={(} == router.push({'/')} className="text-white cursor—pointer” size={4@8}/>
<p className="text-white text-1xl md:text-3x1 font-bold"=

Watching:
</span=
{data?.title}
</p>
</nav>
<video
autoPlay
controls
className="h-full w—full " src={data?.videolrl}>

=/video=
<fdiv=

-
<TiArrowLeftOutline en{Llick={() == router.push('/')} classMame="text-white cursor-pointer" size={4@8}/=
=p classMame="text-white text-1xl md:text-3x1l font-bold"=>
<span classMName="font-Llight"=
Watching:

{data?.title}
=/ pe=
< nav>
=video
autoPlay
controls
classMame="h-full w-full " src={data?.videoUrl}=

=/ videg=
=fdiv=
'H

F]

export default Watch;

The code defines a React component called “Watch’, representing a page for watching mov-
ies. It imports necessary modules such as React, ‘useRouter’ from Next.js for routing, and
‘useMovie" for fetching movie data.

Inside the component, it fetches the movie ID from the router query parameters and uses it
to fetch movie data. It then renders a fullscreen video player with controls, playing the movie
corresponding to the fetched data.

Additionally, it includes a navigation bar at the top of the screen with a back arrow icon that
navigates back to the homepage when clicked. The navigation bar also displays the title of
the movie currently being watched.

Overall, the component provides a simple and functional interface for watching movies with
basic playback controls.

& Watching:Sintel

4.2.8 Tailwind WorkFlow

(@tailwind base;
(@tailwind components;
(@tailwind utilities;

body{
@apply bg-zinc-900 h-full overflow-x-hidden;
H

next{
@apply h-full;
H

html{
@apply h-full;
}

<= tailwind.config.js > (] <unknown> > 4 theme > /¥ extend » /¥ backgroundimage > /% "ima

¥ou, 4 hours aga | 1 authos [You) | |, Click here to ask Blackbox 1o help you code faster

1 fox @type {import('tailwindcss').Config} =/
2 podule.exports = {

3 content: [

4

5 " fappsaki*. {5, ts, jsu, tsx}",

[", /pages/#*/#.{]s, ts, jsx,tsx}",

7 ", fcomponents/ekfk, {js, ts, Jex, tenl",

8 1,

9 theme: {

18 extend: {

11

12 backgroundImage: {

13 ® | "imager": "wurl{''/images/wura-image.jpg'1",
14 }

15 +

16 iN

17 plugins: [],

18}

19

208

Figure 37. Tailwind.config file

4.2.9 Application package.Json file

"name": “wura",
"version": "@.1.8",
"private": true,
[> Debug
Uscripts": {
"dev": "next dewv",
"build": “"next build *,
"start": "next start”,
"lint": "next Llint"
h
"dependencies”: {
"@next-auth/prisma-adapter™: "~1.98.7",
"@prisma/client": "*5.11.8",
"axios": "~1.6.8",
"berypt": "45.1.1",
“ledash": "~4.17.21",
"next": "14.1.4",
“next-auth": “~4.24.7%,
"package.json": "*2.8.1",
"react": "~18",
"react—dom": "*~18",
"react-icons": "*5.0.1",
Uswrz "*2,2.5",
"zustand": "~4.5.2"
b
“devDependencies": {
"@types/bcrypt
"@types/ lodash”

Hilao I o
"@types/react-dom": "~18",
"auteprefixer": "~18.4.19%",
"eslint": "~8",
"eslint-config-next™: “14.1.4",
"postcss": ""8.4.38",
"prisma": "~5.11.8",
"tailwindcss": "*3.4.1",
"typescript": "~5"

4.3 My Development Workflow

|ﬁ EXPLORER .

~ WURA BEULe

-next

~ components
AccountMenu.tsx 1
Billboard.tsx
FavoriteButton.tsx
InfoModal.tsx
input.tsx
MobiletMenu.tsx
MovieCard.tsx 2, M
MovieList.tsx
Navbar.tsx 2
Navbarltem.tsx
PlayButton.tsx

hooks

ﬂﬁ@@@@ﬁ@ﬁﬁﬁﬁ

(4

B2 useBillboard.ts
B useCurrentUser.ts
I useFavorites.ts
B useinfoModal.ts
B useMovie.ts

B useMovielist.ts

movies
current.ts
favorite.ts
favorites.ts
random.ts

Register.ts
~ vatch

[movield].tsx

_app.isx 1
auth.tsx 1
index.tsx

Profiles.tsx 2

~ @ prisma
& schema.prisma

> B2 public

~ G= styles
= globals.css [

env

-eslintre.json

gitignore

global.d.ts

next-env.d.ts

®
L+

1d
@

next.config.mjs
package-lock.json
package.json

postess.config.js
e ——
~ OUTLINE

S DISCUSSION AND FINDINGS

5.1 DISCUSSION

5.1.1 Guideline 1: Understand the programming language JavaScript, its structure,
frameworks and production usage

In the first chapter, we explored the history of LiveScript and its transformation into
ECMAScript, which eventually became JavaScript. We outlined key features that have
shaped the language, such as JSON, event handling, and prototyping. These elements have
had a significant impact on how JavaScript is used in modern software development.

5.1.2 Guideline 2: Take an insight into previous related works

In the second chapter, we focused on software development frameworks, particularly the
Model-View-Controller (MVC) architectural pattern. This chapter emphasized the im-
portance of MVC in building web applications and managing data flow. Since JavaScript
relies heavily on client-server communication, this architecture is especially relevant. The
second chapter provided foundational insights into structural patterns for creating software
applications. We also cited some works related to repository mining by looking at the BOA
architecture.

5.1.3 Guidelines 3: Analyze the Management of JavaScript Codes and data using
Node Package Manager.

The third chapter, divided into two parts. In part A, I examined the three most popular
JavaScript frameworks, highlighting their importance and unique features. We discussed
how these frameworks contribute to the broader JavaScript ecosystem, referencing authori-
tative sources like Stack Overflow, NPM Trends, GitHub, and various developer communi-
ties.

In Part B, To address the key questions of this research, we conducted a qualitative survey
to understand why software engineers choose certain JavaScript frameworks or libraries
when developing web applications. Additionally, we looked into the limitations that JavaS-
cript-based applications face in today's context. The survey provided valuable insights into
the factors influencing business decisions and the constraints developers encounter.

The comprehensive analysis in part B in Chapter 3 sheds more light on the factors driving
framework selection and the common limitations encountered in JavaScript development.
These findings play a crucial role in answering the research objectives and are discussed in
detail to provide a complete understanding of the modern JavaScript landscape..

The findings suggest that the choice of framework depended on the type of project. Devel-
opers tend to prefer frameworks that are reliable and can be maintained over a long period,
as many projects have extended lifespans. More established frameworks like Angular and
React are generally favored over newer ones like Vue, which may not yet have the same
level of maturity and support.

The reputation of a framework often shapes developers' choices, influenced by factors like
the company backing it. Frameworks supported by large companies such as Google or Fa-
cebook tend to be seen as more reliable, partly because these companies have the resources
to ensure continuous development and longevity. Additionally, frameworks that have been
around longer often feel more established, contributing to their perceived stability.

However, developers might choose different frameworks depending on specific project re-
quirements. While many tend to favor ReactJS as their default option, others might have a
personal preference for a lesser-known framework, like VuelJS as one respondent mentioned
that it has been the only framework he has worked with which I find quite fascinating, based
on their past experiences. Ultimately, the choice of framework is largely driven by the unique
needs of each project.

Selecting a framework with a vibrant community was also a crucial factor as mentioned by
majority of the respondents as it contributes to the framework's vitality through user-gener-
ated contributions. A larger user base generally means more resources for solving problems,
as community members are more active on platforms like Discord, Google, Stack Overflow,
making it easier for developers to find answers to issues.

5.1.4 Guideline 4: Build a Movie-app application using numerous APIs e.g., Netflix,
ReactJs, NPM, GitHub, MongoDB for the database.

In Chapter 4, I embarked on the development of the Wura App, The project was a Re-
act/Next.js application, utilizing a variety of development tools and technologies. MongoDB
was used for the database, while Git/GitHub served as our version control system. Node.js
and NPM played a crucial role, especially given our reliance on numerous open-source React
dependencies. NPM was particularly useful for bundling our application, which helped to
optimize runtime memory usage.

For server-side operations, we employed Prisma, a powerful tool for interacting with data-
bases. User authentication was implemented with the help of Google and GitHub OAuth
services, providing a secure and convenient login experience for our users. The chapter de-
tailed the entire build process, outlining each step from setting up the development environ-
ment to deploying the final product.

5.2 FINDINGS

One challenge we encountered was related to package security. Due to the open-source na-
ture of many NPM packages which were old, not properly managed , there were potential
vulnerabilities that required careful attention. These Vulnerability issues was addressed by
updating NPM and Nodejs to a more stable version, constantly running “npm audit fix” to
auto fix a lot of vulnerabilities, ensuring the safety and stability of our application.

The creation of the application revealed several common areas for improvement in NPM and
JavaScript, as also noted by respondents in the survey. The primary concerns centered
around the quantity and duplication of downloaded packages which was further seen as lim-
itations, highlighting the need for better management of package dependencies. Addition-
ally, security emerged as a significant concern, indicating a desire for enhanced measures to
protect against vulnerabilities, hackers e.t.c.

Lastly, more emphasizes should be centered around the importance of standardizing open
source dependencies in JavaScript to ensure consistency and efficiency across entire Ja-
vaScript ecosystem.

6 CONCLUSION

Overall, I found the thesis process to be relatively smooth, encountering only minor obstacles along
the way. Despite having to balance my time between working as a Data Analyst and dedicating time
to the thesis, I successfully completed the project's most crucial aspects. Working concurrently
proved beneficial, as my professional experience with NPM and JavaScript programming informed
my decision to explore this topic further. However, sourcing literature on the subject was challenging,
leading me to rely heavily on online resources. While references to package managers were scarce
in traditional literature, the supportive developer community aided in troubleshooting during the ap-
plication's development. If [were to revisit this topic, I would prioritize expanding the survey's sam-
ple size. Acquiring respondents posed difficulties initially, highlighting an area for improvement in
future research endeavors.

Overall, the research and writing skills acquired during this thesis will undoubtedly serve me well in
my future career. These skills may prove particularly valuable should I pursue further my studies.

The data I collected revealed the significant importance of ReactJS and NPM in the realm of software
development. A vast majority of respondents reported using a package manager and having experi-
ence building applications with React. Among the popular JavaScript frameworks, ReactJS emerged
as the clear frontrunner in terms of usage and awareness. This trend is understandable given the
abundance of job opportunities for React developers, as indicated by statistics from job platforms
like Indeed and LinkedIn. Additionally, React]S benefits from the support of META (formerly Fa-
cebook), contributing to its widespread popularity within the developer community.

6.1 Overall Performance Analysis of the Wura Application

6.1.1 User Authentication and Account Management

The app provided essential user authentication with sign-up and login screens. New users
can create accounts by providing basic information like username, email, and password. Re-
turning users can log in securely and easily.

Besides traditional sign-up, the app supports social authentication through Google Auth and
GitHub Auth, allowing users to sign up with existing accounts. This streamlines the sign-up
process and improves user acquisition by reducing the need for new credentials.

6.1.2 User Interface and Experience

After logging in, users can access their profile, which displays personal information like
name and account details, offering a personalized touch. The HomeScreen is the main hub,
featuring a play button to start movies, an info button for detailed movie information, and a
modal screen for additional content. These interactive features make it easy to explore and
watch movies.

The HomeScreen also included a SignOut button for secure logout, crucial for account
safety, especially in shared spaces. The UserInfo section displayed the registered user's
name, reinforcing a sense of personalization. A trending movie section introduces popular
content, encouraging users to discover new movies and keeping the experience fresh.

6.1.3 Responsiveness and Cross-Platform Compatibility

The app is responsive, ensuring smooth functionality on mobile devices. This is crucial in
today's mobile-focused world, allowing users to access the app on various platforms without
compromising the user experience.

6.2 Guidelines for Future Research

The software industry is always changing, with new frameworks emerging within the JavaS-
cript ecosystem. This presents an opportunity to explore how these frameworks—Ilike React,
Angular, or Vue—interact with each other. However, this thesis does not cover the perfor-
mance of each framework across different use cases as our application was built with only
Reactls due to our Survey Result from JavaScript Developers. Examining these dynamics
could offer more informed valuable insights for developers and businesses seeking to lever-
age the latest advancements in software engineering, especially when using JavaScript as the
primary development language.

7 BIBLIOGRAPHY

[1]
[2]

[3]
[4]

[5]
[6]
[7]
[8]

[9]

[10]

[11]

[12]
[13]

[14]

[15]
[16]
[17]
[18]

[19]

[Online]. Available: https://www.wirfs-brock.com/allen/jshopl.pdf. [Accessed 2 2
2024].

"History-Computer.com," Mosaic Browser, 14 10 2020. [Online]. Available:
https://historycomputer.com/Internet/Conquering/Mosaic.html. [Accessed 22 12
2023].

1997. [Online]. Available: https://archives.ecma-international.org/1997/GA/97-063-
excerpt.pdf. [Accessed 8 2 2024].

"evolution-javascript-journey-from-es1-latest-version," [Online]. Available:
https://www .linkedin.com/pulse/evolution-javascript-journey-from-es1-latest-ver-
sion-part-lebbos-za9fe/. [Accessed 3 2 2024].

"the-ecmascript-journey/medium," [Online]. Available: https://medium.com/@vi-
torbritto/the-ecmascript-journey-5332c42396¢0. [Accessed 15 2 2024].

"mozilla," [Online]. Available: https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Guide/Regular _expressions. [Accessed 1 2 2024].

"w3schools," [Online]. Available: - https://www.w3schools.com/js/js_es5.asp. [Ac-
cessed 4 2 2024].

[Online]. Available: https://cdn2.hubspot.net/hubfs/1958393/Partner Portal - Col-
lateral/Concepts_and Benefits of Repo Management.pdf?t=1482418124868.
[Accessed 12 2 2024].

[Online]. Available: https://dzone.com/refcardz/binary-repository-manage-
ment#section-5. [Accessed 21 1 2024].

P. S. a. S. R. E. Wittern, "A look at the dynamics of the javascript package ecosys-
tem," in In Proceedings of the 13th International Conference on Mining Software
Re-positories, MSR ’16,, New York, ACM, 2016, p. 351-361.

T. Mens, " An ecosystemic and socio-technical view on software maintenance and
evolu-tion.," IEEFE International Conference on Software Maintenance and Evolu-
tion (In-vited Paper), ICSME’16, , 2016.

[Online]. Available: https://boa.cs.iastate.edu/papers/tosem15.pdf. [Accessed 11 1
2024].

"Architecture multi-tiers.," [Online]. Available: http://java.devel-
oppez.com/archi_multi-tiers.pdf. [Accessed 15 1 2024].

"Core J2EE Patterns," . [Online] available at [accessed 26-1-2024], [Online]. Avail-
able: http://java.sun.com/blueprints/corej2eepatterns/Patterns/index.html. [Accessed
26 1 2024].

[Online]. Available: https://www.interviewbit.com/blog/mvc-architecture/. [Ac-
cessed 29 1 2024].

"Github," [Online]. Available: https://github.com/creativedeveloper-net/npm-pack-
age-example. [Accessed 18 2 2024].

"nodejs," [Online]. Available: https://nodejs.org/api/http.html#http class_http inco-
mingmessage. [Accessed 18 2 2024].

altexsoft, "altexsoft," [Online]. Available: https://www.altexsoft.com/blog/react-
pros-and-cons/. [Accessed 15 2 2024].

"react dev," [Online]. Available: https://react.dev/. [Accessed 18 02 2024].

[20]
[21]

[22]
[23]

[24]
[25]
[26]
[27]
[28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]
[37]

[38]

[39]

"npm trends," [Online]. Available: https:/npmtrends.com/react. [Accessed 19 4
2024].

"altexsoft 2," [Online]. Available: https://www.altexsoft.com/blog/the-good-and-
the-bad-of-angular-development/ . [Accessed 19 3 2024].

[Online]. Available: https://angular.io/guide/architecture. [Accessed 26 4 2024].

[Online]. Available: https://www.tutorialspoint.com/vuejs/vuejs_environ-
ment_setup.html. [Accessed 28 2 2024].

T. B. Lee, "The world wide web: A very short personal history," 5 12 1998. [Online].
Available: http://www.w3.org/People/Berners-Lee/ShortHistory.html.

"envatotuts+," 8 8 2022. [Online]. Available: - https://code.tutsplus.com/what-is-ja-
vascript--cms-26177t#toc-Ocyt-what-is-javascript. [Accessed 5 12 2023].

[Online]. Available: https://medium.com/jspoint/how-javascript-works-in-browser-
and-node-ab7d0d09ac2f. [Accessed 15 1 2024].

"World Wide Web: Proposal for a HyperText Project,” [Online]. Available:
http://www.w3.org/Proposal.html. [Accessed 16 12 2023].

[Online]. Available: https://ihoneymaan.medium.com/javascript-engine-and-how-it-
works-e1fa2f7a657c. [Accessed 9 1 2024].

P. Anderson, "All That Glisters Is Not Gold' -- Web 2.0 And The Librarian," Journal
of Librarianship and Information Science, vol. 39, no. 4, p. 195-198, 2007.

O’Reilly, "Definition of Web 2.0," 20 12 2006. [Online]. Available: http://ra-
dar.oreilly.com/archives/2006/12/web-20-compactdefinition-tryi.html. [Accessed 4
12 2023].

N. Ossi, "Semantic Web: Definition,” 31 3 2003. [Online]. Available:
http://www.w3c.tut.fi/talks/2003/033 lumediaon/slide6-0.html. [Accessed 25 2
2024].

M. A. N. a. H. K. F. Sareh Aghaei, "Evolution of the World Wide Web: From Web
1.0 to Web 4.0”,," Computer Engineering Department, University of Isfahan, Isfa-
han, Iran, International Journal of Web & Semantic Technology (IJWesT), vol. 3,
no. 1, pp. 1-10, 2012.

[Online]. Available: https://www.lxahub.com/stories/whats-the-difference-between-
web-1.0-web-2.0-and-web-3.0. [Accessed 25 1 2024].

[Online]. Available: https://www.geeksforgeeks.org/advantages-and-disadvantages-
of-web-3-0/. [Accessed 20 1 2024].

A. F. a. S. B. S. Jansen, "A sense of community: A research agenda for software
ecosystems," Presented at the 3 1st International Conference on Software Engineer-
ing - Companion Volume, 2009. ICSE-Companion 2009, IEEE, no. 31, p. 187-190,
2009.

"Npm package manager for javascript,” [Online]. Available: https://www.
npmjs.com/. [Accessed 11 2 2024].

[Online]. Available: https://sharvishi9118.medium.com/how-to-compose-micro-
frontends-at-build-time-c5e484a40e10. [Accessed 17 2 2024].
Chris.Minnick.Wiley. [Online]. Available: https://dl.ebooksworld.ir/books/Begin-
ning.ReactJS.Foundations.Chris.Min-

nick.Wiley.9781119685548 EBooksWorld.ir.pdf. [Accessed 5 3 2024].

"npmjs," [Online]. Available: https://www.npmjs.com/package/react. [Accessed 15
22024].

[40] 'simplilearn," [Online]. Available: https://www.simplilearn.com/tutorials/angular-

tutorial/what-is-angular#why angular. [Accessed 21 3 2024].

[Online]. Available: = https://data-flair.training/blogs/angular-architecture-compo-
nents/[accessed 22-2-2024]. [Accessed 25 3 2024].

[42] [Online]. Available: https://www.tutorialspoint.com/angular2/angu-
lar2 metadata.html. [Accessed 24 2 2024].

[41]

ABBREVIATIONS

DOM

ECMASCRIPT

MVC

HTML

NPM

API

OSS

Ul

DB

JSON

oop

CSS

CI/CD

Document Object Model

European Computer Manufacturers Association Script
Model View Controller

Hypertext Markup Language

Node Package Manager
Application Programming Interface
Open Source Software

User Interface

Database

JavaScript Object Notation
Object-Oriented Programming
Cascading Style Sheet

Continuous integration/Continuous Deployment

LIST OF FIGURES

Figure 1. DOM ATCRItECTUTIE......ccviiiiiieeciieeiee ettt ettt etee e e e b e e esaee e 15
Figure 2. JS Script Tag in HTML Workflow Architecture..........cccceoevieneniienienennnn. 21
Figure 3. Google V8 JS Engine ArchiteCturecccvveevvieeciiieeiiieeie e eciee e 22
Figure 4.J800 FOIMALccoooiiiiiiiiieiiccie ettt eaaees 22
Figure 5.Event coding in VanillaJS.c.ccoiiiiiiiiiieeeeeeeeeee e 23
Figure 6.JavaScript Promise Code sampleccceecuierieiiieniieiieiecieeee e 23
Figure 7. ASyNnc Await TYPING ...cc.everiiieiiiieiiieeciee ettt vee et e e eeesree e 24
Figure 8.Prototype INheritance.coeevuerieriierienieriieieeeerteee et 24
Figure 9. A JavaScript function to get Data from local storagec..cceceveereenennee. 25
Figure 10. Maven Registry ArchiteCturecccveevierieicieenieeiieie e 26
Figure 11. Repository managers in @ DevOps Setupccccecveveeveriienecnenieneenieenne. 27
Figure 12.Boa build INfrastructure..........cocuevueeviiiierieiienieeeieseeeeeeee e 30
Figure 13. project counts obtained from Boa's September 2019 GitHub dataset....... 31
Figure 14. core J2EE Patterns StruCtUre.........ccouerieriieienieniieieniesieeie e 32
Figure 15. Illustration of the System Applying the MVC Architecture Pattern.......... 33
Figure 16.Client-Server Illustration for a JS Web Applicationccccecveevveennnennnen. 34
Figure 17.a package.json fIleccoooiiiiiiiiiiiie e 35
Figure 18. Stack overflow chart 2022 (NPM)ccouiiniiiiiieieeiieieceee e 36
Figure 19. An Example of Node.js Applicationccceeveeeviieiiiiiieniieeiienieeieeee 37
Figure 20. NodeJS Server ArchiteCturecooeeviiiiiinieiiieiieeceeeeeceee e 38
Figure 21. installing React on an existing project using NPMc..ccoceeviriininnenne. 39
Figure 22. React DOM SIFUCTUTEccecueeeeciiieaiieesieeesieeesteeeniveesareesseeesseeennnee s 39
Figure 23. React Library download (NPM trend stat 2024)c..ccceveevericncenncnnne. 40
Figure 24. Angular Building ArCRIteCtUre.cccoocvueeeecueeeiiieeiieeecieeeieeeeiee e 42
Figure 25. Vue View Structure (vuejs.org 2024) [23]..cccoverienienenienecienieneeeeeeen 45
Figure 26. popularity between the 3 major frameworks [npmtrends.com Jan 2024] .46
Figure 27. Q1 SUIVEY TeSUIL......coeiiiiiiiiiiiieiciieeeeetee e 51
Figure 28. Q2 SUIVEY T@SUIL...ccuviiiiiiieiiieeiiieeete ettt s 51
Figure 29. Q4 survey Resultcocooviiiiiiiiiiiiiiceeeeee s 53
Figure 30. Q5 Survey Result........ccciioiiiiiiiieieeeeeeeeeeee e 53
Figure 31.Credentials authenticator.cccceoerieriiiiiniinieienececeece e 62
Figure 32. User on the SignUpP SeSSI0MNccccuviieiiieeiiieeieeeieeeireeeieeesveeeeveeeevee e 63
Figure 33. User on the Login SCreencoceevuerieriiiiinieniiiienieseeeeeeee e 64
Figure 34. Next-Auth Provider Response after successful Signln.cccceveeneenn. 64
Figure 35.Navbhar TEeIMcccueiuiiiiiiieniiieccieeneeee et 68
Figure 36. rendering a BillBoard on the Homescreencccccoieeniiiiiiniinicenncee 70

Figure 37. Tailwind.config fileccccooiriiniiiiiiiiiicee e 80

APPENDIX
Appendix A ... MT survey Form — Google Form
Appendix B ...l Wura App Source Code

Appendix B ...l WURA App Website Link

