

Customized Transformer Model for Efficient
Extraction of Information from Textbooks

John Tawiah

Master's thesis
2024

Name of the student: John Akowuah Tawiah

Thesis topic: Custom Transformer Model for Effective Text Extraction From

Textbooks

Name of the student:

Thesis topic:

I hereby declare that:

• I understand that by submitting my Master´s thesis, I agree to the publication

of my work according to Law No. 111/1998, Coll., On Universities and on changes

and amendments to other acts (e.g. the Universities Act), as amended by subsequent

legislation, without regard to the results of the defence of the thesis.

• I understand that my Master´s Thesis will be stored electronically in the

university information system and be made available for on-site inspection, and that a

copy of the Master´s Thesis will be stored in the Reference Library of the Faculty of

Applied Informatics, Tomas Bata University in Zlín, and that a copy shall be deposited

with my Supervisor.

• I am aware of the fact that my Master´s Thesis is fully covered by Act No.

121/2000 Coll. On Copyright, and Rights Related to Copyright, as amended by some

other laws (e.g. the Copyright Act), as amended by subsequent legislation; and

especially, by §35, Para. 3.

• I understand that, according to §60, Para. 1 of the Copyright Act, TBU in Zlín

has the right to conclude licensing agreements relating to the use of scholastic work

within the full extent of §12, Para. 4, of the Copyright Act.

• I understand that, according to §60, Para. 2, and Para. 3, of the Copyright Act,

I may use my work - Master´s Thesis, or grant a license for its use, only if permitted

by the licensing agreement concluded between myself and Tomas Bata University in

Zlín with a view to the fact that Tomas Bata University in Zlín must be compensated

for any reasonable contribution to covering such expenses/costs as invested by them

in the creation of the thesis (up until the full actual amount) shall also be a subject of

this licensing agreement.

• I understand that, should the elaboration of the Master´s Thesis include the use

of software provided by Tomas Bata University in Zlín or other such entities strictly

for study and research purposes (i.e. only for non-commercial use), the results of my

Master’s Thesis cannot be used for commercial purposes.

• I understand that, if the output of my Master´s Thesis is any software

product(s), this/these shall equally be considered as part of the thesis, as well as any

source codes, or files from which the project is composed. Not submitting any part of

this/these component(s) may be a reason for the non-defence of my thesis.

I herewith declare that:

• I have worked on my thesis alone and duly cited any literature I have used. In

the case of the publication of the results of my thesis, I shall be listed as co-author.

• That the submitted version of the thesis and its electronic version uploaded to

IS/STAG are both identical.

In Zlín;

dated:

 Student´s Signature

ABSTRAKT

Se vznikem a popularitou velkých jazykových modelů (LLM) bylo získávání

informací vždy náročné. Tyto LLM jsou však trénovány na textovém korpusu

internetu a trénovací data mají datum uzávěrky; proto jsou ve většině případů data při

vydání modelu zastaralá. Tato práce by zkoumala možnost výzkumu řešení, které

uživatelům umožní přístup ke stručným informacím z rozsáhlého korpusu, jako je

výuková učebnice. Navrhovaným řešením je implementace aplikace Retrieval

Augmentation Generation umožňující uživatelům pracovat s LLM pomocí jejich

soukromých dat. Práce bude také zkoumat možnost použití tohoto přístupu lokálně

namísto používání rozsáhlých a těžkopádných modelů online. Výsledky ukázaly, že

tento přístup je proveditelný a funguje dobře pro různé učebnice bez ohledu na jejich

velikost, a také výstupní výsledky jsou dobré. Tato práce poskytuje cenné poznatky o

tom, jak architektura funguje, a poskytuje správné nástroje pro implementaci tohoto

řešení.

Klíčová slova: LLM, RAG, textový korpus

ABSTRACT

With the emergence and popularity of Large Language Models (LLM), obtaining

information has always been challenging. However, these LLMs are trained on the

text corpus of the Internet, and the training data has a cut-off date; hence, in most

cases, the data is out of date when the model is released. This thesis would investigate

the possibility of researching a solution that allows users to access concise information

from a large corpus like an educational textbook. The proposed solution is to

implement a Retrieval Augmentation Generation application enabling users to work

with an LLM using their private data. The thesis will also investigate the possibility

of using this approach locally instead of using vast and cumbersome models online.

The results demonstrated that this approach is feasible and works well for different

textbooks irrespective of their size, and output results are also good. This thesis

provides valuable insights into how architecture works and provides the right tools to

implement this solution.

Keywords: LLM, RAG, text corpus,

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my thesis advisor, Assoc. Prof. Michal

Pluháček, PhD, for their unwavering guidance, support, and invaluable insights

throughout the entire process of researching and writing this thesis. Their expertise

and encouragement have been instrumental in shaping this work.

I am also very grateful to Prof. Ing Roman Šenkeřík, PhD, for suggesting this topic

for my thesis and believing in me to see it through.

I am also grateful to all the staff and teachers, Ing Adam Viktorin, PhD, and Prof. Ing.

Zuzana Komínková Oplatková, for their insightful courses and seminars, which gave

me the technical know-how to approach this thesis.

Special thanks are due to the Faculty of Informatic (FAI) and all the staff for providing

the necessary resources and environment conducive to academic inquiry.

I extend my heartfelt appreciation to my family for their endless love, encouragement,

and understanding during this demanding period. Their unwavering belief in my

abilities has been a constant source of strength.

To my friends and colleagues who provided moral support and encouragement, I am

profoundly grateful.

Lastly, I acknowledge the countless researchers, scholars, and authors whose work

laid the foundation for this study. Their contributions have been indispensable in

shaping my understanding of the subject matter.

This thesis would not have been possible without the support and contributions of all

those mentioned above. Thank you for being part of this significant milestone in my

academic journey.

CONTENTS

INTRODUCTION ..10

THEORY ..12

I TEXT SUMMARIZATION ..13

1.1 NATURAL LANGUAGE PROCESSING ..13

1.1.1 RECURRENT NEURAL NETWORK ...13

1.2 PORTABLE DOCUMENT FORMAT (PDF)14

1.2.1 TEXT EXTRACTION..15

1.3 TRADITIONAL METHODS FOR TEXT EXTRACTION15

II SEQUENCE MODELING TECHNIQUES ..17

2.1 RECURRENT NEURAL NETWORK ...17

2.1.1 LONG SHORT-TERM MEMORY (LTSM) ..18

III HISTORY OF TRANSFORMER MODEL ..19

3.1 MACHINE LEARNING ALGORITHMS..20

3.2 WHAT IS THE TRANSFORMER MODEL......................................20

3.2.1 COMPONENTS OF THE TRANSFORMER MODEL...................................21

IV EMERGENCE OF LARGE LANGUAGE MODELS24

4.1 IMPACT OF LARGE LANGUAGE MODELS.................................25

4.2 POPULAR LARGE LANGUAGE MODELS25

4.2.1 GENERATIVE PRETRAINED TRANSFORMER (GPT).............................26

4.2.2 FLAN T5 ..26

4.2.3 BIDIRECTIONAL ENCODER REPRESENTATIONS FROM TRANSFORMERS

 27

4.2.4 LAMDA ..27

4.2.5 PALM ...27

4.3 IMPORTANCE OF DOMAIN-SPECIFIC CUSTOMIZATION28

V VECTOR DATABASE ..29

ANALYSIS..31

VI IMPLEMENTATON ARCHITECTURE ...32

6.1 RETRIEVAL AUGMENTED GENERATION32

6.1.1 COMPONENTS OF THE RAG ARCHITECTURE33

VII TOOLS AND SYSTEMS FOR IMPLEMENTATION35

7.1 PYTHON ..35

7.2 LANGCHAIN ..35

7.3 THE HUGGING FACE PLATFORM ..35

7.4 VECTOR EMBEDDINGS..37

7.5 STREAMLIT ...37

7.6 LANCE DB ..38

7.7 HUGGING FACE PIPELINE ...38

VIII LLM MODELS ..40

8.1 SUMMARIZATION ...40

8.2 TEXT GENERATION ..41

8.3 TEXT-TO-TEXT GENERATION ..41

IX IMPLEMENTATION OVERVIEW ..43

9.1 EXTRACTING TEXT FROM PDF DOCUMENTS43

9.2 VECTOR EMBEDDING MODEL..43

9.3 CAPTURE EMBEDDINGS IN A VECTOR STORE44

9.4 USER QUERY AND INPUTS..44

9.5 MODEL PIPELINE ..45

9.6 QUERY RETRIEVAL ..45

9.7 RETRIEVING OUTPUT FROM LLM ..46

X RESULTS ...47

10.1 TEST CASE 1 ..47

10.2 TEST CASE 2 ..48

10.3 TEST CASE 3 ..49

CONCLUSION...52

BIBLIOGRAPHY ..53

LIST OF ABBREVIATIONS..56

LIST OF FIGURES ...57

LIST OF TABLES ...58

APPENDICES ..59

TBU in Zlín, Faculty of Applied Informatics 10

INTRODUCTION

Textbooks remain essential sources of instructional material in the modern period, as digital

information has wholly transformed access to knowledge. However, textbook information's

sheer volume and diversity are severely needed to improve adequate comprehension and

extract essential ideas. Conventional techniques for extracting information from textbooks

mainly rely on manual work, which can be tedious, error-prone, and time-consuming.

Current automated methods, including keyword or rule-based systems, could better

handle textbook material's complex structures and different formats. Thus, there is an urgent

need for sophisticated Natural Language Processing (NLP) systems that can quickly,

accurately, and adaptively extract relevant information from textbooks automatically.

This thesis will explore the meaning and significance of a custom transformer model . In

the last couple of years, there have been advancements in research on Machine Learning,

especially with Natural Language Processing (NLP) and Recurrent Neural Networks, which

had been initially used to process and analyze large chunks of unstructured data. As most

data available to users and businesses in general are large amounts of unstructured, text-

heavy data, with NLP, we can, to some extent, analyze and process so-called unstructured

data [1, 2].

Using NLPs, we have built valuable systems like chatbots and voice assistants. NLPs

work by adequately pre-processing the unstructured data and turning it into a format a

Machine Learning model could understand and generate associations[3]. NLP gave rise to

the Transformer architecture, which gained momentum rapidly when the paper based on the

multi-head attention mechanism “Attention Is All You Need” was published in 2017 [4].

The Transformer is a Large Language Model (LLM), a Deep Learning model trained on

an immense amount of data, making it capable of understanding and generating natural

language to perform various tasks. Transformers have rapidly become the dominant

architecture for NLU, surpassing alternative neural models such as convolutional and

recurrent neural networks in performing tasks that help with natural language understanding

and natural language generation [5].

The Transformer model gained popularity with the release of OpenAI’s Generative Pre-

Trained Transformer (GPT), which at that time could do tasks we never imagined could be

done. With the release of GPT-3.5, which was trained on data scraped from the Internet up

to April 2023. GPT-3.5 made it easy to quickly gain any information readily available online

TBU in Zlín, Faculty of Applied Informatics 11

without going through multiple websites and pages hunting for said information [6].

However, it was limited to its training data alone; hence, the model was unavailable for

newer or custom information. The inability to grasp domain-specific nuances hindered the

accuracy and relevance of the generated content within these areas.

Hence, my contribution to the body of work before me was focused on creating and

evaluating a bespoke language model (LLM) transformer tailored to a particular domain. We

will discuss the limitations of these generic large language models and solutions to mitigate

them. The principal aim is to investigate the feasibility of allowing users to query a large

language model using their custom data, making extracting information from textbooks and

articles easy.

We would also investigate the various large language models available to determine

which are suited to the task at hand. Domain-specific customization is critical since it can

improve performance, accuracy, and relevance in certain activities, leading to breakthroughs

in various fields, including legal, medical, financial, and others.

TBU in Zlín, Faculty of Applied Informatics 12

 I. THEORY

TBU in Zlín, Faculty of Applied Informatics 13

1 TEXT SUMMARIZATION

A summary is generally a shortened form of a long paragraph or sentence. Text

summarization compresses the source text into a diminished version, conserving its

information content and overall meaning[7]. Most data produced in our day-to-day lives are

usually unstructured; to extract insights, we need to summarize the data and gain the valuable

information we seek. Since manual text summarization is time-consuming and expensive,

hence the automation of text summarization[2].

In this era of big data, automating this process has become more urgent than ever,

and much research has gone into it. Text summarization automation has historically been the

focus of the machine learning fields of natural language processing (NLP) and recurrent

neural networks (RNN). These disciplines have made great strides in automating text

summarization.

1.1 Natural Language Processing

Natural Language Processing is an aspect of Artificial Intelligence that helps computers

understand, interpret, and utilize human language. NLP makes it possible for computers and

humans to converse using human language. NLP disciplines, till recently, have been the go-

to area for handling text summarization tasks.[2, 3]. Natural Language Processing uses

various pre-processing processes to clean and normalize text data, such as removing

punctuation, converting text to lowercase, and tokenizing sentences into individual words or

phrases.

Additionally, stemming and lemmatization help reduce words to their base forms to

improve analysis accuracy. Once pre-processed, the text is transformed into numerical

representations through word embeddings or vectorization, enabling machine learning

models to understand and work with the data. These processed representations are then fed

into NLP algorithms, which utilize statistical methods, neural networks, or rule-based

approaches to perform tasks such as named entity recognition, part-of-speech tagging, and

syntactic parsing, ultimately enabling computers to comprehend and generate human

language.[2]

1.1.1 Recurrent Neural Network

Natural Language Processing had issues with the memory of previous tokens, and with

Recurrent Neural Network, we found a solution to this problem. RNN, a class of supervised

TBU in Zlín, Faculty of Applied Informatics 14

machine learning models with more than one feedback loop[8], is also artificial intelligence

designed to aid automatic text summarization. It effectively handled sequential data by

retaining memory of past inputs.

The RNN's architecture allows it to process various sequences of differing lengths.

At each step, an RNN takes an input vector and an internal hidden state vector representing

information from previous steps. This structure enables it to capture context and patterns

over time, making it suitable for language modelling tasks.

Nevertheless, understanding long-term dependencies is challenging for conventional

RNNs due to vanishing or expanding gradient issues. In response, several variations were

created, such as the Gated Recurrent Unit (GRU) and Long Short-Term Memory (LSTM),

which use gating mechanisms to control information flow and more accurately record long-

range relationships, increasing their efficacy for a variety of sequential activities [8, 9].

Figure 1: Recurrent Neural Network

1.2 Portable Document Format (PDF)

The Portable Document Format, popularly known as PDF, was initially developed by Adobe

Inc. in Inc. 90[10]. PDFs are one of the most used file formats for distributing text and image

information on printed paper, including eBooks, forms, and paper slips. They allow users to

view, print, copy, and share documents easily, saving time and paper.

PDFs are a necessary tool as most of the textbooks available are in PDF format, so

understanding how a PDF works would benefit this study. To create a PDF, you need a PDF

editor, which allows you to create content that can be parsed in PDF format. You also need

a PDF reader to read the data from a PDF. For the scope of this research, we will focus on

the PDF reader and some tools we can use to extract data from a PDF.

TBU in Zlín, Faculty of Applied Informatics 15

1.2.1 Text Extraction

Textual data is necessary to develop a custom large language model, and textual information

is usually stored in a Portable Document Format (PDF). Hence, we need to understand how

to extract all the required information from the PDF without losing the data's integrity.

Its widespread availability across multiple digital platforms and domains makes it a

preferred medium for large language model (LLM) evaluation and training. Textual data

provides a rich tapestry of linguistic nuances and semantic complexity, making it an

excellent substrate for investigating the subtleties of human language and cognition. Textual

data can range from social media snippets to academic essays to textbooks [7, 9]. Because

of its organized structure and computational ease of use, many analytical methods may be

used, enabling scholars and professionals to find hidden trends and extract insightful

information from a large text corpus[9].

Furthermore, by transforming static documents into machine-readable formats, text

extraction from PDFs expedites workflows in document processing. It makes it possible for

automated text-processing activities like document classification, summarization, and

translation. Text extraction techniques make it possible for PDF material to be seamlessly

integrated into a variety of apps and systems, increasing productivity and decreasing human

labour [7, 9]

1.3 Traditional Methods for Text Extraction

Conventional text extraction methods include a range of approaches, such as PDF

parsing libraries, regex-based parsing, and optical character recognition (OCR), used to

extract text content from documents. We will briefly look at what these so-called tools do,

but this study will focus on PDF parsing libraries that enable us to extract information from

PDFs adequately.

• Optical Character Recognition (OCR) algorithms examine how characters are

represented visually to identify and translate them into text that machines can read.

Character segmentation, feature extraction, and classification are steps in this process

[7, 11]. Over time, advances in OCR technology have made it possible to extract text

from complex and damaged documents accurately. It's commonly employed in

TBU in Zlín, Faculty of Applied Informatics 16

digitizing printed documents, archival tasks, and making scanned documents

searchable[7].

• Regex-Based Parsing - Regular expressions, or regex, are used in regex-based

parsing to recognize and extract text patterns from documents. This method matches

text sequences or structures inside the document using predetermined patterns or

rules [7]. You can modify regex patterns to capture other elements, including phone

numbers, email addresses, dates, or keywords. Text extracted from documents with

complicated formatting or irregular layouts may be complex for regex-based parsing,

notwithstanding its effectiveness in extracting organized data or specific information

formats.

Figure 2: Regex Based Parsing

• PDF Parsing Libraries—These are generally software tools designed to read PDFs

and help parse the PDF's content into other formats. Such a format would enable us

to feed our large language model with the necessary data from the PDF. In recent

times, the Langchain community has provided excellent tools that can be used to

adequately parse the information from the PDF into any machine-readable format.

TBU in Zlín, Faculty of Applied Informatics 17

2 SEQUENCE MODELING TECHNIQUES

There were prior studies in this area before establishing Large Language Models, which are

sequence modelling techniques. Sequence modelling started with Natural Language

Processing and was made better with Recurrent Neural Networks. Sequence models are the

ability of a model to interpret, make predictions about or generate any sequential data[8].

2.1 Recurrent Neural Network

Recurrent Neural Networks (RNNs) (RNNs) are particularly suited for sequence modelling.

They process sequential data by maintaining an internal state. This mechanism helps RNN

models remember the past, and decisions are influenced by what they did in the past by

learning from prior inputs[8].

Figure 3: Single RNN cell.

 RNNs are called recurrent because they perform the same task on every element in

the sequence, which is usually a text stream. Due to its cyclical nature, RNN models have a

short-term memory; hence, if the sequence is long enough, you will have a hard time carrying

information from earlier time steps to later ones; this phenomenon is known as the Vanishing

Gradient. On the other hand, if gradients rush to large values (>1), they get larger and

eventually blow up and crash the model. This is the so-called Exploding Gradient[12]

TBU in Zlín, Faculty of Applied Informatics 18

2.1.1 Long Short-Term Memory (LTSM)

LTSM is an improved version of the regular RNN. It was designed to help RNN models

capture long-term dependencies in sequential data. The core idea is to help the model easily

remember information for long periods and the default behaviours[12].

Figure 4: Long Short-Term Memory Architecture.

 With LTSM, the model's cell state runs through the architecture like a conveyor belt

with small, minor linear interactions. Hence, information flows along easily and remains

unchanged. It uses carefully regulated gates to remove and add information to the cell state.

TBU in Zlín, Faculty of Applied Informatics 19

3 HISTORY OF TRANSFORMER MODEL

The discipline of Natural Language Processing (NLP), which has long been of interest in

artificial intelligence, is where transformer models have their roots [3, 13]. Natural language

processing (NLP) enables tasks like question answering, sentiment analysis, and translation

by allowing computers and humans to communicate through natural language.

To analyze and comprehend text, early methods of NLP mainly depended on rule-

based systems, in which linguistic rules were manually created. Unfortunately, the subtleties

and complexity of natural language were too much for these algorithms to manage, which

resulted in only patchy success[3, 14].

The development of statistical techniques in NLP in the latter half of the 20th century

brought about a dramatic change. Using methods like Probabilistic Context-Free Grammars

(PCFGs) and Hidden Markov Models (HMMs), researchers were able to statistically model

language and obtain better results in tasks like machine translation and speech detection [3,

14].

Figure 5: An example of Probabilistic Context-Free Grammar

TBU in Zlín, Faculty of Applied Informatics 20

Figure 6: An example of the Hidden Markov Model

3.1 Machine Learning Algorithms

The discipline of NLP was significantly expanded with the development of machine learning

methods, especially neural networks. Recurrent Neural Networks (RNNs) have become

highly effective models for sequence modelling applications, opening new avenues for more

complex language creation and comprehension. We as humans do not start thinking from

scratch every second, and our understanding of sentences or paragraphs is based on our

understanding of previous words.[15] Traditional Neural Networks cannot do this; thus, it

has been a major shortcoming. RNNs were developed to address this issue[16].

 RNNs are a family of artificial neural networks that are especially helpful for tasks

like time series analysis, speech recognition, natural language processing (NLP), and more

since they are made to simulate sequence data efficiently. Recurrent neural networks (RNNs)

are unique among neural network types because of their capacity to process inputs

sequentially while preserving internal state or memory[3, 15].

3.2 What Is the Transformer Model

In machine learning and natural language processing (NLP), the Transformer model,

first presented by Vaswani et al. in 2017, marks a paradigm change. Since then, this

TBU in Zlín, Faculty of Applied Informatics 21

groundbreaking architecture has been the basis for numerous cutting-edge models in various

fields, such as sentiment analysis, text generation, language translation, and more [4]. The

transformer model has given rise to modern AI tools like ChatGPT and many pre-trained

and fine-tuned Large Language Models. Some of the Transformer's salient features are self-

attention mechanisms, positional encodings, multi-head attention, feedforward neural

networks, and an encoder-decoder architecture [4]. The Transformer model has formed the

basis for many cutting-edge NLP models because it can efficiently capture local and global

relationships while processing whole sequences in parallel. It has dramatically advanced the

science of natural language processing (NLP) by demonstrating extraordinary performance

in tasks like question answering, text summarization, and machine translation [4].

Figure 7: Transformer Model Architecture

3.2.1 Components of the Transformer Model

• Self-Attention Mechanism - The self-attention mechanism is the core of the

Transformer architecture. It is a crucial component that allows each word in the input

sequence to pay attention to and consider every other word. This allows for the

efficient capture of local and global dependencies [4, 14, 17]. By allocating weights

TBU in Zlín, Faculty of Applied Informatics 22

to distinct words according to their relevance and importance, this system provides a

thorough knowledge and depiction of the contextual interactions between words at

different granularities, ranging from terms that are close to terms that are far away.

The self-attention mechanism is essential to boosting the model's ability to identify

complicated patterns and correlations in textual material and improve its overall

performance in various scenarios by enabling such sophisticated and nuanced

information processing [4].

• Positional Encoding - The Transformer model uses positional encoding to include

positional information into input sequences. Appending sine and cosine functions

with varying frequencies and phases to input embeddings compensates for the

inherent order understanding deficit in parallel processing [4]. This enables the

model to recognize the sequential nature of a sequence and differentiate between

points within it. The Transformer can analyze sequences efficiently in tasks like

natural language processing because of positional encoding[17–19].

• Encoder and Decoder - The encoder-decoder architecture is a critical component of

sequence-to-sequence models like the Transformer, whose popularity has increased

dramatically in recent years. The encoder in this design is in charge of carefully

processing the input sequence to provide contextual representations that contain

essential information [4]. As such, the decoder uses these representations to construct

the output sequence carefully, guaranteeing a precise and consistent outcome.

Moreover, this architecture is widely applied to tasks such as question answering,

text summarization, and machine translation, allowing models to manage and

produce sequences of different lengths with impressive efficiency [4, 20].

• Multi-Head Attention - A critical feature of transformer models is multi-head

attention, which allows the model to focus on several parts of the input sequence

simultaneously, improving the model's capacity to identify complex correlations in

the data [4]. The self-attention mechanism is applied repeatedly in parallel,

increasing computational efficiency while simultaneously allowing the model to

extract more specific and subtle information from the input. The model may provide

richer representations of the input by using several attention heads, making it easier

to comprehend and evaluate the underlying patterns and dependencies in the data.

TBU in Zlín, Faculty of Applied Informatics 23

• Feedforward Neural Networks—Besides the self-attention layers, feedforward

neural networks (FFNs) (see Feed Forward Neural Network) are also part of the

Transformer design. These FFNs are essential in adding additional nonlinearities and

transformations to the representations that the model learns.

Figure 8: Feed Forward Neural Network

TBU in Zlín, Faculty of Applied Informatics 24

4 EMERGENCE OF LARGE LANGUAGE MODELS

The Transformer Model forms the base architecture for training Large Language Models

[20, 21]. A notable development in natural language processing (NLP) is the advent of Large

Language Models (LLMs). These Transformer-based models are trained on copious

volumes of textual input to acquire rich linguistic representations. During pre-training,

LLMs use unsupervised learning objectives, including language modelling or masked

language modelling, like GPT (Generative Pre-trained Transformer) and BERT

(Bidirectional Encoder Representations from Transformers). After undergoing pre-training,

LLMs can be optimized for downstream tasks, leading to cutting-edge results on various

sequencing tasks [17, 20].

With the advent of large-scale pre-training in natural language processing (NLP),

models such as the GPT (Generative Pre-trained Transformer) series and BERT

(Bidirectional Encoder Representations from Transformers) series proved to be remarkably

effective [22, 23]. These models acquired sophisticated language representations through

pre-training, identifying complex patterns and semantic correlations in the data. The models

gained a profound understanding of language during this pre-training phase, which helped

them perform well in various downstream NLP tasks, such as text generation, question

answering, and language understanding. The GPT series and BERT's success demonstrated

the value of extensive pre-training in enhancing LLM and opening the door to a new era of

language generation and processing [14, 20].

Significant progress has been made in several natural language processing (NLP)

problems thanks to large language models, or LLMs. Because LLMs can recognize complex

linguistic patterns and semantic linkages, they perform better in language comprehension

tasks, including text categorization, named entity recognition, and sentiment analysis [14,

17, 21]. Text sequencing activities such as story generation, dialogue systems, and content

production are greatly aided by LLMs such as GPT, which generate coherent and

contextually appropriate text. LLMs also help with information retrieval and document

summarization jobs by efficiently condensing vast amounts of text into summaries.

TBU in Zlín, Faculty of Applied Informatics 25

4.1 Impact of Large Language Models

LLMs have had immense applications since their introduction in the last couple of years.

Here are some critical areas in which they have impacted.

• Advancement of Research - Advancements in model architectures, training

methodologies, and transfer learning have propelled research in Large Language

Models (LLMs). Beyond NLP, LLMs have stimulated research into computer vision

and audio processing. Bias and fairness are two ethical issues that are actively

addressed. Transfer learning makes it possible to fine-tune LLMs for tasks, while

new architectures like XLNet and RoBERTa increase performance and

efficiency[24, 25]. Efficient scaling is made possible by training methods like

gradient accumulation and distributed training. LLM research keeps advancing AI,

influencing the direction of future multidisciplinary applications and natural

language processing [13].

• Model Architecture—Large Language Models (LLMs) have inspired new model

architectures to improve performance, scalability, and efficiency. By introducing

novel attention mechanisms, parameter sharing, and task formulations, variants such

as XLNet, RoBERTa, and T5 push the frontiers of natural language processing[22].

• Applications beyond NLP - The use of LLMs in domains other than the typical

natural language processing (NLP) has attracted attention, including computer

vision, audio processing, and reinforcement learning. By utilizing their strong

representation learning skills, LLMs are modified to handle a variety of modalities

in addition to text [6, 17, 23]. Cross-modal pre-training strategies are created to

facilitate knowledge transfer between different domains and allow LLMs to learn

joint representations across several modalities. In computer vision, for example,

LLMs can be trained to comprehend images and the accompanying captions,

allowing them to perform jobs like labelling pictures and answering questions

visually. LLMs can also evaluate audio signals and the accompanying transcripts or

descriptions in audio processing [2, 25].

4.2 Popular Large Language Models

The following models have revolutionized several language tasks and made a substantial

contribution to the field of natural language processing: The following models have

TBU in Zlín, Faculty of Applied Informatics 26

revolutionized several language tasks and made a significant contribution to the field of

natural language processing:

4.2.1 Generative Pretrained Transformer (GPT)

GPT is a sizable language model that OpenAI created. The initial version was made available

in 2018. It can produce logical, contextually relevant phrases by guessing the word that will

come after a given sequence of words. It has been trained on a wide variety of internet text.

With 175 billion parameters, GPT-3 was the first model to generate highly realistic, human-

like text and code based on subtle instructions. It was released in 2020[6].

OpenAI released ChatGPT in late 2022; it was improved using RLHF and built on

top of GPT 3.5. ChatGPT's innovative capacity to produce human-like outputs in response

to natural language cues was impressive. OpenAI's most powerful model, GPT-4, was

released in April 2023 and may be used directly by API or as part of the ChatGPT service.

GPT-4 significantly outperforms[6].

4.2.2 FLAN T5

Flan T5 is an open-source, sequence-to-sequence, large language model that can be used

commercially. Google published this model, which has been fine-tuned for many tasks. This

architecture uses an encoder-decoder structure from the “Attention is All You Need” paper

released in 2017. T5 was trained with an extensive 750 GB corpus of text known as the

Colossal Clean Crawled Corpus (C4).

Flan T5 is mainly used for chat and dialogue summarization and text classification.

It can be easily downloaded from the Hugging Face code repository.

Figure 8: Flan T5 model.

TBU in Zlín, Faculty of Applied Informatics 27

4.2.3 Bidirectional Encoder Representations from Transformers

Google created the model known as BERT or Bidirectional Encoder Representations from

Transformers. BERT examines both sides of a word, unlike GPT, which only looks at the

context to the left of a word. Using a bidirectional approach, BERT can better comprehend

a word's context, enhancing its ability to understand and generate language. BERT has been

instrumental in several NLP tasks, including question-answering and linguistic inference. It

has been an essential component of the Google search engine for several years[3, 6].

4.2.4 LaMDA

Google created a sizable language model called LaMDA. It was an early concept that could

have free-flowing discussions on any subject, carry over the context of a debate, and consider

information from earlier exchanges. Although LaMDA was not made available to the public,

its ability to communicate with users like a human grabbed attention[3]. Blake Lemoine, a

Google engineer who collaborated extensively with LaMDA, thought the system was aware.

However, the majority of AI professionals and Google themselves refuted his assertion.

4.2.5 PaLM

Google's AI intelligence chatbot, Bard, is powered by the transformer-based Pathways

Language Model (PaLM), which has 540 billion parameters. This model is trained on several

TPU 4 Pods, Google's custom machine-learning hardware, and is intended to handle

reasoning tasks such as coding, math, categorization, and question-answer activities. The

PaLM paradigm divides complex jobs into smaller, more manageable subtasks [3].

The Pathways research project at Google aimed to create a master model suitable for

various applications, giving rise to the moniker PaLM. PaLM has been refined through

several versions. While Sec-PaLM is made for cybersecurity deployment and helps with

faster threat analysis, Med-PaLM 2 is suited for the life sciences and medical data[3, 6].

The models discussed here are primarily generic models trained on data accessible on

the Internet and that only. For the focus of my study, we will discuss how to extend the

capability of large language models to enable users to make queries about their custom data

or data inaccessible on the Internet.

TBU in Zlín, Faculty of Applied Informatics 28

4.3 Importance of Domain-Specific Customization

The domain-specific customization of Large Language Models (LLMs) is necessary since

specialized areas have specific linguistic requirements. Despite their proficiency in

recognizing broad language patterns, generic Large Language Models (LLM) often need

help comprehending context, semantic nuances, and domain-specific jargon. Language

usage is highly context-dependent and specializes in fields like academia, law, health, and

finance, necessitating specialist solutions for accurate text generation and interpretation.

Domain-specific customization helps language managers (LLMs) better understand

domain-specific conventions, interpret complex jargon, and produce content appropriate for

the context by enabling them to adapt to the different language environments of different

domains [22]. Researchers may give pre-trained LLM structures the domain knowledge

required to succeed in particular tasks by fine-tuning them on domain-specific datasets. This

results in more effective information extraction from domain-specific data.

TBU in Zlín, Faculty of Applied Informatics 29

5 VECTOR DATABASE

A vector database stores high-dimensional data that traditional DBMS cannot characterize

[26]. Also known as vector similarity search databases or vector stores, vector databases are

specialist data management systems that efficiently store, retrieve, and query high-

dimensional vectors. Applications in machine learning, artificial intelligence, computer

vision, and natural language processing are especially well-suited for these databases[27].

Vector databases are essential in building a custom LLM as they help users store their

text corpus as an embedding in the database. The database can then be queried using a

similarity search to retrieve the relevant information. Here is the basic structure of a vector

database.

• Data Model - Vector databases employ an efficient representation of high-

dimensional vectors that support a variety of data kinds, including textual

embeddings, numerical values, and categorical attributes. As building blocks, vectors

encode data points in a high-dimensional space, offering the choice of dense or sparse

representations. [26, 27]Large-scale datasets from the machine learning, computer

vision, and natural language processing fields can be efficiently stored, retrieved, and

analyzed because of this model's flexible modification and optimization capabilities,

which are helpful for applications like recommendation systems and similarity

search.[27]

• Indexing Structures - Utilizing specialized algorithms, vector databases' indexing

structure effectively organizes and retrieves vectors based on similarity. Graph-based

indexes for approximate nearest neighbour search, hashing algorithms like locality-

sensitive hashing (LSH), and tree-based structures like k-d trees and ball trees are

common approaches. These structures facilitate activities like nearest neighbour

searches and similarity searches in high-dimensional spaces, optimizing query

processing by reducing search space and enabling quick retrieval of vectors like a

given query[28, 29].

• Query Processing - Finding similar vectors to a given query vector is a necessary

step in the querying process in vector databases. Using metrics like cosine similarity

and Euclidean distance, this procedure assesses how far or similar the query vector

is to the stored vectors. Using sophisticated methods such as approximate closest

neighbour search, query processing is optimized to retrieve vectors under a given

TBU in Zlín, Faculty of Applied Informatics 30

similarity threshold effectively. To improve speed and scalability for activities like

nearest neighbour queries and similarity search in high-dimensional spaces, query

optimization procedures can involve index selection and query pruning [26, 27].

TBU in Zlín, Faculty of Applied Informatics 31

II. ANALYSIS

TBU in Zlín, Faculty of Applied Informatics 32

6 IMPLEMENTATON ARCHITECTURE

In this section, we will discuss the approach to achieving the desired results. We will discuss

the general architecture of the approach as well as the tools and other procedures used to

achieve the desired results.

6.1 Retrieval Augmented Generation

Large language Models take input from sequential data, and this data is usually limited

depending on the model available. These models have a finite number of tokens they can

take, and any amount above the limit would break the model. Retrieval Augmented

Generation, commonly known as RAG, is an Artificial Intelligence framework for retrieving

facts from an external knowledge base to aid Large Language Models in attaining the most

accurate, up-to-date information and give users insight into the LLM generative

processes[30].

 RAG is currently the best-known tool for grounding LLMs on the latest and most

verifiable information and lowering the cost of constantly retraining and updating them.

Fine-tuning a model is another alternative to consider, and it involves adjusting the weight

of a model, but that can only work for a specific dataset, and any new data needed would

imply retraining the whole model all over again. However, retraining the model is

[31]unnecessary with a RAG implementation [31]. We would go with an RAG

implementation for my contribution to this body of work. Here is the general architecture of

the Retrieval Augmented Generation implementation, which we will discuss briefly.

TBU in Zlín, Faculty of Applied Informatics 33

Figure 9: RAG Architecture

The RAG Architecture helps to fix our issue with the context window of large language

models by first extracting all the text data from our document into a computer-readable

format, then creating vector embeddings from the data generated using an encoder-only

Transformer model like BERT, and then storing these embeddings in a vector database.

The user makes a query, and the vector store uses the query to perform a similarity

search to retrieve the relevant vector embeddings. These retrieved embeddings, known as

the Context Query Prompt, are fed to the large language model, and the user queries to

retrieve an output from the large language model. We will discuss in detail the various

components of the general architecture of the RAG implementation.

6.1.1 Components of the RAG Architecture

• Documents refer to our data source, which we will use for our RAG implementation.

This data source would be a text document in PDF format. These documents are the

knowledge foundation the RAG system would draw to generate responses [31, 32].

Here, we would use various publicly available text extraction tools to extract the data

we need from user documents.

• Embedding Model—Encoder-only Transformer models like BERT return vector

embeddings as output. This embedding model transforms the text from each

document into a series of numerical vectors, effectively creating a high-dimensional

representation of the papers' content. This vector embedding encodes the text

TBU in Zlín, Faculty of Applied Informatics 34

corpus's semantic meaning, allowing the system to understand and manipulate the

information from the documents at a conceptual level [32].

• Vector Store - As discussed earlier, vector stores are necessary to execute the RAGs.

The vector embeddings are stored in the vector database, which is designed to handle

vector embeddings. Vector stores act like databases and provide methods to

manipulate the data in the database like other regular databases. Vector stores are

optimized for similarity searches, allowing them to quickly sift through millions of

vectors to find those that closely match an output [32]. Vector stores store the vector

embeddings, and the original text corpus is used to generate the embeddings, making

it easy to query for information from the vector store, which then returns the vector

embeddings like the user query.

• Query—When a user inputs a query, the system converts it into vector form, utilizing

the same embedding model used to process the documents. This query vector

encapsulates the user's intent and the semantic nuances of their request.

• Retrieval – The vector store compares the query vector with the entire corpus of

document vectors. Using similarity metrics, a subset of vectors that are semantically

closest to the query vector is retrieved. These correspond to the document’s most

likely to contain relevant information[32].

• Context Query Prompt—The retrieval results are amalgamated with the original

query to create a context-rich query prompt. This amalgamation enriches the initial

query with specific insights from the retrieved documents, equipping the system with

a nuanced understanding of what the user is seeking[31, 32].

• Large Language Model – Large Language Models like GPT, Llama, and Flan T5

are trained on vast amounts of textual data, enabling them to understand natural

language and generate coherent, contextually appropriate responses. Hence, with a

shortened corpus of vector embeddings, we feed the LLM with the data from the

context prompt, and the LLM produces the relevant output needed.

• Output—This is the final step in the Retrieval Augmented Generation architecture.

At this point, the relevant information is returned to the user based on the query

provided by the user.

TBU in Zlín, Faculty of Applied Informatics 35

7 TOOLS AND SYSTEMS FOR IMPLEMENTATION

Various tools are available to build a custom Transformer model to extract data for

textbooks. We will look at some of the tools and systems we would use for the

implementation.

7.1 Python

Python is a high-level, general-purpose programming language that is generally great for

statistical analysis. Due to this, it is mainly used for Machine Learning and Artificial

Intelligence solutions. Python has a large community and a vast ecosystem that enables

efficient development, making it a preferred language for implementing machine learning

algorithms and models.

7.2 Langchain

Langchain was launched in October 2022 and has gained many improvements from

contributors on GitHub. It contains many tools that help integrate external systems and

provides utility tools that make working with large language models relatively easy.

Langchain is an open-source tool quite popular for utility processes such as text

extraction and other data pre-processing processes necessary for RAG implementation.

From Langchain, we will use the PyPDFLoader and the RecursiveCharacterTextSplitter to

extract data from user documents.

• PyPDFLoader - PyPDFLoader, with the help of the pypdf package, takes a path to

a pdf as a parameter and loads the pdf into an array, where each context contains

page content and metadata.

• RecursiveCharacterTextSplitter—The RecursiveCharacterTextSplitter is a helper

utility that splits the loaded data into smaller chunks. It is recommended for generic

text. A list of characters parameterizes the text splitter. It then tries to separate the

characters in order until the chunks are small enough.

7.3 The Hugging Face Platform

For our pick on the best LLMs for the contribution, we would use the HuggingFace

platform, an online repository of the most popular Large Language Models that provide

datasets to use with these models. HuggingFace is the GitHub of the ML world.

https://python.langchain.com/docs/modules/data_connection/document_loaders/pdf/

TBU in Zlín, Faculty of Applied Informatics 36

HuggingFace provides a collaborative platform with tools that empower anyone to create,

train and deploy ML models using open-source code[5]. The models are pre-trained; hence,

you usually do not have to start from scratch; load a pre-trained model and fine-tune it to

your specific task. These are some core components of HuggingFace.

• Transformers Library - This contains a comprehensive suite of state-of-the-art

machine learning models. It consists of an extensive collection of pre-trained models

optimized for tasks such as ‘summarization’, ‘text classification', and 'text

generation'. Most NLP tasks have been abstracted into a ‘pipeline’ function.

• Model Hub—The model hub is a platform with thousands of models and datasets

available at your fingertips. It is an innovative feature that allows users to share and

discover models the community contributes, promoting a collaborative approach to

NLP development[5, 33].

Figure 10: HuggingFace Model Hub

• Tokenizers—Tokenizers convert sequence text into a format that machine learning

models can understand, which is essential to processing different languages and text

structures. HuggingFace provides a wide range of tokenizers that facilitate the

conversion of tokens into vector representation for LLM inputs and handle the

truncation and padding of uniform sequence lengths[5].

TBU in Zlín, Faculty of Applied Informatics 37

7.4 Vector Embeddings

Vector Embeddings are a way to convert words, sentences and other data into numbers that

capture their meaning and relationships. They represent different data types as points in a

multidimensional space, where similar data points are clustered close together. These

processes help machines understand and process this data more effectively. Word and

sentence embedding are the most used types of vector embeddings [26];

• Word Embedding—Word embedding represents words as vectors in a continuous

vector space, where the geometric relationship between vectors captures semantic

similarities between words. Some popular word embedding models are Word2Vec

and fastText [27].

• Sentence Embedding—Unlike word embedding, which represents individual

words, sentence embeddings capture the semantic meaning of the entire text [26].

Figure 11: Vector Embeddings

 Encoder-only Transformer models like BERT are usually used to generate vector

embeddings. For our body of work, we will be using sentence_transformers, which is an

excellent library for generating vector embeddings for any text body. It also comes with

different pre-trained encoder-only models that you can select from to use for each case.

7.5 StreamLit

Streamlit is a free, open-source framework for rapidly building and sharing beautiful

machine learning and data science web applications. It is a Python-based library specifically

designed for machine learning engineers. Streamlit is easy to use to build attractive user

interfaces, especially for people without front-end knowledge.

TBU in Zlín, Faculty of Applied Informatics 38

Hence, streamlit will be used to build the user interface for our application, which will

take user input and user documents to perform the RAG implementation. Streamlit provides

easy-to-use User Interface (UI) components that are easy to set up and relatively easy to use.

7.6 Lance DB

LanceDB emerges as an exemplary choice for our vector store solution, catering specifically

to the demands of Artificial Intelligence (AI) applications. As an open-source vector store,

LanceDB excels in its ability to effectively store, manage, query, and retrieve vector

embeddings, which is essential for numerous AI tasks. Its architecture is meticulously

crafted to accommodate the intricacies of vector data, ensuring optimal performance across

a spectrum of use cases.

One of LanceDB's standout features is its support for disk-based indexing and storage,

a crucial facet that underpins its scalability. This architecture enables LanceDB to handle

massive volumes of vector data effortlessly without imposing exorbitant resource demands.

7.7 Hugging face pipeline

Running machine learning algorithms involves pre-processing, feature extraction, model

fitting, and validation stages. Pipelines are the creation of independent and reusable modules

that can be easily pieced together to create an entire workflow.

The HuggingFace pipeline is a great and easy way to use models for inference. These

pipelines provide a simple API by abstracting most of the complex processes you need. The

pipeline is a wrapper around other available pipelines. Due to its high abstraction, the

pipeline takes a lot of parameters, and for the focus of this thesis, I would talk about the ones

used;

• Task type—This is the first parameter needed for the pipeline, and it is used to

determine the kind of task that the Large Language Model will perform. There are

many available task types, but the focus will be summarization, text generation,

and text2text generation. These task types will determine the sub-pipeline the main

pipeline extends to deliver the best results.

• Model—The model parameter determines the LLM to use for the task. For the best

result, it is advised to use an LLM that matches the right task type.

TBU in Zlín, Faculty of Applied Informatics 39

• Min Length – The min length parameter determines the minimum number of output

tokens to be returned as an output.

• Max Length - The max length parameter determines the maximum number of output

tokens to be returned.

• Model Kwargs—This parameter is a dictionary of sub-arguments that can be used

to configure the pipeline. It takes temperature as a critical argument, ranging from

0 to 1. This determines how strict the results are and can give the model leeway to

be creative, which can sometimes not be desired. Another key argument is the device.

This determines if the model would be run using a CPU or a GPU.

TBU in Zlín, Faculty of Applied Informatics 40

8 LLM MODELS

Selecting a model for our approach would be crucial as it would determine the quality of the

results. When building pipelines for Large Language Models using the HuggingFace

pipeline utility, we first need to choose the kind of sequencing task we are trying to achieve.

We will briefly discuss the three main sequencing tasks necessary for the approach in the

RAG implementation.

8.1 Summarization

Generally, summarization creates a short version of the document or data provided while

capturing all the relevant information. The goal of text summarization is to extract the most

essential information from a text document and present it in a concise and understandable

form.

With the self-attention mechanism, Transformers gain a contextual understanding of

the text corpus, which allows them to adequately identify the most critical information in the

data provided[9]. HuggingFace provides many fine-tuned and pre-trained large language

models that are great for handling summarization and can be easily used with the pipeline

utility. Here are some models provided for text summarization on the HuggingFace Platform.

• Facebook/bart-large-cnn—The BART model is pre-trained in English and fine-

tuned to CNN Daily Mail, a carefully curated dataset of over 300,000 unique news

articles written by CNN and Daily Mail journalists. This is one of the most popular

models on HuggingFace [5].

• Google/pegasus-large - The Pegasus is a sequence-to-sequence model using an

encoder-decoder architecture similar to BART. Pegasus is pre-trained jointly on two

self-supervised objective functions. In Masked Language Modelling (MLM),

encoder input tokens are randomly replaced by a mask token and must be predicted

by the encoder. The other is the Gap Sentence Generation (GSG); here also, the

whole encoder input sentences are replaced by a second mask token and fed to the

decoder, but which uses a casual mask to hide the future words.

TBU in Zlín, Faculty of Applied Informatics 41

8.2 Text Generation

Unlike summarization, which tries to extract the most important information from an original

document, the Large Language Model produces an entire text corpus with text generation.

This output could answer a question, a classification task, or even some sentiment analysis

by providing text that reflects some emotions or opinions [5].

When given the proper context, a Large Language Model with text generation will

generate an entire corpus of text that fits the parameters provided; the key to the success of

Text Generation models largely depends on the quality of the prompt and the context

provided. Here are some text generation models provided by HuggingFace.

• Meta-llama/Meta-Llama-3-8B—The Llama 3 model released by the Meta

company is a family of large language models, a collection of pre-trained and fine-

tuned generative text models in 8B and 70B parameter sizes. The Llama 3

instruction-tuned models are optimized for dialogue use cases and outperform many

available open-source LLM models on common industry benchmarks[34].

• Apple/OpemELM-3B-Instruct—OpenELM, a family of Open-Efficient Language

Models, uses a layer-wise scaling strategy to allocate parameters within each layer

of the Transformer model efficiently, enhancing accuracy [5, 33].

8.3 Text-To-Text Generation

Text-to-text generation is a type of text generation that involves taking an input as text and

returning text as an output. This text generation model works excellently for tasks like

speech-to-text and language translation but can also handle summarization and text

generation quite well.

Text-to-text generation leverages large language models, such as GPT (Generative

Pre-trained Transformer) models, which have been pre-trained on vast amounts of text data.

HuggingFace also provides lots of pre-trained and fine-tuned LLMs that we can use to

handle this task.

• Google/flan-t5-base – The T5 (Text-to-Text Transfer Transformer) is a series of

Large Language Models developed by Google AI. T5 is an encoder-decoder model

pre-trained on the Colossal Clean Crawled Corpus(C4), which generally contains

TBU in Zlín, Faculty of Applied Informatics 42

code and textual data scraped from the Internet. It also belongs to a family of models

with varying parameter sizes[35].

Model Parameters # Layers dmodel dff dkv # heads

Small 60M 6 512 2048 64 8

Base 220M 12 768 3072 64 12

Large 770M 24 1024 4096 64 16

XL 3B 24 1024 16384 128 32

XXL 11B 24 1024 65536 128 128

Table 1: Google T5 family of models

From the table above, we understand the various parameters the Google AI team uses to

train the T5 family of models.

• # Layers explain the number of encoders as well as the number of decoders used

for training the model

• dff. It also explains the dimension of the feedforward network within each encoder

and decoder layer.

• dkv describes the key and value vectors used in the self-attention mechanism.

• dmodel refers to the dimension of the embedding vectors.

• # heads describe the number of heads in each attention block.

TBU in Zlín, Faculty of Applied Informatics 43

9 IMPLEMENTATION OVERVIEW

This section of the thesis will discuss the general implementation used to achieve the results.

As discussed in the section about the RAG architecture, the first procedure to examine is

how to extract text from the user documents they will provide, and for that, we will use tools

from the Langchain community.

9.1 Extracting text from PDF documents

We created a file processing function to extract text from user documents and take a path to

a PDF file. We use the PyPDFLoader utility from HuggingFace to load the PDF into memory

and then split it into the number of pages contained within it.

Then, we use the RecursiveCharacterTextSplitter to split the data in the pages into

shorter sentences. The file_processing function returns an array of texts extracted from the

user PDF document.

def file_preprocessing(filepath):

 loader = PyPDFLoader(filepath)

 pages = loader.load_and_split()

 text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000,

chunk_overlap=150)

return text_splitter.split_documents(pages)

9.2 Vector Embedding Model

After successfully extracting the text corpus from the user documents, we would generate

vector embeddings from the data. This would be a high-dimensional representation of data

in vectors that captures the semantic meaning of the text corpus.

def get_embeddings():

 modelPath = "sentence-transformers/all-mpnet-base-v2"

 model_kwargs = {'device':'cpu'}

 encode_kwargs = {'normalize_embeddings': False}

 return HuggingFaceEmbeddings(

TBU in Zlín, Faculty of Applied Informatics 44

 model_name=modelPath,

 model_kwargs=model_kwargs,

 encode_kwargs=encode_kwargs,

)

For our vector embedding, we define a get_embeddings function that would use an encoder-

only Transformer model to generate vector embeddings on our text corpus. Langchain

provides the HuggingFaceEmbeddings utility that takes a few parameters to create the vector

embeddings. The most important parameter here is the vector model we decided to use.

Sentence_transformers provide a wide range of models we can use to generate the

embeddings.

9.3 Capture Embeddings in a Vector Store

 After embedding is generated, we must store the vector embeddings in a vector database.

At the time of writing this thesis, there is a wide range of capable vector stores available,

and for this thesis, we will be using LanceDB, which is a very competent vector store.

db = lancedb.connect("/tmp/lancedb")

LanceDB works in memory, and initializing a database is straightforward,

db.create_table("my_table", data=[{

 "vector": your_array_of vector embeddings

 "text": your text corpus parsed into a string

 "id": an ID for unique, }],

 mode="overwrite",)

We can then store our vector embeddings into the vector database.

9.4 User Query and Inputs

For this thesis, we will build a user interface that allows users to add input and upload a PDF

file, which we will use to retrieve augmented generation. This user interface would also

expose configuration to the hyperparameters, such as the temperature, minimum token

length, and maximum token length, and pick models that would be an excellent option for

each use case.

TBU in Zlín, Faculty of Applied Informatics 45

With this user interface, we would use the Streamlit library, which contains many easy-

to-use UI components. With streamlit, I would be building a user-friendly interface that

would be intuitive. With Streamlit, user queries and documents can be easily captured.

9.5 Model Pipeline

As discussed earlier, HuggingFace provides an excellent pipeline tool that can be used

intuitively and easily. We create a transformer function to handle custom configurations and

take external parameters like the task type, model, and temperature.

 def transformer():

 chain = pipeline(

 'task type',

 model = reference to HuggingFace model,

 min_length = min token length

 max_new_tokens= max token length

)

 return HuggingFacePipeline(

 pipeline=chain,

 model_kwargs={"temperature": temperature for model creativity },

)

9.6 Query Retrieval

Now, with the model and our vector store in place, we can adequately retrieve the

information we need from the vector store using a query input from the user. Hence, the user

queries will be used on the vector store, which performs a similarity search on the vector

representation and returns a set of vectors with the closest matching.

For Query Retrieval, Langchain provides a great tool for retrieving embedding from the

vector store.

db = LanceDB.from_documents(docs, embeddings)

retriever = db.as_retriever(search_kwargs={"k": 5})

docs = retriever.get_relevant_documents(user prompt)

TBU in Zlín, Faculty of Applied Informatics 46

This creates a memory reference that can be used to retrieve the embeddings. This retriever

then gets the vector embeddings based on the user prompt. This prompt can then be passed

to the Large Language Model for the sequence-to-sequence modelling.

9.7 Retrieving Output from LLM

After getting the suitable vector embeddings from the query, we can feed the LLM with

these vector embeddings as context and the user prompt. This would then keep the context

window needed for the LLM in check.

 llm = transformer()

 qa = RetrievalQA.from_chain_type(llm=llm, chain_type="refine",

retriever=retriever, return_source_documents=False)

 result = qa.invoke({"query": user prompt})

 return result["result"]

Here, we use the transformer function defined earlier with all the configurations. Then, we

use another tool from Langchain called RetrievalQA; with this, we can easily retrieve the

LLM output from our prompt.

TBU in Zlín, Faculty of Applied Informatics 47

10 RESULTS

When everything is put carefully together, the RAG implementation can adequately be

tested for the results on different temperatures, models, and document lengths.

Figure 12: User Interface for RAG Implementation

We built a user interface that allows a user to access some LLM hyperparameters,

input for a user query, and upload files. Hyperparameters here are passed the Transformer

pipeline in the implementation above. Users can upload any PDF file with lots of text content

and submit a query with the 'Make request' input, and an adequate output will be returned to

the user.

10.1 Test Case 1

For this test case, I will use an article about agile methodologies. The model will be the

Google Flan T5 LLM. This model is large, so results from the application take some time.

TBU in Zlín, Faculty of Applied Informatics 48

Figure 13: Test case with Google Flan T5

From the image above, we realize that the temperature for the model is set to 0.6,

with a min token count of 150 and a max token count of 300. We uploaded the Agile Guide

and asked it, "What is Kanban?" which is stated in the document. Results output was

“Kanban is Japanese for “visual sign” or “card”. It is a visual framework used to

implement Agile and shows what to produce when to produce, and how much to

produce.”. It is a framework used to implement Agile and shows what to produce when to

produce it……”. This is a bit accurate, and some text is repeated several times.

10.2 Test case 2

For this test case, we reduced the temperature for the model, and the results were

similar. This result is observed because the text content in vector representation returned

from the vector store doesn't give the LLM much room to be creative; hence, the results are

usually the same, irrespective of the temperature.

TBU in Zlín, Faculty of Applied Informatics 49

Figure 14 : Test case 2, Reduced Temperature

The image above shows that results do not change from the first instance with

reduced temperatures.

10.3 Test case 3

For this test case, we will use the Lamini Flan T5 238M model. This smaller model

produces faster results. The temperature worked well for this model and gave varying results.

Figure 15: Test case 3 results.

TBU in Zlín, Faculty of Applied Informatics 50

When the temperature is set to 0.24, the results for the prompt were, “The Kanban method

is a tool to implement the Kanban method for projects. It is traditionally a physical

board with magnets, plastic chips or sticky notes on a whiteboard. Online tools have

created online Kanban boards. Kanban cards represent the work, and each card is

placed on the board in the lane that represents the status of that work. Each card

communicates status at a glance. Online tools have created Kanban boards. Kanban is

a tool that can be used to implement the Kanban method in projects. Kanban is a visual

framework used to implement Agile and show what to produce, when, and how much

to produce. In development, work-in-progress (WIP) takes the place of inventory, and

new work can only be added when there is a 'space' on the team visual board."

Figure 16: Test results from Temperature 0.24

When the temperature was set to 0.85, the results for the prompt were, “The Kanban board

is a tool to implement the Kanban method for projects. It is traditionally a physical

board with magnets, plastic chips, or sticky notes on a whiteboard, but online tools

have created online Kanban boards. Kanban cards represent the work, and each card

is placed on the board in the lane that represents the status of that work. The board

should remain clear and easy to read, with the columns marked by phase with no

timeframes associated. The board should remain clear and easy to read, and

incorporating bells and whistles into the Kanban board buries the important

information. The disadvantages of Kanban include confusion, inaccuracies, and

miscommunication.”

TBU in Zlín, Faculty of Applied Informatics 51

Figure 17: Test results for Temperature 0.85

TBU in Zlín, Faculty of Applied Informatics 52

CONCLUSION

Based on the research conducted in this thesis, we can adequately conclude that extracting

data from textbooks using a custom Transformer model is feasible and yields promising

results. Our experiments and evaluations have demonstrated the effectiveness and efficiency

of the developed Transformer in accurately extracting information from various textbook

sources.

 With the ability to run Large Language Models locally, it is remarkable to use these

models for querying tasks on custom data without relying on the large online-run LLMs.

Local deployment ensures data privacy and security while enabling faster response times,

making it ideal for sensitive or time-critical applications. And that, coupled with the ability

to add your custom information to the LLM as input to retrieve meaningful output, is

genuinely groundbreaking.

A custom Transformer model that works in the educational context can transform

how we approach studying in general by streamlining the arduous tasks of going through

several pages of a book to find something significant. This can efficiently save educators

valuable time and empower learners with faster pertinent information. Ultimately,

incorporating customized transformers into educational frameworks enables individualized

learning, lowers access hurdles, and creates a more dynamic and inclusive learning

environment ready to accommodate students' changing demands in the digital era.

In conclusion, developing and utilizing a custom transformer for educational text

extraction marks a significant advancement in educational technology. Our research

showcases its potential to streamline knowledge acquisition, improve learning outcomes,

and foster inclusivity. Continuing innovation in natural language processing is vital to

enhance these tools further and address evolving educational needs. By leveraging custom

transformers, we can empower learners and educators, paving the way for a more efficient

and effective educational landscape globally.

TBU in Zlín, Faculty of Applied Informatics 53

BIBLIOGRAPHY

[1] ALEXANDER S. GILLIS. Natural Language Processing (NLP) [online]. únor 2024

[vid. 2024-05-03]. Dostupné

z: https://www.techtarget.com/searchenterpriseai/definition/natural-language-

processing-

NLP#:~:text=NLP%20uses%20many%20different%20techniques,way%20a%20co

mputer%20can%20understand.

[2] COLLOBERT, Ronan, Jason WESTON, Jweston@google COM, Michael KARLEN,

Koray KAVUKCUOGLU a Pavel KUKSA. Natural Language Processing (Almost)

from Scratch. 2011.

[3] KEITH D. FOOTE. A Brief History of Natural Language Processing. dataversity.net

[online]. 6. červenec 2023 [vid. 2024-04-06]. Dostupné

z: https://www.dataversity.net/a-brief-history-of-natural-language-processing-nlp/

[4] VASWANI, Ashish, Google BRAIN, Noam SHAZEER, Niki PARMAR, Jakob

USZKOREIT, Llion JONES, Aidan N GOMEZ, Łukasz KAISER a Illia

POLOSUKHIN. Attention Is All You Need. 2017.

[5] WOLF, Thomas, Lysandre DEBUT, Victor SANH, Julien CHAUMOND, Clement

DELANGUE, Anthony MOI, Pierric CISTAC, Tim RAULT, Rémi LOUF, Morgan

FUNTOWICZ, Joe DAVISON, Sam SHLEIFER, Patrick VON PLATEN, Clara MA,

Yacine JERNITE, Julien PLU, Canwen XU, Teven Le SCAO, Sylvain GUGGER,

Mariama DRAME, Quentin LHOEST a Alexander M. RUSH. HuggingFace’s

Transformers: State-of-the-art Natural Language Processing [online]. 2019. Dostupné

z: http://arxiv.org/abs/1910.03771

[6] WU, Tianyu, Shizhu HE, Jingping LIU, Siqi SUN, Kang LIU, Qing Long HAN a

Yang TANG. A Brief Overview of ChatGPT: The History, Status Quo and Potential

Future Development. IEEE/CAA Journal of Automatica Sinica [online]. 2023, 10(5),

1122–1136. ISSN 23299274. Dostupné z: doi:10.1109/JAS.2023.123618

[7] KIYANI, Farzad a Oguzhan TAS. A survey automatic text summarization.

Pressacademia [online]. 2017, 5(1), 205–213. ISSN 2146-7943. Dostupné

z: doi:10.17261/pressacademia.2017.591

[8] SALEHINEJAD, Hojjat, Sharan SANKAR, Joseph BARFETT, Errol COLAK a

Shahrokh VALAEE. Recent Advances in Recurrent Neural Networks [online]. 2017.

Dostupné z: http://arxiv.org/abs/1801.01078

[9] GALLO, Matej. Text Summarization by Machine Learning. nedatováno.

[10] ÇAKIR, Ahmet. Usability and accessibility of portable document format [online].

B.m.: Taylor and Francis Ltd. 2. duben 2016. ISSN 13623001. Dostupné

z: doi:10.1080/0144929X.2016.1159049

[11] DEHRU, Virender, Pradeep Kumar TIWARI, Gaurav AGGARWAL, Bhavya JOSHI

a Pawan KARTIK. Text Summarization Techniques and Applications. IOP

Conference Series: Materials Science and Engineering [online]. 2021, 1099(1),

012042. ISSN 1757-8981. Dostupné z: doi:10.1088/1757-899x/1099/1/012042

[12] NAGESH SINGH CHAUHAN. Introduction to RNN and LTSM. The AI Dream

[online]. 29. listopad 2020 [vid. 2024-05-04]. Dostupné

z: https://www.theaidream.com/post/introduction-to-rnn-and-lstm

[13] KIM, Young Jin a Hany Hassan AWADALLA. FastFormers: Highly Efficient

Transformer Models for Natural Language Understanding [online]. 2020. Dostupné

z: http://arxiv.org/abs/2010.13382

[14] WOLF, Thomas, Lysandre DEBUT, Victor SANH, Julien CHAUMOND, Clement

DELANGUE, Anthony MOI, Pierric CISTAC, Tim RAULT, Rémi LOUF, Morgan

TBU in Zlín, Faculty of Applied Informatics 54

FUNTOWICZ, Joe DAVISON, Sam SHLEIFER, Patrick VON PLATEN, Clara MA,

Yacine JERNITE, Julien PLU, Canwen XU, Teven LE SCAO, Sylvain GUGGER,

Mariama DRAME, Quentin LHOEST a Alexander M RUSH. Transformers: State-

of-the-Art Natural Language Processing [online]. nedatováno. Dostupné

z: https://github.com/huggingface/

[15] MEDSKER, LR, DC LC JAIN a Boca RATON LONDON NEW YORK

WASHINGTON. RECURRENT NEURAL NETWORKS E dited by Design and

Applications. 2001.

[16] LEWIS, Mike, Yinhan LIU, Naman GOYAL, Marjan GHAZVININEJAD,

Abdelrahman MOHAMED, Omer LEVY, Ves STOYANOV a Luke

ZETTLEMOYER. BART: Denoising Sequence-to-Sequence Pre-training for Natural

Language Generation, Translation, and Comprehension [online]. 2019. Dostupné

z: http://arxiv.org/abs/1910.13461

[17] WEN, Qingsong, Tian ZHOU, Chaoli ZHANG, Weiqi CHEN, Ziqing MA, Junchi

YAN a Liang SUN. Transformers in Time Series: A Survey [online]. 2022. Dostupné

z: http://arxiv.org/abs/2202.07125

[18] KALYAN, Katikapalli Subramanyam, Ajit RAJASEKHARAN a Sivanesan

SANGEETHA. AMMUS : A Survey of Transformer-based Pretrained Models in

Natural Language Processing [online]. 2021. Dostupné

z: http://arxiv.org/abs/2108.05542

[19] BHATTAMISHRA, Satwik, Arkil PATEL, Phil BLUNSOM a Varun KANADE.

Understanding In-Context Learning in Transformers and LLMs by Learning to Learn

Discrete Functions [online]. 2023. Dostupné z: http://arxiv.org/abs/2310.03016

[20] GILLIOZ, Anthony, Jacky CASAS, Elena MUGELLINI a Omar Abou KHALED.

Overview of the Transformer-based Models for NLP Tasks. In: Proceedings of the

2020 Federated Conference on Computer Science and Information Systems, FedCSIS

2020 [online]. B.m.: Institute of Electrical and Electronics Engineers Inc., 2020,

s. 179–183. ISBN 9788395541674. Dostupné z: doi:10.15439/2020F20

[21] INTELLIGENCE, Artificial a Jennifer D ’ SOUZA. A Review of Transformer Models

[online]. nedatováno. Dostupné z: https://orkg.org/comparison/R609226/

[22] USMAN HADI, Muhammad, qasem AL TASHI, Rizwan QURESHI, Abbas SHAH,

amgad MUNEER, Muhammad IRFAN, Anas ZAFAR, Muhammad BILAL

SHAIKH, Naveed AKHTAR, Jia WU, Seyedali MIRJALILI, Qasem AL-TASHI,

Amgad MUNEER a Mohammed ALI AL-GARADI. Large Language Models: A

Comprehensive Survey of its Applications, Challenges, Limitations, and Future

Prospects Large Language Models: A Comprehensive Survey of Applications,

Challenges, Limitations, and Future Prospects [online]. nedatováno. Dostupné

z: doi:10.36227/techrxiv.23589741.v4

[23] TOPSAKAL, Oguzhan a Tahir Cetin AKINCI. Creating Large Language Model

Applications Utilizing LangChain: A Primer on Developing LLM Apps Fast [online].

nedatováno. Dostupné z: http://as-

proceeding.com/:Konya,Turkeyhttps://www.icaens.com/

[24] ZHANG, Mengli, Gang ZHOU, Wanting YU, Ningbo HUANG a Wenfen LIU. A

Comprehensive Survey of Abstractive Text Summarization Based on Deep Learning

[online]. B.m.: Hindawi Limited. 2022. ISSN 16875273. Dostupné

z: doi:10.1155/2022/7132226

[25] JURAFSKY, Daniel a James H MARTIN. Speech and Language Processing An

Introduction to Natural Language Processing, Computational Linguistics, and

Speech Recognition Third Edition draft. nedatováno.

TBU in Zlín, Faculty of Applied Informatics 55

[26] HAN, Yikun, Chunjiang LIU a Pengfei WANG. A Comprehensive Survey on Vector

Database: Storage and Retrieval Technique, Challenge [online]. 2023. Dostupné

z: http://arxiv.org/abs/2310.11703

[27] JING, Zhi, Yongye SU, Yikun HAN, Bo YUAN, Haiyun XU, Chunjiang LIU, Kehai

CHEN a Min ZHANG. When Large Language Models Meet Vector Databases: A

Survey [online]. 2024. Dostupné z: http://arxiv.org/abs/2402.01763

[28] GAO, Yunfan, Yun XIONG, Xinyu GAO, Kangxiang JIA, Jinliu PAN, Yuxi BI, Yi

DAI, Jiawei SUN, Meng WANG a Haofen WANG. Retrieval-Augmented Generation

for Large Language Models: A Survey [online]. 2023. Dostupné

z: http://arxiv.org/abs/2312.10997

[29] LEWIS, Patrick, Ethan PEREZ, Aleksandra PIKTUS, Fabio PETRONI, Vladimir

KARPUKHIN, Naman GOYAL, Heinrich KÜTTLER, Mike LEWIS, Wen-Tau YIH,

Tim ROCKTÄSCHEL, Sebastian RIEDEL a Douwe KIELA. Retrieval-Augmented

Generation for Knowledge-Intensive NLP Tasks [online]. nedatováno. Dostupné

z: https://github.com/huggingface/transformers/blob/master/

[30] LIU, Shangqing, Yu CHEN, Xiaofei XIE, Jingkai SIOW a Yang LIU. Retrieval-

Augmented Generation for Code Summarization via Hybrid GNN [online]. 2020.

Dostupné z: http://arxiv.org/abs/2006.05405

[31] MARTINEAU K. What is Retrieval -Augmented Generation (RAG). IBM [online].

2023 [vid. 2024-05-06]. Dostupné z: https://research.ibm.com/blog/retrieval-

augmented-generation-RAG

[32] ALI GLEN. Mastering Retrieval Augmented Generation(RAG) Architecture.

Stackademic [online]. 8. duben 2024 [vid. 2024-05-06]. Dostupné

z: https://blog.stackademic.com/mastering-retrieval-augmented-generation-rag-

architecture-unleash-the-power-of-large-language-a1d2be5f348c

[33] JIANG, Wenxin, Nicholas SYNOVIC, Matt HYATT, Taylor R. SCHORLEMMER,

Rohan SETHI, Yung Hsiang LU, George K. THIRUVATHUKAL a James C.

DAVIS. An Empirical Study of Pre-Trained Model Reuse in the Hugging Face Deep

Learning Model Registry. In: Proceedings - International Conference on Software

Engineering [online]. B.m.: IEEE Computer Society, 2023, s. 2463–2475.

ISBN 9781665457019. Dostupné z: doi:10.1109/ICSE48619.2023.00206

[34] HUGGING FACE. Meta Llama- Meta Llama 8B. Hugging Face [online]. duben 2024

[vid. 2024-05-07]. Dostupné z: https://huggingface.co/meta-llama/Meta-Llama-3-8B

[35] CHUNG, Hyung Won, Le HOU, Shayne LONGPRE, Barret ZOPH, Yi TAY,

William FEDUS, Yunxuan LI, Xuezhi WANG, Mostafa DEHGHANI, Siddhartha

BRAHMA, Albert WEBSON, Shixiang Shane GU, Zhuyun DAI, Mirac SUZGUN,

Xinyun CHEN, Aakanksha CHOWDHERY, Alex CASTRO-ROS, Marie PELLAT,

Kevin ROBINSON, Dasha VALTER, Sharan NARANG, Gaurav MISHRA, Adams

YU, Vincent ZHAO, Yanping HUANG, Andrew DAI, Hongkun YU, Slav PETROV,

Ed H. CHI, Jeff DEAN, Jacob DEVLIN, Adam ROBERTS, Denny ZHOU, Quoc V.

LE a Jason WEI. Scaling Instruction-Finetuned Language Models [online]. 2022.

Dostupné z: http://arxiv.org/abs/2210.11416

TBU in Zlín, Faculty of Applied Informatics 56

LIST OF ABBREVIATIONS

NLP – Natural Language Processing

NLU – Natural Language Understanding

AI – Artificial Intelligence

LLM – Large Language Model

RNN – Recurrent Neural Network

CNN – Convolutional Neural Network

LTSM – Long Short-Term Memory

PCFG – Probabilistic Context-Free Grammar

HMM – Hidden Markov Model

GRU – Gated Recurrent Units

FFN – Feed Forward Network

API – Application Programming Interface

MLM – Masked Language Modelling

GSG – Gap Sentence Generation

CPU – Central Processing Unit

GPU – Graphical Processing Unit

TBU in Zlín, Faculty of Applied Informatics 57

LIST OF FIGURES

Figure 1: Recurrent Neural Network ... 14

Figure 2: Regex Based Parsing .. 16

Figure 3: Single RNN cell.. 17

Figure 4: Long Short-Term Memory Architecture. ... 18

Figure 5: An example of Probabilistic Context-Free Grammar... 19

Figure 6: An example of the Hidden Markov Model... 20

Figure 7: Transformer Model Architecture.. 21

Figure 8: Flan T5 model... 26

Figure 9: RAG Architecture... 33

Figure 10: HuggingFace Model Hub ... 36

Figure 11: Vector Embeddings .. 37

Figure 12: User Interface for RAG Implementation .. 47

Figure 13: Test case with Google Flan T5 ... 48

Figure 15 : Test case 2, Reduced Temperature .. 49

Figure 16: Test case 3 results. .. 49

Figure 17: Test results from Temperature 0.24.. 50

Figure 18: Test results for Temperature 0.85... 51

TBU in Zlín, Faculty of Applied Informatics 58

LIST OF TABLES

Table 1: Google T5 family of models .. 42

TBU in Zlín, Faculty of Applied Informatics 59

APPENDICES

https://python.langchain.com/docs/modules/data_connection/document_loaders/pdf/

https://www.python.org/

https://huggingface.co/models

https://lancedb.github.io/lancedb/

https://streamlit.io/

https://github.com/JohnTawiah19/Lamini-test

https://python.langchain.com/docs/modules/data_connection/document_loaders/pdf/
https://www.python.org/
https://huggingface.co/models
https://lancedb.github.io/lancedb/
https://streamlit.io/
https://github.com/JohnTawiah19/Lamini-test

