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ABSTRAKT 

Se vznikem a popularitou velkých jazykových modelů (LLM) bylo získávání 

informací vždy náročné. Tyto LLM jsou však trénovány na textovém korpusu 

internetu a trénovací data mají datum uzávěrky; proto jsou ve většině případů data při 

vydání modelu zastaralá. Tato práce by zkoumala možnost výzkumu řešení, které 

uživatelům umožní přístup ke stručným informacím z rozsáhlého korpusu, jako je 

výuková učebnice. Navrhovaným řešením je implementace aplikace Retrieval 

Augmentation Generation umožňující uživatelům pracovat s LLM pomocí jejich 

soukromých dat. Práce bude také zkoumat možnost použití tohoto přístupu lokálně 

namísto používání rozsáhlých a těžkopádných modelů online. Výsledky ukázaly, že 

tento přístup je proveditelný a funguje dobře pro různé učebnice bez ohledu na jejich 

velikost, a také výstupní výsledky jsou dobré. Tato práce poskytuje cenné poznatky o 

tom, jak architektura funguje, a poskytuje správné nástroje pro implementaci tohoto 

řešení. 

Klíčová slova: LLM, RAG, textový korpus 

 

 

 

ABSTRACT 

With the emergence and popularity of Large Language Models (LLM), obtaining 

information has always been challenging. However, these LLMs are trained on the 

text corpus of the Internet, and the training data has a cut-off date; hence, in most 

cases, the data is out of date when the model is released. This thesis would investigate 

the possibility of researching a solution that allows users to access concise information 

from a large corpus like an educational textbook. The proposed solution is to 

implement a Retrieval Augmentation Generation application enabling users to work 

with an LLM using their private data. The thesis will also investigate the possibility 

of using this approach locally instead of using vast and cumbersome models online. 

The results demonstrated that this approach is feasible and works well for different 

textbooks irrespective of their size, and output results are also good. This thesis 



 

provides valuable insights into how architecture works and provides the right tools to 

implement this solution. 
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INTRODUCTION 

Textbooks remain essential sources of instructional material in the modern period, as digital 

information has wholly transformed access to knowledge. However, textbook information's 

sheer volume and diversity are severely needed to improve adequate comprehension and 

extract essential ideas. Conventional techniques for extracting information from textbooks 

mainly rely on manual work, which can be tedious, error-prone, and time-consuming.  

Current automated methods, including keyword or rule-based systems, could better 

handle textbook material's complex structures and different formats. Thus, there is an urgent 

need for sophisticated Natural Language Processing (NLP) systems that can quickly, 

accurately, and adaptively extract relevant information from textbooks automatically.  

This thesis will explore the meaning and significance of a custom transformer model . In 

the last couple of years, there have been advancements in research on Machine Learning, 

especially with Natural Language Processing (NLP) and Recurrent Neural Networks, which 

had been initially used to process and analyze large chunks of unstructured data. As most 

data available to users and businesses in general are large amounts of unstructured, text-

heavy data, with NLP, we can, to some extent, analyze and process so-called unstructured 

data [1, 2].  

Using NLPs, we have built valuable systems like chatbots and voice assistants. NLPs 

work by adequately pre-processing the unstructured data and turning it into a format a 

Machine Learning model could understand and generate associations[3]. NLP gave rise to 

the Transformer architecture, which gained momentum rapidly when the paper based on the 

multi-head attention mechanism “Attention Is All You Need” was published in 2017 [4].  

The Transformer is a Large Language Model (LLM), a Deep Learning model trained on 

an immense amount of data, making it capable of understanding and generating natural 

language to perform various tasks. Transformers have rapidly become the dominant 

architecture for NLU, surpassing alternative neural models such as convolutional and 

recurrent neural networks in performing tasks that help with natural language understanding 

and natural language generation [5].  

The Transformer model gained popularity with the release of OpenAI’s Generative Pre-

Trained Transformer (GPT), which at that time could do tasks we never imagined could be 

done. With the release of GPT-3.5, which was trained on data scraped from the Internet up 

to April 2023. GPT-3.5 made it easy to quickly gain any information readily available online 
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without going through multiple websites and pages hunting for said information [6]. 

However, it was limited to its training data alone; hence, the model was unavailable for 

newer or custom information. The inability to grasp domain-specific nuances hindered the 

accuracy and relevance of the generated content within these areas.  

Hence, my contribution to the body of work before me was focused on creating and 

evaluating a bespoke language model (LLM) transformer tailored to a particular domain. We 

will discuss the limitations of these generic large language models and solutions to mitigate 

them. The principal aim is to investigate the feasibility of allowing users to query a large 

language model using their custom data, making extracting information from textbooks and 

articles easy.  

We would also investigate the various large language models available to determine 

which are suited to the task at hand. Domain-specific customization is critical since it can 

improve performance, accuracy, and relevance in certain activities, leading to breakthroughs 

in various fields, including legal, medical, financial, and others. 
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 I. THEORY 
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1 TEXT SUMMARIZATION 

A summary is generally a shortened form of a long paragraph or sentence. Text 

summarization compresses the source text into a diminished version, conserving its 

information content and overall meaning[7]. Most data produced in our day-to-day lives are 

usually unstructured; to extract insights, we need to summarize the data and gain the valuable 

information we seek. Since manual text summarization is time-consuming and expensive, 

hence the automation of text summarization[2]. 

In this era of big data, automating this process has become more urgent than ever, 

and much research has gone into it. Text summarization automation has historically been the 

focus of the machine learning fields of natural language processing (NLP) and recurrent 

neural networks (RNN). These disciplines have made great strides in automating text 

summarization. 

1.1 Natural Language Processing 

Natural Language Processing is an aspect of Artificial Intelligence that helps computers 

understand, interpret, and utilize human language. NLP makes it possible for computers and 

humans to converse using human language. NLP disciplines, till recently, have been the go-

to area for handling text summarization tasks.[2, 3]. Natural Language Processing uses 

various pre-processing processes to clean and normalize text data, such as removing 

punctuation, converting text to lowercase, and tokenizing sentences into individual words or 

phrases.  

Additionally, stemming and lemmatization help reduce words to their base forms to 

improve analysis accuracy. Once pre-processed, the text is transformed into numerical 

representations through word embeddings or vectorization, enabling machine learning 

models to understand and work with the data. These processed representations are then fed 

into NLP algorithms, which utilize statistical methods, neural networks, or rule-based 

approaches to perform tasks such as named entity recognition, part-of-speech tagging, and 

syntactic parsing, ultimately enabling computers to comprehend and generate human 

language.[2] 

1.1.1 Recurrent Neural Network 

Natural Language Processing had issues with the memory of previous tokens, and with 

Recurrent Neural Network, we found a solution to this problem. RNN, a class of supervised 
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machine learning models with more than one feedback loop[8], is also artificial intelligence 

designed to aid automatic text summarization. It effectively handled sequential data by 

retaining memory of past inputs. 

The RNN's architecture allows it to process various sequences of differing lengths. 

At each step, an RNN takes an input vector and an internal hidden state vector representing 

information from previous steps. This structure enables it to capture context and patterns 

over time, making it suitable for language modelling tasks. 

Nevertheless, understanding long-term dependencies is challenging for conventional 

RNNs due to vanishing or expanding gradient issues. In response, several variations were 

created, such as the Gated Recurrent Unit (GRU) and Long Short-Term Memory (LSTM), 

which use gating mechanisms to control information flow and more accurately record long-

range relationships, increasing their efficacy for a variety of sequential activities  [8, 9].  

 

Figure 1: Recurrent Neural Network 

 

1.2 Portable Document Format (PDF) 

The Portable Document Format, popularly known as PDF, was initially developed by Adobe 

Inc. in Inc. 90[10]. PDFs are one of the most used file formats for distributing text and image 

information on printed paper, including eBooks, forms, and paper slips. They allow users to 

view, print, copy, and share documents easily, saving time and paper.  

PDFs are a necessary tool as most of the textbooks available are in PDF format, so 

understanding how a PDF works would benefit this study. To create a PDF, you need a PDF 

editor, which allows you to create content that can be parsed in PDF format. You also need 

a PDF reader to read the data from a PDF. For the scope of this research, we will focus on 

the PDF reader and some tools we can use to extract data from a PDF. 
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1.2.1 Text Extraction 

Textual data is necessary to develop a custom large language model, and textual information 

is usually stored in a Portable Document Format (PDF). Hence, we need to understand how 

to extract all the required information from the PDF without losing the data's integrity. 

Its widespread availability across multiple digital platforms and domains makes it a 

preferred medium for large language model (LLM) evaluation and training. Textual data 

provides a rich tapestry of linguistic nuances and semantic complexity, making it an 

excellent substrate for investigating the subtleties of human language and cognition. Textual 

data can range from social media snippets to academic essays to textbooks [7, 9]. Because 

of its organized structure and computational ease of use, many analytical methods may be 

used, enabling scholars and professionals to find hidden trends and extract insightful 

information from a large text corpus[9]. 

Furthermore, by transforming static documents into machine-readable formats, text 

extraction from PDFs expedites workflows in document processing. It makes it possible for 

automated text-processing activities like document classification, summarization, and 

translation. Text extraction techniques make it possible for PDF material to be seamlessly 

integrated into a variety of apps and systems, increasing productivity and decreasing human 

labour [7, 9] 

 

1.3 Traditional Methods for Text Extraction 

Conventional text extraction methods include a range of approaches, such as PDF 

parsing libraries, regex-based parsing, and optical character recognition (OCR), used to 

extract text content from documents. We will briefly look at what these so-called tools do, 

but this study will focus on PDF parsing libraries that enable us to extract information from 

PDFs adequately. 

• Optical Character Recognition (OCR) algorithms examine how characters are 

represented visually to identify and translate them into text that machines can read. 

Character segmentation, feature extraction, and classification are steps in this process 

[7, 11]. Over time, advances in OCR technology have made it possible to extract text 

from complex and damaged documents accurately. It's commonly employed in 
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digitizing printed documents, archival tasks, and making scanned documents 

searchable[7]. 

• Regex-Based Parsing - Regular expressions, or regex, are used in regex-based 

parsing to recognize and extract text patterns from documents. This method matches 

text sequences or structures inside the document using predetermined patterns or 

rules [7]. You can modify regex patterns to capture other elements, including phone 

numbers, email addresses, dates, or keywords. Text extracted from documents with 

complicated formatting or irregular layouts may be complex for regex-based parsing, 

notwithstanding its effectiveness in extracting organized data or specific information 

formats. 

 

Figure 2: Regex Based Parsing 

 

• PDF Parsing Libraries—These are generally software tools designed to read PDFs 

and help parse the PDF's content into other formats. Such a format would enable us 

to feed our large language model with the necessary data from the PDF. In recent 

times, the Langchain community has provided excellent tools that can be used to 

adequately parse the information from the PDF into any machine-readable format.  
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2 SEQUENCE MODELING TECHNIQUES 

There were prior studies in this area before establishing Large Language Models, which are 

sequence modelling techniques. Sequence modelling started with Natural Language 

Processing and was made better with Recurrent Neural Networks. Sequence models are the 

ability of a model to interpret, make predictions about or generate any sequential data[8]. 

2.1 Recurrent Neural Network 

Recurrent Neural Networks (RNNs) (RNNs) are particularly suited for sequence modelling. 

They process sequential data by maintaining an internal state. This mechanism helps RNN 

models remember the past, and decisions are influenced by what they did in the past  by 

learning from prior inputs[8]. 

 

Figure 3: Single RNN cell. 

 

 RNNs are called recurrent because they perform the same task on every element in 

the sequence, which is usually a text stream. Due to its cyclical nature, RNN models have a 

short-term memory; hence, if the sequence is long enough, you will have a hard time carrying 

information from earlier time steps to later ones; this phenomenon is known as the Vanishing 

Gradient. On the other hand, if gradients rush to large values (>1), they get larger and 

eventually blow up and crash the model. This is the so-called Exploding Gradient[12] 
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2.1.1 Long Short-Term Memory (LTSM) 

LTSM is an improved version of the regular RNN. It was designed to help RNN models 

capture long-term dependencies in sequential data. The core idea is to help the model easily 

remember information for long periods and the default behaviours[12]. 

 

 

Figure 4: Long Short-Term Memory Architecture. 

 

 With LTSM, the model's cell state runs through the architecture like a conveyor belt 

with small, minor linear interactions. Hence, information flows along easily and remains 

unchanged. It uses carefully regulated gates to remove and add information to the cell state.  
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3  HISTORY OF TRANSFORMER MODEL 

The discipline of Natural Language Processing (NLP), which has long been of interest in 

artificial intelligence, is where transformer models have their roots [3, 13]. Natural language 

processing (NLP) enables tasks like question answering, sentiment analysis, and translation 

by allowing computers and humans to communicate through natural language. 

To analyze and comprehend text, early methods of NLP mainly depended on rule-

based systems, in which linguistic rules were manually created. Unfortunately, the subtleties 

and complexity of natural language were too much for these algorithms to manage, which 

resulted in only patchy success[3, 14]. 

The development of statistical techniques in NLP in the latter half of the 20th century 

brought about a dramatic change. Using methods like Probabilistic Context-Free Grammars 

(PCFGs) and Hidden Markov Models (HMMs), researchers were able to statistically model 

language and obtain better results in tasks like machine translation and speech detection [3, 

14]. 

 

 

Figure 5: An example of Probabilistic Context-Free Grammar 
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Figure 6: An example of the Hidden Markov Model 

 

3.1 Machine Learning Algorithms 

The discipline of NLP was significantly expanded with the development of machine learning 

methods, especially neural networks. Recurrent Neural Networks (RNNs) have become 

highly effective models for sequence modelling applications, opening new avenues for more 

complex language creation and comprehension. We as humans do not start thinking from 

scratch every second, and our understanding of sentences or paragraphs is based on our 

understanding of previous words.[15] Traditional Neural Networks cannot do this; thus, it 

has been a major shortcoming. RNNs were developed to address this issue[16]. 

  RNNs are a family of artificial neural networks that are especially helpful for tasks 

like time series analysis, speech recognition, natural language processing (NLP), and more 

since they are made to simulate sequence data efficiently. Recurrent neural networks (RNNs) 

are unique among neural network types because of their capacity to process inputs 

sequentially while preserving internal state or memory[3, 15].  

 

3.2 What Is the Transformer Model 

In machine learning and natural language processing (NLP), the Transformer model, 

first presented by Vaswani et al. in 2017, marks a paradigm change. Since then, this 
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groundbreaking architecture has been the basis for numerous cutting-edge models in various 

fields, such as sentiment analysis, text generation, language translation, and more [4]. The 

transformer model has given rise to modern AI tools like ChatGPT and many pre-trained 

and fine-tuned Large Language Models. Some of the Transformer's salient features are self-

attention mechanisms, positional encodings, multi-head attention, feedforward neural 

networks, and an encoder-decoder architecture [4]. The Transformer model has formed the 

basis for many cutting-edge NLP models because it can efficiently capture local and global 

relationships while processing whole sequences in parallel. It has dramatically advanced the 

science of natural language processing (NLP) by demonstrating extraordinary performance 

in tasks like question answering, text summarization, and machine translation [4]. 

 

 

Figure 7: Transformer Model Architecture 

 

3.2.1 Components of the Transformer Model 

• Self-Attention Mechanism - The self-attention mechanism is the core of the 

Transformer architecture. It is a crucial component that allows each word in the input 

sequence to pay attention to and consider every other word. This allows for the 

efficient capture of local and global dependencies [4, 14, 17]. By allocating weights 
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to distinct words according to their relevance and importance, this system provides a 

thorough knowledge and depiction of the contextual interactions between words at 

different granularities, ranging from terms that are close to terms that are far away. 

The self-attention mechanism is essential to boosting the model's ability to identify 

complicated patterns and correlations in textual material and improve its overall 

performance in various scenarios by enabling such sophisticated and nuanced 

information processing [4]. 

• Positional Encoding - The Transformer model uses positional encoding to include 

positional information into input sequences. Appending sine and cosine functions 

with varying frequencies and phases to input embeddings compensates for the 

inherent order understanding deficit in parallel processing [4]. This enables the 

model to recognize the sequential nature of a sequence and differentiate between 

points within it. The Transformer can analyze sequences efficiently in tasks like 

natural language processing because of positional encoding[17–19]. 

• Encoder and Decoder - The encoder-decoder architecture is a critical component of 

sequence-to-sequence models like the Transformer, whose popularity has increased 

dramatically in recent years. The encoder in this design is in charge of carefully 

processing the input sequence to provide contextual representations that contain 

essential information [4]. As such, the decoder uses these representations to construct 

the output sequence carefully, guaranteeing a precise and consistent outcome. 

Moreover, this architecture is widely applied to tasks such as question answering, 

text summarization, and machine translation, allowing models to manage and 

produce sequences of different lengths with impressive efficiency [4, 20]. 

• Multi-Head Attention - A critical feature of transformer models is multi-head 

attention, which allows the model to focus on several parts of the input sequence 

simultaneously, improving the model's capacity to identify complex correlations in 

the data [4]. The self-attention mechanism is applied repeatedly in parallel, 

increasing computational efficiency while simultaneously allowing the model to 

extract more specific and subtle information from the input. The model may provide 

richer representations of the input by using several attention heads, making it easier 

to comprehend and evaluate the underlying patterns and dependencies in the data. 
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• Feedforward Neural Networks—Besides the self-attention layers, feedforward 

neural networks (FFNs) (see Feed Forward Neural Network) are also part of the 

Transformer design. These FFNs are essential in adding additional nonlinearities and 

transformations to the representations that the model learns. 

 

Figure 8: Feed Forward Neural Network 
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4 EMERGENCE OF LARGE LANGUAGE MODELS 

The Transformer Model forms the base architecture for training Large Language Models 

[20, 21]. A notable development in natural language processing (NLP) is the advent of Large 

Language Models (LLMs). These Transformer-based models are trained on copious 

volumes of textual input to acquire rich linguistic representations. During pre-training, 

LLMs use unsupervised learning objectives, including language modelling or masked 

language modelling, like GPT (Generative Pre-trained Transformer) and BERT 

(Bidirectional Encoder Representations from Transformers). After undergoing pre-training, 

LLMs can be optimized for downstream tasks, leading to cutting-edge results on various 

sequencing tasks [17, 20].  

With the advent of large-scale pre-training in natural language processing (NLP), 

models such as the GPT (Generative Pre-trained Transformer) series and BERT 

(Bidirectional Encoder Representations from Transformers) series proved to be remarkably 

effective [22, 23]. These models acquired sophisticated language representations through 

pre-training, identifying complex patterns and semantic correlations in the data. The models 

gained a profound understanding of language during this pre-training phase, which helped 

them perform well in various downstream NLP tasks, such as text generation, question 

answering, and language understanding. The GPT series and BERT's success demonstrated 

the value of extensive pre-training in enhancing LLM and opening the door to a new era of 

language generation and processing [14, 20]. 

Significant progress has been made in several natural language processing (NLP) 

problems thanks to large language models, or LLMs. Because LLMs can recognize complex 

linguistic patterns and semantic linkages, they perform better in language comprehension 

tasks, including text categorization, named entity recognition, and sentiment analysis [14, 

17, 21]. Text sequencing activities such as story generation, dialogue systems, and content 

production are greatly aided by LLMs such as GPT, which generate coherent and 

contextually appropriate text. LLMs also help with information retrieval and document 

summarization jobs by efficiently condensing vast amounts of text into summaries.  

 

 

 



TBU in Zlín, Faculty of Applied Informatics                                                                    25 

 

4.1 Impact of Large Language Models 

LLMs have had immense applications since their introduction in the last couple of years. 

Here are some critical areas in which they have impacted. 

 

• Advancement of Research - Advancements in model architectures, training 

methodologies, and transfer learning have propelled research in Large Language 

Models (LLMs). Beyond NLP, LLMs have stimulated research into computer vision 

and audio processing. Bias and fairness are two ethical issues that are actively 

addressed. Transfer learning makes it possible to fine-tune LLMs for tasks, while 

new architectures like XLNet and RoBERTa increase performance and 

efficiency[24, 25]. Efficient scaling is made possible by training methods like 

gradient accumulation and distributed training. LLM research keeps advancing AI, 

influencing the direction of future multidisciplinary applications and natural 

language processing [13]. 

• Model Architecture—Large Language Models (LLMs) have inspired new model 

architectures to improve performance, scalability, and efficiency. By introducing 

novel attention mechanisms, parameter sharing, and task formulations, variants such 

as XLNet, RoBERTa, and T5 push the frontiers of natural language processing[22]. 

• Applications beyond NLP - The use of LLMs in domains other than the typical 

natural language processing (NLP) has attracted attention, including computer 

vision, audio processing, and reinforcement learning. By utilizing their strong 

representation learning skills, LLMs are modified to handle a variety of modalities 

in addition to text [6, 17, 23]. Cross-modal pre-training strategies are created to 

facilitate knowledge transfer between different domains and allow LLMs to learn 

joint representations across several modalities. In computer vision, for example, 

LLMs can be trained to comprehend images and the accompanying captions, 

allowing them to perform jobs like labelling pictures and answering questions 

visually. LLMs can also evaluate audio signals and the accompanying transcripts or 

descriptions in audio processing [2, 25].  

4.2 Popular Large Language Models 

The following models have revolutionized several language tasks and made a substantial 

contribution to the field of natural language processing: The following models have 
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revolutionized several language tasks and made a significant contribution to the field of 

natural language processing: 

4.2.1 Generative Pretrained Transformer (GPT) 

GPT is a sizable language model that OpenAI created. The initial version was made available 

in 2018. It can produce logical, contextually relevant phrases by guessing the word that will 

come after a given sequence of words. It has been trained on a wide variety of internet text. 

With 175 billion parameters, GPT-3 was the first model to generate highly realistic, human-

like text and code based on subtle instructions. It was released in 2020[6].  

OpenAI released ChatGPT in late 2022; it was improved using RLHF and built on 

top of GPT 3.5. ChatGPT's innovative capacity to produce human-like outputs in response 

to natural language cues was impressive. OpenAI's most powerful model, GPT-4, was 

released in April 2023 and may be used directly by API or as part of the ChatGPT service. 

GPT-4 significantly outperforms[6]. 

4.2.2 FLAN T5 

Flan T5 is an open-source, sequence-to-sequence, large language model that can be used 

commercially. Google published this model, which has been fine-tuned for many tasks. This 

architecture uses an encoder-decoder structure from the “Attention is All You Need” paper 

released in 2017. T5 was trained with an extensive 750 GB corpus of text known as the 

Colossal Clean Crawled Corpus (C4). 

Flan T5 is mainly used for chat and dialogue summarization and text classification. 

It can be easily downloaded from the Hugging Face code repository. 

 

 

Figure 8: Flan T5 model. 



TBU in Zlín, Faculty of Applied Informatics                                                                    27 

 

4.2.3 Bidirectional Encoder Representations from Transformers 

Google created the model known as BERT or Bidirectional Encoder Representations from 

Transformers. BERT examines both sides of a word, unlike GPT, which only looks at the 

context to the left of a word. Using a bidirectional approach, BERT can better comprehend 

a word's context, enhancing its ability to understand and generate language. BERT has been 

instrumental in several NLP tasks, including question-answering and linguistic inference. It 

has been an essential component of the Google search engine for several years[3, 6]. 

 

4.2.4 LaMDA 

Google created a sizable language model called LaMDA. It was an early concept that could 

have free-flowing discussions on any subject, carry over the context of a debate, and consider 

information from earlier exchanges. Although LaMDA was not made available to the public, 

its ability to communicate with users like a human grabbed attention[3]. Blake Lemoine, a 

Google engineer who collaborated extensively with LaMDA, thought the system was aware. 

However, the majority of AI professionals and Google themselves refuted his assertion.  

4.2.5 PaLM 

Google's AI intelligence chatbot, Bard, is powered by the transformer-based Pathways 

Language Model (PaLM), which has 540 billion parameters. This model is trained on several 

TPU 4 Pods, Google's custom machine-learning hardware, and is intended to handle 

reasoning tasks such as coding, math, categorization, and question-answer activities. The 

PaLM paradigm divides complex jobs into smaller, more manageable subtasks [3]. 

The Pathways research project at Google aimed to create a master model suitable for 

various applications, giving rise to the moniker PaLM. PaLM has been refined through 

several versions. While Sec-PaLM is made for cybersecurity deployment and helps with 

faster threat analysis, Med-PaLM 2 is suited for the life sciences and medical data[3, 6]. 

The models discussed here are primarily generic models trained on data accessible on 

the Internet and that only. For the focus of my study, we will discuss how to extend the 

capability of large language models to enable users to make queries about their custom data 

or data inaccessible on the Internet.  
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4.3 Importance of Domain-Specific Customization 

The domain-specific customization of Large Language Models (LLMs) is necessary since 

specialized areas have specific linguistic requirements. Despite their proficiency in 

recognizing broad language patterns, generic Large Language Models (LLM) often need 

help comprehending context, semantic nuances, and domain-specific jargon. Language 

usage is highly context-dependent and specializes in fields like academia, law, health, and 

finance, necessitating specialist solutions for accurate text generation and interpretation. 

Domain-specific customization helps language managers (LLMs) better understand 

domain-specific conventions, interpret complex jargon, and produce content appropriate for 

the context by enabling them to adapt to the different language environments of different 

domains [22]. Researchers may give pre-trained LLM structures the domain knowledge 

required to succeed in particular tasks by fine-tuning them on domain-specific datasets. This 

results in more effective information extraction from domain-specific data. 
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5 VECTOR DATABASE 

A vector database stores high-dimensional data that traditional DBMS cannot characterize 

[26]. Also known as vector similarity search databases or vector stores, vector databases are 

specialist data management systems that efficiently store, retrieve, and query high-

dimensional vectors. Applications in machine learning, artificial intelligence, computer 

vision, and natural language processing are especially well-suited for these databases[27]. 

Vector databases are essential in building a custom LLM as they help users store their 

text corpus as an embedding in the database. The database can then be queried using a 

similarity search to retrieve the relevant information. Here is the basic structure of a vector 

database. 

• Data Model - Vector databases employ an efficient representation of high-

dimensional vectors that support a variety of data kinds, including textual 

embeddings, numerical values, and categorical attributes. As building blocks, vectors 

encode data points in a high-dimensional space, offering the choice of dense or sparse 

representations. [26, 27]Large-scale datasets from the machine learning, computer 

vision, and natural language processing fields can be efficiently stored, retrieved, and 

analyzed because of this model's flexible modification and optimization capabilities, 

which are helpful for applications like recommendation systems and similarity 

search.[27] 

• Indexing Structures - Utilizing specialized algorithms, vector databases' indexing 

structure effectively organizes and retrieves vectors based on similarity. Graph-based 

indexes for approximate nearest neighbour search, hashing algorithms like locality-

sensitive hashing (LSH), and tree-based structures like k-d trees and ball trees are 

common approaches. These structures facilitate activities like nearest neighbour 

searches and similarity searches in high-dimensional spaces, optimizing query 

processing by reducing search space and enabling quick retrieval of vectors like a 

given query[28, 29]. 

• Query Processing - Finding similar vectors to a given query vector is a necessary 

step in the querying process in vector databases. Using metrics like cosine similarity 

and Euclidean distance, this procedure assesses how far or similar the query vector 

is to the stored vectors. Using sophisticated methods such as approximate closest 

neighbour search, query processing is optimized to retrieve vectors under a given 
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similarity threshold effectively. To improve speed and scalability for activities like 

nearest neighbour queries and similarity search in high-dimensional spaces, query 

optimization procedures can involve index selection and query pruning [26, 27]. 
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II.  ANALYSIS 
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6 IMPLEMENTATON ARCHITECTURE 

  

In this section, we will discuss the approach to achieving the desired results. We will discuss 

the general architecture of the approach as well as the tools and other procedures used to 

achieve the desired results. 

6.1 Retrieval Augmented Generation 

Large language Models take input from sequential data, and this data is usually limited 

depending on the model available. These models have a finite number of tokens they can 

take, and any amount above the limit would break the model. Retrieval Augmented 

Generation, commonly known as RAG, is an Artificial Intelligence framework for retrieving 

facts from an external knowledge base to aid Large Language Models in attaining the most 

accurate, up-to-date information and give users insight into the LLM generative 

processes[30]. 

 RAG is currently the best-known tool for grounding LLMs on the latest and most 

verifiable information and lowering the cost of constantly retraining and updating them. 

Fine-tuning a model is another alternative to consider, and it involves adjusting the weight 

of a model, but that can only work for a specific dataset, and any new data needed would 

imply retraining the whole model all over again. However, retraining the model is 

[31]unnecessary with a RAG implementation [31]. We would go with an RAG 

implementation for my contribution to this body of work. Here is the general architecture of 

the Retrieval Augmented Generation implementation, which we will discuss briefly. 
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Figure 9: RAG Architecture 

 

The RAG Architecture helps to fix our issue with the context window of large language 

models by first extracting all the text data from our document into a computer-readable 

format, then creating vector embeddings from the data generated using an encoder-only 

Transformer model like BERT, and then storing these embeddings in a vector database. 

The user makes a query, and the vector store uses the query to perform a similarity 

search to retrieve the relevant vector embeddings. These retrieved embeddings, known as 

the Context Query Prompt, are fed to the large language model, and the user queries to 

retrieve an output from the large language model. We will discuss in detail the various 

components of the general architecture of the RAG implementation. 

6.1.1 Components of the RAG Architecture 

• Documents refer to our data source, which we will use for our RAG implementation. 

This data source would be a text document in PDF format. These documents are the 

knowledge foundation the RAG system would draw to generate responses [31, 32]. 

Here, we would use various publicly available text extraction tools to extract the data 

we need from user documents. 

• Embedding Model—Encoder-only Transformer models like BERT return vector 

embeddings as output. This embedding model transforms the text from each 

document into a series of numerical vectors, effectively creating a high-dimensional 

representation of the papers' content. This vector embedding encodes the text 
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corpus's semantic meaning, allowing the system to understand and manipulate the 

information from the documents at a conceptual level [32]. 

• Vector Store - As discussed earlier, vector stores are necessary to execute the RAGs. 

The vector embeddings are stored in the vector database, which is designed to handle 

vector embeddings. Vector stores act like databases and provide methods to 

manipulate the data in the database like other regular databases. Vector stores are 

optimized for similarity searches, allowing them to quickly sift through millions of 

vectors to find those that closely match an output [32]. Vector stores store the vector 

embeddings, and the original text corpus is used to generate the embeddings, making 

it easy to query for information from the vector store, which then returns the vector 

embeddings like the user query.  

• Query—When a user inputs a query, the system converts it into vector form, utilizing 

the same embedding model used to process the documents. This query vector 

encapsulates the user's intent and the semantic nuances of their request. 

• Retrieval – The vector store compares the query vector with the entire corpus of 

document vectors. Using similarity metrics, a subset of vectors that are semantically 

closest to the query vector is retrieved. These correspond to the document’s most 

likely to contain relevant information[32]. 

• Context Query Prompt—The retrieval results are amalgamated with the original 

query to create a context-rich query prompt. This amalgamation enriches the initial 

query with specific insights from the retrieved documents, equipping the system with 

a nuanced understanding of what the user is seeking[31, 32]. 

• Large Language Model – Large Language Models like GPT, Llama, and Flan T5 

are trained on vast amounts of textual data, enabling them to understand natural 

language and generate coherent, contextually appropriate responses. Hence, with a 

shortened corpus of vector embeddings, we feed the LLM with the data from the 

context prompt, and the LLM produces the relevant output needed. 

• Output—This is the final step in the Retrieval Augmented Generation architecture. 

At this point, the relevant information is returned to the user based on the query 

provided by the user. 
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7 TOOLS AND SYSTEMS FOR IMPLEMENTATION 

Various tools are available to build a custom Transformer model to extract data for 

textbooks. We will look at some of the tools and systems we would use for the 

implementation. 

7.1 Python 

Python is a high-level, general-purpose programming language that is generally great for 

statistical analysis. Due to this, it is mainly used for Machine Learning and Artificial 

Intelligence solutions. Python has a large community and a vast ecosystem that enables 

efficient development, making it a preferred language for implementing machine learning 

algorithms and models. 

7.2 Langchain  

Langchain was launched in October 2022 and has gained many improvements from 

contributors on GitHub. It contains many tools that help integrate external systems and 

provides utility tools that make working with large language models relatively easy.  

Langchain is an open-source tool quite popular for utility processes such as text 

extraction and other data pre-processing processes necessary for RAG implementation. 

From Langchain, we will use the PyPDFLoader and the RecursiveCharacterTextSplitter to 

extract data from user documents. 

• PyPDFLoader -  PyPDFLoader, with the help of the pypdf package, takes a path to 

a pdf as a parameter and loads the pdf into an array, where each context contains 

page content and metadata. 

• RecursiveCharacterTextSplitter—The RecursiveCharacterTextSplitter is a helper 

utility that splits the loaded data into smaller chunks. It is recommended for generic 

text. A list of characters parameterizes the text splitter. It then tries to separate the 

characters in order until the chunks are small enough.  

7.3 The Hugging Face Platform 

For our pick on the best LLMs for the contribution, we would use the HuggingFace 

platform, an online repository of the most popular Large Language Models that provide 

datasets to use with these models. HuggingFace is the GitHub of the ML world. 

https://python.langchain.com/docs/modules/data_connection/document_loaders/pdf/
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HuggingFace provides a collaborative platform with tools that empower anyone to create, 

train and deploy ML models using open-source code[5]. The models are pre-trained; hence, 

you usually do not have to start from scratch; load a pre-trained model and fine-tune it to 

your specific task. These are some core components of HuggingFace. 

• Transformers Library - This contains a comprehensive suite of state-of-the-art 

machine learning models. It consists of an extensive collection of pre-trained models 

optimized for tasks such as ‘summarization’, ‘text classification', and 'text 

generation'. Most NLP tasks have been abstracted into a ‘pipeline’ function. 

• Model Hub—The model hub is a platform with thousands of models and datasets 

available at your fingertips. It is an innovative feature that allows users to share and 

discover models the community contributes, promoting a collaborative approach to 

NLP development[5, 33]. 

 

 

Figure 10: HuggingFace Model Hub 

 

• Tokenizers—Tokenizers convert sequence text into a format that machine learning 

models can understand, which is essential to processing different languages and text 

structures. HuggingFace provides a wide range of tokenizers that facilitate the 

conversion of tokens into vector representation for LLM inputs and handle the 

truncation and padding of uniform sequence lengths[5]. 
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7.4 Vector Embeddings 

Vector Embeddings are a way to convert words, sentences and other data into numbers that 

capture their meaning and relationships. They represent different data types as points in a 

multidimensional space, where similar data points are clustered close together. These 

processes help machines understand and process this data more effectively. Word and 

sentence embedding are the most used types of vector embeddings [26]; 

• Word Embedding—Word embedding represents words as vectors in a continuous 

vector space, where the geometric relationship between vectors captures semantic 

similarities between words. Some popular word embedding models are Word2Vec 

and fastText [27].  

• Sentence Embedding—Unlike word embedding, which represents individual 

words, sentence embeddings capture the semantic meaning of the entire text [26].  

 

Figure 11: Vector Embeddings 

 

 Encoder-only Transformer models like BERT are usually used to generate vector 

embeddings. For our body of work, we will be using sentence_transformers, which is an 

excellent library for generating vector embeddings for any text body. It also comes with 

different pre-trained encoder-only models that you can select from to use for each case. 

 

7.5 StreamLit 

Streamlit is a free, open-source framework for rapidly building and sharing beautiful 

machine learning and data science web applications. It is a Python-based library specifically 

designed for machine learning engineers. Streamlit is easy to use to build attractive user 

interfaces, especially for people without front-end knowledge. 
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Hence, streamlit will be used to build the user interface for our application, which will 

take user input and user documents to perform the RAG implementation. Streamlit provides 

easy-to-use User Interface (UI) components that are easy to set up and relatively easy to use. 

 

7.6 Lance DB 

LanceDB emerges as an exemplary choice for our vector store solution, catering specifically 

to the demands of Artificial Intelligence (AI) applications. As an open-source vector store, 

LanceDB excels in its ability to effectively store, manage, query, and retrieve vector 

embeddings, which is essential for numerous AI tasks. Its architecture is meticulously 

crafted to accommodate the intricacies of vector data, ensuring optimal performance across 

a spectrum of use cases. 

One of LanceDB's standout features is its support for disk-based indexing and storage, 

a crucial facet that underpins its scalability. This architecture enables LanceDB to handle 

massive volumes of vector data effortlessly without imposing exorbitant resource demands. 

7.7 Hugging face pipeline 

Running machine learning algorithms involves pre-processing, feature extraction, model 

fitting, and validation stages. Pipelines are the creation of independent and reusable modules 

that can be easily pieced together to create an entire workflow.  

The HuggingFace pipeline is a great and easy way to use models for inference. These 

pipelines provide a simple API by abstracting most of the complex processes you need. The 

pipeline is a wrapper around other available pipelines. Due to its high abstraction, the 

pipeline takes a lot of parameters, and for the focus of this thesis, I would talk about the ones 

used; 

• Task type—This is the first parameter needed for the pipeline, and it is used to 

determine the kind of task that the Large Language Model will perform. There are 

many available task types, but the focus will be summarization, text generation, 

and text2text generation. These task types will determine the sub-pipeline the main 

pipeline extends to deliver the best results. 

• Model—The model parameter determines the LLM to use for the task. For the best 

result, it is advised to use an LLM that matches the right task type. 
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• Min Length – The min length parameter determines the minimum number of output 

tokens to be returned as an output. 

• Max Length - The max length parameter determines the maximum number of output 

tokens to be returned. 

• Model Kwargs—This parameter is a dictionary of sub-arguments that can be used 

to configure the pipeline. It takes temperature as a critical argument, ranging from 

0 to 1. This determines how strict the results are and can give the model leeway to 

be creative, which can sometimes not be desired. Another key argument is the device. 

This determines if the model would be run using a CPU or a GPU. 
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8 LLM MODELS 

Selecting a model for our approach would be crucial as it would determine the quality of the 

results. When building pipelines for Large Language Models using the HuggingFace 

pipeline utility, we first need to choose the kind of sequencing task we are trying to achieve. 

We will briefly discuss the three main sequencing tasks necessary for the approach in the 

RAG implementation. 

8.1 Summarization 

Generally, summarization creates a short version of the document or data provided while 

capturing all the relevant information. The goal of text summarization is to extract the most 

essential information from a text document and present it in a concise and understandable 

form.  

With the self-attention mechanism, Transformers gain a contextual understanding of 

the text corpus, which allows them to adequately identify the most critical information in the 

data provided[9]. HuggingFace provides many fine-tuned and pre-trained large language 

models that are great for handling summarization and can be easily used with the pipeline 

utility. Here are some models provided for text summarization on the HuggingFace Platform. 

• Facebook/bart-large-cnn—The BART model is pre-trained in English and fine-

tuned to CNN Daily Mail, a carefully curated dataset of over 300,000 unique news 

articles written by CNN and Daily Mail journalists. This is one of the most popular 

models on HuggingFace [5]. 

• Google/pegasus-large - The Pegasus is a sequence-to-sequence model using an 

encoder-decoder architecture similar to BART. Pegasus is pre-trained jointly on two 

self-supervised objective functions. In Masked Language Modelling (MLM), 

encoder input tokens are randomly replaced by a mask token and must be predicted 

by the encoder. The other is the Gap Sentence Generation (GSG); here also, the 

whole encoder input sentences are replaced by a second mask token and fed to the 

decoder, but which uses a casual mask to hide the future words. 
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8.2 Text Generation 

Unlike summarization, which tries to extract the most important information from an original 

document, the Large Language Model produces an entire text corpus with text generation. 

This output could answer a question, a classification task, or even some sentiment analysis 

by providing text that reflects some emotions or opinions [5]. 

When given the proper context, a Large Language Model with text generation will 

generate an entire corpus of text that fits the parameters provided; the key to the success of 

Text Generation models largely depends on the quality of the prompt and the context 

provided. Here are some text generation models provided by HuggingFace. 

• Meta-llama/Meta-Llama-3-8B—The Llama 3 model released by the Meta 

company is a family of large language models, a collection of pre-trained and fine-

tuned generative text models in 8B and 70B parameter sizes. The Llama 3 

instruction-tuned models are optimized for dialogue use cases and outperform many 

available open-source LLM models on common industry benchmarks[34]. 

• Apple/OpemELM-3B-Instruct—OpenELM, a family of Open-Efficient Language 

Models, uses a layer-wise scaling strategy to allocate parameters within each layer 

of the Transformer model efficiently, enhancing accuracy [5, 33].  

 

8.3 Text-To-Text Generation 

Text-to-text generation is a type of text generation that involves taking an input as text and 

returning text as an output. This text generation model works excellently for tasks like 

speech-to-text and language translation but can also handle summarization and text 

generation quite well.  

Text-to-text generation leverages large language models, such as GPT (Generative 

Pre-trained Transformer) models, which have been pre-trained on vast amounts of text data. 

HuggingFace also provides lots of pre-trained and fine-tuned LLMs that we can use to 

handle this task.  

• Google/flan-t5-base – The T5 (Text-to-Text Transfer Transformer) is a series of 

Large Language Models developed by Google AI. T5 is an encoder-decoder model 

pre-trained on the Colossal Clean Crawled Corpus(C4), which generally contains 
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code and textual data scraped from the Internet. It also belongs to a family of models 

with varying parameter sizes[35]. 

Model Parameters # Layers dmodel dff dkv # heads 

Small 60M 6 512 2048 64 8 

Base 220M 12 768 3072 64 12 

Large 770M 24 1024 4096 64 16 

XL 3B 24 1024 16384 128 32 

XXL 11B 24 1024 65536 128 128 

Table 1: Google T5 family of models 

 

From the table above, we understand the various parameters the Google AI team uses to 

train the T5 family of models. 

• # Layers explain the number of encoders as well as the number of decoders used 

for training the model 

• dff. It also explains the dimension of the feedforward network within each encoder 

and decoder layer. 

• dkv describes the key and value vectors used in the self-attention mechanism. 

• dmodel refers to the dimension of the embedding vectors. 

• # heads describe the number of heads in each attention block. 
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9 IMPLEMENTATION OVERVIEW 

This section of the thesis will discuss the general implementation used to achieve the results. 

As discussed in the section about the RAG architecture, the first procedure to examine is 

how to extract text from the user documents they will provide, and for that, we will use tools 

from the Langchain community. 

9.1 Extracting text from PDF documents 

We created a file processing function to extract text from user documents and take a path to 

a PDF file. We use the PyPDFLoader utility from HuggingFace to load the PDF into memory 

and then split it into the number of pages contained within it. 

Then, we use the RecursiveCharacterTextSplitter to split the data in the pages into 

shorter sentences. The file_processing function returns an array of texts extracted from the 

user PDF document. 

 

def file_preprocessing(filepath): 

    loader = PyPDFLoader(filepath) 

    pages = loader.load_and_split() 

 text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, 

chunk_overlap=150) 

return text_splitter.split_documents(pages) 

 

9.2 Vector Embedding Model 

After successfully extracting the text corpus from the user documents, we would generate 

vector embeddings from the data. This would be a high-dimensional representation of data 

in vectors that captures the semantic meaning of the text corpus. 

def get_embeddings(): 

    modelPath = "sentence-transformers/all-mpnet-base-v2" 

    model_kwargs = {'device':'cpu'} 

    encode_kwargs = {'normalize_embeddings': False} 

 

    return HuggingFaceEmbeddings( 
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        model_name=modelPath,   

        model_kwargs=model_kwargs,  

        encode_kwargs=encode_kwargs,  

    ) 

 

For our vector embedding, we define a get_embeddings function that would use an encoder-

only Transformer model to generate vector embeddings on our text corpus. Langchain 

provides the HuggingFaceEmbeddings utility that takes a few parameters to create the vector 

embeddings. The most important parameter here is the vector model we decided to use.  

Sentence_transformers provide a wide range of models we can use to generate the 

embeddings. 

9.3 Capture Embeddings in a Vector Store 

 After embedding is generated, we must store the vector embeddings in a vector database. 

At the time of writing this thesis, there is a wide range of capable vector stores available, 

and for this thesis, we will be using LanceDB, which is a very competent vector store. 

db = lancedb.connect("/tmp/lancedb") 

LanceDB works in memory, and initializing a database is straightforward, 

db.create_table("my_table", data=[{ 

        "vector": your_array_of vector embeddings 

        "text": your text corpus parsed into a string 

        "id": an ID for unique, }], 

        mode="overwrite", ) 

We can then store our vector embeddings into the vector database. 

 

9.4 User Query and Inputs 

For this thesis, we will build a user interface that allows users to add input and upload a PDF 

file, which we will use to retrieve augmented generation. This user interface would also 

expose configuration to the hyperparameters, such as the temperature, minimum token 

length, and maximum token length, and pick models that would be an excellent option for 

each use case. 
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With this user interface, we would use the Streamlit library, which contains many easy-

to-use UI components. With streamlit, I would be building a user-friendly interface that 

would be intuitive. With Streamlit, user queries and documents can be easily captured. 

9.5 Model Pipeline 

As discussed earlier, HuggingFace provides an excellent pipeline tool that can be used 

intuitively and easily. We create a transformer function to handle custom configurations and 

take external parameters like the task type, model, and temperature. 

 def transformer(): 

    chain = pipeline( 

         'task type', 

        model = reference to HuggingFace model,  

         min_length = min token length     

         max_new_tokens= max token length 

     ) 

    return HuggingFacePipeline( 

          pipeline=chain, 

          model_kwargs={"temperature": temperature for model creativity }, 

    ) 

 

9.6 Query Retrieval 

Now, with the model and our vector store in place, we can adequately retrieve the 

information we need from the vector store using a query input from the user. Hence, the user 

queries will be used on the vector store, which performs a similarity search on the vector 

representation and returns a set of vectors with the closest matching.  

For Query Retrieval, Langchain provides a great tool for retrieving embedding from the 

vector store. 

db = LanceDB.from_documents(docs, embeddings) 

retriever = db.as_retriever(search_kwargs={"k": 5}) 

docs = retriever.get_relevant_documents(user prompt) 
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This creates a memory reference that can be used to retrieve the embeddings. This retriever 

then gets the vector embeddings based on the user prompt. This prompt can then be passed 

to the Large Language Model for the sequence-to-sequence modelling. 

 

9.7 Retrieving Output from LLM 

After getting the suitable vector embeddings from the query, we can feed the LLM with 

these vector embeddings as context and the user prompt. This would then keep the context 

window needed for the LLM in check. 

 

    llm = transformer() 

    qa = RetrievalQA.from_chain_type(llm=llm, chain_type="refine",         

retriever=retriever, return_source_documents=False) 

    result = qa.invoke({"query": user prompt}) 

    return result["result"] 

 

Here, we use the transformer function defined earlier with all the configurations. Then, we 

use another tool from Langchain called RetrievalQA; with this, we can easily retrieve the 

LLM output from our prompt. 

 



TBU in Zlín, Faculty of Applied Informatics                                                                    47 

 

10 RESULTS 

When everything is put carefully together, the RAG implementation can adequately be 

tested for the results on different temperatures, models, and document lengths. 

 

Figure 12: User Interface for RAG Implementation 

 

We built a user interface that allows a user to access some LLM hyperparameters, 

input for a user query, and upload files. Hyperparameters here are passed the Transformer 

pipeline in the implementation above. Users can upload any PDF file with lots of text content 

and submit a query with the 'Make request' input, and an adequate output will be returned to 

the user. 

10.1 Test Case 1 

For this test case, I will use an article about agile methodologies. The model will be the 

Google Flan T5 LLM. This model is large, so results from the application take some time. 
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Figure 13: Test case with Google Flan T5 

 

From the image above, we realize that the temperature for the model is set to 0.6, 

with a min token count of 150 and a max token count of 300. We uploaded the Agile Guide 

and asked it, "What is Kanban?" which is stated in the document. Results output was 

“Kanban is Japanese for “visual sign” or “card”. It is a visual framework used to 

implement Agile and shows what to produce when to produce, and how much to 

produce.”. It is a framework used to implement Agile and shows what to produce when to 

produce it……”. This is a bit accurate, and some text is repeated several times. 

10.2 Test case 2 

For this test case, we reduced the temperature for the model, and the results were 

similar. This result is observed because the text content in vector representation returned 

from the vector store doesn't give the LLM much room to be creative; hence, the results are 

usually the same, irrespective of the temperature. 
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Figure 14 : Test case 2, Reduced Temperature 

 

The image above shows that results do not change from the first instance with 

reduced temperatures. 

 

10.3 Test case 3 

For this test case, we will use the Lamini Flan T5 238M model. This smaller model 

produces faster results. The temperature worked well for this model and gave varying results.  

 

 

Figure 15: Test case 3 results. 
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When the temperature is set to 0.24, the results for the prompt were, “The Kanban method 

is a tool to implement the Kanban method for projects. It is traditionally a physical 

board with magnets, plastic chips or sticky notes on a whiteboard. Online tools have 

created online Kanban boards. Kanban cards represent the work, and each card is 

placed on the board in the lane that represents the status of that work. Each card 

communicates status at a glance. Online tools have created Kanban boards. Kanban is 

a tool that can be used to implement the Kanban method in projects. Kanban is a visual 

framework used to implement Agile and show what to produce, when, and how much 

to produce. In development, work-in-progress (WIP) takes the place of inventory, and 

new work can only be added when there is a 'space' on the team visual board." 

 

Figure 16: Test results from Temperature 0.24 

 

When the temperature was set to 0.85, the results for the prompt were, “The Kanban board 

is a tool to implement the Kanban method for projects. It is traditionally a physical 

board with magnets, plastic chips, or sticky notes on a whiteboard, but online tools 

have created online Kanban boards. Kanban cards represent the work, and each card 

is placed on the board in the lane that represents the status of that work. The board 

should remain clear and easy to read, with the columns marked by phase with no 

timeframes associated. The board should remain clear and easy to read, and 

incorporating bells and whistles into the Kanban board buries the important 

information. The disadvantages of Kanban include confusion, inaccuracies, and 

miscommunication.” 
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Figure 17: Test results for Temperature 0.85 
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CONCLUSION 

Based on the research conducted in this thesis, we can adequately conclude that extracting 

data from textbooks using a custom Transformer model is feasible and yields promising 

results. Our experiments and evaluations have demonstrated the effectiveness and efficiency 

of the developed Transformer in accurately extracting information from various textbook 

sources. 

 With the ability to run Large Language Models locally, it is remarkable to use these 

models for querying tasks on custom data without relying on the large online-run LLMs. 

Local deployment ensures data privacy and security while enabling faster response times, 

making it ideal for sensitive or time-critical applications. And that, coupled with the ability 

to add your custom information to the LLM as input to retrieve meaningful output, is 

genuinely groundbreaking. 

A custom Transformer model that works in the educational context can transform 

how we approach studying in general by streamlining the arduous tasks of going through 

several pages of a book to find something significant. This can efficiently save educators 

valuable time and empower learners with faster pertinent information. Ultimately, 

incorporating customized transformers into educational frameworks enables individualized 

learning, lowers access hurdles, and creates a more dynamic and inclusive learning 

environment ready to accommodate students' changing demands in the digital era. 

In conclusion, developing and utilizing a custom transformer for educational text 

extraction marks a significant advancement in educational technology. Our research 

showcases its potential to streamline knowledge acquisition, improve learning outcomes, 

and foster inclusivity. Continuing innovation in natural language processing is vital to 

enhance these tools further and address evolving educational needs. By leveraging custom 

transformers, we can empower learners and educators, paving the way for a more efficient 

and effective educational landscape globally. 
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