

Michal Gerža, MSc.

Intelligent Measureserver

for Controlling Remote Real Experiments

with Embedded Simulations and Advanced Diagnostics

Doctoral Thesis

Branch of study: Engineering Informatics

Supervisor: Prof. Dr. František Schauer, DSc.

Zlín,

August 2017

© Michal Gerža, MSc.

Published by Tomas Bata University in Zlín in 2017.

3

ACKNOWLEDGEMENTS

I would like to thank all the people who helped me along the way to finish

this work. My family, colleagues in the team and friends who supported me and

one exceptional man, my supervisor Prof. Dr. František Schauer, DSc. who

introduced me to the world of science and amazed me with his experiences and

brilliant ideas. He was my guide during the doctoral study and helped me to

achieve many things I would never dare to think of them.

I would also like to recognize and extend my appreciation to the committee

members, for taking time to read the dissertation and offering constructive

criticisms that helped improved the final work.

Especial thanks for the support of the present work during majority period of

the doctoral study, belongs to the Swiss National Science Foundation via the

project SCOPES and thanks to Dr. Denis Gillet for organizational work.

4

ABSTRACT

People are developing various technologies, using laws of physics behind

real-world phenomena. This process is continuous and is presently getting faster

and more intensive. Achieved technological advances affect all areas of every

day’s life, including the field of education. Contemporary society requires more

complex tools providing more accessible and effective educational methods.

Information and communication technologies offer many tools to meet the

requirements on which rest teaching and learning, especially in natural sciences

and engineering fields. Studying these fields is based on real experimental work

in laboratories with specific equipment and devices for a better understanding

the given phenomenon. This form of study, when the user must regularly attend

laboratories to perform necessary measurements, is not always acceptable for

many reasons. Most of laboratories cannot provide a wide range of the real

experiments, where expensive devices, needed for the elucidating and analysis

of desired phenomena, are involved. Development in this direction of these

requirements led to the design and implementation of the concept of the remote

laboratories to deliver physical experiments via the Internet. The connected

users are provided with the different tools as, for example, corresponding theory

of the studied phenomenon. In our case, the concept is called Intelligent School

Experimental System (ISES) operated as an open system platform.

The doctoral thesis focuses on the design and implementation of software

components related to the ISES Measureserver, finite-state machine in principle

that is a core unit of this platform. The activities within the thesis are aimed at

five tasks, defined as the goals of the thesis. These goals were solved as the

independent project works, integrating progressive concepts, approaches and

technologies, which bring new features contributing to better teaching outcomes,

reliability and maintenance of the ISES remote laboratories.

Keywords: REMLABNET; RLMS; ISES; Measureserver; remote laboratory;

data archiving; advanced diagnostics; embedded simulation.

5

ABSTRAKT

Lidé vyvíjejí různé technologie využívající fyzikálních zákonů, které popisují

přírodní jevy. Tento vývoj je kontinuální a je v současné době rychlejší a

intenzivnější. Dosažený technologický pokrok ovlivňuje všechny oblasti

každodenního života zahrnující i oblast vzdělávání. Současná společnost

požaduje složitější nástroje poskytující dostupnější a efektivnější vzdělávací

metody. Informační a komunikační technologie nabízejí mnoho nástrojů

vyhovující požadavkům pro podporu výuky a studia, obzvláště v oblasti

přírodních věd a techniky. Studium těchto oborů je založeno na reálné

experimentální práci v laboratořích se specifickým vybavením a zařízeními pro

lepší pochopení daných jevů. Tato forma studia, kdy uživatel musí pravidelně

navštěvovat laboratoře, aby vykonal nezbytná měření, již není akceptována z

mnoha důvodů. Většina laboratoří nemůže poskytnout široký rozsah reálných

experimentů, kde jsou k dispozici drahá zařízení pro objasnění a analýzu

požadovaných jevů. Vývoj směrem k těmto požadavkům vedl k návrhu a

realizaci konceptu vzdálených laboratoří s cílem poskytnout fyzikální

experimenty přes Internet. Připojeným uživatelům jsou poskytnuty rozdílné

nástroje, jako je například odpovídající teorie ke studovanému jevu. V našem

případě je koncept nazván Inteligentní školní experimentální systém (ISES)

běžící jako otevřená systémová platforma.

Tato doktorská práce se zaměřuje na návrh a implementaci softwarových

komponent související s jednotkou Measureserver ISES, v podstatě s konečným

stavovým automatem, jenž je hlavní jednotkou této platformy. Aktivity v této

práci jsou zaměřeny na pět úkolů, které jsou definovány jako cíle této disertace.

Tyto cíle byly řešeny jako nezávislé projektové práce, integrující progresivní

koncepty, přístupy a technologie, které přinášejí nové funkce k dosažení lepších

výsledků ve výuce, spolehlivosti a údržbě vzdálených laboratoří ISES.

Klíčová slova: REMLABNET; RLMS; ISES; Measureserver; vzdálená

laboratoř; zálohování dat; pokročilá diagnostika; vestavěná simulace.

6

CONTENTS

LIST OF FIGURES ... 8

LIST OF TABLES .. 16

LIST OF SYMBOLS AND ABBREVIATIONS .. 17

1. INTRODUCTION .. 19

1.1 Remote laboratories .. 19

1.2 Remote laboratories globally .. 20

2. ISES HANDS-ON LABORATORIES, STATE OF THE ART 23

3. ISES REMOTE LABORATORIES, STATE OF THE ART 25

3.1 ISES remote laboratory history and basic working scheme 25

3.1.1 ISES remote laboratory units ... 26

3.1.2 ISES finite-state machine ... 31

3.2 ISES Measureserver unit and its communication 32

3.3 Working scheme of ISES Measureserver unit.................................. 34

3.4 Easy Remote Laboratory expert system tool 40

3.5 RLMS REMLABNET .. 45

3.6 Deficiencies and drawbacks of ISES Measureserver 48

4. GOALS OF THE DOCTORAL THESIS ... 49

5. METHODS USED .. 50

5.1 Finite-state machine classification and concept 50

5.2 Language parsers .. 50

5.3 Context-free grammars ... 53

5.4 ISES Measureserver unit and its psc control script 53

5.5 Grammar syntax of psc script ... 54

7

5.6 Libraries and functionalities of psc script .. 56

5.7 Analysis of Measureserver functioning and data traffic 58

5.7.1 Components initialization .. 60

5.7.2 Control program operation... 70

6. MAIN RESULTS OF THE WORK ... 77

6.1 Data archiving and logging module ... 77

6.2 First level diagnostics module.. 88

6.2.1 Notifying thread component .. 89

6.2.2 Operating thread component .. 91

6.3 Second level diagnostics module ... 97

6.3.1 Detecting thread component .. 101

6.4 Embedded real-world phenomena simulation module 107

6.4.1 Modified Euler integrator .. 111

6.4.2 Runge-Kutta integrator .. 113

6.4.3 Integrator parameters component .. 116

7. CONTRIBUTIONS OF THE WORK .. 121

CONCLUSIONS ... 122

REFERENCES .. 123

PUBLICATION ACTIVITIES OF THE AUTHOR 131

CURRICULUM VITAE ... 133

8

LIST OF FIGURES

FIGURE 1 TYPICAL SCHEME OF THE RLMS ARCHITECTURE 20

FIGURE 2 ISES PHYSICAL HARDWARE AND SOFTWARE

COMPONENTS; THE PCI ADDA INTERFACE CARD, THE SET OF

METERS, SENSORS AND DEVICE .. 24

FIGURE 3 EXAMPLE OF THE ISES RL “SOUND LABORATORY”

INCLUDING THE SOUND GENERATOR, VOLTAGE SOURCE,

RELAY BOARD, CONTROL BOARD, COMPUTER, AND

APPARATUS WITH SPEAKER AND TWO MICROPHONES 26

FIGURE 4 GRAPHICAL USER INTERFACE OF THE MS UNIT TO

PROVIDE THE CLIENTS’ ACCESS, CONNECTIONS, EXPIRATIONS

AND LOGGING .. 28

FIGURE 5 DIAGRAM OF THE IMAGESERVER FUNCTIONALITY

INCLUDING THE CAMERA DEVICE AND FILE SYSTEM TO

DISTRIBUTE THE VIDEO ... 29

FIGURE 6 STRUCTURE OF THE ISES RL COMPONENTS INCLUDING THE

WEBSERVER UNIT REPRESENTED BY THE NGINX REVERSE

PROXY SERVER TO PROVIDE WEB SERVICES .. 30

FIGURE 7 EXAMPLE OF THE WEB PAGE OF THE ISES RL “TRANSIENTS

IN RLC CIRCUITS” .. 31

FIGURE 8 SCHEME OF THE INTERNAL AND EXTERNAL MODULES

CONSTITUTING THE MS UNIT THAT MEDIATES THE

CONNECTION BETWEEN THE RIG AND REMOTE CLIENTS 34

FIGURE 9 EXAMPLE OF THE CONFIGURATION FILE, CONTAINING THE

PARAMETERS FOR THE INITIAL SETUP OF THE MS UNIT AND

GRAPHICAL USER INTERFACE, PARSED AND PROCESSED BY

THE CFG MODULE DURING ITS STARTUP ... 35

FIGURE 10 LOG CONFIG PANEL TO SET THE LONG TERM AND SHORT

DATA LOG .. 36

FIGURE 11 USERS’ LOG FILE CONTAINING THE TIMESTAMPED

RECORDS ABOUT INTERVENTIONS PERFORMED BY THE

CLIENTS .. 36

FIGURE 12 DIALOG BOXES ALLOWING THE SETUP OF USED PLUGINS

IN THE GUI MODULE; THE FIRST (UPPER) ENABLES TO SET THE

CARD INDEX OF THE ADDA INTERFACE CARD, THE SECOND

file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946294
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946295
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946295
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946295
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946296
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946296
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946296
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946296
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946297
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946297
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946297
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946298
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946298
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946298
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946299
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946299
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946299
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946300
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946300
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946301
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946301
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946301
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946302
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946302
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946302
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946302
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946303
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946303
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946304
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946304
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946304
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946305
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946305
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946305

9

(LOWER) REQUIRES ENTERING THE CONFIG FILE (PSC CONTROL

PROGRAM) AND PLUGIN CONFIG (REFERENCE TO THE

INTERFACE CARD) TO COMMUNICATE WITH THE ISES CONTROL

BOARD ... 37

FIGURE 13 SCHEME OF THE LDP PLUGINS USED WITH THE MS

RELATED TO THEIR INTERCOMMUNICATION AND

CHARACTERIZATION .. 39

FIGURE 14 SNIPPET OF THE EXPERIMENT “SINE GENERATOR”

INCLUDED IN THE PSC FILE; THE SECTION “STATE” IS STARTED

ONCE, THE SUBSECTION “STEP” CALCULATES THE SINE IN A

LOOP BASED ON THE FREQUENCY “STEP_FREQUENCY”, THE

HANDLER “PIN_READ” AND “PIN_WRITE” COMMUNICATE WITH

WIDGETS ON THE WEB PAGE .. 40

FIGURE 15 WELCOME PANEL OF THE ER-L PROVIDING ITS

GRAPHICAL DEVELOPMENT ENVIRONMENT WITH THE

EXPERIMENT COMPONENTS ... 41

FIGURE 16 EXPERIMENTS LIBRARY WINDOW OF THE RL STARTING

LEVEL INTENDED FOR THE EXPERIMENT SELECTION, ITS

MODIFICATION AND COMPILATION ... 42

FIGURE 17 MODULES SELECTION WINDOW OF THE RL BASIC LEVEL

THAT PROVIDES THE INTUITIVE SETUP FOR THE ISES CONTROL

BOARD SLOTS ... 43

FIGURE 18 BLOCKS SELECTION WINDOW OF THE RL ADVANCED

LEVEL TO DESIGN AND CONFIGURE THE COMPLEX

EXPERIMENT COMPONENTS ... 44

FIGURE 19 SCHEME OF THE REMLABNET PLATFORM COVERING THE

ISES RLS WITH PHYSICAL EXPERIMENTS, VARIOUS SERVICES

AND CONNECTED CLIENTS ... 46

FIGURE 20 FLOWCHART OF THE SOURCE STRING PROCESSING IN THE

TYPICAL PARSER .. 51

FIGURE 21 OLD VERSION OF THE PSC SCRIPT PRESENTING A

COMPLICATED CODING SCHEME TO CREATE DATA

STRUCTURES AND EXPERIMENT LOGIC .. 55

FIGURE 22 FAST EXPERIMENT WITH THE “INIT” AND “FINALIZE”

BLOCKS SWITCHING THE RELAY ON/OFF AND THE

“ON_SAMPLE” BLOCK GATHERING DATA PROVIDED BY TWO

METERS ATTACHED TO THE ELECTRONIC CIRCUIT .. 55

file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946305
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946305
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946305
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946305
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946306
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946306
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946306
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946307
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946307
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946307
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946307
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946307
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946307
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946308
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946308
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946308
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946309
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946309
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946309
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946310
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946310
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946310
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946311
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946311
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946311
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946312
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946312
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946312
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946313
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946313
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946314
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946314
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946314
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946315
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946315
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946315
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946315

10

FIGURE 23 CLASS DIAGRAM OF THE MS CONCEPT CONSISTED OF THE

OBJECTS CREATING ITS BASIC FUNCTIONALITY; THE BASE

OBJECT MFC COBJECT, THE DERIVED OBJECTS PROVIDE MAIN

FEATURES AND THE LOWEST LEVELS BRING THE DIALOG

BOXES, COMMUNICATIONS, PROCESSES AND PARSERS 59

FIGURE 24 SCHEME OF THE LR PARSING ALGORITHM TO PROCESS

INPUT STRING ... 61

FIGURE 25 EXAMPLE OF THE ALGORITHM TO BUILD THE FIRST(X)

STATEMENT .. 63

FIGURE 26 ALGORITHM TO IMPLEMENT THE CLOSURE OPERATION 64

FIGURE 27 ALGORITHM TO IMPLEMENT THE GOTO OPERATION 64

FIGURE 28 PROCEDURE TO MATCH THE INPUT SYMBOL .. 67

FIGURE 29 PROCEDURE TO ACCOMPLISH THE DERIVATION TREE

FOR X + (X + X) .. 67

FIGURE 30 PROCEDURE TO TRAVERSE THE EXPRESSION TREE 68

FIGURE 31 PROCEDURE TO EXECUTE THE PRODUCTION .. 68

FIGURE 32 GENERAL ALGORITHM OF THE FACTORING PROCESS 69

FIGURE 33 GENERAL ALGORITHM OF THE SUBSTITUTING PROCESS 70

FIGURE 34 SCHEME OF THE HANDLERS USED FOR THE FINITE-STATE

MACHINE OPERATION .. 73

FIGURE 35 EXAMPLE OF THE FSM-BASED CONCEPT USED TO

CALIBRATE THE SENSOR POSITION, TO WAIT FOR THE

CONNECTED USER AND TO START THE EXPERIMENT

OPERATION WITH ITS OPTIONAL FINISH .. 74

FIGURE 36 EXAMPLE OF THE PSC SCRIPT IN WHICH IS IMPLEMENTED

THE FSM-BASED EXPERIMENT; THE SPECIFIERS “STATE” ARE

STATES, THE VARIABLE “CURRENT_STATE” MAKES A

TRANSITION TO A NEW ASSOCIATED STATE DURING THE

OPERATION .. 75

FIGURE 37 SCHEME OF THE MS FUNCTIONAL CONCEPT THAT

INCLUDES THE NEW MODULES LOCATED IN THE RED FRAME;

1) DAM IS DATA ARCHIVING MANAGEMENT, 2) MUD IS

MEASURESERVER UNIT DIAGNOSTICS, 3) PMD IS PHYSICAL

file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946316
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946316
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946316
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946316
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946316
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946317
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946317
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946318
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946318
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946319
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946320
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946321
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946322
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946322
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946323
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946324
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946325
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946326
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946327
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946327
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946328
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946328
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946328
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946328
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946329
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946329
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946329
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946329
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946329
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946330
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946330
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946330
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946330

11

MODULES DIAGNOSTICS, AND 4) EPS IS EMBEDDED REAL-

WORLD PHENOMENA SIMULATION .. 77

FIGURE 38 IMPLEMENTATION OF THE DAM MODULE THAT

CONSTRUCTS THE CXMLIF OBJECT WITH ITS VARIABLES AND

NODES IN THE SOURCE CODE FILE

SERVERLISTENINGSOCKET.CPP TO CREATE THE XML FILE 80

FIGURE 39 IMPLEMENTATION OF THE DATA ARCHIVING PROCESS TO

CREATE THE DESCENDING NODE “ROW” TO WHICH IS

INSERTED A NEW RECORD WITH THE ROW NUMBER “NAME”,

CURRENT TIME STEP “TIME” AND MEASURED DATA PIN

“VALUE” READ THE METER .. 81

FIGURE 40 ACTIVITY DIAGRAM OF THE ARCHIVING PROCESS

PERFORMED WHEN THE CLIENT’S MESSAGE

“COMMAND_BURST_EXPERIMENT” IS SENT TO THE MS TO

SAVE DATA FROM THE FAST EXPERIMENT TO THE FILE 83

FIGURE 41 EXAMPLE OF THE XML FILE THAT IS GENERATED BY THE

DAM’S FUNCTIONS; THE FILE COVERS THE MEASURED DATA,

METADATA AND CONTROL VALUES AFFECTING THE

MEASUREMENT. THE VIEWER PRESENTS THE THREE PANELS,

THE ATTRIBUTES PANEL SHOWING ATTRIBUTES OF THE

“EXPERIMENT” BRANCH, THE XML SOURCE PANEL LISTING THE

DATA STRUCTURE AND THE BRANCHES TREE PANEL 84

FIGURE 42 EXAMPLE OF THE XML STRUCTURE THAT PRESENTS THE

1506161040530410.XML FILE TO POINT OUT THE SUBSECTION

ELEMENTS. THE FILE COMES FROM THE RL “TRANSIENTS IN

RLC CIRCUITS”. THE CONTENT IS HIGHLIGHTED BY THE

COLORED LINES TO DISTINGUISH PARTICULAR SUBSECTIONS;

THE IDENTICAL COLORED LINE PAIRS INDICATE SUBSECTIONS

AT THE SAME LEVEL. THE YELLOW ELEMENTS, “CONTROL”

AND “OBSERVATION”, EXPOSE THE CONTROL VALUE AND TWO

MEASURED BUFFERS .. 85

FIGURE 43 EXAMPLE SETUP OF THE USER INTERFACE THAT

PRESENTS THE XML PARAMETERS USED FOR THE DIRECT

CONNECTION TO THE DATA WAREHOUSE TO DISPATCH XML

FILES .. 85

FIGURE 44 SECTION OF THE CLIENTS’ ACTIVITIES LOGGING PROCESS

IMPLEMENTED IN THE SERVERLISTENINGSOCKET.CPP SOURCE

CODE FILE THAT IS ACTIVATED WHEN THE CLIENT CONNECTS

file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946330
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946330
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946331
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946331
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946331
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946331
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946332
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946332
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946332
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946332
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946332
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946333
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946333
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946333
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946333
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946334
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946334
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946334
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946334
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946334
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946334
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946334
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946335
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946335
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946335
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946335
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946335
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946335
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946335
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946335
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946335
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946336
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946336
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946336
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946336
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946337
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946337
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946337

12

TO THE MS TO MAKE A RECORD OF THIS EVENT TO THE

USERS.LOG FILE ... 86

FIGURE 45 SECTION OF THE CLIENTS’ ACTIVITIES LOGGING PROCESS

THAT IS LOCATED IN THE SERVERLISTENINGSOCKET.CPP

SOURCE CODE FILE ACTIVATED WHEN THE CLIENT CHANGES A

DEVICE VALUE TO MAKE ONE EVENT RECORD SAVED TO THE

USERS.LOG FILE ... 87

FIGURE 46 EXAMPLE RECORD OF THE CLIENTS’ ACTIVITIES

LOCATED IN THE USERS.LOG FILE TO ARCHIVE TO THE DATA

WAREHOUSE ... 87

FIGURE 47 EXAMPLE SETUP OF THE USER INTERFACE THAT

PRESENTS THE LOG PARAMETERS USED FOR CONFIGURING OF

THE CLIENTS’ ACTIVITIES LOGGING COMPONENT .. 88

FIGURE 48 SOURCE CODE OF THE RLMSNOTIFYINGTHREAD

FUNCTION LOCATED IN THE MEASURESERVERDLG.CPP FILE TO

CREATE AND DISPATCH THE NOTIFICATION MESSAGE

“MEASURESERVER IS RUNNING” TO THE DS FOR THE ANALYSIS 90

FIGURE 49 SOURCE CODE OF THE ”UPDATE” COMMAND THAT IS

TRIGGERED BY THE RL ADMINISTRATOR FROM THE DS

INTERFACE TO OBTAIN AN EXPERIMENT STATUS; AS THE

FIRST, IT RETURNS THE MESSAGE HEADER “EXPERIMENT

REPORT UPDATED” FOLLOWED BY THE ONE OF THE MESSAGES

“EXPERIMENT IS RUNNING”, “EXPERIMENT IS IDLE” OR

“EXPERIMENT IS RESERVED” ... 92

FIGURE 50 SOURCE CODE OF THE “RESTART” COMMAND TRIGGERED

BY THE RL ADMINISTRATOR FROM THE DS INTERFACE TO

RESTART THE MS FUNCTIONING TO RECOVER THE

EXPERIMENT; IT RETURNS THE MESSAGE “MEASURESERVER

RESTARTED”, THEN THE MS RESTARTS ITSELF .. 93

FIGURE 51 ACTIVITY DIAGRAM OF THE RLMSOPERATINGTHREAD

COMPONENT THAT INVOLVES THREE MAIN OPERATIONS; THE

MESSAGES DISPATCHING, THE COMMANDS RECEIVING AND

THE COMMANDS ACCOMPLISHMENT .. 94

FIGURE 52 EXAMPLE OF THE “UPDATE” COMMAND DISPATCHED

FROM THE DS TO MS UNIT TO OBTAIN BACK THE COMPLEX

INFORMATION DESCRIBING THE RESPECTIVE EXPERIMENT 95

file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946337
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946337
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946338
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946338
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946338
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946338
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946338
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946339
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946339
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946339
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946340
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946340
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946340
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946341
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946341
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946341
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946341
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946342
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946342
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946342
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946342
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946342
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946342
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946342
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946343
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946343
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946343
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946343
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946343
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946344
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946344
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946344
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946344
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946345
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946345
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946345

13

FIGURE 53 EXAMPLE SETTINGS OF THE MUD MODULE AVAILABLE

IN THE MS UNIT TO CONFIGURE THE DIRECT CONNECTION TO

THE DS AND THE MESSAGING PROCESS .. 95

FIGURE 54 NOTIFICATION AND FAULTY MESSAGES GENERATED BY

THE MS UNIT WHEN EVENTS OCCUR AND THE CONTROL

COMMANDS COMING FROM THE DS TO USE FOR THE

MANAGEMENT OF THE UNIT IN CASE OF PROBLEMS OR

UPDATES ... 96

FIGURE 55 SOURCE CODE OF THE DETECTION ALGORITHM IN THE

LDPDETECTION FUNCTION TO GENERATE STATUS 102

FIGURE 56 SOURCE CODE SNIPPET OF THE

HWMDSDETECTINGTHREAD COMPONENT TO DETECT THE

PHYSICAL MODULES AND THE GENERATION OF DIAGNOSTIC

MESSAGES .. 103

FIGURE 57 SOURCE CODE OF THE “DETECT” COMMAND TRIGGERED

BY THE RL ADMINISTRATOR TO PERFORM A DETECTION OF THE

CONNECTED PHYSICAL MODULES AND TO PROVIDE THE

CURRENT STATUS LIST .. 104

FIGURE 58 EXEMPLARY PIECE OF THE PHYSICAL MODULES LIST

STORED IN THE MODULES.TXT FILE USED FOR THE DETECTION 105

FIGURE 59 EXAMPLE OF THE MUD RECORDS; CORRECTLY RUNNING

(GRAY), TWO FAILED (RED); A) SETUP CHANGED CAUSED BY

THE RANGE OF AMPEREMETER, AND B) ONE AMPEREMETER

WAS DISCONNECTED .. 106

FIGURE 60 EXAMPLE OF THE DETAILED LIST PRESENTING THE

CURRENT STATUS OF CONNECTED PHYSICAL MODULES TO

THE RESPECTIVE PORTS ON THE ISES PCI CONTROL BOARD 106

FIGURE 61 EXAMPLE SETTINGS OF THE PMD USER INTERFACE TO

PRESENT THE INVOLVED REFERENTIAL PHYSICAL MODULES

AND DETECTED INFORMATION WITH CURRENT STATUS 107

FIGURE 62 CONCEPT OF THE EPS MODULE THAT IS IMPLEMENTED IN

FOUR DIFFERENT COMPONENTS; 1) THE MS UNIT TO HOST THIS

MODULE, 2) PSC CONTROL FILE TO PLACE THE RESPECTIVE

INTEGRATOR, 3) EVOLUTION FILE TO CALCULATE THE RATE, 4)

WEB PAGE ON THE CLIENT’S SIDE TO VISUALIZE THE

SIMULATION PROCESS ... 108

file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946346
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946346
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946346
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946347
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946347
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946347
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946347
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946347
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946348
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946348
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946349
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946349
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946349
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946349
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946350
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946350
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946350
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946350
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946351
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946351
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946352
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946352
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946352
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946352
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946353
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946353
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946353
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946354
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946354
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946354
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946355
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946355
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946355
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946355
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946355
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946355

14

FIGURE 63 ADJUSTMENT AND ENTRY OF THE SECOND ORDER ODE

TO A READABLE FORM PROCESSED BY THE EJSS AS THE BASIC

IDEA USED FOR ENTERING SUCH THE MATHEMATICAL

EXPRESSIONS TO THE EPS INTERFACE .. 109

FIGURE 64 EXAMPLE OF THE SIMULATION.LUA FILE THAT CONTAINS

THE DECLARED AND INITIALIZED COEFFICIENTS R1, R2, RL, L

AND C, AND THE FUNCTION DX1 AND DX2 TAKING THE

SECOND ORDER ODE TO CALCULATE THE RATE ... 110

FIGURE 65 SOURCE CODE OF THE SCRIPTMEODE2INTEGRATOR

OBJECT THAT IMPLEMENTS THE MODIFIED EULER ALGORITHM

TO OBTAIN THE SOLUTION; THE SECOND ORDER ODE IS

ENTERED IN THE FUNCTION DX1 AND DX2 IN THE

SIMULATION.LUA FILE, THE VARIABLES TMAX, DT, TI, XI, VI,

TF, XF AND VF COME FROM THE MEODE2INTEGRATOR

FUNCTION .. 113

FIGURE 66 SOURCE CODE OF THE DX1 FUNCTION THAT IS

IMPLEMENTED IN THE SCRIPTRK4ODE2INTEGRATOR OBJECT TO

CALL THE LUA FUNCTIONS FOR PUSHING PARTICULAR

PARAMETERS TO THE DX1 FUNCTION AND CALLING IT IN THE

SIMULATION.LUA FILE WITH THE RATE RETURN .. 115

FIGURE 67 SOURCE CODE OF THE SCRIPTRK4ODE2INTEGRATOR

OBJECT THAT GIVES SHAPE TO THE RUNGE-KUTTA 4

ALGORITHM TO OBTAIN THE SOLUTION; THE SECOND ORDER

ODE IS ENTERED IN THE FUNCTION DX1 AND DX2 IN THE

SIMULATION.LUA FILE, THE VARIABLES T0, TMAX, DT, TI, XI, VI,

XF AND VF COME FROM THE RK4ODE1INTEGRATOR FUNCTION 115

FIGURE 68 SOURCE CODE OF THE SCRIPTINTEGRATORPARAMETER

OBJECT THAT IMPLEMENTS THE ALGORITHM AIMED AT

FINDING THE INPUT UNIQUE IDENTIFIER IN THE

SIMULATION.LUA FILE AND AT REPLACING ITS VALUE BY THE

NEW ONE IF THE IDENTIFIER IS FOUND .. 116

FIGURE 69 SOURCE CODE OF THE PSC SCRIPT THAT PRESENTS THE

SIMULATION; THE “PIN_WRITE” FUNCTION MODIFIES THE

VARIABLES NAMED “SIM_L” AND “SIM_C” IN THE PSC SCRIPT

AND THE VARIABLES IDENTIFIED AS “11110000” AND “11111000”

IN THE SIMULATION.LUA FILE TO SET THEM BY THE

INTEGRATORPARAMETER FUNCTION. THE “EXPERIMENT”

SECTION IS THE BODY OF THE FAST RL TO MEASURE VOLTAGE

BY THE ATTACHED VOLT-METER AND TO SIMULATE THE

file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946356
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946356
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946356
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946356
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946357
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946357
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946357
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946357
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946358
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946358
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946358
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946358
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946358
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946358
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946358
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946359
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946359
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946359
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946359
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946359
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946360
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946360
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946360
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946360
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946360
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946360
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946361
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946361
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946361
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946361
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946361
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946362
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946362
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946362
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946362
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946362
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946362
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946362
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946362

15

VOLTAGE BY THE RK4ODE1INTEGRATOR FUNCTION WITH

PARAMETERS .. 117

FIGURE 70 EXAMPLE OF THE SOURCE CODE SNIPPET IN JAVASCRIPT

IMPLEMENTING THREE WIDGETS (RED IDENTIFIERS WITH

THEIR DEVICES): 1) “DISPLAY_SIMULATION_L” DISPLAYS A

CURRENT VALUE OF THE INDUCTOR, 2)

“SLIDER_SIMULATION_L” SETS A NEW VALUE OF THE

INDUCTOR, 3) “EXPERIMENT_GRAPH” PLOTS THE SIMULATED

VOLTAGE IN THE CHART ... 118

FIGURE 71 EXAMPLE OF THE VISUALIZED EMBEDDED SIMULATION

PROVIDED BY THE EPS MODULE THAT IS INTEGRATED INTO

THE MS UNIT; IT PRESENTS THE RL “THE ELECTRIC AND

ELECTROMAGNETIC PHENOMENA IN THE RLC CIRCUIT WITH

THE VARIABLE DAMPING” WHERE TWO COLORED CURVES ARE

DISPLAYED; 1) BLUE: MEASURED VOLTAGE, AND 2) RED:

SIMULATED VOLTAGE; BOTH THE APPROACHES HAVE THE

SAME VALUES OF THE INPUT PARAMETERS R1, R2, RL, L AND C;

CURVES ARE SIMILAR .. 118

FIGURE 72 EXAMPLE OF THE VISUALIZED EMBEDDED SIMULATION;

THE L COEFFICIENT DIFFERS AS THE ORANGE ARROW POINTS

OUT; THE CURVES HAVE UNMATCHED BEHAVIOR 119

FIGURE 73 EXAMPLE OF THE VISUALIZED EMBEDDED SIMULATION;

THE C COEFFICIENT DIFFERS AS THE ORANGE ARROW POINTS

OUT; THE CURVES HAVE UNMATCHED BEHAVIOR 119

file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946362
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946362
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946363
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946363
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946363
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946363
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946363
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946363
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946363
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946364
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946364
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946364
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946364
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946364
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946364
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946364
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946364
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946364
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946365
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946365
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946365
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946366
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946366
file://///Ac-mg/d/Database/Dropbox/University/Zkoušky/Obhajoba%20disertační%20práce/Disertace%20-%20práce.doc%23_Toc488946366

16

LIST OF TABLES

TABLE 1 COMPARISON BETWEEN THE MOST WIDELY USED REMOTE

LABORATORIES WORLDWIDE TO SEE THEIR MAIN SIMILARITIES

AND DIFFERENCES .. 22

TABLE 2 MEASURED VOLTAGE ON THE STATUS PINS OF THE CAN-37

CONNECTOR AND THEIR CORRESPONDING NUMERIC

REPRESENTATION WITH THE TOLERANCES .. 98

TABLE 3 EXAMPLE IDENTIFIERS REQUIRED FOR THE DETECTION OF

THE CONNECTED PHYSICAL MODULES FROM USED SIX PINS OF

THE CAN-15 CONNECTOR .. 98

TABLE 4 MEASURED VALUES REPRESENTED IN THE BITS FORM AND

THEIR ASSIGNMENT TO THE MASK PARTS TO CREATE THE

UNIQUE PHYSICAL MODULES IDENTIFIERS ... 99

TABLE 5 STATUS PINS OF THE PHYSICAL MODULES BELONGING TO

THE CAN-37 CONNECTOR (VALUES LISTED IN THE BRACKETS

ARE THE CHANNEL NUMBERS ACCEPTED BY THE DETECTION

FUNCTIONS AS THE INPUTS PARAMETERS TO GENERATE

CURRENT STATUS) .. 100

17

LIST OF SYMBOLS AND ABBREVIATIONS

AC – Alternating Current

ADDA – Analog to Digital/Digital to Analog

ANSI – American National Standards Institute

API – Application Programming Interface

CFG – Configuration

CLSID – Globally Unique Identifier

COM – Component Object Model

DAM – Data Archiving Management

DC – Direct Current

DLL – Dynamic-Link Libraries

DOM – Document Object Model

DS – Diagnostic Server

EjsS – Easy Java/JavaScript Simulations

EPS – Embedded real-world Phenomena Simulation

ER-L – Easy Remote Laboratory

FSM – Finite-State Machine

GUI – Graphical User Interface

HTTP – Hypertext Transfer Protocol

HTTPS – Hypertext Transfer Protocol Secure

HW – Hardware

ICT – Information and Communication Technology

IMAP – Internet Message Access Protocol

IP – Internet Protocol

ISA – Instruction Set Architecture

ISES – Intelligent School Experimental System

LMS – Learning Management Systems

LOG – Data Log

18

MAC – Media Access Control

MFC – Microsoft Foundation Classes

MS – Measureserver

MSXML – Microsoft XML Core Services

MUD – Measureserver Unit Diagnostics

ODE – Ordinary Differential Equation

PCI – Peripheral Component Interconnect

PMD – Physical Modules Diagnostics

POP3 – Post Office Protocol 3

RL – Remote Laboratory

RLC – Resistor, Inductor and Capacitor

RLMS – Remote Laboratory Management System

SDK – Software Development Kit

SMTP – Simple Mail Transfer Protocol

SQL – Structured Query Language

STEM – Teaching Science, Technology, Engineering and Mathematics

STL – Standard Template Library

TCP – Transmission Control Protocol

TCP/IP – Transmission Control Protocol/Internet Protocol

UDP – User Datagram Protocol

UML – Unified Modeling Language

XML – eXtensible Markup Language

W3C – World Wide Web Consortium

19

1. INTRODUCTION

The Information and Communication Technology (ICT) today has enabled

fast and rich ways of exchanging information among people from different

domains with a variety of applications. One such application is the remote

laboratory (RL), which are web-based interactive systems giving clients the

ability to control and observe the characteristics and processes of remote

equipment through the Internet anytime and anywhere. Teaching Science,

Technology, Engineering and Mathematics (STEM) is seen at schools and

universities as an effective way of growing interest in science related fields.

Such education needs practical hands on experience in combination with

theoretical knowledge of STEM concepts. Practical experience is acquired by

controlling, observing and recording of facts coming from different equipment

setups and operational environments.

1.1 Remote laboratories

The RLs can provide access to resources, which are otherwise inaccessible to

users, denoted as clients. Typically, all that is required is a web browser and an

Internet connection to enable rich educational possibilities. A number of

collaborative projects have integrated physical experiments under a common

infrastructure. Aims of these efforts typically include simple access by clients

and the support of collaboration among connected clients. Research has mainly

focused on the integration of the RLs into higher education, predominantly

undergraduate courses, because of a large number of clients (scientists) and

predefined sets of common experiments.

The RLs traditionally consist of two parts, the server and the client, as

illustrated in Figure 1. The client’s side is used by a client engaging the RL and

learning from the use of it. The server side provides the experiment rig (physical

hardware), as well as the environment responsible for designing, constructing

and maintaining the RL that also provides accompanying teaching and materials.

Remote Laboratory Management System (RLMS) serves for the function of

components and interfaces of the whole system forming the RL. Typical RLMS

architecture comprises following functional units [1]:

1. Scheduling,

2. Rig operations,

3. Transport layer,

20

4. Experiment user interface,

5. Multimedia tools and experimental data,

6. Accepting and processing user requests,

7. Storing and maintaining user details.

1.2 Remote laboratories globally

Plenty of RLMS systems covering a broad range of the RLs have been

designed and deployed worldwide. Historically, the first two RLs have occurred

in Slovakia, nearly simultaneously:

1. In the field of automatic control in the Department of Automatic Control,

Faculty of Electrical Engineering of the Slovak University of Technology

in Bratislava, that has been developed by the research team of Prof.

Mikuláš Huba in 2007 [2][3],

2. In the field of “Electrochemical cell” in 2008, in the workplace of the

Department of Physics, Faculty of Education in the University of Trnava

in Trnava, has been developed by team of Prof. František Schauer and

Assoc. Prof. Miroslava Ožvoldová [4][5].

Some of the largest and most widely used RLMSs are platforms constituted as

the iLab [6][7], SAHARA [8], VISIR [9] and WebLab-Deusto [10].

The iLab has disposable three-layer architecture called the iLab Shared

Architecture. Users connect with a service broker server, which in turn makes a

Figure 1 Typical scheme of the RLMS architecture

21

connection with the actual laboratory server. The system architecture heavily

rests on web services [11]. The iLab has also been used to implement extensions

such as iLab-MIT-Africa [12] in African countries and some universities in

Australia. Experiments in the iLab have been categorized into three different

delivery methods: batched, interactive and sensor. The iLab is based on the

Microsoft platforms including the Visual C#, .NET framework tools and

Microsoft SQL Server. This makes the system very platform dependent,

consequently it is difficult to implement on open source platforms. Recent

attempts are being made to re-implement the ISA in the Java environment for

the purpose of making it platform independent.

The SAHARA originally followed a client-server architecture, where all

experiments were hosted at the UTS laboratories, and accessed upon request by

remote users. In this design, the lists of experiments are stored by the central

server, which is also responsible for other operational aspects including running

the RL, scheduling, and operating the rig. Recent developments have moved

towards grid architecture, but mostly within partner institutions.

The VISIR implementations also follow client server architecture, where the

complete experiment lists are stored in centralized databases along with user

details, and connection to the same server is used for booking and operating the

experiment. Both iLab and VISIR use the LabVIEW as the main platform and

language to compile controlling programs to run RLs.

The next RL is WebLab-Deusto that has been developed at University of

Duesto, Bilbao in Spain [13] and [14]. This system platform uses the client-

server mechanism utilizing mostly time reservation with priority queuing based

scheduling, although the nature of scheduling may change if connecting to other

systems. Within this system, there is a wide variety of experiments ranging from

basics of physics to Field Programmable Gate Array however the main focus is

on electronics and electrical experiments.

In 2011, the project LiLa was started as a collaborative venture between

several RL installations throughout Europe. Many virtual laboratories and RLs

were effectively shared by partner institutions through a Learning Management

Systems (LMS) and the LiLa Internet Portal. The learning aspects of the LiLa

were managed by using SCORM, a learning object creation and management

tool [15]. Actual operating and related costs of the laboratories however were

still covered by the participating universities.

22

Finally listed RLs in brief, the RemoteElectlab [16] has been developed at

University of Porto, Portugal targeting mechanical, physics electronics and

meteorological experiments. The eMersion and SMARTLAB have been used at

Technical University in Lausanne, Switzerland that uses the Graasp social media

platform [17]. This system is also intended for higher education users in the

fields of control theory, physics and others. The most widely used RLs with

their basic attributes and functions are listed in Table 1.

Table 1 Comparison between the most widely used remote laboratories

worldwide to see their main similarities and differences

23

2. ISES HANDS-ON LABORATORIES,

STATE OF THE ART

The Intelligent School Experimental System (ISES) is established as the

advanced experimental tool for school laboratories and building of hands-on

laboratory with the real-time operation, data acquisition, data processing,

experimental hardware controlling, visualizing and analyzing. This system has

been designed and developed by Assoc. Prof. Dr. František Lustig in 1992, and

its development still continues [18]. There are registered 500 installations of this

experimental tool at Czech and Slovak schools.

The ISES hands-on laboratory is an open system platform consisting of the

ISES physical hardware (HW) and ISES WIN software components. It provides

the processing of measured data, for example the integration, differentiation,

approximation and fitting. The data transfer to plotting environments (preset

various charts and data tables) is straightforward.

The physical HW is composed of the computer interface card PCI ADDA

(Analog to Digital/Digital to Analog) 12-bit convertor, time of the conversion is

0.01 ms, the ISES control board and a set of the sensors (for physics, chemistry

and biology). The system offers the possibility of simultaneous measuring and

data displaying for 8 input channels and process control via 2 analogue and 2

binary output channels. The analogue outputs channels work as programmable

voltage sources (DC, AC with eight kinds of default signals, manual controlling

or user defined signals). Maximum sampling frequency is 100 kHz that enables

studying of sounds or other high periodicity signals.

The ISES is supplied with a set of meters, sensors and devices (volt-meter,

ampere-meter, capacity-meter, thermometer, ohmmeter, anemometer, force

meter, heart frequency meter, simple position sensor, microphone, loudspeaker,

relay, light gate, current booster, electromagnet valve for liquids, etc.). These

specific sensors (modules) are easily interchangeable, the computer, senses their

presence and adjusted range.

There is possible to study voltage, current, capacitance, resistivity, mass and

force, pressure in liquids, etc. In chemistry, it is allowed to analyze the acidity,

exothermic and endothermic reactions, titration and many other processes.

Biology users can measure, for example, some periphery blood vessel system

24

functions. The complete set of the physical modules, including the ISES WIN

software displayed on the screen, is illustrated in Figure 2.

Figure 2 ISES physical hardware and software

components; the PCI ADDA interface card,

the set of meters, sensors and device

25

3. ISES REMOTE LABORATORIES,

STATE OF THE ART

The ISES remote laboratories have come into existence as the next step of the

ISES hands-on laboratories. The ISES physical hardware is unique as it

possesses, as the only school experimental system in world, both inputs and

outputs, which is a prerequisite for building RLs controlled by clients. Each RL

offers a software solution for controlling the physical HW, and the client does

not need any special program to be installed, and uses the standard web services

(communication protocols and ports, web browsers, etc.) via the Internet. The

RLs have been designed and implemented, using the ISES WEB Control Kit in

2002 by the development team at Charles University in Prague led by Assoc.

Prof. Dr. František Lustig. Since 2014 RLs have been significantly improved

both in Prague and later at Tomas Bata University in Zlín [19][20][21]. The

improvement, related to the ISES Measureserver (MS) that is the basic unit of

every RL, working as a finite-state machine (FSM), is subject of this doctoral

thesis. Because of the implemented substantial improvements of the ISES MS,

we will call this new type as ISES Intelligent Measureserver unit.

3.1 ISES remote laboratory history and basic working scheme

The starting version of the ISES RLs has been developed at Charles

University in Prague led by Assoc. Prof. Dr. František Lustig in 2002. The

software components have been programmed by MSc. Jiří Dvořák. It has been

since constantly improved both at Charles University in Prague and Tomas Bata

University in Zlín implementing features for the new user environment, Easy

Remote Laboratory (ER-L), to simplify a process of the designing, building and

maintaining RLs by a laymen. The ER-L also provides the RLs data archiving,

MS diagnostics and embedding the simulations.

The ISES RL concept consists of five integral units as the HW 1) physical

components (ADDA signal converter, ISES control board, physical modules

categorized as meters, sensors, probes and specific devices), and units as the

software 2) Measureserver, 3) Imageserver, 4) Webserver and 5) Webclient.

More technical details and applications are available in [22][23][24].

All the built ISES RLs were recently integrated into Remote Laboratory

Management System (RLMS) called REMLABNET.

26

3.1.1 ISES remote laboratory units

The ISES RL concept is based on the autonomous hardware and software

exploited for the monitoring, controlling and processing to deliver real

experiments residing in laboratories to connected clients for their educational

purposes. The following subsection deals with a description of these units.

Physical hardware and software

The physical HW serves the standard ISES system. It is a modular platform

based on three basic components. As the first component, it is a set of the

physical modules like meters, sensors and devices (mentioned in Chapter 2),

which are used for physics, biology, chemistry and electro-engineering. The

physical modules are wired to the ISES control board involved as the second

component. It transfers signals to the PCI ADDA convertor (interface card), as

to the last component. The interface card is installed inside a computer to gather

and process measured data or to set controlling devices attached to the rig. The

software part constitutes the interface card drivers for the commutation and

measurement. As the example, the physical components, which represent the

ISES RL “Sound laboratory”, are shown in Figure 3. There are installed and

running the sound generator, voltage source, relay board, control board with

computer, and apparatus with speaker and two microphones.

Figure 3 Example of the ISES RL “Sound laboratory” including the sound

generator, voltage source, relay board, control board, computer,

and apparatus with speaker and two microphones

27

Informatics hardware and software

The informatics HW serves a personal computer/notebook and network

infrastructure to access the RL to connected clients. The software component

part constitutes the specific units to ensure the ISES RL online.

Measureserver unit

The MS is a significant software component of the ISES RL concept. It is the

processing and communication server located between the physical HW (rig)

and remote clients. The MS core is designed as a deterministic finite-state

machine to setup and perform all the logical and maintaining instructions for

solving the prescribed activities. Its functioning is controlled by the concise

program script (psc) file loaded before the unit operation.

With respect to the physical HW, the MS in reality communicates with the

PCI ADDA interface card. This is the entirely digital process based on the direct

reading of data (real values) from particular pins of the physical sensors and

modules, writing data to respective pins, which are translated by the ADDA

signal converter. These data pins are both inputs and outputs located on the

control board allowing the access to both physical modules (meters, sensors and

devices) and providing signals for controlling of experiments.

Instructions (specific commands), coming from a remote client, are processed

by the listening MS (receiving service requests from connected clients through

preset port). The communication is realized by standard protocols via the

Internet. Some commands go via the MS translator to the REMLABNET where

clients can exploit additional services like the acquirement of measured data and

analysis from previously performed RLs in its database (data warehouse).

All the commands (given by psc file) are processed in MS a deterministic way

by two different parsers. The first is called the LR(1) parser that processes

commands from the configuration file for the purpose of the graphical user

interface settings. This parser is based on static state transition tables (parsing

tables), which codify a given language grammar. These parsing tables are

parameterized together with a lookahead terminal that establishes the maximum

tokens, the parser can use to decide, which rule it should use.

The second is the Recursive descent parser that processes commands coming

from the psc file to create defined data structures and logic schemes for the RL.

28

It uses a general form of top-down parsing where backtracking may be involved.

The parsing algorithm is based on the walking through a tree.

The MS uses for its operation several plugins providing logical schemes,

mathematical functions and communication services essential to design and

construct arbitrary RLs. The graphical user interface with its options to set the

client’s access, connection, expiration and logging is shown in Figure 4.

Imageserver unit

The Imageserver unit transports image information to connected clients. This

unit periodically stores snaps (stream) acquired by the webcam, which are then

directly displayed by a special object to the client’s screen. It stores the image in

two sizes to ensure large and small resolution depending on the Internet speed

rate. If the camera is equipped with controls of position and zoom, the

Imageserver is able to respond to client’s requests and there is available to move

Figure 4 Graphical user interface of the MS unit to provide

the clients’ access, connections, expirations and logging

29

the camera directions to have better view of the rig. An example presenting the

structure of the Imageserver with its camera is shown in Figure 5.

Webserver unit

The Webserver unit provides the web (Nginx) services when client enters a

web page of the ISES RL via the REMLABNET platform. The Nginx is an open

source reverse proxy server for TCP, UDP, HTTP, HTTPS, SMTP, POP3 and

IMAP protocols, as well as an HTTP cache and a load balancer. A scheme

showing the Nginx deployed in the RL structure is presented in Figure 6.

Figure 5 Diagram of the Imageserver functionality including

the camera device and file system to distribute the video

30

Webclient unit

The Webclient unit represents web pages accessible via the Internet allowing

clients to work with the RLs. It was designed for two separate websites, for

classic PCs and mobile devices (mobile phones and tablets). The web page

recognizes what device is connecting and chooses appropriate version of the

page to display. Since the mobile version is designed separately, it is completely

optimized for the mobile devices. The graphical elements are reduced for using

smaller volume of transferred data and a faster page loading in mobile devices.

The web pages content is independent, providing different information for both

versions. The example of client’s web page of the RL “Transients in RLC

circuits” displayed on the PC screen is shown in Figure 7.

Figure 6 Structure of the ISES RL components including the Webserver unit

represented by the Nginx reverse proxy server to provide web services

31

Web pages produced by the first version of the ER-L were optimized for a

wide screen. As controlling elements, the JavaScript widgets are used to handle

the RLs. Each element is designed as a stand-alone library and added to the web

page like a building block. This kind of the page can be easily transformed for

individual RLs. For data displaying widgets like a graph, the value display and

data record standard pre-programed widgets are used. The experiment is

controlled by widgets like a button and slider. Connected clients are able to

watch a live video stream coming from the experiment's web camera that is

provided by the unique JavaScript function.

3.1.2 ISES finite-state machine

Let us describe in more detail the functioning of the RL software. The FSM is

a mathematical model of the computation used to design both computer

programs and sequential logic circuits. It is conceived as an abstract machine

that can be in one of a finite number of states. The machine is in only one state

at a time, the actual state at any given time is called the current state. It can

Figure 7 Example of the web page of the ISES RL “Transients in RLC circuits”

32

change from one state to another when initiated by a triggering event or

condition, which is called a transition. The FSM is defined by a list of its states,

its initial state, and the triggering condition for each transition [25].

The FSM, implemented inside the MS unit to process particular commands

constructing the RL behavior and logic, uses two different types of functional

concepts deployed as the parsers for specific reasons. The first concept is called

LR(1) parser and the second one is Recursive descent parser, which are both

described in the theoretical part of this doctoral thesis.

3.2 ISES Measureserver unit and its communication

The MS is very important component of every ISES RL. This unit takes care

for the communication between the rig (physical HW represented by the ISES

control board and its used meters, sensors and devices) and connected clients.

Many techniques, responsible for the transportation of measured data from the

rig’s physical modules to respective web pages and back, are utilized. As

mentioned, the communication is bidirectional, from the rig’s side to the client

to obtain measured data and back from the client to the rig to send control

commands. When the client starts communicating, the generated analog signal

goes to the PCI ADDA interface card to convert it to the digital form. After the

conversion, the digital signal is transported to the MS by its plugins to gather,

filter and distributes the measured data to clients by the Internet protocol suite

called TCP/IP (Transmission Control Protocol/Internet Protocol).

The Internet protocol suite provides end-to-end data communication

specifying how data should be packetized, addressed, transmitted, routed and

received. This functionality is organized into four abstraction layers, which are

used to sort all related protocols according to the scope of networking involved.

From lowest to highest, the layers are the link layer, containing communication

methods for data that remains within a single network segment; the Internet

layer, connecting independent networks, thus providing internetworking; the

transport layer handling host-to-host communication; and the application layer,

which provides process-to-process data exchange for applications [26][27]. Just

to shortly mention, the internetworking is the practice of connecting a computer

network with other networks through the use of gateways, which provide a

common method of routing information packets between the networks.

33

As described, the MS sends measured data to the client’s web page that is

designed for the control, visualization and analysis of studied phenomena. These

activities are managed by specific modules underlying on the web page. Some

of them are deployed for the communication with the MS unit.

The first generation of RLs was based on the modules called Java applets

(small application that is written in Java). However, after some time, the Java

applets began to be restricted due to security issues (by the Oracle provider).

Users now have to confirm running Java applets with warning about possible

security risk. This technology basically became unusable for the interfaces of

client-side web users in all applications. Moreover, the support of Java applets in

contemporary tablets, smartphones and similar devices was mostly lacking.

Hence, the development moved to the JavaScript objects (high-level, dynamic,

untyped and interpreted programming language) to create user interfaces and

communication. They are built with a new software kit called ISES SDK

Remote Lab in Prague laboratory [28]. Philosophy of this new kit is the same as

in case of Java applet version ISES WEB Control.

The RLs are accessible via Internet browsers supporting JavaScript and

preferably the WebSocket connection. These are considered almost standard

features of all modern browsers in most devices [29].

The WebSocket is a computer communications protocol providing full-duplex

communication channels over a single TCP connection. The WebSocket is

designed to be implemented in web browsers and web servers but it can be used

by any client or server application. It is an independent TCP-based protocol

having relationship to HTTP only that its handshake is interpreted by HTTP

servers as an Upgrade request. The WebSocket protocol makes more interaction

between a browser and web server possible, facilitating the real-time data

transfer from and to the server. This is made possible by providing a

standardized way for the server to send content to the browser without being

solicited by the client and allowing for messages to be passed back and forth

while keeping the connection open. In this way, a two-way (bi-directional)

ongoing conversation can take place between the server and remote browser.

The communications are done over the port number 80 that is a benefit for those

environments, which block non-web Internet connections using a firewall.

34

3.3 Working scheme of ISES Measureserver unit

The ISES MS, as the core software unit, is consisted of several internal and

external modules, which are essential for the RL control and monitoring, data

gathering and processing to provide results to connected clients. The schematic

overview illustrating typical components is shown in Figure 8.

Configuration module

The first internal module is called CFG (configuration) intended for the initial

setup of the MS behavior and the graphical user interface. During the unit

startup phase, the CFG sets all the parameters needed for a proper operation.

There is configured a client’s access to the system, client’s connection and

expiration. It also includes a setup for the measured data logging and creation of

the references to external components (psc files and underlying plugins). The

CFG is drawn to read/write all the values of the parameters from/to a text file.

The LR(1) parser is involved to parse this text file and to assign these values to

internal structure for a consequent use. An example of the text file generated,

loaded and parsed by the CFG is shown in Figure 9.

Figure 8 Scheme of the internal and external modules constituting the MS unit

that mediates the connection between the rig and remote clients

35

Data logging module

The second internal module is called LOG (data log) that is responsible for

the optional logging of used pins (located on the ISES control board) to files or

memory. It allows setting two ways of the data logging as follows:

 Long term log - This log stores data with the period in seconds or minutes

for long-term monitoring such as temperature. The logged data are stored

to files on a disk and they can survive (unless the setup log indicates that

the startup erases them) when the MS restarts or exits. Each file has a

place for 5000000 records (about 40 megabytes) and after filling the MS

starts overwriting the oldest values in the file.

 Short log - This alternative stores data with a frequency of tens of Hz and

limited length. The logged data are stored to an operational memory only,

and upon the MS termination, all the accumulated data are permanently

deleted. When using JavaScript widgets to manipulate with data from the

short-term log, the fast log pins must be turned on first.

Figure 9 Example of the configuration file, containing the parameters

for the initial setup of the MS unit and graphical user interface,

parsed and processed by the CFG module during its startup

36

The LOG setup (logging options and respective parameters) is available for

administrators in the MS Log config panel as presented in Figure 10.

Furthermore, the LOG has a feature to log users’ interventions exploitable for

an analysis by the RL designers to optimize their experiments and for persons

who are interested in the field of pedagogy. Such the users’ log is listed in

Figure 11 showing continuous interventions in the text file.

Figure 10 Log config panel to set the

long term and short data log

Figure 11 Users’ log file containing the timestamped records

about interventions performed by the clients

37

Graphical user interface module

The third module is called GUI (graphical user interface) also determined for

the RL designers and administrators to easily configure the MS throughout its

operational life. The GUI allows the setup of the MS functioning, connected

client and plugins. It provides a set of the dialog boxes with input/output

parameters. Each attached plugin has its own set of parameters; hence the GUI is

partially dynamic according the RL’s rig configuration. There are covered many

various parameters, which can be optionally set. The suitable example is shown

in Figure 12 with the two dialog boxes to configure plugins. The upper dialog

box offers entering the plugin card index. The lower one represents the Config

dialog box used for entering the psc control program.

External modules

The remaining modules are called ldp plugins, which are external by reason

of their specific deployment according to types of the signal converters and rigs.

Figure 12 Dialog boxes allowing the setup of used plugins in the GUI module; the

first (upper) enables to set the Card index of the ADDA interface card, the second

(lower) requires entering the Config file (psc control program) and Plugin config

(reference to the interface card) to communicate with the ISES control board

38

They have the file extension .ldp (dynamic-link library file) to distinguish them

as the plugins providing a fixed set of functions for various purposes like

mathematical operations, values remapping and clamping. The most frequently

used plugin is the ScriptablePlugin2.ldp, and the PCI1202CardPlugin.ldp that

underlies at the lowest layer communicating with the converter.

The ScriptablePlugin2.ldp plugin is the strongest and the most difficult of the

available plugins. There is possible to achieve with this plugin the equivalent

functionality of almost any of the other plugins with an exception of those,

which control the specific hardware components. Moreover, there is possible to

reach some of the activities, which older plugins cannot perform as is the

generation of more complex signals or high-speed experiments. The principle of

its operation is based on the psc control program allowing the operations for

individual pins located on the ISES control board.

The PCI1202CardPlugin.ldp plugin is used to control the PCI-1202 ADDA

interface card. The plugin allows selecting the interface card if a computer has

more such the cards by entering the Card index number. This interface card

serves the following input and output pins of the ISES control board:

 Input pins - For example, the pin “Write D/A 1” allows writing a 12-bit

value to the analog output of the interface card. The pin “Write D 1”

allows an entry into the 16-bit digital output.

 Output pins - For example, the pin “Read A/D 1” can read a 12-bit analog

input from the card. The pin “Read D 1” reads a16-bit digital input.

The scheme presenting the ldp plugins frequently used for the MS, related to

their communication relationships, is shown in Figure 13.

The further plugins used for various purposes are roughly introduced in the

following bullets to present a wide spectrum of the external modules:

1. ISESCardPlugin.ldp - The plugin controls the standard interface card that

is not supported under Windows NT series.

2. ISESProCardPlugin.ldp - The plugin controls the professional interface

card that is not supported under Windows NT series.

3. TestingDevicePlugin.ldp - This plugin acts as a repository of values that

can be used by clients or other plugins to store experiment states.

39

4. MixingPlugin.ldp - Some plugins exploit another plugin for operating.

This specific plugin allows such the plugins to use further plugins in that

it exports their pins, as if they belong to the mixing plugin and it passes

data into plugin, to which appropriate pins underlie.

5. ConfLogicPlugin.ldp - Main features of this plugin are focused on the

implementation of the experiments logic of the server side. In principle, it

is a set of rules describing how to get a value from the output pin or what

to do depending on the value written to the input pin.

Control program

The psc control program is stored in a file with the extension psc that contains

the complete logic according to which the RL operates. There is also the section

loading single devices (pins), which are associated with specific widgets (small

functional objects) placed on client’s web pages. This file is coded in a script

whose syntax is similar to the C language. The psc control program is described

in the next chapters related to other issues. A snippet of the coded experiment

containing the body of its logic is shown in Figure 14.

Figure 13 Scheme of the ldp plugins used with the MS related

to their intercommunication and characterization

40

3.4 Easy Remote Laboratory expert system tool

The ER-L is a new user environment exploited to simplify a process of the

designing, building and maintaining the RLs by laymen. The expert system tool

has been developed since 2012 at Tomas Bata University in Zlín by Michal

Krbeček, Ph.D. student. The environment was first based on the Java applets.

However, when the Oracle Company started restricting the Java applets usage

because of security risks, and the web browsers started prohibiting their

displaying on web pages, then a new version of the ER-L environment has been

created since 2014. The new version is based on the JavaScript objects used as

Figure 14 Snippet of the experiment “Sine generator” included in the psc

file; the section “state” is started once, the subsection “step” calculates

the sine in a loop based on the frequency “step_frequency”, the handler

“pin_read” and “pin_write” communicate with widgets on the web page

41

the progressive technology providing easy and secure implementation of

widgets intended for the RL web pages.

The ER-L works as the plug and play controlling program that compiles the

screen questionnaire similar to the expert system. It means, the program

emulates the decision-making ability of a human expert (experienced user). The

ER-L disposes of the graphical development environment creating and exporting

the psc file and the RL web page with widgets.

When the ER-L started, the welcome menu with photos of ISES versions

appears that shows the basic options as depicted in Figure 15.

The welcome panel also allows the choice of language to open the saved

projects. For practical reasons, especially for designers, the RLs are divided into

three categories according to their complexity as listed below [30]:

1. Starting level - The set of precompiled typical RLs,

2. Basic level - The most used RLs with variability and logic,

3. Advanced level - Very complicated RLs with specific devices.

All the RL complexity levels are described in further subsections to offer

readers the overview about their options and setup.

Figure 15 Welcome panel of the ER-L providing its graphical

development environment with the experiment components

42

Starting level

The simplest way of the RLs building is to exploit the library of common

experiments that the user can choose, automatically install and start. The library

is accessible by the button “Library of experiments”, located in the welcome

panel. The window, as shown in Figure 16, appears to start the RL configuring.

In the upper left part of the window, there is a list of available experiments for

the choice. When the experiment is chosen from the library, the respective

description of the experiment appears in the right panel and beneath the list of

hardware modules required to use. At the bottom left, there is a preview of the

corresponding website layout. If the user points a mouse to the edge of this

screen (not accessible now) the arrows for the next screen appear and the photo

of devices and modules are displayed. In the last part, there is a text with the

description of the experiment. The final step of the RL starting level compiling,

it is only necessary to press the “Finish” button. After the pressing, the program

generates all important components of the designed experiment (psc file and

web page code) and then returns to the start menu. At this point, the experiment

is already operational, and the user can deploy and start it to use. The whole

procedure of the RL compiling takes approximately 30s.

Figure 16 Experiments library window of the RL starting level intended

for the experiment selection, its modification and compilation

43

Basic level

In the basic level of RL compiling, the ISES version has to be duly specified

first. The main options are offered to users in the welcome panel. The window

for the selection of measuring/controlling modules and their ranges adjustment

is subsequently displayed as shown in Figure 17.

The selection of modules is performed by the pull-down menu on the left side

of the window. When a module is selected, its photo appears in the appropriate

slot of the ISES control board. Its working range is adjusted using the pull-down

menu, available below the respective module.

If the experiment is designed to use a relay board, one enables this option by

pressing the “Relay board” button. Once pressed, the window appears with a

relay board photo by which the user may connect and activate the 2x8 relays.

This program then asks for details of the individual settings of the relays. As an

example, the user may choose the manual activation with a button placed on the

web page, or after meeting any comparative condition.

Advanced Level

The advanced level of RL implementing is based on the individual steps of

the corresponding flowchart diagram and its transfer of the psc file by using the

Figure 17 Modules selection window of the RL basic level that

provides the intuitive setup for the ISES control board slots

44

pre-prepared control blocks from the psc library. In this way, it is possible to

assemble very complex control logic for the RLs. This method requires a certain

amount of the creativity and logical thinking concerning the sequence of the

experiment actions. The advanced level starts on the module selection window

by pressing the “Advanced design” toggle button. The process of the advanced

design is similar to the basic one, where the modules selection and the web page

creation are necessary at first. The advanced level window is then displayed as

presented in Figure 18. The window left part offers a tree structure providing the

control logic of the experiment. On the right side, there is located a list of the

blocks, which can be inserted into the tree structure and the variables list.

The future improvement of the ER-L environment could be inspired by the

new integrated development and training system for FSM based approaches

called GIFT as a very progressive system introduced by Heinz-Dietrich Wuttke

at Ilmenau University of Technology in Germany [31].

Figure 18 Blocks selection window of the RL advanced level to

design and configure the complex experiment components

45

3.5 RLMS REMLABNET

The REMLABNET is a platform that integrates and manages the RLs for

starting university level and secondary schools. Its building was initiated both

from the extensive use and expertise in ISES, the built RLs and the lack of

similar systems for secondary schools and universities in Europe. Another added

value of REMLABNET is the increased reliability of the delivered RLs. It has

been developed since 2014 at Tomas Bata University in Zlín as well. The first

version of the REMLABNET platform was based on Java applets exposed on

the clients’ web pages. When Java applets became restricted to use safely (as

mentioned in subchapter 3.4), then a new version of the REMLABNET came,

based on JavaScript widgets. The second version deployment started in 2015

including new features. It also cooperates on a federation scheme with the

Graasp platform in Lausanne, Switzerland (www.graasp.eu) in the form of direct

exposing the RL graphical interfaces on the allied platform and EU RLMS

project Go-Lab (www.go-lab-project.eu).

The REMLABNET uses new components, designed for the purpose, as web

space management, data warehouse and communication board, uses two level

diagnostics and forwards to client’s embedded simulations [32] and others. The

communication server provides, beside the connection and diagnostics, also

envisages services for the teacher’s comfort as IP telephony, white board,

simulation inclusion, test management and reservation management. For the

sake of safety, optimal access to all experiments and economical exploitation the

virtualized cloud is used. The schematic arrangement of the units and the

communication relationships in REMLABNET is presented in Figure 19.

As mentioned, this platform is consisted of many diversified components,

where the six ones are more important, hence they are worth to describe:

1. Measureserver unit - This integral component of the platform is described

at full length (concept and operation) in subchapter 3.1.1.

2. Diagnostics server - This component ensures keeping track of the current

status of all experiments connected to the RLMS. Depending on the

experiment activity, its breakdown or failure the status will be displayed at

the RLMS access portal. The diagnostic system also allows sending

commands to the experiment in case of detected faults. From the

description of the functionality, it is clear that the direct communication is

46

needed with the MS of the experiment side because there can be only

found the latest information about its availability and status.

3. Data warehouse - This is a part of the system used for the data storage and

analysis. It is a centralized data storage providing extended analytical

services for the MS, Webserver, Imageserver and other components of the

RLMS. The data warehouse also includes a number of sophisticated

instruments providing data analysis from individual rigs. The analysis may

detect and filter existing noise or measurement errors.

4. Communication server - This is a subsystem designed for the transmission

of information and real-time communication, interaction and collaboration

in teaching and learning process with RL. The communication server

provides an insertion of the RLs in social networks and allows working

with experiments in groups and enabling mutual help among groups. It

also serves as the interface for connecting to internal knowledge bases, and

as a global knowledge base like the Wikipedia encyclopedia.

Figure 19 Scheme of the REMLABNET platform covering the ISES RLs

with physical experiments, various services and connected clients

https://en.wikipedia.org/wiki/Encyclopedia

47

5. Content management system - The RLMS includes a portal based on the

latest HTML5 standards. It ensures portability and compatibility for a wide

range of devices such as mobile phones, computers, tablets and many

more. The portal meets the demands for an easy work in the laboratory and

the work scope with modern techniques. The whole environment is

represented in the form of dynamic web pages.

6. Virtualized cloud - The whole system runs in a virtual cloud space. This

ensure sufficient security, connectivity and 24/7 accessibility.

The REMLABNET portal serves as an access point both for signed users and

experiment administrators. For these roles, the special functions are provided.

Besides them, other three roles are available. They are defined as a teacher,

unsigned user and system administrator. All these roles with their respective

functions are shortly described in the following bullets:

1. Unsigned user - He has an access to all the experiments’ materials and

information. Such user can also take measurements on the experiment but

only if there is no signed user connected.

2. Signed user - He has a priority over an unsigned user in the term of

measurements at the experiment. This user can also make a reservation for

measurements at the specific time. Measured data coming from all the

experiments are saved in the user’s account. The attached library provides

an access to users’ historical measurements. The signed user is also

allowed to use all the communication functions.

3. Teacher - He provides more options compared to the common user. There

is more freedom in the term of the experiment reservation (such teacher is

allowed to create more reservations for his lectures). A teacher is also able

to administrate the virtual classrooms and assign or remove the control of

the experiment running for connected clients.

4. Experiment administrator - He is an owner of the experiment. This role

provides an access to the diagnostic interface of the experiment where the

detailed status of the experiment is available. An administrator is informed

by an email message when there is some fault. He is allowed to freely

change the experiment information and supporting materials.

5. System administrator - The role provides full rights to all the functions,

interfaces and content implemented is the system.

48

3.6 Deficiencies and drawbacks of ISES Measureserver

The ISES RL has some deficiencies and drawbacks hampering a wide use of

this system, especially for the RL designers and administrators. Some of them

concern MS unit as a major component of RL. This unit had in past several

deficiencies as the inferior data archiving, extended clients' activities logging,

MS unit & physical modules diagnostics and embedded real-world phenomena

simulation. All these deficiencies were historically obstacles for improving the

LRs and also for moving to a higher level of design and administration.

First, the absence of high level data storing, prevented to perform detailed

analysis in REMLABNET. Second, next drawback related to the absence of the

data archiving prevented the data reuse by clients who need to have access to

previous measurements. Connected with this, the data transport to the clients is

not implemented optimally by the reason of excessive data quantity. Third, it

particularly concerns the low transmission speed and its stability.

Fourth, the absence of the clients' activities logging leads to problems that the

designers and other data evaluators have no access to the complete statistical

data about connected clients and their behavior. They need to know in detail

how clients proceed during their experimentations, whether they perform the

required measurements correctly or they systematically/occasionally fail.

Fifth, the next drawback of MS was the absence of any diagnostics focused

on the MS modules (FSM, CFG, GUI, plugins) and the ISES physical modules

(meters, sensors and devices). This feature is especially important for the RL

administrators who maintain software components and attached rigs. This

diagnostics should help to efficiently check and monitor the RL operation. In

case of any failure or sudden crashing, it should immediately choose an

appropriate scheme to solve the occurred problem.

The last, sixth drawback, is the absence of the embedded real-world

phenomena simulations running concurrently together with the real experiments.

Teachers and interested users demand this feature to help understanding

examined phenomena by simple and easy understandable means.

The design and implementation of appropriate solutions of enumerated

problems in MS of ISES remote laboratories, is the subject and goal of presented

doctoral thesis. These solutions should contribute to a better reliability and

scalability of the RLs to reach contemporary standards in this area.

49

4. GOALS OF THE DOCTORAL THESIS

The goals of this doctoral thesis are focused on the software improvements

and development related to the MS unit and its components given below:

1. Measured data archiving to structured data files - It is responsible for

the gathering, filtering and saving measured data and experiment metadata

in the specific data format to an xml file, including the files dispatchment

to the data warehouse to archive and for the detailed analysis,

2. Continuous clients' activities monitoring to text files - It allows logging

of all the activities performed by connected clients, when experimenting,

and saving to a log file, with an option of the files dispatchment to the

data warehouse for the purpose of didactical analysis,

3. First level diagnostics of the integrated software modules - It provides

the remote laboratory administrators the notifying and warning messages

to ensure the Measureserver unit functioning with the aim of avoiding or

reducing occasional failures caused by various influences,

4. Second level diagnostics of the physical hardware modules - It gives

the remote laboratory administrators the features to detect and monitor the

physical modules, like meters, sensors, probes and devices, connected to

the rig to prevent their failures or disconnections,

5. Embedded simulation of real-world phenomena and its visualization

with the control on the client’s web page - It represents the simulation

approach running concurrently and synchronized with the real experiment

by the integrated solvers to provide approximate numerical solutions used

for a motivation before the real measurement as the introductory step to

better acquaint the measured phenomenon.

50

5. METHODS USED

This chapter deals with the theoretical background needed for understanding

particular principles, concepts and ideas used for the implementation of

proposed goals in the practical part of this doctoral thesis. There are important

fields, related to the controlling the behavior of experiments, which include the

input grammar concept and the grammar parsing principle, leading to the data

measurement process, data distribution and analysis [33][34][35].

5.1 Finite-state machine classification and concept

There are many ways of controlling the behavior of systems, and the use of

state machines is one of the oldest and best known. State machines allow us to

think about the “state” of a system at a particular point in time and characterize

the behavior of the system based on that state. The use of this controlling

technique is not limited to the development of software systems. In fact, the idea

of state-based behavior can be traced back to the earliest considerations of

physical matter. For example, H2O can exist in three different states easily

observable in nature: solid (ice), liquid (water) and gaseous (steam, fog, clouds).

In each of these states, the behavior of H2O is different. The means of forcing

transitions between the three states is also well-defined. Many other natural and

artificial systems may also be controlled by the states the system can occupy, the

behavior in each of those states, and how the system transitions are between

these states, including which states are connected and which are not.

The similar technique can be used to design software systems by identifying

what states the system can be in, what inputs or events trigger state transitions,

and how the system will behave in each state. In this model, there is seen the

execution of the software as a sequence of transitions that move the system

through its various states [36]. Concepts and techniques are described in the next

subchapters to better understand the FSM models implemented inside of the MS

unit as the LR(1) parser and Recursive descent parser.

5.2 Language parsers

A natural language parser is a program that works out the grammatical

structure of sentences, for instance, which groups of words go together and

which words are the subjects or objects of a verb.

51

Parsing, or more formally, syntactic analysis, is the process of analyzing a

text, made of a sequence of tokens (for example, words), to determine its

grammatical structure with respect to a given formal grammar.

In computer technology, the parser is a program that mainly works with some

of context-free grammars. It is usually a component part of a compiler that

receives input in the form of sequential source program instructions, interactive

on-line commands, markup tags, or some other defined interface and breaks

them up into parts (for example, the nouns (objects), verbs (methods), and their

attributes or options) that can then be managed by other programming (for

example, other components in a compiler). A parser is usually used to check that

all the input has been provided that is necessary [37]. The flowchart analyzing a

source string by the typical parsing process is illustrated in Figure 20.

Figure 20 Flowchart of the source string

processing in the typical parser

52

LR(1) parser

The first concept is a canonical LR parser more frequently called the LR(1). It

has been designed to use the bottom-up parsing approach. The theoretical

background of the bottom-up LR(1) parser is based on the formal mathematics

behind this FSM (parsing machine) operation that reads lexical symbols from a

source sentence provided as its input, and it proceeds to recognize productions

comprising a particular grammar. It means, a table-driven algorithm can be

produced for any given grammar (such as a computer programming language),

which parses and recognizes valid sentences.

The LR(1) is an LR(k) parser (Left to right, Rightmost derivation parser)

defined for k=1 that uses a single lookahead terminal. The LR(k) is a type of

shift-reduce parser, as a generalization of existing precedence parsers. Just to

mention in brief, the shift-reduce parsing uses two unique steps. These steps are

known as shift-step and reduce-step. The LR(k) has the potential of recognizing

all deterministic context-free languages and can produce both left and right

derivations of statements encountered in the input file. The special attribute

(advantage) of this parser is that all the LR(k) parsers (their grammars) with k>1

can be transformed into the LR(1) parser.

The grammar parsed is simply a set of symbols and rules defining the

required language. More precisely, the symbols and rules define valid sentences

of the grammar. Particular sequences of symbols from the grammar form a

sentence, and if that sequence obeys the rules of the grammar, that sentence is

said to be a valid sentence with respect to the grammar. If a sequence of symbols

from a grammar is fed into LR(1) parser, this machine can determine whether or

not the input symbols form a valid sentence of the grammar. If the sequence is

valid, the LR(1) parser accepts the input sentence without error, otherwise the

parser may detect one or more syntax errors in the input sequence.

The parser operation is based on static state transition tables. These codify the

grammar of the language it recognizes and are typically called parsing tables.

They are parameterized with a lookahead terminal [38].

Recursive descent parser

As the second functional concept used is the Recursive descent parser that is a

kind of the top-down process built from a set of mutually recursive procedures

(or a non-recursive equivalent) where each such procedure usually implements

53

one of the productions of the grammar. Thus the created structure of the

resulting program closely mirrors that of the grammar it recognizes.

The recursive descent with backtracking is a technique that determines which

production to use by trying each production in turn. It is not limited to LL(k)

grammars (Left to right, Leftmost derivation grammars), but is not guaranteed to

terminate unless the grammar is LL(k). Even when they terminate, parsers that

use recursive descent with backtracking may require exponential time.

The top-down parser starts from the root node (start symbol) and matches the

input string against the production rules, if matched it replaces them [39].

5.3 Context-free grammars

Context-free grammars are a recursive representation of the context-free

languages, which are a larger class of regular languages. These grammars play a

substantial role in the compiler technology longer time. They turned the

implementation of parsers from an ad-hoc time-consuming implementation task

to a routine job that can be performed very quickly.

Context-free grammars are limited in the extent to which they can express all

of the requirements of a language. Informally, the reason is that the memory of

such a language is limited. The grammar cannot remember the presence of a

construct over an arbitrarily long input; this is necessary for a language in

which, for example, a name must be declared before it may be referenced. More

powerful grammars can express this constraint but they cannot be parsed

efficiently. Thus, it is a common strategy to create a relaxed parser to process a

context-free grammar that is able to accept a superset of the desired language

constructs; later, the unwanted constructs can be filtered out.

5.4 ISES Measureserver unit and its psc control script

The RL functioning has been since the start of ISES RL based on the psc

control program and MS. This approach requires creation of the programmable

script (executable code running without a compilation) that addresses inputs,

outputs and logic of the ISES RL. The script is very condensed and addressing

ability rich because it allows programmers to code logical parts, data structures

in arbitrary sections in one program (body). It also allows attaching of plugins

(drivers) of specific devices indispensable for the RL functioning. The manual

design and creation of the psc control program is in principle rather demanding

54

and only a small body of specialists in the field is able to compile and deploy

such the script. For this reason, as the alternative approach, the ER-L was

recently (2015) introduced to simplify the psc script design, creation and its

maintenance by interested non-programmers and teachers. Both the mentioned

approaches (manual script creation and ER-L) reach the same results related to

the RLs behavior and demanded logical activities.

5.5 Grammar syntax of psc script

The script language grammar is parsed by the Recursive descent parser to

build the experiment behavior, data communication and logic. The language

developed for the purpose is superficially similar to the C language. Its leading

difference compared to the C language is that it is not compiled and functions

interpreter-like. This feature is an advantage for the RLs setup and its

modification because of avoiding the use of a compiler and its more complex

settings. This approach allows better, faster and more effective work.

In this subchapter, the first approach is described only, that is the manual

design and creation of the psc control program possessed of two versions. This

issue is important to describe as the basis for the work that has been already

accomplished concerning the data archiving and diagnostics.

Old psc script version

Users had to write all the script without any syntax errors and save it as a psc

file. The creation of the psc script (version 1.0) was very demanding as users

had to know all constituent parts of the system and all relationships among its

components. It was demanding especially for laymen in the field, who were not

experienced in the programming field and for teachers and users. The simple

example representing an old version of the psc script is shown in Figure 21.

New psc script version

Since the old script version obstructed the desired dissemination of the RLs to

more designers and teachers, the script concept was improved towards the

simplified script version. The resulting key improvement was the support for the

faster, reliable FSM control and the accessibility of the fast experiments

building. The new psc script (version 3.1 and higher) was implemented and

encapsulated to the ScriptablePlugin2.ldp plugin.

55

An example of the fast experiment gathering measured data (for example,

voltage and current) in the electronic circuit as presented in Figure 22.

Figure 21 Old version of the psc script presenting a complicated

coding scheme to create data structures and experiment logic

Figure 22 Fast experiment with the “init” and “finalize” blocks

switching the relay on/off and the “on_sample” block gathering

data provided by two meters attached to the electronic circuit

56

5.6 Libraries and functionalities of psc script

The MS unit has been designed and developed in the C++ programming

language that allows using standard and extended libraries simplifying creation

of the application and ensuring its proper operation.

A short introduction of the C++ concept is desirable to have at least the basic

overview. The C++ is a multi-paradigm programming language that supports

object-oriented programming created by Bjarne Stroustrup in 1983 at Bell Labs.

This language is an extension (superset) of C programming and the programs

written in the C language can run in the C++ compilers. Generally, a compiler is

a computer program that transforms human readable (programming language)

source code into another computer language (binary) code.

The C++ is used to create general systems software, drivers for various

computer devices, back end servers and specific applications, and also widely

used in the creation of video games and simulators.

As mentioned, the C++ supports object-oriented programming. There are

defined four major principles of the object-oriented development, namely the

inheritance, abstraction, encapsulation and polymorphism.

This universal language is not purely the object-oriented language because

object-oriented means to works with objects and classes, but its source code can

be written without classes, just using the structured programming.

The data and functions (procedures to manipulate the data) are bundled

together as a self-contained unit called an object. A class is an extended concept

similar to the structure in the C programming language. This class describes

both the properties (data) and behaviors (functions) of objects.

The C++ provides programmers the standard libraries, which were created

after many years. They are divided in the following important parts [40]:

1. The C++ core language provides all the building blocks including data

types, variables, literals and other.

2. The C++ Standard Library has a rich set of methods for manipulating

input/output files and character strings.

3. The Standard Template Library (STL) provides a rich set of template

classes to manipulate with data structures.

57

4. The Microsoft Foundation Classes (MFC) is used for creating Windows

applications. It provides an application programming interface (API) to

implement all the features expected for the development.

The second set of libraries and functions is intended for own functioning of

the MS to start up and run a given RL. This specific set is encapsulated in the

ScriptablePlugin2.ldp plugin that is attached to the MS during its startup. As

mentioned, this plugin is the strongest and the most difficult by reason of its

wide use. These libraries are provided by the Windows operating system called

as the Dynamic-link libraries (also known as DLLs) to support implemented

expressions, control and mathematical functions coded in the psc script.

Expressions

The expression is a term that can contain any valid combination of explicit

numerical constants, variables, functions and operations coded in the prescribed

syntactical form of programming language.

Control functions

The control functions are designed to manipulate with input/output data and

experiment states/blocks as follows in the example list:

 write_output - It generates a new output sample based on the current state

of the output variables. This function is active only in the block init,

on_sample or on_manual_sample inside the fast experiment.

 sample (expression) - It loads a sample value with its index (sample_index

with the expression) into the input variables. This function is active in the

block on_sample or on_manual_sample inside the fast experiment.

 rotate (start, end, amount) - It rotates the temporary variables t0 - t99 in

the range of the amount steps to modify positions.

Mathematical functions

Many functions are available to implement in the psc script to simplify and

speed up the RL design and development as listed below:

 sin(x) - It returns the sine value in radians,

 cos(x) - It returns the cosine value in radians,

 asin(x) - It returns the arc sine value in radians in the range <-1, 1>,

58

 acos(x) - It returns the arc cosine value in radians in the range <-1, 1>,

 atan2(x, y) - It returns the arc tangent in radians from X/Y,

 pow(x, y) - It calculates the expression x
y
 (power),

 floor(x) - It rounds the value to the nearest lower integer number,

 ceil(x) - It rounds the value to the nearest higher integer number,

 round(x) - It rounds the value to the nearest integer number,

 fraction(x) - It returns the decimal part of the input value,

 abs(x) - It returns the absolute value of the parameter,

 min(x, minimum) - It returns the minimum of the two values,

 max(x, maximum) - It returns the maximum of two values,

 remap(x, s0, s1, s2, d0, d1, d2) - It remaps input values from the defined

range <s0, s1, s2> to the range <d0, d1, d2> with the fact that its

parameter s1 is remapped to d1. Input values, which are out of the range,

are always clipped to the range <s0, s2>,

 clamp(x, minimum, maximum) - It returns the value in the demanded

range. If defined minimum > maximum, the minimum value is returned,

 cmp(x, treshold, result_a, result_b) - It returns the parameter result_a if

defined x > threshold, otherwise returns result_b,

 cmp(x, treshold) - It is the short form for cmp(x, threshold, 1.0, 0.0),

 cmps(x, treshold, result_a, result_b) - It returns the parameter result_a if

defined x >= threshold, otherwise returns result_b,

 cmps(x, treshold) - It is the short form for cmps(x, threshold, 1.0, 0.0).

5.7 Analysis of Measureserver functioning and data traffic

The MS unit is a Windows application designed and built as a server that is

responsible for processing and transferring of measured data and metadata

between the rig’s physical modules and connected clients.

As introduced, the MS was implemented in the C++ programming language

by using the object-oriented programming. Just to remind this specific issue, the

object-oriented programming is a paradigm based on the concept of "objects",

which may contain data, in the form of fields, often known as attributes; and the

59

code, in the form of procedures, often known as methods. A feature of objects is

that the object's procedures can access and often modify the data fields of the

object with which they are associated. The MS was built on the class-based

concept that is the most often used object-oriented programming alternative. It

means, the objects are instances of classes, which typically determine their type.

The MS architecture and relationships among particular implemented objects is

shown in Figure 23 that presents the base object as the MFC CObject with all

derived objects up to the lowest levels where are located the applicable objects

for dialog boxes, communications, processes and parsers.

Figure 23 Class diagram of the MS concept consisted of the objects creating its basic

functionality; the base object MFC CObject, the derived objects provide main features

and the lowest levels bring the dialog boxes, communications, processes and parsers

60

Before the MS starts working, the unit has to initialize several components

ensuring its proper functioning. The components are loaded as the files from

various directories and processed by respective parsers. This initialization phase

takes place in the following prescribed sequence:

1. The MS loads and parses its configuration file including a reference that is

used to attach and start the control plugin in the unit.

2. The MS then configures and initializes the GUI module by the parsed

values to set the unit options and its functioning.

3. The control plugin loads the psc file by a reference that is placed in the

configuration file and it then parses the coded script.

4. The control plugin then loads and initializes device plugins referenced in

the parsed psc file to use them in the experiment.

5. The MS sets the attributes of parsed pins defined in the psc file and

creates the pins list that is available in the unit.

6. If required, the MS performs initial calibrations of attached devices based

on instructions coded in the psc file.

The next subchapters deal with the MS functioning related to the components

initialization and control program operation including data traffic.

5.7.1 Components initialization

The MS must load and initialize all the integral and referenced components

before the operation. There are two important components, Measureserver.cfg

and ScriptablePlugin2.ldp, which are successively initialized as the first. Further

components are initialized optionally according to the experiment scheme.

As the first, the MS loads the Measureserver.cfg file from a disk (that is, it

opens the file and reads data). It then parses the file content to obtain predefined

parameters and their values the unit requires for the initial setup of its internal

modules (data logging and graphical user interface). The parser finally provides

the reference (path and filename) to two inevitable files. The first referenced file

is the ScriptablePlugin2.ldp plugin used for all the experiments at present. The

second reference is for the psc script that is parsed and started later.

The Measureserver.cfg file (presented in Figure 9) is processed by the LR(1)

parser (introduced in subchapter 5.2) that is a part of the MS core. Before the

61

description of the LR parsing algorithm, it is important to clarify the constructs,

parse trees and bottom-up parsing, related to this kind of the parsing.

Parse trees

The parse trees are a tree-representation of the derivations that is occurred in

context-free grammars. Parse trees clearly show how the symbols of a terminal

string are grouped into substrings, each of which belongs to the language.

Bottom-up parsing

The Bottom-up parsing is a technique in which the abstract-syntax tree is in

the bottom up fashion. The bottom-up name comes from the concept of a parse

tree. It discovers and processes the tree starting from the bottom left end and

incrementally works its way upwards and rightwards. The tree may be merely

implicit in the parser's actions. The opposite technique is the top-down parsing,

in which the input's overall structure is decided first before moving down the

abstract-syntax tree, leaving the lowest level small details to the last.

LR parsing algorithm

The parsing algorithm is schematically depicted in Figure 24. It typically

consists of the five items, 1) input, 2) output, 3) data stack, 4) driver program

and 5) parsing table divided into the ACTION and GOTO parts.

Figure 24 Scheme of the LR parsing algorithm to process input string

62

This used algorithm involves the below actions:

Bottom-up parsing action

The bottom-up parsing corresponds to the construction of a parse tree for an

input string beginning at the leaves (the bottom) and working up towards the

root (the top). This method is called as the shift-reduce parsing.

Reduction action

This process is the “reducing” a string w to the start symbol of the grammar.

At each reduction step, a specific substring matching the body of a production is

replaced by the non-terminal at the head of that production. A reduction is the

reverse of a step in a derivation.

Handle action

The bottom-up parsing within a left-to-right scan of the input constructs a

right most derivation in reverse. The “handle” is a substring that matches the

body of a production, and whose reduction represents one step along the reverse

of a rightmost derivation, that is, when there is string w of a grammar.

Shift-reduce action

The action is a form of the bottom-up parsing in which a stack holds grammar

symbols and an input buffer holds the rest of the string to be parsed. The handle

appears at the top of the stack just before it is identified as the handle. The $ is

used to mark the bottom of the stack and also the right end of the input. Initially,

the stack is empty, and the string w is on the input with a stack as $ and string w

as w$. During a left-to-right scan of the input string, the parser shifts zero or

more input symbols onto the stack, until it is ready to reduce a string β of

grammar symbols on top of the stack. It then reduces β to the head of the

appropriate production. The parser repeats this cycle until it has detected an

error or until the stack contains the start symbol and the input is empty.

LR Items

An item set is the list of production rules. An item set has a one-to-one

correspondence to a parser state, while the items within the set, together with the

next symbol, are used to decide which state transitions and parser action are to

be applied. The general form of a LR(1) item is [A→α • β, a], where A→αβ is a

production and a is terminal or right $ end marker. The dot represents how an

63

item is seen in a given state. The second defined component is called the

lookahead of the item. The involved lookahead has no effect in an item of the

form [A→α • β, a] where β is not ε, but an item of the form [A→α •, a] calls for

a reduction by A→α only if the next symbol is a.

 The • indicates how much of an item is seen at a given state,

 The expression [A → • XY Z] indicates the parser is looking for a string

that can be derived from XYZ,

 The expression [A → XY • Z] indicates the parser has seen a string derived

from XY and is looking for one derivable from Z.

 There is a canonical set of the LR(1) items having a set of items:

 derivable from [S’→ • S, $] and,

 that can derive a final configuration.

FIRST statement

For a string of grammar symbols α is defined the FIRST(α) as:

 The set of terminal symbols beginning strings derived from α,

 If L⇒ ε, then in valid the expression ε FIRST(α).

The FIRST(α) contains the set of tokens valid in the initial position in α. The

algorithm presenting the building the FIRST(X) is listed in Figure 25.

CLOSURE statement

The closure is an operation to construct the set of items through rules:

1. Initially add every item in I to closure (I),

Figure 25 Example of the algorithm to build the FIRST(X) statement

64

2. If the expression A → α • Bβ is in closure (I) and B → γ is a production,

then add B → • γ to I if not there,

3. These rules are applied until no more items can be added.

The algorithm computing this statement is clearly explained in Figure 26.

GOTO statement

Let I be a set of LR(1) items and X be a grammar symbol. Then, the

expression GOTO(I, X) is the closure of the set of all items [A → αX • β, a]

defined for the operation such that [A → αX • β, a] I.

If I is the set of valid items for some viable prefix γ, then GOTO(I, X) is the

set of valid items used for the viable prefix γX. The GOTO(I, X) represents the

state after recognizing X in the state I as explained in Figure 27.

Figure 26 Algorithm to implement the CLOSURE operation

Figure 27 Algorithm to implement the GOTO operation

65

FOLLOW statement

For a non-terminal A the FOLLOW(A) is defined as:

 The set of used terminals, which appear immediately to the right of A in

some sentential form.

 A terminal symbol has no FOLLOW set.

The method of building this set is described in two points:

1. Place the symbol $ in the FOLLOW(S), where S is the start symbol and $

is the input right-end-marker.

2. If there is the production A → αBβ, then everything in FIRST(β) except

for ε is placed in FOLLOW(B).

Augmented Grammar

The collection construction of the sets of LR(1) items is started with the

defined item [S’ → • S, $], where:

1. S' is the start symbol of the augmented grammar G',

2. S is the start symbol of G, and $ is the right end of string marker.

To compute the collection of the sets of LR(1) items, first a given grammar is

augmented, them a respective algorithm is implemented.

Parsing tables

The LR(1) parser uses the ACTION-GOTO table served as a reference to the

parser at every move. This table basically represents a FSM that instructs the

parser to perform a shift or reduce action when it undergoes a transition from

one state to another. The notations used here are as follows:

 $ represents the end of an input string,

 sn tells the parser to make a shift to state In ,

 rk tells the parser to reduce by rule k described in the grammar,

 acc indicates that the input string is accepted,

 j represents GOTO(j) in the table.

With these definitions, there is possible to describe the following method for

constructing the LR(1) ACTION-GOTO table [41]:

66

1. Construct the collection of the sets of LR(1) items for G',

2. State i of the parser is constructed from Ii ,

a) If [A → α • aβ, b] Ii, and GOTO(Ii , A) = Ij, then set ACTION[i, a] to

shift j or sj (a must be a terminal),

b) If [A → α •, a] Ii, then set ACTION [i, a] to do reduce A → α or rk

(k represents the k
th

 rule of the context-free grammar),

c) If [S' → S •, $] Ii, then set ACTION[i, $] to acc,

3. If GOTO(Ii , A) = Ij, the set GOTO[i, a] in the table to j,

4. All other entries in the ACTION-GOTO table are set to “error”,

5. I0, the initial state of the parser, is the closure of the item [S' → • S, $]. All

other states are formed by the above procedure of constructing a FSM to

represent the parsing action on each item in I0 recursively.

After the Measureserver.cfg file parsing, the ScriptablePlugin2.ldp plugin is

loaded, attached (its functions) and finally started to parse the psc file to build

the experiment logic and data structures. This plugin is also responsible for the

communication with other attached plugins, which can be optionally defined as

the file references in the psc file. Furthermore, it concerns with the experiment

operation related to the control, observation and measurement.

The ScriptablePlugin2.ldp plugin uses the Recursive descent parser residing

in its core (introduced in subchapter 5.2) to perform parsing of the control

program saved in the pcs file to build the experiment logic.

Recursive descent parser algorithm

The recursive descent parsing is one of the most straightforward forms of

parsing technique. This is a top-down process in which the parser attempts to

verify that the syntax of the input stream is correct as it is read from left to right.

A basic operation necessary for this involves reading characters from the input

stream and matching then with terminals from the grammar that describes the

syntax of the input. The parsers looks ahead one character and advances the

input stream reading pointer when proper matches occur. The procedure that

accomplishes the matching and reading process is shown in Figure 28.

67

The variable called “next” looks ahead and always provides the next character

that will be read from the input stream. This feature is essential for the parsers to

be able to predict what is due to arrive as input. There is also defined an error

indicator that is returned by the procedure.

What the Recursive descent parser actually does is to perform a depth-first

search of the derivation tree for the string being parsed. This principle provides

the “descent” portion of the name. The “recursive” portion comes from the

parser's form, a collection of recursive procedures.

The following example presents a first portion of the parser’s features. There

is defined the simple input grammar:

E → x+T

T → (E)

T → x

and the derivation tree for the expression x + (x + x) as shown in Figure 29.

Figure 28 Procedure to match the input symbol

Figure 29 Procedure to accomplish

 the derivation tree for x + (x + x)

68

The parser traverses the tree by first calling a respective procedure to

recognize an E. The procedure reads an x and a +, and then it calls a procedure

to recognize a T. This looks like described clearly in Figure 30.

The errorhandler is a procedure notifying the user that a syntax error has

been made and then possibly terminates execution.

In order to recognize a T, the parser must resolve which of the productions to

execute. This is not difficult and is done in the procedure in Figure 31.

In the above procedure, this parser is able to determine whether T has the

form (E) or x. If not, then the error return is called, otherwise the appropriate

terminals and non-terminals are recognized.

The parser works with deterministic context-free grammars. They are the

subset of context-free grammars, which can be derived from the deterministic

pushdown automata (DPDA), and they generate the deterministic context-free

languages. The DPDA is a variation of the pushdown automaton that employs a

stack. It accepts the deterministic context-free languages.

As an example of the grammar for conditional statements is presented where

the symbol S is a non-terminal generating statements and B is one that generates

the following Boolean (true or false) expressions:

S → if B then S;

S → if B then S else S;

Figure 30 Procedure to traverse the expression tree

Figure 31 Procedure to execute the production

69

Both of these productions begin the same way, so it is not clear from the first

symbols exactly, which production is to be used in recognizing a conditional

statement. The solution to this problem is called factoring. The principle of

factoring is, the common prefix is recognized (in this case if B then S) and then

it decides which suffix to recognize as follows:

S → if B then S Z

Z → ;

Z → else S;

The general factoring algorithm is presented in Figure 32 with α as the

common prefix and βi as the suffixes mentioned above.

The next example, a grammar that generates strings of the form a
n
b

n
 is

defined to describe other features of the parser:

S → aSb

S → ab

where factoring brings the expressions:

S → aZ

Z → Sb

Z → b

which is the unclear form when applying the Z-productions. Substituting for the

symbol S solves this problem and constructs the required productions:

S → aZ

Z → aZb

Z → b

Figure 32 General algorithm of the factoring process

70

The general algorithm for the substitution is described in Figure 33. Capital

Roman letters are non-terminals and Greek letters represent (possibly empty) the

strings of terminals and non-terminals to process.

It simply means if this substitution is performed for a non-terminal in the

production, then it must be substituted using all of the instances where it appears

on the left-hand side of the production.

Finally, to mention for short, here are three cases, which should not occur in

nice grammars along with algorithms for their removal as follows [42]:

1. A chain rule (or singleton production) is one of the form A → B where

both A and B are non-terminals.

2. A non-terminal symbol unreached is one that cannot be generated from

the starting symbol.

3. A useless non-terminal is one that generates no strings of terminals.

When the Measureserver.cfg file and the psc script are successfully parsed by

respective parsers, the ScriptablePlugin2.ldp plugin initializes and starts all the

components for the purpose of the control program operation.

5.7.2 Control program operation

The control program coded in the psc script is a component part that is

essential to the MS functioning. Typical RLs are designed to monitor attached

meters or probes and to control devices with the aim of obtaining measured data

detailing examined phenomena in charts and tables for the analysis.

Basic psc script structure

The standardized structure of a new version of the psc script file consists of

six basic obligatory and optional terms (sections) as listed below:

1. Header (required),

Figure 33 General algorithm of the substituting process

71

2. Definitions of imports (required),

3. Definitions of variables (optional),

4. Definitions of functions (optional),

5. Definitions of state/states (optional),

6. Definition of fast experiment (optional).

Header

The header is declared in the beginning of each psc script and its syntax is

obligatory. On the first line, there is specified a version of the psc script. The

three versions are available up to now, as 3.1, 3.2 and 3.3.

Under the script version, there is placed the experiment name and the file

reference to an attached plugin, usually used the PCI1202CardPlugin.ldp or

ISESBlueUsbPlugin.ldp according to the ISES control board type.

Definitions of imports

This is the second part of the psc script used to define inputs and outputs,

which the user wants to work with. The ISES control board with the AD/DA

interface card has analog and digital inputs and outputs.

Definitions of variables

In this part of the psc script, a user defines global variables, which are valid

for the entire script. All variables are declared as a double (real number).

Definitions of functions

A new version of the psc script (version 3.1 and higher) allows the user to

define own functions. This is a great simplification because it is not necessary to

copy parts of the code that is already repeated. These parts of the code can be

neatly encapsulated into the defined function.

Definitions of states

The psc script can be declared as a finite-state machine. The system can

change from one state to another. This new approach greatly simplifies the

design of the RLs that can be constructed as the sequential tasks.

72

Definition of fast experiment

The fast experiment feature was implemented in a new version of the psc

script to measure/monitor fast events, like the transient phenomena in electronic

circuits. The MS is capable to read generated data from respective pins in

frequency up to 3 kHz during maximally 10s per one measurement.

Finite-state machine operation

As mentioned, the MS can work as the FSM (introduced in subchapter 5.1)

coded in the psc script by using several specifiers and commands.

A new state can be defined by the keyword state that is followed by the

implementation inside curly brackets. Every state contains several handlers

providing activities created for respective purposes. The handler entry and exit

are mandatory only, the rest of them are optional. There are eight standard

handlers built to the language with different properties as listed:

1. entry,

2. step,

3. timeout,

4. pin_read,

5. pin_write,

6. on_each_change,

7. on_user_second,

8. exit.

Every handler can contain cycles, conditions, variables and functions. The

scheme of all the available handlers is presented in Figure 34.

These handlers are described at some length in the following bullets to

understand the concept of the implemented state machine [43]:

 entry - If this handler is defined, it should be placed as the first in the

sequence. The code written here is performed only once when the RL

enters this state. It does not allow the context switching that is an event

where the RL changes from a one state to another. This switching is

performed by using the keyword current_state = new_state.

73

 step - This handler is used for a code that is executed repeatedly. The step

frequency must be specified in hertz to run the code.

 timeout - This handler is used for a code executed after the elapsed time

given in seconds A one state allows containing more than one timeout.

The handler supports the context switching.

 pin_read - This handler provides the function allowing the user to read

data from the ISES control board pins. These data can be displayed on the

web page in a relevant JavaScript widget. The handler contains its special

variable result used for reading by this widget. The frequency of handler

calling is directly adjusted by the reading widget.

 pin_write - This handler is very similar to pin_read but it provides a

function to write data to the ISES control board pins. A user can control

the RL and change its properties through the web page. The handler

contains the variable new_value to write the data to the pins.

 on_user_change - In this handler, the code is executed when the client of

the experiment is changed. It is correct to define this handler at the end of

each state. If it is defined and if a programmer makes a mistake the RL

performs the required code and does not fall in a wrong state.

 on_each_second - In this handler, the implemented code is executed each

second. This behavior can be achieved by the step handler.

 exit - The handler executes its code at the end of the state and only once. It

does not support the context switching.

Figure 34 Scheme of the handlers used for the finite-state machine operation

74

The scheme depicted in Figure 35 describes the FSM-based concept used to

initialize and run the experiment. Each state is responsible for a specific action

to complete (including data exchange, input/output operations, etc.) and to

decide a transition (based on conditions) to the next state.

The RL designer is allowed to create as many FSM states as required for a

completion of the experiment logic. The example shown in Figure 36 presents

the coded definitions of particular states (based on the scheme in Figure 35) with

using the described specifiers and commands.

Figure 35 Example of the FSM-based concept used to calibrate the

sensor position, to wait for the connected user and to start

the experiment operation with its optional finish

75

Figure 36 Example of the psc script in which is implemented the FSM-based

experiment; the specifiers “state” are states, the variable “current_state”

makes a transition to a new associated state during the operation

76

The MS is able to receive or send data in any operational state in which the

experiment resides. The communication between the MS and all connected

clients (queueing based on their access time, activities or status) is realized by

the WebSocket protocol (introduced in subchapter 3.2).

The WebSockets provide a persistent connection between the MS and a client

that both involved parties can use to start sending data at any time.

The client establishes a WebSocket connection through a process known as

the WebSocket handshake. This process starts with the client sending a regular

HTTP request to the MS. The Upgrade header is included in this request that

informs the MS that the client wishes to establish a connection.

The MS agrees to the upgrade and communicates this through the Upgrade

header in the response as the first necessary step.

Now, the handshake is complete the initial HTTP connection is replaced by a

WebSocket connection that uses the same underlying TCP/IP connection. At

this point, either party can start sending data to the remote place.

The data transfer goes without incurring the overhead associated with the

traditional HTTP requests. The data are transferred through a WebSocket as

messages, each of which consists of one or more frames containing the sending

data (the payload). In order to ensure the message can be properly reconstructed

when it reaches the client each frame is prefixed with 4-12 bytes of data about

the payload. Using this frame-based messaging system, it helps to reduce the

amount of non-payload data transferred. This approach leads to significant

reductions in latency during the communication process.

77

6. MAIN RESULTS OF THE WORK

In this chapter are presented the results of the envisaged goals of the doctoral

thesis in the Chapter 4 using the methods summarized in Chapter 5. This chapter

is constituted by the extensive programming work of the internal grant project

IGA of the group of Ph.D. students at Tomas Bata University in Zlín and the

partial fulfillment of the project SCOPES of the Swiss National Science

Foundation and Swiss Agency for Developments and Cooperation.

For the purpose of introducing into results, there is presented the general

scheme of the MS unit shown in Figure 37 with new added modules, which are

denoted by the red frame. These modules are called DAM, MUD, PMD and EPS

described at some length in the next subchapters.

6.1 Data archiving and logging module

The first task of this doctoral thesis was to design and implement the module

called DAM (data archiving management) responsible for gathering, filtering

and saving measured data and experiment metadata to an xml file. The module

also allows an option to log all performed activities by the connected clients

during their experimentations to a log file. The reason to implement this module

was to have complete information about the RLs operation and clients whose

interventions (their behavior) affect the experimental process.

Figure 37 Scheme of the MS functional concept that includes the new modules

located in the red frame; 1) DAM is data archiving management, 2) MUD is

Measureserver unit diagnostics, 3) PMD is physical modules diagnostics,

and 4) EPS is embedded real-world phenomena simulation

78

The generated xml and log files are being sent to the data warehouse where

they are analyzed in detail and distributed to other subsystems. The xml files are

provided to clients who require measured data coming from typical cases

without the real experimenting to reduce time to obtain the measured data.

The log files are useful for RL designers interested in the didactical aspects

concerning the clients’ behavior for the purpose of RLs improvements.

As the first, more significant part, it deals with the measured data archiving to

the XML (eXtensible Markup Language) data format. The XML is a markup

language that defines a set of rules for encoding documents in a format that is

both human-readable and machine-readable. The design goals emphasize the

simplicity, generality, and usability across the Internet. It is a textual data format

with a strong support via Unicode (standard for the text encoding, representation

and handling) for different human languages. The design focuses on documents,

but the language is widely used for working with the data structures such as

those used in web services [44], hence it is the optimal data format.

 For the DAM implementation, the Microsoft XML Core Services (MSXML)

was exploited to speed up its development. The MSXML provides a set of the

services allowing developers to design and build high-performance XML based

applications. It provides a high level of interoperability with other applications,

which adhere to the XML 1.0 standard in realized projects.

The MSXML APIs are represented by the COM (Component Object Model)

objects used programmatically in source codes. Developers can program against

MSXML objects from C++ or from scripting languages as JScript and VBScript.

Like all the COM and MSXML objects are programmatically instantiated by

CLSID (globally unique identifier) or programmatic identifier.

The DAM module was coded in C++, directly in the MS source codes by

using the MFC wrapper as a part of the MSXML. The wrapper provides a

simplified interface to Microsoft’s XML DLL. This library makes it easy to

write the MFC code that loads an XML document into memory as a tree

structure, modifies the XML tree and saves it back to a disk as the file.

The XML data format for archiving is based on the implementation standard

called DOM (Document Object Model). The DOM takes the complete XML

document and transforms it into a node tree that can be accessed at will by the

application. The node tree closely mirrors the document itself and, since the

79

complete document is in memory, random searches are allowed. The next DOM

feature is that it guarantees the document is “well-formed” when saving it. This

is possible because the details of the syntax are hidden from developers.

 The used Microsoft’s DOM is contained in the library msxml.dll and is

installed as a part of the Internet Explorer 5 and later. Microsoft continually

updates their MSXML because of the dynamics of the W3C (World Wide Web

Consortium) specifications and they add new features.

 In the DAM module, the Microsoft’s MSXML 3 was deployed. All the

functionality and features are contained in the library msxml3.dll. This DLL has

the MFC wrapper class called CXmlIF to make it more manageable for the

application developers. The CXmlIF is implemented in the C++ source code

files XmlIF.h and XmlIF.cpp [45] included in the MS project.

When the CXmlIF object is constructed (instantiated), its member method

CXmlIF::Initialize()is called. It is used to initialize the COM library

through CoInitialize()and to create an instance of the DOM Document

object, IXMLDOMDocument, that is returned through the interface pointer

m_pDoc using the COM method CoCreateInstance(). There is used the flag,

m_bInitialized, to determine if the construction is successful and if the

document object pointer is valid for the usage.

When all the experiment data are accumulated and inserted to the XML tree

structure, the document saving is performed to an xml file. There is called the

method CXmlIF::SaveDocument(const char* szURL) that saves the content

of the DOM object pointed to by m_pDoc to the specified file.

The destructor calls UnInitialize() to clean up when the CXmlIF object is

destroyed (removed from the dynamic memory) before the MS shutdown.

As previously mentioned, the DOM represents a node hierarchy of the XML

document. Such the generated document can contain a prolog, body and epilog.

The DAM’s XML files contain the prolog <?xml version="1.0"?> that is a

processing instruction node placed at the beginning of the file.

The top node of the document is appropriately named the “document node.”

The body of the XML document contains all the meat. There is just one node at

the top of the body. All other nodes are descendants of this node. In fact, the

node at the top of the body is a descendent of the document node.

80

When the client starts the measurement, data are being gathered (scanned)

from the attached metes/probes and devices. The CXmlIF object is created and

initialized, then the descending nodes (children) are being created and respective

data are being inserted to these nodes. This process starts by calling the method

CXmlIF::CreateChild()using the node name as the first argument. The XML

file formation is listed in Figure 38, focused on the CXmlIF object construction,

and all the document variables and nodes declaration before the archiving.

Figure 38 Implementation of the DAM module that constructs the

CXmlIF object with its variables and nodes in the source code

file ServerListeningSocket.cpp to create the xml file

81

The data archiving process is performed in the loop located in the respective

sections, according to the RL types (slow and fast experiment), which are coded

in the ServerListeningSocket.cpp file. The archiving section used for the fast

experiment is listed in Figure 39 that presents a creation of the descending node

to which is inserted a new record (row) with the row number, current time and

measured data pin read in the respective meter.

As mentioned, the MS handles specific messages to communicate with clients

to monitor and control the RL rig. These messages are conceived for different

operational purposes. They are received and sent when the RL starts, initializes

all its components and performs the measurement. Each message has a unique

Figure 39 Implementation of the data archiving process to create the descending

node “row” to which is inserted a new record with the row number “name”,

current time step “time” and measured data pin “value” read the meter

82

identifier distinguished by the MS before producing the corresponding client’s

action. All the messages are represented by the following command:

 COMMAND_START_EXPERIMENT - It obtains details about the slow

experiment when it started its running.

 COMMAND_STOP_EXPERIMENT - It obtains details about the slow

experiment when it stopped its running.

 COMMAND_READ_EXPERIMENT - It obtains measured data form the

slow experiment when the client demands.

 COMMAND_BURST_EXPERIMENT - It obtains measured data form the

fast experiment when the client demands.

 COMMAND_IS_EXPERIMENT_RUNNING - It obtains current measured

data coming from the slow experiment.

 COMMAND_READ_FAST_LOG - It obtains the measured data from the

high frequency process for a selected device.

 COMMAND_MEASURE_DEVICE_VALUE - It gains the value measured

from a selected device available in the devices list.

 COMMAND_SET_DEVICE_VALUE - It sets the value that controls a

selected device available in the devices list.

 COMMAND_GET_SOURCE_DEVICE_HANDLE - It obtains the device

handlers stated for the reading measured data.

 COMMAND_GET_DESTINATION_DEVICE_HANDLE - It obtains the

device handlers stated for the writing control values.

 COMMAND_GET_CONNECTED_CLIENT - It returns the client details.

 COMMAND_GET_QUEUE - It obtains the list of all connected clients.

 COMMAND_LIST_DEVICES - It obtains the list of involved devices.

 COMMAND_LIST_EXPERIMENTS - It obtains the list of experiments.

 COMMAND_DELAY_FLUSH - It activates the data flushing delay.

 COMMAND_QUERY _POS - It obtains the position of an active client.

 COMMAND_READ_LOG - It reads the history data for a selected device.

 COMMAND_EXIT - It terminates the client’s connection.

83

The DAM creates the CXmlIF object when a new client connects to the RL

and sends initial messages from the web page. Important details (status and

configuration) about the RL are stored to this object. There are details about the

connected client, attached physical modules and preset settings to set all widgets

displayed on the web page. The UML (Unified Modeling Language) activity

diagram depicted in Figure 40 presents the case of sending the client’s message

COMMAND_BURST_EXPERIMENT to perform a measurement on the rig of

the fast experiment with the enabled data archiving to the xml file.

Figure 40 Activity diagram of the archiving process performed when

the client’s message “COMMAND_BURST_EXPERIMENT” is sent

to the MS to save data from the fast experiment to the file

84

As the example, the 1401151608361003.xml file archiving measured data is

presented in Figure 41 that includes the data structure and the respective selected

branch attributes. The filename is consisted of the date and time stamp of the

performed measurement, client’s identifier and sequence identifier.

Further example of the archive file is introduced in Figure 42 that exposes a

content of the 1506161040530410.xml file presenting the particular branches as

the subsection elements. The file content is highlighted by the colored lines to

distinguish respective subsections in the data structure.

The DAM module also has the user interface that provides activating of the

direct connection to the data warehouse and the file deletion after dispatching. It

allows setting the IP address, port number, account name and password to

establish the communication with the data warehouse. The user interface is

presented in Figure 43 as the XML section residing in the Diagnosis dialog box

belonging the MS’s GUI used for the general setup.

Figure 41 Example of the XML file that is generated by the DAM’s functions; the file

covers the measured data, metadata and control values affecting the measurement.

The viewer presents the three panels, the Attributes panel showing attributes

 of the “experiment” branch, the XML source panel listing the

data structure and the branches tree panel

85

Figure 43 Example setup of the user interface that presents the

XML parameters used for the direct connection to the

data warehouse to dispatch xml files

Figure 42 Example of the XML structure that presents the 1506161040530410.xml file

to point out the subsection elements. The file comes from the RL “Transients in RLC

circuits”. The content is highlighted by the colored lines to distinguish particular

subsections; the identical colored line pairs indicate subsections at

the same level. The yellow elements, “control” and “observation”,

expose the control value and two measured buffers

86

The DAM also provides a component for the clients’ activities logging. The

component is responsible for continuous writing events reporting activities of

the connected clients. The MS assigns a unique identifier for every client to

distinguish his activities. These events are being saved to the Users.log file for

all the time the client is connected to the system.

The clients’ activities logging process is designed to run in several sections of

the MS to log respective events. It is deployed in the section where the clients

connect/disconnect or change their status. Further logging process is involved in

the section for clients’ interventions (changing slider positions, button states and

other widgets to control the experiment or modify options).

When a new client successfully connects to the MS, the logging component

makes a record (date, time, IP address and client’s unique identifier) about this

event to the Users.log file as shown in Figure 44 that presents this activity

through the C++ code residing in the ServerListeningSocket.cpp file.

Further important activity is the logging process of the clients’ interventions

performed during the experimentation. These events are especially interesting

for the RL designers in the didactical aspects.

When the client changes a value (for example, sets a motor speed or position)

that is available on the web page by using the respective slider, all these changes

Figure 44 Section of the clients’ activities logging process implemented in the

ServerListeningSocket.cpp source code file that is activated when the client

connects to the MS to make a record of this event to the Users.log file

87

are continuously recorded to the Users.log file. This client’s activity is presented

in Figure 45, as the C++ code located in the ServerListeningSocket.cpp file, to

make one record (date, time, client’s unique identifier, device name and new

device value) that is finally saved to the file.

Furthermore, the component for the clients’ activities logging is able to record

events incoming from the MS functioning like its startup, shutdown, loaded

device plugins and data pins allocated in the experiment.

The example record stored in the Users.log file is presented in Figure 46 that

exposes the date and time stamp, client’s unique identifier assigned when he is

connected to distinguish his activities. There are also the records “sets device”

indicating the changed parameters for the real and simulated process.

Figure 45 Section of the clients’ activities logging process that is located in the

ServerListeningSocket.cpp source code file activated when the client changes

a device value to make one event record saved to the Users.log file

Figure 46 Example record of the clients’ activities located

in the Users.log file to archive to the data warehouse

88

The clients’ activities logging component has the respective user interface to

provide activating of the connection to the data warehouse. Furthermore, it

allows setting the IP address, port number, account name and password placed

for the communication with the data warehouse. The last included parameter is

defined for the dispatching periodicity as introduced in Figure 47.

Summary of the subchapter “6.1 Data archiving and logging module”: This

subchapter fulfils the goal No. 1 and 2. The remote laboratories produce

excessive, even big data, produced by measured ones, which are generated by

measuring process and clients’ activities data that should be stored for the later

recovery and processing. This constitutes the improvement in the intelligent

version of the Measureserver unit. The novelty and the scientific approach rest

in the use of XML data output for the online analysis.

6.2 First level diagnostics module

The second task of the doctoral thesis was to design and implement the

module called MUD (Measureserver unit diagnostics) used as the first level

diagnostics. The module provides to RL administrators information to ensure the

MS functioning with the aim of avoiding or reducing occasional failures caused

by various influences. The MUD also has a self-recovery mechanism to recover

the MS functioning after failure events. The typical failure is caused by attached

device plugins, which can suddenly stop communicating with their ADDA

interface cards or physical modules. The diagnostics is optional that can be

disabled to avoid the compatibility conflict with older experiments.

Figure 47 Example setup of the user interface that presents

 the LOG parameters used for configuring of the

clients’ activities logging component

89

The MUD concept is based on the checking operational sections (blocks)

inside the MS core including limited corrections when the evaluating conditions

detect failure states in the checked sections. This module is consisting of two

internal components working independently in different threads (sequence of the

instructions, which can be executed in the application concurrently with other

such sequences). These threads work continuously as the background processes,

which include many functions to complete specific tasks.

6.2.1 Notifying thread component

The first built component called RlmsNotifyingThread is responsible for the

notification process that periodically monitors the MS functioning. If the MS

status is detected okay (it works properly), the MUD dispatches the notification

message "Measureserver is running" to the diagnostic server (DS). This is a

superior server that processes all the messages incoming from the MS and sends

back commands to request for the RL status or to recover the operation. In case

of the mentioned notification message, the DS identifies this message and

exposes as the three lights semaphore placed on every web page of the RLs in

the REMLABNET. The semaphore is especially useful for connected clients

who can see three colors on it; the red one indicates the RL is unavailable, the

orange indicates it is reserved and the green signalizes it is ready to use.

The MUD generates all messages in the same text format before dispatching

to uniquely distinguish them in the DS. Each message includes a time stamp and

additional identifiers, which are placed in square parenthesis, intended for the

parsing purposes; these identifying items are listed below:

1. [DATE] - current date,

2. [TIME] - current time,

3. [MAC] - network card’s MAC (Media Access Control) address,

4. [IP] - computer’s IP (Internet Protocol) address,

5. [COMPUTER NAME] - computer name (identifier),

6. [EXPERIMENT NAME] - experiment name (identifier),

7. [MESSAGE CODE] - unique message code (number),

8. [MESSAGE LENGTH] - total message length (number),

9. [MESSAGE TEXT] - action/event occurrence description.

90

The diagnostic messages are created and formatted as text strings by the

function GetDiagnosticMessage(int Code, CString Text)that is located

in the MeasureServerDlg.cpp file. The message "Measureserver is running" is

generated with the appended items and dispatched to the DS where it has the

following form intelligible for the RL administrators:

[10.05.2017] [15:20:30] [7A-79-19-25-10-1C] [192.168.1.100] [LAB] [RLC]

[0] [114] [Measureserver is running].

This notification message is processed separately by the DS that receives it

periodically. If the MS stops dispatching this notification by reason of its crash

or disconnection, then the DS qualifies this inactivity and sets a red color on the

client’s semaphore after some time. The message dispatching is realized by

using the CAsyncSocket object to ensure an asynchronous communication with

the DS. Shortly to explain, the object’s class encapsulates the Windows Socket

API providing an object-oriented abstraction to use such sockets in conjunction

with the MFC during the application development.

The component represented by the RlmsNotifyingThread function is exposed

in Figure 48 that shows periodic dispatching of the notification message.

Figure 48 Source code of the RlmsNotifyingThread function located in

the MeasureServerDlg.cpp file to create and dispatch the notification

message “Measureserver is running” to the DS for the analysis

91

6.2.2 Operating thread component

The second component build in the MUD is called RlmsOperatingThread

used for various diagnosing operations in the MS core. This component is

implemented as a function running periodically to process all messages.

This specific function is designed for three targets. The first implemented

target is responsible for the dispatching of the generated diagnostic messages to

the DS for the analysis and the distribution to other subsystems. For this

purpose, there is used the MUD’s outbound queue in which the all messages are

continuously accumulated before the dispatchment.

The second target is focused on receiving the messages from the DS as the

commands to accomplish prescribed actions. There is also used a queue, called

as the MUD’s inbound queue, in which are cumulated in sequence all the

commands incoming from the DS interface.

The third target deals with the accomplishment of the commands residing in

the MUD’s inbound queue to deliver status information to the RL administrators

through the DS interface. These commands provide the following actions:

1. accept - It returns the message “RLMS connection accepted” to inform

about the MS activity whether it runs correctly.

2. update - It returns the message “Experiment report updated” with the one

of the following messages, “Experiment is idle”, “Experiment is running”

or “Experiment is reserved” to inform about the experiment status.

3. restart - It performs that the MS restarts itself and then it returns back the

message “Measureserver restarted” to inform about the restart.

4. reboot - It performs that the computer reboots itself and then it returns

back the message “Computer rebooted” to inform about the reboot.

5. stop - It performs that the MS stops running to finish the experiment to

make the rig’s modules maintenance or recovery.

6. detect - It returns the message “Hardware modules detection updated”

with the one of the following messages, the message list of attached

physical modules, “Hardware modules detection disabled” or “Hardware

modules detection not present” to inform about the status and setup of

physical modules. This command relates to the second level diagnostics

that is discussed at some length in the next subchapter.

92

Each command can be accompanied by an IP address as the parameter that

determines which RL is concerned to obtain status information from, or to

perform required actions on it. If there is not entered the IP address, then all the

RLs (connected to the DS) accomplish the incoming commands.

When the RL administrator dispatches a requiring command to the RL

through the GUI (installed on the DS to manage the experiments), then the

MUD receives and processes it. As an example, the formed and dispatched

command “update 10.20.54.66” triggers the action shown in Figure 49.

Further example, the formed and dispatched command “restart 10.20.54.66”

triggers the action shown in Figure 50 to perform the MS restart for the purpose

of the RL recovery. This command can be triggered manually by the RL

administrator or automatically by the DS based on the incoming notification

message “Measureserver is running” if it stops notifying for a longer time.

Figure 49 Source code of the ”update” command that is triggered by the RL

administrator from the DS interface to obtain an experiment status; as

 the first, it returns the message header “Experiment report updated”

followed by the one of the messages “Experiment is running”,

“Experiment is idle” or “Experiment is reserved”

93

As mentioned, the MUD is consisted of the two components (functions),

RlmsNotifyingThread and RlmsOperatingThread, which work as the threads

running concurrently in the MS core. They are both started periodically in the

member method VOID CMeasureServerDlg::OnTimer(UINT TimerVal)in

the CMeasureServerDlg object. The UML activity diagram shown in Figure 51

presents the RlmsOperatingThread functioning. There are involved the three

sequential operations in this function; the messages dispatching, the commands

receiving and the commands accomplishment with notification.

Figure 50 Source code of the “restart” command triggered by the RL administrator

from the DS interface to restart the MS functioning to recover the experiment; it

returns the message “Measureserver restarted”, then the MS restarts itself

94

The first level diagnostics encapsulates and starts one important function that

is an integral part of the second level diagnostics described at full length in the

next subchapter. The function is located in the RlmsOperatingThread component

to detect and monitor the ISES modules connected and to dispatch messages

about status information to the DS for their maintenance.

As the example, the “update” command dispatched from the DS to MS unit

causes that the MS sends back the list of complex information describing the

respective experiment as shown in Figure 52 There is primarily delivered the

Figure 51 Activity diagram of the RlmsOperatingThread component

that involves three main operations; the messages dispatching, the

commands receiving and the commands accomplishment

95

data and time stamp of the request, the configuration of connected physical

modules including attached plugins and registered clients.

The MUD is allowed to configure by the respective user interface. It provides

the RL administrators the specific parameters to set the connection to the DS

and to also set the management of notification and faulty messages during the

operation as presented on the example settings shown in Figure 53.

Figure 52 Example of the “update” command dispatched from the DS to MS unit to

obtain back the complex information describing the respective experiment

Figure 53 Example settings of the MUD module available

in the MS unit to configure the direct connection

 to the DS and the messaging process

96

The notification and faulty messages, which are generated by occurred events,

and the involved commands for the management are listed in Figure 54.

Figure 54 Notification and faulty messages generated by the MS unit when

 events occur and the control commands coming from the DS to use for

the management of the unit in case of problems or updates

97

Summary of the subchapter “6.2 First level diagnostics module”: This

subchapter deals with the goal No. 3. The diagnostics of remote laboratories is

not to be found, to our knowledge, in any published laboratory, irrespective of

the fact of its importance. The first level diagnostics serves to inform the client

about general function of the respective remote laboratory. It is based on

checking the consistency of the function of every plugins and drivers, signaled

by the “traffic lights”. This constitutes the improvement in the intelligent version

of the Measureserver unit. The novelty and the scientific approach rest in the

use of real-time checking of the critical points of the units in question.

6.3 Second level diagnostics module

The third task of this doctoral thesis was to design and realize the module

called PMD (physical modules diagnostics) used as the second level diagnostics.

The module provides the RL administrators the features to detect and monitor

the ISES physical modules (meters, sensors, probes and devices) connected to

the rig to prevent their failures or disconnections during the measurement.

The physical modules are used to obtain the quantities of electric current and

voltage, temperature, speed, sound, etc. They are connected to the ISES control

board used as a central board of the RL rig. As the primary aim, the PMD was

implemented to detect and determine a kind of the added (attached) module and

its configuration, like the number of data channels and sensing range.

The detection principle is based on the periodical testing of input and output

ports built in the ISES control board where the physical modules are connected

as exchangeable devices. The ADDA conversion is realized by the PCI 1202

interface card via the driver between the MS and the ISES control board. When

any physical module is connected, re-connected or removed from the port, then

the appropriate technique to update the status is activated.

The physical modules have 15 pins connector (CAN-15) intended to connect

channels (A-F) built in the ISES control panel (if used ISES PCI Professional)

and every connector disposes of six reserved pins for the detection of the

connected physical module. The reserved pins are settled as two triplets

numbered 4, 5, 6 and 9, 10, 11. It means, there are six bits used for the detecting

purposes. These pins are under the voltage in the range between 0 and +5V.

Every triplet is connected to the reserved pin of a 37 pins connector (CAN-37)

through the separate resistor ladder with three resistors. The communication

98

between the ISES control board and the RL computer is realized by a cable from

the CAN-37 to the PCI 1202 interface card.

The first triplet is defined as the upper part status and the second one is called

the lower part status. Current values of both statuses are continuously read by

the respective functions on the CAN-37 through the PCI 1202 interface card.

These values, represented by the voltage ranging from 0 to +5V, have to be

converted to two bytes typed WORD numbers in the range from 2048 to 4095 as

listed in Table 2 to show measured voltages on the status pins.

Table 2 Measured voltage on the status pins of the CAN-37 connector and

their corresponding numeric representation with the tolerances

The physical modules are constructed in principle to have one detecting pin of

the six ones grounded. When this pin indicates +5V, then it is represented as

binary 1, and if there is occurred 0V, it is binary 0. If physical module is not

connected, all the pins constantly indicate +5V.

The identifiers listed in Table 3 are composed of six bits coming from the

pins to detect connected physical modules with sensing ranges and units.

Table 3 Example identifiers required for the detection of the connected

physical modules from used six pins of the CAN-15 connector

To clarify the identifying process, six used pins of the CAN-37 connector

numbered as 4, 5, 9, 10, 11 and 12 corresponds to the bits, which are set, for

example, to 0 0 1 1 1 0, what means the ISES manometer is connected.

99

The obtained (measured) analog values of the respective physical quantity

then correspond to the bit combination assigned by the mask part to create the

physical module identifier as shown in Table 4.

Table 4 Measured values represented in the bits form and their assignment

to the mask parts to create the unique physical modules identifiers

The detection of a physical module is performed separately on every channel

according to the following algorithmic steps:

1. Measurement - The upcoming signal is measured on the status pins of

required channel (A-F) on the CAN-37 connector to obtain the lower and

the upper part of the identifying information.

2. First conversion - Both the obtained parts are converted (recalculated) to

the range from 2048 to 4095 as the WORD numbers.

3. Second conversion - Both the WORD numbers are converted to the

corresponding three bits (binary digits) form with taking account of

predefined tolerances as listed in Table 2.

4. First assignment - The two gained binary numbers are assigned to the

respective mask as listed in Table 4.

5. Second assignment - The built six bits number is finally found in the

Module32.map database file to assign and detect the physical module that

is attached to the CAN-15 connector.

The PMD includes the detecting functions, which accept the channel numbers

as input parameters belonging to the PCI 1202 interface card. They correspond

to the appropriate pin on the CAN-37connector as listed in Table 5.

100

Table 5 Status pins of the physical modules belonging to the CAN-37

connector (values listed in the brackets are the channel numbers accepted by the

detection functions as the inputs parameters to generate current status)

The PMD is able to provide all the technical parameters of particular physical

modules connected to the CAN-15 ports in cooperation with the Module32.map

database file. The RL administrators can comfortably monitor the updated list of

the physical modules displayed in the concerned GUI containing additional

details. If any physical module, defined in the psc file, fails during its operation

by the reason of unexpected disconnection or even destruction caused by strokes

or vibrations, then the PMD detects this anomaly and dispatches it to the

modules list in the GUI and to the DS interface to analyze.

The PMD is consisted of several components deployed on different places of

the MS structure and attached plugins. As the main, there is implemented the

HwmdsDetectingThread component responsible for the detection process.

When the MS is started up, and the PMD is enabled, afterwards the PMD

performs the initial physical modules detection by the member function

bool CSinglePluginLibrary::query_detection_info

 (BOOL OnlyDriverDetection,

 BOOL OnlyBoardDetection,

 UINT *pBoardType,

 CString *pConfigName,

 WORD *IdentifiersArray,

 FLOAT *ValuesArray)

that returns whether the attached PCI1202CardPlugin.ldp has the detection

algorithm implemented in its core. If it is true, then the respective timer is

activated to periodically trigger the HwmdsDetectingThread to monitor all the

connected physical modules and to generate status information.

101

6.3.1 Detecting thread component

This component is handled as the function running in a separate tread, and

includes the functions directly connected to the PCI1202CardPlugin.ldp to work

with the physical modules. As mentioned, it is triggered periodically by a timer

located in the timer object together with the MUD’s components.

The HwmdsDetectingThread implements the member function

bool CMeasureServerDlg::DetectHardwareModules()

that calls the query_detection_info function (it is the same function called when

the MS starts up). This function belongs to the CSinglePluginLibrary object and

directly communicates with the attached ScriptablePlugin2.ldp plugin from

which, after conditions checking, it calls the function

extern "C" bool __stdcall EXPORT LDPDetectionInfo

 (VOID *const PluginContext,

 BOOL OnlyDriverDetection,

 BOOL OnlyBoardDetection,

 UINT *pBoardType,

 CString *pConfigName,

 WORD *IdentifiersArray,

 FLOAT *ValuesArray)

and after several checking operations, it calls the function

extern "C" void __stdcall EXPORT LDPDetection

 (VOID *const PluginContext,

 BOOL OnlyBoardDetection,

 UINT *pBoardType,

 WORD *IdentifiersArray,

 FLOAT *ValuesArray)

located in the PCI1202CardPlugin.ldp plugin checking the current status of all

the CAN-15 ports and updates internal buffers (for five channels A-E, or for six

channels A-F). The source code listed in Figure 55 implements the detection

algorithm for every port (channel) in the LDPDetection function.

Further important operation is accomplished by the function

int CMeasureServerDlg::HardwareModuleActivity

 (WORD &ModuleIdentifier,

 WORD &PrevModuleIdentifier,

 INT Channel)

102

that is responsible for a generation of the activity codes from the updated

internal buffers, which identify activities on every CAN-15 port as follows:

 Code 0 - No change,

 Code 1 - Undefined,

 Code 2 - Just connected,

 Code 3 - Just disconnected,

 Code 4 - Just/still wrong reference,

 Code 5 - Connected and wrong reference,

 Code 6 - Disconnected and wrong reference.

Finally, to complete the detection process, there is called the function

CString CMeasureServerDlg::HardwareModuleActivityMessage

 (INT ActivityCode,

 WORD ModuleIdentifier,

 INT Channel)

that is constructed to generate and format the diagnostic message reporting

about the status of every CAN-15 port after performing one detection cycle.

Such the diagnostic message contains whether the port is empty or hosts some

physical module. If there is detected a physical module, the diagnostic message

Figure 55 Source code of the detection algorithm in

the LDPDetection function to generate status

103

provides the engaged port, module name, module identifier, measured unit,

measurement range (minimum and maximum) and current status.

Each message indicates one of the status information as: 1) Undefined, 2) Just

connected, 3) Just disconnected, 4) Connected with the wrong reference, or

5) Disconnected with the wrong reference, else 6) Detected the empty port.

The source code snippet of the HwmdsDetectingThread component (function)

listed in Figure 56 presents the main detecting and reporting process.

Figure 56 Source code snippet of the HwmdsDetectingThread component to

detect the physical modules and the generation of diagnostic messages

104

The generated and formatted diagnostic messages are lastly dispatched in

sequence to the DS to store in its local database for the analysis.

Except the mentioned periodical detection process, there is also possible to

dispatch the command detect (optionally accompanied by an IP address) from

the RL administrator to obtain the current status list of the CAN-15 ports. This

command is processed in the RlmsOperatingThread that calls the function

CString CMeasureServerDlg::GetHardwareModuleStatus

 (INT Channel)

to provide the diagnostic message for every CAN-15 port that comprises the

used port, module name, module identifier, measured unit, measurement range

and current value. As an example, when the RL administrator dispatches the

command “detect 10.20.54.66”, then there is triggered the action of the physical

modules detection in the RlmsOperatingThread as shown in Figure 57.

Figure 57 Source code of the “detect” command triggered by the RL

administrator to perform a detection of the connected physical

modules and to provide the current status list

105

The PMD is designed to identify the detected physical modules by using the

reference list of all the ISES modules, which can be connected to the system.

This concept is important because the LDPDetection function generates and

returns the 6-bit identifiers only, which are then associated with more details

about detected physical modules, like their entire names, measurement ranges

and units. This assigning operation is accomplished (based on the query and the

timer) in the components RlmsOperatingThread and HwmdsDetectingThread.

These physical modules details (records) are stored in the Modules.txt file that is

loaded into the internal buffer inside the MS during its startup. The file currently

contains 58 records and it can be extended, if required to add a new physical

module. Each stored record has the following items and sequence:

6-bit identifier; module name; minimum; maximum; unit.

The list presented in Figure 58 shows a piece of the Modules.txt file that is

parsed by the MS to make module references for the detection process.

For example, the MUD dispatcher generates and delivers to the DS user

interface the periodical notifications related to the MS running and the status

messages about the connected physical module as listed in Figure 59.

Figure 58 Exemplary piece of the physical modules list

stored in the Modules.txt file used for the detection

106

As the next example, if the RL administrator demands the current status of

connected physical modules, then he must enter and dispatch the command

“detect 10.20.54.66” to the MS unit. After a short time, the MS’s PMD returns

the complete list to the DS user interface as shown in Figure 60.

Figure 60 Example of the detailed list presenting the current status of connected

physical modules to the respective ports on the ISES PCI control board

Figure 59 Example of the MUD records; correctly

running (gray), two failed (red); A) setup changed

caused by the range of amperemeter, and B) one

amperemeter was disconnected

107

The MS provides the RL administrator the PMD user interface that allows

monitoring the complete status of the CAN-15 ports. There is an option to preset

the referential physical modules and to change the measurement ranges. The

configuration and changes are stored to the specific diagnostic file. The user

interface presenting the exemplary settings is shown in Figure 61.

Summary of the subchapter “6.3 Second level diagnostics module”: This

subchapter deals with the goal No. 4. The diagnostics of remote laboratories on

this level is not to be found, to our knowledge, in any published laboratory,

irrespective of the fact of its importance. The second level diagnostics serves to

check the conformity of the physical hardware compared with the standard

setup. The checking results, when providing negative results, are forwarded to

the remote laboratory provider to recover experiment. This constitutes the

improvement in the intelligent version of the Measureserver unit. The novelty

and the scientific approach rest in the use of guarding all parameters of

physical modules as the function, its range, polarity and signal overload.

6.4 Embedded real-world phenomena simulation module

Simulations play an increasingly important role in the way of teaching or

doing science. This is especially true in education, where computers are being

used more often as a way to make lectures more attractive to users, and to help

them achieve deeper understanding of the subject being taught.

This subchapter deals with the design and implementation of the module

called EPS (embedded real-world phenomena simulation) as the last task of the

Figure 61 Example settings of the PMD user interface to present the involved

referential physical modules and detected information with current status

108

doctoral thesis. The EPS components are described for more detail in the next

sections to elucidate its concept shown in Figure 62 and functioning.

The EPS can run concurrently together with the real experiment on the

client’s web page. It is the optional module that can be disabled, if not needed,

in the psc script by using the specific variable.

The MS can use basic mathematical functions, like a sine, cosine, arc sine and

arc cosine, which are supplied by the ScriptablePlugin2.ldp to use then for

internal calculations or for displaying on the client’s web page. The EPS extends

the MS’s library of mathematical functions. It provides the RL designers

advanced numerical function as the solvers to deal with ordinary differential

equations (ODEs). There is created the EPS interface to parse and process the

first and second order ODE in the analytical form [46] to calculate its solution

through the specific iterative functions placed in the psc script.

Figure 62 Concept of the EPS module that is implemented in four different

components; 1) the MS unit to host this module, 2) psc control file to place

the respective integrator, 3) evolution file to calculate the rate, 4) web

page on the client’s side to visualize the simulation process

109

The EPS interface was designed to exploit the Lua programming language to

simply enter (specify) the ODE analytical form coded and saved to the plain text

file, called Simulation.lua as the input setting for the solver. The Lua is a

lightweight multi-paradigm programming language that is primarily intended for

embedded systems and clients. The Lua is cross-platform, since it is written in

the ANSI C, and has a relatively simple C API. It is a language for extending

software applications to meet the increasing demand for customization at the

time. This programming concept provides the basic facilities of most procedural

programming languages, but more complicated or domain-specific features were

not included; rather, it includes mechanisms for extending the language that

allows programmers to implement such features. The Lua designers focus on the

improving its speed, portability, extensibility and ease of use [47].

The initial idea of ODEs entering and passing the solver was taken from the

Easy Java/JavaScript Simulations (EjsS) environment. At a glance, the EjsS is a

free authoring tool written in the Java programming language that helps

involved non-programmers to design and create interactive simulations in the

Java or Javascript, mainly for the teaching or learning purposes. The EjsS has

been developed by Francisco Esquembre and is a part of the Open Source

Physics project [48]. As the example, based on this idea, the analytical form of

second order ODE can be adjusted (algebraic expression editing) and entered on

separate lines to process by the solver as shown in Figure 63.

Figure 63 Adjustment and entry of the second order ODE to a readable

form processed by the EjsS as the basic idea used for entering

such the mathematical expressions to the EPS interface

110

The Simulation.lua file contains input parameters (coefficients), which are

declared in the upper part as local variables (including their initializations) with

unique 8-bit identifiers to distinguish particular coefficients by the EPS handling

them from the MS core. These coefficients affect the ODE solution during the

simulation. Further definitions represent the first and second derivative of a

function of a real variable (rate) built as the following functions:

1. function d1x(t, x, v)- returns the value of first derivative,

2. function d2x(t, x, v)- returns the value of second derivative.

These two functions are involved at the most in the file because the EPS is

able to handle and solve first and second order ODEs only. It means, when the

second order ODE is entered and validated, the d1x function is called as the first

to return the value of the first derivative. This resulting value can be inserted to

the d2x function as a part of the rate (right side expression) to calculate and

return the value of the second derivative. Both the functions are called in a loop

based on the maximum simulation time and time step defined in the psc script to

obtain the solution (evolution) for the given time. The example, based on the

introduced idea from the EjsS environment, presents the analytical form of the

second order ODE (Figure 63) that is manually coded in the Simulation.lua file

constituted as the evolution component shown in Figure 64.

The used second order ODE (Figure 63) is constructed from the Kirchhoff’s

voltage law. The file header section contains a declaration of the required

Figure 64 Example of the Simulation.lua file that contains the declared

and initialized coefficients R1, R2, RL, L and C, and the function dx1

and dx2 taking the second order ODE to calculate the rate

111

coefficients (R1, R2, RL, L and C) accompanied by their unique 8-bit identifiers

(for example, #10000000), which are engaged as the actuating instructions used

by the EPS algorithms to set/change demanded values in respective variables.

The dx1 function is used to return the real value of the variable v after its

differentiation. Afterwards, the dx2 function performs a differentiation of the

variable x and the variable v (again, to reach the second derivative) and then

returns the current damped voltage at time t incremented in the psc script.

 The EPS handles the Simulation.lua file in four objects to read declared

coefficients and to initialize and run the dx1 and dx2 functions. The objects

represent the numerical integration functions (integrators) used to implement the

simulation process by manual coding in the psc script; these objects are:

1. ScriptMEODE1Integrator,

2. ScriptMEODE2Integrator,

3. ScriptRK4ODE1Integrator,

4. ScriptRK4ODE2Integrator.

The listed objects are divided into two groups based on the applied numerical

methods called Modified Euler and Fourth Order Runge-Kutta. They are used to

solve the first and second order ODEs. The mentioned order is indicated by the

number 1 or 2 contained in the object’s name (ODE1 and ODE2). These two

groups including their numerical methods and function identifiers applicable in

the psc script are described in the following subchapters.

6.4.1 Modified Euler integrator

It is the ScriptMEODExIntegrator component that represents two integrators

using the Modified Euler method. This is not so precise method (less suitable for

the simulation) but it was implemented because of the didactical purposes.

The Modified Euler algorithm

This method provides the approximate numerical solution of the initial value

problem subject to the initial condition with the step

size that is obtained from the algorithm

for , where .

(1)

112

The estimate of is performed by the two-stage algorithm implemented as

predictor-corrector; first step is the predictor

and second step is the corrector

The first step gives the estimate of at . This action is used to predict the

first guess that is calculated to obtain an estimate of the average over

the interval . The second step then corrects the estimate of [49].

The Modified Euler integrators are exposed in the psc script as functions with

parameters; the first function represents the first order ODE integrator

void meode1integrator

 (DOUBLE t0,

 DOUBLE tmax,

 DOUBLE dt,

 DOUBLE ti,

 DOUBLE xi,

 DOUBLE &tf,

 DOUBLE &xf)

and the second function implements the second order ODE integrator

void meode2integrator

 (DOUBLE t0,

 DOUBLE tmax,

 DOUBLE dt,

 DOUBLE ti,

 DOUBLE xi,

 DOUBLE vi,

 DOUBLE &tf,

 DOUBLE &xf,

 DOUBLE &vf).

The ScriptMEODE2Integrator object that allows using the meode2integrator

function in the psc script is introduced in Figure 65. There is exposed the source

code snippet of the Modified Euler algorithm as the predictor and corrector.

.

(2)

(3)

113

6.4.2 Runge-Kutta integrator

It is the ScriptRK4ODExIntegrator component that represents two integrators

using the Fourth Order Runge-Kutta method (also called Runge-Kutta 4). This

method produces a better solution in fewer steps. The numerical method is used

deliberately because it is suitable for the simulation process.

The Runge-Kutta 4 algorithm

This method gives the approximate numerical solution of the initial value

problem subject to the initial condition with the step

length that is obtained from the following algorithm divided into three steps,

with and .

First step: Calculate

Second step: Calculate

Figure 65 Source code of the ScriptMEODE2Integrator object that implements

the Modified Euler algorithm to obtain the solution; the second order ODE is

entered in the function dx1 and dx2 in the Simulation.lua file, the variables

 tmax, dt, ti, xi, vi, tf, xf and vf come from the meode2integrator function

.

.

(4)

(5)

(6)

(7)

(8)

114

Third step: The numerical approximation of the solution is

given by the expression

for [50].

The Runge-Kutta 4 integrators are also exposed in the psc script as functions

with parameters; the first function constitutes the first order ODE integrator

void rk4ode1integrator

 (DOUBLE t0,

 DOUBLE tmax,

 DOUBLE dt,

 DOUBLE ti,

 DOUBLE xi,

 DOUBLE &tf,

 DOUBLE &xf)

and the second function provides the second order ODE integrator

void rk4ode1integrator

 (DOUBLE t0,

 DOUBLE tmax,

 DOUBLE dt,

 DOUBLE ti,

 DOUBLE xi,

 DOUBLE vi,

 DOUBLE &tf,

 DOUBLE &xf,

 DOUBLE &vf).

Both the integrators are widely used because they yield satisfactory results as

mentioned. The ScriptRK4ODE2Integrator object that implements and exposes

the rk4ode2integrator function in the psc script is presented in Figure 66. There

is showed the source code snippet of the Runge-Kutta 4 algorithm for second

order ODE to calculate the approximate numerical solution.

There is important to add the information about executing the d1x and d2x

functions, which are bound to their namesakes in the Simulation.lua file used by

every integrator. As cleared up, both the functions (Figure 64) contain the ODE

analytical form to calculate the rate at time t, and return respective results to

calling functions. As an example to understand the process of calling and

, (9)

115

executing the dx1 function (for the dx2 function, it is the same principle),

located in the Simulation.lua file, is performed in the ScriptRK4ODE2Integrator

object by the rk4ode1integrator function as shown in Figure 67.

Figure 67 Source code of the ScriptRK4ODE2Integrator object that gives shape

to the Runge-Kutta 4 algorithm to obtain the solution; the second order ODE is

entered in the function dx1 and dx2 in the Simulation.lua file, the variables t0,

tmax, dt, ti, xi, vi, xf and vf come from the rk4ode1integrator function

Figure 66 Source code of the dx1 function that is implemented in

the ScriptRK4ODE2Integrator object to call the Lua functions

for pushing particular parameters to the dx1 function and

calling it in the Simulation.lua file with the rate return

116

6.4.3 Integrator parameters component

The EPS also handles the Simulation.lua file for the purpose of modifying

declared coefficients in its header section by using the ScriptIntegratorParameter

object that is aimed at exposing the function

void integratorparameter

 (DOUBLE id,

 DOUBLE number)

that is called from the psc script to set a new value to the coefficient with the

assigned unique identifier (for example, #10000000) formed as 8-bit number.

The example shown in Figure 68 presents the algorithm to find the input unique

identifier in the Simulation.lua file. If the identifier is found, then its value is

replaced by the new one in respective number format.

The RL designer can use the described functions in the psc script to create the

simulation running together with the real process. The example code introduced

Figure 68 Source code of the ScriptIntegratorParameter object that implements the

algorithm aimed at finding the input unique identifier in the Simulation.lua

file and at replacing its value by the new one if the identifier is found

117

in Figure 69 presents the psc script snippet that points to the integratorparameter

and rk4ode1integrator functions implemented in respective sections (pin_write

and experiment). The coded structure constitutes the fast experiment including

three internal blocks (init, on_sample and finalize). The simulation fragments

are marked by the red text to read better the source code.

The results coming from the simulation process are visualized on the client's

web page by specific widgets like charts and data tables. There are also available

the widgets to set and change coefficients involved in the simulation by using

buttons and sliders. The example presenting a snippet of the source code in

JavaScript is listed in Figure 70 to implement the widgets on the web page.

Figure 69 Source code of the psc script that presents the simulation; the “pin_write”

function modifies the variables named “sim_L” and “sim_C” in the psc script and

the variables identified as “11110000” and “11111000” in the Simulation.lua file

to set them by the integratorparameter function. The “experiment” section is the

body of the fast RL to measure voltage by the attached volt-meter and to

simulate the voltage by the rk4ode1integrator function with parameters

118

As the example, the visualization of the embedded simulation, provided by

the EPS module, is presented on the web page as shown in Figure 71.

Figure 71 Example of the visualized embedded simulation provided by the EPS

module that is integrated into the MS unit; it presents the RL “The electric and

electromagnetic phenomena in the RLC circuit with the variable damping”

where two colored curves are displayed; 1) blue: measured voltage, and

2) red: simulated voltage; both the approaches have the same values

of the input parameters R1, R2, RL, L and C; curves are similar

Figure 70 Example of the source code snippet in JavaScript implementing three

widgets (red identifiers with their devices): 1) “display_simulation_L” displays

a current value of the inductor, 2) “slider_simulation_L” sets a new value of

the inductor, 3) “experiment_graph” plots the simulated voltage in the chart

119

The next example represents the introduced RL, but it slightly differs in the

setup of the simulated process as displayed in Figure 72.

The last example concerning the mentioned RL demonstrates another

coefficient adjustment of the simulated process as shown in Figure 73.

The simulation functions can also be deployed in the slow RLs inside the

sections characteristic for this kind of the experiment concept. Furthermore, the

simulated data are coupled with the measured data and archived to xml files, and

finally dispatched to the data warehouse for detailed analyses.

Figure 72 Example of the visualized embedded simulation; the L coefficient differs

as the orange arrow points out; the curves have unmatched behavior

Figure 73 Example of the visualized embedded simulation; the C coefficient differs

as the orange arrow points out; the curves have unmatched behavior

120

Summary of the subchapter “6.4 Embedded simulation module of real-world

phenomena”: This subchapter deals with the goal No. 5. The multi-parameter

simulation synchronized with the real measured phenomenon is a tool of utmost

importance, not to be found in published remote laboratories. For the purpose,

the solver, including ordinary differential equations of basic mathematical

function has to be built. Clients may compare the measured results with

theoretical equations and adjust their parameters to learn their impact on final

results, and to find their correct set. The simulation may be used as a motivation

tool independently before real measurement as an introductory step for the

acquaintance with measured phenomenon. This improvement is a major

contribution to the intelligent version of the Measureserver unit resting in the

fact of the necessity of sharing priorities of two processes. The novelty and the

scientific approach rest in the use of the new embedding architecture of two

concurrently running programs in one Measureserver unit. The synchronization

is achieved by a specific function to trigger the computation.

121

7. CONTRIBUTIONS OF THE WORK

The doctoral thesis tries to improve the ISES remote laboratory usability in

education and dissemination of scientific knowledge, all that contributes to

reliability, robustness, scalability, measured and control data storage and its

processing, diagnostics and tools. For this purpose, we formulate the following

contributions for the remote laboratories community and researchers.

The first contribution for the community is the implementation of new

software modules, built in the Measureserver unit, deployed as the data

archiving, clients' activities logging, and two level diagnostics to monitor and

recover physical hardware components. These modules provide required

functionalities for the REMLABNET platform.

The second contribution to the researchers in the branch is the possibility to

have a feedback for remote laboratory operating and eventual improvement.

This functionality is provided by the detailed analysis of the clients’ activities,

based on the data, logged during their experimentations.

The third contribution is to the branch of advanced tools. The embedded

real-world phenomena simulation, integrated and synchronized with running

remote laboratories, in the Measureserver unit. Simulation, as a simplified

version of real experiment maybe used in various combinations with a real

experiment, as the standalone, asynchronous and synchronous application,

depending on the level of clients. In the simplification, the clients get insight

into the basis of the observed phenomenon, in the most progressive case; the

client may use the parameters of physics laws to fit the measurements.

 The fourth contribution, aiming at the future, are modules important even

more when the REMLABNET platform should host a large number of the

remote laboratories focused on natural sciences and engineering fields.

122

CONCLUSIONS

The presented work is focused on the design and development of the software

components related to the Measureserver unit. In the frame of work on the

doctoral thesis a new Measureserver unit called Intelligent Measureserver was

developed to improve stability, reliability and maintenance of the ISES remote

laboratories. The implementation also helped the ISES remote laboratories to

turn into high level to compete with other similar laboratories worldwide.

The following conclusions concerning the new software components in the

Intelligent Measureserver unit are formulated:

1. Fulfillment of the doctoral thesis goals as documented in the individual

chapters’ summaries of the chapters,

2. Creation of the data archiving management module, responsible for

gathering, filtering and saving measured data and metadata to an xml file,

together with the option to log clients’ activities to a log file,

3. Creation of the Measureserver first level diagnostics, providing the

administrators warning and notifying information about the remote

laboratories functioning with the recovery features,

4. Creation of the Measureserver second level diagnostics, providing the

administrators to detect, monitor and maintain the ISES meters, sensors,

probes or devices connected to the remote laboratory with the regards to

their failures during the measurement and adjustment process,

5. Creation of the embedded real-world phenomena simulation, operating

concurrently with the real remote laboratory with using the solvers to

generate approximate solution of the corresponding differential equations,

including continuous results visualized on the client’s web page.

123

REFERENCES

[1] MAITI, Ananda, Andrew D. MAXWELL and Alexander A. KIST.

Features, Trends and Characteristics of Remote Access Laboratory

Management Systems. In: International Journal of Online Engineering

(iJOE) [online]. 2014, 10(2), p. 30-37 [cit. 2017-01-07]. DOI:

10.3991/ijoe.v10i2.3221. ISSN 1861-2121. Available: http://online-

journals.org/index.php/i-joe/article/view/3221

[2] ŽÁKOVÁ, Katarína. Two ways of inverted pendulum remote control.

In: The 6th WSEAS International Conference on Education and

Educational Technology, Venice, Italy, November 21-23, 2007, El. Comp.

Eng., p. 139-144 [cit. 2017-01-07]. Available: http://www.wseas.us/e-

library/conferences/2007venice/papers/570-625.pdf

[3] BISTÁK, Pavol. Matlab and Java Based Virtual and Remote laboratories

for Control Engineering. In: The 17th Mediterranean Conference

on Control and Automation, Thessaloniki, Jun 24-26, 2009, Vols.

1-3, p.1439-1444 [cit. 2017-01-07]. Available: http://ieeexplore.

ieee.org/abstract/document/5164749

[4] VÁLKOVÁ, Lenka and František SCHAUER. Remote interactive real

experiment in electrochemistry as exemplified on the experiment

Electrochemical cell. In: The 6th Int. Conference on Emerging e-learning

Technologies and Applications, Slovakia, September 11-13, 2008 [cit.

2017-01-07]. Available: http://www.iceta.sk/archive/2008

[5] VÁLKOVÁ, Lenka, František SCHAUER and Miroslava OŽVOLDOVÁ.

Electrochemical cell characterization - is it start of remote experiments in

chemistry education? In: The International Conference REV 2009,

Bridgeport (USA), June 22-25, 2009, International Association of Online

Engineering, 2009, ISBN 978-3-89958-480-6, p. 326-331 [cit. 2017-01-

07]. Available: http://www.utb.cz/file/14174_1_1/download

[6] GARCÍA-ZUBÍA, Javier, Pablo ORDUNA, Ignacio ANGULO, Unai

HERNANDEZ, Olga DZIABENKO, Diego LOPEZ-IPINA and

Luis RODRIGUEZ-GIL. Application and user perceptions of

using the WebLab-Deusto-PLD in technical education. In: First

Global Online Laboratory Consortium Remote Laboratories

Workshop [online]. IEEE, 2011, p. 1-6 [cit. 2017-04-07]. DOI:

124

10.1109/GOLC.2011.6086780. ISBN 978-1-4577-1943-1. Available:

http://ieeexplore.ieee.org/document/6086780

[7] HARDISON, James L., Kimberly DELONG, Philip H. BAILEY and

V. Judson HARWARD. Deploying interactive remote labs using

the iLab Shared Architecture. In: 38th Annual Frontiers in

Education Conference [online]. IEEE, 2008, S2A-1-S2A-6 [cit. 2017-04-

07]. DOI: 10.1109/FIE.2008.4720536. ISBN 978-1-4244-1969-2.

Available: http://ieeexplore.ieee.org/document/4720536

[8] LOWE, D., S. MURRAY, E. LINDSAY and D. LIU. Evolving Remote

Laboratory Architectures to Leverage Emerging Internet Technologies. In:

IEEE Transactions on Learning Technologies [online]. 2009, 2(4), p. 289-

294 [cit. 2017-04-07]. DOI: 10.1109/TLT.2009.33. ISSN 1939-1382.

Available: http://ieeexplore.ieee.org/document/5210092

[9] TAWFIK, M., E. SANCRISTOBAL, S. MARTIN, et al. Virtual Instrument

Systems in Reality (VISIR) for Remote Wiring and Measurement

of Electronic Circuits on Breadboard. In: IEEE Transactions

on Learning Technologies [online]. 2013, 6(1), p. 60-72 [cit. 2017-

04-07]. DOI: 10.1109/TLT.2012.20. ISSN 1939-1382. Available:

http://ieeexplore.ieee.org/document/6305453

[10] GOMES, Luís and Javier GARCÍA-ZUBÍA. Advances on remote

laboratories and e-learning experiences. Bilbao, Spain: University

of Deusto, 2007, 310 p. ISBN 978-84-9830-662-0. Available:

https://www.weblab.deusto.es/Advances_on_remote_labs.pdf

[11] GREEN, S. L. and N. M. ANID. Training K-12 teachers in STEM

education: A multi-disciplinary approach. In: IEEE Integrated

STEM Education Conference (ISEC) [online]. IEEE, 2013, p. 1-4 [cit.

2017-04-07]. DOI: 10.1109/ISECon.2013.6525206. ISBN 978-1-4673-

5624-4. Available: http://ieeexplore.ieee.org/document/6525206

[12] BUTIME, J, R. BESIGA, A. BWONYO, V. NAKANWAGI, T. TOGBOA

and A. KATUMBA. Design of online Digital Electronics laboratories

based on the NI ELVIS II platform. In: 9th International Conference on

Remote Engineering and Virtual Instrumentation [online]. IEEE, 2012, p.

1-3 [cit. 2017-04-07]. DOI: 10.1109/REV.2012.6293098. ISBN 978-1-

4673-2542-4. Available: http://ieeexplore.ieee.org/document/6293098

125

[13] GARCÍA-ZUBÍA, Javier and Gustavo R. ALVES. Using Remote

Labs in Education. Bilbao, Spain: University of Deusto, 2011,

465 p. ISBN 978-84-9830-398-8. Available: http://www.deusto-

publicaciones.es/deusto/pdfs/otraspub/otraspub01.pdf

[14] ORDUNA, Pablo. Transitive and scalable federation model for

remote laboratories. Bilbao, Spain, 2013, 242 p. Doctoral thesis.

University of Deusto. Supervisor Javier García-Zubía. Available:

http://www.weblab.deusto.es/pub/dissertation_pablo.pdf

[15] RICHTER, Thomas, Yvonne TETOUR and David BOEHRINGER.

Library of Labs - A European Project on the Dissemination of Remote

Experiments and Virtual Laboratories. In: IEEE International

Symposium on Multimedia [online]. IEEE, 2011, p. 543-548 [cit. 2017-04-

07]. DOI: 10.1109/ISM.2011.96. ISBN 978-1-4577-2015-4. Available:

http://ieeexplore.ieee.org/document/6123404

[16] COSTA, David, Gustavo ALVES, Paulo FERREIRA and Juarez SILVA.

Remote Labs Accessible through 3D environments A Case Study with

Open Wonderland. In: 8th International Conference on Remote

Engineering and Virtual Instrumentation [online], Romania: IAOE, 2011,

p. 191-197 [cit. 2017-04-07]. Available: www.tinyurl.com/zbyc898

[17] GILLET, Denis, Anh VU NGUYEN NGOC and Yassin REKIK.

Collaborative Web-Based Experimentation in Flexible Engineering

Education. In: IEEE Transactions on Education [online].

Vol. 48, No. 4. University of Leicester, Leicester, United

Kingdom: IEEE, 2005, p. 696-704 [cit. 2017-04-07]. ISSN 0018-

9359. Available: http://www.cs.le.ac.uk/people/avnn1/papers/GilletNR-

IEEETransEdu05.pdf

[18] FRANTIŠEK, Lustig. : Intelligent School Experimental System - ISES.

E-Laboratory Project [online]. Prague, Czech Republic: Faculty of

Mathematics and Physics, Charles University in Prague, 2017 [cit. 2017-

04-07]. Available: http://www.ises.info/index.php/en/systemises

[19] SCHAUER František, Michal KRBEČEK, Pavel BEŇO, Michal GERŽA,

Lukáš PÁLKA and Petra ŠPILÁKOVÁ. REMLABNET - Open

Remote Laboratory Management System for e-Experiments.

126

REV, Porto, Portugal, 2014. ISBN 978-1-4799-2024-2. Available:

http://ieeexplore.ieee.org/document/6784273

[20] SCHAUER František, Michal KRBEČEK, Pavel BEŇO, Michal GERŽA,

Lukáš PÁLKA and Petra ŠPILÁKOVÁ. REMLABNET II - Open

Remote Laboratory Management System for University and

Secondary Schools Research Based Teaching. In: 12th International

Conference on Remote Engineering and Virtual Instrumentation [online].

Bangkok, Thailand: IEEE, 2015, p. 109-112 [cit. 2016-09-26]. DOI:

10.1109/REV.2015.7087273. ISBN: 978-1-4799-7839-7. Available:

http://ieeexplore.ieee.org/document/7087273

[21] SCHAUER, František, Michal KRBEČEK, Pavel BEŇO, Michal GERŽA,

Lukáš PÁLKA, Petra ŠPILÁKOVÁ and Lukáš TKÁČ. REMLABNET III -

Federated Remote Laboratory Management System for University

and Secondary Schools. In: 13th International Conference

on Remote Engineering and Virtual Instrumentation [online].

Madrid, Spain: IEEE, 2016, p. 232-235 [cit. 2016-09-26]. DOI:

10.1109/REV.2016.7444471. ISBN 978-1-4673-8245-8. Available:

http://ieeexplore.ieee.org/document/7444471

[22] KRBEČEK, Michal, František SCHAUER and Karel VLČEK.

Communication Requirements of Laboratory Management System.

In: Latest Trends on Systems - Volume II: Proceedings of the 18th

International Conference on Systems [online]. Vol. 2. Santorini

Island, Greece, 2014, p. 686-691 [cit. 2017-04-07]. ISBN 978-1-

61804-244-6. Available: http://www.europment.org/library/2014/santorini/

bypaper/SYSTEMS/SYSTEMS2-56.pdf

[23] HAMID, R. and S. MOHAMMED. Remote access laboratory system for

material technology laboratory work. In: Proceedings of the 7th WSEAS

International Conference on Engineering Education [online]. Corfu Island,

Greece: WSEAS, 2010, p. 311-316 [cit. 2017-04-07]. ISBN 978-960-474-

202-8. Available: http://dl.acm.org/citation.cfm?id=1864241

[24] KOUKIANAKIS, L. G. and J. G. GLENTZES. A virtual lab and

e-learning system for renewable energy sources. In: WSEAS

Transactions on Computers [online]. Vol. 5, No. 2. Greece:

WSEAS, 2006, p. 337-341 [cit. 2017-04-07]. ISSN 1109-

127

2750. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=

10.1.1.579.9961&rep=rep1&type=pdf

[25] KELLER, Robert. Finite-State Machines. Finite Automata and

Formal Languages [online]. Claremont, California, USA: Harvey

Mudd College, 2009, p. 471-545 [cit. 2017-04-07]. Available:

http://www.cse.chalmers.se/~coquand/AUTOMATA/book.pdf

[26] BRADEN, R. Requirements for Internet Hosts - Communication

Layers. Internet Standard [online]. Marina del Rey, California, USA:

Internet Engineering Task Force, 1989 [cit. 2017-04-07]. Available:

https://tools.ietf.org/html/rfc1122

[27] BRADEN, R. Requirements for Internet Hosts - Application and

Support. Internet Standard [online]. Marina del Rey, California,

USA: Internet Engineering Task Force, 1989 [cit. 2017-04-07]. Available:

https://tools.ietf.org/html/rfc1123

[28] LUSTIG, František, Jiří DVOŘÁK, Pavel KURIŠČÁK and Pavel BROM.

Building your own real remote experiment controlled by a mobile or

touch enabled device. Information and communication Technology

in Education [online]. Rožnov pod Radhoštěm: University of Ostrava,

2015, p. 88-95 [cit. 2017-04-07]. Available: http://www.ises.info/old-

site/clanky_pdf/Lustig_ICTE_2015.pdf

[29] WEST, Matt. An Introduction to WebSockets. What You Can Learn in 15

Minutes A Day [online]. Treehouse Island, 2013 [cit. 2017-04-07].

Available: http://blog.teamtreehouse.com/an-introduction-to-websockets

[30] KRBEČEK, Michal, František SCHAUER and František LUSTIG.

Easy Remote ISES - Development Environment Remote Experiments.

In: Innovations 2013: World Innovations in Engineering Education

and Research [online]. USA: Potomac, 2013, p. 81-100 [cit. 2017-

04-07]. ISBN 978-0-9818868-4-8. ISSN 1553-9911. Available:

http://www.ises.info/old-site/clanky_pdf/Easy_Remote_ISES_2013.pdf

[31] HENKE, Karsten, Tobias FÄTH, René HUTSCHENREUTER and Heinz-

Dietrich WUTTKE. GIFT - An Integrated Development and Training

System for Finite State Machine Based Approaches. In: 14th International

Conference on Remote Engineering and Virtual Instrumentation [online].

128

New York, USA: IAOE, 2017, p. 125-139 [cit. 2017-04-07]. Available:

https://www.tu-ilmenau.de/en/integrated-communication-systems-group/

publications/?topic_id=&publication_id=461

[32] GERŽA, Michal, František SCHAUER and Petr DOSTÁL.

Embedded Simulations in Real Remote Experiments for ISES

e-Laboratory. In: 9th EUROSIM Congress on Modelling and

Simulation [online]. Oulu, Finland: IEEE, 2016, p. 653-658

[cit. 2016-09-26]. DOI: 10.1109/EUROSIM.2016.66. ISBN 978-1-

5090-4119-0. Available: http://eurosim2016.automaatioseura.fi/images/

sas/Full-Program-11-Sept-Net.pdf

[33] GERŽA, Michal, František SCHAUER and Karel VLČEK.

Communication Principles Between Client and Physical Hardware

of ISES Remote Laboratory. AMCSE, Varna, Bulgaria, 2014.

ISBN 978-1-61804-246-0. Available: http://www.inase.org/library/2014/

varna/bypaper/AMCSE/AMCSE-03.pdf

[34] GERŽA, Michal, František SCHAUER and Karel VLČEK. Advanced

Communication Diagnostics in ISES Remote Experiment. International

Journal of Communications [online]. North Atlantic University

Union, 2015, p. 43-52 [cit. 2015-10-12]. ISSN 1998-4480. Available:

http://www.naun.org/main/NAUN/communications/2015/a142001-337.pdf

[35] GERŽA, Michal, František SCHAUER and Ivan ZELINKA. Artificial

Intelligence in ISES Measureserver for Remote Experiment Control.

NOSTRADAMUS, Ostrava, Česká Republika, 2014. ISBN 978-3-

319-07401-6. ISSN 2194-5357. Available: https://link.springer.com/

chapter/10.1007/978-3-319-07401-6_41

[36] R. WRIGHT, David. Finite State Machines. CSC 216 Course Website

[online]. USA: NC State University, 2005 [cit. 2017-04-07]. Available:

http://www4.ncsu.edu/~drwrigh3/docs/courses/csc216/fsm-notes.pdf

[37] DICK, Grune and Ceriel J.H. JACOBS. Parsing and its applications, a

practical guide. Chichester, England: Ellis Horwood, 1990. ISBN 0-13-

651431-6. Available: https://dickgrune.com/Books/PTAPG_1st_Edition

129

[38] TRIBBLE, David. LR(k) Parsing Theory. Practical LR(k) Parser

Construction [online]. Plano, Texas, USA, 2004 [cit. 2017-04-07].

Available: http://david.tribble.com/text/lrk_parsing.html

[39] BUCK, Jamis. Writing a Simple Recursive Descent Parser. The

Buckblog [online]. Smithfield, Utah, USA, 2015 [cit. 2017-04-

07]. Available: http://weblog.jamisbuck.org/2015/7/30/writing-a-simple-

recursive-descent-parser.html

[40] GHOST, Gautam, Gauray ROY and Vikash SINGH. C++ Introduction.

C++ Tutorials [online]. w3schools.in [cit. 2017-04-07]. Available:

http://www.w3schools.in/cplusplus-tutorial/intro

[41] VISHWANATH, Siddharth and Shivendra KUMAR. LR(1) Parsers:

Theory and Implementation [online]. IKanpur, Iindia: Indian Institute of

Technology, 2012 [cit. 2017-06-29]. Available: https://www.academia.edu/

4188731/LR_1_Parsers_Theory_and_Implementation

[42] NORVELL, Theodore. Parsing Expressions by Recursive Descent.

Informal Publications [online]. Canada: Memorial University of

Newfoundland, 1999 [cit. 2017-06-29]. Available: https://www.engr.

mun.ca/~theo/Misc/exp_parsing.htm

[43] KOVÁŘ, Martin. Diagnostics and Elucidation of the Environment Web

ISES Control Kit for Remote Experiments Control. Zlín, Czech Republic,

2012, 78 s. Bachelor Thesis. Tomas Bata University in Zlín. Available:

http://digilib.k.utb.cz/handle/10563/22906

[44] RAY, Erik. Creating Self-Describing Data - Learning XML [online].

Sebastopol, USA: O'Reilly & Associates, 2001, 368 p. [cit. 2017-04-07].

ISBN 0-59600-046-4. Available: https://doc.lagout.org/programmation/

Java/OReilly%20Learning%20XML.pdf

[45] CAMPIONE, Ben. An MFC Wrapper for MSXML. Dr. Dobb's - The world

of software development [online]. San Francisco, California, USA: UBM,

2001 [cit. 2017-04-07]. Available: http://www.drdobbs.com/an-mfc-

wrapper-for-msxml/184416288

[46] NAGY, Gabriel. Ordinary Differential Equations [online]. East

Lansing, MI, USA: Mathematics Department, Michigan State

130

University, 2017 [cit. 2017-07-16]. Available: http://users.math.

msu.edu/users/gnagy/teaching/ode.pdf

[47] IERUSALIMSCHY, Roberto, Waldemar CELES and Luiz FIGUEIREDO.

Lua Documentation: Reference manual. The Programming Language

[online]. Rio de Janeiro, Brazil: LabLua, 2017 [cit. 2017-06-25].

Available: https://www.lu[48]a.org/docs.html

[48] ESQUEMBRE, Francisco. EjsWiki Documentation. About Easy

Java/Javascript Simulations [online]. Murcia, Spain: University

of Murcia, 2017 [cit. 2017-06-25]. Available: http://www.um.es/

fem/EjsWiki/Main/Documentation

[49] KRISHNAN, Mangala, Kushal SEN and Bhaskar RAMAMURTHI.

Numerical Solution of Ordinary Differential Equations: Modified Euler

Method. National Programme on Technology Enhanced Learning

[online]. Chennai, India: NPTEL, 2017 [cit. 2017-06-25]. Available:

http://nptel.ac.in/courses/111107063/3

[50] KRISHNAN, Mangala, Kushal SEN and Bhaskar RAMAMURTHI.

Numerical Solution of Ordinary Differential Equations: Fourth Order

Runge Kutta Methods. National Programme on Technology Enhanced

Learning [online]. Chennai, India: NPTEL, 2017 [cit. 2017-06-25].

Available: http://nptel.ac.in/courses/111107063/5

131

PUBLICATION ACTIVITIES OF THE AUTHOR

1. GERŽA, Michal and Pavel POKORNÝ. A Visualisation of the Results of a

Thermoforming Process Simulation in the Plastics Industry. In: 21st

International Conference in Central Europe on Computer Graphics,

Visualization and Computer Vision: WSCG2013 - Poster Proceedings.

Plzeň: Západočeská univerzita v Plzni, Katedra informatiky a výpočetní

techniky, 2013. ISBN 978-80-86943-76-3.

2. GERŽA, Michal, František SCHAUER and Roman JAŠEK. Security

of ISES Measureserver Module for Remote Experiments against

Malign Attacks. International Journal of Online Engineering, Wien,

Austria, 2014. ISSN 1868-1646.

3. GERŽA, Michal, František SCHAUER and Karel VLČEK. Communication

Principles between Client and Physical Hardware of ISES Remote

Laboratory. AMCSE, Varna, Bulgaria, 2014. ISBN 978-1-61804-246-0.

4. GERŽA, Michal, František SCHAUER and Ivan ZELINKA. Artificial

Intelligence in ISES Measureserver for Remote Experiment Control.

NOSTRADAMUS, Ostrava, Česká Republika, 2014. ISSN 2194-5357.

5. SCHAUER František, Michal KRBEČEK, Pavel BEŇO, Michal GERŽA,

Lukáš PÁLKA and Petra ŠPILÁKOVÁ. REMLABNET - Open Remote

Laboratory Management System for e-Experiments. REV, Porto, Portugal,

2014. ISBN 978-1-4799-2024-2.

6. GERŽA, Michal and František SCHAUER. Advanced Modules Diagnostics

in ISES Remote Laboratories. In: The 10th International Conference on

Computer Science & Education. Fitzwilliam College, Cambridge

University, UK, 2015. ISBN 978-1-4799-6599-1.

7. SCHAUER František, Michal KRBEČEK, Pavel BEŇO, Michal GERŽA,

Lukáš PÁLKA and Petra ŠPILÁKOVÁ. REMLABNET II - Open

Remote Laboratory Management System for University and Secondary

Schools Research Based Teaching. In: 12th International Conference

on Remote Engineering and Virtual Instrumentation [online].

Bangkok, Thailand: IEEE, 2015, p. 109-112 [cit. 2016-09-26]. DOI:

10.1109/REV.2015.7087273. ISBN: 978-1-4799-7839-7.

132

8. GERŽA, Michal, František SCHAUER and Karel VLČEK. Advanced

Communication Diagnostics in ISES Remote Experiment. International

Journal of Communications [online]. North Atlantic University Union,

2015, p. 43-52 [cit. 2015-10-12]. ISSN 1998-4480.

9. GERŽA, Michal and František SCHAUER. Intelligent Processing of

Experimental Data in ISES Remote Laboratory. International Journal of

Online Engineering [online]. Wien, Austria, 2016, (Vol 12, No 03), p. 58-63

[cit. 2016-09-26]. DOI: 10.3991/ijoe.v12i03.5538. ISSN 1861-2121.

10. GERŽA, Michal, František SCHAUER and Petr DOSTÁL. Embedded

Simulations in Real Remote Experiments for ISES e-Laboratory.

In: 9th EUROSIM Congress on Modelling and Simulation [online].

Oulu, Finland: IEEE, 2016, p. 653-658 [cit. 2016-09-26]. DOI:

10.1109/EUROSIM.2016.66. ISBN 978-1-5090-4119-0.

11. SCHAUER, František, Michal KRBEČEK, Pavel BEŇO, Michal GERŽA,

Lukáš PÁLKA, Petra ŠPILÁKOVÁ and Lukáš TKÁČ. REMLABNET

III - Federated Remote Laboratory Management System for University

and Secondary Schools. In: 13th International Conference on Remote

Engineering and Virtual Instrumentation [online]. Madrid, Spain: IEEE,

2016, p. 232-235 [cit. 2016-09-26]. DOI: 10.1109/REV.2016.7444471.

ISBN 978-1-4673-8245-8.

12. SCHAUER, František, Michal GERŽA, Michal KRBEČEK, Pavel BEŇO,

Lukáš PÁLKA, Petra ŠPILÁKOVÁ, Tomáš KOMENDA, Miroslava

OŽVOLDOVÁ, Žaneta GERHATOVÁ and Lukáš TKÁČ. REMLABNET

IV - LTI Federated Remote Laboratory Management System with

Embedded Simulations. In: 14th International Conference on Remote

Engineering and Virtual Instrumentation [online]. New York, USA: IEEE,

2017, p. 340-349 [cit. 2017-06-19].

13. SCHAUER, František, Michal GERŽA, Michal KRBEČEK and Miroslava

OŽVOLDOVÁ. Remote Experiment Wave Laboratory for Wave

Phenomena Teaching. In: 14th International Conference on Remote

Engineering and Virtual Instrumentation [online]. New York, USA: IEEE,

2017, p. 350-356 [cit. 2017-06-19].

133

CURRICULUM VITAE

Michal Gerža, MSc.

Address: Jílová 4571

760 05 Zlín

Czech Republic

Phone: +420 603 732 198

Email: michal.gerza@email.cz

Personal data:

Date of birth: 22. November 1974

Marital status: Married

Mother tongue: Czech language

Education:

2007 – to this day Thomas Bata University in Zlín,

Faculty of Informatics,

Postgraduate study (Ph.D.),

Field of study: Engineering Informatics

2007 – 2012 Thomas Bata University in Zlín,

Faculty of Informatics,

Bachelor and graduate study,

Field of study: Engineering Informatics

1989 – 1993 Secondary school of Electrotechnic in Vsetín

Field of study: Mechanical engineering

Professional experiences:

2010 – to this day Accuform, Zlín, Programmer

2009 – 2010 Edhouse, Ltd., Zlín, Programmer

1993 – 2009 Glass Service, Inc., Vsetín, Programmer

Language:

 English

 Russian

134

Skills:

 Flexibility

 Independence

 Responsibility

 Communicableness

 Interest in communication with people

 Leading with human resources

 Project management

 Computer skills

Projects:

 SCOPES project (Swiss National Science Foundation and Swiss

Agency for Developments and Cooperation) aimed at the remote

laboratories community

Hobby:

 Fitness

 Tourism

 Psychology

 Computer technology

Other knowledge:

 Programing languages: C, C++, C#, Java, JavaScript, Visual Basic

 Web applications: PHP, CSS, XML, XSL, XAML, HTML

 Database systems: MSSQL, MySQL, PostgreSQL

 Computer systems: Windows, Linux

