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ABSTRACT 

 

Solubilized dialdehyde cellulose (DAC) obtained from alpha cellulose 

modification via simple oxidation by sodium periodate was prepared and 

characterized. Immediately after preparation, solubilized DAC was stabilized by 

low pH in order to suppress degradation. The influence of DAC solubilization 

and its aging under acidic conditions on DAC properties was analysed. 

Molecular mass distribution (GPC), reactive aldehyde group content (titrimetry), 

crystallinity (XRD), vibrational spectra (FT-IR), thermal stability (TGA) and 

structural composition (LC-MS, NMR, SEM) were of the main interest. 

Furthermore, DAC was utilized as a suitable crosslinking agent for poly(vinyl 

alcohol) (PVA). The reactive aldehyde groups of DAC formed on the C2 and C3 

carbons of anhydroglucopyranose unit serve as crosslinking counterparts for 

hydroxyl groups of PVA under acidic conditions. Appropriate catalyst system 

must be introduced to ensure formation of crosslinked acetal/hemiacetal bridged 

network of hybrid PVA/DAC hydrogels. Initially, two concentrations of catalyst 

system and different drying temperatures were chosen and their influences on 

the PVA/DAC xerogel and hydrogel properties were investigated by several 

analytical methods (FT-IR, XRD, TGA, network parameters etc.). Next, fresh 

and aged acidic DAC and two chemically distinct catalyst systems were 

employed in the crosslinking of PVA. The crosslinking effectivity and 

efficiency of these crosslinking systems (crosslinker + catalyst) were 

investigated in the terms resulting PVA/DAC hydrogel properties, i.e. 

crystallinity (XRD) and stiffness (tensile testing) of the dried gel, furthermore 

structural and functional network parameters of swollen gels were characterized. 

Finally, comparison between DAC and glutaraldehyde (GA) crosslinker was 

carried out using broad range of these PVA crosslinkers with subsequent 

evaluation of network parameters of prepared PVA/DAC and PVA/GA 

hydrogels. Acidified DAC exhibited the capability to act as an effective 

crosslinker for PVA with the resulting hydrogel properties dependent on the 

choice of concentration of catalyst system and the drying temperature. 

Moreover, it was found that the properties of PVA/DAC are governed by the 

molecular weight of used DAC. The acidic condition retains DAC usability as a 

crosslinking agent even after 28 days from its preparation. It was found that 

DAC possesses exceptional crosslinking efficiency at very low concentrations 

compared to GA and enables formation of hydrogels of very high swelling 

capacity. This behaviour arises from DAC macromolecular character as it forms 

“two-phase” network topology containing regions of very high crosslink density 

adjacent to DAC chains embedded in a matrix formed by linear parts of PVA 

macromolecules. 
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ABSTRAKT 

 

Byl připraven a charakterizován solubilizovaný dialdehyd celulózy (DAC) 

získaný modifikací alfa celulózy pomocí jodistanové oxidace. Za 

účelem potlačení degradace byl solubilizovaný DAC stabilizován nízkým pH 

ihned po jeho přípravě. Byl zkoumán vliv solubilizace a stárnutí v kyselém 

prostředí na vlastnosti DAC. Hlavními předměty zájmu byla zkoumání 

distribuce molekulových hmotností (GPC), obsahu reaktivních aldehydových 

skupin (volumetrie), vibračních spekter (FT-IR), tepelné stability (TGA) a 

strukturního složení (LC-MS, NMR, SEM). Dále byl DAC použit jako síťovací 

činidlo pro polyvinylalkohol (PVA). Reaktivní aldehydové skupiny DAC 

vytvořené na pozicích C2 a C3 anhydroglukopyranózové jednotky slouží jako 

síťovací protějšky k hydroxylovým skupinám PVA v kyselých podmínkách. 

K zajištění vzniku sítě hybridního PVA/DAC hydrogelu tvořeného 

acetalovými/hemiacetalovými můstky musí být zaveden vhodný katalytický 

systém. Zpočátku byl zkoumán vliv dvou vybraných koncentrací katalytického 

systému a zvolených teplot sušení na vlatnosti PVA/DAC xerogelů a hydrogelů 

pomocí několika analytických metod (FT-IR, XRD, TGA a parametry sítě). Poté 

se k síťování PVA použil kyselý roztok DAC o různém stáří společně se dvěmi 

chemicky odlišnými katalytickými systémy. Síťovací efektivita a účinnost těchto 

různých síťovacích systémů (síťovadlo + katalyzátor) byly zkoumány z hlediska 

vlastností výsledných PVA/DAC hydrogelů, tj. krystalinity (XRD) a tuhosti 

(tahové zkoušky) vysušeného gelu, a dále strukturních i funkčních parametrů 

nabotnalé sítě. Nakonec bylo provedeno srovnání mezi síťovacími činidly DAC 

a glutaraldehydem (GA) v širokém rozsahu jejich koncentrací s následným 

vyhodnocením parametrů sítě připravených PVA/DAC a PVA/GA hydrogelů. 

DAC udržovaný při nízkém pH vykazuje schopnost působit jako účinné síťovací 

čínidlo pro tvorbu PVA hydrogelů o výsledných vlastnostech závislých na 

koncentraci katalytického systému a teplotě sušení. Bylo zjištěno, že vlastnosti 

PVA/DAC jsou řízeny molekulovou hmotností použitého DAC. Podmínky 

nízkého pH zachovávají použitelnost DAC jako síťovacího činidla i po 28 dnech 

od jeho přípravy. DAC vykazuje výjimečnou účinnost síťování PVA ve velmi 

nízkých koncentracích ve srovnání s GA a umožňuje tak tvorbu hydrogelů s 

velmi vysokou schopností bobtnání. Toto chování je projevem 

makromolekulárního charakteru DAC, jenž vytváří "dvoufázovou" topologii sítě 

obsahující oblasti s velmi vysokou hustotou zesíťování PVA v blízkosti řetězců 

DAC vložených do matrice tvořené lineárními částmi PVA makromolekul. 
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1. INTRODUCTION 

 

Biopolymer-based materials are at the peak of interest for many scientists due 

to the growing demand of society to reach the goal of sustainable development 

via utilization of renewable and worldwide occurring substances with 

presumable lower impact on environment and living organisms. Biopolymer is 

by definition a macromolecular substance, which is naturally synthesized, often 

biodegradable and usually exhibits low toxicity. Cellulose, starch, chitosan, 

gluten or collagen meets this definition and therefore they are exhaustively used 

in a plethora of various applications in fields of medical, packaging, food and 

agricultural sector. [1] These plant- and animal-based biopolymers commonly 

exhibit hydrophilicity, which imparts water retention capability and thus these 

materials are frequently used as additives or just as pure substances themselves. 

The valuable property of water retention emerges as result of presence of three-

dimensional network of crosslinked macromolecules containing hydrophilic side 

groups [2]. Such structures are generally known as hydrogels. Hydrogels should 

by definition possess (i) macromolecules of at least one polymeric substance 

joined by covalent bonds, and/or (ii) macromolecular entanglements resulting in 

physically crosslinked units, (iii) strong van der Waals interactions or hydrogen 

bonds between polymer chains, or (iv) crystallites composed of at least two 

macromolecular chains. [3] 

Potentially, hydrogels can be prepared by the combination of appropriate 

biopolymer or biopolymer-based substance with synthetic polymer. Based on 

the natural origin of biopolymer component, these materials can be further 

employed in the field of biomedical sciences as they can mimic the living tissue 

structure; [4–6] or possess modified biodegradability profile. [7] Furthermore, if 

hydrogels are intended for utilization in pharmaceutics they should exhibit low 

toxicity and biocompatibility so they can be utilized as wound dressing materials 

containing active substance for improved healing of wounds, various body 

implants such as cartilages, drug delivery systems with tuneable release profile, 

scaffolds for better tissue regeneration and many others. [8–11] 

Poly(vinyl alcohol) (PVA) is one of the synthetic polymers suitable or the 

preparation of hydrogels. There are several approaches how to achieve 

crosslinked PVA-based hydrogels utilizing physical or chemical routes. For 

example, PVA hydrogels can be obtained by physical crosslinking (reversible 

hydrogels) induced by cyclic freeze-thawing [12]. However, such crosslinking 

process exhibits relatively poor definition of the chemical reaction mechanism 

although it is advantageous as no additive compound is needed. Next, the 

hydroxyl groups of PVA enable formation of chemical crosslinks (permanent 

hydrogel) when various aldehydes, anhydrides or boric acid are used as 

crosslinking agents. [1, 12–14] The disadvantage of this approach lies in the 

relatively high toxicity of these low molecular crosslinkers. Particularly, it is 
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their high reactivity and synthetic origin (except boric acid) that causes high 

cytotoxicity and enables readily penetration through various portals of entry into 

living organism. 

Thus, to fulfil the requirements on the fabrication of non-toxic and 

biocompatible hydrogels suitable for pharmaceutical or medical applications, it 

is preferable to employ crosslinking agent based on or derived from 

biopolymers. This allows to obtain materials with low toxicity as well as to 

reduce the impact on environment and living organisms. Partial progress in this 

field was accomplished by introducing naturally available low toxic crosslinker 

Genipin. This substance is produced by the enzymatic extraction from the fruits 

of Gardenia Jasminoides. However, the drawbacks of its mass utilization can be 

found in its limited availability and therefore relatively high cost. [15] It is more 

desirable to perform specific derivatization of abundant and easily available 

biopolymers and thus introducing new functional groups on polymer backbone. 

One of many potential candidates for this purpose is cellulose as it offers broad 

possibility of modifications resulting in number of various derivatives. [16] 

In the theoretical section of this Thesis, the literature review on the topic of 

cellulose and its oxidation, especially dialdehyde cellulose (DAC), was carried 

out. Furthermore, background of PVA hydrogel preparation, characterization 

and utilization is discussed. In the first part of experimental section, dialdehyde 

cellulose (DAC) prepared from alpha cellulose by simple sodium periodate 

oxidation of hydroxyl groups to aldehyde groups was utilized as a crosslinking 

agent for PVA. The results of this pilot study have shown potential of DAC 

towards these purposes. [17] DAC solution was blended with commercially 

available poly(vinyl alcohol), forming PVA/DAC hydrogels. Effects of two 

different concentrations of catalyst systems based on the mixture of sulfuric 

acid, methanol and acetic acid were studied, as they represent one possible 

catalyst system for crosslinking reactions of aldehyde moiety. [18] To optimize 

the process of PVA/DAC preparation, the influence of drying temperature on 

hydrogel physical properties was investigated. In the second part, insolubilized 

and solubilized form of prepared DAC was investigated with respect to 

crosslinking application. Furthermore, the process of DAC solubilization was 

investigated and the product was analysed during four week of its aging. Due to 

known DAC sensitivity towards alkalic environment, the DAC solution was 

kept under acidic condition for the first time. The last part of this Thesis deals 

with the application of DAC as a PVA crosslinking agent. This includes 

utilization of fresh and aged DAC with subsequent analysis of properties of 

prepared PVA/DAC hydrogels. Moreover, two chemically distinct catalyst 

systems were introduced to initiate crosslinking reactions and their influence 

was evaluated. Next, in order of DAC crosslinking effectivity and efficiency 

assessment, this novel macromolecular crosslinking agent was compared to 

commonly used low molecular crosslinker glutaraldehyde and the properties of 

resulting hydrogels were compared in the terms of network parameters.  
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2. CELLULOSE 

 

Cellulose is undoubtedly the most abundant and widely used organic 

macromolecular substance in the world. It represents linear macromolecular 

chains consisting of D-anhydroglucopyranose units linked by β-1,4-glycosidic 

bonds. Cellulose occurs naturally in various species of higher vascular plants 

(seed hairs of cotton – 95 %; bast fibres of flax, hemp, sisal, jute and ramie – 60 

to 80 %; wood – 40 to 55 %), lower non-vascular plants (algae, lichen and 

fungi) and other organisms like tunicates and bacteria. [19–22] For this reason, it 

is identified as a renewable biopolymer, a substance synthetized by living 

organisms.  

 

2.1 Structure and properties 

On molecular level, cellulose macromolecules consist of β-1,4-linked D-

anhydroglucopyranose units (AGU) established in chair conformation. Figure 1 

depicts molecular structure of cellulose with marked parts. [23] 

 

 
  

Figure 1 Representation of cellulose constituted of cellobiose units or AGUs (with 

atom numbering) via β-1,4-glycosidic bonds, non-reducing and reducing end of 

polymer. 

 

From the supramolecular level point of view, pure cellulose has been 

identified in the number of different crystal polymorphs (type I, II, III and IV). 

[23, 24] 

Finally, morphological level is defined as organization of crystals into 

microfibrils. Microfibrils consequently form fibrillary structures, layers, cell 

walls, tissues etc. [16, 20, 23] 

Molecular, supramolecular and morphological levels impart mechanical, 

thermal and chemical properties of cellulose. Related to cellulose properties, it 

possesses other typical properties such as hydrophilicity, chirality, 

biodegradability and relatively high chemical reactivity potential due to the 

donor ability of hydroxyl groups. In contrast to synthetic polymers, cellulose 

exhibits extraordinary polyfunctionality, high level of chain rigidity and 

sensitivity to hydrolysis and oxidation. [20] 
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2.2 Oxidation induced cellulose derivatives 

Arising from the presence of the three hydroxyl groups bonded on C6 

(primary), C2 and C3 (secondary) positions in AGU (Figure 2), cellulose offers 

a broad variety of possible modifications via different derivatizations, i.e. 

esterification (xanthanation, acetylation and nitration) and etherification.  

Furthermore, hydroxyl groups of AGU can enter oxidation reactions. [23, 25] 

The partial oxidation processes of cellulose are considered as long-standing goal 

in cellulose chemistry, since they provide access to novel products and 

intermediates with valuable properties. In general, such materials are considered 

insoluble in water, although there are exceptions. [24–26] 

The complexity of cellulose oxidation emerges from the (i) different reactivity 

of three available hydroxyl groups per AGU, (ii) different accessibility of 

regions of cellulose present in crystalline or amorphous form and (iii) choice of 

oxidizing agent. [23] This complexity results in a plethora of various possible 

products of oxidation, which are generally described as oxycellulose (see 

Figure 2). [25] 

 

 
  

Figure 2 Possible structures of oxycellulose repeating units. [25] 

 

Oxycelluloses are mainly utilized in medicine and pharmacy as (i) 

haemostatic agents, (ii) wound dressing materials, (iii) antibacterial agents, (iv) 

postoperative adhesion agents or (v) enterosorbents. [27] Other pharmaceutical 

applications involve usage as drug carriers, as a scaffolds in tissue engineering 

or as materials suitable for enzyme immobilization. [28–33]  
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3. DIALDEHYDE CELLULOSE 

 

The oxidation of cellulose by periodate salts has been known for long time 

[34, 35] and is highly regioselective without significant side reactions. [36] 

Resulting product of periodate oxidation of cellulose is referred to as 2,3-

dialdehydecellulose or simplified to dialdehyde cellulose, commonly 

abbreviated as DAC. 

 

3.1 Preparation 

One of the main advantages of DAC preparation lies in the relative simplicity 

of the process. In general, aqueous solution of sodium periodate (NaIO4) is 

mostly used as the cellulose periodate oxidizing agent [37–39], although 

potassium periodate is also reported [40]. It is recommended to carry out this 

oxidation in dark. [25, 41, 42] The mechanism of periodate oxidation of 1,4-

linked glucans is shown in Figure 3. 

 

 
  

Figure 3 Mechanism of periodate oxidation of cellulose AGU. [43] 

 

This method produces solid state DAC. Nevertheless, it is possible to prepare 

aqueous solution of DAC of high degree of oxidation by the methods of 

prolonged heat assisted solubilization in water. Solubilized DAC could be 

afterwards utilized in solution based processes. [44, 45] 

 

3.2 Structure and properties 

The mechanism of periodate oxidation (see Figure 3) shows the resulting 

molecular structure of DAC product. The secondary hydroxyl groups of AGU 

are converted to pair of aldehyde groups along with the cleavage of C2–C3 

bond. However, free aldehyde groups in DAC (A in Figure 7) are present in very 
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limited amount as the highly reactive aldehyde groups tend to stabilize them 

self. Instead of free aldehyde form, a mixture of several DAC forms noted in 

Figure 4 were proposed [35] and some confirmed by solid-state NMR [46]. 

 

 
 

Figure 4 Possible structural arrangements of DAC. A – dialdehyde, B – fully hydrated 

dialdehyde, C – hemialdal, D – intramolecular hemiacetal with C3–O–C6 bond, E – 

intramolecular hemiacetal with C2–O–C6 bond, F – intermolecular hemiacetal with 

C6–O–C3’bond, G – intermolecular hemiacetal with C6–O–C2’ bond. Intermolecular 

hemiacetals F and G may also contain hemialdal unit C in their structure (not shown). 

[47] 

 

The reactive aldehyde group content can be determined utilizing Schiff base 

reaction of aldehyde group with hydroxylamine hydrochloride resulting in 

formation of oxime. [46, 48] The hydrochloric acid liberated from this reaction 

can be quantitatively assessed by titration. Therefore, the conversion of aldehyde 

to oxime can be easily determined by the consumption of alkali. [44, 49] Fully 

oxidized DAC contains 12.5 mmol of aldehyde groups per gram [44].  

The changes in the cellulose chemical structure after periodate oxidation to 

DAC are manifested in infrared spectrum by band at 1740 cm
-1

 representing the 

carbonyl groups vibrations. Besides this specific band, another peak at 880 cm
-1

, 

signifies the hemiacetal or hydrated DAC form. [46] 

The scission of C2–C3 bond induced by the periodate oxidation results in the 

opening of the AGU ring which is further reflected in the destruction of 

otherwise ordered packing of cellulose chains. [46, 50] The decrease of 

crystallinity due to partial destruction of AGU units proceeds hand in hand with 

the loss of thermal stability. 

Another very important property, the stability of DAC in time, should be 

addressed before any consideration of practical use. When DAC is kept in non-

dried state, the reactivity dramatically decreases to 68 % after only one week 

from preparation [51]. Different study showed decrease of reactive aldehyde 

group content about 15 % as well as the steady decrease of molecular weight 

about 50 % after 3 weeks of preparation of fully oxidized DAC solubilized 

under various conditions [44].  

The solubilization processes of DAC used within the study of Kim et al. 

(2004) showed to have low impact on the molecular weight of DAC prepared 
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from microcrystalline cellulose Funacel SF. [44] However, the study of Sulaeva 

et al. (2015), which was mainly focused on the characterization of molecular 

weight of solubilized DAC from another source of microcrystalline cellulose 

Avicel PH-101 and cotton linters, showed somewhat contradictory results to 

those made by Kim et al. (2004). [45] Their findings are summarized in Table 1. 

 

Table 1 Mass average molecular weight (𝑀̅w) values of source cellulose material and 

DAC after defined process of solubilization. [44, 45] 

Source 𝑴̅w source DAC sol. 𝑴̅w sol. DAC 𝑴̅w loss 

 (kDa) (time, temp.) (kDa) (%) 

Funacel SF 42.7 4 h, 80 °C 41.2 3.5 

6 h, 80 °C 39.2 8.2 

1 h, 100 °C 42.0 1.6 

2 h, 100 °C 30.4 28.8 

Avicel PH-101 40 1 h, 
a
 19.7 50.8 

Cotton linters 180 1 h, 
a
 23.6 86.9 

a
 Not specified, heated at reflux. 

 

DAC, whether solubilized or not, was reported to be rather unstable in time 

especially when kept in alkaline solution. [45, 52] The degradation processes 

identified as β-elimination were well described by Veelaert et al. (1997) and 

Potthast et al. (2009). [49, 52] The pH of DAC suspension or solution seems to 

be one of the key parameters when optimizing the stability. 

 

3.3 Applications of DAC 

The presence of highly reactive aldehyde groups on DAC backbone imparts 

its usage as cellulose based column packings in aqueous chromatography, [53–

55] heavy metal ion and dyes absorbent, [26, 56, 57] flocculation agent, [58] 

protein immobilization material, [59–61] drug delivery carrier, [62–64] material 

in tissue scaffold engineering, [65] or in graft copolymerization. [66] 

Furthermore, the recent studies of solubilized DAC showed its potential as a 

suitable low toxicity crosslinking agent for chitosan [67, 68]. 

In general, aldehyde groups promise a broad follow-up chemistry as it can be 

modified to carboxylic acid, [26, 69, 56, 70, 71] primary alcohols, [69, 70] 

imines, [37, 50] or sulfonates. [72] Both DAC and its derivatives possess a great 

potential in high-end applications such as medical materials [67, 73] and 

biodegradable composites. [74] 
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4. POLY(VINYL ALCOHOL) BASED HYDROGELS 

 

Poly(vinyl alcohol) (PVA) is undoubtedly one of the most frequent and used 

material for hydrogel applications as it possesses valuable properties such as 

biocompatibility, biodegradability, relatively low toxicity and it is possible to 

blend it with a broad range of synthetic polymers or biopolymers. [11] 

Hydrogels are by definition three-dimensional, hydrophilic, polymeric 

crosslinked network structures capable of absorbing large amounts of 

water. [75] Network of hydrogel is generally composed of homo- or 

copolymers, which is insoluble due to the presence of chemical or physical 

crosslinks. [76] The essential classification of hydrogels includes two categories: 

(i) Permanent (chemical) hydrogel: covalently crosslinked network, which 

contains stable covalent bonds between macromolecules (besides the hydrogen 

bonds). [77, 78] 

(ii) Reversible (physical) hydrogel: molecular entanglements, secondary 

forces such as ionic, hydrogen bonding or hydrophobic interactions are 

responsible for the network formation. The change in physical conditions or 

application of stress causes disruption of these reversible interactions. [77, 78] 

Besides above mentioned categorization, hydrogels can be classified on the 

base on their other properties such as degradability, response to external stimuli, 

ionic charge and many others. [8] 

 

4.1 PVA hydrogel formation: Physical and chemical routes 

Physical type of approach has the undeniable advantage in omitting any kind 

of crosslinking agent. However, the crosslinking process is rather poorly defined 

in the term of chemical reaction mechanism and includes methods: 

(i) Freeze-thaw induced crystallization. The crosslinking of PVA is induced 

by formation of crystalline regions by cyclic heating and freezing (-20/+25 °C), 

these regions then act as physical crosslinks. [79] 

(ii) Heat treatment. Partial degradation due to higher temperatures produces 

unsaturation, chain scission and thus chemical crosslinks. [12] 

(iii) Irradiation. Radiation induced crosslinking exhibit looser, more open 

structure. [12] 

Characteristic feature of all chemical crosslinking routes is the utilization of 

crosslinking agent. The crosslinking is achieved by the reaction of functional 

hydroxyl groups of PVA and crosslinking agents such as aldehydes 

(formaldehyde, glutaraldehyde, acrolein etc.), [80, 81] di- tri- and 

polycarboxylic acids, [82] anhydrides, [83] alkoxysilanes [84] and many others. 

[12, 85–87] The common characteristic for these crosslinking agents is the 

synthetic origin and subsequent high toxicity. Thus, the resulting hydrogels 

should be intensively wasted prior to use in medical sector.  
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4.2 Characterization and network parameters 

The evaluation of properties of hydrogels is often expressed by the network 

parameters which can be calculated with the aid of equilibrium swelling theory 

suggested by Flory and Rehner (1943). [88] The crucial and the most important 

parameters of network are percentage of swelling, equilibrium water content 

(EWC), gel fraction, average molecular weight between crosslinks (𝑀̅c) and 

crosslink density (ρc). [88–92] 

 

4.3 Applications of PVA hydrogels 

There are myriad of specific applications of crosslinked PVA hydrogels in 

many various fields. The properties of PVA hydrogels are often tailored by 

addition of other synthetic polymer or biopolymer. 

The work of Kamoun et al. (2014) summarizes the wound dressing 

applications of PVA based hydrogel combined with numerous natural and 

synthetic polymers. [11]  

Several other important applications of PVA hydrogels are within the medical 

sector. The review on the utilization of PVA hydrogels by Baker et al. (2012) 

outlines the most widespread usage of this material in soft contact lenses, 

artificial cartilages, orthopaedic applications and other medical devices. [10] 

Another valuable source on the usage of PVA hydrogels in the form of 

membranes designed for variety of water treatment applications is the work of 

Bolto et al. (2009). These applications include micro-, ultra- and nano-filtration, 

reverse osmosis, pervaporation etc. It offers deep insight into the possible 

methods of PVA crosslinking and its subsequent specific applications. [12] 

Besides above mentioned reviews, there are number of reports in the Web of 

Science database (WoS) in recent years (2013–2017) regarding the 

characterization and utilization of PVA-based hydrogels. These examples can be 

divided in several topics such as the most cited articles relevant for: 

 Medical sector applications:  

PVA/cellulose nanowhiskers (CNWs) freeze-thawed hydrogels with 

controlled porosity, morphology and barrier properties suitable for wound 

dressing application [93]. 

 

 Water treatment applications:  

Reusable high capacity PVA/gelatine hydrogel beads crosslinked by boric 

acid utilized for Pb
2+

 removal driven by chemisorption with ion-exchange 

mechanism [94]. 

 

 Self-healing and shape memory hydrogels:  

PVA/graphene oxide memory shape nanocomposite with strong H-bonding 

interaction between PVA and graphene oxide [95].  
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5. AIM OF DOCTORAL THESIS 

 

The current work deals with research and development of a biopolymer-based 

crosslinking agent for polymers containing hydroxyl groups on their backbone. 

Cellulose derivative and poly(vinyl alcohol) were selected as the starting 

materials. The aim of the Thesis was study of dialdehyde cellulose preparation, 

characterization and its utilization as a crosslinking agent for PVA. It was 

defined according to challenge identified with respect to the studied field, 

performed literature review and preliminary experiences. 

Particularly, the aim includes preparation of DAC by a suitable technique, 

optimization of the method of its preparation, study of its structure, properties 

and aging, and its applicability as crosslinker in the preparation of PVA 

hydrogels. Furthermore, this study includes an optimization of the crosslinking 

process with respect to the properties of final hydrogel material and a 

comparative crosslinker study, in which the properties (namely network 

parameters) of hydrogel materials prepared using DAC are compared to those of 

hydrogels prepared using common crosslinking agent (glutaraldehyde). 

 

This aim may be achieved by accomplishment of the following objectives: 

 

 Research of cellulose oxidation to prepare its reactive derivative 

(namely DAC) with potential use as a crosslinking agent for PVA. 

 

 Elucidation of structure of prepared DAC via suitable analytical 

methods, particularly in solution.  

 

 Research of stability (including eventual stabilization if discovered) of 

prepared DAC in its application form (i.e. solution) in time. 

Characterization of changes in the structure with aging. 

 

 Development of a crosslinking system, namely choice and suitability of 

crosslinking catalysts, process parameters (i.e. drying temperatures) 

and evaluation of their influence on properties crosslinked materials.  

 

 Investigation of crosslinking capability of fresh and aged crosslinking 

agent and influence of catalyst choice on material properties of 

resulting hydrogels. 

 

 Comparative study on PVA crosslinking utilizing common crosslinking 

agent (i.e. glutaraldehyde) and DAC under equal conditions, evaluation 

of crosslinking efficiency of used crosslinkers on resulting hydrogel 

properties in the terms of network parameters comparison.  
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6. EXPERIMENTAL 

 

6.1 Materials, Sample preparation and Experimental methods 

DAC was prepared from alpha cellulose (Sigma Aldrich, Co.) by periodate 

oxidation using sodium periodate (NaIO4). Purified solid DAC was solubilized 

under various initial pH conditions (3.5–7.5, samples designated “W”–“Z”, 

respectively) utilizing different time of solubilizaton (0.5–7 h) and different 

methods of heating (conventional vs. microwave assisted). Ethylene glycol, 

sodium hydroxide (NaOH), hydrochloric acid (HCl), hydroxylamine 

hydrochloride and sodium chlorite (NaClO2) were utilized in DAC preparation 

and characterization.  

Two types of PVA were employed in crosslinking reactions; Mowiflex 

TC 232 (Kuraray Specialities, Europe GmbH) Mowiol 84–86% hydrolysed 

(Sigma Aldrich Co.). Two chemically distinct catalyst systems base on A) HCl 

and B) 10vol% solutions of sulfuric acid (H2SO4), methanol (CH3OH), acetic 

acid (CH3COOH) were used.  

All components of B) catalyst system were initially tested in “Pilot study” for 

crosslinking of “Mowiflex” type of PVA by 2 wt% of fresh DAC using two 

different concentrations noted as “PVA/DAC set 1” and “PVA/DAC set 2” and 

different drying temperatures (see Table 2). 

 
Table 2 PVA/DAC “Pilot study” samples designation based on different amount of 

catalyst system and different drying temperatures. Volumes of catalyst system 

components are from their 10vol% solutions. [17] 

Sample series PVA/DAC set 1 PVA/DAC set 2 

Catalyst system 1 mL H2SO4 0.25 mL H2SO4 

composition 1.5 mL CH3OH 0.5 mL CH3OH 

per sample 3 mL CH3COOH 0.75 mL CH3COOH 

Drying temp. (°C) unwashed washed unwashed washed 

90 1-90-U 1-90-W 2-90-U 2-90-W 

60 1-60-U 1-60-W 2-60-U 2-60-W 

30 1-30-U 1-30-W 2-30-U 2-30-W 

 

Fresh/aged DAC was utilized in 1 wt% concentration in the crosslinking of 

“Mowiflex” PVA type using both chemically distinct catalyst systems (A –

1.5 mL of 1.33M HCl per sample, B – same as in Table 2 “PVA/DAC set 2”). 

Designation of samples prepared using aged DAC and two types of catalyst 

systems are noted in Table 3. All prepared hydrogels were dried at 30 °C, 

washed and analysed. 
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Table 3 PVA/DAC samples prepared using aged DAC. [43] 

DAC age (days) PVA/DAC blend A PVA/DAC blend B 

1 A01 B01 

14 A02 B02 

28 A03 B03 

 

Furthermore, fresh DAC was utilized in broad range of concentration for 

crosslinking of both types of PVA. Analogously, 50% water solution of 

glutaraldehyde (GA) crosslinker was used (with the respect to same amount of 

reactive aldehyde group per sample). Resulting PVA/DAC and PVA/GA 

hydrogels were prepared with the aid of catalyst A) and are noted in Table 4.  

 
Table 4 PVA/DAC and PVA/GA samples prepared using different PVA source and 

different crosslinker (DAC or GA). Equal conditions are expressed by the amount of 

reactive group (n–CHO) per sample. [43] 

n–CHO per DAC crosslinker GA crosslinker 

sample DAC PVA/DAC GA PVA/GA 

(μmol) (wt%) Mowiflex Mowiol (μL) Mowiflex Mowiol 

2920 5 DTC-A DSA-A 233 GTC-A GSA-A 

1750 3 DTC-B DSA-B 240 GTC-B GSA-B 

877 1.5 DTC-C DSA-C 69.9 GTC-C GSA-C 

585 1 DTC-D DSA-D 46.6 GTC-D GSA-D 

146 0.25 DTC-E DSA-E 11.6 GTC-E GSA-E 

73.1 0.125 DTC-F DSA-F 5.8 GTC-F GSA-F 

36.6 0.0625 DTC-G DSA-G 2.9 GTC-G GSA-G 

 

All chemicals used in the preparation of DAC and catalyst systems were of 

analytical quality and were purchased from PENTA, Czech Republic, with the 

exception of GA, CH3COOH, NaClO2 and hydroxylamine hydrochloride (Sigma 

Aldrich, Co.). Demineralized water was used throughout the experiment. 

Insolubilized, solubilized-dried and solubilized DAC samples were analysed 

by several analytical methods, such as by infrared (IR) spectroscopy (FT-IR), 

thermogravimetric analysis (TGA), X-ray diffraction analysis (XRD), liquid 

chromatography-mass spectral analysis (LC-MS), nuclear magnetic resonance 

(NMR), viscosity and density measurements, scanning electron microscopy 

(SEM), gel permeation chromatography (GPC) and reactive aldehyde content. 

Prepared PVA xero- and hydrogel materials were analysed by IR spectroscopy 

(FT-IR), thermogravimetric analysis (TGA), X-ray diffraction analysis (XRD), 

solid-state nuclear magnetic resonance (CP/MAS 
13

C NMR), tensile 

measurements, network parameters and macroscopic observation. [43, 47]  



 

13 

7. SUMMARY OF RESULTS, DISCUSSION AND 

CONCLUSIONS 

 

The summary of results, discussion and conclusions can be divided into three 

key parts following the structure of the Thesis: 

 

(i) Initially, the pilot study demonstrated the possibility of solubilized DAC 

utilization as a crosslinking agent for PVA. It was found that one of the key 

factors defining the resulting PVA/DAC material properties is the optimization 

of process parameters such as catalyst system concentration and drying 

temperature. Within this pilot study, the crosslinking of PVA matrix was 

achieved in all hydrogel samples prepared by employing 2 wt% of DAC 

crosslinking agent, both concentrations of catalyst system based on sulfuric acid 

and whole set of drying temperatures. Resulting materials possessed different 

network parameters (see Figure 5) and exhibited different thermal behaviour 

(see Figure 6) based on the variation of these process parameters. 

 

 
 

Figure 5 PVA/DAC network parameters dependence on drying temperature and used 

concentration of catalyst system (pilot study). The lines connecting points in the right 

graph are only guides for eyes. 
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Figure 6 TGA analysis of PVA/DAC xerogels prepared within pilot study. [17] 

 

However, in order to obtain degradation-free hydrogel material (see Figure 7), 

the optimal parameters for the preparation of the PVA/DAC crosslinked material 

should include drying temperatures below 60 °C and utilize lower concentration 

of catalyst system. [17] 

 

 
 

Figure 7 PVA/DAC xerogels prepared within pilot study. [17] 

 

(ii) The next part focused on the process of DAC preparation, analysis and 

detailed investigation of its solubilization process. The initial characterization of 

prepared DAC confirmed presence of reactive aldehyde groups (1730 and 

875 cm
-1

) and disruption of ordered macromolecular packing manifested by 

decrease in crystallinity compared to original cellulose (see Figure 8). [17, 47] 

 

 
 

Figure 8 FT-IR and XRD analysis of cellulose, insolubilized and solubilized-dried 

DAC. [17, 47] 
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In the subsequent step, it was found that the DAC solubilization process 

causes severe degradation of the material regardless of chosen heating method 

or initial pH. This is demonstrated in Table 5 summarizing the average weight 

molecular weight evolution during solubilization using conventional heating 

method. 

 
Table 5 DAC solubilization analysis under different initial pH conditions. 

Initial # Solub. Solub.  pH 𝑴̅w PDI 

pH  time content    

(-)  (hour) (mg/mL; %) (-) (g/mol) (-) 

 W05-f 0.5 0; 0 3.5 - - 

 W1-f 1 0.45; 0.8 3.8 6 600 1.89 

3.5 W3-f 3 0.57; 1.1 3.5 6 800 1.89 

 W5-f 5 0.76; 1.4 3.5 6 900 2.03 

 W7-f 7 1.27; 2.4 3.6 6 900 2.03 

 X05-f 0.5 1.48; 3.1 3.8 1 800 1.64 

 X1-f 1 7.32; 15.2 3.5 8 500 2.58 

5 X3-f 3 12.67; 26.2 3.5 9 800 2.45 

 X5-f 5 28.1; 58.2 3.5 10 700 2.55 

 X7-f 7 45.54; 94.3 3.6 9 400 2.47 

 Y05-f 0.5 1.67; 3.2 4.5 1 600 1.6 

 Y1-f 1 8.32; 15.5 4.1 9 100 2.6 

6 Y3-f 3 18.81; 35.5 3.5 10 700 2.55 

 Y5-f 5 31.74; 60 3.2 10 600 2.75 

 Y7-f 7 51.25; 96.8 3.4 9 100 2.39 

 Z05-f 0.5 10.97; 22 4.5 1 400 1.56 

 Z1-f 1 33.13; 66.4 4.4 6 600 2.44 

7.5 Z3-f 3 44.05; 88.3 3.8 6 500 2.83 

 Z5-f 5 45.44; 91.1 3.5 5 000 2.38 

 Z7-f 7 49.12; 98.4 3.6 4 300 2.26 

 

Thus the contradictions in literature between the studies of Kim et al. (2004) 

[44] and Sulaeva et al. (2015) [45] were decided in the favour of progressive 

deterioration of DAC macromolecules during its solubilization. The resulting 

product of solubilization exhibited approximately one tenth of the original 

cellulose polymerization degree. It seems that the solubilization goes 

simultaneously with degradation of DAC chains and can be ascribed to the 

scission of macromolecular DAC fragments loosen from the gradually 

dissolving solid phase of insolubilized DAC particles as schematically depicted 

in Figure 9. 
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Figure 9 Schematic representation of DAC solubilization with the respect to its time, 

size of insolubilized DAC phase and size of macromolecular fragments. 

 

The evolution of morphology of DAC particles during solubilization is 

exemplified in Figure 10 for the two extreme cases of used initial pH (3.5 and 

7.5). The images correspond to the series of data noted in Table 5. In brief, the 

higher the initial pH is, the faster is the particle dissolution. After complete 

solubilization and lyophilisation, the DAC forms mostly spherical beads (SEM 

images not shown in this Summary). 

 

 
 

Figure 10 SEM micrographs of solid DAC phase during solubilization at initial pH 

3.5 (left) and 7.5 (right). 

 

Disregarding this molecular weight determining step, obtained solubilized 

DAC retained its characteristic features, namely content of reactive aldehyde 
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groups. These reactive substituents present on the polymer chain enable DAC 

utilization in the crosslinking applications for hydroxyl group containing 

polymers and thus can be further considered as an alternative to common used 

aldehyde-based low molecular crosslinkers. One of the main benefits of DAC as 

a crosslinker lies in its bio-macromolecular character, which makes it less toxic 

in comparison to its low molecular counterparts. 

Next, the aging of DAC solution was studied in the terms of its functional 

group content and thermal stability (see Figure 11) and molecular weight 

distribution (see Table 6). In should be noted, that the slight discrepancy in 

measured DAC molecular weight between identically prepared samples Y7-f in 

solubilization study and fresh (1 day old) sample investigated in the DAC aging 

study was most likely caused by different GPC instrumentation used for these 

studies. 

 

 
 

Figure 11 Reactive aldehyde group content and degree of oxidation of prepared 

solubilized DAC estimated over period of 28 days of DAC aging (left). 

Thermogravimetric curves recorded for insolubilized DAC sample and aged 

solubilized-dried DAC samples (right). The lines connecting points in the left graph 

are only guides for eyes. [47] 

 

Due to known DAC sensitivity towards alkalic environment, the DAC 

solution was kept under acidic condition in current study. The low pH 

presumably suppresses the degradation processes described as β-elimination and 

further preserves the reactive aldehyde group content in time of DAC aging (see 

Figure 11 left part). The indirect alkalimetric titration showed less than a half 

decrease of reactive aldehyde content after four compared to previous studies on 

this topic [44].  
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Table 6 GPC recorded data for DAC solutions in different aging time, where 𝑀̅n is the 

number average molecular weight; 𝑀̅w is the weight (mass) average molecular weight, 

𝑀p is the peak molecular weight, 𝑀̅z is the third moment of molecular weight and PDI 

is the index of polydispersity (𝑀̅w/ 𝑀̅n). [47] 

Time 𝑴̅n 𝑴̅w 𝑴p 𝑴̅z PDI 

(days) (g/mol) (g/mol) (g/mol) (g/mol) (-) 

1 2 600 6 100 5 500 10 200 2.36 

14 3 100 7 400 7 000 12 000 2.38 

28 2 000 6 900 6 700 13 200 3.46 

 

The results form GPC were correlated with those of NMR and LC-MS study 

and further interpreted as several characteristic processes taking place during 

DAC aging. The results of these processes are also partially reflected in the 

change of thermal stability. The first process occurs immediately after DAC 

preparation and comprises of internal stabilization by the formation of 

intramolecular DAC hemiacetals mostly represented by two conformational 

isomers of DAC form D (marked as D I and D II in Figure 12) and form C (see 

Figure 4).  

 

 
 

Figure 12 Suggested structures of D I and D II conformers of DAC form D. [47] 

 

The second process was noticed after 14 days after DAC preparation and is 

manifested by reactions between DAC macromolecules resulting in the 

formation of intermolecular hemiacetals, structurally derived form DAC form G 

or F. This recombination process is reflected in the increased values of all 

momentums of molecular weight estimated by GPC. The third process, DAC 

chain fragmentation, becomes dominant with increasing time of DAC aging and 

results in the presence of low-temperature peak in weight loss rate (see Figure 

11 right part). The significant increase in PDI and decrease in values of certain 

momentums of molecular weight (𝑀̅n, 𝑀̅w and 𝑀p) testifies presence of such 

process in 28 days old solutions. However, low pH of the solution suppresses 

this fragmentation process (β-elimination) for the first 14 days of DAC aging. 

Hence, the evolution and accumulation of smaller DAC fragments evolution and 

accumulation is apparent after 28 days. 

It should be stressed out, that the composition of fresh acidic DAC solution 

was investigated by NMR and the main forms of solubilized DAC identified for 

the first time. As the aging of DAC proceeded, no new NMR signals were 
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detected. The only observable changes were in the population of particular DAC 

forms. This observation can be assigned to the low pH conditions which 

increased the stability of the system in comparison with previous investigations 

reported by other authors. 

It is also important to mention, that the processes of recombination and 

fragmentation run concurrently during entire solubilized acidic DAC aging 

timeframe. This fact is supported by the changes in the PDI values as well as in 

the monotonous increase of 𝑀̅z values during DAC aging. The practical outcome 

of the investigation on the structural arrangements and properties of solubilized 

acidic DAC solutions during its shelf-life is the promising potential to be 

conveniently utilized for various purposes (such as crosslinking agent or 

intermediate in the preparation of other derivatives) without the need to prepare 

fresh DAC every time as it retains its functional properties at least for 28 days 

from its preparation. 

 

(iii) The suitability of solubilized acidic DAC as a crosslinking agent for PVA 

was investigated along the utilization of different catalyst systems. The effects 

of catalyst systems based on the sulfuric or hydrochloric acid and the role of the 

age of pH-stabilized DAC solution on resulting properties of PVA crosslinked 

hydrogels were studied. Furthermore, the comparative crosslinking study of 

PVA utilizing DAC or GA crosslinkers in broad range of concentrations under 

equivalent conditions was conducted. The results of this study were expressed 

and compared in the terms of network parameters of prepared hydrogels. [43] 

The applicability of the acidic DAC solution as a crosslinking agent for PVA 

was confirmed even after 28 days from its preparation. Moreover, DAC was 

found to be effective crosslinker with both chosen catalyst systems. It was 

revealed, that the properties of prepared PVA/DAC hydrogels are governed by 

the molecular weight of solubilized acidic DAC and selected catalyst rather than 

by the reactive aldehyde content. The functional DAC groups content 

responsible for the formation of crosslinks in PVA matrix decreases linearly in 

the course of 4 weeks (see upper left part of Figure 13). Thus the resulting 

properties of prepared hydrogels, such as swelling capacity, should exhibit 

linearly increasing trend as the crosslinking agent becomes less efficient over 

time. However, this was not observed. Instead, the trends of hydrogel properties 

correlate with the evolution of DAC molecular weight. There is about 20 % 

increase in its 𝑀̅n after 14 days caused by intermolecular hemiacetal formation 

(DAC recombination) followed by decrease of this quality about 40 % after 

28 days from crosslinker preparation (DAC fragmentation), see top curve in 

upper right graph in Figure 13. [43, 47] 
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Figure 13 Decrease of reactive aldehyde group with DAC aging (top left); correlation 

between 𝑀̅n of DAC in solutions of various age (Münster et al., 2017) and T1ρ(
13

C) 

values of resulting PVA/DAC hydrogels (top right); correlation between 𝑀̅n of DAC 

and Young’s modulus and crystallinity of PVA/DAC xerogels prepared using different 

catalyst system (A and B series) with marked age of used DAC crosslinker (bottom 

center). The lines connecting points in the graphs are only guides for eyes. [43, 47] 

 

Similar trends were observed in number of measured properties of prepared 

PVA/DAC xerogels and hydrogels such as polymeric domain flexibility 

parameter T1ρ(
13

C) estimated by solid-state NMR (see two dash-lined curves in 

upper right graph in Figure 13) and the set of network parameters, see Figure 14. 

Moreover, the lower graph in Figure 13 depicts dependence of Young’s modulus 

and crystallinity on 𝑀̅n of DAC and documents the influence of DAC 

crosslinker’s molecular weight on bulk properties such as stiffness and 

percentage of crystalline phase in xerogels. Schematic structural models 

representing the two extreme situations in PVA/DAC xerogels, i.e. samples B02 

and B03 is given in Figure 15. The sample B02 was crosslinked by smaller 

number of larger DAC macromolecules present in 14 days old DAC solution 

and exhibits the largest crystallinity. Therefore, this sample contains most likely 

regions comprised of larger PVA crystallites developed within the sparsely 

crosslinked polymer network with highest polymeric domain flexibility. On the 

other hand, the sample B03 was crosslinked by larger number of smaller DAC 

molecular fragments present it the oldest DAC solution. Hence, the sample B03 

has more rigid and densely crosslinked polymer network containing less evolved 

PVA crystallites. 
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Figure 14 Influence of DAC age used for crosslinking on the network parameters of 

prepared PVA/DAC hydrogels. The graphs show percentage of swelling, equilibrium 

water content (EWC), gel fraction, average molecular weight between crosslinks (𝑀̅c) 

and crosslink density (ρc) of both prepared series of PVA/DAC samples crosslinked by 

fresh and aged DAC. The graph lines connecting points are only guides for eyes. [43] 

 
 

Figure 15 Schematic representation of the structure of the respective xerogels with 

their relation between flexibility (T1ρ(
13

C)), crystallinity (X), Young’s modulus (E) and 

number average molecular weight (𝑀̅n) of DAC. The orange coils correspond to (𝑀̅n) 

of DAC, the arrays of blue lines represent polymer chain crystallites, and the grey 

lines represent the amorphous phase of the polymer with physical entanglements. The 

size, ratio, and number of depicted features is intentionally exaggerated. [43] 
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The properties of PVA/DAC hydrogels prepared using fresh/aged DAC show 

similar quantitative trends when different catalyst systems employed (see Figure 

16). However, there are noticeable differences in material properties of 

hydrogels prepared using the oldest, most fractioned DAC and different catalyst. 

Based on the data obtained from NMR, tensile testing and network parameters 

evaluation, sulfuric acid accompanied by methanol and acetic acid seem to be 

(a) more efficient catalyst or (b) may induce DAC degradation or (c) influence 

physical PVA entanglements. These possibilities result in the formation of PVA 

hydrogel with increased crosslink density and other related network parameters. 

The downside of the utilization of this catalyst system lies in non-linear 

behaviour of several correlated properties arising from the complexity of this 

specific catalyst system. Comparatively, the utilization of fairly simple catalyst 

based on diluted hydrochloric acid produces PVA hydrogels of predicable, 

structurally stable and less DAC molecular weight-dependent properties. 

 

 
 

Figure 16 Correlation between data measured by various methods for PVA/DAC 

prepared using aged DAC and different catalyst system. The lines connecting points in 

the graphs are only guides for eyes. The data points are labelled by corresponding age 

and number average molecular weight for one series (A) only in each graph. The 

second series (B) has the same order of data points from left to right always. [43] 
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The fact, that crosslinkers molecular weight and choice of catalyst are the key 

factors in hydrogel preparation implies potential possibility of “tuning” of 

hydrogel properties without need for other additives.  

 The last part or this research was devoted to the comparison of 

macromolecular DAC to low molecular GA crosslinker. The exceptional 

crosslinking efficiency of DAC at very low concentrations outperforms GA and 

enables to form hydrogels with extreme swelling capacity (see Figure 17).  

 

 
 

Figure 17 The results from comparative crosslinking study showing dependence of 

PVA/DAC (DTC) and PVA/GA (GTC) hydrogels network parameters on the used DAC 

or GA crosslinker amount defined by chemical amount of reactive aldehyde groups per 

sample and “Mowiflex” type of PVA. The equivalency between DAC and GA reactive 

group concentrations is expressed by the two bottom x-axes. The lines connecting 

points in the graphs are only guides for eyes. [43] 

 

Such crosslinking capability of DAC can be explained as a result of its 

macromolecular character, which forms “two-phase” crosslink network topology 

composed of regions with high crosslink density adjacent to the DAC 
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macromolecule embedded in a chemically uncrosslinked matrix comprised of 

sizable sections of free PVA chains, which are physically entangled only (see 

Figure 18).  

 

 
 

Figure 18 Network topology of PVA/DAC is shown in the left part. It is composed of 

(i) regions containing high local crosslink density adjacent to DAC macromolecules 

(orange) embedded in (ii) larger regions comprised of free, chemically unbound, PVA 

chains (grey) which can be only physically entangled. Some of these chains link the 

regions (i) together. The right part of the figure shows the homogeneous network 

topology of PVA/GA crosslinked by GA (blue). The size, ratio, and number of depicted 

features is intentionally exaggerated for better understanding. [43] 

 

Some of these chains linking the densely crosslinked regions together are 

responsible for the preservation of PVA hydrogel integrity. Other chains can be 

joined to one densely crosslinked region only. A single PVA chain may be 

attached to one DAC macromolecule more than on one site forming thus circles 

hypothetically allowing concatenation. Relatively sparse distribution separation 

of high-density crosslink regions results is responsible for the large swelling 

ability of DAC/PVA hydrogels. On the other side of the crosslinker 

concentration range, DAC enables formation of highly crosslinked hydrogels of 

comparable of even better material characteristics that those obtained by 

utilizing GA. Furthermore, due to presumably lower toxicity of DAC compared 

to GA, this cellulose derivative is promising compound for the application in 

medicine and pharmacy. 
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8. SUMMARY OF CONTRIBUTIONS TO SCIENCE 

AND PRAXIS 

 

The main contributions of this research to science and praxis include 

following achievements (i) preparation and characterization of solubilized 

dialdehyde cellulose (DAC) and its use as a poly(vinyl alcohol) (PVA) 

crosslinker, (ii) investigation of the solubilization effects on the properties of 

DAC (iii) analysis of DAC structure in acidic media during its aging, (iv) 

utilization of fresh/aged solubilized DAC as a PVA crosslinker with evaluation 

of its crosslinking abilities and finally (v) comparison of network parameters of 

PVA hydrogels prepared using DAC and glutaraldehyde (GA) crosslinker in 

wide range of concentrations. 

Periodate oxidation does not influence molecular weight. However, 

subsequent solubilization was proven to cause severe degradation of resulting 

solubilized DAC.  

Significant improvement of DAC stability in comparison to the previous 

studies and thus prolongation of its shelf-life and applicability was achieved via 

our originally developed low pH procedure. DAC is initially stabilized by 

intramolecular and subsequently intermolecular hemiacetal formation as 

confirmed by NMR and GPC. Fragmentation occurs during observed DAC 

aging as well as minor decrease in reactive aldehyde group content.  

It was found that DAC molecular weight influences the properties of 

PVA/DAC hydrogels more than its reactive aldehyde group content. The 

changes in molecular weight or functional group content did not compromise 

DAC crosslinking ability even 28 days from its preparation. 

It was demonstrated that solubilized and stabilized DAC exceeds crosslinking 

efficiency of GA at very low concentrations. Moreover, it forms denser network 

at high concentrations and principally different network topology compared to 

GA. This enables to prepare hydrogels with wide range of properties. 

Furthermore, arising from its macromolecular character, it is considerably less 

toxic than low molecular crosslinkers. Preliminary results confirmed low 

toxicity and biocompatibility of PVA/DAC hydrogels. Future work will focus 

on hydrogels loading with active compounds such as platinum based complexes, 

their subsequent release kinetic and biological testing. 

Besides DAC utilization as crosslinker, it can serve as an intermediate in the 

preparation of dicarboxy cellulose (DCC) which is another promising drug 

carrier. Our recent study showed DCC high loading efficiency (90 %) and 

capacity (60 % w/w) of platinum based anticancer drugs. Furthermore, it allows 

adjustable and pH sensitive drug-release kinetics.  

To generalize, the results embodied in this Thesis open a new field for 

applications of DAC and its derivatives, namely in medical sector and pharmacy 

as promised by ongoing research.  
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