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RESUME

PredloZena disertacni prace se zabyva problematikou tfizeni jednorozmérnych systémi se
zpozdénimi v algebraickém smyslu v okruhu specidnich meromorfnich funkci, jeho vyuzitim

Vv procesu autotuningu a ladénim ziskanych anizochronnich regulatora.

Popis systému se vstupné vystupnim a/nebo vnitinim zpozdénim, jakoz i navrh struktury
reguldtort, je zalozen na vyuZiti revidovaného a rozSiteného okruhu stabilnich a ryzich
kvazipolynomidlnich meromorfnich funkci. MnoZina vSech stabilizujicich regulatora je uréena
feSenim linedrni diofantické rovnice (Bézoutovy rovnosti) spolu s Youla-Kucerovou parametrizaci
v uvedeném okruhu. Postup umoziuje zgjisténi vnitini stability regulatniho obvodu, asymptotické
dedovani pribehu zddané hodnoty a kompenzaci poruchy modelované na vstupu fizené soustavy.
Jednou zvyhod je, Ze v nomindnim ptipadé lze uZitim netrividlniho uzavieného regulacniho
obvodu docilit kone¢ného spektra nékterych prenosovych funkci. Metoda je doplnéna odvozenim
podminek stability pro vybrané kvazipolynomy, nebot’ tato znalost je zasadni pro spravny postup

navrhu, a zobecnéného Nyquistova kritéria pro systémy se zpozdénim a specidlni strukturu fizeni.

Préce dale obsahuje navrh nékolika postuptt ladéni ziskanych anizochronnich regul&ori,
jmenovité spojité posouvani pélia uzavieného regulacniho obvodu, kvazioptimani umisténi
dominantnich pélu v levé komplexni polorovingé a rozloZeni spektra pii poZadovaném piekmitu

piechodové funkce.

Pro nalezeni dostate¢né presného modelu tizené soustavy jsou taktéz analyticky odvozeny
vztahy pro identifikaci neznamych parametric modelu z rel éového experimentu s vyuzitim relé typu

nasyceni, ¢imz préce zasahuje do oblasti autotuningu.

Pro inZenyrské vyuZziti spojitych fidicich algoritmi na ¢islicovém pogitaci jsou struené
popsany moZnosti jejich diskretizace a zjednoduSeni a vybrané postupy implementovany na

anizochronni regulatory.

Soucasti prace jsou priklady objasiujici popsané teoretické poznatky a vysledky simulaci
v prosttedi MATLAB/Simulink.

V nepodedni fadé disertace prezentuje vydedky rednych identifikatnich a fidicich
experimentt na laboratornim modelu zaokruhované tepelné soustavy vykazujicim vyrazna vnitini
zpozdeéni, doplnény o z&kladni analyzu robustni stability a kvality regulace z hlediska robustnosti,

¢imz je verifikovana prakticka vyuzitelnost pouZitého piistupu.



SUMMARY

The presented dissertation thesis is focused on control of single-input single-output time
delay systems by algebraic means in the ring of special meromorphic functions, on its use in the

autotuning and on the tuning of obtained anisochronic controllers.

Time delay systems description as well as controller design is based on the utilization of
the extended and revised ring of stable proper quasipolynomial meromorphic functions. The
solution of a Diophantine equation (Bézout identity) together with Y oula-Kucera parameterization
in the ring constitutes the set of all stabilizing controllers. The approach enables to satisfy inner
feedback system stability, asymptotic reference tracking and input disturbance attenuation. A
benefit of the methodology is that one can acquire a finite spectrum of some feedback transfer
functions using a non-trivial control system. Contrariwise, a sufficiently accurate model of the
controlled process is needed. Proven stability conditions for some quasipolynomials (since it is
crucial for the correct controller design) and a generalized Nyquist criterion for time delay systems

and a special control system structure are derived as well.

The thesis then comprises design of selected controller tuning approaches for the obtained
anisochronic controllers. Namely, a continuous feedback system spectrum shifting, a quasioptimal
dominant pole placement and a pole placement when a desired transfer function overshoot is

prescribed. Some original ideas are involved in the methods.

Analytically derived formulas for the identification of unknown model parameters from
feedback-relay experiment with saturation relay in order to find a sufficiently accurate process

model are presented as well.

For real-world applications with digital computers, control agorithms ought to be

discretized and simplified; hence, some approaches are briefly described and implemented.

A numerous examples together with MATLAB/Simulink results clarify theoretic

statements throughout the thesis. Selected complex examples involve.

Last but not least, results of identification and control of a laboratory heating plant with
significant delays, with a basic robust stability and robust performance analysis, are presented in the

thesis, which clearly affirms the practical applicability of the approach.
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also other ones used “locally”, i.e. for the only purpose, in the thesis. Their meaning should

be always clear from the context.
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1 INTRODUCTION

In this introductory chapter, an explanation of the work motivation and the
background of the problem dealt with in this thesis are presented. The structure of the
thesisis also introduced.

1.1 Motivation and background

It is a well known fact that a large number of both hypothetic and real-life
processes and systems in a wide spectrum of human activities (e.g. in biology, chemistry,
economics, mechanics, information technologies, etc.) are affected by delay as their
generic part. Delay within the meaning of a lag or latency has been usually assumed to
take effect in input-output relations only, and moreover, in a one time instant. However,
this conception is somewhat redtrictive in effort to fit and model the rea plant dynamics
since in many cases delay appears in process inner feedback loops (or/and it can be of a
distributed or nature).

Time delay systems (TDS), also called hereditary, anisochronic, or systems with
aftereffect or dead-time, involve delays as other dynamical elements, besides integrators.
Hence, instead of ordinary differential equations (ODES), these systems are described by
equations with deviating arguments or so-called differential-difference equations which
belong to the class of infinite dimensional functional differential equations (FDEs).
Anisochronic models serve not only for description of systemsin which the inner loops are
realy delayed but they (even of low order) can adequately fit the dynamics of many
conventional high-order systems. In contrast to undelayed linear time-invariant (LTI)
systems, linear TDS have some surprising features, namely, they own an infinity spectrum,
which makes these systems difficult to control and resistant to many “classical”
controllers. Delay significantly deteriorates the dynamics and performance of feedback
control loops, and control theory has been dealing with the problem of delay effect on the

feedback system since its nascence.

Although it may appear that the simplest approach consists in replacing TDS by

some finite dimension approximations, it is not a convenient solution in general since it
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leads to a higher degree of complexity and one looses the process dynamics information.
Therefore, naturaly, other approaches to control of TDS ought to be developed utilizing
non-approximated (notwithstanding linear) process model to keep information about

dynamics expressed by delays.

Algebraic structuresin their charming and attractive elegance proved to be suitable
and effective tools for system dynamics description and control system design. Modern
control theory has been adopting algebraic approaches and parlance, which are based on
TDS description in a suitable field, ring or module and the subsequent operation in the

algebraic structure, for decades.

This work is focused on theory, simulation and practical application problems
related to control of single-input single-output (SISO) linear TDS designed through the
general solutions of Diophantine equations in the revised and extended ring of proper and

stable quasipolynomial meromorphic functions (Rys).

1.2 Overview of thethesis

The content of this work is divided into nine main chapters. In an attempt to
facilitate the orientation in the text for reader, a simple guidedline throughout the thesis is

provided.

This firgt, introductory, part is intended for explaining the motivation for writing

the thesis and background of the issue, and it includes the thesis overview.

In the second chapter, the current state of the research and theoretical background
devoted to description, analysis and algebraic control of LTI TDS and to some controller
tuning principles, and basics of autotuning including references to recent and momentous

literature are introduced.
The main goals of the thesis follow in the third chapter.

The fourth (and the principal) part starts with the analysis and revision of the Rys
set followed by the derivation of controllers in Rys for two control system structures.

Moreover, it includes many examples to illustrate given problems.
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Next, the fifth part presents the application of selected tuning approaches usablein
an effort to set the unknown (free) anisochronic controller parameters appropriately. Pole

placement methods are accentuated.

In the sixth chapter, the fundamentals of the relay feedback experiment dueto TDS
model parameters identification are utilized where a saturation relay and the Fourier

transform are taken into account.

The subsequent, seventh, section presents results of identification and algebraic
control experiments realized on rea laboratory model of a circuit heating system. The
chapter contains a mathematical model of the process, its linearization, controller design in
Rus and its tuning, controller robust analysis, simplification and digital implementation, in
sequence. Moreover, controller design for simple models obtained from the relay test and
that for smplified (finite-dimensiona) controller structures are introduced. Simulation
experiments facilitate the selection of the suitable controller for the final real-time control
trial.

The aim of the eighth chapter isto sum up main contributions of the thesis both for
science community and practical applications, and to foreshadow further direction in the

research.
Thefinal, ninth, chapter concludes the whole work.

References to the sources drawn in the work, the list of author’s publications
associated with the subject of the thesis and his curriculum vitae are naturally placed at the

end of thework.
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2 ACTUAL STATE OF RESEARCH AND THEORETICAL
BACKGROUND

21 Moddsof linear TDS

Linear time-invariant time delay systems (LTI TDS) have usualy been assumed to
contain delay elements in input-output relations only. All the system dynamics has been
hence modeled by point accumulations in the form of a set of ordinary differentia
equations. The Laplace transform then results in a transfer function expressed by a serial
combination of a delayless term and a delay. However, this conception is somewhat
restrictive in effort to fit the real plant dynamics because inner feedbacks are often of time-
distributed or delayed nature.

Anisochronic (or hereditary) TDS models, on the other hand, offer a more
universal dynamics description applying both integrators and delay elements either in
lumped or distributed form so that delays appear on the left side of a differential equation
which isno longer ordinary (ODE) but rather functional (FDE) - this brings the concept of
internal (or state) delays. In the further text, an abbreviation TDS means LTI TDS
containing state delays with or without input-output delays.

Already Volterra formulated differentia equations incorporating the past states
when he was studying predator-pray models [170]. The theory of these models was then
developed by Bellman and Cooke [6], Krasovskii [67], Kolmanovskii and Nosov [66],
Zitek [195], Gorecki et a. [47] , Marshall et al. [86] and especialy by Hale and Verduyn
Lund [50] and Niculescu [106], to name a few. Aftereffect phenomenon is included in
many processes, e.g. in chemical processes [198], heat exchange networks [197], in
internal combustion engines with catalytic converter [142], in models of mass flow in
sugar factory [42], in metalurgic processes [100], etc. Plenty of references to examples of
processes with internal delays, covering a wide range of human activities (e.g. biology,
chemistry, economics, communication and information technologies, etc.) are introduced
in [65], [106], [141]. Capabilities and advantages of this class of models and controllers for
modeling and process control were broadly discussed in [83]. TDS models can be used not

only for description of those systems embodying internal delays but they are successfully
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capable to express the dynamics of high-order systems and processes even without

apparent delays [151], [173], [205], which simplifies the processes description.

211 State space description

In the LTI case, TDS can be described by state and output functional differential
equations in the following form [47], [141]

d)((j_it) é dX(dtWl)+on(t)+§Aix(t—77i)+Bou(t)+§Biu(t—77i)
+ AR o)+ Bt -o)r @
(t)+i(~3(r)x(t—

where xe R" is a vector of state variables, ue R™ stands for a vector of inputs, ye R'
represents a vector of outputs, A;, A(z), By, B(z), C, C(z), H; are matrices of compatible
dimensions, 0<7, <L are lumped (discrete) delays and convolution integrals express
distributed delays. If H, #0for any i = 1,2,...Ny, model (2.1) is called neutral; on the other

hand, if H, =0for every i = 1,2,...Ny, so-called retarded model is obtained. It should be

noted that the state of model (2.1) is given not only by a vector of state variables in the
current time (in one time instant), but also by a segment of the last model history of state

and input variables, i.e. x(t+7), u(t+7), 7e (-L,0).

Modd (2.1) can also be expressed in more consistent functional form using
Riemann-Stieltjes integrals so that both lumped and distributed delays are under one
convolution [141], [195], [205]

ax(t) & dx(

e LG dB(c)ult—7), ylt)= [dC(c)x(t-7)

0 (2.2)

" /i ) {dAR(r)X(t —-7)+

O

Contrariwise, integrals in (2.1) can be rewritten into sums using the Laplace
transform, which is suitable for model implementation in computers and simulations.

Under some assumptions, see [141], the transform correspondence is the following
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L[TF(T)g(t—T)dr}z o(9)[ F(r)expl—st)dz+ (9 23)

0

where

a(s)=L[g(t)]= [ g(r)exp(- s)d7,

0

Fo(s)=L[F,(t) IF Jexp(—s7)dz, Fy(t jF p(t-7)dz,

o()=p(z) 7 [-L,0], F()e 1AL B, CO)} gl)e fxC)u). y()} (2.4)
Subsequent utilization of the reverse Laplace transform instructs how to realize a model.

For the scalar case of F(r), explicit relations between convolution integrals for distributed

delays with

F,(r)= 7" exp(r Reo)cos(zImo)
| (2.5)
F,(r)=7" exp(tRec)sin(zImo)

and derivatives of functions

0,(5)=08(0, +0,),(5)=0516, ~6,),0,(9=""221=9) ;¢ (26)

was presented in [16]. Note that & stands for the complex conjugate of o and t) denotes

the i-th derivative of t. 8, (s) isan entire function with 6, (c)=7.

Alternatively, one can use a numeric approximation of convolutions in (2.1) or
(2.2) to get state and output equations containing lumped delays only, which can, however,
destabilize even a stable system, see [141] and reference herein. Another possibility is to

i
introduce a new state variable z(t)= {x(t) dz_it)} , seee.g. [143].

2.1.2 Input-output description as a transfer function (matrix)

Considering model (2.1) and zero initia conditions, the following input-output
description of a general multi-input multi-output (MIMO) system in the form of the

transfer matrix using the Laplace transform is obtained
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Y(s)=G(s)U(s) = C(s)adi[sl - A(s)IB(s) u(s)

det [sl—A(s)]
A(s):s%inexp( sn )+ A, +ZA exp(-sn, )+ T r)dr
i=1 N Ll 0 (27)
B(s)zBO+iBiexp s1,)+ [B(z)exp(- s7)dr

C(s)=C + [E(r)expl-sr)dz

0

The main advantage of the TDS system description in the form of the transfer
function liesin its practical usability when system analysis and control design. All transfer
functions in G(s) (or a transfer function in SISO case) have identica denominator in the

form

m, ()= numdet(sl — A(s)]= numM(s)=s" + Zn:i m,s expl-sn, )7, 20 (2.9)

i=0 j=1
where prefix num means the numerator of the determinant, and

hy
2. m, exp(— ym s);t constant holds for a neutral system; otherwise, the system is retarded.
j=1

The expression on the right-hand side of (2.8) represents a so-called quasipolynomial [36].
Indeed, M (s) isaratio of quasipolynomials (i.e. a meromorphic function) in general due
to distributed state (internal) delays, and all roots of the denominator of M (s) are those of

the numerator in this case. As a consequence, a transfer function (in a SISO case) can be

expressed as a meromorphic function as well.

2.1.3 Operator-based description of autonomous TDS

In order to comprehend a chapter of this thesis, let us briefly introduce another
possible (autonomous) TDS description and some associated notions. When investigating
on e.g. stability of TDS, the operator-based state space description of an autonomous
system can be advantageous, see [10], [29], [50], [171], [187].

Consider e.g. autonomous state part of (2.1), i.e.
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dz_?)zi”;Hi W+on(t)+§iAix(t—ni)+T,&(1)x(t—f)dr 29)

and introduce the state and its derivative

dx(t+7)

X =X(t+7), % =X({t+7)= ,7e[-L,0] (2.10)

in the Banach space of continuous real function on the defined interval

X =C([-L,0},R" (2.11)
provided with the supremum norm of the initiad function x(t)=¢&(t),te [-L,0], i.e,
HE _ma§o|§(7)| , and that of its derivative as well.

Let the solution operator 77(t),t >0 on the Banach space be defined by

T)E=x,, Ee X (2.12)

The family of {77(t)} ., is strongly continuous semigroup [116], [171] with

infinitesimal generator A : D(A)< X — X given by

A E=¢=lim(T)E-¢)t (2.13)

with domain

N N

D(ﬂ)={we X:ye x,\if(o)=Z”Hiw(—ni)+Aow(o)+Z’“Aiw(—m)iﬂ(r)w(—r)m}

i=1 i=1

(2.149)
Then (2.9) can be written as a Cauchy problem in the operator form [29].
Xo=¢
dx,
—t=ﬂxt,t>0 (2.15)
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A survey of some other (predominantly state space) models of TDS is introduced
in [141]. Moreover, in thisthesis, selected algebraic-based models over fiedlds and rings are
depicted in Subchapters 2.3 and 4.1.

2.2 Polesand zeros, stability of TDS

Formula (2.8) expresses the characteristic quasipolynomial of system (2.1), the
meaning of which is as similar as for delay-free systems, i.e. the solution of my(s)=0

determines zero points of the transfer function denominator. In principle, there are two
cases when the set these solutions do not equal to the system poles. First, the realization of
the system (or an appropriate model) is not minimal, so that in the SISO case there is a
common factor in the numerator and the denominator of the transfer function, as known
for finite-dimensional systems. Second (which is specific for TDS), there is an effect of a
distributed delay which results in a common root of the numerator and denominator of the
transfer function, yet there is no common factor which can be reduced. The following

example [74] clarifies the latter case for distributed input-output delays.
Example 2.1

Consider the transfer function

_Y(s) _1-exp@exp(-s)
U(s) s-1

(2.16)

The common root of the numerator and denominator,o =1, is unstable (see Subchapter
2.2.2). Although the is no stable realization in the form (2.1) only with lumped delays,
there exists arealization using convolutions (distributed delays) which is stable

y(t)= [explelu(t - i (2.17)

0

sinceit isdefined via afinite integral. [
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2.2.1 Polesand zeros

In the further text, poles and zeros will mean transfer function poles and zeros, for
the ssimplicity. More precisely for a SISO case, poles o, ie N of LTI TDS are solutions of

the equation
M, (s)=det[sl —A(s)]=0 (2.18)
Zeros ¢,,ie N aregiven by the solution of

Gls)= C(S)ZEE :28%8(5) =0 (2.19)

where the matrices A(s), B(s), C(s) are defined in (2.7). This definition ignores possible
common roots of a numerator and denominator of the transfer function since they do not
influence the system dynamics. The role of poles and zeros is the same as for delay-free

systems, so that they decide about system stability and phase minimality, respectively.

Due to transcendental character of M(s) caused by functiondity of its
exponential terms, the number of poles is infinite; however, as for delay-free systems,
spectrum Q:={c; }", decides about asymptotic system stability. Spectral properties of
retarded and neutral systems significantly differ; according to [6] poles occur in chains
depending of the type of a system. For systems of retarded type, poles satisfy Reg; — —eo

and thus there are only finitely many poles in any right half-plane; whereas poles of a
neutral type system lie in aband centered on the imaginary axis, which implies that it owns

an infinite number of poleswith Rec, > a for some finite real a. Note that there also exist

systems of advanced type satisfying Reo;, — oo .

Locations of poles can be done using a gridding procedure [174], [176] or via
discretization methods [12], [39], [77], estimating either the solution operator or the

infinite dimensional generator, among others.

Stability notions of both retarded and neutral TDS systems together with a brief
overview of the literature dealing with this topic are introduced in the following
subchapter.
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2.2.2 Stability of TDS

We introduce some stability notions and preliminaries for TDS with respect to
different properties of retarded and neutral systems to understand the literature overview

and the further text of the thesis.

Delay independent stability (DIS) means that delay(s) may cover the full range
[0,00], whereas in delay-depended stability (DDS) one considers that the finite interval

re[1,,7,] istaken into account.

Considering the characteristic equation (2.18), aTDS is asymptotically stable if all
poles are located in the open left half-plane, C,, i.e. thereis no s satisfying

M,(s)=0 (2.20)

with Res>0 for retarded TDS and Res> «,« <0 for neutral ones. This definition agrees

with exponential stability for TDS.

In the case of neutral systems, one has to be more careful when deciding about
stability since there may be infinite braches of poles tending to the imaginary axis. Strictly
negative roots of the characteristic (quasi)polynomial (or meromorphic function), thus, do
not guarantee a satisfactory stable behavior of a system from the asymptotic (and robust)
point of view. Let us introduce an associated difference equation and two stability notions

for neutral TDS which are close to each other in the meaning.

Given a SISO neutral TDS (2.9), an associated difference equation is defined as

Ny

x(t)-2 Hx(t-7,)=0 (2.21)

A neutral TDSis said to be formally stable if
NH

rank[l —>'H, exp(-s7, )} =n,Vs:s>0 (2.22)
i=1

see eg. in[18], [75]. It also means that system (2.9) has only a finite number of polesin
the right complex half-plane [137]. Clearly from (2.21) and (2.22), a system is formally
stable if characteristic equation
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My ()= det|:| - % H, exp(-s7, )} =0 (2.23)

expressing the spectrum of the difference equation hasall rootsin C .

The feature of a neutral TDS that rightmost solution of (2.23) is not continuous in
its delays [52] gives rise to another (yet a germane) stability notion. Srong stability of the
difference equation (2.21) means that it remains exponentially stable when subjected to
small variationsin delays (i.e. a TDS remains formally stable). A system is strongly stable
if and only if

Vo= max{rg(ﬁi H, exp(j@ )) -6, €[0,27)1<i< N, } <1 (2.24)

where r,(-) denotes the spectral radius. Alternatively, the necessary and sufficient strong

stability condition in the Laplace transform can be formulated as
h,
> |my|<1 (2.25)
j=1

see e.g. [50], [208] where m, are coefficients for the highest s-power in (2.8). A sufficient

condition for this type of stability is e.g.
NH
> [Hill<1 (2.26)
i=1

where || isamatrix norm. A strongly stable system is robust against infinitesmal changes

in delays of a neutral TDS which can destroy asymptotic stability of the difference
equation.

The practical connection between these two stability notions is that a control
feedback with a formally unstable system may not be strongly stable [141]. Clearly, a
strongly stable TDS isformally stable.

Let us mention other stability terms useful when dealing with algebraic description
and control of TDS, namely H,, stability and BIBO stability.
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A system is H,, stable if its transfer function G(s) lies in the space H_ (C*) of

functions analytic and bounded in the right complex half-plane, i.e. providing the finite

norm
|G| = sup{G(s): Res> 0} < (2.27)

see e.g. [115]. That is, the system hasfinite L,(0,e0) to L,(0,o) gain where L,(0,o) norm

of aninput or output signal h(t) is defined as

n(t)], = /z|h(t)|2dt (2.28)

Notice, for instance, that a transfer function having no pole in the right complex
half-plane but a sequence of poles with real part converging to zero can be H,, unstable due

to unbounded gain at the imaginary axis[115].

The notion of BIBO (Bounded Input Bounded Output) stability is stronger than the
preceding one and usually more difficult to anayze. A SISO TDS is BIBO stable if a

bounded input [u(t)<M,, t<0, M,;eR produces a bounded output |y(t)<M,,t<0,

M, e R; in other words, it has afinite L.. gain. It holds that the system is BIBO stable if its

transfer function is an element of a commutative Banach algebra £(L; + RJ) of Laplace
transforms of functions of the form

hit)=h,(t)+ > h(t—7)t=0 (2.29)

where h,(t)e L,(0,), i.e.

=

[In.(t)ot <o (2.30)

0

heR, 7,=0,7, >0,fori >0, §(t) stands for the Dirac delta function, and

ém <o (2.31)
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BIBO stability implies H,, stability [27], [75].

Finally, before a brief overview of basic and some recent literature resources is
presented, let us mention interdependences of delays [89]. Generally, in many practical
application delays are not independent from each other. Assume that N delays
7,,i=12,...,N depend on M < N so-called independent delays r,,...,r,, as

M
j=1

where yi=[;/i1,;/i2,...7iM]TeNM are non-zero vectors with non-negative integer

coefficients and r e (0,0)" . The numbers r,,...,r,, are rationally independent if and only

if

Mz

nr=0,ne”Z (2.33)

j=1

implies n; =0, j=12,...,M . For example, two numbers are rationally independent if and

only if their ratio is an irrational number. Otherwise they are rationally dependent.

A specia case of (2.32), fully independent delays, correspondsto M =N, y, =€,

the j-th unity vector in RY and 7,,...,Ty @€ rationaly independent delays. In another
special case where M = 1, thedelays 7,,...,7,, are called commensurate, as they are natural
multiples of the same number r,. For example, the numbers 1,7, 1 + z are rationaly
dependent (not rationally independent), yet not commensurate (Michiels and Niculescu,

20074).

Without any attempt to be exhaustive, we refer now to some of recent stability

analysis approaches and literature resources.

Stability of retarded systems with only one delay was studied e.g. in [109], [140]
based on the well known Rekasius transform (substitution)
exp(-17,8) = (1-Ts)/(1+Ts),T e R* mapping exponentials to rational functions which

holds true exactly fors=jw and serves to find the position where the roots cross the
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imaginary axis. In [107], [159] a second order retarded TDS and in [153] a third order one
with two delays waere studied. In the last reference, where the authors utilized their CTCR
(Clustering Treatment of Characteristic Roots) algorithm, non-commensurate delays and
DDS together with a type of delay interdependence in the characteristic quasipolynomial
(caled crosstalking) were considered. Tools of CTCR and the Rekasius mapping were
also used in [26] to investigate DIS of retarded TDS with multiple delays via sufficient
elimination of T, by means of a special discriminant and the Déscartes rule of signs. There
was also recalled that stability of a delay-free system is anecessary condition for DIS here.
A similar problem for TDS with parametric uncertainties and non-commensurate delays
was solved in [40] providing a huge literature overview and a sufficient DIS condition.
Some DIS and DDS criteria for retarded TDS with multiple uncertain delays were
established in [189] by using both the time-domain and the frequency-domain methods.
DIS for retarded TDS with multiple delays was studied in [91] where the authors discussed
delay interference phenomenon. Robust stability measures using so-called stability radius

were introduced in [93].

Concerning stability of neutral systems, to name just a few recent contributions,
the notion of safe upper bound on roots of the difference equations was introduced in [94]
and further developed in [96]. In the latter, a hecessary and sufficient condition for strong
stability was also given and rationally dependent delays were considered. The notion of so-
called p-stability (including small delays, model errors, discretization etc.) was established
and developed in [95]. DDS of neutral TDS with multiple yet commensurate delays was
studied in [41] providing so-called stability windows and location of all crossing
frequencies and unstable poles. The authors utilized a  mapping

exp(— jor) — exp(- j8), 6< [0, 7], instead of the Rekasius transform to obtain a simpler
imaginary axis crossing analysis.
A huge overview of methods based predominantly on Ljapunov-Krasovskii

approaches can be found in [141]. There were also published some monographs about TDS
stability and related problems, e.qg. [48], [92], [188], during the last decade.

Many of the methods mentioned above are complex and hard to implement. In this

thesis we utilize the argument-increment based stability criterion (also called the argument
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principle or the Mikhaylov stability criterion) for TDS applied to retarded systems e.g. in
[47], [104], [196] and to neutral onesin [208].

Let ¢* denotes a closed Jordan curve enclosing the region De C in the positive

direction. The number Ny, of zeros of my(s) of retarded type inside D is given by

j”b Vis=L A argm,(9 (2:34)

D27ZJ s) 2;:

A more useful and practica formula when studying stability of retarded
quasipolynomials was presented e.g. in [47]. If m,(0)>0 and my(s)# 0 for any imaginary
s=jw, weR,then

1
Ny =5——Aargrrb( s) (2.35)
T sjo,we0,

where Ny is the number of roots of my(s) in C*and n stands for the highest s-power in
my(s). If al the zeros are located in C , i.e. Ny = 0, (2.35) resultsin

Aargmy(s)= %[ (2.36)

s=j w,@=[0,0)

which (taking mutual implication) agrees with the well known Mikahylov stability
criterion used by some authors when control of TDS aswell, e.g. [197], [125].

Analysis of neutral TDS is arather more complicated due to the absence of alimit
of Aargmy(s); however, it holds true the following [208]. Consider a quasipolynomial
m,(s) of neutral type asin (2.8) satisfying m,(0)>0,my(s)# 0 for any imaginary s=jw,
weR, and (2.25). Then my(s) isstrongly and asymptotically stableif and only if

n—”—(DSAargmo(s)gn—”HD (2.37)
2 s=j w,@=[0,0) 2
where
(N
® =arcs n[z‘rm U (2.38)
=1



Although both criteria are used to the characteristic quasipolynomial my(s) to

determine whether all its roots are located in C, they can aso be useful when dealing
with zeros of the characteristic meromorphic function M(s) (for distributed internal

delays) simply by subtraction the phase change of the numerator and denominator, i.e.
AargM (s)=AargnumM ,(s)—AargdenM,(s) (2.39)

If both quasipolynomials are of retarded type, one abides by (2.36); otherwise (i.e.
the numerator is of neutra type yet strongly stable), (2.37) and (2.38) are considered.

Moreover, n must be taken as arelative degree of M (s) as
n=degnumM ,(s)-degdenM(s) (2.40)

This vague statement above is going to be precised in Subchapter 4.6 dealing with
the derivation of a generalized Nyquist criterion for TDS.

2.3  Algebraic description of TDS

2.3.1 Theoretical background, basic algebraic notions

Prior to abrief overview of particular algebraic structures utilized by some authors
when analysis (and/or synthesis) of TDS, it is convenient to introduce some basic algebraic
notions being used in thisthesis and their elementary propertiesif useful [144], [185].

A group, G, isan algebraic structure with binary operation - satisfying:
a) Foreach a,be G, itholdsthat a-be G.
b) For al a,b,ce G, (a-b)-c=a-(b-c)e G (associativity).

¢) There exists an element ec G, such that for every element ae G, it holds that

a=a-e=e-ae G (identity eement, neutral € ement).

d) For each ae G, there exists an element be G such that a-b=b-a=ee G

(inverse element).

-45-



A set satisfying a) and b) only from the definition above, i.e. without a necessity of
identity and inverse elements, is caled a semigroup. If one requires the existence of an
identity element, a so-called monoid is obtained. A group with the commutative property,

i.e.
€) Foreach a,be G, a-b=b-aeG
is called a commutative (abelian) group.

A ring, R, isa set with two binary operations +, - (generaly interpreted as addition

and multiplication) for which it holds true the following:

a) Risacommutative group under addition with an identity element denotes as 0.

b) For any a,b,ce R, (a+b).c=a-b+a-ceR and c-(a+b)=c-a+c-beR
(Ieft and right distributivity).

¢) For every a,b,ce R, it holds that (a-b)-c=a-(b-c)e R (Associativity of
multiplication).

Some authors add another property of aring as:

d) There exists 1€ R such that for every a#0e R, a-1=1-ae R (multiplicative
identity).

If d) holds, then aring is a commutative group under + and a commutative monoid
under -, together with distributivity. In a commutative ring, the commutative property holds
also for multiplication.

A unit of the ring (or an invertible element) is a= 0e R, for which there exists
a'eR,suchthat a-a*=a"'-a=1.If al elements of aring are units, thering is caled a
fidd.

It is said that be R divides ae R (i.e. b|a) if there exists qe R, such that

a=q-b. Twoelements a,be R areassociatedif b|a and a|b.

Let R be a commutative ring and a,be R. A common divisor ce R of a, bisan

element of thering, for which c|a and c|b. de R isthe greatest common divisor (GCD)
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of a, b if for every common divisor ce R of a,be R it holds that c|d. The GCD is

determined unambiguously except for associdtivity.

A nonzero noninvertible element a of acommutativering R is caled irreducible
if itisdivisible solely by a unit or any element associated with a . In some rings, so-called
prime elements generalizing prime numbers are introduced. A prime elements is a nonzero

noninvertible ae R, such that if a|(b~c) for some b,ce R, then dways a|b or ajc.
Every prime element isirreducible, the converseis not truein general.
A ring Rin which every nonzero noninvertible ae R can be uniquely decomposed

in a (finite) product of irreducible or prime elements (except for the ordering and

associ ativity) is called a unique factorization ring (UFR).

A commutative ring with identity (under multiplication) such that for any two
elements a=0e R and b#0e R it holdsthat a-b+0 iscaled an integral domain. An
UFR which isan integral domain is labeled as a unique factorization domain (UFD).

A field of fractions of an integra domain R (at least with one element) is the
“smallest” field containing R, such that necessary elements satisfying the divisibility (by a
nonzero element) are added. An element ¢ of this field can be expresses in the form

c=al/b where a,be R, b#0.
Anideal | (of thering R) isasubset of Rwith the following properties:
a) For every a,be | ,itholdsthat a+be | .
b)Foreachacl andre R, a-rel.

It holds that an intersection of idealsisan ideal aswell. Let M ={a,,a,,..a, }c R,

then an intersection of dl ideals of R containing M is called an ideal generated by M. It is
aso the “smallest” ideal including M. Ideals of the foomaR={a-r|re R}, i.e. those

generated by (the only one) element a, are caled principal.

If every ideal of anintegral domain is principal, a so-called principal ideal domain
(PID) is obtained. It holds true that every PID is UFD; however, the converseis not true in
general.
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A Noetherian ring R is primarily defined as that satisfying the so-called finite
ascending chain condition. Equivalently, it is possible to circumscribe the term as follows:

A ring Ris Noetherian if its every ideal isfinitely generated, i.e. n=|M| isafinite number.

A (left) module (or R-module) M over the ring R is a commutative group

satisfying:
a) Forevery re R, a,be M, itholdsthat r-(a+b)=r-a+r-be M.
b) Forevery r,se R, ac M ,(r +s)-a=r-a+s-ae M.
c) Forevery r,se R, ac M ,(r-s)-a=r-(s-a)e M .
d) If there existsamulltiplicative identity 1€ R, and ae M ,then 1.-a=ae M

Modules are smilar to vector spaces, yet in modules, coefficients are taken from

rings, not from fields. A free module is that with a basis. For instance, since honzero
elements in a ring are not necessarily invertible, a relation Zn:ri -a=0reRaeM,
i=1

where M is a free module, does not imply that each r; is the linear combination of the
remaining ones[24].

A partially ordered set (poset) is defined as an ordered pair P=(S,<) where S is
called the ground set of P and < isthe partia order of P. A relation < isaposet on S
if:

a) Foral ae S, a<a (reflexivity)

b) For a,be S, if a<b and b<a, then a=b (antisymmetry)

¢) For a,b,ce S, a<b and b<c implies a<b (trangtivity)

From a PID, a Bézout domain is distinguished in which every finitely generated
idedl is principal. In a Bézout domain, PID is UFD and viceversa. Thus, a PID admits the

existence of an infinitely generated ideal whichis principal.



In a Bézout domain R, for every pair a,be R (or generaly for a finite set of
elements) there exists the d =GCD(a,b) which meets the Bézout identity (or more

generaly alinear Diophantine equation)
a-x+b-y=d, x,ye R (2.41)

A solution x,ye R is not determined uniquely but (an infinitely many) solutions

of (2.41) are given by the parameterization

X
Il
I+
N

Xo
(2.42)

+
N

<
I
o.im oo

Yo

where {Xo, Yo} isaparticular solution of (2.41) and ze R.

If (2.41) is solved for any ce R on the right-hand side instead of GCD(a,b), it is
necessary to verify whether there exists GCD(a,b) (especially in a ring which is not
Bézout or PID) for which GCD(a,b)|c.

The Bézout identity can be solved e.g. using a generalized (extended) Euclidean
algorithm which can be described as follows. Let a,b be given and the task is to find

d =GCD(a,b) and apair x,y according to (2.41). The iterative procedure can be written

as

i=r_, _I_Qi J fig
AP AP ¢ (2.43)
i=3,4,..,n

i.e. the current reminder r, of the division can be expressed by preceding reminders
r._,, I, andusing the whole quotient g =r, ,/r, ;.
In every step of the algorithm, it is possible to write the following identity
r=a-x+b-y, (2.44)

where x,y; arefrom thering. The first two reminders are chosen as
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rn=a=a-1+b-0
(2.45)
r,=b=a-0+b-1

The desred d=GCD(a,b) then equas the last

r,z0,r,=0nN<eco.

nl T

nonzero reminder,

The whole procedure can be expressed in atable (matrix) form as follows
10
01

Theresult is determined by two Diophantine equations

elementary

t|O0
a} -oTow {V ‘ } (2.46)
b matrix X y|d

operations

a-v+b-t=0 (2.47)
a-x+b-y=d '

In the case when (2.41) is solved for any fixed ce R on theright-hand side instead

of d=GCD(a,b) it is possible (if a solution exists) to use the extended Euclidean
algorithm again in the following two possibilities:

1) To use scheme (2.46) for ce R instead of d = GCD(a,b). Generally, it is not

necessary to achieve the zero element on the upper right matrix corner.

2) Obvioudy

c
a-x+b-y=d /—
=0

aXl p¥_¢ (2.48)
d d
ax+b-y,=c¢

Hence, GCD(a,b), xy are found using (2.46) first, and subsequently, the following
substitution is used

C C
xSy =y 2.49
X=X h= Y (249

to get the desired solution.
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For the necessity and comprehension of the further text, some basic notions from

the complex functions analysis ought to be introduced.

A holomorphic function is a complex-valued function of a single (or multiple)
complex variable defined on aregion D < C which isinfinitely complex differentiable (i.e.
there exists al complex derivatives) at any point z,€ D.

The term holomorphic function is often used interchangeably with or compared to

an analytic function which is generally a complex-valued function of a single (or multiple)

complex variable defined on aregion D ¢ C, in which the Taylor series expansion exists at
every point z,e D. That is, a series T(z):,—1|if“)(zo)(z—zo)i converges to f(z) for
ITi=0

every point z from aneighborhood of z,. For complex functions, a holomorphic function

implies an analytic function. A function holomorphic on all C iscalled entire.

An isolated singularity of a complex function f(z) is a point z,, in which the
function is not differentiable; however, there exists an open disk D centered at z, such that
f(z) is holomorphic on the disk excluding z,. There are severa types of isolated
singularities. A pole is an isolated singularity z, of f(z) such that f(z) converges

uniformly to infinity for z— z,. Thus, if there exists the improper limit ‘Iimz_ﬂo f(z){:oo,
then there exists also neN, so that ‘Iimmo(z— z,)' f (z){ <eo. A removable singularity is

another type of an isolated one for which ‘Iimz_ﬂo f(z){;too. In this case, it is possible to

define f(z,)=lim, , f(z), sothat f(z) becomes holomorphic. An essential singularity

-7,
represents the last type of an isolated singularity which evinces “peculiar” behavior within

the neighborhood of the singularity, and it holds that the limit lim,_,, f (z) does not exist

here.

A meromorphic function is a complex-valued function of a complex variable
which is holomorphic on an open subset D < C except a set of poles. The function can be

expressed as aratio of two holomorphic functions.
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2.3.2 Fieds, ringsand modulesfor description of TDS

The nascence of agebraic methods in description of TDS is connected with fields,
namely with systems over fields [58], which can be written in the (retarded) state-space

form

(2.50)

where elements of A,B,C are from afixed field and X(t)de—it).

The next step was to further generalize the concept of linear systems, to include
the case in which coefficients belong to aring. The first, general, in-depth research into the
properties of systems over rings was constituted in [145], [146]. One of the primordid
attempts to utilize ring theory to infinite-dimensional linear systems was made by Kamen
0\[59] where an operator theory was presented, the particular case of systems defined via
rings of distributions. Namely, thering © generated by the entire functions 6, (s) defined
in (2.6), their derivatives and 1 was introduced there. Ring models for TDS with lumped
delays was published in [102].

In [156], linear systems over commutative rings, especially TDS, were intensively
studied. The author i.a. presented the simplest TDS over rings, those with commensurate

delays where the introduction of the operator &x(t):=x(t—7), wherez represents the

smallest delay, yields state matrix entries in the ring of polynomialsR[ J]. In more details,
let the model be

x(t)= 3 A x(t—kz)+Bult —kz)
ﬁo (2.51)
y(t)= Y. Cx(t-kr)

then state and output matrices in (2.50) read

N N N
A=Y AB=YB,5"C=>C* (2.52)
k=0 k=0 k=0
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Using a substitution 8* — exp(—kzs), one can obtain the Laplace transform form
of the state model for TDS with commensurate delays. If delays are not commensurate, we
need to define afinite set of delay operators J,,6,,..., 0y resultinginaringR [3,,5,,..., 5y |
Some authors, e.g. Youla (1968), introduced the field R (51,52,...,§N) of rational functions
inR [51,52,..., 5N] in order to study networks with transmission lines (i.e. delayed systems).

Reachability and observability of a genera system with coefficients over a ring are
analyzed in [156] as well.

Conte and Perdon [22] further studied the realization of such systems. These
authors also developed the geometrical approach to the study of dynamical systems with
coefficients over aring concerning TDS. The overview of the methodology was presented

in [24]. In this framework, the main tool lies in the view that x(t),u(t),y(t) in (2.51) are

free R-modules.

Concerning input-output maps, which are substantive for the aims of this thess,
Sontag [156] and Morse [102] mentioned the conception of 2-D systems which naturally
arises from the transfer function of a TDS with commensurate delays over a ring (2.51),
(2.52). Trangdlation the state-space description into the transfer function according to the
first formulain (2.7) results in arationa function in s and exp(—s) . This expresses that
two operators are used here, i.e. the integrator and the delay operator, which are
algebraicaly independent (due to the fact that the exponentia term is a transcendenta
function) in the meaning of that there is no nontrivia linear combination of < and
exp(-zs) over rea numbers equaling to zero. Thus, the ring R|s exp(—7s)]of
quasipolynomials, which is isomorphic to the ring of real polynomialsin two variables (a
so-called 2-D polynomial) R [s, z], is obtained. Quasipolynomials defined in (2.8) do not
coincide with those introduced above since commensurate delays only are considered here.
This concept was further studied and developed e.g. in [44], [101]. It holds that any two

coprime elementsin R [s, exp(— zs)| have a finite number of common zeros, see e.g. [74].
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However, some authors pointed out that the use of quasipolynomials does not
permit to effectively handle some stabilization and control tasks, thus other rings based on

guasipolynomials for TDS with commensurate delays were introduced.

For instance, Brethé and Loiseau [16], Loiseau [74] established the following
rings. A ring R = O UR [exp(—1s)] = Bfexp(-1s)] of al linear combinations, with real
coefficients, of distributed delays from © and lumped delays, and a ring

& =R[s] = ©UR[s,exp(-s)| of so-called pseudopolynomials which consists of Laplace

transforms of operators that are generated using derivatives, lumped and distributed delays.
Any element T(s)e & can be written in the (coprime) form T(s)e N(s,exp(-1s))/ D(s),
N(s,exp(—7s))e R [s,exp(- zs)], D(s)e R [s]. Two pseudopolynomials are coprime if and
only if there are neither their common zeros nor factors in the form exp(-kzs). Ring
R [s] is not isomorphic to R [x]|, which means that the variables are not algebraically

independent (transcendental) over R, see an example in [16]. Moreover, it is a Bézout
domain, yet not an Euclidean ring nor a Noetherian ring nor a UFD. Notice that & and

R [s,exp(—7s)] share the same field of fractions, i.e. R (s,exp(—zs)). The transfer function

can then be expresses as a fraction of two pseudopolynomials.

Behaviora approach, as it was introduced for dynamical systems in [186], was
presented by Gluessing-Lueerssen [46] for TDS, again with commensurate delays. In
contrast to above mentioned works, the author considered systems in the behavioral point
of view instead of systems over rings. A behavior is the kernel of a delay-differential
operator. More precisely, consider equations in the scalar case in the form

ZL:% By X(i)(t_ j)=0 (2.53)

j=0i=0
where p;,teR, x"(t) denotes the i-th derivative of the functionx(t): R — R. Behaviors
B are those functions x(t) satisfying (2.53). Alternatively, B=kerP where

L N ~
P=>Ys7eR[sz] and P denotes the associated delay-differential operator, i.e.

j=0i=0
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_ L N )
Pxt)=>> p,x"(t—]). It is stated in [46] that it is agebraicaly more adequate to

j=0i=0

consider the ring R [s, z, z‘lj instead of R [s, z]. Thereis also defined the ring
H:={peR (s)z.z*]| p(s, 2)e H} (2.54)

as the appropriate domain in order to translate relations between behaviors, lying between
R ls, z, z’lj and R (s)lz, z’lj, where the latter means the ring of polynomiasin z,z* with
the coefficients in rational functions in s with real parameters, andH. is the set of all

entire functions. It was proved that “H is not a UFD and not a Noetherian ring; however, it

isaBézout ring.

However, delays are naturally real-valued and thus the limitation to
commensurate delays s rather restrictive for real applications [94]. Dealing with rings for
input-output maps of TDS with even non-commensurate delays, it is crucia for this thesis
to mention here the family of approaches (originally developed for delayless systems)
utilizing a field of fractions where the transfer function is expressed as a ratio of two
coprime (or relatively prime) elements of a suitable ring [28], [69], [167]. The process of

finding such coprime pair is called a coprime factorization.

One of such rings for continuous-time systems is the ring of stable and proper
rational functions, Res, [69], [138]. An element of this ring is defined as a ratio of two
polynomialsin s over R where the denominator polynomial is Hurwitz stable (i.e. free of
roots located in the closed right half-plane including imaginary axis) and, moreover, the
ratio is proper (i.e. the s-degree of the numerator is less or equa to the denominator).

Alternatively, the dement of Resis analytic and bounded for Res>0 including infinity,

i.e.itliesin H_(C™). Such a definition is, however, not sufficient for TDS since e.g., as

demonstrated in Example 2.1, the Laplace form of a stable system including in H_ (C™)

can have an unstable denominator.

The utilization of Res in description (and control) of TDS requires a rational

approximation of a general meromorphic transfer function as a first step of a coprime
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factorization, for instance, by a subdtitution of the exponential terms,

exp(-1s)= X(s)e R (s).
An example of acoprime factorization in Res follows.

Example 2.2

Consider a stable TDS with distributed delays governed by the transfer function
(2.16). The use of e.g. the first order Padé rational approximation resultsin

_Y(s) 0581+ exp(1))+1-exp(d) b(s)
Gls)= U(s) (s—lr))(0.55+1) - a(s) (259)

where a(s), b(s)eR[s|. Notice that the common roots=-1 characterizing the delay
distribution in this example vanished after the rationalization. An addition, athough the
relative order of the transfer function is preserved, the absolute one has increased. To
establish coprime factors A(s) = a(s)/ m(s), B(s)=b(s)/m(s), m(s)eR [s]| (with no zeroin
C*), A(s)e R, B(s)e R, one has to redize the divisibility condition in Res
Any A(s)e R, divides B(s)e R if and only if al unstable zeros (including s — ) of
A(s) are those of B(s). Inclusion of infinity in the condition gives rise to the
requirement degm(s) = dega(s)= 2, and moreover, there isno s with Res>0 satisfying
m(s)=0. "
The main drawback of the ring, i.e. the necessity of a rational approximation,

induces the idea of introduction asimilar, yet rather different, ring avoiding this operation.

2.3.3 Rusring

The original definition of the ring of proper and stable retarded quasipolynomial
(RQ) meromorphic functions, Rys, is the subject of this subchapter [199]. The basic idea
for its introduction proceeds from the following ideas. First, as mentioned above in the
previous subchapter, arational approximation of the transfer function in the form of aratio
of two quasipolynomialsisrequired for the use of the ring Rps. This operation brings aloss

of system dynamics information, as can be seen from Example 2.2. Second, from the
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practical point of view, there is no reason to be limited to commensurate delaysin a model,
thus, a more universal description ought to be introduced. Third, authors took into account
the fact that two variables, z and s, are not independent from the functional point of view,
thus, a one-dimensional (1-D) instead of 2-D approach can be used. Last but not least, as
stated above, quasipolynomials in the transfer function do not permit to effectively handle
some stabilization and control tasks such as impulse-free stability and controller

properness and parameterization.

An eement T(s)e R,s is represented by a proper fraction of two

guasipolynomials

~—

T(g)= Y8 (2.56)

X(s

where a denominator x(s) is a quasipolynomial of degree n and a numerator can be

~—

factorized as
y(s)= V(s)exp(-s) (2.57)

where ¥(s) is a quasipolynomial of degree | and 7 >0. x(s) is stable, which means that

thereis no zero of x(s) , So, such that Res, > 0. Moreover, theratio is proper, i.e.| <n.

Obviously, the condition 7 >0 is too restrictive (or more likely a misprint); the
inequality >0 would be more natural instead. The origina definition of Rys has some
drawbacks; especially, it does not constitute a ring, which requires making some changes
in the definition as presented in Subchapter 4.1.1. Namely, although the retarded structure
of TDS is considered only, the minimal ring conditions require the use of neutra
quasipolynomials at least in the numerator of T(s). Moreover, the original definition
brings problems when comprising models with distributed delays and handling the

coprime factorization.

2.4  Algebraic control of TDS

Algebraic approaches of control systems theory aim at changing differentia

eguations into algebraic ones, thanks to the use of the Laplace transform.
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2.4.1 TDS stabilizability and controllability

Let us briefly mention notions of controllability and stabilizability of TDS which
present differences compared to finite dimensional systems [141]. First, controllability
means to reach afunction x, within the time range [t—T,t] instead of a point x(t) at one
time instant. As second, delays introduce the existence of a required minimum reaching

time, e.g. a system with input-output delay T can not be controlled within time T.

The concept of controllability is not unique here. Richard [141] provides an
overview of different controllability definitions, including M ,-controllability, absolute

controllability, (v, R")-controllability, spectral controllability, R"-controllability and ring-

controllability and presents the chain of implications between some of them as well.
However, al the statements are made in the state space and most of the definitions hold for

models with commensurate delays, which is almost useless for the purpose of thisthesis.

The definition of the spectral controllability mentioned above can be extended to
non-commensurate delays as follows. The system (2.1) with matrices (2.7) is spectrally

controllable if and only if

rank[sl - A(s),B(s)|=n, Vse C (2.58)
see[111], [205]. Alternatively, the criterion can be formulated as

rank|B(s), A(s)B(s), A%(s)B(S),... A™(s)B(s)|=n, Vse C (2.59)

where on the left-hand side is the well known spectral controllability (reachability) matrix
P.:=|B,AB,...A™B|.

In e.g. [24] two different notions of reachability of TDS over aring are defined
and distinguished: Given the obvious reachability matrix P, the system is weakly
reachable if Py hasfull rank, whereasit is said reachable if Pyis (right) invertible over R.
For example, it is easy to prove that a system x(t)=u(t —7)= du(t) is weakly reachable and
not reachable over R[ ¢]. Clearly, the condition (2.59) agrees with the weak reachability.
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It was proved in [158] - athough for commensurate delays only - that if the system
is spectrally controllable, then it isring controllable, i.e. any element of the appropriate R-
modul e can be reached by the feedback from any initial state.

A similar notion of the (finite) spectrum assignability for TDS with commensurate
delays (which can be extended to those with hon-commensurate ones) was introduced by
Sontag [156] and Spong and Tarn [158]. Intuitively, the system is spectral assignable if
there exists a finite number of state feedback controller parameters (with appropriate
controller and control system structures) such that the closed-loop spectrum contains
arbitrary (but fixed) poles. Brethé and Loiseau [16] proved that TDS (with commensurate
point delays) is finite spectrum assignableif and only if it is spectrally controllable.

If one wants to assign only stable poles, the spectral assignability turns to the

(spectral) stabilizability, i.e. the necessary and sufficient condition for the stabilizability is
rank[sl - A(s), B(s)]= rank|B(s), A(s)B(s), A%(s)B(S),... A™*(s)B(s)|=n, Vse C*
(2.60)

However, since the condition is based on the state space description, it depends on

the system realization as shown in the following example.
Example 2.3

Consider an integrator with distributed input-output delay governed by functional
differential equation

y(t):j)u(t—r)df (2.61)

By introduction of a state variable x(t)=y(t), (2.61) represents the state equation

as well. Using the Laplace transform on the convolution, the following image of the

equation is obtained

X(s)= = &PS)  (g) = B(su (s) 2.62)

<

<

Hence, the system is stabilizable since rank B(s)=1 for al complex s.
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Contrariwise, by derivation, model (2.61) becomes
y(t)=u(t)-u(t-1) (2.63)

the “direct” state space realization of whichis

X(t)z{g ﬂx(t){ﬂu(t){_"l}u(t ) (264

which yields the stabilizability test as

0 1-exp(-s)] = _
1-exp(-s) 0 }_ 0, s=+k27,ke N (2.65)

rank[B(s), A(s)B(s)]= rank{
Obviously, the system is not (spectrally) stabilizable. [
The stabilization of systems over rings was the aim of [37], [49].

The most important result for the stabilization of TDS in input-output space,
namely for BIBO stabilization, which is crucia for this work, was presented e.g. in [75],
[155]. The system is said to be BIBO stabilizable if there exists a feedback loop such that
the closed-loop system is BIBO stable, see Subchapter 2.2.2. Then it holds the following

necessary condition:

Let TDS bein the form of the transfer function
G(s)=—=% (2.66)

where a(s),b(s) are quasipolynomials asin (2.8). Then if the system is BIBO stabilizable,

then it admits a Bézout factorization over H_(C*), i.e. there exist

A(s),B(s),P(s),Q(s)e H_(C"), such that

G(S)=% (2.67)
A(s)P(s)+ B(s)Q(s)=1 (2.68)
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Further, if the system is BIBO stabilizable, then any coprime factorization (2.67),

having no common factor on H_(C"), is aso Bézout. Moreover, two elements

A(s),B(s)e H_ (C") form aBézout factorization if and only if

inf (A(s)+[B(s))>0 (2.69)

Res>0

In fact, a coprime factorization does not guarantee a Bézout factorization as

clarified in the following example. In such cases the systemis not BIBO stabilizable.
Example 2.4

A TDS of neutral type has atransfer function

o= Y(s) _ b(s) _ 1
G(s) U(s) a(s) (@—exp(-s))(s+1) (2.70)
Clearly, apair
B(s)= é Als)= - eXpS(; ‘Z))(S +1) (2.71)

has no nontrivial (non-unit) common factor, i.e. it is coprime. However,

|A(+ k27)=0,keN, and Ikim|B(J_r k27))=0, hence (2.69) does not holds true and the
systemis not BIBO stabilizable. [

As stated in [75] for neutral-type TDS, a system that is not formally stable is not
BIBO stable nor stabilizable. However, thisis not true exactly, as shown in [115].

2.4.2 Overview of algebraic methodsin control of TDS

Algebraic control and controller design methods for TDS generally follow
algebraic analytic approaches described in Subchapter 2.3.2. Without being exhaustive, an

overview of some methods and literature sources follows.

One of the first algebraic results in the area of control of TDS was presented by
Sontag [156]. As mentioned above, he studied the reachability, coefficient- and pole-
assignability of TDS with lumped and commensurate delays, originating from the
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possibility of deriving methods and techniques from the framework of systems with
coefficients over the field of rea numbers. Similar results were published e.g. in [102],
[157]. A genera algebraic solution to the problem of control of linear systems over
arbitrary commutative rings by dynamic output feedback is given in [38]. Mounier [103]
considered tracking problems and Picard et al. [135], [136] dealt with precompensation
feedback loop for TDS and the model matching, respectively.

Kamen et al. [62] studied stabilization of TDS with non-commensurate delays by
finite dimensional controllers where it was shown there that a spectrally stabilizable time-
delay system can aways be stabilized using a finite-dimensional compensator obtained by
a rational approximation. In [63], the existence and construction of proper stable Bézout
factorizations of transfer function matrices for TDS with commensurate time delays in
terms of a specialized ring of lumped and distributed delays was introduced. Furthermore,
regarding 2-D systems, let us mention works of Morf et a. [101], who found a constructive
results for 2-D polynomial matrices factorization, Sebek [160], [161] investigated
procedures for the characteristic polynomial assignment (by a transformation into 1-D

polynomials) and asymptotic tracking via solving two linear equationsin 2-D polynomials.

These approaches above adopt the concept of Diophantine equations (originally
derived for discrete-time systems) which can be found throughout the algebraic control

theory, particularly in the form of the Bézout identity [69], [167], see Subchapter 2.3.1.
Algebrasfor distributed LTI systems were introduced in [27].

A geometrical approach was developed and applied to a number of control
problems e.g. in [23], [55], [57]. In [24] the geometric approach via ring and modules
algebra for systems over rings was used to provide the solution of problems such as

disturbance decoupling and block decoupling.

In the framework of a behavioral approach for control of TDS, the controllability
criterion for, generally, multivariable systems with commensurate yet even distributed
delays using ranks of associated matrices was introduced and proved in the most
significant work by Gluessing-Lueerssen [46]. This criterion generalizes the spectra

controllability test for time-delay state-space systems asin (2.58).
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In [16], the ring R [s] was utilized to solve the task of the finite spectrum
assignment for SISO TDS with lumped commensurate delays via a state feedback with
convolution integrals (distributed delays), so-called Volterra integrals of type (2.3).
Bézout-type identity with 2-D polynomial matrices was used there.

The results of author’s long-standing work and research on algebraic control of
TDS with commensurate delays were summarized and reviewed in [74]. The author
pointed out that algebraic approaches fail to give a constructive procedure for stabilizing
TDS and the use of distributed delays in the feedback can lead to effective procedures
solving this problem, see also [83], [183]. Exact model matching (including disturbance
rejection) inR [s,exp(—s)], R [s,exp(zs)] and R (exp(zs))[s] for retarded and neutral TDS,
respectively, was one of the topics solved in the paper. The second part of the contribution
dealt with the stabilization of TDS using the ring of pseudopolynomials, &, see Subchapter
2.3.2, the realization over R of a fraction of elementsin &, and with the pole placement
using &. It was recalled there that a system is stabilizable if the plant transfer function
numerator and denominator have no unstable common zero - compare with (2.69). Another
finding states that there always exists a stable redlization over R, however, over

R [exp(-7s)| does not, see Example 2.3.

The strongest result about & constructively proved in [74] is the following. For
two coprime elements of &, say a(s),b(s), there exist a pair x(s), y(s)e & satisfying
a(s)x(s)+b(s)y(s) =1, see (2.68) for the comparison.

Stabilization and synthesis of the so-called fractional exponentia systems has been
worked out e.g.in[9].

Surveys [141], [183] focused on advances in control of TDS aso includes
overview of some algebraic methods, particularly in robust control of systems with

commensurate delays.

The main result of [75], that neutral TDS that are not formally stable are not BIBO
stahilizable, has already been introduced above, see Subchapter 2.4.1, where the authors

employed the algebra of Laplace transform elements from H_(C*). This finding,

-63 -



however, holds for strictly proper systems, i.e. proper systems can have a Bézout coprime
factorization, see example G(s)=s/(s+sexp(-s)+1) in [160]. The authors provided
stahilizing procedure for state-space models via distributed feedback of the form asin [16].

A generalization of a so-called structure at infinity (closely related to the coprime
factorization) and the introduction of non-equivalent notions of proper and biproper
fractions for both retarded and neutral TDS with commensurate delays (in 2-D) were
presented in [30]. In the paper, advantages of the use of pseudopolynomials for distributed

delays were mentioned as well.

Partington and Bonet [115], in their very attractive paper, studied H,, and BIBO
stabilizability of neutral SISO TDS with one internal delay. They paid their attention to

h
controlled systems with limit case for strong (and formal) (in)stability, Z‘mj‘zl, see
j=1

(2.25). The authors stated that in [75] it had actually been proven that formally unstable
neutral TDS can not be exponentialy stabilized. However, they disproved that such
systems can not be BIBO stable. For instance, it was proved there that a system with

transfer function G,(s)=1/(s+sexp(—s)+1)e H_(C*) and it is not BIBO stable, yet
G(s)=G,(s)/(s+1)e H_(C") but still not BIBO stable, and

G(s)=G,(s)/(s+1)e H_(C*) and is BIBO stable for k > 4. For all there three systems,

the Bézout factorization condition (2.69) can not be satisfied. In extension to [75], they
showed that many neutral systems can not be stabilized in an H,, sense. Moreover, it was
proved that any H,-stabilizable SISO system can be stabilized by a proper controller of a
finite dimension (compare to [62]). The authors opened the question of the existence of an
infinite-dimensiona controller for such systems. Although no algebraic methods are used

in the work, the results are fruitful for thisthesis.

A novel controller parameterization that reflect the Internal Model Control (IMC)
structure for both, SISO and MIMO TDS, independent on the coprime factorization, was
proposed in [194].

A robust control based algebraic approach, namely via a structured singular value,

applied to three practical problems was introduced in [31].
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2.4.3 Control of TDSin the Rysring

As mentioned above, this thesis intends primarily to use the ring of stable and
proper meromorphic functions, Rys, or its revised form, more precisely, therefore the
overview of selected contributions dedicated to control in this ring follows. Notice that the

conception of Rys has not been finalized in many of these papers.

A control methodology for retarded TDS with non-commensurate delays based on
the Rys ring was introduced in [199]. Besides a conventional control loop with the Bézout
identity and the Youla-Kucera parameterization for system stabilization and asymptotical
tracking of stepwise reference, the affine parameterization was adopted. The idea of the
affine parameterization in Rys was extended in [201], [202]. In the former paper, the
authors solved asymptotic stability, (again stepwise) reference tracking and disturbance
rejection followed by the shifting of the closed-loop poles [171]. The cascade controller
scheme for unstable plants plays the important role here. The latter one dealt with state-
feedback pre-stabilization supported by a finite-dimensional observer and followed by the
affine parameterization again. The methodology provides a finite spectrum assignment of
the control loop. A specific cascade control structure satisfying the disturbance

compensation presented in [203] improved the ideas introduced in the papers above.

To name just a few contributions by the author of this thesis related to controller
design in Rys, control of unstable retarded TDS and that of integrating processes with dead
time by two feedback controllers were designed in [131] and [122] respectively. The link
between relay-based autotuning and controller design was set eg. in [130], [139].
Reference tracking and disturbance rejection of non-stepwise external inputs with delayed
plants and two feedback controllers were solved in [129]. However, some authors (mainly

early) papers suffer from mistakes and inaccuracies.

Y et, as pointed in [124], the algebraic structure defined in [199] does not constitute

aring and, moreover, neutral-type system structures ought to be included in the definition.
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2.5 Control system structures

An essential step in controller design is the selection of the control system
structure, hence, the description of control system structures utilized in this thesis follows.
The first one agrees with the simple negative feedback loop, whereas the second one
introduces a secondary (slave) controller making the task of load disturbance rejection
easier and better to solve. Moreover, it will be shown later that this control structure

enables to guarantee a (quasi)finite spectrum assignment.

251 1DoF control structure

One-Degree-of -Freedom (1DoF) system structure is depicted in Fig. 2.1, where ,
W(s) is the Laplace transform of the reference signal, D(s) stands for that of the load
disturbance, E(s) is transformed control error, U(s) represents the plant input, and Y(s)

is the plant output controlled signal in the Laplace transform. The plant transfer function is

depicted as G(s), and G.(s) standsfor a controller in the scheme.

D(=)

wis) ~ B[ g | W Eus) [ oam (=)
P(s) Als) "
GR(SJ G(=)

Fig. 2.1 1DoF control system structure

Let G(s)=B(s)/ Als) and G(s)=Q(s)/P(s) , then the following basic transfer

function can be derived in the control systemin genera

)= Y(s) _ B(s)Q(s) o= Y(s) _ B(s)P(s)
Ty AR VAR Ly R VYA o)
e == A M (9)= Alepts)+ Bl
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2.5.2 TEFC control structure

Two-Feedback-Controllers (TFC) control system, see eg. [112], is another
controller structure, displayed in Fig. 2.2. The transformed signals and transfer functions

have the same meaning as for 1DoF and GQ(S) states for the transfer function of the

secondary (slave) controller in the inner feedback loop.

W) Ei=) Ris)
Pis)
Gyl2)

Bis) EESJ
Als)
G(=)

o)
53]

GQ(S)

Fig. 2.2 TFC control system structure

In the structure, the following transfers can be derived

_Y(s) _BsR(s) _Y(s) _B(s)P(s)
N
S=Es=AsPs+Bst S_Es=_BsPs _
Guel8)= g O G CEEIOR (273
M(s)= A(s)P(s) + B(s)(Q(s) + R(9))
where
RO -9
Gg(9)= P’ Gy (9) P(S) (2.74)

Obviously, 1DoF and TFC coincideif and only if G,(s)=0.
2.6 Tuningof controllersfor TDS

A suitable setting (of free parameters) of finally derived controller(s) is another

important task in controller design.
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The most of tuning approaches have dealt with an optimal setting of the state
feedback. For instance, Linear-Quadratic (LQ) optimal control was proposed e.g. in [45],
[47], [82]. Y€, these approaches are marked by the enormous complexity of the control
laws. An interesting idea of the state-feedback controller tuning by the change of delaysin
the feedback was proposed e.g. in [110].

Regarding output-feedback contral, the stabilizing effect of delayed feedback was
pointed out in [1]. The optimal modulus principle for TDS via classical PID controllers
was implemented in [205]. A dead-beat (i.e. that guaranteeing the minimal number of
control actions) controller for discrete-time TDS models was derived in [183]. H.. optimal
control of TDS based on operator methods and frequency domain descriptions of systems
was solved in [43]. The LQ control technique ensuring asymptotical tracking of step
reference and step load disturbance attenuation for stable, integrating and unstable plants
with input-output delay based on delay approximation and the polynomial approach was
presented in [32].

An overview of some other (rather controller design) methods was presented in
[141]. A detailed PID controllers design for systems with time delay was published in
[150]. A number of results on control and tuning of systems with input-output delays were
published aswdll, see e.g. [108], [169] and references therein.

As a pole placement tuning methodology is concerned in this thesis, a basic
overview of pole placement (PP) and finite spectrum assignment (FSA) methods for TDS

ought to be presented.

2.6.1 Finite spectrum assignment

A FSA methodology for SISO linear systems with delays in state and/or control
variables was introduced in [83] for the first time. The authors utilized a feedback law
involving convolutory integrals over past and present values of input and state variables
(i.e. digtributed delays in the feedback). The results were extended by Watanabe [183],

however, the procedure istoo complex.
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As mentioned above, Brethé and Loiseau [16] proposed an algebraic approach by

means of pseudopolynomials based on the Bézout identity.

A comprehensive treatment of FSA for controlled plants with input-output delays
was made in [164], [180].

2.6.2 Static pole placement for TDS

Extending the system PP task to TDS brings a rather different problem in
comparison to finite-dimensional systems. The crucial difference lies mainly in the fact
that the characteristic quasipolynomial has an infinite number of zeros, yet a finite number
of (free) controller parameters. Hence, in the contrary to FSA, the aim of PP is to place
some (dominant) poles of, generaly, infinite spectrum instead of to design control law
resulting in a finite-dimensional feedback. The problem was already formulated in [113].
The notion “gatic” in this subchapter heading expresses PP strategies assigning poles “at
once’ to the prescribed positions without iterations. For spectrally controllable systems, it

is possible to place as many poles as free controller parameters are available.

A specific and crucia problem for TDS is that the poles dominancy must be
checked, e.g. using methods introduced in Subchapter 2.2.1 or via a conformal mapping
technique and the Mikhailov (or Nyquist) criterion [197], [200]. Indeed, any attempt to
place poles too left in the complex plane results to moving the rest of the spectrum to the
right. The dominancy can be understand in the classical sense as the smallest distance of
rea parts of polesfrom the imaginary axis, or viathe calculation of polesresidues asit was
introduced e.g. in [206].

Pole assignment problem for controllable TDS has been solved in [71] where a
systematic procedure was derived.

Frequency domain pole assignment employing conformal mapping for a genera
class of delays expressed by convolutions of the form (2.2) was proposed in [197].
Dominant pole placement for TDS with input-output delay and the PID controller based on
the ultimate gain and ultimate frequency from the Nyquist plot was presented e.g. in [181],
[182], [200] and improved in [73]. In [169], the same problem, however, in the Laplace

domain was solved.
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A simple method of designing state variable feedback in TDS assigning the
dominant system poles on prescribed positions was presented e.g. in [206]. Look at the

ideain more details. Consider the closed-loop characteristic quasipolynomial m(s,K ) with

avector K of r unknown (free) controller parameters as
K =[K,K,,.. K, [ eR" (2.75)

If the aim is to assign ng real feedback poles, o;, i = 1..ng, into prescribed
positions, the following set of linear algebraic equations are to be solved
oK

Oj
=K,

m(og,K)zm(O'i,Ko)+iAK{M} =0,i=1..n, (2.76)

where K, isavector of arbitrary parameters values (ideally) near the desired K and AK
represent the parameters increments (i.e. K =K, +AK ). The left-hand side equality in
(2.76) comes if m(s,K) is linear with respect to K , which is usual in linear control, and
the sensitivity functions do not depend on K .

In case of complex conjugate poles, it is necessary to solve real and imaginary

parts of (2.76) separately as

Re{m(O'i,K)}z Rex m(O'i,KO)+zr:AK]_ M 0
j=1 | oK Je=
h 2.77)
Im{m(o;,K)}=Im m(O'i,KO)+Zr:AK]. % =0, i=1.n;
=L T R,

where n. expresses the number of prescribed complex conjugate pairs.

Equations (2.76) or (2.77) have a unique solution if r=ng; or r=2n,
respectively, and they are linearly independent. If the intention is to place less poles than
the number of free parametersis, i.e. r >ng or r >2n., respectively, sets (2.76) or (2.77)

are to be solved using so-called Moore-Penrose pseudoinverse, [134], minimizing the

norm
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K], = 21 K? 2.78)

Contrariwise, if r <ng or r <2n., respectively, it is not possible to place poles to

the prescribed positions exactly, and the pseudoinverse provides the least squares

minimization

= i1 oK.

I

AK =argmin§ m(o],KO)+Zr:AKJ{M}
KKo

Rel (K )+ 3 aK | ITEK)
=1 oK. =0,

I

AK =arg minrzb: (279

i 2

=l oK

0
:KO

+| Im m(O'i,KO)+Zr:AKJ{M}

In case of prescribed multiple poles of p-th order, formulas (2.76) or (2.77) not
only for m(s,K ) but also for

m')(s,K)=d'm(s,K)/ds,I=12,..,p-1 (2.80)
must hold.

Alternatively, if linearity of the algebraic equations is not required, one can solve a

set on non-linear algebraic equations

l; I I
L;j?m(o],K)} :O,Re{j?m(aj,K)} =O,Im{%m(0'j,K)} =0

L =01.,p —Li =],2,...nR,Ij =0,1..., p; -1j=12..n
(2.81)

without linearization (2.76), (2.77); however, it requires a rather more sophisticated

computational methods, e.g. the well known Newton method.

An example demonstrating the pole assignment procedure follows.
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Example 2.5
Consider the characteristic quasipolynomial
m(s)= s+ aexp(- ) (2.82)

The task is to find a par {a,z} when a prescribed pair of roots of
(2.82),0 =atjw, is given. The exact analytic solution (meeting the requirements of the

positivity of {a,7} and the negativity of &) reads

a=|oex % arccod - & ,rzlarcco @ (2.83)
Z o] Z o]

Compare now the solution with (2.77) in the working point [a,7] = [1,1].

m(c,[a,7])~ o + exp(— o)+ Aalexp(- 70)] _, + Ar[-ac exp(- z'a)];j 280
=o+exp(— o)+ Aalexp(- o))+ Az(- o exp(- o))

where a=1+Aa, r=1+A7r. By decomposition into rea and imaginary parts, (2.84)
becomes

Aa(exp(— a)cosw)— At exp(— ) cosw+ wsin w) = —(a + exp(— ) cosw)

- Aa(exp(- a)snw)+ Arexp(- a)asin w- wcosw) = exp(- a)sin o - @ (2:89)

For example, let o0=-1%j0.5, then (2.83) gives a=0.4423,7=0.9273. In
contrast to that, (2.85) reads

2.3855Aa+1.7339A7 = -1.3855

(2.86)
~1.3032Aa— 2.496A 7 = 0.8032

which results in Aa=-0.5591, A7 =-0.0299, i.e. a=0.4409,7 =0.9701. Contrariwise, a
guasipolynomial with a=0.4409,7=0.9701 has the dominant par of roots as
o =-0.9269+ j0.5612. [

So-caled o-stabilizability (roughly speaking — closed loop spectrum is to be
located left from the prescribed vaue —o <0 determining exponential decay) was
addressed in [99] for retarded TDS and in [64] for neutral ones. A similar problem was
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solved in [168] for a delay-free DC servomotor controlled by a delayed feedback using

shaping of the characteristic quasi polynomial with the dominant poles analysis.

Pole placement issues for TDS were aso partidly investigated e.g. in [47], [82],
[184].

2.6.3 Continuous pole placement for TDS

The mentioned specific feature of TDS that placing the desired dominant poles
may cause the effect that unexpected dominant poles emerge somewhere to the right of the
desired ones has induced the investigation of iterative (shifting) agorithms pushing the
undesirable poles to the left. Although this class of approaches has been developed for
state feedback control, it can be applied to output controllers effortlesdy.

Let us describe basic steps of algorithms introduced in [90], [171] which have the
common idea, yet utilize a rather different tools. The core of algorithms, called also Quasi-
Continuous Shifting Algorithm (QCSA), combines the estimation of poles locations with
changing controller parameters based either on the prescription of new desired poles
positions or on the sensitivity (tendency) of current poles. The method starts with the static

pole placement introduced in 2.6.2 where initial closed-loop poles positions are set. Let ng
denotes the number of shifted dominant poles, then ng (or more) dominant are to be found.
Exactly ng poles are then moved left (in real axis) with appropriately short distance. The

number of shifted poles can be increased if necessary (e.g. when the algorithm is cycled).
The differences between the two approaches [90], [171] lie in the way how to induce the
shifting and in the number of possibly shifted poles. Naturally, it depends also on whether
afeedback has retarded or neutral character, see [94].

A short description and a summarization of the two algorithm variants of QCSA
follow. Consider the idea of [171] for single roots first. Equation (2.76) and (2.77) can be

written in the matrix form as
AAK =Db (2.87)

where
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. &, a, by
By Ay 2 b,
a'nR,1 a'nR,Z anR,r ng
aR,:Ll aR,l,Z a'R,l,r bR,l
aR 21 aR 2,2 a‘R 2 bR 2
A= . “lb=l T
aR ne,1 aR,nC,Z aR ne.r bR,nC
aI 11 aI 12 aI 1r aI 1
a'I 21 a'I,22 a'I 2,1 a'I,2
_al,nc,l aI,nc,2 aI,nc,r_ _bl e |

om(s,K) om(s,K) om(s,K)
S=_ak+0A04 j rgk:www. j rgk:www.

b =m(e; + A, K,), by, = Re{M(e, + jo +Ac K )}, b = Im{m(e, + jor + A, K )}
(2.88)
where o, =¢;,i =1..n; are current rea poles, o, =, *jw,i=1.n. mean complex
conjugate pairs of poles, K, represents the vector of actual controller parameters and
Aco; <0 stands for a shift of real parts of poles. Hence, a new vector of controller

parameters K =K, +AK , or K =K, +ReAK , is calculated using the pseudoinverse

AK =A'D (2.89)

based on the chosen value of A¢; . In every iteration step it is necessary to check the
prescribed poles dominancy. Naturally, one can use nonlinear equations (2.81); however, it

requires more complex calculations.

If ng denotes the number of currently shifted poles, it must hold

thatng =ng+2n. <r, i.e. one controller parameter can move one pole, not the whole

conjugate.
The case of a p-multiple pole can be easily solved similarly as in (2.88) where
p—1 s-derivatives of m(s,K) areto be used to calculate appropriaterowsin A,b.
-74 -



The methodology published in [90] utilized an extrapolation

m(o],Ko)+A0'{M} +AK;, Im(s,K) =0, i=1.ng, j=1.r
| —— as S=0; aK] 0.
=0 K=K, KK,
(2.90)
yielding
-1
Ac; _ | Iam(s.K) om(s,K) (2.01)
AK; 0s |so K, |so
K=K, I K=ko
A matrix
S= {A—a} eR ™ (2.92)
AK

is so-called sensitivity matrix which enables to estimate parameters changes according to
AK =S'Ac (2.93)

whereAs =[Ady, A, Ad, [T

It holds that
AReo; _ R Ao, (2.94)
AK AK;

thus, if poles are shifted in the real axis only, it can be calculated
AK =(ReS)" Re{Ac} (2.95)

The advantage of this techniqueisthat up to 2r (complex conjugate) poles can be
shifted, since one controller parameter can be used to adjust areal pole or a pair of (both)
complex conjugate poles. Unfortunately, in case of a p-multiple pole, the technique fails

and one can consider apole a*“nest” of close single poles.

Prior to an algorithm summarization, a specific of neutral TDS ought to be

mentioned. Since there exist vertical strips of characteristic roots the position of which in
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the real axis is not continuous with respect to delays, the so caled safe upper bound has
been defined [94]. The notion expresses the real number that is definitely higher than the
rea part of the rightmost strip even considering small changes in delays. If such number is
strictly negative, the system is strongly stable and thus it can be stabilized safely. More

precisdly, define ¢, (n) as
¢, (n):=sup{Res: m,(s)=0} (2.96)

where 1 isthe vector of Ny delays and my (s) is the characteristic quasi polynomial (2.23)
related to the associated difference equation (2.21). As mentioned in Subchapter 2.2.2,

c,(n) is not continuous with respect tonand it expresses the real part of the rightmost

strip of poles of aneutral TDS. The safe upper bound C,(n)e R is defined asfollows
Co (n):= limsuple, (n+6n): ] < ] (297)

It holds that C,(n)>c,(n) and C,(n) is continuous in the delays. It has been

proved in [94] that the quantity C,(n) isthe unique zero of the strictly decreasing function
ceR— f(c,m)-1 (2.98)

where f(c,n) isdefined as

fem)= max rg[“z“Hieprei _en )] (2.99

0c[0, 27"

where r,(-) means the spectral radius. It is possible to estimate an upper bound on C, (1)

using the fact that
NH
f(cm)< Z;"H exp(-cn,) (2.100)
as the unique solution of the equation

3, exp(- ) -1 @101
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If the control law can not change any of H; (or, equivalently any of m,, see

(2.25)), one can concentrate on the characteristic roots (poles) with the real part larger than

C,(n), since the value of C,(n) can not be adjusted in this case. It holds that all polesin

the half-plane Res>C, +¢,£ >0, lie in a compact (i.e. closed and bounded) set and the
number of these roots is finite [52], [94]. Hence only isolated poles right from the value of

C,(n) can be taken into account when shifting. In the contrary, if H, can be changed, the
value of C,(n) varies and it must be recalculated in every iteration step; however, there is
still no reason to deal with the characteristic roots left from C,(n). The knowledge of
C,(n) prevents to spend much control action to poles with smaller rea part which are
useless for feedback stabilization.

The case C,(n)>0agrees with strong instability, and if it is not possible to

improve C,(n), one can give the controller tuning up.

To sum up, the basic steps of the algorithms follow.

Algorithm 2.1

Input: The characteristic quasipolynomial m(s,K) with an initia setting K,
initialize the counter asi = 1, K, =K.

Sep 1: If m(s,K) isof aneutral type and coefficients for the highest s-power m,
can not be modified, determine whether y, <1. If not, give up.

Step 2: Set the number of shifted poles n, =1, compute C,,(n) and choose & > 0if

m(s,K) isneutral.

Sep 3: Compute the rightmost roots o of m(s,K ), or those with Rec > C, (n)+ ¢

in the neutral case.

Step 4: Choose the desired poles shifts Ae of ng rightmost poles and compute the
pseudoinverse (2.89), or equivalently, calculate the senstivity matrix (2.92) and the
pseudoinverse (2.95). Update K, =K + AK;.
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Sep 5: Monitor the rightmost uncontrolled poles, or those withReo > C,(n)+¢ .
If necessary (e.g. when the rightmost poles are close to each other), increaseng . Stop when
stability is reached or if ng=r . In neutral case, the agorithm stops aso when the leftmost
from the controlled characteristic roots reaches C,(n). Otherwise, increment the counter i
and go to Step 3.

Output: The vector of controller parameters K and the positions of the rightmost
poles. ]

Recall that m(s) asthe closed loop transfer function denominator quasi polynomial

in the case of distributed delays also contains roots which are not system poles and they
can not be shifted by any mean. These roots are common zeros of the numerator and

denominator of the characteristic meromorphic function M(s) introduced in (2.8), see
Example 2.1. Hence, it would be more suitable to consider M (s) instead of m(s) in the

algorithm.

2.6.4 Optimal pole placement minimizing the spectral abscissa

The basic aim of the continuous pole placement isto gradually refine the positions
of the rightmost poles in the rea axis by arbitrarily small changes in the controller
parameters. This process can be viewed as the optimization of the so-called spectral

abscissawhich is defined as
(K ):=max{Re(a;): m(o; ) =0} (2.102)
Thus, the objective is to solve the optimization problem

mina(k) (2.103)
or to reach a(K ) to be strictly negative at least.

Again, in case of distributed delays, one ought to take M (s) instead of m(s).

The problem was solved e.g. in [166] where state feedback controller design and
the Extended Gradient Sampling Algorithm (EGSA), see [17], for the abscissa
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minimization have been used to retarded TDS with lumped delays. It has been pointed out
in the paper that a complex optimization algorithm ought to be used instead of a standard
one, say, the well known steepest descent algorithm, when dealing with this task.

The reason lies in some spectral abscissa function properties. The first problem

arises from the fact that o(K ) is non-convex, i.e. it may have multiple local minima. It is

clear that with such behavior the global minimum is hard to find, and many optimization

algorithms will converge to alocal minimum. The second difficulty isthat a(K ) is non-

smooth with respect to parameter changes in points where more then one real poles or
conjugate pairs are with the maximum real part [90], [166]. At these points the function
a(K) is hence not differentiable. As third, the function is non-Lipschitz, for example, at
points where the maximum real part has multiplicity greater than one [17]. However, it is

assumed that the spectral abscissais differentiable almost everywhere.

An extension of the paper referenced above to neutral state feedback was
attempted to do in [88], [172]. The limitation (2.24) or (2.25) due to strong stahility
requires introducing a rather different objective function than (2.103) leading to a

constrained optimization problem (in the input-output formul ation)
_ hy
mina(K )3 |my|<1 (2.104)
j=1

Note that in the state space, (2.24) is taken instead of (2.25). A restriction of the
objective function can be included as a penalty subfunction. In [88], the following option is
made

o(K)=o(K )+ ;‘[%\”h (K ){Jz (2.105)

where @(K) is the objective function and A represents a weighting parameter. This

conception, however, does not guarantee that the restriction (2.25) holds true. A rather

more suitable option would be

D(K)=a(K )+ 1[1— £— Jil Im, (K )(jz (2.106)
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where 0< £ <<1, for which holds the following theorem. If {4} is an increasing sequence
with lim__ 4 =e and £ -0, then &K' )<d(K,,,4,,)<d(K,,4), where K is the
optimal solution of the minimization of (2.106) and it holds that

. h, 2 h
Ilmﬂ_m[l—g—z‘m‘j (K ){] =0,i.e Z‘mﬂ. (K ){ —1-¢ (2.107)
j=1 j=1

seeeg. [3].

Another possibility isto introduce a barrier function, e.g. as
hy

@(K):a(K)_m[l_zm (K )U (2.108)
j=1

as utilized in [172], yet for a state feedback controller.

The spectral abscissa minimization for a general class of retarded TDS described
by (2.2) (without the neutral term) using a state-feedback controller was presented in [97].
The method application follows two steps. First, a number of rightmost poles, smaller than
the number of controlled one, is directly assigned, which makes some controller
parameters constrained. Second, the remaining degrees of freedom in the space of
controller parameters are used to shift the rest of the spectrum as far to the left as possible,
again by the EGSA. If the prescribed poles are not dominant after shifting, new poles
positions are to be sel ected.

In[127] asimilar idea was independently introduced. In contrast to [97] , there are
nevertheless some differences. Firstly, the approach presented in [127] uses the input-
output space of meromorphic Laplace transfer functions, whereas the one in [97] dedls
purely with the state space. Second, poles are initialy placed in desired positions
unambiguously according to the estimated maximal overshoot; however, they can leave
their positions during the shifting. The dominant poles move to the prescribed ones and the
rest of the spectrum is pushed to the left again by minimization of an objective function
(including the spectral abscissa), without the requirement of resetting the selection of
assigned poles. Last but not least, the Self-Organizing Migration Algorithm (SOMA), see

[192], is utilized as a minimization technique. For more details, see Subchapters 5.1 - 5.3.
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Note that the closed-loop zeros can be optimized in the similar way as poles are,
because of the fact that zeros placed too right in the complex plane cause undesirable high

oscillations, see detailse.g. in [127].

2.7 Robust stability and robust per for mance

Robust analysis constitutes a set of possible tools for controller quality and
performance evaluation, particularly when an idea plant mathematical model does not
match the real system behavior perfectly. The existence of afamily of models givesriseto
the notion of model uncertainty which can be formulated as a structured or unstructured
uncertainty. Robustness means that a certain characteristics (e.g. internal stability) of a
control system valid for a nominal plant model holds also for a family of models in the
neighborhood of the nominal one. Basic robust analysis tasks are robust stability and
robust performance. Robust stability agrees with the requirement that the asymptotic
stability of a control feedback loop is preserved for al models from the family. Robust
performance is usually expressed by a weighted limitation on (reference or disturbance)

control errors under perturbations in the frequency domain.

We pay attention to unstructured uncertainty, more precisely multiplicative disk
uncertainty which enables to develop simple general analytic methods and results. Let

G,(s) be the nominal plant transfer function and G(s)=[1+ A(s\W, (s)IG,(s) be a family
of perturbed transfer functions. Here W, (s) is a fixed stable weight function expressing
the uncertainty frequency distribution. Perturbation A(s) is a variable stable transfer
function satisfying [A(s)|_ <1. Moreover, G(s) and Gy(s) have the same number of

unstable poles. It holds that

Glio) | \w (ol Ve
) 1‘_|va(1 ). v (2.109)

which means that G(jw)/ G,(jw) liesin the disk with center 1 and radius |W,, (jw)|. The

weight function is selected so that it covers al systems from the family
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max
G(s)

Gliw) . ol Vo
5. (o) ]‘_[\NM(j )Y (2.110)

For instance, W, (s) can be taken as follows [154]

W, (s)= _Trs+ fo (2.111)

—s+1
r

oo

where r, and r_ are relative uncertainties for the steady state (w = 0) and high frequencies

(typicaly aw>2), respectively, and 1/T means an approximate frequency wherein the
uncertainty almost reaches its upper bound. The following example demonstrates the
construction [70].

Example 2.6

A process of bleaching in the stationery industry can be modeled by the transfer

function

G(s)= 251+ 1exp((— 0.1+7)s), 7€ [0,0.9] (2.112)

where 7 arises from neglecting of a fast plant dynamics. Equation (2.112) expresses the
family of models for which 7 =0 agrees with the nominal model, whereas 7 < (0,0.9]

givesriseto perturbation models. Hence

Gljo) . _ : W (i
GO(JJ_ w)—1‘—|exp(—qa))—:q_[\NM (jo)Vo (2.113)

In[70], W, (s) was chosen as

_21s

Wi (s) s+1

(2.114)

A comparison of Bode plots of the weighting function and normalized perturbations
according to (2.113) isdisplayed in Fig. 2.3.
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Fig. 2.3 Bode plots expressing the meaning of W, (s) for Example 2.6

2.7.1 Nominal performance

Consider a simple feedback loop as in Fig. 2.1. The (nominal) sensitivity function
S,(s)=G,e(s)=E(s)/W(s) is a very good closed-loop performance indicator. The
frequency-depended gain bound on S,(jw) is atypical performance requirement. Usually,
|So(j(o)| has small values for @ — 0; however, there is a peak on middle frequencies

causing noise amplification. Hence, the elimination of this peak improves control quality

and it can be formulated by the upper bound 1/\W (j@) asfollows

S (j@) <1 (jo), Vo W (jo)S,(jo) <1 (2.115)

A graphical interpretation of the nomina performance condition (2.115) can be
obtained using some simple calculations and it means that the distance of the Nyquist plot

of the (nominal) open loop L,(j®)=Gx(j@)G,(jw) from the critical point —1 isless then

the maximal value of W, (jw)|, see a sketch in Fig. 2.4. [35]
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Fig. 2.4 The graphical interpretation of nominal performance

The weight function W, (jw) (or more precisely 1/, (jw) ) is chosen according

to user requirements and can be constructed similarly asin (2.111).

2.7.2 Robust stability

As mentioned above, the closed-loop system is called robustly stable if it is stable
for the whole family of perturbed plant models. For multiplicative uncertainty, the
feedback system asin Fig. 2.1 isrobustly stable if and only if

Wy ()T (je)| <1 (2.116)
where T,(s)=G,,(s)=Y(s)/W(s) is the so-called (nominal) complementary sensitivity
function, see e.g. [35].

The graphical interpretation of condition (2.116) can be easily obtained by some
calculation

Wy (J a))l—o(j w)
1+ L, (jo)

<loW,(jo)(jo)<|L(jo)- (-1} Vo (2.117)

It means that the number of open-loop Nyquist plot encirclements must be the

same for the whole family of perturbed plants, see Fig. 2.5, according to [33].
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Fig. 2.5 The graphical interpretation of robust stability

The graphical interpretation can serve for the robust stability condition derivation
for other control system loops, see Subchapter 7.6.

2.7.3 Robust performance

The general notion of robust performance is that both, internal stability and
performance, should hold for the whole family of perturbed plants. The robust

performance condition should therefore be
Wy, (o) (jo). <1 and |W,(jo)S(jo)|_ <1 (2.118)
The combination of the two conditionsin (2.118) gives

”[\NM (jo)To(j w)| + I\NP (i0)S(j w)"L <1 (2.119)

The following sketch of proof of (2.119), which can be found e.g. in [35], can
provide direction for derivation of robust performance condition when other feedback
loops are used, see Subchapter 7.6 again.

Assume
W, (jo)s(jo)|, <1 (2.120)

hence
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W (jo)S(jw) <1LVe

We(j ) | v 2121
T L)+ AG oW, GolLGa) " (2121

ol Welo)siio) | iy,
1+A(ja))NM(jw)To(jw)| -

Since [1+ A(j oW, (j@)T, (j@)| = 1- W, (jo)T,(jw) , the worst caseis

=

max W, (jo)S(j ) = ﬂ'vl\;v(h: (aj’)j;g (‘;’ZL)| Vo (2.122)

Therefore, from (2.120), the robust performance condition (2.119) holds.

The graphical interpretation of (2.119) isdepicted in Fig. 2.6, see [33].

; . F 3
‘ We(j) ‘ Im
Ly(je)

|”y\1 (JoL, (j(D)‘ "

Fig. 2.6 The graphical interpretation of robust performance

A compromise condition, between nominal and robust performance, is

<1 (2.123)

WG (0 +, (T of
since it holds that

(W 10)8, 0} W G0 T )< 1 8 G0 W GG 1
= [\NP (J w)SO(J (0)| + [VVM (J w)To (J (01
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2.8 Fundamentals of relay autotuning

By autotuning (i.e. automatic tuning), a set of methods which enable the controller
to be tuned automatically on demand from an operator or an externa signal is meant [2],
[53]. Industrial experience has clearly indicated that this is highly desirable and useful
feature. The whole procedure usually consists of two basic steps: Process model
parameters identification followed by controller tuning; however, some approaches do not

require explicit model identification.

The beginning of autotuning is linked up with the very famous work of Ziegler and
Nichols [193] where, besides the PID controller tuning rule, an interesting identification
procedure based on the information on the critical gain and the critical frequency was
introduced. This is often referred to as the trial-and-error procedure. Historically, other
methodologies were investigated as well, for example, the Cohen-Coon method [20],
which requires an open-loop test on the process and it is thus inconvenient to apply. The
disadvantage of other methods is e.g. the need of large setpoint change, see detailsin [53].
A set of methods called selftuning [8], which performs at-once or continual plant
identification and adaptively reset controller parameters, usualy requires a priori
information about the time scale of the process dynamics to be provided (due to a sampling

period) and istime and computer-memory consumptive.

2.8.1 Relay feedback test

The relay feedback autotuning (identification) test performing limit cycle
oscillations, which does not have shortcomings mentioned above, was successfully applied
to the autotuning of PID controllersin [2] and it is widely used and in practice as a well
applicable technique. It is robust, easy to implement, timesaving, easy to use and close-
loop control which keeps the process close to the setpoint. The classical relay-feedback
loop scheme with asymmetrical relay is depicted in Fig. 2.7.
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Fig. 2.7 Relay-feedback test scheme

If the process is stabilizable and has a phase lag of at least 7 radians, the process
input u(t) and output y(t) are logged until the system reaches stationary oscillations, the
amplitude A of error e(t) equals the amplitude of y(t) and the phase shift between e(t) and

y(t) is —. Hence, the ultimate period T, is obtained from oscillations, which gives the

information about the critical point, together with the ultimate gain which is approximately
given by

k, = (2.125)

where B is the relay amplitude. The ultimate (critical) frequency is close to the value of
w, =2 /T, . Formula (2.125) comes from linearization of the relay output via the Fourier

series approximation when upper harmonic components of the signal are neglected, since a
relay is a non-linear element and it can be linearized for linear theory approaches, details

can be viewed e.g. in [191].

However, the origina relay feedback test - sometimes caled ATV (Autotune
Variation), see [76], [191] — has two basic drawbacks. First, due to an approximation, the
estimation of the critical point is not accurate enough for some processes, such as those
with large time delays [179]. For example, there is an error of 23% for a first order
unstable system with input-output delay. Second, the basic test enables to estimate only
single point of the frequency characteristics. Hence, there have been investigated and
developed many advanced techniques, which should eliminate the two mentioned
deficiencies. Much research has been undertaken in identifying multiple points on the
process frequency response, for instance, inserting of an integral or a delay element into

the open loop [148], [163], see Subchapter 2.8.4, an analytic expression of some quantities
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in input and output signals [79], [177], a utilization of a damping element [178] or a
decomposition into transient and stationary cycle parts [179] followed by the discrete
Fourier transform (DFT) - or the discrete-time Fourier transform (DTFT), more precisdly -
or the fast Fourier transform (FFT), see Subchapter 2.8.5, or the use of a parasitic relay
[53] or asaturation relay [149], [191], see detailsin Subchapter 2.8.3, etc.

2.8.2 Mode parametersidentification

As mentioned above, the relay feedback experiment can be utilized for model
parameters identification. An asymmetric (biased) relay, after removing stationary

components, enablesto estimate the static gain of the system according to

t+T,
[y(6)de
K=t T === (2.126)

t+T,
[u(6)de
t

see [76], [171]. The doatic characteristic of a biased relay is displayed in

u

B+

Fig. 2.8, whereB" # B~

'S

Fig. 2.8 Asymmetric (biased) relay static characteristics
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Nevertheless, this egtimation of kcan be inaccurate, due to eg. mode
nonlinearities or a shift of the operation point.

A relay with hysteresis of value ¢, the static characteristics of which is displayed
in Fig. 2.9, is another type of an on-off relay which is suitable for noise elimination while

autotuning experiment; however, it causes a phase shift, thus the estimation of ), is not

accurate —the found point lies at afrequency smaller then the ultimate one.

2e

Fig. 2.9 Relay with hysteresis static characteristics

Dominant input-output delay, say 7, [191], can be estimated as a lag between the

change of u(t) and the maximum (minimum) value of y(t) within the period, which is

clear from Fig. 2.10. Good results are given using arelay with hysteresis here.

ult)
T, .
) ()
i v _ I t[s]

Fig. 2.10 Dominant input-output time delay estimation

Let G(s) be the controlled system transfer function and R(A) the describing

(linearized) function of a relay (or a nonlinear element, in general), then for sustained
oscillation holds R(A)G(jw,) = -1+ 0j, or equivalently

-90-



IR(AG(ja,)| =Lag[R(AG(ja,)|=-7 (2.127)

which describes one point at the open-loop Nyquist plot giving rise to the estimation of
two plant model parameters by the solution of it. As mentioned above, an estimation of

two or more points requires using a special technique.

In [117], [173], the relay-feedback experiment was used to identification of a
stable time-delay model of the first order with one input-output and one internal delay,
where an additional (artificial) delay was utilized. Moreover, an approach based on a time-
domain description instead of frequency one leading to the solution of nonlinear algebraic
equations was introduced in [117]. Due to, generaly, an ill-conditioned set of equations
and multimodality of its solution, it would be useful to solve the equations by some
advanced methods, such as the SOMA [192] or the Nelder-Mead (NM) method [105], see
Subchapters 5.3 and 5.4.

2.8.3 Saturation relay

Modd parameters estimation can be improved by a saturation relay [149], [191],
the static characteristics of which is depicted in Fig. 2.11.

7]

k.
4

Fig. 2.11 Saturation relay static characteristics

Its advantage lies in the feature that relay output is not stepwise (i.e. with an abrupt
slope change at the zero point), but it provides a smooth transient around the zero point.
Therelay input signal e(t) is multiplied by k up to the limit value B of u(t), hence u(t) is
(ideally) in the form of a harmonic (sine) waves with an upper and lower limit. The output

of the nonlinear element u(t) looks like a truncated sinusoidal wave, see Fig. 2.12. The
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height of the relay output response is limited by B = kA ; the meaning of Ais clear from
thefigure.

Obviously, the ideal case is that when u(t) has the shape of et) whileA = A,
where Ais the amplitude of €{t). In this case, the ultimate gain equals the value of

k exactly. Another limit case arrives when k — oo which agrees with the standard on-off

relay.
) /\
tls]

elt)

Fig. 2.12 Relay input and output signals for saturation relay

The describing function of the relay can be obtained from the Fourier series
expansion of u(t) and e(t) asfollows
2B A A |, (AY
R(A)=k, =—| arcsin| — |+—,|1-| — 2.128
A=k =22 rcs{ £ |+ 2 (4] @129
Hence, the aim is to find k (or A) such that A= A which provides the exact

critica gain estimation. On the other hand, there is also a potential problem that can make
the test fail. If the dope of the static characteristics k is too small, or equivaently, if

A> A, alimit cycle may not exist. To avoid this, there has been proposed a two-step
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procedure finding a rough estimate of the lower bound on k, say k.., followed by a
saturation relay test [149], [191]:

1) Select the height of the relay B (manipulated input).

2) Use an ided relay (set the slope to a large value) to estimate k, according to
(2.125). Setk,;, =k,

3) Calculate the slope of the saturation relay k =1.4k ..

4) Use the saturation relay with calculated k.

5 Find @, from the relay feedback test and compute the ultimate gain from
(2.128).

2.8.4 Artificial delay for identification of more parameters

As mentioned above, the standard relay feedback test enables to identify only one
point at the Nyquist curve, i.e. two unknown parameters of the model, and the estimation

of other model parameters requires a special technique.
One of the possibilities is to use the ATV" (Autotune Variation Plus) [72], [84],
[148]. The first step of the ATV™ procedure is a standard relay test. The second step

introduces an artificial delay 7* between the relay and the process.

The overall phase shift is —, however only a part of this is attributed to the
process, as 7" is characterized by the phase leg ¢, = ®,r" where @, is a new ultimate
frequency. The new amplitude A of the output can be read as well. Every next setting of
7" determines one point of the Nyquist curve, hence, one needs to set the number

[n/2-1] of various values of 7* where n isthe number of unknown mode! parameters.
In [72] the following setting was suggested

. br
’z' =
12w,

(2.129)

where @, means the ultimate frequency with no artificial delay.
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2.85 Useof relay transient

In [54], there was proposed a technique that could obtain multiple points on the
process frequency response in a step test by removing stationary components followed by
applying the DFT, DTFT, or FFT to the remaining signals there. The procedure was
improved in [178] where a method that can identify multiple points simultaneously under

one relay test was proposed, the description of which follows.

Using a standard relay test, u(t) and y(t) are recorded from the initial time until

the system reaches a stationary oscillation and they are subjected to exponentia decaying

as

—
N—
I
c

(t)exp(-at)

ul
B (2.130)
y(t)=y(t)exp(-at)
Obviously, T(t) and y(t) will decay to zerofor a>0 and t — co.
The Fourier transform applied to (2.130) resultsin
0 (joo)= [(t)exp(— jat)dt = [u(t)exp(— at)exp(— jat)dt =U (joo+ a)
° ° (2.131)
Y(jo)=[y(t)exp(- jat)dt = [ y(t)exp(-at)exp(- jat)dt =Y (jo+a)
0 0
Hence

Gljo+a)= g(dz)) = J ((JJZ: 2)) (2.132)

U (jw) and Y(jw) can be computed at discrete frequencies with DTFT as

U (jw)=DTFT(@() =T > a(kT)exp(= j@ikT), | =12,..,m
N (2.133)
Y(jw)=DTFT(y(t))=T > y(kT )exp(— jwkT), | =1,2,...,m

k=0

Zz x

where T is the sampling interval, N means the number of samples and

t. = (N —1JT expresses the final time when the value of T(t) (or y(t)) is sufficiently small.
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Usualy, m=N/2 and @ =24 /(NT), see eg. (Wang et al., 1999a). If, moreover,

N =2",ne N, then the standard FFT can be used for faster computing.

The method can identify accurate frequency response points as many as desired

with one relay experiment.

29 Controller discretization

A sampled-data approximation of TDS is needed e.g. in computation of the system
spectrum when the infinite spectrum is transformed into a finite one, the order of which
depends on the sampling period and a discretization method, or for a computer realization
of anisochronic controllers. The latter case is the primarily motivation for the following
brief framework overview of basic ideas of discretization of TDS, both in a state and an
input-output space, since the author intended to use the discrete-time agorithms for a

laboratory experiment.

A number of methods is based on a state-space description, see eg. (2.1).
Moreover, ailmost al of them consider retarded systems with or without distributed delays,
hence, these systems are assumed below. The differences for neutral systems are briefly
mentioned throughout the following subchapter. Although equation (2.1) describes a

controlled plant, the approaches can be treated analogously for controllers.

2.9.1 State space methods

Prior to a discretization itself, an interpolation of point delays and an
approximation of distributed delays ought to be introduced. Since a value of delay
0<n <Lin (2.1) is not an integer multiple of a sampling period T,, delayed quantities
x(t-n) and u(t-7) must be interpolated by these quantities yet with delays
7, =KT_,k=01..H , where H =[L/T,| and L is the highest delay value of the system.
Linear interpolation is the simplest and for practical purposes sufficient interpolation

method given by

x(t—7)=~ (l—(Zi)X(t _Td,i)+aix(t_7d+1,i) (2.134)
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where d, :Lﬂi /Tsjird,i =d T, 74 :(di +1)T57 T4 <1, <74, and a weighting
coefficient &; = (1, — 7, )/ T, € [0]

A rather neglected task is the comprisal of distributed delays (i.e. convolution
integrals) in the model and their subsequent approximation by lumped delays followed by
the use of formula (2.134). One possibility is to use the idea [143] mentioned in
Subchapter 2.1.1. Alternatively, in [165] the following approximation was proposed

ig hit - Tdr~—2ﬁg( Lj (t—iﬁj (2.135)

N
where > =N/L. For instance, the well known Simpson’s numerical integration
i=1

method agrees with B =N/(12L), pB,=N/(3L), AB,=N/(6L), B,=N/(3L),
Bs=N/(12L). Note that even some very good convolution integral approximation can

lead to an unstable control action in case of adelayed feedback, see [165].

Now look at the discretization itself. Let
[X(t —Tyj )LkTS = Xedj (2.136)

and likewise for u(t —Ty; )analogously. Then the right-hand side of aretarded system (2.1)

can be written in a discrete form

Ha+l A Hg+l .
= IZ AX. + 2 Bu (2.137)
=0

1=0

where H,,H, are maxima of corresponding integers d; according to (2.136),
H =max(H,,Hg) and it holds that A, and B, are linear combinations of A, and B,
respectively.

For a simple discrete approximation of TDS, it is sufficient to use a numeric
method for the solution of

dx(t)] _
L &
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in the following form [171], [175]
Xy =X, +TO(f,) (2.139)

where functional ®(f, ) is determined by the solution method, for instance, (the implicit)
Trapezoidal method reads ®(f, )= 0.5f,, +0.5f, , the Euler implicit method agrees with
o(f, )=f,.,, it is also possible to consider higher order Runge-K utta (R-K) methods etc.

Generaly, implicit numerical methods provide better approximation than the explicit ones.
Thanks to the TDS model linearity, ®(f, ) isalinear combination of f,__,m=-1,012...
A suitable value of the sampling period T, is questionable. It is necessary to take

account of process (or controller) and external inputs dynamics. The smaller T, yields the

better approximation and stability of the numerical method, yet there is higher round-off

error and computational requirements. The problem has been discussed e.g. in [39].

Although the aim of this subchapter is to provide an easy-handling discretization,
instead of the best one, the author has to mentione some more sophisticated discrete
approximations based on discretization of the solution operator or that of the infinitesimal

generator, see Subchapter 2.1.3., which serve mainly for spectrum estimation.

Consider an autonomous TDS only since the input part of the model can be
governed simply as in (2.137). For discrete approximation of the solution operator, it is

necessary consider the whole system state x, € X defined in (2.10) instead of x(t), or its

discrete form, more precisely
Xp = Xy = [Xk’xk—11""Xk—HA+l1Xk—HA]T (2.140)

determining the system state at the step k as

Xpy = PX, (2.141)

where @e R FaHatnis the discrete approximation of the solution operator 77(t).

Formula (2.141) isthe discrete form of
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Xeor, = T (T, (2.142)

Thefirst row of the matrix @ isdetermined by (2.139) and the others usually have
asimple form such that corresponding elements of vectors x,,, and x, equas. Particular

forms of ® for the Euler explicit, Euler implicit and Trapezoidal methods can be found
e.g. in [171]. The application of the R-K methods has been introduced in [12] without the
distributed delay term and in [13] with this term. The distributed delay case by using
Linear Multistep (LMS) methods was proposed e.g. in [77]. A revision of LMS methods
and their comparison with R-K schemes was introduced in [10]. All these methods are

called pseudospectral.

An aternative — so-called spectral — approach, introducing the generalized Fourier
projection represented by the Hilbert product space X =C"x L, (|- L,0),C"), instead of the
classic interpolation in the Banach space (2.11), was proposed in [11]. More precisaly, the
initial ~ function is  x(0)=p, x(t)=&(t)te[-L0), (p,&)e X, raher then
x(t)=&(t)te [~ L,0],&(t)e X . Then the solution operator and infinitesimal generator are
defined intherealmof X , differently from (2.12) and (2.13), see detailsin [11].

Another family of discretization approaches (used mainly for the spectrum

estimation) consists in those based on the infinitesimal generator of the semigroup. The

discrete form of (2.15) acquires the form

L AX, >0
dt s
Xo =[€(0),¢(-T,).....¢(-(H,-1T,),&(-H,T)T (2.143)

The Euler explicit approximation scheme together with the Trapezoidal rule and
the quadratic approximation of the derivative can be found e.g. in [171]. Similar
approaches were introduced in [5]. A R-K method was presented in [12], a comparison of
that with LMS ones eg. in [13]. A pseudospectra approach utilizing Lagrange

interpolating polynomia and its derivative for backward differentiation was proposed in
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[14]. The differentiation methods in the Hilbert space mentioned above together with

convergence results were introduced in [15].

Notice that all the above mentioned methods consider retarded systems (with or
without distributed delays) only. In the author’s of this thesis opinion, the extension of the

methods above to neutral TDS requires either to introduce a discrete state vector
X, = X, :[xk,xkfl,...,XHAH,XHM,...,xkarHN]T instead of (2.140), where H, is the
maximum delay in neutral terms, or to take (2.139) and (2.143) in arecursive form.

A rather different approach was presented in [56]. Briefly, the ideais based on the

Taylor series expansion of x(t) in the vicinity of the operation point

dx(t) +A_Zdzx(t)
d 20 dt?

X(t+A)=x(t)+A (2.144)

where Ais a discretization step (e.g. the sampling period) and derivatives of state and
input variables are calcul ated as derivations of (2.1), hence, for instance
2 N —-n. Ng -1
d xgt)=AO dX(t)+ZAi x(t-7) du(t)+ZBi du(t-n,)
dt a I dt a = at

+ iA(r)—dX(;t_ 7) dr+ i B(r)—du(;t_ 7) dr

+B,
(2.145)

By a backward substitution (2.1) into (2.145) and then the result into (2.144) and
by the interpolation (2.134) and the approximation of distributed delays (2.135), the final
form (2.139) is obtained (its autonomous part). Functional ®(f, ) is determined by the
number of expansion dementsin (2.144). The accuracy of the discretization increases with
the number of elements; however, the more elements are taken the higher maximum delay
value is. The use of the method to neutral TDS is questionable since it is not possible to

obtain zero derivatives of state and input variables by recursion.

The delta transform, generally introduced in [98], was used for discretization and
spectrum estimation, respectively, of neutral TDS e.g. in [171], [175], [204].

Let g bethe shifting operator and o the delta transform operator defined by
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5-0-1_ exp(sT,)-1

2.146
T T, ( )

then
= exp(sT,)=1+ 4T, (2.147)

The fundamental feature of the deltatransformisthat as T, — O the delta model of
the system converges to its Laplace transform, i.e. y — <, where y is the variable

associated with operator J ; however, the discrete model does not. Then the model
X(8)=1(6)F(5) (2.148)

instead of (2.139) can be considered - easily by substituting (2.148) into (2.139) - where
X(8) isthe & -transform of x(t), F() stands for the transform of (2.137) and | (§) means
the discrete-time integrator, see [21], [204], satisfying

lim,_, 1(5) =% (2.149)

The deltatransform of (2.141) and (2.142) reads

X(8)= X (6) (2.150)

where X (§) meanstransformed x, and | isthe unit matrix.

2.9.2 Input-output methods

In the literature, the task of the discretization of TDS in an input-output
formulation is not as frequent as in the state-space case. However, let us mention here two
possible ideas depending on the relative value of T, with respect to the system dynamics

and externa signals.

In case of a short period, it is possible to use the ¢ -transform as a derivative
estimation, as introduced in Subchapter 2.9.1. The idea rests on the introduction of variable
y associated with operator 6 defined as
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z-1

= 2151
oT.z+(1- )T, (2150)

/4

where z is the variable from the z-transform and e [01] represents a weighting

parameter. The choice of « enables to obtain different first order models, such as forward

(a=0), backward (a =1) or Tustin ( = 0.5) one. The substitution s — ¥ in the transfer

function system modedl results in a discrete-time model in z associated with the shifting
operator g. However, this substitution is applied to s-powers expressing derivatives only,

whereas delay exponential terms are subjected to a natural transformation
exp(-118)X(s) = x(t - 77) (2.152)
followed by (linear) interpolation (2.134) and
7*X(z)= x(t - kT,) (2.153)

The advantage of the input-output map approximation in applications is that there
is not need to approximate distributed delays.

For a higher sampling period T, there is a possibility of a rational approximation

in the general form

expl s7)= p(s) (2.154)

where e.g. the Padé approximation, Laguerre shift, Kautz shift, Fourier analysis-based
method, etc., see [4], [80], [81], [114], [120Q], followed by the known equivalent z-

transform formula

Ga(z)=(1- z‘l)Z{L‘l{GR—(S)}} (2.155)

S

Although (2.155) represents the exact discretization, controller transfer function

G (s) includes rational approximation, hence, there is an information loss problem about

the dynamics.
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It is suitable to filter the measured input signal due to sensors noise when
controller realization, e.g. by using an averaging or the Butterworth filter of an appropriate

order (with the maximally flat characteristics at low frequencies).
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3 GOALSOF THE THESIS

The principa goal of this doctora thesis is to utilize proposed algebraic control

laws achieved through the general solutions of the Bézout identity in Rys for systems with

delays.

The work deals not only with theoretica aspects of the ring and algebraic

controller design but also with the (quasi)finite spectrum assignment, (sub)optimal pole
placement, TDS stability analysis, improved relay test identification for TDS and last but

not least with problems of a practical application, represented by utilization of designed

controllers on a circuit heating laboratory model.

Ergo, the main aims of the thesis can be summarized into the following points:

1

Description and classification of TDS, their stability issues, algebraic notions
related to TDS and their control, general introduction of a relay feedback test
and some tuning, robust analysis and discretization matters for these systems.
Crucial parts are supported by an overview of the state of the art. This goal has

been the issue of Chapter 2 of thisthesis.

Analysis and description of linear time-invariant SISO TDS in Rys ring and

determination of the basic algebraic properties of thisring.

Formulation and development of algebraic approach to design of SISO

continuous-time controllersin Rys ring.

Derivation of stability conditions for a selected class of retarded
quasipolynomials depending on a non-delay real parameter for the purpose of
performing the coprime factorization and controller parameterization, and the
derivation of the generalized Nyquist criterion for control system robust

anaysis.

Definition of a suboptimal and optimal pole placement for infinite-dimensional
control systems and the implementation of advanced iterative agorithms for the
solution of this task.
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6. Design of arelay feedback experiment for identification of asimple TDS model
of retarded type using advanced methods — the saturation relay, determination

of more frequency characteristics points — in time and frequency domain.

7. Verification and implementation of proposed identification and control
approaches in control of alaboratory circuit heating system followed by robust
analysis of the solution and a simplification of final controllers.
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4 ALGEBRAIC CONTROLLER DESIGN IN RMS

This, the most crucia, subsection of this thesis aims the novel definition of Rys
ring followed by all basic steps of algebraic controller design utilizing this ring. Some
stability issues for selected retarded quasipolynomials are aso discussed and the

generalized Nyquist criterion for two feedback control system structuresis simply derived.

41 Rysring

As mentioned in Subchapter 2.3.3, the original definition of the ring, [199], has
some drawbacks. Therefore, it is necessary to revise the definition and propose a new,

alternative, definition of the ring eliminating the above mentioned deficiencies.

4.1.1 Revision of thering

First, the following simple example shows that the original definition does not

constitute aring
Example 4.1

Consider two elements of Rys

T(5)= % T(e)= ST UeE @1

Y et, asum of them

T(9)=T,()+T,(5)= LrORIreRC), g @2

since the numerator is a neutral (even formally unstable) quasipolynomial, which is

inconsistent with the original ring definition. [

The above introduced example indicates that it is necessary to include neutral

terms in the definition.

The second drawback comes from the requirement of stable denominator. The

transfer function of a stable system with distributed delays has common numerator and
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denominator root from the right half-plane; however, there is no reason to consider it as

unstable in any sense, see Example 2.1. Rephrased, an element of the ring should include a
removable singularity in C* (but not poles). Analogously, spectral stabilizability can be

viewed in the similar manner, see Example 2.3.

From these two examples, H_ (C ") seems to be a suitable candidate for the ring

definition (as for Resring, see Subchapter 2.3.2). However, there are some troubles with
neutral systems, as discussed in 2.4.1 (Example 2.4) and 2.4.2. Namely, although a
formally unstable neutral TDS with a vertical strip of poles tending to the imaginary axis

from left (for Ims, — ) can be BIBO (and hence H_ (C ")) stable, it does not permit the

Bézout factorization, [75], [115]. Since formal stability is not given in input-output relation
(transfer function), consider a rather more strict notion — strong stability — given by
condition (2.25) instead. Formal stability is hence required; however, its testing by strong
stability condition (2.25) could not be included in the ring definition since it may lead to
strong instability during algebraic operations on ring elements.

The following short examples demonstrate and clarify the above ideas.
Example 4.2
Let be given three neutral delayed systems (plants) governed by transfer functions

s+sexp(-s)+1’ ° (s+sexp(-s) +1)(s+1)
1
(s+sexp(-s) +1)(s+1)*

Gy(s)

(4.3)

G; (S) =

All the systems have poles located in C,, except for Ims, — e where the
asymptotic pole lies on the imaginary axis, see Fig. 4.1, where displayed poles (asterisks)
are-0.4011, -0.0379 + 3.4264j, -0.0054 + 9.5293j, -0.0020 + 15.7713j, -0.0010 + 22.0365j,
-0.0006 + 28.3096j, -0.0004 + 34.5864j, -0.0003 + 40.8652j, -0.0002 + 47.1451j.
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Fig. 4.1 Root loci of the rightmost poles of G,(s) from (4.3)

However, athough there is no pole (except the asymptotic case) in C*, neutral

systems (4.3) can not be considered as asymptotically stable since there is no positive
a satisfying Res,<—a for dl s,, see Subchapter 2.2.2. Moreover, these systems are

neither strongly nor formally stable - use test (2.25) and any state-space realization
followed by (2.23), or simply, the chain of poles reaches the imaginary axis. Nevertheless,
other stability notions are more attractive. An easy test on G,(jw), G,(jw), G,(jw) shows

that |G| =<, |G,|. =2, |Gs|. =1, hence G,¢ H_(C"), G,,G,e H_(C"). As proved
in [115], G, and G, are not BIBO stable, yet G, is BIBO stable. This means that formal

instability does not automatically implies H_ or BIBO instability which makes problems

when decision about the inclusion of the system into an algebraic structure (or set). ]
Example 4.3

This example demonstrates the necessity of formal stability in the definition of Rys

ring, not only for elements of Rys but also for their inversions.
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Consider a coprime factorizationin H_ (C*) of system G,(s) from (4.3), i.e.

1
i B
G(s)= 5+ sexf(fszﬂ Is+1) Ag (4.4)
(s+2)

More information about (Bézout) coprime factorization can be found in

Subchapter 4.1.2. Notice that the factorization (4.4) is coprime yet not Bézout.

As stated above, the system G(s) is formally unstable but from H_(C*), i.e.
B(s)/ A(s)e H.(C"). However, one can verify that 1/ A(s)e H_(C*). This yields a
mismatch in the ring definition since there is not an unambiguous answer whether A(s) is
invertible (a unit) or not. If both terms were not coprime, it would not pose a problem since
such situations are natural also in Res ring. If G(s) was formally stable, it would hold that
1/ A(s)e H_(C*). As aconclusion, aset H_(C") is not a sufficient candidate for Rys
ring. [

Hence, there seem to be two possibilities for the ring definitions regarding formal
stability. Either to include the requirement of formal stability of the quasipolynomial
numerator in the ring definition and thus to exclude the existence of coprime factorization
for formally unstable systems, or to take it into consideration in ring divisibility conditions
(i.e. to admit a formally unstable numerator). Naturally, we decided to choose the latter

option, since it is not possible to avoid a formal unstable numerator in ring elements as
demonstrated in Example 4.1.

Example 4.4

The aim of this example is to show that strong stability could not be included in
the ring definition; however, the necessity of formal stability has been already proved in
Example 4.3.

Consider aformally and strongly stable element from H_ (C ")

- 108 -



1
T(s)= (1+0.8exp(-s))s+1 (45)

Now make a multiplication

T,(8)=T(SIT(s)= :

[(1+0.8exp(-s) )s+1f
1
(1+1.6exp(-s) + 0.64exp(-2s))s® + 2(1+ 0.8exp(-s) )s+1

(4.6)

which is obviously strongly unstable, yet formally stable, since T(s) and T,(s) have the

same spectrum (except for poles multiplicity). Hence, this algebraic operation
(multiplication) preserves formal yet not strong stability. Recall, however, that formal
stability will be tested by verification of strong stability, so there is some kind of

conservativeness. n

The crucia part of this subchapter, the Rys ring proposal, as a revisited and

extended definition to the original one, follows.
Definition 4.1 (Rys ring)
An element T(s) of Rys ring is represented by a ratio of two (quasi)polynomials

y(s)/ x(s) where the denominator is a (quasi)polynomia of degree n and the numerator

can be factorized as

y(s)=y(s)exp(-s) (4.7)
where ¥(s) is a (quasi)polynomial of degree | and 7>0. Note that the degree of a
guasipolynomial means its highest s-power.

The element lies in the space H_(C"), i.e. it is anaytic and bounded in C*,

particularly, there is no pole s, such that Res, >0 for a retarded denominator. Moreover,
T(s) is formally stable, i.e. there is no vertical strip of poles with Res, >—¢,£ >0 for a

neutral element. The strong stability condition (2.25) for (quasi)polynomia x(s) is a
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sufficient but not necessary condition guaranteeing that. If the term includes distributed

delays, al rootsof x(s) inC* arethose of y(s) (i.e. they are removable singularities).

In addition, the ratio is proper, i.e. | < n. More generdly, there exists area number
R > 0 for which holds that

sup [T(s)<eo (4.8)

Res>0]s/2R
see [115]. [

Notice that the properness condition (4.8) is not necessary in the definition since

the H_ stability condition according to (2.27) implies (4.8).

4.1.2 Coprime factorization and the Bézout identity

A basic operation on the quasipolynomial transfer function of TDS is coprime
factorization by which the transfer function is decomposed into a coprime (or relatively
prime) pair of ring e ements. Since the intention is to use coprime factors in the Bézout
equation (2.68), the factorization should also be Bézout, i.e. there must exists a stabilizing
solution of (2.68) satisfying (2.69).

When dealing with coprime factorization, the divisibility condition has to be
stated.

Lemma 4.1 (Divisibility in Rys)
Any A(s)e R, divides B(s)e R, if and only if all unstable zeros (including s —
) of A(s) arethose of B(s), and moreover, the numerator of A(s) isformally stable. m

Note that zeros mean the roots of the whole term of the ring, not only those of the

numerator.

Again, problems appear when dealing with neutral TDS or with those including
distributed delays. An example of coprime, yet not Bézout, factorization of formally
unstable neutral TDS was demonstrated in Example 2.4 and Example 4.3.
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The following two examples demonstrate a typical coprime factorization over Rys

and a specific problem with distributed delays, respectively.
Example 4.5
The system is governed by the transfer function

_b(s) s+exp(-s) ~
Gls)= a(s) s*+(2+ exp(—s))s+1eXp( 2s) (49)

which is a stable retarded TDS. Coprime factorization of (4.9) over Rys can be performed

e.g. asfollows

b(s) (s+exp(-s))exp(-2s)

_m(s) _ m(s) _B(s)
Gls)= (s)  s*+(2+exp(-s))s+1  A(s) (410

(s m(s)

where A(s), B(s)e Rus and m(s) is a stable (quasi)polynomial of degree 2. It is suitable

Q

3

to set m(s) as a polynomial since it appears as a factor in the control feedback

characteristic quasipolynomial, see Subchapters 4.2 - 4.4, 4.7. Its degree must equa 2,

otherwise elements would not be proper or coprime. [
Example 4.6

Consider a simple system with distributed delays with transfer function (2.16) and

suggest afactorization

1-exp(1)exp(-s)

G(9)= 1-exp(l)exp(-s) _ m(s) _ (4.11)

s-1 s-1 A(s)

m(s

~—"

In this case, the common denominator (quasi)polynomial m(s) could not be stable
since it would lead to non-coprime elements in Rys. Indeed, |et, for instance, m(s): s+1,
then there exists a term T(s)e R, that is a non-zero non-invertible common divisor of

both A(s), B(s) (which are then reducible), e.g.
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A)=T(A ()= 152 B(5)=T(ofp ()= S 1mOPDERTS) ()

The solution of this problem is read as follows: The common denominator m(s)
must include all common zeros s, of a(s),b(s) with Res, >0 (even asymptotic ones
tending to the imaginary axis). Thus, the coprime factorization (4.11) should read

1-exp(1)exp(-s)

G(9)= 1- exp(Slzelxp(— s) _ 2: % _B(s) (4.13)

T
[aRN

The notion of coprime factorization is closaly related to the existence of a solution
of the Bézout identity. As stated e.g. in Example 2.4, for formally unstable TDS such

solution in H_(C™) (an thus not in Rys) does not exist — we can obtain coprime yet not

Bézout coprime factors.

If a pair A(s),B(s)e R,sis Bézout coprime, it is possible to solve the Bézout
identity (or to find the GCD) using the extended Euclidean algorithm, see Subchapter
2.3.1. Prior to the implementation of the extended Euclidean agorithm toR,,qring, an
ordering of ring elements has to be defined, so that a poset is obtained. Thus, define

P=(Rys <) &

a) Als)<B(s) if and only if A(s)|B(s).

b) A(s)=B(s) if and only if A(s)|B(s) and B(s)|A(s), or equivalently, A(s) is
associated with B(s).

c) As) isnot related to B(s) if and only if A(s)}| B(s) and B(s)] A(s).

The procedure of finding the GCD(A(s),B(s)) can be characterized as follows.

Assume these three situations:

a) If A(s)=B(s), the GCD of both issimply either A(s) or B(s).
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b) If A(s) = B(s), keep the following scheme
Als)

1
1

hence, B(s) is the GCD of A(s) and B(s), according to (2.46). If B(s)>A(s), the

0 ] (4.14)
B(s)

procedure is analogous with GCD (A(s), B(s)) = A(s).

c) Let A(s) and B(s) be not related to each other. In this case, follow this scheme

Here, the GCD of A(s) and B(s) equals A(s)X(s)+ B(s)Y(s). In scheme (4.15), it
is supposed that there can be found quotients X(s),Y(s) such tha the eement
A(s)X(s)+B(s)Y(s) divides A(s),B(s). Since A(s),B(s) are Bézout coprime,

A(s)X(s)+ B(s)Y(s) must be aunit of the ring.

In other words, the objective is to find structures of X (s),Y(s) and to set zeros and
poles of A(s)X(s)+B(s)Y(s) such that divisibility conditions asin Lemma 4.1 are satisfied
or the element is invertible. This task can be troublesome; however, if formally unstable
neutral TDS were avoided being included, every numerator/denominator quasipolynomial
would have only a finite number of unstable zeros, which would make possible to find the
GCD (A(s),B(s)).

If the task is to solve the Bézout identity (2.68) itself instead of the
GCD (A(s),B(s)), one can use scheme (2.49) where c=1. This yields these results,

respectively
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a) P(s)= %, Q(s)=0 and/or P(s)=0, Q(s)= % (4.16)
b) P(s)= %, Q(s)=0 or P(s)=0, Q(s)= % (4.17)
o) P(s)= X(s) o Y(s)

) P)= 2ax @+ BEvVE) A= ASXE)+ BEVE (4-18)

The following exampl es el ucidate the whol e procedure.

Example 4.7

Assume coprime factorization (4.13) and find GCD (A(s), B(s)) first. Since A(s)
divides B(s), it holdsthat B(s) = A(s), hence

GCD (A(s), B(s)) = A(s):z—jzl (4.19)

according to (4.14).

The Bézout identity (2.68) then has the solution given by (4.17) as

1
P(s)= ron 1,Q(s)=0 (4.20)
|
Example 4.8

Now let the factorization be given by (4.10) with m(s)=(s+1)*. In this case, the
both elements A(s) and B(s) are associated, thus A(s)=B(s) and scheme (4.15) can be
used when solving GCD (A(s), B(s)). This schemeyields e.g.

-114 -



X(s)=Y(s)=1

_ 8" +(2+exp(=s))s+1+(s+exp(—s))exp(- 25)
(s+1y

_ 8" +(2+exp(=s)+exp(—2s) + exp( 3s))s+1
(s+1)

= A(s)X(s)+B(s)Y(s) (4.21)

=GCD(A(s), B(s))

where X(s),Y(s) are chosen for the simplicity. Then the solution of the Bézout identity

according to (4.18) reads

)= 0O(s)— (s+12)
Pls)=Qls) %+ (2+ exp(—s)+ exp(— 2s)+ exp(- 3s))s+1 (4.22)

In case of asymptotically stable systems, i.e. A(s) is invertible (a unit), it is

possible to use also a simple procedure when solving the Bézout identity

Qls)=1= Pls)=1] ‘(38()5) 4.23)

By applying this rule to the example, the following solution is obtained

g-1o14rent sjent 2

This scheme has some advantages, i.a. it enables that the reference-to-output transfer

function to have only real polesif m(s) is a polynomial, see Subchapter 4.3. The use of the

Bézout identity for control feedback stabilization isintroduced in Subchapter 4.2. ]

4.1.3 Basic properties of thering

Follow now terms introduced in Subchapter 2.3.1 and try to match some of them

with Rysring.
Lemma4.2
A set Rysintroduced in Definition 4.1 constitutes a commutative ring. ]

Proof. A sketch of proof that Rys meets ring conditions follows.
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Clearly, Rys is closed under addition with associativity and the neutra element
E=0. The inverse eement B(s)e R, under addition of A(s)e R, is simply
B(s)=—-A(s). Since A(s)+B(s)=B(s)+ A(s)e R,s, it isacommutative group.

The closure under multiplication with associativity is also evident since the

numerator and denominator of any A(s)e R, are composed of quasipolynomial factors —

retarded ones and formally stable neutral ones, respectively. Since the operation of
multiplication is commutative, left and right distributivity hold as well. In case of
distributed delays, it is not possible to obtain more unstable denominator zeros then

numerator ones of any A(s)e R,s under multiplication. The multiplicative identity element

equals 1. O
Lemma4.3

An element A(s)e R, is a unit (invertible element) if and only if A(s) has zero

relative order and has the (asymptotically and formally) stable numerator. [

The proof of Lemma 4.3 is evident (e.g. the necessity can be proved by the
negation of the right hand side of the lemma) with the aid of Lemma 4.1. Note that stable

numerator means that is has only stable zeros in the appropriate meaning.
Lemma4.4

An element A(s)e R, isirreducibleif and only if its numerator is formally stable

and
O +N, <1 (4.25)
where Oy is the relative order and N, stands for the number of real zeros
S, =12,..Ny or conjugate pairs s, ;,,;,i =1,2,...N, with Resg,; 20 and Reg,; 20 of
A(s), respectively. "
Proof. Necessity. Consider the following three cases

@ 0,=0, N, =1
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b) O, =1, N, =0

c) 0,22

Use an indirect proof. First, let &) is not valid; hence, O, =0, N, >1. Consider a
(quasi)polynomial c(s) with only one unstable zero (or a pair of unstable zeros), say

c(s,,)=0 (or cl(s,,)=c(§,,)=0) and an arbitrary stable (quasi)polynomial b(s) of the

same order (i.e. first or second one). Then

Ben(S)  Bn(Shels

A= PnlS) _ Ban(5DIS) fs @.29)

~
o
—_—

v(n N —
Il
>
—_

(%)
~—
&
—_

(%)
~

where A(s) and A,(s) are neither associated with A(s) nor units.

Now, let b) is not valid, i.ee O;=1, N, >0, and assume a stable

(quasi)polynomial d(s) of the first order. Then follow the scheme

o)< Bun(S) _ Bun(9)d(8) 1 _ (g (s
A= ™ A de - APAM (4.27)

Again, A(s) and A,(s) are neither associated with A(s) nor units.
Finally, let ¢) holds. Then it is possible to write e.g. scheme (4.27).
Sufficiency. Consider the three cases introduced above again.

If @) holds and the numerator is formally stable (even asymptoticaly), scheme
(4.26) fails, since A (s) isaunit and A,(s) is associated with A(s). Moreover, there is not

possible to find another “reducible” scheme.

Similarly, if b) holds and is formally stable, A(s)isaunit and A,(s) is associated

with A(s) in scheme (4.27); hence, A(s) isirreducible. 0
Lemma4.5
Rus ring does not constitute UFR. ]

Proof. Consider the following element of the ring
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1-exp(- )

. (4.28)
Nonzero zeros of the numerator of (4.28) are
SK=2|(—”J',§K=—&J}keN (4.29)
T T
Define polynomials
R(s)=(s-s)s-5) (4.30)
Then the factorization
1-exp(-15) _ (1-exp-m))s+m,)° R(s) _
s sP(s) (s+my)’
4
_(-expl-s)(s+my)* RSR(S) _ @3

PR(s)  (stm)

where my > 0 isinfinite and thus the Rys ring is not a UFR, and none of |eft-hand factorsin

(4.31) isirreducible and none of al factorsisaunit. m
Lemma 4.6
Rus isanintegral domain. n

Proof. Consider A(s), B(s)e RysWhere A(s) isaunit. Let A(s)B(s)=0and multiply
the whole equation by 1/ A(s). It yields B(s)= 0 and we have a contradiction. 0

Hence, Lemma4.5 and Lemma 4.6 imply that Rysisnot UFD.

Lemma4.7

Rus does not constitute PID. n

Proof. Simply, it holds that every PID is UFD. Since Rys is not UFD according to

Lemma4.6, it isnot PID. ]
Lemma4.8
Rus does not constitute a Bézout domain. n
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Proof. It is sufficient to show that there exists a pair A(s), B(s)e Rys which does
not give a solution pair Q(s), P(s)e Rys of (2.68). Indeed, as mentioned above severa
times, coprime factorization of formally unstable TDS does not have a stabilizing solution

of the Bézout identity in H_(C"), i.e. condition (2.69) does not hold. Since

H_ (C")> Rys Which is evident from Definition 4.1, such solution does not exist in Rys

aswell. ]

The decison whether Rys is a Noetherian ring is not successfully solved.
Typicaly, aring is a Bézout domain yet not PID, i.e. there exists an infinitely generated
ideal which is not principal. In such cases, the ring is not Noetherian, see e.g. ring & of

pseudopolynomials or ring A, see Subchapter 2.3.2.

4.2 Objectivesin controller design

The aim of this section is to outline controller design based on the agebraic
approach in the Rys ring satisfying the closed loop stability in that sense that all transfer
functions in the feedback are from Rys and the characteristic quasipolynomia (or
meromorphic function) is formally stable. Moreover, controller feasibility, reference
tracking and load disturbance rejection are other basic control performance requirements to
be satisfied.

The following subchapters present the whole controller design procedure for two

various control schemesin details.

4.3 Derivation of controllersfor 1DoF

Consider the simple negative feedback loop as in Fig. 2.1. Externa inputs,

reference and load disturbance signals, respectively, have forms

W(s) = ). D(s)= Ho(s) (4.32)

where H,(s), Hy(s), Fy(s), F5(s)e Rus Basic genera feedback transfer functions are

introduced in (2.72).
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Thefirst step in controller design is the fulfillment of control system stability, here

in Rys sense.

4.3.1 Closed loop stabilization

A crucial theorem follows.

Theorem 4.1

Given a Bézout coprime pair A(s),B(s)e Rys of a plant G(s)=B(s)/ A(s) the
closed-loop system is Rys stable if and only if there exist pairs P(s),Q(s)e Rys of all
proper (feasible) controllers G.(s)= Q(s)/ P(s) satisfying the Bézout identity

A(s)P(s)+ B(s)Q(s)=1 (4.33)

a particular stabilizing solution of which, say P,(s),Q,(s), can be then parameterized as

(4.34)

where Z(s)e Rys, P,(s)¥ B(s)Z(s) = 0. "
Proof. Follow basic steps of the proof of the analogous theorem for Res ring [167]
or the original Rysring [199]. However, some details have to be maodified and precised.
The proof has three steps (they can be considered as separate lemmas).
Sep 1: If G(s)=B(s)/ A(s), Gx(s)=Q(s)/ P(s) are two Bézout coprime fractions
in Rys, then the feedback control system is stable (in Rys sense) if and only if 1/ C(s)e Rus
where C(s)= A(s)P(s)+ B(s)Q(s).

Consider the following four transfer functions

Mﬂ 1+e<i>eR<s>{ ?) e(fR(jsJ{ ﬁﬂ

(4.35)



The feedback system is stable if and only if the four transfer functionsin (4.35) are
from Rys Sufficiency is evident. To prove necessity, induce a contradiction: Let
1/C(s)e Rus and there is a common zero z, with Rez, >0 (including asymptotic ones or
infinity) of A(s)P(s), A(s)Q(s), B(s)P(s), B(s)Q(s) which is cancelled such that all
transfer functions are stable. However, this case is impossible, either since both pairs
A(s),B(s) and P(s),Q(s) are coprime or they are even Bézout coprime, i.e. (2.69) holds.
As known e.g. from Example 4.3, a simple coprimeness can not be sufficient in some cases
of neutral systems. Moreover, note that the definition of the ring and the divisibility rule do

not allow situation that 1/ C(s)e Rys and functions in (4.35) are simultaneoudly from the
ring.
Sep 2. A controller Gg(s) stabilizes G(s) if and only if it has the form
Gg(s)=Q(s)/ P(s) where P(s),Q(s)e Rysis asolution pair of A(s)P(s)+ B(s)Q(s)=1.
Sufficiency: If the Bézout identity holds, C(s)=1, and thus the feedback system is
stable according to Step 1.

Necessity: If there exists a stabilizing controller Gg(s)=Q(s)/P(s), then

C(s)= A(s)P(s)+ B(s)Q(s) and 1/C(s)e Rys, see Step 1. Clearly, the same controller

Gg(s)= QAs)_Cls) (4.36)

P(s) P(s)

satisfies the Bézout identity A(s)P(s)+ B(s)Q(s)=1.
Sep 3: All stabilizing pairs P(s),Q(s)e Rys of (4.33) are given by (4.34) where
P.(s),Q,(s) isaparticular solution of the equation and Z(s)e Rys.

Inserting (4.34) into the Bézout identity (4.33) clearly yields the same formula
structure. Conversely, it holds that A(s)(R,(s)— P(s))=B(s)(Q (s)-Q,(s)). Since A(s), B(s)

are coprime, A(s) is a factor of Q(s)-Q,(s), i.e. A(s)Z(s)=Q(s)-Q,(s) for some
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Z(s)e Rys Viceversa B(s) is a factor of P,(s)—P(s), i.e. B(s)Z(s)=P,(s)-P(s). It is
easy to prove that there is also possible to switch signs in (4.33). Hence, every Rys

stahilizing controller can be parameterized asin (4.34). O

Parameterization (4.34) is used to satisfy remaining control and performance

requirements, such as reference tracking, disturbance rejection etc.

4.3.2 Referencetracking and load disturbance rejection

The task of this subsection is to find Z(s)e Rys in (4.34) so that the reference
signal is tracked and load disturbance is asymptotically attenuated. First, the both tasks are
separated and analyzed; yet, finaly, it is shown that they have to be solved together.

Asfirst, consider the problem of reference tracking. The solution idea results from
the form of G, (s)defined in (2.72). Consider the limit

M. 6y (=11, S, (8)=im, Gy (SWV(S)= lim, o A(S)P(s) ((SS)) 4.37)

where -, means that the signal is a response to the reference not influenced by other
external inputs. Limit (4.37) reaches zero if lim_, E,(s)<e and E,(s) is analytic and
bounded in the closed right half-plane, i.e. E,(s)e H_(C*) and has no pole there

(including an asymptotic case). If one wants to prevent the closed loop stability from the

sengtivity to small delays, the denominator of E,(s) must be a (quasi)polynomial
satisfying (2.25), in addition. Moreover, it must hold that G,.(s) is proper (or,
equivaently, E,(s) is strictly proper) because of the feasibility (impulse free modes) of

&, (t). Thisimplies, in other words, that the reference tracking is fulfilled if E,,(s) € Rys.

Alternatively, from the algebraic point of view, F,(s) must divide the product
A(s)P(s) in Rys It means that one has to set al zeros of P(s) (with corresponding
multiplicities) in C* as zeros of F,(s) - unless there are any already contained in A(s).

Recall that zeros mean zero points of a whole term in Rys here, not only those of a

guasipolynomial numerator.
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As second, take alook at load disturbance attenuation, which is analyzed in a very
similar way. Thus, the task is to find a suitable Z(s)e Rys in (4.34) so that the load
disturbanceis asymptotically rejected. Assume the limit

lim_.. Yo (t) =limg_, sY, (S) =limg_, Gy (S)‘N(S) =limg, SB(S)P(S)

(4.38)

using (2.72). The analogous analysis as in the previous subchapter yiel ds the requirement

Fo(s)1(B(s)P(s)) (4.39)

in Rys. Since B(s) isgiven, thetask isto find a suitable form of P(s) again.

Now, there are two various requirements on P(s), i.e. F,(s)|(A(s)P(s)) and
F5(s)| (B(s)P(s)), which can not be solved by a sequential utilization of (4.34). Indeed, if
any P(s) isfound so that F,(s) divides A(s)P(s), a subsequent use of parameterization

(4.34) for (4.39) can invalidate the preceding divisibility. As a conclusion, the both

conditions have to be considered together as
LCM(FR,(s), F5(s))| GCD(A(s), B(s))P(s) (4.40)

which makes the genera procedure more involved and it naturaly carries some

conservativeness (compared to the separate two conditions).
Introduce a constructive procedure in more details. Asfirst, assume a set

Q,, ={ow, :Fulow,)=0.Req,, 20,i=12,...1, | (4.41)

of zeros of F,(s) inC* with their corresponding multiplicitiesm,,;,i =1,2,..1,, . Note that
m, =1 means asingle zero, m, =2 stands for a double one, etc. Let, in general, there be

some zeros of A(s) inC* that arethose of F,(s). Define now the set of indexes
I, =1i:0w; € Qy, Alow, )=0} (4.42)

and the set of common zeros

-123 -



Q, ={ow, € Qicl, fcQy (4.43)

with multiplicities m, ;,iel, (in A(s)). For zeros in Q,,, introduce multiplicity

differencesas Am,, ; = max{rn,\,,i -m, ,O}.

Now, let the multiplicities m,;,i=12,..l,0f zeros of €, be updated to

My;.i =12,..1, asfollows

S i (44
which takes zeros of A(s) into consideration as well.
Anaogoudly, a set
Q, =100, :Fo(0p,)=0,Rec,, 20,i=12,...,1 } (4.45)

is introduced. The corresponding multiplicities are my;,i =12,..1,. Consider a set of
common zeros of some zerosin C* of B(s) and F,(s) as

Qqy =100, € Qptiely fcQ, (4.46)
where

Iy, =1i:00,; € Qp,Bloy,; )= 0] (4.47)
with multiplicities mg ;,iely in B(s) and introduce multiplicity differences
AMpg ;= max{mm -Mg ,O}, ielg .

Again, update the multiplicites m,;,i=12.l,0f zeros of Qp to

m,;,i=12,..1, asfollows

Am.. el
mD,iz{ Moe, ! € T, (4.48)

My, el
Now, merge the both sets
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Qup =y UQp (4.49
and define the corresponding multiplicities as

My Ow; € Ly \(QWHQD)
Myp; =7 Mp;,0p; € Qp \(QWHQD) (4.50)
max{m/v,i My }’O-«,i € Q,NQ,

L et the overall number of zerosin Q,, be |Qp|=lyp -

Assume a stabilizing particular solution given by apair P,(s), Q,(s) and consider
afactorization of a suitable parameterizing element Z(s)e Rysas
Z(s)=27,(s)Z,(s) (4.51)

The structure of the first factor, Z,(s), is chosen so that the product B(s)Z,(s) has
asuitable form, e.g. P,(s) and B(s)Z,(s) has the same denominator quasipolynomial, and
it has no unknown parameters. Contrariwise, Z,(s) includes some selectable controller

parameters which are to be placed properly. Let

Z,(s)=2 (4.52)

where z,,(s) has asimple and known formand z,  (s) be ain asimple form again, say as

apolynomial, with N selectable parameters o, @, ..o

LHN (s)= LHN (5,04, 05,00y (4.53)

The task is to determine the number N and to prescribe how to set al the

unknown parameters. Hence, denote

(s,al,az,...aN)z py (s, 00,0

P(s)=Py(s)- B(s)Z,(s) 2" (4.54)
( ) 0( ) ( ) 1( ) Zg,D(S) pD(S)

Define now the set of indexes

IpD = {i 10w € Qup, pD<O-WD,i ): O} (4.55)
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and the set of common zeros

Q, ={owo;€ Qupiicl, fSQyp (4.56)
with corresponding multiplicities m,_;,ie I, in py(s).

Now, basicaly, all zeros of F,(s) and F,(s) in C* must be placed as zeros of

P(s), unless they are included in A(s) and B(s), respectively. Again, update the zeros

multiplicitiesin Q,,, asfollows

Am =1, el
L (457)
’ M, =1yl
The cumulative multiplicity is
I\I\D
M =2 My, (4.58)
i=1

The analysis above yields the requirement of the following setting equations for
reference tracking and load disturbance rejection
dit . :
Py P (O‘Wm ,al,az,...aN) =0,i=L.lyp, =12, My, (4.59)

Oup €0

Zeros with m,,; <0 are naturdly excluded from (4.59). If equations (4.59) are

independent, the number of these equationsis M , thus, finally, N=M .

4.4 Derivation of controllersfor TFC

Anaogoudly as for 1DoF control system, the controller design procedure is now
proposed for the TFC structure, see Fig. 2.2. This control scheme brings two advantages.
As firdt, it is possible to partialy decouple and solve separately tasks of (asymptotic)
reference tracking and load disturbance reection. However, these problems are still
partially connected. As second, it is possible to introduce new free control parameters
which give additional degrees of freedom. Moreover, the control structure enables to
obtain a finite number of polesfor some feedback transfer functions, namely for reference-
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to-output one, hence, the submethod proposed in Subchapter 4.4.4 is called the quasi-finite

spectrum assignment.

4.4.1 Closed loop stabilization

Let both externa inputs be considered as in (4.32). Crucial transfer functions for
the TFC scheme are given by (2.73).

A statement analogous to Theorem 4.1 follows.

Theorem 4.2

Given a Bézout coprime pair A(s), B(s) e Rys of aplant G(s)= B(s)/ A(s) the TFC
system is Rys stable if and only if there exist pairs P(s),T(s)e Rys satisfying the Bézout
identity

A(s)P(s)+B(s)T(s)=1 (4.60)

a particular stabilizing solution of which, say P,(s),T,(s), can be then parameterized as
(4.61)

where Z(s)e Rys, P,(s)¥ B(s)Z(s)#0 and T(s)=Q(s)+R(s), i.e. pairs P(s),Q(s)e Rus

and P(s)R(s)eRus give rise to proper controllers Gy(s)=Q(s)/P(s) and

Gr(s)=R(s)/ P(s), respectively. "
A proof of Theorem 4.2 can be easily performed by substituting T(s) into (4.33)

instead of Q(s) and taken into consideration transfer functions (2.73) instead of (2.72).

4.4.2 Solution decomposition

It holds that T(s)=R(s)+Q(s), which indicates that the solution T(s) of (4.60)

and (4.61) has to be decomposed so that other requirements on Q(s) and R(s) are met.

Let
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( s”+.§n:§:t”si exp(—z}}js)
NS =0 (4.62)
to(s) to(s)

Introduce a set of real selectable parameters i i=0L..n,j=1.k where nis the

T(s)=

degree of t,(s), kexpresses the number of non-zero (delay) termsfor s, N, =1+ En: k is
i=1

the number of al non-zero termsin t, (s), and set

VoS + %i%]tij s eXp(‘ 4 S)
RE= N
(1_ Vo )Sn + Zn: i (1_ Vi i s exp(— 4 S)
Qs) =
t(S)

(4.63)

Obvioudly, T(s)=R(s)+Q(s).

4.4.3 Load disturbance regjection and reference tracking

Let disturbance rejection be investigated first. The load disturbance rejection
condition can be derived similarly as for 1DoF structure as introduced in Subchapter 4.3.2.
This task can be solved by a suitable selection of Z(s) in (4.61). The crucial condition
stems from G, (s) defined in (2.73) which is formally identical with that introduced in
(2.72). Hence, the limit (4.38) reaches zero if divisibility condition (4.39) holds.

The asymptotic reference tracking is a bit more involved then that for 1DoF

structure. Consider the limit

lim,_.. &, (t)=1lim, o SE (s)=1im_, sGye(sW(s)

| Hy (s
=limg, SIA(s)P(s)+ B(s)Q(s)] Fy(s)

~—

(4.64)

The limit reaches zero if F,,(s)|(A(s)P(s)) and, simultaneoudly, F,,(s)|(B(s)Q(s)).

The former condition can be combined and satisfied analogously as for 1DoF; however,

the latter one requires the use of decomposition (4.63). Therefore, in the following text, the
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load disturbance rejection problem is worked out completely, whereas the reference
tracking task is solved only partialy and it will be fully established later.

Simply, one can follow equations from (4.41) to (4.59) exactly. As a result,
Fy(S)|(A(s)P(s)) and F,(s)|(B(s)P(s)) which ensures load disturbance rejection;
however, to meet the requirement of asymptotic reference tracking, it is necessary to
provide F,(s)|(B(s)Q(s)) in addition. This task can be efficiently solved by

decomposition (4.63). Note that the notation from equations (4.41) to (4.59) is adopted in
the sequdl.

To solve the task more precisely, recal first that P(s) and T(s) — after
parameterization (4.61) — contain the number of N parameters ¢; unambiguously
determined by the number M of equations (4.59), and €, stands for the set of zeros of
F.(s) located in C* with their corresponding multiplicitiesm,, ;,i =1,2,..1,, . Define the set
of indexes

Iy, =1 : 0w, € Qy,Bloy,; )= 0} (4.65)
and the set of corresponding zeros

Qg =o€ Qyicly fcQ, (4.66)

with multiplicities mg ;,ielg (in B(s)). For zeros in Qg , introduce multiplicity

BN’
differencesas Amyg, ; = max{m,\,,i -mg ; ,O}.

Now, let the multiplicities m,;,i=12..l, 0f zeros of Q, be updated to
Mg, .1 =12,..1,, asfollows

AmNaN’i,i e IBN (4.67)

Mhs, z{mw, gl

Recall that the quasipolynomial numerator of T(s), i.e. ty(s), can be generally

decomposed by means the number N, of (free) parameters y; . To take the influence of

the denominator t,(s) into consideration, let
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I, =1i:0w; € Quto (o) =0} (4.68)
and

Q_ ={ou; € Qyicl, jcQ, (4.69)
with corresponding multiplicities m_;,ie I, in to(s).

Update the zeros multiplicitiesin Q,, asfollows

- Hi=1.1,el
m/vB,u"'mD,. I I We to (470)

m’VB‘D'i:{ My, =Lyl

Denote the cumulative multiplicity as

IW
MWBtD = § My, (4.71)
Consider now the following three cases
1) If Ny > M, , parameters y; can be prescribed by the solution of

d , .
{@tN(O'W,i y)} =0,i=1.ly,]=12,.myg (4.72)
O-WJEQ'W

where y=[;/Ol,...yoko,;/ll,...ylkl,...,;/no,...;/nkn]T. In this case, there is a number of

AN = N; — M,y freeindependent parameters (i.e. the solution of (4.72) is ambiguous).

2) If N;y=M,g_, the reference tracking can be satisfied by (4.72) as well;

however, y isdetermined unambiguously and there are no additional degrees of freedom.

3) If Ny <M, , the number N, of free parametersis not enough to solve (4.72),
hence, other selectable parameters /f,i=0..nyhave to be added, eg. by a simple

modification of T(s) asfollows

"+ B S¥ T +..+ B+
T(s)=T(s); Py = Pist Py (4.73)
s’ + /5,48 +..+Bs+ 5,
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where n; > -AN. Now T,(s) is recalculated such that a new vector ¥ = l%ﬂo,---ﬂnﬂr of

free parameters is obtained and (4.72) can be solved, after the decomposition analogous to
(4.63).

This adjustment can be also preformed when some additional degrees of freedom
arerequired (in points 1 or 2).

4.4.4 Quasi-finite spectrum assignment

As mentioned above, the TFC gructure can be used to perform quasi-finite
spectrum assignment controller design in the sense that, at least, reference-to-output
transfer function has a finite number of poles. It is easy to prove that asymptotically (and
formally) stable systems naturally yield a finite spectrum feedback via procedures already
described for the 1DoF and TFC structures.

To make it clear e.g. for TFC (the following procedure can be done analogousy
for 1DOF), consider that a(s) in (4.10) has all zerosin €, (including the asymptotic case)
and m(s) is a polynomial. Then A(s)e Rysis a unit (invertible) and hence A(s)| B(s), i.e.
B(s) = A(s), which means GCD (A(s),B(s))=A(s). In this case, the stabilizing Bézout
equation (4.60) can be solved according to (4.23) as

T)=1= Rls)= 1] BS()S) _ m(se)l(‘s ;’(S) (4.74)

If the parameterization (4.51) — (4.54) is adopted with Z,(s)=m(s)/a(s) and
Z,(s)e R (s), the denominator t,(s) of T(s) is a polynomial (or areal constant in most
cases). Then R(s) has a polynomial denominator, and since the reference-to-output
transfer function reads G, (s)= B(s)R(s), it has a finite number of poles. However, asit is
obvious from (2.73), load disturbance transfers via infinite-dimensional subsystems and
the numerator and denominator in M (s) are quasipolynomials in general, hence a “full”

finite spectrum assignment is not reached.
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The main idea to satisfy the quasi-finite spectrum assignment for an unstable TDS
using TFC stems from the consideration of the scheme in Fig. 2.2 as a simple feedback
loop (i.e. 1DoF) with a pre-stabilizing inner loop, instead of a “direct” solution in Rys
described in Subchapters 4.4.1 - 4.4.3. Then the stable inner subsystem can be proceeded

as it was introduced above.

The pre-stabilization is given by the solution of (4.33) which can be obtained by
the extended Euclidean algorithm described for Rys in Subchapter 4.1.2. The main trouble
is how find X(s),Y(s) in (4.15) such that A(s)X(s)+ B(s)Y(s) is a unit, i.e. the numerator
guasipolynomial of the term is stable. Due to this reason, stability analyses of simple
retarded quasipolynomials with respect to a rea undelayed parameter have been made
[125], [126]. The main results are the matter of the following subchapter.

45 Stability analysis of selected retarded quasipolynomials

Study now the stability of the following two selected simple retarded
guasipolynomials by means of the argument principle (the Mikhaylov stability criterion)

given by condition (2.36)
m,(s)= s+ aexp(— %)+ kq (4.75)
m,(s) = s+ aexp(— %)+ kqexp(- ) (4.76)

where a#0eR, k, ¢, 7eR" are fixed. The main goal is to find upper and lower bounds
on the parameter q#0eR such that quasipolynomials (4.75) and (4.76) have al zeros
located in C,. Although the quasipolynomia (4.75) is a specia case of (4.76), these
analyses are made separately.

Consider quasipolynomial (4.75) first. The loop-shape-like procedure is based on
the requirement that the appropriate Mikhaylov curve for e [0,0) must have the overall

argument change equal to 7/ 2 (starting on the positive rea axis).
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Lemma4.9

For w = 0, the imaginary part of the Mikhaylov curve of quasipolynomial (4.75)

equals zero and it approaches infinity for @ — co. [

Proof. Decompose m,(jw) into rea and imaginary parts as

Re{m (jw)}= acos(vw)+ kq (4.77)
Im{m,(jo)}= w-asin(sw) (4.78)
Obviously

Im{m(jo)}f, , =0.lim,_. Im{m(jw)}== 0
Lemma4.10

If (4.75) has all its zeros located in C , the following inequality holds

q>—2 (4.79)
k
and thus the Mikhaylov curve starts on the positive real axis. [

Proof. If (4.75) has al its zeros located in C ,, the overall argument shift equals to

/2 according to (2.36). Moreover, Lemma 4.9 states that the imaginary part goes to

infinity. These two requirements imply that for stable quasipolynomial is

Relm(jo)f, >0 (4.80)

By application of (4.80) onto (4.77) yields the condition (4.79). O

Lemma 4.10 represents the necessary stability condition and the lower bound for g.
The curve can either pass through the first or the fourth quadrant for an infinitesimally
small w=A >0, whichisclarified in the following ssimple lemma.

Lemma4.11

A point on the Mikhaylov curve of (4.75) lies in the first quadrant for an

infinitesimally small w=A >0 if and only if
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av<l

(4.81)
This point liesin the fourth quadrant if and only if

av>1 (4.82)

|
Proof. Necessity. If the point on the curve goes to the first quadrant for an

infinitesimally small @=A >0, then the change of function Im{m(jw)} in @=0 is
positive or this function is increasing in w=A . It is known fact that this is satisfied if
either

ilm{ml( j a))){ >0 (4.83)
da) =0

or there exists even ne N such that

d . dm . d" .
d—lm{ml(Ja)))( =.=——Imm(jo)] =0-—Imm(jo)] >0 (4.84)
0] 0 dw o dw o
(i.e. thereisalocal minimum of Im{m (jw)} in @=0) or thereisodd n> 3e N such that
d , dm . d" .
Soimme)) =.=rsimim(jo))  =0——simm(io)j #0
@ 0 dw do
a0 o0 (4.85)
imm(io)] >0
dw w=A

(i.e. there is a point of inflexion of Im{m(jw)} in @=0; however, the function is
increasingin w=A).

Analyze the previous three conditions. First, relation (4.83) with respect to (4.78)
reads

im0

=0

=1-avcosdw),  =1-av>0 (4.86)

which issatisfied for a’d<1.

Second, condition (4.84) can be taken into account if
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ilm{ml( j a)»{ =0 av=1 (4.87)
dw

=0

hence

2 3

d ~1m{m(j w)}{ =0, d—alm{ml(j o)) >0 (4.88)

dw ®=0 dw =0
av=1l ar=1l

where the first non-zero nth derivation is odd, and thus (4.84) can not be satisfied for
a?d =1; however, we can test (4.85). Indeed

9 mim(; w)}{ -0 (4.89)
dw os

and thus function Im{m,(j®)} in @= A isincreasing.

Similarly, one can easily verify that if the Mikhaylov plot pass through the fourth
quadrant first, then function Im{m (jw)} decreasesin @=0when (4.82) holds.

Sufficiency. If conditions (4.81) or (4.82) are considered, particular derivations of
Im{m,(jw)} can be calculated, which guarantee, according to (4.83) — (4.85), whether there

isatendency of the Mikhaylov curve to go to the first or the fourth quadrant, respectively. o

The meaning of Lemma 4.11 is demonstrated in Fig. 4.2
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Re{mljalt

Fig. 4.2 Clarification of Lemma 4.11
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Lemma4.12
If the lower bound (4.79) holds and a, k, q are bounded, then Rem(jw)} is
bounded for al w>0. [

Proof. Assumethat a>0. Then

—2a<-a+kq< Rem(jw)}=acos(dw)+ kg < a+kq (4.90)
On the other hand, if a< 0

O<a+kg<Rem(jo)}<-a+kg< 2kq (4.91)

where the left-hand sides of (4.90) and (4.91) and the right-hand one of (4.91) employ
condition (4.79). The case when a=0 can be discarded due to definition (4.75) of the

guasipolynomial. O

The requirement of bounded parameters is natural with regard to their physical

meaning as process quantities or controller gains.
Lemma4.13

If (4.79) holds, there it exists an intersection of the Mikhaylov plot with the

imaginary axisfor some @ >0 if and only if
a>0 and |kg|<a (4.92)

Proof. Necessity. Show a contradiction, hence if a<0 and (4.79) holds, then
O<a+kq<Re{m(jw)} according to Lemma 4.12 and thus there is no intersection with
the imaginary axis.

Sufficiency. Consider a>0. If |kg/<a, there must exists w>0 such that
acos(dw) = kq , hence, Rem,(jw)}=0. O

Searching of the stability upper bound will be made in two branches, so that

conditions (4.81) and (4.82) are solved separately. The following theorem presents the

necessary and sufficient stability condition for the former case.
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Theorem 4.3

If (4.81) holds, then quasipolynomial (4.74) has all its zeros in C, if and only if
condition (4.79) is satisfied. [

Proof. Necessity. See Lemma4.10.

Sufficiency. Lemma 4.10 indicates that if (4.79) is satisfied, the Mikhaylov curve
starts on the positive rea axis for w=0. According to Lemma 4.9 the imaginary part of
the curve goes to infinity and Lemma 4.12 states that for bounded parameters, the curve is
bounded in the real axis. Now for the stability it is sufficient to certify that for a2 <1 the
Mikhaylov plot does not Ieave either the first and the fourth quadrant, or the first and the

second quadrant, since then the overall phase shift is 772.

Indeed, Lemma 4.12 and Lemma 4.13 state that if a< 0, there is no intersection
with the imaginary axis and thus the plot lies in the first and the fourth quadrant.
Otherwise, if 0<a<1/d, an intersection with the imaginary axis can exist because of
Lemma 4.13. Thus, it ought to be verified that there is no intersection with the real axis.

Consider two cases;

1) If sin(dw)>0, >0, then

Im{m (jo)}= - asin(dw) > w—%=m{l—%]>o (4.93)

2) If sin(dw)<0, @>0, we induce a contradiction. Hence, assume that there

exists @ >0 suchthat sin(dw)< 0 and Im{m (jw)}=0. Then

(4.94)

which yidds sin(w) > 0 and thus we have a contradiction. O

The both cases above in the second part of the proof of Theorem 4.3 are pictured
inFig. 4.3.
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Fig. 43 For as<1, the Mikhaylov plot of m(s) must lie in the first and the fourth
quadrant (left) or in thefirst and second quadrant (right)

Consider now the second case, i.e. a’>1. The following result reinforces
condition (4.79).

Definition 4.2

Let (4.79) holds. The crossover frequency a, (for m(s)) is defined as

w, =min{w: o> 0,Im{m(jw)} =0} (4.95)
for some a=0, J > 0. In other words, it represents the least solution of (4.94). ]

The frequency is graphically displayedin Fig. 4.4.
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Fig. 4.4 Crossover frequency for m(s)
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Theorem 4.4

If (4.82) holds, then quasipolynomial (4.75) has dl its zeros located in C, if and
only if

o acos(da, )

5 (4.96)

Proof. Necessity. Lemma 4.9 and Lemma 4.10 state that the Mikhaylov curve for
stable quasipolynomial (4.75) starts on the positive real axis. Condition (4.82) guaranties
that the initiadl movement of the curve in the imaginary axis is negative, see Lemma 4.11.
Thus, the curve has to pass through the fourth followed by the first quadrant. In other

words, the first crossing with the real axis on the frequency @, >0 has to satisfy

Im{m, (j s, )} = a0, —asin(va, )= 0

497
Refm(j)} = acos{vay )+ kg > 0 &0
which gives (4.96) directly.
Sufficiency. If (4.82) holds, then a>0 and
, Zacodday) , —a (4.98)

k k

and thus the Mikhaylov curve for quasipolynomia (4.75) starts on the positive real axis
according to Lemma 4.10 and the initial change of the curve in the imaginary axis is
negative, see Lemma4.11. Condition (4.96) then agrees with the fact that the curve crosses
positive real axis first, asit is obvious from (4.77). Since the curve is bounded in the rea

part and the imaginary part goes to infinity (see Lemma 4.9 and Lemma 4.12), the overall

phase shift is 772 and thus the quasipolynomial m(s) hasall its zeroslocated inC,. o
Regarding m,(s) defined in (4.76), introduce formally particular lemmas first
which areidentical with some lemmas above.
Lemma4.14

For @ = 0, the imaginary part of the Mikhaylov curve of quasipolynomial (4.76)

equals zero and it approaches infinity for @ — . [
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Lemma4.15
If (4.76) has all its zeros located in C , (4.79) holds. ]

Proofs of Lemma 4.14 and Lemma 4.15 can be performed analogously as for
Lemma 4.9 and Lemma 4.10, respectively. The following lemma is analogous to Lemma
4.11, yet let us build a proof for it.

Lemma4.16

A point on the Mikhaylov curve of (4.76) lies in the first quadrant for an
infinitesimally small w=A >0 if and only if

av+kqr<1 (4.99)

This point liesin the fourth quadrant if and only if

av+kqr>1 (4.100)

Proof. Necessity. If the point goes to the first quadrant for an infinitesimally small
w=A >0, oneof conditions (4.83) — (4.85) holds for m,(s).

Relation (4.83) with respect to (4.76) reads

_,=l-av-kqr>0 (4.101)

% I, (j w)){ =1-aycosw)- kqz cos(zw)

=0
which gives ad+ kqr <1.

Condition (4.84) applied to (4.76) yields

%Im{mz(j a;))< =0 ad+kqr=1 (4.102)

w=0

The second derivation is

2

d ~Im{m, ] a)))< = a?sin(dw)+ kqr’si n(ra))‘ato =0 (4.103)

dw

w=0

Generaly, any even n-th derivation reads
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n

1 Im{m,(jo)}=(- 1)2’1(a19” sin(dw)+kqr"si n(m)))

=

dn (4.104)
o smimjol] =0

- =0

Thisimpliesthat (4.84) can not be satisfied.

Third, assume that there exists a non-zero odd n-th derivation, n>3,in =0

n

omin o) -

w=0

(- 1)%3 (20" cos(vm) + kg 7" cos(rw)*
av+kqr=1

n-3

(-1’2 (20" cos(vo) - (a— 1) cos(m)j )

=0

=(- 1)%3 (2" - (a-1)r™)

(4.105)
Test the latter condition in (4.85), obviously
9 imim, i w)}{ _ a(cos{iA) - cos(zA)) + cos{zA) > 0 (4.106)
da) az_ﬂfqu:l
since
jim_ COSWA) g (4.107)
40" cog(rA)

Anaogously, one can easily verify that if the Mikhaylov plot passes through the
fourth quadrant first, then function Im{m,(jw)} decreasesin @ =0and (4.100) holds.

Sufficiency. Consider condition (4.99) and verify that it satisfies (4.83) or (4.85)
for mz(s), respectively. In the same way, formula (4.100) givesriseto
d :
s imim (o) <0
dw 0

(4.108)

which induces the initial tendency of the Mikhaylov plot to go to the fourth quadrant. o
Lemma4.17

If &, k, g are bounded, then Re{m,(jw)} is bounded for al @ > 0.
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Proof. Assume the following four different condition.

1) If a>0 and kq> 0, then

—a-kq < Refm,(jw)} = acos(vw) + kqcos(tw) < a+ kq (4.109)
2)If a>0 and kq< 0, then

—a+kq<Re{m,(jw)}<a-kq (4.110)
3)If a<0 and kg> 0, then

a—kq< Re{m,(jo)}<-a+kq (4.111)
4) If a<0 and kq<0, then

a+kq<Rem,(jo)}<-a—kq (4.112)

It is possible to summarize and unify results (4.109) — (4.112) as

~ (|| +|kal) < Refm, (j )} < [a] +|Kq (4.113)

Proposition 4.1

If (4.79) and (4.99) are satisfied s multaneously, then

a(®-r)<1 (4.114)
Proof. Obvioudly,

kog>—a

a(®-7) < ad+kgr<1 (4.115)
O

The preceding proposition also expresses that for a quasipolynomia (4.76) with
zerosin C,, when the corresponding Mikhaylov plot passes the first quadrant as first, the
condition (4.115) holds.

Proposition 4.2

If the following inequality holds
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a(®-7)>1 (4.116)
then the corresponding Mikhaylov plot of a quasipolynomial (4.76) with zeros in C|
passes the fourth quadrant asfirst. [

Proof. Lemma 4.15 states that (4.79) holds for a “stable” quasipolynomial (4.76).
Then

kg>—a

l<a(d-7) < av+kqr (4.117)

which induces that the Mikhaylov plot goes to the fourth quadrant as first, due to Lemma
4.16. ]

Proposition 4.3

There always exists an intersection of the Mikhaylov curve of (4.76) with the

imaginary axis. |
Proof. The intersection exists if Re{m,(jw)}=0, i.e.
acos(vw) = —kq cos(zw) (4.118)

for some @ > 0. Obvioudy, since ¥ >0, 7 >0, thereis @ >0 satisfying relation (4.118).

O

The upper stability bound will now be found via some unproven observations and

atheorem.
Definition 4.3

Let (4.79) holds. A crossover frequency @, for m,(s) isan element of the set
Q, ={w:w>0,Re[m,(jw)}=0,Im{m,(jw)}=0} (4.119)
for some crossover gain g, and a=0,k,7,9>0. [

A crossover frequency, hence, has to satisfy simultaneously these two identities

acos(dw, )+ kg, cos(za, ) = 0

4.120
@, —asin(da,)— kg, sin(za,) = 0 ( )
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Relations (4.120) can also be expressed by transcendental equation
@, cos(tw, ) = asin((#-7)a,) (4.121)

Note that equation (4.121) is in the form suitable for utilization of numerical

methods, i.e. some ratios of goniometric functions are not desirable for this purpose.

The crossover gain q, can be calculated from (4.120) as

@, —asin(daw,)

= 4.122
% ksin(za, ) (4122
Definition 4.4
Let (4.79) holds. The critical frequency @ isdefined as
. = min{(o:(oe QO,Aargmz(s)zo,Aargmz(s)zl} (4.123)
s=aj x[0,.) sdaelog=) 2

for the corresponding critical gain q. given by (4.122), where @ isplaced instead of a,,

and a#0,k,7,9>0. ]

Obvioudly, the critical frequency is the least crossover frequency for which the
argument change is zero for we [0, @, ) and consequently it equals /2 for we [a)c,oo).
The quasipolynomial is then on the “stability margin” for q., which has to satisfy the
necessary condition (4.79). There can hence exist some crossover frequencies less then the

critical one which do not mean the “stability margin”.

The difference between the crossover and the critical frequency is clarified in Fig.
4.5. Whereas the left-hand side picture displays the critical frequency, the right-hand side

position shows the crossover one only, because the phase shift of m,(jw) for we [@,,) is

—7r /2 and there is not another e, .
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Fig. 4.5 The difference between . (left) and @, # @ (right)

Observation 4.1

Let g=0q., then the Mikhaylov plot of (4.76) circumscribes curves in the

clockwise direction around the center of the rotation (like a “whirligig”). Moreover, if
(4.99) holds, then the Mikhaylov plot initially moves to the first quadrant (as proved in
Lemma 4.16) followed by the fourth quadrant for some frequencies @ > 0. It means that
although relation (4.99) quarantines that the plot tends to move to the first quadrant for
w=0, it immediately passes over the positive real axis to the fourth quadrant anyway. The
situation is displayed in Fig. 4.6. [

Irfemyj e}

_4 1 1 1 1 1 1 1 1
4 -2 0 2 4 G a 10 12 14 16

Re{mfjc}

Fig. 4.6 Explanation of Observation 4.1
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Remark 4.1

In [89], [90], a lemma which states that the spectrum of a genera retarded
guasipolynomial is continuous with respect to continuous changes of al its parameters is
proved. This fact implies that the Mikhaylov plot of an appropriate quasipolynomia is

continuous in both axes with respect to these parameters’ changes, and viceversa. [
Theorem 4.5
Consider the following five possibilities:

a) If sin(za,. )= 0andcos(za, )>0, cos(za, )< 0, then quasipolynomial (4.76) has

al itszerosinC, if and only if

o Z200s0) —a) (4.124)
kcos(za.) ' Kk
—a <g< Ls(ﬂwc) (4.125)
k k cos(za. )
respectively.

b) If cos(za.)=0and sin(zw.)>0, sin(zw.)<0, then quasipolynomial (4.76)

hasal its zerosin C|, if and only if

—8 < Bz asin(de ) (4.126)
k ksin(ra,)
max| e~ gsn(ﬂa)c),—_a <q (4.127)
ksin(zw.) ' k

¢ If sin(zw.)>0 and cos(zw.)<0, sin(zm.)<0 and cos(zw.)>0, then

quasipolynomial (4.76) has all its zerosin C|, if and only if (4.125) or (4.126), (4.124) or
(4.127), hold, respectively.

d) If sin(za.)>0 and cos(zaw. )> 0, then if

lagsin(da, )+ ka7 sin(za, )| > [L- as?cos(da, ) - ka7 cos(zax, ) (4.128)
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then quasipolynomial (4.76) has al its zerosin C, if and only if (4.124) holds, otherwise

the quasipolynomial has al itszerosin C , if and only if (4.126) holds.

e) If sin(zw.)<0 and cos(zw. )< 0, then if (4.128) holds, (4.76) has al its zerosin

C, if and only if (4.125) is satisfied. Otherwise, if condition (4.128) does not hold, the
quasipolynomial is stable if and only if (4.127) holds.

Recall that @, isthe critical frequency.

Proof. Necessity. For al the cases in the theorem, the Mikhaylov curve of a
“stable” quasipolynomial (4.76) starts on the positive rea axis, and thus the necessary
condition (4.79) included in (4.124) - (4.127) holds, as proved in Lemma 4.15. Lemma
4.16 states condition (4.99) guaranties that the initial change of the Mikhaylov curve in the
imaginary axis is postive. i.e. the curve tends to move to the first quadrant for w=0;
however, according to Observation 4.1, it immediately moves to the fourth quadrant. If
(4.100) is satisfied, the curve passes through the fourth quadrant aready for an
infinitessimally small . The critical (marginal) caseis characterized by @, and q. where
the curve crosses the origin of the complex plane and asmall change of g would cause that
the overall phase change would be 7/2, see Remark 4.1. The limit “stable” case thus

obviously means that Re{m,(ja.)}>0 and Im{m,(ja.)}>0 must hold simultaneously;

here the following relations can be used
Re{m, (jw)} = acos(dw)+ kg cos(zw) (4.129)
Im{m,(jw)} = - asin(dw)-kqsin(w) (4.130)

Consider case @) in the theorem and take cos(zay. )> 0. Since sin(zw, )=0, we can

not deal with (4.130), whereas (4.129) gives (4.124) immediately. Analogously, a case
when cos(zw. )< 0 resultsin the right-hand side of (4.125).

If conditions b) hold, inequalities (4.126) and (4.127) are obtained from (4.130) in

the smilar way asin the previous paragraph.
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In the case c), condition Re{m,(ja.)}>0 using (4.129) yields results (4.124) and
(4.125) which are as the same as conditions (4.127) and (4.126), respectively, obtained
from Im{m,(ja.)}>0 with (4.130).

The most involved cases in the theorem are d) and €) since conditions
Rem,(jo.)}>0 and Im{m,(jar.)}>0 collide here — one gives the upper limit
for g whereas the second yields the lower one. To decide which of themisvalid, one hasto
test the sengitivity of the Mikhaylov plot in the vicinity of q=q.. If the infinitesimal
change of the curve in the real axis is higher than that in the imaginary one, condition
Re{m,(jw. )} >0 establishes the behavior of the curve near the origin. Contrariwise, if the
plot shifts in the imaginary axis faster than in the real one, the stability is given by
condition Im{m,(jay. )} >0 because it influences the Mikhaylov plot near the critical point

more.

Hence, if

>

| L refmtol] |- [ 2 mimgol]

|- agsin(de ) - ka7 sin(zw,, ) > [1- a?cos(da, ) — ka7 cos(zay, )

(4.131)

w=a w=a

then (4.129) decides about the behavior of the Mikhaylov plot near the origin, which
resultsin (4.124) for cos(zw. )>0 andin (4.125) for cos(za, )< 0, respectively.

Otherwise, if (4.131) does not hold, the imaginary part (4.130) of the
guasipolynomia (4.76) dominates in the critica point, which gives (4.126) for
sin(zw. )>0 and (4.127) for sin(zew. )<O.

Sufficiency. Bound (4.79) included in (4.124) - (4.127) guarantees that the
Mikhaylov curve initiates on the positive real axis, see Lemma 4.15. Lemma 4.16 verifies
that the curve reaches infinity in the imaginary axis for @ — o, and Lemma 4.17 states
that it is bounded in the real axis. Moreover, if (4.99) holds, the Mikhaylov curve tends to
move to the first quadrant and, consequently, to the fourth quadrant for @ =0; otherwise,
it moves to the fourth quadrant for w=A when (4.100) is satisfied. For the
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quasipolynomial “stability”, expressed by the overall phase shift 772, it is now sufficient to
show that the curve does not encircle the origin of the complex plane in the clockwise
direction.

Let the critical stability case be expressed by @, and gc and consider case ) first.
Since sin(za.)=0, condition Im{m,(je. )}>0 could not be guaranteed from (4.130) and
Im{m,(ja.)}=0 remains for any g. However, inequalities (4.124) and (4.125) yield
Re{m,(jw. )}>0 from (4.129) using cos(zw)>0 and cos(zaw. )< 0, respectively, for a
particular 4 > qc and g < q, respectively. Thus, it means that the real axisis crossed in the

positive semi-axis first on the critical frequency and thus, with respect to Remark 4.1, the

originisencircled in the anti-clockwise direction with the overall phase shift 772

Second, assume the case b). Similarly as in the previous paragraph, cos(zw,)=0
gives Re[m,(ja)}=0 for any . Inequalities (4.126) and (4.127) together with
sin(za. ) >0 and sin(zw. ) < 0, respectively, result inlm{m(ja. )} > 0, from (4.130). Thus,
the overall phase shift is 7212 again.

In c), pairs of conditions (4.125) and (4.126), (4.124) and (4.127:), agree with
Re{m,(jw. )}>0 and Im{m,(ja. )}> 0 simultaneoudly for sin(zw,)>0 and cos(rw. )< 0,
sin(za. )< 0 and cos(zew. ) > 0, respectively, which implies the desired phase shift for the
“stability”.

Condition (4.128) in d) and €) expresses the fact that the absolute value of a

derivative of the Mikhaylov curve in the critica point is higher in the real than in the
imaginary one. Thus, condition Re{m,(ja.)}>0 is stricter than Im{m,(ja.)}>0 when

decision about the behavior of the plot in the vicinity of the origin for e, . Inequalities
(4.124) and (4.125) correspond to Re{m,(jew.)}>0 for cos(zw.)>0 and cos(zw.)<O0,
respectively, which meansthat the critical point isnot encircled.

In the contrary, if (4.128) does not hold, i.e. Im{m,(ja.)}>0 decides about the
critical behavior, inequalities (4.126) and (4.127) correspond to Im{m,(ja.)}>0 for

sin(za. ) >0 and sin(za, ) < 0, respectively, which guarantees the stability again. O
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Remark 4.2

Definition 4.4 and Theorem 4.5 suggest situations when the quasipolynomial
stabilization by the suitable choice of q is not possible. These are two unpleasant
possihilities:

1) If @ does not exist. Thus, although €, is non-empty set, it may not contain
Wy = W .

2) If q could not satisfy (4.125) or (4.126), i.e. if

@, —asn(da. )
ksin(zew)

< ‘—ka (4.132)

or

—acos(dm;) _ -a
k cos(za. ) : k (4139

depending on the particular case from Theorem 4.5.

This caseis, however, not very likable since the continuity of the Mikhaylov curve
with respect to q supposes that there is a “stabilizing” q in the neighborhood of the

marginal case d = Jc. [
The following example demonstrates Remark 4.2.
Example 4.9

Consider quasipolynomia (4.76) witha=-5, 7=0.2, J =1, k=1, which gives the
following Set of crossover frequencies according to (4.119):
Q, = {4.663,7.855,10.244, 23.562,39.27,...}, giving rise to crossover gains calculated from
(4.122) as qo € {-0.4112, 12.855, 7.423, -18.562, 44.27,...} . One can verify by drawing the
appropriate Mikhaylov plot that no @, € Q, isthe critical frequency. ]

Observation 4.2

Numerical experiments showed that if sin(zw,)<0, then @, # @, which might
render condition (4.127) useless. [
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Note that the investigated quasipolynomials were analyzed already e.g. in [7], [25];

however, different approaches were utilized in these papers.

46 Generalized Nyquist criterion for TDS

The Mikhaylov criterion is closely related to the Nyquist criterion for control
feedback stability conditions. The both criteria are based on the argument principle which
is a rather more involved compared to a finite-dimensional case due to the infinite
spectrum of TDS and the existence of common roots in the transfer function numerator and
denominator (because of distributed delays). In the following subchapters, the Nyquist
criterion is revised for both retarded and neutra TDS and the question whether the
notorious axiom about the number of unstable poles and the corresponding number of
encirclements is answered. Moreover, the results are useful when testing robust stability

and robust performance, particularly for the TFC structure.

4.6.1 1DoF control structure

As usual, the Nyquist criterion gives information about the closed-loop stability
based on the knowledge of the overall phase shift (argument increment) of the open-loop

transfer function G, (s) around the critical point -1.

Consider a simple control system as in Fig. 2.1 and notation G(s)=b(s)/a(s),
G(s)=q(s)/ p(s) where a(s),b(s),q(s), p(s) are retarded quasipolynomias and G(s) is
strictly proper and Gg(s) is proper. Then the corresponding closed loop reference-to-

output (i.e. complementary sensitivity) transfer function reads

q(sk(s)
o 1 e s PR gy (4
p(s)a(s)
where the characteristic quasipolynomial m(s) is
m(s)= p(s)a(s)+ q(s)b(s) (4.135)
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Recall that in the case of input-output or internal distributed delays, zeros of

(4.135) do not agree with poles of (4.134) since there are some common roots of a(s), b(s)
and/or those of q(s), p(s) inC*.

Study now retarded and neutral systems with lumped delays only as first. Then,
those with distributed delays will be included.

For retarded TDS without distributed delays we can formulate and prove the

following theorem.
Theorem 4.6

Let the plant and the controller have transfer functions as in (4.134) without
distributed delays and the control system be in a smple form as in Fig. 2.1. Let retarded
quasipolynomials a(s) and p(s) have no root on the imaginary axis, i.e. a(s)# 0, p(s)# 0

forany s=jw, weR.
Then, if

Aarg p(s)a(s)=lr/2lez (4.136)

s=jw,0e[0,0)

then the closed-loop system is asymptotically stable if

Aarg (1+G,(s))= (n—I)% (4.137)

s=jw,we[0,0)

where ne Z is the highest s-power in the closed-loop characteristic quasipolynomial m(s)

asin (4.135) which equals the sum of the highest s-powersof a(s) and p(s). "

Proof. The highest s-power, n, of m(s)= p(s)a(s)+ q(s)b(s) equasthat of p(s)a(s)
due to the properness. If

Aarg m(s)=nzx/2 (4.138)

s=jw,we[0,)

then the closed-loop system is asymptotically stable according to (2.36) (i.e. its
characteristic quasipolynomial has all zeros in Cj), and, simultaneously, since retarded

guasipolynomials are analytic functions, it holds that
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Aarg m(s)/(a(s)p(s))=nz/2-Ix/2 (4.139)

s=jw,we[0,)

Moreover, from (4.134) it is obvious that

Aarg m(s)/(a(s)p(s)= Aarg (1+G,(s)) (4.140)
s=jw,we[0,00) s=jw,we[0,)
and the proof isfinished. O

Thus, to test the closed-loop asymptotic stability, one can figure the Nyquist plot
of G,(s) and count its overall number of encirclements around the critical point -1, or

more precisaly, the overall phase shift of the curve around the point.

Now, the natural question is whether the notorious precept about the number of
unstable poles of G,(s) (as for delay-free systems) can be used. The answer is the

following modification of Theorem 4.6.
Theorem 4.7
Let the prerequisities for Theorem 4.6 hold.

Then, the closed-loop system is asymptotically stable if

Aarg (1+Gy(s)=N,7 (4.141)
s=jw,we[0,00)
where Ny is the number of polesof G,(s) inC*. "

Proof. Assume results from Theorem 4.6. If there in no pure complex conjugate
pair of poles of Gy(s) (i.e. roots of a(s)p(s)), al its unstable poles have positive rea

parts, the number of which is given by (2.35). If notations (4.136) and (4.137) are taken
into account, one can write

N, :(n_;l) —=l=n-2N, (4.142)

Substitution (4.142) into (4.137) yields (4.141), finally. m

If the plant or the controller is of a neutral type, the Nyquist criterion satisfying
both the asymptotic and strong stability can be easily formulated in the light formulas
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(2.37) and (2.38) and the knowledge of relation between strong and formal stability and the
number of unstable quasipolynomial zeros, described in Subchapter 2.2.

Theorem 4.8

Let the plant and the controller have transfer functions as in (4.134) with lumped
delays only and let the control system be of the scheme as in Fig. 2.1. Let neutra
quasipolynomials a(s) and p(s) have no root on the imaginary axis, i.e. a(s)# 0, p(s)# 0

for any imaginary s=jw, we R, and define the denominator of G,(s) as

n n, Qe i
m,,(s)= p(s)a(s)=s"+ Z(:) Zlmapviis exp(-s7,) (4.143)
1=0 |=
for which (2.25) holds.
Then, if
Aarg m(s)e(lz/2-a,, 1z/2+®,) (4.144)
s=j,we[0,00)
where
. (Mep
o, =arcs n( > ‘map,nj j (4.145)
=1

then the closed-loop system is asymptotically stable if (4.137) holds true. Note that nis the
highest s-power in the closed-loop characteristic quasipolynomial m(s) as in (4.137),

which equals the highest s-power of the G(s) denominator m,,(s). "

Proof. If the quasipolynomial is formally stable, i.e. it has only a finite number of

zeros located in C*, the number of such unstable zeros is given by formula (2.35).

Condition (2.25) ensures i.a. that the argument change ® in (2.38) is finite (see proof of
Theorem 1 in [208]), more precisdy, @< (0,7/2). If (2.25) does not hold true, the

guasipolynomial is not strongly stable, yet it can be formally stable. Thus, (2.25) is a
sufficient condition for formal stability of the neutral quasipolynomial and it implies that
(2.35) can be utilized for the relation between the “main” part of the argument change
(divisbleby 7z /2 andignoring @) and the number of unstable roots.
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Follow now the proof of Theorem 4.6. If

h,
Aarg m(s)e (nz/2-®,nz/2+ @), ® = ar&sin(z‘rmj U (4.146)
=1

s=jo,we[0,)

then the closed-loop system is asymptotically and strongly stable according to (2.37) and
(2.38). Since degm(s) = degm,,(s)=n, ® =, and (4.145) ensures the strong stability

of both m(s), map(s). Because of the fact that neutra quasipolynomials are analytic

functions, it holds using (4.134) that

Aarg m(s)/m(s)=nz/2+d-17/2F D, = (n-NZ
s=jw,we[0,00) 2 (4147)
= Aag (1+Gy(s))
s=jw,we[0,)

O

As was mentioned, since strong stability condition (2.25) ensures that the number
of unstable zeros of a neutral quasipolynomial is finite, the relation between the main part
of the overal argument shift (that divisible by z/2) and the number of unstable zeros is

given by (2.35). If we use thisfact on (4.147) and m,, (s), one can easily prove that (4.141)

from Theorem 4.7 holds also for formally stable neutral systems with lumped delays.

In the case of input-output distributed delays, there are some zeros of a(s) inC*
that are those of b(s). Let us study the stability of the characteristic meromorphic function

first. Hence

M@:MH—Mﬂ:Eg (4.148)

where m,(s) is a (retarded or neutral) quasipolynomia of degree n, and my(s) is a
polynomial of a degree dy, with Ny, zeros in C*which are those of m (s). Then the

following theorem can be formul ated.
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Theorem 4.9
Consider the meromorphic function M(s) as in (4.148) where
m,(s)# 0, m,(s)= 0 for any imaginary s=jw, weR. Then

a) If m (s) isaretarded quasipolynomial, M (s) hasno zeroin C*if and only if

AargM(s)= (N —dy)z _de)”

s=jw,we[0,)

(4.149)

b) If m (s) isaneutral quasipolynomial satisfying (2.25), M(s) hasno zeroinC*
and it isstrongly stable if and only if

(nm _dm)ﬂ. n, _dm)ﬂ.

—@mSAargM(s)g(

+P_ (4.150)
2 s=j,we[0,00) 2
where
. h"m
®  =arcsin Z M,y
= \ (4.151)
mn(s) =s™ + Zc:)_zlmn,ij s exp(— S77; )
i=0 j=
| |

Proof. Let us make a proof of the case a). The second part of the proof can be done
analogously using the fact that m.(s) is strongly stable and (2.35) can be taken into

account.

Assume two cases. First, let (quasi)polynomias m,(s), m,(s) have all their zeros

located in C, . Since both functions are analytic, from (2.36) it holds that

AargM (jo)=Aargm,(jo) - Aargm, (jo) = (n, ~d,) 7

@e[0,) we[0,) we[0,)

(4.152)

Second, let al N,y zeros of m,(s) in are those of m,(s) and there is no other one

in m (s). From (2.35) we have
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Aarg rnn(J (0) = (nm - 2Num)£’Aarg rnd (J a)): (dm - 2Num)£ (4153)
@e[0,) 2 o) 2

which gives (4.149) and (4.152) again.
The inverse can be proved analogously (by steps in reverse order). m

Consider now afeedback system asin Fig. 2.1 with a plant affected by distributed
delays.

Theorem 4.10

Let the plant and the controller have transfer functions as in (4.134) with
distributed delays (and possibly lumped ones) and let the control system be of the scheme

asinFig. 2.1. Let quasipolynomials a(s) and p(s) have no root on the imaginary axis, i.e.
a(s)=0, p(s)#0 for any s=jw, weR, and define the denominator m,,(s) of G,(s) as

in (4.143). Then

a) If m,,(s) isaretarded quasipolynomial with

Aarg my(s)=1z/2 (4.154)

s=jw,ae[0,)

then the closed-loop system is asymptotically stable if

Aarg (1+Go(s))=(n—l—2ﬁu)%=ﬁ ~ (4.155)

s=jw,we[0,0)

u

holds where n is the highest s-power in map(s) N, isthe number of common zeros of the
numerator and denominator of G,(s) in C* and Nu,ap stands for the number of unstable
zeros of m,(s) which are not included in the numerator of G (s).

b) If m,(s) is a neutra quasipolynomial with (4.144) and (4.145) satisfying
(2.25), then the closed-loop system is asymptotically and strongly stableif (4.155) holds.m

Proof. Consider a general case for retarded TDS. Formulation b) of Theorem 4.10

can be proved in asimilar way.
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Let the numerator and denominator (i.e.m,(s)) of G(s) have exactly N,
common zeros in C*. From (4.134) it arises that these roots are zeros of m(s)as well,

hence, they are not the system poles since are canceled just by m,, (s).

Thus, the number N, of al “unstable zeros’ of m,,(s) isgiven by (2.35) as

. Aarg m,(s)
N, =N, +N,, =|=— o)
u,ap u u,ap 2 p
(4.156)
— = WZ
= Aag my(s)=(-2N,+N,,))>
S=jw,ae[0,00) 2
and those of m(s) as
Aarg m(s)
N, =| D-sleet0=) = Aarg m(s)=(n-2N,)Z (4.157)
2 T s=jm,we[0,00) 2
From (4.134), (4.135), (4.154), (4.156) and (4.157) wefinally have
Aarg m(s)/m(s)= Aarg (1+Gy(s))
s=jm,we[0,0) s=jw,we[0,00)
J J o (4.158)
= Aag m(s)- Aag my(s)=(n-1-2N,)==N, 7
s=jw,we[0,00) s=jw,we0,00) 2 '
O

Clearly, Theorem 4.7 holds true as well. Examples of the usage of criteria above
can befound in [127].

4.6.2 TFC control structure

Regarding the TFC control structure as in Fig. 2.2., there are more possibilities
how to define the criterion since it depends on how the feedback is viewed. Consider the

following two possibilities

Gunle)= ) Gl 6 () isG,(o)rop(s) @159



G(s

v (< Cr(S)
_Y(s)  1+G(s)Gy(s) _ G(s
G\/W (S) = W(S) = 1. L G (S) ’GO (S) = W)GQ(S)GR(S) (4160)
1+G(s)Gy(s)

The former form, i.e. (4.159), respects perturbations of the plant and the sum of
controllers' transfer functions. Contrariwise, the letter form, i.e. (4.160), is quite natural in

the sense of 1DoF structure since the |eft-hand side factor in G (s) represents the inner

feedback |oop.

For the further text, structure (4.159) is taken into account because separate
perturbations of the plant and both controllers are more natural in practice than separate

perturbations of the outer controller and the whole inner feedback |oop asin (4.160).

Now theorems from the preceding subsection can be used directly by substituting
Go (5)=G(s)(Gx(s)+ Gy (5)) instead of G, (s)=G(s)Gg(s). However, the notions of robust

stability and robust performance are much more involved that in 1DoF case, as presented
in Subchapter 7.6.

4.7 Examples

Several examples demonstrating the controller design procedure introduced in

Subchapters 4.3 and 4.4 are presented in this subchapter.

4.7.1 Stable system
Example 4.10
Consider astable TDS giving rise to the transfer function

bexp(-7s)  b(s)

6(9)= bexp(-7s) s+m, ~m(s) _ B(s)
"~ st+aexp(-os) s+aexp(-ss)  als)  As) (4.161)
s+m, m(s)

b,z,29,m, > 0; A(s),B(s)e R,s

where the stability condition reads
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ave (0,7/2) (4.162)
see e.g. [47],[199]. Clearly, A(s), B(s) are coprime.

Let both external signals be stepwise functions, i.e.

W, d,
W(s)= ';W((SS)) = ”LVS(S), D(s)= ED((SS)) = m“s(s) (4.163)
m,(s) my(s)

where m,(s), m,(s) are suitable “stable’ (quasi)polynomials of the first order, e.g. for the

smplicity, let m,(s)=m,(s)=s+m,again. Consider 1DoF control structure.
A particular stabilizing solution provides the Bézout identity (4.33) as

s+ aexp(— %) P (s)+ bexp(- ) Qu(s)=1 (4.164)
s+m, S+m,

For Q,(s)=1, one gets

_ s+m,—bexp(-1s)

P(s 4.165
(o s+ aexp(- %) (4169
Alternatively, the generalized Euclidean algorithm can be used.
Parameterization (4.34) reads
o -
(4.166)

LSt aexp(—%s)

s+m, 2(s)

Qls)=1

For reference tracking and disturbance rejection, it is necessary to choose Z(s), so
that F,(s)|(A(s)P(s)) and F,(s)|(B(s)P(s)). Equivaently, the numerator of P(s) must

contain at least one zero root. To obtain P(s) in asimple form, let

(M _ s+m
Z(s)_( . 1Js+aexp(_ 5 (4.167)
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see (4.51) — (4.54), which give

P(s)=" (L expl ) Q="b (4.169)

s+ aexp(- %) b

The controller transfer function hence reads

GR(S) — Q(S) n”b(S+ anp(_ 795)) (4.169)

P(s) b(s+my(1-exp(-)))

The controller is of the so-called anisochronic type (i.e. with internal delays),

which is obvious from its MATLAB/Simulink structure, see Fig. 4.7

ey

' e friovh »

Integrator Crelay
Theta

=
=]
o
+

ut)

Fig. 4.7 MATLAB/S mulink scheme of controller (4.169)

Note that it is naturally possible to take m(s) as a quasipolynomia instead of
polynomial; however, this option would make a controller more complicated. The

importance of m(s) reveals from the closed loop transfer function

G (9)= V\\(/((SS)) - "bipr(r; =) (4.170)

The obtained control structure can be easily compared with the well-known Smith

predictor structure (Fig. 4.8), seee.g.in[121].
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|
I
WiE) +.-—: Er=) R =) . Bu(s) | (=)
F Y | Als) . i
|
L

Fig. 4.8 Smith predictor structure

If the model is exact, it holds that

N 6,09
R~ 6.5 (s-erlm) (@171

which gives

R(s):%w (4.172)

<

Hence, R(s) represents ageneralized (delayed) Pl controller in the Smith structure.m

4.7.2 Integration system

The following example was thoroughly studied in (Pekai and Prokop, 2008b).
Only the basic and selected results are presented here.

Example 4.11

Let an integral plant be described by the transfer function

bexp(-7s)
6(s)=expl-)- ms) ig A(9)B(s)e R, (4473)
m(s)
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where m(s) is an appropriate stable quasipolynomial of degree one. Consider TFC control
system as in Fig. 2.2 and external inputs let be form the class of stepwise functions as in
(4.163).

Present now the “direct” controller design according to (4.60) — (4.73).

Stabilizing Bézout identity reads

4 bexpl-ms) T,(s)=1 (4.174)

s
—<R(s)
m(s) ° m(s)
Without loss of generdlity, let T, = aeR and P,(s)=P, = 1, and the remaining
task isto find a suitable stable quasipolynomial m(s). Hence, (4.174) resultsin

m(s)-s

Theclaimis a to be real; therefore the smplest m(s) hasto be of the form
m(s) = s+ abexp(- ) (4.176)

Stability condition (4.162) yields

T
O<a<— 4.17
2br ( 7

The convenient option of Z(s) in the parameterization (4.61) enables to find the

solution of (4.60), so that requirements of reference tracking and load disturbance rejection
are accomplished. To solve reference tracking, if the reference signal is considered as a

stepwise function (4.163), the numerator of Q(s) must have the “derivative’ pattern (the
zero root of F,,(s) isnot included in B(s)); however, there is not placed any condition on
P(s), since the zero root is already included in A(s). Nevertheless, the load disturbance

rejection condition F,(s)](B(s)P(s)) requires P(s) containing the zero root.

There are more possibilities how to choose Z(s) . For instance, Z(s) = gives

_ S
P(s)= - (4.178)
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T(s)= (25 + obexp(-1s)) _ y2os+a’bexp(-1s) N 1-7)20s

s+ abexp(—1s) s+obexp(-7s)  s+abexp(-1m) (4.179)
=R(s)+Q(s)
Gal9)= 28 - P2’ edlE) g (o) % 1y (4.180)

where ye [01]. Whereas an aternative option

(5)=57 abexp(—1s) my

Z(s (4.181)
S+m, b
where m, >0, which agrees with philosophy of (4.51) —(4.54), yields
P(s)= s+ my(1—exp(-5))
s+m,
a+ mojs+ a (1- }/)((Z+ m")s
T(s)= (ab+nb)s+ab=y( b + b (4.182)
b(s+my) s+m, s+m,
RS+ QMY
0(+m°]s+a ( —}/)(0{+an5
G4(s)= R(s) V( b , Gq ()= Qs) _ b (4.183)

P(s) ~ s+m(1-exp(- 7)) P(s)  s+my(1-exp(- 1))

In both cases, there is a number AN =1 of free parameters, i.e. ¥, which can be
tuned suitably (implicitly, 7, =1, see (4.63)).

Characteristic quasipolynomial are

m(s) = (s+ abexp(—zs))

m(S) = (S +ob exp(— zs))(s +m, ) (4.184)

respectively. The quasi-optimal tuning guaranteeing multiple dominant real zeros (i.e. the

“leftmost” possible real system poles) of the factor my(s)= s+ abexp(- zs) is satisfied if

1
Q

opt = % (4 185)
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see detailsin [118], [122].

Simulation comparative results for controllers (4.180) and (4.183) follow. As a
comparative strategy, LQ polynomial method minimizing the functiona - Integrated
Squared Error (ISE) criterion -

Jie = I[ez(t)+ o (1) (4.186)

is used, see e.g. [32]. This method utilizes a rational approximation of delay terms in the
plant model, namely, the first order Padé approximation. We test also results of another -
Integrated Squared Time Error (ISTE) — criterion

Jgre = Zt[ez(t)+(puz(t)]dt (4.187)

as a benchmark.

Let b=1, 7=5. The reference signal is w(t)=1 for 0<t<100 and w(t)=2 for
100<t<300. The step input disturbance d(t)=-0.1 enters at time t=200; hence, the

process of restoration of zero control error due to the input disturbance influences ISTE
criterion significantly. The quasi-optimal tuning (4.185) gives « =0.0736 with dominant

poles o,,,=-0.2, For the comparison, assume other two settings. «=0.0835 with
0,5=-0.181£0.1], and & =0.125 with o,,=-0.13+0.2j. Let m;=0.4 in (4.183) and
set eg. ¥y=0.75. Figs. 4.9 — 4.11 display the simulation responses and Tabs. 4.1 — 4.3

provides the corresponding values of J,- and J,e With ¢ =500.

Tab. 4.1 1SE and ISTE criteriavaluesfor b=1, z=5,y=0.75, ¢ =500 using controllers

(4.180)

a ‘J ISE ‘J ISTE
0.0736 22.21 765.6
0.0835 22.307 | 736.061
0.125 24.933 | 746.489
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100 =0
Tirna [3]

Fig. 49 Smulation control responses of u,(t) (lefty and y(t) (right) for b=1,

7=5,y=0.75 using controllers (4.180)

Tab. 4.2 ISE and ISTE criteria valuesfor b=1, 7=5,y=0.75,m,=0.4, ¢ =500 using

controllers (4.183)
o JISE ‘] ISTE
0.0736 20.671 1448.2
0.0835 18.42 1153.8
0.125 19.679 913.7
0.4
[ike1
03
025
024

)

TmuEHE;
o1k

005F +

-0.1
]

100 150
Tima [s]

¥

25

20
Tirme [s]

Fig. 4.10 Smulation control responses of u,(t) (left) and y(t) (right) for b=1,
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Tab. 43 ISE and ISTE criteria values for b=1, 7=5, =% =075,
m, = 0.4, ¢ =500using polynomial approach with optimal LQ controllers

¢ JISE ‘] ISTE
200 88.582 1062.2
500 38.879 812.107
900 26.652 789.973

ujt)
viz)
j

A | -

] ! vs
01 \1 — @=200 — @ =200
— o=s5m — o=500

) , . ) ---- @=000 ) . ) ---- @=000
50 100 150 200 250 300 1] 20 100 150 200 250 300
Tirna [s] Tieme [5]

0z
a

Fig. 4.11 Smulation control responses of u,(t) (left) and y(t) (right) for b=1,
7=5,%=7%,=0.75, m,=04, using polynomial approach with optimal LQ
controllers

Note that meaning of y, =y, is analogous toy. As can be seen, the both

controllers (4.180) and (4.183) give comparable results where the higher values of o yield
higher overshoots yet with a better damping factor. Obviously, controllers designed in Rys
provide even better results compared to the optimal LQ polynomial method.

Now, design controllers by a quasi-finite spectrum assignment methodology
described in Subsection 4.4.4. Consider the pre-stabilizing proportional controller

Gy(s)=G, =aeR (4.1898)
then the transfer function of the inner pre-stabilized feedback loop is

Gy(s)= bexp(-7s)

s+ obexp(-1s) (4-189)
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see Fig. 4.12, where 0< a < 7 /(24b) according to (4.177).

wis) ~E) [T R
Pis)
Gefs)

Fig. 4.12 Reconfigured TFC control system structure
Stable system G,(s) is considered as a controlled one in 1DoF structure in the
sequel. Hence, e.g.

bexp(-1s)

_ S+my
G,(s)= Srabepln) (4.190)
S+m,

and the stahilizing Bézout identity reads

s+ obexp(- 1) P(s)+ bexp(-17s)

sem ) Sem R,(s)=1 (4.192)

whose particular solution e.g. reads

_ s+m, —bexp(-s)

Rle)=1 Rls)== el =) (4.192)
Let

™ _1|s+m)
Z(s):( b ] i (4.193)

s+ obexp(-s)

in the parameterization (4.34) according to the principle (4.51) — (4.53) satisfying load
disturbance rejection and reference tracking giving rise to
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my
Gu(s)= R(s) _ b _m, s+obexp(-)
T P(s) s+myl-exp(-7)) b s+my(1-exp(- )

s+ abexp(— )

(4.194)

Set o=0.0736, a=0.0835, o =0.125, respectively, and m, =0.4 again. The
corresponding simulation control responses and values of J,oz, J,ge, are displayed in Tab.

4.4 and Fig. 4.13, respectively.

Tab. 4.4 ISE and ISTE criteriavaluesfor b=1, 7=5,m,=0.4,9 =500 using controllers
(4.188) and (4.194)

‘]ISE ‘]ISTE

0.0736 28.617 959.431
0.0835 28.353 725.04
0.125 28.229 702.907

0.45 T T T T 25

n4f -

o3| - 2t P
03 - : /

0z - 15 j

o1
005 —\
ok L

.08
u]

ft)

S0 100 150
Tirma [3] Time 5]

Fig. 4.13 Smulation control responses of u,(t) (left) and y(t) (right) for b=1, 7=5,
m, = 0.4 using controllers (4.188) and (4.194)

Clearly, the objective values of J, and J,;z are close to the ones introduced in
Tabs. 4.1 — 4.3, yet subjectively, the ssimulation responses seem better mainly due to the
aperiodica reference-to-output response. However, reactions to the disturbance is
periodical again because of zeros right from the poles of the corresponding transfer
functions. This can be clear from the following transfer functions.
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Gy (9)= VYV((S;)) = ”bfiprﬁ; S 6, (9= \28 St ”"(; enx‘f(‘ 5 (410

A disadvantage of the methodology is that there are no free “weighting”

parametersin the controller. [

4.7.3 Unstable system
Example 4.12

Consider a plant described by model (4.161), yet with as¢ (0,7/2), i.e. the
controlled systemis purely (asymptotically) unstable. Let both external signals be stepwise

functions again and assume 1DoF control structure, for the simplicity. Study now solutions

for two different setting of the common quasipolynomia m(s).

As firg, let the claim be that the particular stabilizing solution of (4.33) is a real
number, say again Q,(s)=a, P,(s)=1. Analogously to (4.174) — (4.176), it leads to

m(s) = s+ aexp(- 9s)+ abexp(- 13) (4.196)
Here, results of Theorem 4.5 can be utilized. Parameterization setting

)M s+ aexp(— 1s)+ abexp(— )

Z(s
b S+m,

(4.197)

where m, >0 isafree parameter, gives

Q- ot bl mlb<aegm) o semiA-eols) (ys0

and hence

6.(6) Q5) _ 1(m+abs+my(ob + aexp(-s5) w159

P(s) b s+ my(1—exp(-73))

The reference-to-output transfer function reads

o- Y(s) __s+(my+ob)+m,(ob+aexp(-5)) o0l 2
G () W(s) (s+m)(s+aexp(-s)+obexp(-1s)) pl-) (4.200)
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As second, try to take customary option m(s)=s+m,. However, stabilizing
solution (4.165) can not be used now since A(s) is not invertible in Rys. Thus, the

generalized Euclidean algorithm (4.15) and (4.18) is a suitable tool for the solution of
(4.164). This schemeresultsin

)= Yo(s+my) e S+
Qils)= yoexp(-s)+s+aexp(— )’ R(s) yooexp(—zs)+ s+ aexp(— %)

(4.201)
where a simple choice X(s)=1Y(s)=y,eR has been used in (4.15). Naturally, it is

supposed that the denominator quasipolynomial in (4.201) hasall itszerosin C .

Let

m Stmy
Z(5)= ™ 4.202
(s b s+aexp(- %)+ y,bexp(-1s) (4-202)

which agrees with the idea of (4.51) — (4.53), then

(M miabraepl-5) [ srm-ep-w)
Qls)= yooexp(— )+ s+ aexp(— ) P(s) ybexp(— )+ s+ aexp(— )

(4.203)

which yields the controller (4.199) withy, instead of «. Nevertheless, the generalized
Euclidean algorithm enables to use other (different) X(s),Y(s) than was used above, to get

more complex controller structure or to satisfy that Q,(s), P,(s)e Rus. "

4.7.4 Non-stepwise reference and/or disturbance

The following two examples are focused on the demonstration of controller design
for non-stepwise externa input(s). To provide the reader with a deep insight, the notation
of Subsections 4.3 and 4.4 is adopted.

Example 4.13

Consider the stable plant (4.161), yet with a linearwise reference signa and a

stepwise input disturbance, hence
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(4.204)

where m,, (s) and my(s) are arbitrary “stable” (retarded) (quasi)polynomials of degree two
and one, respectively, and H,,(s), Hy(s), F,(s), F5(s)e Rys-

Let TFC structure be utilized here.

Stabilization formula (4.60) for the choice T, =1 vyields P,(s) as in (4.165).
Parameterization (4.61) is given by (4.66), yet with T(s) instead of Q(s). Analyze now the
number of free parameters in Z(s) by following (4.41) etc., thus, Q, ={0}, m,,=2,
1, =@,Q, =@, then m,,=m,,. Moreover,Q,=1{0},m,,=1,1, =0,Q, =0,
My, =My,. This gives Q,,={0} with m,,,=2. Since I, =@,Q, =@, then
Mo =Mips =2. It means that it is necessary to place one double zero root into py(s),
ie. M=N=2, py(s)=py(sa.a,). Sign B,=a,,p,=c,. To obtan P(s) in a

relatively simple form, let

7(s)=— St Bisth (4.205)
s+aexp(-s) s+m

where m >0, then

p(g)= S * M+ m)s +( :iﬂ;;ngfxgg;( ;s+) :nl n)m +b(m, - 5,) (4.206)

According to (4.59), one has to solve the following set of algebraic equations for

reference tracking and disturbance rejection

[ +(my + m)s-+b(B, ~V)sexp(— )+ mym, + b(m, - 5,)|, =0
d (4.207)
E[SZ +(my +my Js+b(3, ~1)sexp(— z5)+ mym, +b(m, - ;)] , =0

The solution of these equations gives
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By =b"m(b—m,), 4 =b(b—m, —m(1+am,)) (4.208)

From (4.61) and (4.205), T(s) reads

T(9)= 1= ﬁll?ﬁ?l s (4.209)

For reference tracking, it is necessary to o the decomposition (4.63) so that

R, (s)](B(s)Q(s)). Follow the procedure starting from (4.65). Hence, for instance,

T(S) — 71(1_ ﬂ1)5+ 7o(ml — ﬂo) + (1_ 71)(1_ ﬁ1)5+ (1_ 70)(ml — ﬂo)
s+m s+m (4.210)

=R(s)+Q(s)
Because of lg, =®,QBW =@, then mz,=2 for a zero root; and similarly
[, =Q_=9, hence myg_,=Myg_=2. The number N; of (free) parameters is also 2
(i.e. 7, 1), therefore these parameters can be determined unambiguously by the solution
of
[~ )2-B)s+ @y, Mm — 4y)l e =0

9o A)s+ 1 ro)im Ao =0 (@211)

The only solution is trivid, i.e. 3, =y, =1, yielding Q(s)=0,R(s)=T(s), which
means that a simple feedback loop (1DoF) is obtained with the controller

R(s) (s+aexp(= 5))(1- B,)s+(m - 5,))
" P(s)  s?+(m, +m)s+b(B, —1)sexp(-zs)+ mym, +b(m - 4,) (4.212)

To overcome this dull result, try to take Z(s) with more free parameters, say
N =3, to get some degrees of freedom, i.e.

7(s)=__ StM B,8° + s+ B,
~ s+aexp(-os) (s+m)(s+m,) (4.213)

m,m, >0

The reader can verify that after some calculations it is obtained
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By =b7mm,(b—my), B, =b(b(m +m,)—mm, —m(m, +m, +mm,))

4.214
S, — arbitrary, y, — arbitrary, 7, =0, 3, =0 ( )

where N; =3. We obtained two degrees of freedom f3,, 7, , whereas the rest must be set as
in (4.214). Final (arather complex) controllers structures are given by transfer functions
(S"' anp(_ 195))((1_ V2 )(1_ Bs )32 + (ml +m,— 131)3"' (mlmz -5 ))
(s+m, —bexp(-m))(s+m s+ m,) +bexp(- s B,5° + B+ f,)

6. (5= ) (s+aepl- o)y, 0- )5
A7) T lsrm, - bepl- m)s+ mst m,)bepl- SNAS + s+ A)

(4.215)

GR(S) = P(s

R(s)
(s)

Suppose a plant model in the form (4.161) witha=b=6.5-10%,7=15.3, 9J=6.7,
see [207]. A comparison of both results, i.e. (4.212) and (4.215), for the particular case, is
displayed in Fig. 4.14, where my =m, =m, =5.107, 3, =7,=0.5.

\

wloy, din -]

— — — n 1)~ Controller (4.212)
(1)~ Controller (4.215)

200 300 400 ‘I:"'
Time [5]

[i] —
0 100

600 700 8OO 900 1000

w(t), (1), d(t)

15

g

0.5r

0

——w()
y(t) - Controller (4.212)
— y(t) - Controller (4.215)
~ T T d

0

1 1 1 1 1 1 1 1 1
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Time[s]

Fig. 414 Smulation control responses of u,(t) (left) and y(t),w(t) (right) for
a=b=6.5-107, 1=15.3, ¥=6.7 using controllers (4.212) and (4.215)

Note that inversed values of m,,m,m, appear as closed loop systems poles.

Apparently, controller (4.212) offers faster control response in the example; however, two
degrees of freedom can be used to tune the controller (4.215).

Alternatively, as another possibility, one can use Z(s) asin (4.205) followed by
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()= (1-p)s+m—pB, s+y (4.216)

S+m S+y
with ¥ >0 as another semi-limited tuning parameter. [
Example 4.14

Again, let the controlled plant be described by (4.161) with a stepwise reference

signal and a harmonic load disturbance, which givesrise to

W, d,
_Hu(s) _ m,(s) _Hy(s)_ my(s)
W(s)= = mws , D(s)= S°h srzni > (4.217)
m,(s) m, (s)

where m,(s) and m,(s) are arbitrary stable retarded (quasi)polynomials of degree one and

two, respectively. Consider the use of 1DoF control system. Follow the steps introduced in
Subsection 4.3 using the notation utilized therein.

Stabilizing particular solution agrees with (4.165). It holdsthat Q,, ={0}, m,, =1,
1, =@,Q, =@, then m,, =m,,. However,Q, ={aj,—aj}, my,=m,,=1, I, =3,
Q, =@, My, =m,,. This gives Q,, ={0,j,—ai} with updated values of multiplicities
Myp1=Mp=Mps=1.Sncel, =J,Q =, then Myp; =Myp;, 1 =12,3. It means

that it is necessary to place three single roots into p,(s) (or a real root and a complex

conjugate pair of roots). Hence, it is possible to take e.g.

_ stm, BS+Bistf
2s)= s+aexp(—s) (s+m )(s+m,) (4.218)

where m,m, >0 are restricted parameters. Then

o) Puls)
P o
(s my ~bexpl 1s)s+ m s+ my)~blB,S" + A+ A, )expl=1s)

(s+aexp(-s))(s+m;)s+m,)

(4.219)

Theremaining parameters f3,, B, 5, € R are calculated from these three conditions
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[pN (SiﬂO’ﬂl’ﬂZ)]s:o =0, [pN (Siﬂofﬂl’ﬂZ)]s:wj =0, [pN (S’ ﬂO’ﬂl’ﬂZ)]S:_wj =0
(4.220)
which are coincident with

[y (Siﬂoiﬂl’ﬂZ)]szo =0

Relpw (5. 0. 6. .M.y = 0.im{pn (5. 8o, 6. B,y = O (4.221)

The solution of (4.220) or (4.221) is rather complex which is the reason why it is
not displayed here. Notice that p,(s) does not contain ¢ and thus the solution is
independent on this delay.

Thefina controller structure reads

G (5)= 35"+ " (G + xpl= 85)00 )+ sl + expl— Sy )+ expl= )y
8+ 5%(p, + expl- 1) Py )+ S(py + eXp(=78) Py )+ Py + €XP(= 7)oy

(4.222)

where

09 :1+ﬁ21 g, = ml"'m2+ﬂ1’ 0.p = ads, qlzmlmz""ﬁo’ Gp = aqg,,
Gop = aCh, P, =My + My + MMy, Py =—b(1+ B, ), py=m,(my +my )+ mymy,  (4.223)
P =—b(B, +m +m,), p, = mymm,, py, =-b(A, +mm,)

As can be seen, the fina controller has a complicated structure.

If the plant parameters are given as in Example 4.13, d(t)=sin(0.1t) and

m,=m=0.1, m, =005, then f3,=1432, B =-0495, B,=-22-10"°. Simulation
results are displayed arein Fig. 4.15.
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Fig. 4.15 Smulation control responses for a=b=6.5-10%, 7=153, ¥=6.7 using
controller (4.222)
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S TUNING OF ANISOCHRONIC CONTROLLERS

Fina controllers abtained by the algebraic methodology described above contain
free (selectable) read parameters which ought to be set appropriately. A sub-optimal
controller tuning idea based on the desired or ultimate position of the rightmost feedback
poles is the topic of this chapter. Its presentation is supported by a concise description of
two numerical (iterative) optimization algorithms.

5.1 Estimation of a step response over shoot

The tuning algorithm stems from the dependence of the maximum relative step
response overshoot and the relative time-to-overshoot on the position of poles and zeros of
a finite-dimensional model. It is usable in the case of infinite-dimensiona reference-to-

output transfer function. The methodology will be demonstrated on a second order model.

Hence, let the prescribed (desired) closed-loop model be

_bstb, s 5.1
GNY,m(S) 52+ais+a0 (S—Sl)(s_gl) ( )

where k,b,b,, 8,8, #0e R are model parameters z e R, stands for a model zero and

s €C, isamodel stable pole where 5 expresses its complex conjugate. To obtain the

unit static gain of Gy ,(s) it must hold that

(5.2)

Sign s=a+jw,a<0,w>0 and caculate the impulse function g, .(t) of

Guy m(S) using the Matlab function ilaplace as

G nt)= kexp(at)[cos(a)t)— Zl;)asin(wt)} (53)

Since iy m(t)=hw (), where hy, () is the step response function, the

necessary condition for the existence of a step response overshoot at timetg is
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i m(to) =0ty >0 (5.4)

The condition (5.4) yields these two solutions: either t, — —o (Whichistrivial) or

t =iarcco i& =1arctan @ (5.5
° (@-zf+a0® ) @ oty

when considering arccos(-),arctan(-)e [0, 7], >0. Obviously, (5.5) has infinitely many

solutions. If <0,z <0, the maximum overshoot occurs at time
t, . = min(t,) (5.6)

One can further calculate the step response function h,, ,(t) as

nm,ma):é[expw{zicos(m—@sm(m]—a] 57)

Define now the maximum rel ative overshoot as

LT ) A G

A = 5.8
h/W,m,max h/W’m(OO) ( )
seeFig. 5.1
Using definition (5.8) one can obtain
M = [expw){— soeodot ol n<ax>]] 69

Obviously, Ahyy ma IS afunction of three parameters, i.e. z,a, @, which is not

suitable for a general formulation of the maximal overshoot. Hence, let us introduce new

parameters &,,&, as
g =-2,¢=-2 (5.10)

which giverise from (5.5), (5.6) and (5.9) to
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AhN‘(,m,max = i exp(— égatmax,norm )(_ gz Cos(tmax,norm)+ (55 +1- 50:52 )S n<tmax,norm))

S
tnacnorm = g =MIN arcco{+ M} =mi n(arctan( 1 D
| (& -&)+1 £ &,
(5.12)
where t, . .o represents the normalized maximum-overshoot time.

We can successfully use Matlab to display function Ahyy ma(&,.&,) and

trecnom(Ea0&,) Oraphically, for suitable ranges of &,,&, as can be seen from Fig. 5.2 —

Fig. 5.6.
18 T T T T T
L L
1EL H:"/,m LIRS i
141 s
12F s
L R R —— My i)
= .
S
£
0a8f -
06 i i
04 F : -
02t i i
0 E | | | | |
0 f 2 4 B a 10 12
M Time [g]

Fig. 5.1 Reference-to-output step response characteristics and the maximum over shoot
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Fig. 5.2 Maximum overshoots Ahy, . v (&,,¢,) (1€ft) and normalized maximum-over shoot

tIMES e o (€00 E,) (right) for &, =[0.12], &,={0.2,0.4,0.6,0.81}
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Fig. 5.3 Maximum overshoots Ahy, . (£, &,) (I€ft) and normalized maximumovershoot

times tma><,norm(§a’§z) (”ght) for ga = [01,2], gzz = {2’374’5710}
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Fig. 5.4 Maximum overshoots Ahy, .« (&,,¢,) (1€ft) and normalized maximum-over shoot
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Fig. 5.5 Maximum overshoots Ahy, . e (£,,&,) (I€ft) and normalized maximal-overshoot

times tma><,norm(§a’§z) (”ght) for ga = [2110]1 égz = {273’475’10}
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Aty mmax

Fig. 5.6 Maximum overshoots Ahy, . (&,.&,) (I€ft) and normalized maximal-over shoot
Mes tomom(&,nE,) (right) for &, =[1545], & ={2833.23436} - A

detailed view on “ small” overshoots

The procedure of searching suitable prescribed poles can be done e.g. as in the

following way. A user requires Ah,y . =0.03 (i.e. the maximal overshoot equals 3 %),
&, =4 (i.e. “the quarter dumping”) and t,, =5s. Fig. 5.6 gives approximately &, =2.9

which yidds t =~1.2. These two values together with (5.10) and (5.11) result in

max,norm

s, =-0.96+0.24j, z =-0.7.

5.2  Continuous pole placement for desired over shoot

The idea now is to gradually shift the rightmost (dominant) poles of the infinite-
dimensional reference-to-output transfer function to the prescribed positions found by the

procedure introduced in the preceding subchapter.

The dgorithm, called the Pole-Placement Shifting based controller tuning Algorithm
(PPSA), is based on the QCSA described in Subchapter 2.6.3. The submethod based on [90]
is utilized below; however, the PPSA can be easily modified to the use of the caculations by
Vyhlidal [171]. Moreover, only retarded TDS are considered in Algorithm 5.1 — the
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extension to neutrd systems can be made by analogously to Algorithm 2.1 and remarks
about neutral TDS introduced in Subchapter 2.6.3.

Algorithm 5.1

Input: Closed-loop reference-to-output transfer function G, (s) with the number

of r parametersintheset K =K, UK ., where K . isitssubset of r,,, parametersin

num den ’

the numerator, whereas K ,,, means the subset with the number of r,,, parametersin the

denominator. Let 1y =K V(K VK gen ) =K ol -

Sep 1. Choose a simple model of a stable finite-dimensional system with the unit

static gain in the form of the transfer function G\A,Y,m(s) with a numerator of degree

Num < I,¢ and the denominator of degree n,, <r,,. Caculate step response maximum

num —

overshoots of the model for a suitable range of its n,,, zeros and ng,, poles (including

m

their multiplicities).

Sep 2: Prescribe all poles of the model with respect to the calculated maximum
overshoot (and the maximal overshoot time). If the poles are dominant (i.e. the rightmost),
the procedure is finished. Otherwise do following steps.

Sep 3: Initiaize the counter of currently shifted poles as n,, =ny, . Shift the

rightmost poles to the prescribed locations successively using the QCSA. If necessary,

increase ng, . If Ny, <ng, <ry,, try to move the rest of dominant (rightmost) poles to the
left, again e.g. using the QCSA.

Sep 4: If al prescribed poles are dominant, the procedure is finished. Otherwise,
select a suitable cost function reflecting the distance of dominant poles from prescribed
positions and distances of spectral abscissas of both, prescribed and dominant poles.
Minimize the cost function.

Step 5: Do Steps 2-4 for prescribed zeros, where it holds for the numbern, of

currently shifted zerosthat n,,,, <ng, <r,,, to update the valuesof K .

num — ''sz = 'nd ?
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Output: The vector of controller parameters K and the positions of the rightmost

poles. [
Some remarks on the agorithm follow. First of all, the presented version of the

PPSA prefers the positions of feedback poles at the expense of zeros. Once the set K , is

found, these values are fixed in the numerator and K, is to be found subsequently.

Alternatively, it is possible to “merge” the shifting of zeros and poles, which may,
however, lead to problems when reaching control system stability because of the “weight”

put on zeros.

In case of multiple shifted poles, it is convenient to consider them as two (or more)

close single poles.

The rightmost shifted pole (zero) goes toward the rightmost prescribed pole etc.
Problem appears e.g. when a complex conjugate pair ought to be shifted to area position,
and viceversa. In both cases, a complex pair must be perceived as two separate poles.

Since the shifting comes to pass not only in the real axis, formula (2.95) can not be
used in general. The following approximation ought to be used instead

AK = Refs"Ac} (5.12)
or try to utilize
Ao, Ao;
RelAo, j=Re;—AK . ImAG; = Imy—+AK. 5.13
s Ref 32k imfa -] 22 L 519
in the sensitivity matrix for rea AK;.

The number ng e [Ny fe] OF Nge[ny,.re] is incremented whenever the

approaching startsto fail for any pole or zero, respectively.
The optimization of the cost function from Step 4 can be done using severa
methods. Two advanced iterative algorithms are described in the following two

subchapters. They can be useful for the spectral abscissa minimization introduced in
Subchapter 2.6.4 aswdll, see e.g. [133].
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53 Sef-Organizing Migration Algorithm

The Self-Organizing Migration Algorithm (SOMA) is ranked among evolution
algorithms, more precisely genetic algorithms, dealing with populations similarly as
differential evolution does, see e.g. [192]. The algorithm is based on vector operations over
the space of feasible solutions (parameters) in which the population is defined. In the
SOMA, every single generation, in which a new population is generated, is called a
migration round. Population specimens cooperate while searching the best solution (the
minimum of the cost function) and, simultaneoudly, each of them tries to be aleader. They
move to each other and the searching is finished when al specimens are localized on a

small area

The method converges very fast; however, the number of function evaluations
within iteration can be very high - depending on the number of specimens and step length

when moving on the hyperspace.

The main steps of the basic algorithm strategy called “All to One” can be

formulated as follows.
Algorithm 5.2
Input: Objective function &(K ).

Sep 1: Set control and termination parameters. Generate a population based on a
selected prototypal specimen.

Sep 2: Find the best specimen (leader), i.e. that with the minimal function value.

Sep 3: Move al other specimens towards the leader and evaluate their function

valuesin each step.

Sep 4: Select the new population and test the minimal divergence of the
population. If it succeeds, stop. Otherwise, go to Step 2.

Output: The leader and its function value. [

Look at these steps in more details. A population described below in a separate

subsection must be generated based on a prototypal specimen. This specimen is a vector of
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controller (free) parameters K which can be found e.g. by the quasi-continuous poles
shifting algorithm.

Specific control and termination parameters, which have to be set before the rest of
the algorithm starts, are explained in this subchapter. Two parameters, the initia radius
(Rad) and the size of the population (PopSze), control the construction of an initia
population based on the prototypal specimen. Rad > 0 should be chosen high enough to
cover the range of all acceptable parameters. PopSze > 0 means the number of specimens
in the population — the higher value yields a higher chance to find a global minimum yet

the computationa time increases.

The moving of specimens on the hyperspace of searched parameters is given by
four control parameters: PathLength, Step, PRT and v, . PathLength should be within
the interval [1.1,5] and it expresses the length of the path when approaching the leader.

For instance, PathLength = 1 means that the specimen stops its moving exactly at the

position of the leader. The value of Sepe [0.11, PathLength] represents the sampling of

the path. E.g. a pair of settings PathLength = 1 and Step = 0.2 agrees with that the
specimen makes five steps until it reaches the leader. PRT € [0,1] enables to calculate the

perturbation vector V.. which indicates whether the active specimen moves to the leader

directly or not. v, isdefined as

VPRT = [VPRT,17VPRT,2""’VPRT,r]T € {071}r

Vorr,j =0 else
j=12,...,r

where rnd; e [01] is arandomly generated number for each coordinate of a specimen. The

perturbation vector enters stochasticity to the specimens moving.

There are two termination parametersin the algorithm: M, MinDiv. The value of M
means the maximal number of migration rounds defined by the user, and MinDiv expresses

the selected minimal diversity, i.e. the algorithm running is terminated if
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max (K, | )- mjin@(Ki,j)< MinDiv (5.15)
J

where a subscript i means the current iteration (migration round) and j denotes the jth

specimen in the current population.

As mentioned above, population Pz{Kl,Kz,...,K } has to be generated

PopSize
based on a prototypal specimen controlled by parameters Rad and PopSze. Let K, bethe

prototypal specimen, then other specimens can generated as
K, =K, +Rad[rnd,, rnd,,...rnd,]’, j = 2,3...., PopSize (5.16)

where rnd, e [—Ll],i =12,..,r, is arandom number. Each specimen in the population is
then evaluated by the cost function.

Once the population is generated (or generaly after every migration round in the

ith iteration) the best valued specimen, so called leader, K, , which is determined as

K, =agmin®(K, ;) j =12..., PopSize (5.17)
j

All other specimens are then moved towards the leader during the migration round.
The movement randomness is given by v, . Although the authors of the SOMA suggest
to calculate v only once in migration round for every specimen, we try to do this in
every step of the moving to the leader. Hence, the path is given by

Kijx=Kijot Sep[(k—l)(K i —K i,j,0)+diag(VPRT )(K iL—K i,j,O)] (5.18)

j=12,..PopSze# L;k =12,...,round(PathLength/ Step)
wherediag(V ., ) means the diagonal square matrix with elements of v, on the main
diagonal and k is the k-th step in the path of the jth specimen in the current population (in
ith iteration).

The role of Vg, isevident, for instance, if Voo =[11...1], the active specimen

goes to the leader directly without “zig-zag” moves.
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For every specimen of the population in a migration round, the cost function (i.e.
value of the specimen) is calculated in every single step during the moving towards the
leader. If the current position is better then the actual best, it becomes the best now. Hence,
the new position of an active specimen for the next migration round is given by the best
position of the specimen from all steps of moving towards the leader within the current

migration round, i.e.

K

i+1,]

=argmin®(K; ; ),k = 01,..., round(PathLength/ Step) (5.19)
k

These specimens then generate the new population for the next migration round
(iteration).

54 Nelder-Mead iterative optimization algorithm

The Nelder-Mead (NM) agorithm belonging to the class of comparative (direct
search) algorithms, aso called irregular simplex search algorithm, was originally published
in [105]. This easy-to-use method does not require derivatives of the objective function
and thusit is suitable for non-smooth functions. It is very popular and can be implemented

in many different ways.

The method typically requires only one or two function evaluations per iteration,
which is useful especially in applications where each function evaluation is time-
consuming. On the other hand, the algorithm can fail since the convergence for non-
smooth or discontinuous functions have not been proved yet [152]. It can also require an
enormous amount of iterations to obtain a significant improvement in function value.

Consider a nonlinear objective function K e R — @(K )e R" to be minimized. The

basic steps of the genera algorithm can be done as follows.
Algorithm 5.3
Input: Objective function &(K ).
Sep 1. Construct the initial working simplex S, set transformation and termination

parameters.
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Sep 2: Caculate the termination test information. If the test is satisfied, stop the
algorithm.

Sep 3: Order simplex vertices as the worst, second worst and the best one.

Sep 4: Caculate the central point and reflex the worst vertex. If the reflection is
successful, accept the reflected point in the new working simplex and go to Step 3.

Sep 5: Try to use contraction or expansion. If this succeeds, the accepted point

becomes the new vertex; otherwise, shrink the ssimplex towards the best vertex. Go to Step 3.
Output: The best vertex and its function value. [

Let us describe each step of the algorithm in more details. A simplex SinR" isa

convex hull of r +1 vertices K, K ,,...,.K, ,;eR’
S=conv{K K ,,...K .} (5.20)

The initial (non-degenerate) simplex can be constructed either as aregular or as a

right-angled simplex. The latter is easier to handle as

Kj :K1+hjej,j:2,...,r+1 (5.21)

where K, isa“starting” point, h; stands for a stepsize and e; is a unit (Euclidean) vector
inR'".

During the minimization, the smplex changes in its size and shape as well. The
algorithm terminates when either the simplex is sufficiently small or the function values at
the vertices are close to each other or the number of iterations reaches the prescribed
number. Usually some of these three conditions are combined together and the procedure
ends when at least one of the conditions becomes true. We use the limit number of
iterations, say ni. Moreover, for discontinuous functions, the termination test has to include
the information of the simplex size [152] whereas the function values test is useless. Let
&sisthe limit smplex size defined by the user, and then the termination test related to the

simplex size can be formulated as

r+1
;"Ki -Ky[ <& (5.22)
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Determine the best (K i), second worst (K ) and the worst vertex (K ) 8

@ =mnd(K,),®,  =maxd(K,) o, =maxd(K,) (5.23)

i i i#=max

The central point can be imagined as the “mean” coordinate of al vertices except

the worst one, i.e.

YK, (5.24)

The calculation of the new simplex then continues by reflecting K .« over K to a

new position K¢ according to the formula

Kref:Kc+a(Kc_Kmax) (525)
where « > 0 isareflection control parameter, usualy o =1.

If it holdsthat K, <K 4 <K, theiteration isfinished and K, becomes a new

simplex point instead of K . .

If the reflection does not succeed, one has to perform expansion or contraction,
depending on the value of ®(K ) relationto @(K ), @®(K.) and ®(K ). Hence, if
@(K ol )< @(K . ), i.e. the reflected point is the best one, the expansion point is computed

asfollows

Keop =K.+ BK & —K.) (5.26)

where f>1 is an expansion control parameter, usualy g =2. There are more ways how

to construct the new working simplex; however, to avoid premature termination of

iterations for non-smooth functions, see [147], K, becomes the new simplex vertex if

DK o)< (K i, ). Otherwise, K  is accepted.

There are two types of contractions; first, if &(K )< ®(K )< ®(K ..), compute

the contracted point as
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Ko =K. +7K .4 —K.) (5.27)

where O<y<1 is a contraction control parameter mostly set as y=05. If

oK, )<®(K,4), K., becomes a vertex in the new working simplex; otherwise,

shrinkage has to be made. On the contrary, if @(K )>®(K ., ), i.e. K, isthe worst

point, one ought to perform contraction according to
Keon =Ko+ 7K — K¢) (5.28)

If it holds that @(K )< ®(K ), accept K . ; otherwise, perform shrinkage.

con’

In the case that expansion or contraction fails, one has to shrink the current

simplex towards the best vertex K ... This operation is given by the formula
K, =K, +0(K, =K ;. )i =12,...,r +1= min (5.29)

Experiences with the agorithm show that shrink transformations almost never
happen in practice [152]. A non-shrink iteration of the algorithm is fast, since only one or

two function values are computed.

55 Study case: A skater on the swaying bow

The presented example demonstrates the algebraic controller desing in the Rys ring
for an unstable retarded TDS plant followed by the tuning process and setting according to
the PPSA and the spectral abscissa optimization via some iterative algorithms. The aim is
to test and verify tuning approaches primarily, thus, the 1DoF control structure is utilized
here instead of TFC which would give a better controller structure (i.e. quasi-finite

spectrum assignment).

Consider an unstable system as in Fig. 5.7 expressing the roller skater a controlled

swaying bow. In [202] it has been stated that the transfer function of the system reads

s)= Y(s) _ bexp(-(z+v)s)
- U(s)  s(s* —aexp(-s)) (5.30)
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where y(t)is the skater’s deviation from the bow symmetry axis, u(t) expresses the Sope
angle of a bow caused by force P, delays 7,2 means the skater’'s and servo latencies,

respectively, and b, a are read parameters. Skater controls the servo driving by remote
signals into servo electronics. As presented in the literature, let b = 0.2, a=1, 7=0.3s,
v=0.1s.

Fig. 5.7 Roller skater on a controlled swaying bow

5.5.1 Controller structure design
First of all, factorize the plant transfer function as

bexp(- (7 + ¥)s)

g_BE__ (stm)’ <) B(s)e
G(s) AS) Sz(sz(_ aexp)g— ) Als). B(s)e Rys (5.31)
S+m,

where m, >0 is a selectable real parameter. Consider the reference and load disturbance in

the form of stepwise functions, hence their Laplace forms are respectively

W, d,
W(s) = im“l’((;) = mNS(S), D(s)= iz((;) = mDS(S) (5.32)
m,(s) my ()

where wy, doe R, m,(s) and m,(s) are arbitrary stable (retarded) (quasi)polynomials of
degreeoneand H,,(s),H,(s),F,(s),F5(s) € Rye.
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Stabilization formula (4.33) using the generalized Euclidean algorithm yields e.g.

Q(s)
_ (0,8° + S + s+ G N5+ my )*

s(s? —aexp(— 0%5))s* + p,s? + p;s+ P, )+ bexp(— (7 + )s)(qeS® + 0,5 + QS+ )
R(s)

(5" + p,5° + pis+ po s+ my)*
s(s? —aexp(— 0%5))s* + p,s? + p;s+ P, )+ bexp(— (7 + )s)(qeS® + 0,5 + QS+ )

(5.33)

where pa, P1, Po, Gz U2, 01, Qo€ R are free parameters. Notice that numerical experiments
shown that a smaller number of parameters could not satisfy denominator stability.

In order to satisfy tasks of stepwise reference tracking and load disturbance
rejection, parameterization (4.34) can be used so that both, F,,(s) and F,(s), divide P(s);

hence, the numerator of P(s) satisfies P(0)=0. To make P(s) as simple as possible,

choose

Z(s)=

Z(s+m,)*
s2(s? — aexp(— 5))s® + p,S% + p,S+ P, )+ bexp(— (7 + B)s)(q,S* + 0,8% + G5+ Gy )

(5.34)

where z, € R isaselectable parameter. Both divisibility conditions are satisfied if

:_pom(‘)1

G

(5.35)

Thisresults in the final anisochronic controller transfer function

Gul(s)= Q(s) _ b(%ss +0,5° + S+ )(S"' mo)4 + pomys® (52 —aexp(- 795)) (5.36)
TUP(s) bl[S+ p,st+ pys+ P s+ my)* — pomi expl- (7 + 0)s))

The reference-to-output transfer function reads
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1
(s+m)*
blols® +0,5° + s+ ap N+ my) + pymis?(s? -~ aexp(- 09))lexpl= (2 + 9)s)
s(s? —aexp(— 5))S* + p,S* + PiS+ Py )+ bexp(— (7 + B)s)\quS® + ,S* + QS+ Q)

(5.37)

Gy ()=

which gives rise to the characteristic quasipolynomial

m(s) = (s+m,)*
[s2 (s2 —aexp(- 195))(53 +p,s° + p,S+ po)+ bexp(— (7 + z?)s)(qas?’ +0,8° + 0,5+ qo)]

(5.39)

Obviously, there are two factors in (5.38), a polynomia and a quasipolynomial
one. Since the spectral assignment for the polynomial factor istrivia, the goa isto set up
dominant roots or minimize the spectral abscissa, respectively, of the quasipolynomial
factor with seven unknown parameters. To cancel the impact of the quadruple red

poles =-m,, it must hold that m, >> -a(K ).

5.5.2 Desired maximum overshoot

Follow now the methodology introduced in Subchapter 5.2. Clearly, r=ry, =7,

Fum =5 g =0, K =[03,0,, 0,0, Py Py Po]" and consider G, ,,(s) according to (5.1).

Now, there are two possibilities — either set zero exactly to obtain constrained
controller parameter (then rge, = 6) or to deal with the numerator and denominator of (5.37)
together — we decided to utilize the former one first (version 1). Generally, one can obtain
from (5.37)

_ bz +m) (07 + 9,27 + a2+ 6o) 5 30

pO_ 4_2(_2 ( . )
myz (2] —aexp(-v2,))

Choose Ahyy nmex =05, &,=05 and t , =10s. From Fig. 5.2 we have £, =009,

t =2 which gives =0.2,z =-0.18, ¢ =-0.1. Then take eg. m,=5. Inserting

max,norm

plant parametersin (5.39) yields
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p, = 5.4078(q, —0.18q, +0.0324q, — 0.005832q, )

The particular quasipolynomial which roots are being set, thus, reads

m(s) = s°(s” - expl-0.15))
(s°+ p,s® + pys+5.4078(q, — 0.18q, +0.0324q, — 0.005832q;))
+0.2exp(— 0.45)(0,S° + 0,5 + S+ )

Initial direct pole placement resultsin controller parameters as
K , =[1.1014,0.9852,—0.0113,0.0171,1.113,0.7,0.2411]
which gives the rightmost spectrum of poles

Q= {0.8959,0.1445,-0.1+ 0.2j,—0.5201+ 0.5029j,—1.0114}

and zeros

Q, , ={-0.1373+0.1536j,-0.18,-1.0822,~2.3507 + 0.8.4523]}

(5.40)

(5.41)

(5.42)

(5.43)

(5.44)

Hence, the prescribed poles and zeros are not dominant ones. The process of the

PPSA is described by the evolution of controller parameters, the spectral abscissa (i.e. the

rea part of the rightmost pole pair o,,0;) and the distance of the dominant pole from the

prescribed one |o; s, as can be seen in Fig. 5.8 — Fig. 5.9, respectively. Note that po is

related to shifted parameters according to (5.40).

350

300 | ----- a, ! S
250t

2001

v 150F Po

100+

50

50 | | | | | | |
0 200 400 600 800 1000 1200 1400
Iteration

Fig. 5.8 Evolution of K using the PPSA — version 1
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Fig. 5.9 Evolution of (K ) (left) and |o;, — 5| (right) using the PPSA —version 1

The rightmost pole reaches the vicinity of the desired position in the iteration
number i = 1440. The peak in Fig. 5.9 (left) is caused by a bifurcation of a double real root
to a complex conjugate pair. The fina controller parameters from the PPSA (version 1) are

thefollowing

K 10 = [183.566, 259.076,11.083,2.0754,0.0171, 7.8427,8.0865,40.039]  (5.45)

giving rise to the spectrum (poles)

Q10 =1—0.0999+ 0.1989j,-0.1449+ 0.7574j,-0.298 + 1.4563] } (5.46)
and zeros
Q, 1450 =10.0091+ 0.1817},-0.18,-0.9768,-2.4832 + 8.5435} (5.47)

In order to improve this result, an optimization procedure minimizing the objective
(cost) function

o(K)=|o, - 5|+ Ae, (K) (5.48)

has been performed where o, is a pole from the dominant pair in (5.46), s, stands for a
pole from the prescribed pair of poles, «, (K) means the spectral abscissa of the rest of

poles except the dominant pair and A represents a weighting parameter (here4 =0.01 has

been chosen). The optimization results viathe SOMA are then the following
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K 1as000 = [185.202,259.114,11.253,2.0971, 7.7535, 7.9451, 39.946]
Q) 1uapop = {—0.0999+ 0.2),-0.1712 + 0.7565,-0.2609 + 1.4552j} (5.49)
Q, 1400 = {0.0093 0.1822j,-0.18,-0.9787,~2.4821+ 8.5423]}

Unfortunately, the prescribed zero is not the dominant one in both cases; therefore,
the obtained results are useless since their dynamic characteristics (e.g. the step responses)
arefar from the desired one.

As a second (version 2), simultaneous shifting of poles and zeros of (5.37) to the

desired positions has been performed. It must hold that ny, + N, <N <l + 1 » Where

num —

n, means the cumulative number of shifted (controlled) zeros and poles, here.

The initial setting of K, and the corresponding spectra of poles and zeros are

given by (5.42) — (5.44). The process of evolution of K isdepicted in Fig. 5.10.
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x10°

Fig. 5.10 Evolution of K using the PPSA — version 2

Thefinal parameters’ values using the PPSA (version 2) are
K o656 = [5051.788,9734.946,1046.105,78.9573,32.3117,1.7838,954.866]  (5.50)

Evolutions of ¢;,(K) and «, (K ) of poles and zeros, respectively are presented in

Fig. 5.11, and the distance of the dominant pole, o, from the prescribed one |0'1 - sl| and

that of the dominant zero, ¢;, from the prescribed one |¢, — z,| can be seenin Fig. 5.12.
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Fig. 5.12 Evolution of (K ) (left) (K ) (right) using the PPSA — version 2

Obviously, we tried to keep the rightmost zero as close to the prescribed one as
possible, while to shift the rightmost pole. However, the distance is cyclically changed so

that thereis not possible to get closer without exceeding values of controller parameters.

The obtained spectraread
Q. 065 =1~ 0.0945+1.1778j,-0.1168+ 0.0697j,-0.118+ 5.0275]} (5.51)
Q, »e3 = {—0.1804,-0.22+ 0.1187,-0.7546,~2.7809 + 8.2997 |} (5.52)

Similarly asfor version 1, the objective function

(K )=|o,—s|+[¢ - 2|+ 4a, ,(K)+ 4, (K) (5.53)
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using the SOMA is minimized, where ¢, ,(K) means the spectral abscissa of the rest of
poles except the dominant pair, aryZ(K) has the same meaning yet for zeros and
A =4, =0.01. Theresults are then the following

K 206360t = [5235.169,9829.219,1060.87, 78.2405,30.9684,1.763,947.517[

Q, sosss.0 = 1— 0.1158+0.0674j,-0.1161+ 5.1163],-0.1211+1.2103;} (5.54)
Q, 0o = 1= 0.1801,-0.2247 + 0.1032},-0.7607,~2.817 + 8.1939j |

The comparison of step responses of the original model having the desired location
of poles and zeros with four results using the PPSA and the SOMA is presented in Fig.
5.13.

10

— Desired model

/\ —(5.45) - (5.47)
. —(5.49)

6 ,V\ \ ----(5.50) - (6.52) |
“ ) | - - (554)

Step responses

0 5 10 15 20 25 30
Time[9

Fig. 5.13 Step responses comparison of results of the PPSA

It is apparent that the desired model has not been reached, nevertheless it can be
stated that version 2 has given better results and the optimization (SOMA) procedure has
dlightly improved poles and zeros distribution. This example hence also demonstrated that
it is not always possible to meet the prescribed rightmost poles and zeros due to the

complexity of the spectrum of TDS and delayed control feedbacks.
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5.5.3 Spectral abscissa minimization

Assume controller (5.36) and the characteristic quasipolynomial m(s) asin (5.38),

and formulate now the following minimization problem

K opt — [ Pz Prs pO,Q31q2,q1,q0]Zpt = argKrnanZ(K )
=arg Kmin{Res :[m(s)]?s = 0} (5.55)

instead of shifting poleas nad zeros to the prescribed positions.

Four optimization algorithms and techniques are benchmarked and verified,
namely, the QCSA (see Subsection 2.6.3), the EGSA [166], the SOMA (Subsection 5.3)
and the NM algorithm (Subsection 5.4).

Let the minimization starts by the QCSA from the point K, =[11,11119"
defined in (5.55). This initial setting gives rise to the spectrum Q, (system poles s are

from the region with Res > -2)
Q, ={0.849185,0.477189,1,1, - 0.604644, - 0.820218, - 1} (5.56)

Obviously, the feedback system is unstable with o(K )= 0.849185. The QCSA is
capable to move some controlled poles to the left. Unlike the original paper [90], the

number of controller poles is not increased gradualy here, however, this quantity is
changed depending on poles locations. More precisely, whenever the dominant root of
(5.38) (or abunch of dominant roots) secedes from the rest of the spectrum and the number
of currently controlled roots is higher then the number of seceded ones, the number of

controlled roots decreases so that only of seceded roots are controlled.

The evolution of system poles is displayed in Fig. 5.14 where the controlled ones
arein bold lines. Notice that in an iterations range approximately of i = 600-1750, there is
a huge number of bifurcations of a complex pair of roots or that a double rea root into a
pair of single real roots, and viceversa. This yields many changes in the number of

controlled roots. Whenever a root remains uncontrolled, it eventualy reaches the
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controlled rightmost bunch of roots. A detailed view on the iterations range of i = 600-
1750isin Fig. 5.15.

L
300 1000 1300 2000 2500 3000
Tteration [-]

Fig. 5.14 Evolution of real parts of the rightmost roots of (5.38) using the QCSA

. . . . .
GOO R00 1000 1200 1400 1600
Tteration [-]

Fig. 5.15 A detailed view on Fig. 5.14 for the iterationsrange of i = 600-1750

The overal development of K can be seenin Fig. 5.16 (left); however, due to the
noticeable rise in values for i > 1700, the detailed view on the iterations range of 1-1700 is
in depicted Fig. 5.16 (right).
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Fig. 5.16 Evolution of K for (5.38) and (5.55) using the QCSA

From Fig. 5.14 it is obvious that the procedure can adjust the spectral abscissa such
that oK )< —1.5 and it seems that this improvement may continue long. The comparison
of the three remaining methods together with the evolution of K for i = 1-3000 has been
presented in [133]. In the cited literature, it has been stated that the NM algorithm gives a
fast (= 8 s per iteration on Intel Core2 Duo CPU E8500@3.16 GHz, 4BG RAM) and
noticeable cost function improvement qualitatively comparable with the SOMA whichisa
rather dower (1 iteration step of SOMA lasts 70 iterations of the NM). However, the
QCSA is approximately as fast as the NM and it has provided much better decline of the
cost function. On the contrary, the EGSA has nat brought a significant improvement (i.e. a

sufficient decreasing) of «(K). Moreover, the method is eight times more time

consumptive then the NM, snce it requires (in the worse case)

| +1+k-(1+1)=(1+1)k +1) spectrum calculations per iteration, where | is the number of

points where the gradient is estimated and k stands for the maximum number of discrete
steps when searching the suitable gradient length, see details in Chyba! Nenalezen zdr ]
odkazi.. To sum up, it has seemed that the three remaining algorithms can serve for
searching the local minimum rather then the global optimum when solving the spectral
abscissa of TDS.

However, later we found out that the improvement is limited by trying to perform
a new test consisting in continuation of iterations via the QCSA. Results for the iteration

range i e [3000,3520] can be seenin Fig. 5.17.
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Fig. 5.17 Evolution of real parts of the rightmost roots of (5.38) using the QCSA within the

iteration range i e [3000,3520]

It is clear that the improvement of the spectral abscissaterminatesat i =3305. The

values of K and the corresponding spectrum (its dominant part, more precisely) in this

iteration step read

K 4305 =[469418.2,640264.2, 10560107, 8222650,
106523133, 26247749, 5617613]"

Quy = {-1.4454, -1.5056, - 1.5617,-1.6187 , -1.6745,-1.7345,-1.802}
The NM agorithm yields the development of (K ) asin Fig. 5.18

-1.43

——n=1
-1.441 ﬂfhj=10 N

-15) el

-1.51

| | | | |
0 50 100 150 200 250
Iteration [-]

(5.57)

(5.59)

Fig. 5.18 Evolution of (K ) using the NM for h; = {1, 10, 100} fromi = 3305
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As can be seen from (5.57), values of K are very high and unusable in practice.
However, we try to test the remaining algorithms starting in this local minimum, i.e. from
i =3305. Fig. 5.18 indicates that alonger initial simplex edge resultsin a slower but much
better minimization since it brings more possibilities how to escape from the loca
minimum and prevents the premature termination due to the simplex size. It is substantial
that the local minimum from the QCSA has been improved by the NM.

The EGSA gives results displayed in Fig. 5.19. where A4 means the discretization
step when searching a suitable gradient length.

-1.44

-1.445}

-1.45¢
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-1.455¢
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-1.465 . : -
0 5 10 15 20
Iteration [-]

Fig. 5.19 Evolution of (K ) using the EGSA for A4 =10 fromi = 3305

It is questionable whether the result can be improved by decreasing of the

sampling radius for numerica estimation of the steepest descent direction, p, or that of
AZ; however, in [133] we observed that avariation in A4 within one order does not bring
a satisfactory result. Contrariwise, a lower value of p results in a higher gradient norm,

which implies numerical difficulties.

Finaly, the development of «(K) using the SOMA for two different initial
population radii, Rad, is shown in Fig. 5.20. A higher value of Rad enables to scan the
parameters space more effectively resulting in a faster decrease of «(K). The result is

amost comparable with the NM method, yet, the iteration process is much slower
compared to this classical optimization method. Meanwhile the NM has approximately 2
or 3 spectrum  calculations  per iteration, the SOMA requires
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round((PopSize—1)- PathLength/ Step) enumerations. This fact is clear from Fig. 5.21
where the best results from all the three methods are compared in the time range.

-1.445
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Fig. 5.20 Evolution of (K ) using the SOMA for Rad = {1,10} fromi = 3305
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Fig. 5.21 Evolution of a(K) using the NM (d; = 100), EGSA (A4=10") and SOMA
(Rad = 10) in the calculation time range starting fromi = 3305

To sum up, the best result with the minimal value of (K ) obtained by the NM

gives the following position of the rightmost poles

Qupos = {-1.5108+ 0.0168],-1.5108+ 0.0168],-1.7197 + 0.1459j,-1.8804} (5.59)
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The corresponding values of K do not differ significantly from (5.57). Simulated
control responses are not displayed here due to the numerical problems with simulation

program (caused by high values of controller parameters).
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6 RELAY FEEDBACK IDENTIFICATION TEST

Low order modelling constitutes one of possible principles how to dea with
modelling and, consequently, control of high order systems[171], [207]. This chapter aims
anisochronic low order modelling and identification of a plant by means of relay-feedback
test, see Subchapter 2.8. A rather more complex plant model is utilized compared to the
references above and, moreover, a novel, simple and intuitive, time-domain assembling of

identification equations of type (2.127) is presented [123].

In particular, consider a plant model

Gm(s):m (61)
s+8,+a(-5)
and the task is to find conditional equations for identification of model parameters by
means of arelay feedback test with an on-off and saturation relay. There five unknown real
parameters in the model, i.e. by,a,,a,7,¢; however, two of them can be estimated not

from the knowledge of the ultimate gain and frequency. Namely, the static gaink =h,/a,

can be calculated from (2.126) and the value of input-output delay z can be estimated from
Fig. 2.10. Hence, in the first step, a biased on-off relay with hysteresis is used to estimate
these two parameters. Then, a simple (symmetrical) on-off relay and/or a saturation relay
can be utilized to calculate the remaining parameters from (2.127) and the use of an
artificia delay 7", see Subchapter 2.8.4. Four conditional equation can be obtained from
(2.127) by doing this, therefore one may improve the estimation of k or 7.

6.1 Frequency-domain solution

Consider a symmetrical on-off relay first. Conditions (2.127) with respect to
(2.125) read

By 4B _1-0 6.2)

\/ (a, +a, cos(Bw,)) + (@, —a sin(Bw,))* ™

f =
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@, —a,Sn(dw,)

- =0 6.3
a-acosv,) " ©3

f,, =—arctan
In addition, the use of an artificial delay element 7" (characterized by a phase leg
¢y on the ultimate frequency @, ) yields

fo= by 4B _1-0 (6.4)
(8, + 2, cos(9@, ) + (@, - 3, sin(9@, )]

@, —a,Sn(dm,)
a, —a, cos(sa, )

f,, ==—arctan -1, — ¢y +7 =0 (6.5)

where A means the amplitude of y(t) under the additional delay.

Anaogously, for the saturation relay governed by (2.128), it holds

fu=
by Z—E arcs.in(5]+E 1—[5] -1=0
V(e +a cosv, ) + (@, - sin(ve, ) A) AT LA
(6.6)
f,=1,=0 (6.7)
and
fo=
by Z—E arcsin(é}+£ 1—{5} -1=0
V(g +a cos(@, ) + (@, - & sin(va, ) A A) AT LA
(6.8)
foi=1,=0 (6.9)

6.2 Time-domain solution

This subsection offers an aternative assembling of the identification nonlinear

algebraic equations.
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The simple idea stems from the fact that rectangular waves on a plant input can be
approximated by (or viewed as) sinus waves using linearization (2.125) or (2.128). Hence,

using on-off relay, the approximating input sinus signal is

u(t):“_fgn(mu) (6.10)

Note that in case of biased relay where B" = B™, one can take B=O.5(B+ + B‘).

Since the ideal relay does not evoke a phase shift, a plant output has a phase shift —z, in other

words, aplant output is given by
y(t) =—Asn(tw,) (6.11)
Model transfer function agrees with the FDE
Y (1) +a,y(t) +ay(t— ) =bu(t-17) (6.12)
thus (6.12) with respect to (6.10) and (6.11) reads

— Alw, coslta, )+ a,sin(ta, )+ a sin((t—)a, )) = b, 4—:si n((t-7)a,) (6.13)

Now placing the appropriate time values into (6.13), relations for the unknown
model parameters can be derived. Since one point on the Nyquist curve can determine the

values of two unknown parameters, two particular arguments can be chosen.

Firg, let t =" (2kr), ke Z 7, and k be chosen so that t > max{z, 2%} and the limit
cycleis stable (settled). Then (6.13) gives

f,= A=, +a sin(da, )+ b, 2o sin(za,)= 0 (6.14)
T
Assecond, let t = @,*((0.5+ 2k)z), ke Z, then

f,, =—Aa, +a, cos(dw, )b, 4—:cos(ra)u )=0 (6.15)

The use of an additional delay element givesriseto the following FDE
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~ A(@, coslt, + g, ) + 3 Sin(ta, + gy )+ a,sin((t - )@, + 4, ))

b, Bain(t-2)a, o0

instead of (6.13). Inserting t=w;" (2kz—¢,) and t=a;*((0.5+2k)z—¢,) into (6.16)

gives
~ - . ~ 4B ., ~
fy = A= @, +a,sin(dm,))+b,—sin(za, + ¢,)=0 (6.17)
r
and
~ ~ 4B ~
f,, :=—A(a, +a, cos(¥@, ) - b, — cos(zw, + @, )= 0 (6.18)
r
respectively.

The application of the saturation relay leads analogously to the following

conditions

f41:—a)u+aisin(zﬁla)u)+b02—f£[ar&sin[£)+E 1—(%} ]sin(z'wu)—o (6.19)

f,, = a, +a cos(dw, )+ by, %[arcsi n[é) +§ 1- (%} ]cos(fa)u )=0  (6.20)
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7 REAL PLANT APPLICATION EXAMPLE

A complex theoretical and practical example comprising mathematical modelling
and identification of a laboratory heating plant with interna delays, controller design in
Rus for the obtained model, relay feedback identification test for a simplified model,
controller tuning, robust analysis, discretization and real-time verification follows and

finalizes this dissertation thesis.

7.1 Description of alaboratory heating circuit system

The plant to be mathematically modelled and control in this section was assembled
at the Faculty of Applied Informatics of Tomas Bata University in Zlin in order to verify
several control algorithms for systems with delays. Originally, it was intended to control
input-output delays only; however, asit is shown below, the plant contains internal delays
as well, and thus it is suitable also for testing control approaches for TDS. The plant
dynamics is based on the principle of heat transferring from a source through a piping
system using a heat transferring media to a heat-consuming appliance. Externa appearance
of the plant and a schematic sketch of the model are shownin Fig. 7.1 [34].

Fig. 7.1 A photo (left) and a scheme (right) of a laboratory heating model
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Let us describe the plant according to a schematic sketch depicted in Fig. 7.1. The
heat transferring fluid (namely distilled water) is transported using a continuoudy
controllable DC pump {6} into a flow heater {1} with maximum power of 750 W. The
temperature of afluid at the heater output is measured by a platinum thermometer giving

value of 4, . Warmed liquid then goes through a 15 meters long insulated coiled pipeline

{2} which causes the significant delay in the system. The air-water heat exchanger (cooler)
{3} with two cooling fans {4, 5} represents a heat-consuming appliance. The speed of the
first fan can be continuoudly adjusted, whereas the second one is of an on/off type. Input
and output temperatures of the cooler are measured again by platinum thermometers giving

¢, and ¥, respectively. The expansion tank {7} compensates for the expansion effect

of the water.

This small scale model can represent the dynamics of real heating systems, e.g. a
cooling circuit system in cars, heating systems in buildings, etc. The laboratory model is
connected to a standard PC (Intel Core2 Duo CPU E8500 @ 3.16 GHz, 4BG RAM) via
seria bus RS232 and a portable data acquisition unit. All tasks relating to the monitoring
and control of the plant are served by software running in Matlab 7.11 (R2010b)

environment.

Recently, the computer has been equipped with the data acquisition card AD622
and Real-Time Toolbox for Matlab, which offers higher user and programming comfort
[68].

7.2 Mode of alaboratory heating circuit system

In this subsection, a possible mathematical model of the plant is proposed [128].
Obviously, an accurate mathematical model of the plant would be rather complicated due
to the existence of components causing distributed delays in the system. However, the aim
is not to find an exact description of the model, but a sufficiently simple mathematical

model which can be used for the verification of control algorithms.

The methodology is based on comprehension of al significant delays and latencies
in the model which is built in two steps: First, models of separate functional parts of the
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plant are found; secondly, the separate models are combined by means of their common

physical quantities.
Let usintroduce notation for process quantities first:
¢ [Jkg™K™] — the specific heat capacity of water
mit) [kg-s'] —the mass flow rate of water

My [kg] —the overall mass of water in the heater
Mc [kg] — the overall mass of water in the cooler
Me [kg] — the overall mass of water in the pipeline

8,0 (t) [°C] — output temperature of the heater

3, (t) [°C] — input temperature of the cooler

8, (t) [°C] — output temperature of the cooler

B, (t) [°C] — input temperature of the heater

¥, [°C] — ambient temperature

P(t) [W] —the power of the heater

7, [S] —the delay of awater flow through the heater

T,c [S] —the delay of awater flow between the heater and the cooler
7. [S] —the delay of awater flow through the cooler

7.c [S] — the delay between a control signal to the cooling fan and the output

temperature of the cooler

7oy [S] —the delay of awater flow between the cooler and the heater
u,(t) [V] —avoltage input to the pump

u.(t) [V] —avoltage input to the cooling fan
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Ky (t) [W-K™] —the overall heat transmission coefficient of heater wastage energy
Kc(t) [W-K™] —the overall heat transmission coefficient of the cooler
K, [W-K™] —the overall heat transmission coefficient of the long pipeline

ho, hy, hy, hs, hy, hs — weighting coefficients for the estimation of the overall heat
transmission coefficient of the heater

Co [W-K?, c[W-K*V?Y, ¢, — weighting coefficients for the estimation of the
overall heat transmission coefficient of the cooler

po [M*s™], p.[V], p. — Weighting coefficients for the estimation of the mass flow
rate of water

7.2.1 Analysisof the model plant dynamics

Let model the heater first. The energy balance equation is used for the description
of the heater

oMy, W) p 056, )+ eV, (1 -, )~ o 1)

dt
K, (t)|:§HO(t)+ ng (t-7, )_ﬂA}

(7.1)

where the arithmetical mean temperature difference is taken for heat losses and a heating
body is assumed to perform heat energy in the middle of the heater. Input temperature,
J, (t), is estimated by “the nearest” measured one, ., (t), as

Uy (t): ﬁco(t —Ten ) (7.2)

due to the fact that the fluid transport between the cooler output and the heater input is fast
enough so that these two temperatures amost do not differ, except for a time delay. The
overall heat transmission coefficient of the heater, K, (t), is numerically approximated by
the relation
_ hoP?(t)+ hr®(t) + h,P(t)r(t)+ h,
h,P(t)+ hemit)
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Regarding to the model of a coiled insulated pipeline, atransportation delay in the
piping has a decisive influence on the behavior of the system. Consider the energy balance

equation again where heat losses are supposed to be linear along the pipeline

CMp d%l(t) = Cﬁ‘(t)[?}Ho(t - THC)_ 190 (t)]_ KP|: % (t)+ ﬂ;O(t — THC) - 19A:| (7.4)
Notice that input and output temperatures are not considered in the same time
since the thermal effect of the water inlet affects the outlet after some dead time. Heat
transmitting coefficient is considered as a low valued constant, thanks to the very good

isolation.

The mass of the piping is neglected in the model due to the fact that the specific
heat capacity of the material of the pipeline (copper ~ 385 Jkg™-K™) is much smaller than
that of water (= 4180 Jkg*-K™), and because of the fact that the mass of used copper is
lower than that of the fluid (water) inside the piping.

Time delays in the air-water exchanger are of a distributed nature, thus they have
not an important role in system behaviour. On the other hand, the cooler significantly
affects water temperature because of its high heat transmission coefficient supported by

fans. The energy balance equation reads

et V52t -2, ) o 0] VBT | 2

The dynamics of the air part of the cooler is much faster in comparison with the

water one, thus this dynamics is neglected. The heat transmission coefficient, K.(t), is

attempted to be approximated by a quadratic function
Kc(t): Czué (t_TKc)+C1uc (t_rKc)"'Co (7.6)
Changes in the fan speed affect K. (t). Notice that there is a delay between the
control input voltage to the continuously controllable cooling fan, u.(t), and a change of

Kc(t), in the model. There is no attempt to use models of al electrical and electronic

equipments (e.g. the fan motor), and thus coefficients ¢, ¢;, ¢, are determined

experimentaly.
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Dealing with the pump - the influence of the voltage input to the pump, u(t),

upon the mass flow rate of water, m(t) , can be described by a static characteristic

m(t)= po[up(t)"‘ pl]p2 (7.7)
see [85]. The pump dynamics is omitted comparing to the whole process dynamics.

Changes of process delays caused by the change of m(t) are neglected as well, in order to
avoid a rather complicated mathematical description of the plant dynamics, although these

changes influence process delays significantly.

7.2.2 Linearization of the moddl in the vicinity of the operation point

From the modelling above, a nonlinear MIMO model of the plant is obtained.
Measured temperatures o, (t), o (t), (t) are taken as system outputs, whereas
analog input voltages u,(t), u.(t) and the power P(t) are considered as system inputs. To
obtain alinearized model, the first two terms of the Taylor series expansion at an operation
point are used.

Equations (7.1) - (7.3) and (7.7) give

ddot) 1
AT ~ AAUL(t)+ =TH AP(t—0.57, )+ AAP(t)+ AAD o (t) 79

+ AAD (=7 =7 )

where

_ 0 du)
dp(t) dt |

p,-1
= PP, (UPO * pl) [19H| 0~ ﬂHOO + (O-SﬂHl ot O'SﬂHOO - ﬂA)

A o

0
— hth pg(upo + pl)sz + — ZhlhAPO po(upo + pl)p2
C[hspo(upo+ pl)p2 +h4po]2 C[hspo(upo+ pl)p2 +h4po]2

. (hh—hh)R —hh ﬂ
C[hSpO(uPO + pl)pz + h4|:)0]2

(7.9)
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__0 ddo(t)
T oP(t)  dt

= [Bh10 = Bhioo +(0.50 + 058,00 — )

0
(hlh -h hs)po (Upo + pl)sz + — 2h0h5P0 po(upo + pl)p2 — h0h4|:’02 + hsh4
CM [h5 Po(Upo + P1)™ + ;R ]2 cMy, [hs Po(Upo + P.)™ + h4|:’o]2

] (7.10)

— a dﬁHO(t)| — 1 P2
Aol ] " Pl R

L DS (U + )™ + tho PolUpo + )™ Py +h,
ZC[hS pO po T pl +hR ]2 2C[h5 po(upo + pl)p2 + h4Po]2

} (7.12)

9 At (t)]
a79(:0 (t ~ Ty~ Ten ) ot

1
= [po(upo + p1)p2

A= -

b
_ hipf(ueot )™ hRpo(Up+ P + R+
2P+ 1) +0RT 2dupolupo + ) + RS

] (7.12)

Additional index () denotes the appropriate quantity value in the steady state (an

operation point) and symbol A stands for a deviation from an operation point.

From (7.4) and (7.7) it is obtained

d”C'( U A AU )+ Addot— i)+ AN (1) (713
with
A aua( | dﬁ( )L P, Po (Upo + pll\)/lp (Boe = Daro) (7.14)
A = St J 0 I [cpO (Upo + Py)™ —0.5|<P] (7.15)
A = om: 9 d’ﬁ (t)L - cl\;p lop, (o + py)™ + 05K, | (7.16)

Linearization of (7.5) - (7.7) gives
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d 0(20 (t )

A—>—= ABAUP(t)+ AgAuc(t_TKc)"' A&oAﬁco(t)"‘ A AL, (t_Tc)

dt

A

J dﬂco(t)| _P po(upo+ pl)pz_l(ﬂclo_ﬂcoo)

" ou.(t)

A d

dt | M¢

da,(t)

T ouclt—

7o) |

0

2 p-1
__ (2¢,Uco + )P, Po(Upo + 1) (0.58%, + 05280, — %)

Ap=—?

cM.

d ﬂco<t)| —_ 1 [Zcpo<upo + pl)p2 +02Uéo + Gl + CO]

d

ToUot) d |

M,

0

Ay

) Ao (t—7¢

A linearized state space model in an operation point then reads

d

EM“O(U A, 0 0TAd,t)] [0 0 ATASE-7g,
%Az}c,(t) =0 A 0 |AS{)|+|0 0 O | AV, (t-7g,
d 0 0 AyfAvxt)] [0 0 0 Ady(t-7e,
_EAﬂco(t)_
[0 0 0f[Ad(t-7,)] [0 O OfAs(t-7¢)
+|A, 0 0| AW, (t—7,)|+|0 O Of AV, (t—-7.)
10 0 0)A¥x(t-74)] [0 Ay O] AB,(t-7c)
1
A0 ATsu0] [0 0 gu [aut-05z,)
+|A, 0 O [Auc(t)[+|0 O 0O |Auc(t-05z,)
A, 0 O] AP(t)] |0 O O | AP(t-057,)
[0 0 OfAup(t—7.)
+{0 0 OfAuc(t—7.)
10 Ay O] AP(t—7,)
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do,(t 1
) ;tO( )Io = oM, [ZCpO(UPO + pl)p2 - Czucz:o + Gl + Co]

(7.17)

(7.18)

(7.19)

(7.20)

(7.21)

-7y)
~7y)
~7y)

(7.22)



Ado(t)

AB(t)] [1 0 OfAs,(t)
A, (t) [=]0 1 Of AL, (t) (7.23)
001

Symbol A for the linearized model is omitted hereinafter. Assuming zero initial
conditions (i.e. a steady state in the operation point), the Laplace transform of (7.22) is

given by
®HO(S) A 0 A, exp(— (TCH Ty )S) B0 (S)
O (s) [s=| A exp(-7,9) A 0 O (s)
®co (S) 0 Au exp(— Tc S) A&o ®co (S)
exp(-0.57,,s)
A 0 Ao, [Ue®)
+ A 0 0 Uc(s)
A A exp(- Tyc s) 0 P(s
(7.24)

where the capital |etters stand for transformed variables denoted with corresponding lower
case |etters. The transfer matrix of the model thus reads

©uo(s)] [Guls) Guls) Gu(s)[Us(s) L |Bul®) Buls) Byls) Up(s)
O (S) = GZl(s) Gzz(S) st(s) Uc(s) 2@ le(s) Bzz(s) 823(5) UC(S)
900(5) G31(s) G32(S) G33(S) P(S 531(5) B32(S) 833(5) P(S)

(7.25)

where

B..(s)= Br12S" + BrS+ ﬂll,leeXp<_ [ZERT S>+ Biio+ Prioos eXp(‘ 711,0D15>

+ Biiop2 exp(— Tll,ODZS>
B,(s)= (:Blz,ls+ Bio )exp(— 7,,5) (7.26)
By(s)= /313,232 + Pis 2o s” exp(—7,,8) + BisaS+ Puaso sexp(—7,,5)+ P30S

+ ,313,0D5exp(_ ()
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with

B(s)= Po1 28" + BrrsS+ ﬂZMDSEXp(— To110 S)"' Boro+ Paroot exp(— 721,0D13)

+ Pat.op2 exp(— sz,oozs)

By, (s)= Bzo expl—7,,5)

Bos (s)= [ﬂ23,13+ ﬂzs,losexp(_ T231D S)"' Bozot Pasop exp(— T23,ODS>]eXp(_ 7233)

(7.27)

Bui(S)= fa1,S” + BansS+ ﬂSl,leeXp<_ Ta110 S)"‘ Ba1o+ Paroot eXp(‘ TSl,ODlS)
+ Baron2 eXp(‘ TSLODZS)

B:, (s)= <ﬁ32,252 + P05+ Pao )exp(— 7325)

By (s)= [:B33,OD eXp(‘ 733,05)"' ﬂas,o]eXp(_ 7558)

(7.28)

A(s)=s®+ a,S” + a5+ oy + 0 €XP(— 7 S) (7.29)

ﬁll,z =A, ﬁll,l = _Ai(A7 + Aio)a ﬂll,lD = A4A31ﬂ1],0 =AA A,
ﬂll,ODl = _A4A7A37ﬁ11,0D2 = AAASALl’Tll,lD =Ti1001 = Ten T Th»

Ti002 =Tc T Tch T T4

Brior = AR, Bioo=—AAA, Ty =Ty + Ty + Ty (7.30)
1 1
,313,2 = Az’ ﬂ13,2D = cM ] ) ﬂ13,1 = _Az(A7 + Aio)’ ﬂl3,1D == cM } (A7 + Aio)’

1

oM, A AL T3 =O'5TH

ﬂ13,o = A2A7Alo’ﬂ13,0D =

,321,2 =A, 1321,1 = _As(As + A&o)1 1321,1D = Aip\s’ﬂzl,o =AAAL
Boroor = —AAA0 Borovz = AP Torap =Tarop1 = Trcs

Tyop2 =%cn TTh T T
ﬁzz,o =AAA), Ty =Tyc +Tcy + T4 + T (7.31)

,323,1 =AA, 1823,1D = ABCML’ 1323,0 = _AZA\SAl01ﬁ23,OD =-AAo L

cM,,
Ty3=Thcs Tazap =Taz00 = 0-57

ﬁ31,2 =hA, ﬂ31,1 = _AB(AS + A7)’ ﬁ3L1D = A:>All’ﬂ31,0 =AAA,
ﬂBl,ODl = _A3A5A111ﬁ31,0D2 =AAA, To110 =T31,001 = T Taop2 =The T 7c

Bz =P Py = _AQ(A& + A7), Bao=AAA, T5 =Ty (7.32)
Baop = Abpllﬁ’ Bazo=APAL Ta30=057,, T3 =T,c +17¢
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a, :_(A3+ A+ Aio)’ o =AA + AN+ AN 0 =—AAA,

(7.33)
Oop = —AAALL Top =T + Tye +7c + Ty

7.2.3 Parametersidentification

Prior to solving the task of the estimation of model parameters, let us display how
unconventional the step response of the system is. Consider the step change of P(t)
resulting in changes of system output temperatures, as it is pictured in Fig. 7.2. An

interesting feature of the step response is the existence of “stairs’ (“quasi” steady states) in
the plot.

Output temperatures [°C]

| — 8a
B\jt}l'.J - Beo

2
o

. . . . . . . |
200 400 600 800 1000 1200 1400 1600 1800
Time [s]

Fig. 7.2 Heater power step change responses

The existence of these multiple “quasi” steady states can be explained as follows:

Temperature of water at the heater output, #3,,(t), increases until the energy inlet and
outlet of the heater equal. In the meanwhile, the “hot” water flow goes through the long
pipe to the cooler, and, after some dead-time, 7., it affects input, % (t), and output,
2,(t), temperatures of the cooler. At this time, the heater input temperature remains
constant, because the water flow has not gone a round yet, and 3., (t) becomes constant.

Then “cold” water goes back to the heater and closes a circuit. Again, the closed |oop dead

time between the cooler output and cooler input, 7 =17, +7,, + 7, , iSlong enough so that

&, (t) and %, (t) become almost constant.
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There were made no attempts to determinate measure the mass flow rate of water
by measuring of the diameter of the pipeline, the water-flow velocity, etc. Steady state data
in Tab. 7.1 can be used for evaluation of mit) by taking into account the fact that more

than one steady state can usually be found in a step response of the system.

Tab. 7.1 Measurements of steady-state temperatures for u. =3V

Up V] | PIW] | Buoo[°Cl | 930[°Cl | Be0o[°Cl | 8a1°C]
4 225 38.1 38.0 31.3 22
4 225 41.8 41.5 35.1 26
5 225 394 39.3 329 25
5 225 40.9 40.7 345 27
6 225 39.5 39.3 329 255
6 225 38.0 379 33.0 235
4 300 435 43.2 34.9 25
4 300 42.6 425 33.7 23
5 300 419 41.8 333 22.5
5 300 441 43.8 36.0 25
6 300 43.3 42.8 35.2 24
6 300 434 431 35.3 24
4 375 48.1 479 37.1 24
4 375 47.8 47.3 36.8 235
5 375 48.8 48.5 38.7 255
5 375 499 49.7 40.0 26
6 375 48.2 47.8 38.3 23
6 375 49.1 48.9 39.5 26.5
4 400 51.2 50.9 37.7 24
5 400 52.2 52.0 39.9 24
6 400 49.9 49.8 38.2 23

The steady state of (7.1) reads
0= PO+CrhO|:19HIO_ﬂHOO]_KHO[@_ﬂA} (7.34)

i.e. the derivative is assumed identically zero. There are two unknown static parametersin

(7.34), m, and K, , for a particular setting of inputs. Mass flow rate, m(t), as a function
of u,(t) influences mainly system delays, whereas K, (t) given by (7.3) impresses a
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“height” of the “first” steady state of 23, (t), see Fig. 7.2 (A). Tab. 7.2 contains the “first”
steady state values of temperatures o3, (t) and 2, (t)=%,(t— 74, ). These data together
with data from Tab. 7.1 enable to estimate m, andK,,, for a particular setting of input
values by inserting these data into (7.34), thus, we have two independent equations (7.34)

for a particular setting of inputs. The fina values of r, andK,, are taken as the

arithmetical mean of al calculated values from these tables for a particular (same) setting.
There can be then estimated unknown parameters of rm, andK,, in (7.3) and (7.7), from

these values.

Tab. 7.2 Measurements of “ quasi” steady-state temperatures for u. =3V

UsIV] [ PIW] | Baool°Cl | 90[°Cl | koo [°C1 | 441°C]
4 225 28.8 21.7 22 22
4 225 33.0 26.1 26 26
5 225 31.2 24.7 25 25
5 225 33.8 26.9 27 27
6 225 31.8 25.6 255 255
6 225 29.6 23.1 235 235
4 300 339 24.5 25 25
4 300 30.7 21.7 23 23
5 300 339 254 255 22.5
5 300 339 25.1 25 25
6 300 321 23.6 24 24
6 300 32.7 24.1 24 24
4 375 355 24.1 24 24
4 375 35.3 23.6 235 235
5 375 36.4 25.2 255 255
5 375 36.7 25.7 26 26
6 375 29.2 229 23 23
6 375 32.8 26.5 26.5 26.5
4 400 38.2 235 24 24
5 400 38.9 25.2 24 24
6 400 36.3 23.3 23 23
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Hence, equation (7.7) together with data in Tabs. 7.1 - 7.2 results in ry, as in
Tab. 7.3, and K, asin Tab. 7.4 where the water density was chosen as p =993 kg-m®,
and ¢ = 4180 Jkg K™,
Tab. 7.3 Measured relation iy, (up)

U, [V] 3 4 5 6
m, [m-107] | 698 | 76.1 | 80.9 | 830

Tab. 7.4 Measured relation K, ,(up, P) [W-K™]

Up [V] 4 5 | 6
P[W]

205 107 | 137 | 140

300 159 | 154 | 1.24

375 146 | 214 | 2.04

400 231 | 2.76 | 263

The evaluation of these data with respect to (7.3) and (7.7) results in the following
numeric estimation (made in MS Excd Solver): hy = 8.4925, h; = -0.0017, h, = -
14999, h; = -12998, h, = 1507.988, hs = 77.766; po = 5.077-10°, p. = 0.266, p, = 0.274. A
graphica comparisons of measured and calculated dataarein Fig.7.3 and Fig.7.4.

25 77’ ‘ I_@:"I @‘ I # Measured

. --(', % ‘; ‘ ‘@ O Calculated

Fig. 7.3 Comparison of measured and calculated K, ,
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Fig. 7.4 Comparison of measured and calculated i,

One can seethat K,,,(up,P) isnearly not depended on the setting of u, and thusa
linear relation K,,,(P) could be enough to take. The important disadvantage of these
estimations is the fact that the results are strongly sensitive to the measurement of the
ambient air temperature.

Datain Tab. 7.1 together with the static equation obtained from (7.4) can be aso
used for the evaluation of the (constant) heat transmission coefficient K, which
characterizes especially a “height” of the “quasi” steady state of %, (t), see Fig. 7.2 (C).
From (7.4) we have

. oo+ 9
0= cty[Bhoo — Tl KP{% - ﬂA:| (7.35)

Thefinal value of K, istaken asthe arithmetical mean again as K, =0.39 WK™,
Obvioudly, the pipdine is insulated very well and this coefficient does not affect the
system dynamics significantly. The measurement is sensitive to ¢, again, and the A/D
converter resolution (cca 0.1 °C) disables to find a more accurate value of K. Moreover,
the effect of secondary heating (due to the materia of the pipeline) makes a measurement

of 5, and ¢, moredifficult.
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Asfor the estimation of K., , steady state yields (7.5) of the form
0= Cmo[ﬂa 0~ ﬁcoo]_ Kco[%oT—H}Clo_ ﬂAj| (7.36)

This equation together with data in Tab. 7.5 gives the estimation of K,, which
characterizes especially a “height” of the “quas” steady state of %, (t), see Fig. 7.2 (C),

for aparticular setting of u., similarly asit was proceeded above.

Tab. 7.5 Measurements of steady-state temperatures for various u., P=300W, u, =5V

Ue [V] | ool Cl | %io[°Cl | $hoo[°Cl | BA[°C]
1 48.1 47.9 40.0 24
1 45.3 45.0 36.2 21.5
1 46.5 46.3 38.2 25
2 43.3 42.9 34.7 225
2 43.3 42.8 34.9 23.5
2 44.5 44.3 35.8 23
4 39.8 39.3 30.0 20.5
4 42.3 42.2 32.7 23
4 43.1 42.8 34.5 25.5
5 39.6 39.3 31.0 21
5 39.9 39.6 31.6 22
5 40.9 40.6 32.3 24
6 40.6 40.5 32.2 23
6 41.1 40.9 32.6 24.5
6 38.6 38.4 30.2 21

Note that temperature values for u. =3V are omitted in Tab. 7.5 since they can be
obtained from Tab. 7.2.

The arithmetical mean of particular measured values of K., resultsin relations as

inTab. 7.6.
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Tab. 7.6 Measured relation K, (u.)
Ue [V] Kco [W'K-l]

14.2
16.9
18.2
195
21
214

(U] WIN|F-

By means of the numerical optimization (MS Excel) one can obtain coefficients of
(7.6) as

Co=11.8,¢,=2.755, c,=-0.19 (7.37)

A graphical comparison of measured and calculated K, (u. ) isinFig. 7.5.

L) (“cl

22 1

20 4

—— Measured
—m— Calculated

£ 4 5 B 7
uglV]

Fig. 7.5 Comparison of measured and calculated K,

All the above presented data enable to draw up the static characteristics of the
studied model. Static relations between u, and al output temperatures, for P = 300 W,

u. =3V, ¢, =24°C, aredisplayed in Fig. 7.6
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Fig. 7.6 Satic characteristics #,,(Up), ¥ (Up), Bo(Up), for P = 300 W, u. =3V,
I, = 24°C

Static characteristics #,,(Uc ), 2 (Ug ), 2o (U.) are presented in Fig. 7.7 , for P =
300 W, u, =5V, o, =24°C, and relations &%,,(P), & (P), ¥, (P) are depicted in Fig.
7.8,for u, =5V, u. =3V, o, = 24°C.

‘gHD"gCI"g'C’O [oc]

49 —— Iy
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47 4 —— Py
45 - e
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Fig. 7.7 Satic characterigtics #,5(Uc), & (Uc), Bo(Ue), for P = 300 W, u, =5V,
B, = 24°C
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Fig. 7.8 Satic characteristics ¢, (P), & (P), ¥ (P), for u, =5V, u. =3V, %, = 24°C

Thefiguresindicate a very good linearity of the mode.

Delays can be estimated graphically from dynamic data (step responses) for
appropriate system input changes, see Fig. 7.2 (B). The delay of the control action of the

heat exchanger (cooler), 7,., was obtained from the cooling curve (not displayed here).

Results are dependent on the particular mass flow rate; asit can be seen from Tab. 7.7.

Tab. 7.7 Measured delays as functions of u,

U, [V] 2 3 4 5 6
7, (9] 3 3 3 3 3
ro[9 | 125 | 125 | 120 | 110 | 105
7. [s] 24 23 22 21 20
T [9] 14 13 12 12 11
T L8] 10 10 9 9 8

Since the model does not reflect the influence of u,(t) upon the delays,
arithmetical mean values were taken in the fina (i.e. for u, =4V ). Delay in the

heater, z,, , is short enough so that it can be omitted in the model, if one wants to.
7, =38, 7, =110s,7. =225, 7, =125, 7, =95 (7.38)
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Overall masses of water in the heater, the cooler and in the long pipeline were
estimated graphically and numerically from dynamic characteristics, so that measured and
calculated model give a good agreement. They influence mainly “sopes’ of the steepest
ascents in the particular step responses. For example, My, influences the initial slope of the
step response of P(t) to 2, (t) mainly. An initial estimation had been made by graphical

comparison of (model) simulated and measured responses

Final results obtained by the evaluation of the least mean squares criterion are the

following
M, =0.08kg, M, =0.22 kg, M. =0.27 kg (7.39)

The final comparison of measured step responses and the calculated ones is
depictedin Fig. 7.9.

a0

Change of output temperatures [*C]

. . . . . . . .
] 200 400 500 800 1000 1200 1400 1800 1800
Time [5]

Fig. 7.9 Comparison of measured (dotted) and calculated (solid) step responses for the
settings u, =5V, u. =3V, AP =300W, on/off fanison

7.3 Design of acontroller for theplant in Rys

The derivation of two different controllers structures for the heating plant
described above using the algebraic approach in Rys for various external inputs and
feedback loops is the subject matter of this subsection. Because of the plant isMIMO, only

one manipulated input and one measured output are chosen while the rest serve for
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defining of the operation point. Namely, the intention is to control %, (t) by means of

P(t). From model (7.25), (7.32) and (7.33), it can be obtained

Gls)= Oco(S) _ (1333,0D expl- 2'33,05) + B0 Jexpl—75:5)
P(s) S’+a,8"+ oS+, + oy, eXp(—T74pS)
_ (bop €XP(=7,8)+ 1, ) exp(- )
s*+a,5° +as+a, +a,, exp(— )

(7.40)

Let P(t) be relabeled to P,(t) to avoid the confusion with the controller

denominator.

7.3.1 1DoF control structure

Consider the 1DoF control system asin Fig. 2.1 and let the externa inputs be from
the class of stepwise functions (4.204) with m,(s)=m,(s)=s+m,, m,>0, for the
simplicity. Utitlize now the methodology described in Subsection 4.3.

The plant transfer function can be factorized as

(b, expl= 7o)+ by Jexp(- 7s)

N ) (9
G(s) sS+a,s’+as+ ?0)+ ay, exp(=15s)  As) (7.41)

where m(s) is a stable (quasi)polynomial of degree three, for instance, m(s)=(s+m,)’,
again for the simplicity. Naturally, there are other possibilities how to select m(s), e.g. as
m(s)= s*+m,s* + ms+m,, which would bring more degrees of freedom (free selectable

controller parameters).

The primary aim is to stabilize the control feedback loop using (4.33). If Q,(s)=1,

the following particular stabilizing solution is obtained

o () 4P~ (B (- rs) b expl- ) o
° $*+a,8” +a,S+a, + a,, exp(— %) '
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For reference tracking and disturbance reection, condition (4.40), i.e.
Ry (s) | (A(s)P(s)) A Fy(s)|(B(s)P(s)). Equivalently, P(s) must include at least one zero
root which can be expressed by the condition

P(0)=0 (7.43)

Thus, try to choose the following structure

3
2(e)=— (5*M) Z, (7.44)
s* +a,8* +a,5+a, +a,, exp(— %)

where Z, R, to obtain P(s) in an arbitrarily simple form. Condition (7.43) resultsin

3

mh

° o +by

(7.45)

Finally, the controller structure is given by inserting (7.45), (7.44) and (7.42) into
(4.34) as

ME(S” +2,8° + s+ 8y + 3y, expl— 15)) (7.46)
(bOD + b0)<S+ m))3 - nﬁ(boo exp(— TOS)+ bo)eXp(_ 75)
The controller contains only one selectable (free) parameter m, and it has

anisochronic structure including internal delays, however, it is simply redizable by
integrators and delay elements, see the MATLAB/Simulink scheme as in Fig. 7.10. The

value of m, isgoing to be chosen according to the robust analysis, see Subsections 7.6 and

7.7.

7.3.2 TFC control structure

The TFC control system (Fig. 2.2) is utilized in this subsection to determine the

controller law for different externa inputs viathe methodology described in Subsection 4.4.
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Fig. 7.10 MATLAB/S mulink scheme of controller (7.46)

Let the externa inputs be described by (4.204), i.e. the reference is from the set of
linearwise functions, whereas the disturbance has a stepwise character. Plant coprime

factorization is given by (7.41).

Closed-loop stabilization according to (4.60) yields e.g.

_ _ (s+my)° — (byp exp(—7,5)+ by Jexpl(— )
To=1 R(s)= S’ +a,s” +a,5+ a, + a,, exp(— 1) (7:47)

which is equivalent to (7.42). Since it must hold that F,,(s)](A(s)P(s)) A F(s)|(B(s)P(s))
giving rise to two conditional equations (4.59) for P(s), select Z(s) with two free redl

parameters z,, z, as
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3
2(s)=——— (s+m) 45t % (7.48)
s*+a,s° +a,S+a, + ay, exp(—5) s+m,

Then the numerator of P(s) reads

Pu(8.2,2) = (s+my)" — (boo expl—75) + by Jexp(- )1+ 2 )s+my +2,)  (7.49)

Conditiona eguations

pN(O,zo,zl)=0{%pN(s,zo,zl)} =0 (7.50)
resultin

_f M), b )b+ By —mB(myr+ A bpmin, g

& "B[bwbw J’Zl (B, +boo 5y

and consequently

P(s)= P.S’ + S’ + p,5° + py(S)s+ po(S)
(b, + by (5% + 8,5 + 8,5+ a8y + agp, €Xp(— 55))(s+ m,)
_omy ts+t,
"= g P sem,
Py = (bo +bOD)21 Ps =4mo(bo+b0D)21 P2 :6m§(b0 +b0D)2’
pl(s): mg
(40, + By ) — (B + B ©XP(= 7, (M7 +4)+ by (y 7+ 7, ) + 4)) expl- 75)
Po(8) = Mg (b, + by )by (L— exp(—73)) + by, (1~ exp(— (7 + 7, )s))
= bo(rrb7+ 4)+ Boo (mo(T"' To)"' 4)
ty= rrb(bo + bOD)

(7.52)

Decomposition (4.63) must be done so that F,, (s)|(B(s)Q(s)); however, as T(s) in
(7.52) is of the first order numerator polynomial, it is not possible to meet the requirement.

Nevertheless, one can make the following extension

3 3

T(e)e_ M tstlostm _ mp tlsz+(tlml+t0)s+t0ml, 0 (753
o sem sem Gty Gemfsem) 00
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and the decomposition obviosly reads

Qls)= my Q-yts’

(b, + by (s+ s+ m)
RS Hmtsrm o

(b +by ) (s+my)(s+m)

(7.54)

To sum up, the controllers' transfer functions are

(S +azs +ais+ao+a0D eXp Xl— }/)tls

(p,s*+ p,5°+ p,5° + p(S)s+ py(s)fs+m)

G(s)=r (759
(s +as’ +85+ 8+ 8 exp 25))t,8° + (tm +t,)s+tom,)

(pys*+ pss’ + PS5+ py(s)s+ py(s)fs+m,)

In this case, there are two real selectable controller parameters. A smple

suboptimal tuning ideais presented in Subsection 7.7.

7.4  Relay feedback identification test

We attempted to simplify model (7.40) by the use of the relay-feedback
experiment, see Subchapter 2.8 and Chapter 6, and to compare control responses using the
origina mathematical model and that obtained from the relay test. Hence, consider model
(6.1) and try to identify its parameters. Three different set of algebraic equations (6.6) —
(6.9), (6.19) —(6.22) and (2.131) — (2.133), respectively, were solved by means of

a) the well-known Levenberg-Marquardt (LM) method (which is close to the
Gauss-Newton one), seeeg. [79],

b) the NM algorithm, see Subchapter 5.4, and
¢) the MS Excel Solver.
Note that for the operating point

lu ,u, Py B0, By o, P J=[BV,3V,300W,44.1°C, 43.8°C, 36°C, 24°C|  (7.56)

prc

the parametersin (7.40) are the following
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by = 2.334-10° b, =—-2.146-107 a, = 0.1767, 3, = 0.009,

(7.57)
a, =1.413-10* a,, =—7.624-10° 7, =1.5,7 =131, =143

Look at simulation results via severa techniques in more details.

7.4.1 Frequency-domain solution

The relay test was performed with a biased on-off relay, B =220,B™ =180[W],
firgt, to get the estimation of the static gain according to (2.126) and that of the ultimate
gain as in (2125) for a saturation relay test. The results were the following:
A =1.9975[°C], T, =364.8[4], which gives k,,=127.48=k,,
k=D, /(a, +a,)=0.0325. Dead time was estimated according to Fig. 2.10 as 7 =136.7 .
Then we tried to perform the saturation-relay test with k,, =14k ; however, the
restoration of limit cycles took a long time and there was an obvious margin in the setting

of the saturation relay. Thus, the option k,, =1.1k,, =140.23= A, =1.426 resited in

T,,=373.4, A, =1.9245. These results enable to estimate two model parameters.

Hence, introduce an artificid delay eement with 7% =57/(12w,)
=5/24T,,=77.8. Again, the procedure started with a (symmetrical) on-off relay B =200
yielding A = ZS.],'ITU’l =555.3, IZUJ = Emm =82.14. Since IZU,Z =1.]JZmin did not cause limit
cycles, k,, =14k, =115= A, =1.7391 were taken for the saturation-relay test which
gave ,&2 = 2.52,fu,2 =597.8.

Solutions of the set (6.6) — (6.9) via various techniques are introduced in Tab. 7.8.
The static gain value k=0.0325 is fixed and the initial parameters estimation reads
a,=a=05/T,,=0013, 7==136.7.

Note that NM algorithm and the MS Excel Solver minimize the sum of squares of
the left-hand sides of (6.6) — (6.9), which agrees with error € inthe table.
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Tab. 7.8 Freguency-domain solution with saturation relay and artificial delay

LM method NM method Excel Solver
a, 1.751567-1072 9.9301645-10 4.422509-10°°
= —-9.08719-10°° —3.9951297-10°2 —2.4479-102
T 102.83 159.83 140.92
J 131.49 130.75 155.2
€ 1.27-1072 3.25-10% 8.06-10™

7.4.2 Time-domain solution

Simulation experiment results from the preceding subchapter can be used for
aternative, time-domain, solution of the relay identification problem given by the set
(6.19) — (6. 22). Again, the results are summed up in Tab. 7.9.

Tab. 7.9 Time-domain solution with saturation relay and artificial delay

LM method NM method Excel Solver
a, 9.9301645-10° | 9.9301645-10° | 9.9301645-10°°
& —3.9951297-10°° | —3.9951297-10° | —3.9951297-10°°
T 159.83 159.83 159.83
U 130.75 130.75 130.75
€ 1.82.10°% 3.38:10%® 211102

Obviously, the three computational techniques provide (almost) the same results

identical with that obtained by the frequency-domain solution viaNM agorithm.

7.4.3 Useof relay transient

Finally, try to use the relay transient introduced in Subsection 2.8.5. Limit cycles
from the experiment with on-off relay were utilized. Exponential decaying function was
chosen as exp(—0.01t), the sampling period for the DTFT was set to T, = 0.1 and the final

time was taken as t; =2000. These values give rise to discrete frequencies
@ =10.003L1 €N on which the DTFT is calculated and, subsequently, model parameters

are estimated according to (2.131) — (2.133).
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For 1=1, U(je)

=-1.1139-10" +3.3348-10°%] ,

Y(jw)IU (jo,)=(1.924-1.379j)-102.

Y(jw,)=20.97+16j

and

For 1=3, U(jo,)=-1.285243-10*+2.52541-10°j, Y(jw,)=11.208+ 25.188j

and Y(jw,)/U (jo,) = (~1.8087-0.49819j)-10.

Inserting these values into (2.132) for model (6.1), optimization techniques yield
resultsintroduced in Tab. 7.10.

Tab. 7.10 Solution by the use of the relay transient

LM method NM method Excel Solver
a, 3.06598277-102 | 3.06598277-10° | 7.410418-10°°
a, —1.7487959-10% | —1.7487959-10% | —2.607269-107°
7 143.42 143.42 136.7
5 158.08 158.08 136.69
€ 3.19-10™ 1.59-107" 1.29-10°®

Thus, LM and NM techniques provided comparable results.

7.4.4 Comparison of theresults

To sum up the relay experiment, results from Tabs. 7.8 — 7.10 are compared via
step responses and Nyquist plots of original and approximating models. Concurrently, |SE
and ISTE criteria — analogous to (4.186) and (4.187) with ¢ =0 — are calculated for step

responses for the time range te [0,2000] with the step At=0.1, and Nyquist plots are
assessed using the criterion

Inn = Z[G(0)-Gla) (7.58)

where G isthe origina model (7.40), G means the approximating one (6.1) and @ are
discrete frequencies, here we [0,0.1] with Aw=w —@_, =10™.

Figs. 7.11 and 7.12 provide a graphica comparison, whereas Tab. 7.11 gives

criterial results.
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Results from Tabs. 7.8 — 7.10 are labelled as follows:

a) “Result 1" —NM from Tab. 7.8, al resultsfrom Tab. 7.9.
b) “Result 2" —LM from Tab. 7.8

¢) “Result 3" — Excel Solver from Tab. 7.8

d) “Result 4° — LM and NM from Tab. 7.10

€) “Result 5" — Excd Solver from Tab. 7.10

As can be seen from Tab. 7.11, the use of the relay transient solved by the LM and
NM methods gives the best result. Especialy, the Nyquist curves of the origina model and
the approximating one obtained by this way almost coincide for low frequencies (up to the

ultimate frequency). The time-domain solution and the NM technique, generdly, provide
good approximation as well.

35

Ay(®) [*C]

— Origina
—Result 1]
— Result 2
----Result 3
— - Result 4]

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time[s

Fig. 7.11 Sep responses of the original modd (7.40) vs. approximating models (6.1) via
relay-feedback test
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Fig. 7.12 Nyquist plots of the original model (7.40) vs. approximating models (6.1) via
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ReG(jo)

relay-feedback test
Tab. 7.11 Comparison of relay experiment results

Result i Jisre Iy

Result 1 1.363 845.2 3.227
Result 2 6.304 3704 4.475
Result 3 1.795 1063.4 4472
Result 4 0.607 450.2 2.835
Result 5 1.015 713.7 2.852

7.4.5 Design of controllersin Rys for the relay-identified model

Without superfluous details, let us present controllers derived for model (6.1),
analogoudy to the procedure introduced in Subsections 7.3.1 and 7.3.2. The reader is

referred therein for details.

For the 1DoF controller structure with stepwise inputs, i.e. reference and load

disturbance, the final controller can be obtained e.g. as
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s s+8, +a exp(- 5
G (s LY ,m,>0 (7.59)
" by s+my(l-exp(-19))
If the TFC control systemis considered and it is supposed that the reference signal
is linearwise and load disturbance is from the class of stepwise functions, the eventual
controllers' transfer functions read

Gols)=1> (5+ 2+ expl- o8))myr + 21— 7)s*

by (% +my(2—(myz+ 2)exp(- )5+ NE (1— exp(—7s))[s+m))
Gy(s)=—2 (s+a, +a exp(— 98))(myr + 2)p8 + (my (M7 + 2)+ my )5+ mym,)

% <s2+nb<z—<nw+z>exp<—zs»s+rrﬁ(l—exp(—zs»{sm]

my,m, >0, 7 [01]
(7.60)

Recall that another coprime factorization of the plant model, particular solution of
the Bézout identity or choice of the form of parameterization term Z(s) can lead to a

different controller.

7.5 Controllerssimplification

As can be seen from (7.46), (7.55), (7.59) and (7.60), the obtained controller
structures are a rather complex. Thus, for the engineering practice, it would be desirable to

simplify them, namely, to reach afinite-dimensiona approximation of the control law.

In recent decades a huge number of papers and works have been focused on model
reduction or rationa approximation of TDS, see e.g. [4], [80], [81]. A fair overview of
some methods and approaches has been published in [114]. An overwhelming magjority of
these methods, however, deals with input-output delays only ignoring internal or state
delays on the left-hand side of differential equations, i.e. those transfer functions with
exponential terms in the denominator. Moreover, the obtained controller structures would
be of avery high order, asit is presented in [120] for some particular cases.
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Hence, in this subchapter, two possible simple (intuitive) methods for a low-order

finite-dimensiona approximation of anisochronic controllers are suggested and,
consequently, applied to original controllers (7.46) and (7.55).

Namely, consider a proportional-integral-derivative controller governed by the
transfer function(s)

_R(8)_RS+s+h = Q) _ 58" +ds+G,
I=p9 ™ deen) O

P9 Ss+m) (761

(7.62)

as approximating models.

7.5.1 Using dominant poles and zeros

Intuitively, it is possible to preserve dominant (right-most) controller zeros and
poles and asymptotic controller behavior, i.e. the dope of a step response direction at

infinity for an integral controller and/or an initial point of a step response for a derivative
one. This task can be defined asto find {s,s,}, 1z, 29, |, {Zrs Zro € R? such that

{Sl %}__ S,S; :Res = Res; >Res,i# | #l,
e P(s)=0

P(s)=Pls,)=P(5)=Pls)=Pls )= e
_ Z,z :Rez zRezj >Rez,i# | #l,

Vs %ak = {Q(a)=Q(ZJ)=Q(Z.)=5(a)—5(2j)=ﬁ(a)=0} (764
_ z,z :Rez zRezj >Rez,i# | #l,

{Z“’ZRZ}"{R@)— Rlz,)=R(z)=R(z)=R(z, )= ﬁ(a)=0} (789

and to satisfy the following conditions

lim,_, s';G}(s)z lim,_, sk(_i(i)zioo,kzo,l,... (7.6
lim_, s'G (s)=lim_, S“'G (s) # *oo
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for controllers with integral behavior (or for those tracking or rejecting harmonic signals)

and

lim_,_G(s)=lim_,_G(s) (7.67)

S—o0

for derivative-like controllers. The lower index ” " meanseither R or Q.

The application of the procedure to the origina controllers (7.46) and (7.55) with a
selected m, isintroduced in Subsection 7.7.

7.5.2 Using the Padé approximation

The transfer function rationalization via the Padé approximation is usualy
performed in such away that the approximation is applied to exponential terms only. This
technique leads to high-order approximation models. A different approach, used here, rests
in the approximation of the whole transfer function based on the Taylor (Maclaurin) series
expansion of the approximated and approximating model and matching of some (low-

degree) coefficients, which agrees with conditions

66o-lotL.| 266 |20

'(S)L""’{%G(S)L - [%G(S)L

Notice that it is possible to calculate identities (7.68) at a different point from

(7.68)

1
f
o
Il
1
o
(nN‘ Q.
9]

s=0, eg. in the neighborhood of a frequency where a good approximation is desired. If
any of derivatives does not exist, substitute G(s) by 1/G(s), which is the case of

controllers derived above as well. The value of k(usualy) eguals the number of
approximating model parameters.

For this method, we can derive particular conditional equations for approximated
models (7.46) and (7.55) and the approximating ones (7.61) and (7.62) directly. However,
these algebraic equations are rather complex; therefore, they are not displayed in this
thesis. Particular values of parametersin (7.61) and (7.62) are calculated in Subsection 7.7.

Some notes to the general calculation follows.
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Consider controller (7.46) first. Since Gg(0)— oo, the derivatives in (7.68) are
calculated for 1/Gg(s) and model (7.61) is chosen. Moreover, condition
[1/Ga(s)]., =1/ §R(s)]H leads to identity 0=0 directly, which implies no useful result.

Therefore, let k=4 rather than k=3.

As second, controller GQ(S) in (7.55) has no pole at zero, hence, k=1 and model
(7.62) is considered here. Finally, Gg(s) owns a double zero pole and

[1/Gg(s))., =1/ C_ER(S)LO = 0=0 again, therefore take k = 4 and mode! (7.61).

7.6 Robust analysisof controllers

Now let us analyze the robustness, i.e. robust stability and performance, of the
designed controllers for various settings of selectable controller parameters. To
demonstrate the procedure introduced in Subchapter 2.7, consider origina controllers
(7.46) and (7.55) only — controllers designed for a relay-test based modd, i.e. (7.59) and
(7.60) and approximating controllers (7.61) can be assessed analogously.

Firdt, it is necessary to determine the family of plant transfer functions which is
obtained by variations within the ranges of selected model parameters. We have selected
three parameters the values of which are affected by measurements uncertainties or
ambient conditions, namely, K¢, Kp and #,. Intervals for K¢ and Kp have been chosen on
the basis of two identification measurements, see [128], [162], and ¢}, has been selected

according to room temperature variations during the year. Hence, the intervals are the

following

K, €[0.1,0.5] K € [15,22], %, € [16,30] (7.69)

The set of Bode plots |G(jw)/ G,(jew)-1 for al eight combinations of margin
values in (7.69) is depicted in Fig. 7.13. This set was covered by a plot expressing
W, (jw) given by the transfer function (7.70).

(200s+1)10s+1) _ 720s® + 75.65+ 0.36

(340s+1)15s+1)  5100s? + 355s+1
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Fig. 7.13 Determination of W, (je)

Consider now the 1DoF and TFC control systems separatelly.

7.6.1 1DoF control structure

Theoretical background for robust anaysis of the 1DoF control system has been
presented in Subchapter 2.7. Verification of the robust stability criterion (2.116) for several
settings of m, isdisplayed in Fig. 7.14.

The weighting function [\NF, (j a))| has been chosen so that the nominal performance

condition (2.115) holds for a selected range of m,, as

s(40s+1)  36000s’ +900s

1/W,(s) =900 -
(9 (350s+1)(90s+1) 31500s* + 440s +1

(7.72)

seeFig. 7.15.
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Fig. 7.14 Robust stability verification for 1DoF
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Fig. 7.15 Nominal performance — determination of W, (j@) for 1DoF

Obvioudly, the decreasing of m, would lead to poor nominal performance at |ower

frequencies, whereas its increasing would cause the same effect at middle frequencies.

Finaly, test the robust performance condition (2.119) with W, (s) and W,(s)
given by (7.70) and (7.71), respectively, as it is depicted in Fig. 7.16. The results indicate
that for m, =0.005 and m, =0.02 the feedback system has poor robust performance.
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Hence, the eventua range m, e [0.008,0.012] has been chosen for controller tuning,

simulations and real experiments.

2

1F LT i

Wy (jo)T (jo)+ 7, (jo)S,(jo) [dB]

— - —.m,=0.005
-4r ‘ ....... my=0.01 |
5l b r?‘ ——mn=0.015 I
h m, =0.02
-6 4 ’ II”I”I; — Iw S e
10 107 107 100 10

@ [rad/s]

Fig. 7.16 Robust performance test for 1DoF

7.6.2 TFC control structure

Aswas mentioned e.g. in Subchapter 2.7.3, robust stability and robust performance
conditions (2.116) and (2.119) hold for the 1DoF control structure; however, other
structures require the derivation of specific conditions. While making effort to do this, it is
possible to use principles demonstrated in Figs. 2.5 and 2.6, condition (2.118) and the
Nyquist criterion the basis of which is formulated in (4.159). Let us introduce theorems

about robust stability and robust performance for the TFC control system.

Theorem 7.1

If the open loop L,(s)=G,(s) is stable, the TFC control system is robustly stable
if and only if

ot 1+ 20

<1 (7.72)
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Proof. Robust stability principle based on the Nyquist criterion (see Theorem
4.10), graphically expressed in Fig. 2.5 and analytically formulated in (2.117), with respect
to (4.159) reads

Wy (J a))l-o(j w)
1+ L, (jo)

Lo(j@) = Go(j @) = G(j )Grlj @) + Gy (j @)

<1 W, (o)L (o) <|L(i0)- (-2} Yo

(7.73)

Since

_ Lo (s)- G(S)GQ (s) _ G(s)G(s)
1+ Ly(s) 1+ Ly(s)

_, L) To(s)(1+ GQ(S)J

Gg(s)

(7.74)

condition (7.73) can be written as
o Gy(j®)
o oo 1 207 |

The obtained result corresponds with (2.116) since G (s)=0 for the 1DoF system.

<1 (7.75)

A theorem dealing with robust performance follows.
Theorem 7.2

If the open loop L,(s)=G,(s) is stable, the TFC control system meets robust

performance if and only if

tenefie )

+rwp<jw)[so(jw>+wM (i, (jo) GQQ“’D
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Proof. The requirement of robust performance is satisfied if (2.118) holds. Follow
the sketch of proof of (2.119) for the 1DoF control system in (2.120) — (2.122)
analogoudly.

Because of

(7.77)

$,(8)=Gue(9)=1-Ty(5)= 2 CE >‘(3 o5) _ 1+ Ly(8)- G(5)G4(9

1+L,(s) 1+ Ly(s)
the right-hand side condition in (2.118) reads

Ws(jo)S(jo)<LVae
1+ L (jo)l+ Aljow, (jo 0)Ggljo)1+AljoW,, (jo
W, (jo) 1 oli (JlJ)r/\ll_((w))()lJrA((Jjw))NM((J %() (i, (o) _; v
146,106t Al o) _,
L+ L(jo)i+Allow, (jo) |
0)Go(i®) | Gy(i@)Cqli@)Ai oW, (i)
(iw) 1+ Ly(jo)

Lo (j 0)A(j W, (j )

1+ Ly (jo)

=4

= Ws(jo)

1+ G,(j
1+
)

L
Lo

oW, (jo <lVw

(7.79)

Using (7.74) and (7.77) it holds that

S0+ 50 0% o o)

1+ A(joW, (jo)Ty( ‘0{1* iy w)j

GR(J w)

\_/

<lVw (7.79

H(jo)

Theworst caseis

Gylj)

S(0b+w, (ool |2

fw oo 1 GEW;]

Finaly, by applying (2.118) and (7.72) on (7.80), condition (7.76) isobtained. o

(7.80)

max W (j 0)S(j @) =W, (j @)
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Again, if G,(s)— 0, condition (7.76) convergates to (2.119) — for 1DoF.

Robust stability criterion (7.72) test for several settings of m, is displayed in Fig.

7.17, whereas our caculations show that neither m nor y affect the robust stability

condition.
— 20
z—x.l_‘»—x. o e
2|8
S| 220
[s'] Py
OIS ol
+
\;/ 60'
=
e
,F:t 80 \\
;% -100] - - —-m, = 0.01 ‘\\
= . = ~
Kol ——mp=0.05 N
mU=O.1
A i)
10 10 10 10 10
@ [rad’s]

Fig. 7.17 Robust stability verification for TFC

Obviously, the higher the value of my is, the worse robust stability is at middle

frequencies. Here, the criterion is satisfied for approximately m, < [0,0.09].

The weighting function W, (jw), has been chosen so that the nominal
performance condition (2.115) holds for a selected ranges of m,, m, y again. Plots of
|Sb(j a))| for particular values of controller coefficients are presented in two bunches of
figures titled as Fig. 7.18 and Fig. 7.19 and a cumulative graph with the desired curve of
1/W,(jw)| is displayed in Fig. 7.20. As can be seen from the figures, higher values of m,

improves nomina performance at low frequencies but make it worse a middle ones. The

same statement holds for m,, whereas higher values of y dlightly worsen this feature at all

frequencies.

The transfer function of 1/MW, (je) has been chosen as
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s*(1.55+1) . 1.58% + &
=910 5.3 72
(1000s+1)(80s+1)(10s+1) 8-10°s® +9.08-10"s” +1090s +1

(7.81)

1/W,(s)=9-10°

Findly, let us verify robust performance given by the criterion (7.76) for the
calculated value of W, (je) asin (7.70) and the selected form of W, (jw) introduced in

(7.81). The set of resultsisprovided in Fig. 7.21.

The figures can be analyzes as follows: The higher m, is, the higher the peak
frequency is, yet, the peak value is improved only for alimited range of my,. Higher values
of m, tend to improve robust performance at lower frequencies where the peak is shifted to
the right, whereas they deteriorate the feature at middle frequencies where the peak moves
to the left. Finally, y has the same effect on robust performance (the peak value) as m;;

however, its higher values yield the peak frequency lower at lower frequencies and higher
at middle frequencies.
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Fig. 7.18 Nominal performance |S,(jw)| [dB] for various m,, m, y for TFC —part 1
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Fig. 7.20 Nominal performance — determination of W, (jw)| for TFC
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Fig. 7.21 Robust performance test (7.76) for TFC
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The decision about the criterion (7.76) is clearly presented in Tab. 7.12. It is
evident from the table that robust performance is satisfied only for a narrow range

(domain) of controllers parameters. As a solution of this problem, it is possible to set

W, (j ) more conservatively.

Tab. 7.12 Robust performance fulfillment for TFC —yes (), no(N)

4
03]05|08
my m
0001 | N | Y |Y
001 0005 | N | Y Y
0.01 N|Y]|Y
0001 | Y | Y | N
0.05 0005 | Y | Y [N
0.01 Y | N | N
01 0001 | N | N[N
' 0005 | N | N | N
0.01 N | NJ|N

7.7  Controllerstuning and simulation experiments

This subchapter strives to select suitable free controllers' parameters, i.e. the value
of m, for the 1DoF control system represented by controller (7.46) and the triplet
m,,m,,y for the TFC structure with controllers (7.55), with respect to robust analysis
results. Controllers derived in Subchapter 7.4.5 for relay-test plant models are then tested

via MATLAB/Simulink experiments. Moreover, simplified controllers structures

according to Subchapter 7.5 are then calculated and benchmarked as well.

Let us consider the 1DoF structure first. Since the reference-to-output transfer

function reads arelatively simple form

) il X0l 55) by Jexpl- ) |
Sl (byp + by )s+m, e

and m, impacts the triple rea pole, we decided to choose the vaue of the parameter by
smulations only. Note that robust analysis yields the required restriction m, € [0.008,0.012] .
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Control responses are displayed in Fig. 7.22 where Au,(t)=AP,(t) and

Ay(t)= A%, (t) denote the difference of a corresponding quantity from the operating point
(7.56).

600

500}

Aaag0) W]

Av() [°C]

mn=0.008

0= 0.01 ||
——————— my= 0.012
—-—-mn=0.016 H

——m

—wl(I)

. . . . . 22 . . . . !
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
Time [s] Time [s]

Fig. 7.22 Smulation control responses of u,(t) (Ieft) and y(t) (right) for 1DoF structure)
with controller (7.46)

As it results from the figures, higher values of m, lead to faster yet higher control
actions, namely, m,>0.012 yields Au, ., >450W which is not physicaly acceptable
since PR, .. =750W while operation point reads B, ,=300W. Real time steering, for

these cases, would claim the use of anti-windup control action calculations. Hence, it

seems that m, = 0.012 is aconvenient option, which confirms Tab. 7.13 incorporating values
of the ISE and ISTE criteria, according to (4.186) and (4.187), respectively, with ¢ =10.
Apparently, the value of m, =0.012 provides the best criteria vaues for the selected range of
discrete values of m,. Another choice of ¢, naturally, would lead to a possibly different

criteriagrades.

Tab. 7.131SE and I STE criteria values for controller (7.46) with ¢ =10

rnO ‘] ISE ‘] ISTE
0.008 4.3583-10" | 4.3583-10’
0.01 4.0582-10* | 9.1137-10°
0.012 3.9875-10° | 8.2889-10°
0.016 4.2634-10° | 1.0483-10’
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In the case of the TFC control structure, G, (s) is rather more complex

3

s)=—M (bODexp(—TOS)+bO)(7tlSZ+(t1ml+t0)S+t0ml)eX _ 1S
97 (s+myf(sem) ) 9

Wetried to adopt the following idea: It iswell known that a stable system with real

poles p inflicts an overshoots if there exist a zero (or zeros) z of G, (s) with
Rez> p,. (7.84)

where p,. :{pi p < p,Viz j}, see e.g. [87]. Hence, the intent is to find the triplet

m,,m,, ¥ such that (7.84) does not hold, or the value of

0=Rez-p,. (7.85)
or that of
P =|Ppa / ReZ,Rez<0 (7.86)

is minimal. Since zeros z, =1.5912+k4.1888j, ke Z of the factor by, exp(-7,S)+1b, can
not be influenced, the aim is to affect zeros of the second factor in the numerator within
ranges m,e[0.04,0.1], m e[0.001,0.01], ye{0.25050.75}. It has been found
numerically that (7.84) holds true for all the ranges. Optimal values are givenin Tab. 7.14.

Tab. 7.14 Valuesof 6 and p according to (7.85) and (7.86), respectively

7 o P Myopt | Miopt

0.25 4.6929-10° | 1.0492 0.1 0.001
0.5 8.5692-10° | 1.0937 0.1 0.001
0.75 1.1864-10% | 1.1346 0.1 0.001

The results in Tab 7.14 can be interpreted in such a way that both criteria are
improved if low valuesof y and m and ahigh value of m, are selected. Graphical results
for y=0.25 are presented in Fig. 7.23 which indicates that there is a higher sensitivity of

thisissue to changesin m, rather then m, except for adomain m, — 0.
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Fig. 7.23 Valuesof 6 and p according to (7.85) and (7.86), respectively, for 4 =0.25

Simulation control responses for controllers (7.55) with m,e {0.02,0.03},
m e {0.003,0.007}, y<{0.4,0.8} are displayed in Figs. 7.24 and 7.25. Note that higher
values of m, have not been benchmarked because of numerical instability of
MATLAB/Simulink calculations.

Results from the figures confirm the analysis above only partially. Detailed view
on overshoots of Ay(t)for alinear to constant change of w(t), aresponseto d(t) and step
change in w(t), respectively, are presented in bunches of figures labeled as Fig. 7.26 and
Fig. 7.27.
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Fig. 7.24 Smulation control responses of Au,(t) (left) and Ay(t) (right) for the TFC
structure with controllers (7.55) - ye 0.4
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Fig. 7.25 Smulation control responses of

Au,(t) (Ieft) and Ay(t) (right) for the TFC

structure with controllers (7.55) - y€ 0.8
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Fig. 7.26 A detailed view on overshoots of Ay(t) fromFig. 7.24
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Fig. 7.27 A detailed view on overshoots of Ay(t) fromFig. 7.25

Figures above indicate that a higher value of m, tends to reduce the initial
overshoot in Ay(t), yet blows the two rest overshoots (undershoots) up. Parameter m has

almost the same impact; however, it does not influence the reaction to load disturbance.

Findly, the rising of y results in a dlightly reduction of the initial overshoot and a
conspicuous undershoot while step-step changing of w(t). It also decreases the sensitivity

of the responses to changes of the rest two parameters.

The effect of coefficientsto Au(t) must be taken into account as well. Similarly as
for the 1DoF structure, some controller parameters values are physically unacceptable,

namely, the option y =0.8 yields control action Au, ., <—-300W,i.e. B, ,, <OW.

,min

Taking into account the robust anaysis, the quasi-optimal (overshoot) reduction
idea and the simulation results above, we decided to set: m, =0.02,m =0.005,y=0.4.
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Now the task is to perform and benchmark controllers (7.59) and (7.60) derived for
a simplified (yet infinite-dimensiona) plant model (7.40), parameters of which are
identified via the relay-feedback test, namely, using the relay transient given in Tab. 7.10.
Robust analysis is omitted here since the aim is to demonstrate the usability of simplified

controllersinstead of their thorough analysis.
For the 1DoF control system with controller (7.59), the selected value m, =0.012

can not be chosen because of a very high control action. We finally chose m, =0.005, see

Fig. 7.28. A comparison with the use of the origina controller (7.46) is presented in the

figure aswdll.

450

400+

350+

300
Z 250 %)
= 200 | =z
I J — — Original controllr (7.46) , my =0.012 || &

| Simplified controller (7.59), my = 0.005
IOO-r —d(1) I
s0f — — Original controller (7.46) , my = 0.012

Simplified controller (7.59). my =0.005

— ()

: |

-500 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000

Time [s] Time [s]

Fig. 7.28 Smulation control responses of Au,(t) (left) and Ay(t) (right) for the 1DoF
structure with controllers (7.46) vs. (7.59)

Regarding the TFC structure with controllers (7.60), the following controllers
parameters values have been selected m, =0.01, m =0.005,7=0.4. The origina setting
m, = 0.02 could not be used because of numerica instability of the MATLAB/Simulink
experiment. Simulation results can be seen in Fig 7.29.

Both cases, i.e. 1DoF and TFC one, validate the usability and efficiency of
controllers (7.59) and (7.60), respectively. Their structures are rather smpler compared to

the original ones, i.e. (7.46) and (7.55), yet they provides comparable and satisfactory

control responses.
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Fig. 7.29 Smulation control responses of Au,(t) (left) and Ay(t) (right) for the TFC
structure with controllers (7.55) vs. (7.60) - m, =0.005,y=0.4

Finally, follow now Subchapter 7.5 to benchmark finite-dimensional controllers
(7.61) and (7.62). The use of dominant poles and zeros proposed in Subchapter 7.5.1
makes structure (7.61) for the 1DoF structure impossible, since the rightmost controller

Zeros are
{Zes Zeop: Zes = 1 2.97619-10% —6.43535.10° + 3.077622-10°j} (7.87)

Hence, consider a more genera approximating linear finite-dimensional controller

structure

G. ()= rS’ +1,8" + 1S+,
R s(s*+ pis+ By

(7.88)

rather then (7.61). Because of

[s.s,,s,}=10,-6.74644.10° + 2.346829-102 j} lim, , SG,(s) = 0.10978  (7.89)

s—0

the approximating controller reads

G.(9)= 22.2481s° + 0.352565° + 2.2846-10° s+ 6.546-10°°
(s)=

7.90
s(s? +1.3493-10 25+ 5.96275-10°* ) (7.90

However, this controller causes a very high control action, as can be seen in Fig.

7.30, therefore, areduced controller gain as G, (s) = 0.75G(s) has been set eventually.
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Fig. 7.30 Smulation control responses of Au,(t)(left) and Ay(t) (right) for 1DoF
structure with controllers (7.46) vs. (7.90)

Regarding the TFC case, G,(s) can be approximated by a proportional model

(7.62) where theidentity lim,_, G, (s)=1im,_, G (s) istaken asan objective, hence

(s)=G, =24.6114 (7.91)

]l

Q

Dominant poles and zeros of Gg(s) in (7.55) are the following

[s.5,,5,0=10,0,-1.5421755.10 + 2.917941.10°}}
—2.0971272-10°,-2.9761945.10°2, (7.92)

{ZRl’ Zros ZRa; ZR4} = _a 5.

— 6.43535.10° +3.077622.10°2]

which impliesthat model (7.61) can be used here as

G.(9)= 98.78225% +0.501153955+ 6.16545.10"
(s)=

G.(s > (793)

<

where the condition lim_,s?Gg(s)=lim_, s’G.(s)=6.16545-10" is considered in

addition.
However, control process with controllers (7.91) and (7.93) is unstable (and hence

not displayed here); therefore, we have changed controllers gains as EQZ:O.SEQ,

Gr,(S)=0.5G,(s) - the corresponding control responses are depicted in Fig. 7.31.
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Fig. 7.31 Smulation control responses of Au,(t) (left) and Ay(t) (right) for the TFC
structure with controllers (7.55) vs. (7.91) and (7.93)

As for the relay-based model, approximating controllers derived on the basis of a
requirement of equality of controllers poles and zeros provide satisfactory control
responses that are a bit lower then the ones obtained by the algebraic approach in the Rys
ring, yet with reduced overshoots. Nevertheless, controllers’ gains had to be adjusted.

The method presented in Subchapter 7.5.2, i.e. the use of the Padé approximation,
gives the following approximation of controllers (7.46) and (7.55) by models (7.61) and
(7.62)

— —36.873s% +0.871844s+ 2.91172-10°
GR (S) =

7.94
s(s+3.59065-10°2) (7.94)
for the 1DoF structure and
5. (o) 47:26765" +04168875+ 6.16545-10'*
) s (7.95)

Gy(s)=24.6114

for the TFC system, respectively. The corresponding simulation control responses are
pictured in Figs. 7.32 and 7.33, respectively.

Obvioudly, this type of approximation provides a very good result closely
matching the original control responses curves without changing of controllers settings.
Its disadvantage can be viewed in rather complex calculations of (7.68).
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Fig. 7.32 Smulation control responses of Au,(t) (left) and Ay(t) (right) for the 1DoF
structure with controllers (7.46) vs. (7.94)
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Fig. 7.33 Smulation control responses of Au,(t) (Ieft) and Ay(t) (right) for TFC structure
with controllers (7.55) vs. (7.95)

7.8

Discrete-time implementation

As mentioned in Subchapters 2.9 and 7.1, we initialy intended to verify the results
above via a PC equipped with RS232 and CTRL V3 unit [34] which can work with

discrete-time samples only (approx. T, >1s); however, later, the PC has been enhanced by

the data acquisition card AD622 and Real-Time Toolbox for Matlab, which enablesto use

quasi-continuous agorithms (e.g. T, = 0.01s). Nevertheless, to demonstrate the usability of

the discretization approach based on delta models introduced in Subchapter 2.9, namely by
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(2.134), (2.151) — (2.153), the discrete-time versions of control agorithms follow. The
reader isfreeto usethem if necessary.

A genera solution will not be presented mainly due to its complexity caused by
the assumption of interpolation (2.134). Hence, set T, =1s, then the discrete-time rule of
controller (7.46) reads

z

GRD( )_ QD( )

=20 (7.96)

where

-1 2 -3 143 144 145 146
QD(Z)= ot QZ "+ Q2 "+ 02 "+ Qg2 "+ QuuZ ™ + 052~ + 062
_ 1 2 -3 131 a3 133 134
Py (2)=Pot+ Pz + 0,2 2+ PaZ 4 Py Z ¥ PiapZ T PrggZ 4 Piay2

135 136
t PiasZ Tt QuzeZ

o = My (8+2, + 23, +4a,), ¢, = MY (— 24+ 3a, + 28, —4a,),

0, =My (24+3a, — 2a, — 43, ), G, = N (— 8+ 8, — 23, +4a,), (7.97)
Ohas = Chas = Mh8op» Chas = Chas = 3Mpagp

P, = (b, + by )(mg +6nY +12m, +8), p, = (b, + by )(3m§ +6ny¢ —12m, — 24),

P, = (b, + by )(3ME — 6 —12m, +24), p, = (B, + by G — 6 +12m, - 8),

Py = —bpMy, Pup = mg(_ 30, _O-5boo)1 Piaz = mg(_3bo —2byp ),

Piaa = MH (=1 = 3055 ), Pras = ~20pp 1M, Prgg = —0.50551%

The discretization of controllers (7.55) yields a very intricate form of

Goo(2)= 212, G221 (798)

with

-1 -2 -3 -4 -5 -6 -143
Qo (2)= 0+ 2" + 0,2 + 07 ° + 0 Z " + 02" +GeZ* + (2
—144 —145 —146 —147 —148 —149
+ ql44Z + ql45Z + ql462 + O[|.47Z + q1482 + q1492
Ry(z)=ry+ 1z + 0,22 + 1,2 + 1,2 + 1,2 ° + 1,20 41,7 P 41 2
+ r‘145 Z_145 + r146 Z_146 + r‘147 Z_147 + r148 Z_l48 + r‘149 Z_l49
—1 —2 -3 —4 -5 —6 ~131 -132
Po(2)=Po+ Pz + P27 + Pz 4 P2t + PZ° + PZ + PruZ T P2
~133 -134 —135 —136 ~137 —138
T PigZ "+ PisZ T PigsZ T+ PigeZ T+ PigrZ Tt Pugg”
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Chao = 2aOD (1_ 7)”@ (bo (4 + 131mo ) + bOD (4 + 132-5mo ))’ Chas = 2q149 )
Oha7 = ~Ohagr Ohas = _4q1491 Ohas = —COhiagr Ohas = 2q1491 Ghas = Qags

Qs = 2(— 4+ 0.58, — &, + 28, )04 / Bgp Us = 2016+ 8y — 42, )Ohe / Ay,

0, = 2(— 20-0.58, + 38, — 23, )00 / 3y, Uy = 2(28, +88, )tyue / gy »

0, = 2(20—0.58, — 33, — 28, )04 / Byp, Oy = 2(— 16+ 8 — 42, e / Bgp
2(

5 bop (= My + 7(8+265m, ) - 4m, ~132mym;) J
+by (= m, + #(8+262m,)— 4m —130.5mm,) )
by (— 4m, + 7(16+530m, ) —16m, —527mm,)
+by (— 4my, + (16 + 524m, ) —16m, — 521moml)}
byo (~5m, + 7(~8—265m, )— 20m, —655m;m )
+by (= 5m, + (- 8- 262m, ) — 20m, — 647.5moml)}
By ((—32—1060m, ) +10m,m,)
+hy (- 32—1048mo)+10moml)}
by (5, + 7(—8— 265m, )+ 20m, + 670mym, )
+b,(5m, + y(~8—262m, )+ 20m, + 662.5moml)}
by (4my, + {16+ 530m, ) +16m, +533m,m,)
+ by, (4m, + (16 +524m, ) +16m, + 527moml)}
By (M, + 7(8+ 265my, )+ 4m, +133m,m,)
+by(my, + ¥(8+ 262m, )+ 4m, +131.5moml)]’
7(—64—16a, +32a, — 2120m, — 530a,m, +1060a,m, + a,(8+ 265m, ))
8—a, + 2a, —4a, +1056m,
—132a,m, + 264a,m, — 528a2mlj
7(—64—16a, + 32a, — 2096m, — 524a,m, +1048a,m, + a,(8+ 262m, )
8—a, +2a, —4a, +1044m,
—130.58,m, + 261a,m, — 522a2mlj
7(256— 64a, +8480m, — 2120a,m, + a,(16 +530m, ))
—-16-4a, + 4a, — 2120m,
—527a,m, +526a,m, + 4a2mlj
7(256 - 64a, +8384m, — 2096a,m, + a,(16+ 524m, ))
—-16-4a, + 4a, — 2096m,
—521a,m, +520a,m, + 4a2mJ

+m,(32—4a, +8a, —16a, )+ m{

*h +m (32— 4a, +8a, —16a, )+ mo[

%o/ m (- 64-16a, +16a, )+ mo[

+b,

+m,(-64-16a, +16a, )+ mo[
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7(— 320+ 48a, — 32a, —10600m, +1590a,m, —1060a,m, — a,(8+ 265m))

—-8-5a, - 2a, +12a, —1048m,
—655a,m, — 270a,m, +1588a,m,

o +m(~32-20a, —8a, +48a,)+ mo(
7(— 320+ 48a, — 32a, —10480m, +1570a,m, —1048a,m, — a,(8+ 262m, ))

+Db, —8-5a, — 2a, +12a, —1036m,

— 647.5a,m, — 267a,m, +1570a,m

y(128a2 +4240a,m, — a,(32+1060m, ))
+m, (128 -32a, ) + m, (32— 8a, + 4240m, +10a,m, —1060a,m, —8a,m, )

;/(128a2 +4192a,m, — a,(32+1048m, )
+ m, (128 - 32a, )+ m, (32— 8a, + 4192m, +10a,m, —1048a,m, — 8a2ml)J
7(320 - 48a, — 32a, +10600m, —1590a,m, —1060a,m, — a,(8+ 265m, ))
8+ 53, — 28, —12a, —1072m,
+ 6708, m, — 260a,m, — 1592a2mlj
)/(320 48a, — 32a, +10480m, —1572a,m, —1048a,m, — a,(8+ 262m,))
—8+5a, — 23, —12a, —1060m,
+ 662.58,m, — 257a,m, — 1574a2mJ

+m,(~32-20a, —8a, +48a,)+ mo[

—32+20a, —8a, —48a, )+ mo[

—32+20a, —8a, —48a, )+ m{

— 256 — 64a, —8480m, — 2120a,m, + a,(16 + 560m, ))
—16+ 4a, + 4a, — 2120m,
{ +533a,m, + 534a,m, + 4a2mJ
— 256 - 64a, —8384m, — 2096a,m, + &, (16 + 524m, ))
—-16+ 4a, + 4a, — 2096m,
{ +527a,m, +528a,m, + 4a2mj

7(64+16a, +32a, + 2120m, + 530a,m, +1060a,m, + a,(8+ 265m,))
+a, + 2a, + 4a, +1064m,
{ +133a,m, + 266a,m, + 532a2ml)
7(64+16a, + 32a, + 2096m, + 524a,m, +1048a,m, + a,(8+ 262m, ))
+by 8+ a, + 2a, +4a, +1052m,
[ +131.5a,m, + 263a,m, + 526a2mlj

(-64+16a, +16a,)+ mo[

(- 64+16a, +163a, )+ mo(

+m(32+4a, +8a, +16a, )+ mo(

+m,(32+4a, +8a, +16a,)+ rrb(

Puas = Do ME (b, (— 16+ 8m, + my (= 522+ 261m, )) + by, (— 16+ 8m, + my(— 528+ 264m, )))

o = bZ(— 8+ 4m, + m,(- 261+130.5m, )+ bZ, (16 + 24m, + m, (- 524+ 790m, ))
wr +bybyp (— 24+ 28m, + my(— 782+ 913m,))

(b3 (~16+16m, + my(— 520+ 521m, )+ b, (32 +16m, + m, (1064 + 520m, ))
Pize +1,byp (16 + 32m, + m, (526 +1041m,))
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65(.\)

o = b2(8+ 20m, + m, (267 +647.5m, )+ b2, (32—16m, +m, (1056 — 540ml))]
35

+byb,, (40+4m, + m, (1314 +121m,))

b?(32+ m, (1048 —10m, ))— b, (16 + 24m, + m,(536+800m, ))
+byb,, (16— 24m, + m,(530+801m,))

5 b?(8—20m, + m,(257 - 662.5m,)) - b, (16 +8m, + m,(532+ 266m,))
Puzs =1Th) _ bybyp, (8+ 28m, + m, (266 +933m ))

Pray = bomo(b0 (16+16m, +m,(528+527m,))+ b, (16+16m, + my, (534 + 533ml)))
= by (b, (8+ 4m, + m, (263+131.5m )+ by, (8+ 4m, + m, (266+133m,)))

—(b0 +hyp (- 16+8m, + (16m, —12m¢ + 4m¢ —0.5m¢ j2— m))

<b0+b0D264 16m — 64mo+24moml+16rrb(1 m)+my (- 4+3ml))
80-8m, +(16m, +2.5 2+3m )+12n¢ (6

p4=bo+b0D( m,+ (16m, +25m 2+ 3m ) + 12 ml)}

Pysy = MY

4mi(2+5m)
2

p; = (b, +byo) 32”‘1+168”b 3mgm, —2m¢ )+ 10mgm )
~ —80—8m, + (~16m, + 2.5m¢ |2+ 3m,)—12n¢(6+ m)
+4mO 2+5m,)

2

b0+b0D —64—16m, — 64m, + 24n¢m, +16n(1+ ml)+mo(4+3ml))
P, = (bo +byp )2 6+8ml+<16mO —12m0 +4m0 —-0.5m, )(2+ ml )
(7.99)

Simulated control responses of origina (continuous-time) controllers versus the

discrete ones amost coincide, thus, these plots are not displayed here.

7.9 Feedback control applied to the laboratory plant

Last of al, selected smulated results from Subchapter 7.7 are going to be
concisely verified by taking real measurements on the laboratory circuit heating plant.
Namely, parameters of relay test based models (6.1) obtained by the use of a saturation
relay with the time-domain solution and the relay transient, respectively, are identified.
Then, controllers (7.46) and (7.55) derived by the algebraic approach in the Rys ring for
model (7.40) are compared with those designed for relay-based model, i.e. (7.59) and
(7.60), and with the ones simplified by the Padé approximation, i.e. (7.94) and (7.95).
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7.9.1 Original controllersusing the Rysring

Control responses for the original controller (7.46) incorporated in the 1DoF
structure are displayed in Figs. 7.34. and 7.35. As can be seen from the figures, both
stepwi se reference tracking and disturbance rejection are accomplished well. The measured
control action is asymptatically lower then the expected one, likely due to an imperfect
temperature sensors calibration (we suppose that u=300 W implies y=36 °C).

The use of the TFC control system with controllers (7.55) yields responsesin Figs.
7.36 and 7.37. Contrariwise to the 1DoF test, the real manipulated input is higher then the
simulated one. We suppose that this is because of very low temperature in a laboratory
room during the measurement (approx. 18 °C), which causes a lower plant static gain and
possibly incorrect sensors calibration. However, a new plant model (operation point) has
not been calculated to demonstrate the robustness of the control system. Undisturbed
stepwise and linearwise reference tracking is satisfied very well; nevertheless, the reaction

to a stepwise disturbance introduces oscillating modes.

450 . . .
)
400 | 1 .
s
3sop| & o &
j See e e
300 D .
250—; .
= 200—} .
= 1501 g
S
100 -i B
50 i_ -
O -
------- Simulated data
-50 1 — — Measured data
d(t)
-100 I I ! I
0 1000 2000 3000 4000 5000 6000

Time [s]

Fig. 7.34 Measured vs. smulated control responses of Au,(t) for the 1DoF structure with
controller (7.46)
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Fig. 7.35 Measured vs. simulated control responses of Ay(t) for the 1DoF structure with

controller (7.46)

400} ; A 1
i,
I \m\v_,zwwxl I Jt‘ﬁf'(;gf'\;f\'hﬂ'r'bﬁ]‘]
300k G iJ Vv )
. ol Iy
B {H
200} e L L
= v ;| };W'I “‘ | 11, by
= 100f AV i 1
5 100 .'?fJ i)
/ ! } ‘I ”
i _
0 1
it
=100 - Simulated data |1F ]
— — Measured data i
—d)
300 T 1 1 1 1
2000 4000 6000 8000 10000

Time [s]

Fig. 7.36 Measured vs. simulated control responses of Au,(t) for the TFC structure with

controllers (7.55)
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Fig. 7.37 Measured vs. simulated control responses of Ay(t) for the TFC structure with

controllers (7.55)

7.9.2 Relay test based controllers using the Rysring

Let us use therelay test to identify parameters of plant model (7.40). A comparison
of smulated and measured data from the relay test with a symmetrical and biased on-off
relay, saturation relay and those with an artificial delay element are presented in Tab. 7.15,
see also Subchapter 7.4.1.

There emerges a problem of a shifted stationary component (y,) of limit cycles,
see Fig. 7.38, here that is caused likely by process nonlinearity. It brings about
inconveniencies mainly for the static gain evaluation using a biased relay (Fig. 7.39) and
for the relay transient test since it is not clear whether to take y, =36 (i.e. the steady state
before the entrance of a symmetrical relay output) or y, = 35.38 which is the arithmetical

mean value of maximum and minimum outputs within the period of limit cycles. Both
possibilities are benchmarked within the static gain evaluation and the relay transient
procedure below.
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Tab. 7.15 Comparison of smulated and measured relay tests data

Quantity Measured data | Simulated data
A [°C] 1.85 1.9975
T.. [9] 377.9 364.8
k,,[W-C] 137.65 127.48
7 [9] 129.6 136.7
k., [W-C7] 151.42 140.23
A, [°C] 1.32 1.426
A, [°C] 159 1.9245
T, [S] 380.6 3734
o [9 78.7 77.8
A [°C] 2.72 31
-Fu L [dl 579.9 555.3
k,, [W-CY] 93.62 82.14
k,, [W-°CY 131.07 115
Zz [°C] 2.55 2.52
A [°C] 153 1.7391
fu,z [s] 616.7 597.8

BIOIRY

38

37.5}
37
36.5}
36
3351 135.38
35t
3450

34f

33.5F

33
0

Il 1 1 1
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Fig. 7.38 Symmetrical on-off relay test
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Fig. 7.39 Biased relay test
If y,=36 is taken, the static gain according to (2.126) results in k=-0.0133,
which is a physical nonsense. For y,=35.38, k=0.0078 is obtained, which is much

closer to the redlity, yet still too far from the “real” gain k=0.0325. If this value were
required to be reached, the value y, = 34.65 would be set.

Time-domain solution, see Subchapter 7.4.2, of limit cycles data via the NM
method (starting from the initid parameters estimation a,=a =0.5/T,,=0.013,
7=¢=129.6) isintroduced in Tab. 7.16, where i stands for theiteration step. These steps
are chosen so that they provide substantialy diverse model parameters estimations. Note
that all parameters sets give stable models and k =b,/(a, +a,)=0.0325 is taken from a
step response.

Apparently, the estimation for i =40 gives a better result than the converged one,
see Fig. 7.40 for the comparison of step responses, that is comparable to the best smulated
result (in Tab. 7.11).

Consider now the use of the relay transient with the same settings as in Subchapter
7.4.3. Datafor y, =36 then (using the NM optimization) provide parameters estimations
that mostly give unstable plant models (e.g. for i=20,40,1800). Exceptiona “stable”
values are presented in Tab. 7.16.
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Tab. 7.16 Time domain solution via NM method

i 8 20 40 1800

a, 2192334107 | 1.6925505-102 1.570412-10 3.815484-10°°
a —-1.754199-10%| -1.069627-10° | —8513952-10° | —2.677777-102
7 137.71 134.59 134.45 78.88

15 137.71 139.34 139.84 132.55

€ 1.04-10°° 8.03-10°° 3.56-10°° 14710
Je 96.95 5.601 0.321 2.291

Jisre 82175 3341.2 183.85 1331.1

10

=
5t
!

3 L

2 L

1l — Measured data

——i=40
Ofrrnst e i=1800
0 500 1000 1500 2000

Time [s]

Fig. 7.40 Sep responses comparison of measured data vs. relay based model using the
time domain solution

If it is considered that y, =35.38, the NM method converges as well; however,

amost al estimations give unstable models except for i=12, with a,=0.3007063,

a, =-0.2233959, 7=157.15, 9=10179, e=1.64-10°, J, =16.165, J,gr = 9900.
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Tab. 7.17 Results of the use of the relay transient with y, =36

i 8 20

a8, | 9.396924-107 | 5576783-10°2
a, | -6.905566-102 —3.101127-10°
¢ [177.95 165.2

o | 15817 145.21

e |[109107 6.69-10°

Jo | 32428 4.002

Jioe | 26016 1591

compared to the measured response are pictured in Fig. 7.41. It seems that y,=36 isa

Step responses for the best results of both variants (y, =36 vs. y,=35.38)

more suitable choice.

10
9 L
g L
‘IT L
6 L
=
2. 57
5 4
3r :
2t i
: | — Measured data
1 — —y,=36°C
Obweid e 3.'D=35.l-'l °C |
0 500 1000 1500 2000
Time [s]

Fig. 7.41 Sep responses comparison of measured data vs. relay based model using the

time domain solution
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Asitisclear from Figs. 7.40 and 7.41, the time-domain evaluation of limit cycles
from on-off and saturation relay tests gives better plant model parameters estimations in
comparison with the use of relay transient, although simulation benchmark has given
rather different results. The letter methodology is senstive to signal noise and the
estimation of a stationary component of the signal. Therefore, as plant model parameters,
the data in the third column in Tab. 7.16 are taken. Control responses for the 1DoF system
with controller (7.59) are presented in Figs. 7.42 and 7.43, whereas those for the TFC
system with controllers (7.60) can be seenin Figs. 7.44 and 7.45. For particular controllers
settings, see Subchapter 7.7.

Regarding to a peak of the real control response in Fig. 7.42 and output
insufficiency in Fig. 7.43 within the time range approx. te [1000,2000], these
unsatisfactory data are caused probably by temporarily decreased room temperature. The
same problem is apparent in other two figures. Amazingly, the real reaction to a step
change in the reference signal is better then in the case of the original controllers (7.55)
because of |ess oscillating output.
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Fig. 7.42 Measured vs. smulated control responses of Au,(t) for the 1DoF structure with
controller (7.59)
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Fig. 7.43 Measured vs. simulated control responses of y(t) for the 1DoF structure with

controller (7.59)
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Fig. 7.44 Measured vs. simulated control responses of Au,(t) for the TFC structure with

controllers (7.60)
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Fig. 7.45 Measured vs. simulated control responses of y(t) for the TFC structure with
controllers (7.60)

Overall, there is a very good agreement between simulated and measured data in

the figures even though plant models (parameters) rather differ (compare Tabs. 7.10 and
7.16).

7.9.3 Simplified controllers using the Padé approximation

Finaly, verify the usability of controllers (7.94) and (7.95) that has arisen from the
simplification of controllers (7.46) and (7.55) using the Padé approximation. The

corresponding comparison of simulated and measured control responses are displayed in
Figs. 7.46 —7.49.

To avoid the abrupt change in the control action at the beginning of Fig. 7.46, we
would suggest using alow-pass filter on the reference signal (smilarly asfor the preceding
subchapter). Other undesirable effect can be seen near the end of the measurement where
due to rapidly decreasing ambient temperature the control action increases whereas
controlled temperature can not reach the reference value.
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Fig. 7.46 Measured vs. smulated control responses of Au,(t) for the 1DoF structure with

controller (7.94)
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Fig. 7.47 Measured vs. simulated control responses of y(t) for the 1DoF structure with

controller (7.94)
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Fig. 7.48 Measured vs. simulated control responses of Au,(t) for the TFC structure with

controllers (7.95)
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Fig. 7.49 Measured vs. simulated control responses of y(t) for the TFC structure with
controllers (7.95)
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Although real control responses are not as satisfactory as in the case of original
and relay-test based controllers derived using the Rys ring, figures above prove the
usability and applicability of smplified finite-dimensional controllers as well. Particularly,
the reaction to the load disturbance when using the TFC structureis surprisingly good.

7.10 Discussion and summary

To sum up, the above presented practical experiment of control of a laboratory
circuit heating plant (i.e. temperature driven by the heater power) has proven the usability
and applicability of identification and control algorithms described in this thesis, in red
conditions. Naturaly, there emerge some problems related to the sensitivity to ambient
temperature, measurements uncertainties, unexpected environmental influences or the
estimation of a stationary component for relay-based model parameters identification.
However, al the designed controllers and their performance have affirmed the robustness
of the designed approaches, particularly, those based on the Rys ring together with the
Bézout identity and the Y oula-K u¢era parameterization.
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8 CONTRIBUTIONSAND FURTHER DIRECTIONS

The primary contribution of this thesis has been a diminutive development and
enhancement of some magnificent theoretical ideas of agebraic control of linear dynamic
continuous systems with delays or latencies, regardiess of whether in an input-output or
internal relation. Practical aspects have not been omitted as well, as demonstrated in the
final part of the thesis.

In the first part of the thesis, a concise classification of mathematical models of
linear systems with delays has been presented. Dynamic properties of these models are an
inseparable part of their description; therefore, poles, zeros, stability and related notions
have followed the models classification. Without any attempt to be exhaustive, as the
emphasis has been put to algebraic control approaches, an overview of their contemporary
state supported by the enumeration of basic algebraic notions and their mutual relations
has been introduced afterwards. The work has then also purveyed control system structures
and controller tuning principles to be used, unstructured robust stability and performance
analysis tools, fundamentals of relay-feedback autotuning and it has briefly outlined

possihilities of anisochronic controller discretization aswell.

This introductory survey part of the thesis has intended to familiarize the reader
with basic and/or recent ideas and approaches which can be useful throughout the work.
One of educational and didactic contributions consists in many examples, introduced here,
elucidating presented factsto even non-experts.

The crucia section of the thesis which has brought about new ideas and enhanced
existing ones about algebraic controller design in the ring of (retarded) quasipolynomial
meromorphic functions, Rys, then has followed. The extenson of the ring to neutra
delayed systems, proofs of some basic properties of the revised ring formulation, a
constructive methodology for controller design, the investigation of a quasi-finite spectrum
assignment procedure, stability analysis of selected retarded quasipolynomials, an original
pole-placement-like optimal tuning algorithm or a generdization of the Nyquist criterion
and robust stability and performance conditions belong to the most important and

interesting results from the theoretical point of view.
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A novel combination of the use of a saturation relay and an anisochronic plant
model together with unordinary data evaluation for controlled system modelling and
identification can be attributed to the theoretical merit of this thesis as well. Delayed

controllers’ simplification proposal has been aminor yet integral part of this work.

From the practical point of view, most of theoretically described and developed
procedures and ideas have been verified on control of temperature of a laboratory
appliance representing a circuit heating system with significant input-output as well as
interna delays. The results and subsequent discussion indicate both pros and cones of
introduced controller design and tuning. Practical test have proven the usability and
applicability of controllers calculated using the Rys ring for both original and relay-based
plant models, and also of simplified versions of final controllers. Although there is a
significant difference between simulated and real-measured control responses, al
controllers have shown their robustness that was cal culated before.

There are many possible ways how to utilize and extend the obtained results. For
instance, proofs of other Rys ring properties, a more constructive stabilizing procedure, the
use of other control system structures or the development of efficient and optimal tuning
algorithms can be some of further theoretical contributions. From the practical point of
view, the assembling and programming of a compact embedded industrial controller

interpreting the core of thisthesis can be a challenging task.
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9 CONCLUSION

Systems with delays or latencies of any type can be found al around us, in the
everyday use, therefore there is a natural necessity to control them. However, delays
depreciate control feedback performance due to the infinite spectrum of the control system
that appears when using conventional finite-dimensional controllers, which can lead up to
feedback instability. Thus, it is no wonder that problems of systems with delays have been
considered in control theory for decades. There have been developed a great many
algorithms and approaches dealing with this task; however, there is still a lack of those
taking advantages of input-output models or dealing with internal delays. The use of

algebraic structures, such asrings, can be fruitful in the effort to cope with thisissue.

This doctoral thesis has been focused on issues of continuous-time algebraic
control design for time-delay systems as well as relay-based identification of anisochronic
models and controllers’ parameters tuning, to name the main topics. Firgt, it has provided a
relatively detailed overview of analysis and control methods for linear time-invariant
systems with delays concerning algebraic ones and related notions. Tuning of delayed
controllers, their robustness as well as principa issues of relay-based identification and
autotuning and possible controller discretization approaches have followed as a next

descriptive part of the work.

A novel or beneficia section of the thesis has introduced a revision version of the
Rus ring accompanied by its basic properties, a detailed controller design procedure based
on the Bézout identity and the Youla-Kucera parameterization for two distinct control
system structures using the ring, some stahility issues usable aso for robust stability and
performance analysis and supported by arelatively origina relay-based identification idea
for time-delay plant models. The approach provides a quasi-finite spectrum assignment for
one of control structures. A suboptimal agorithm for controllers’ parameters settings via
poles shifting has been proposed in addition. For practical reasons, some suggestions of
anisochronic controller’ s simplification have not been omitted. Many ideas and approaches
have been supported by illustrative examples. The main disadvantages of the proposed

controller design method can be considered in the fact that thereit is not always possible to
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perform Bézout coprime factorization. On the other side, the procedure is easy-to-handle,

robust and applicable to awide range of time-delay systems, including neutral ones.

The final, practical, part of the work has shown relay-based identification and
algebraic control experiments on a circuit heating laboratory model. Although some of
relay-based identification submethods has shown to be sensitive to the estimation of the
stationary signal component, al designed controllers proved to be practicaly applicable
and robust even to a very inaccurate estimation of ambient temperature.
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