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ABSTRACT
This work deals with the idea of parallelisation of evolutionary algorithms with the primary aim 

to develop a parallel version of the Self-Organising Migrating Algorithm (SOMA). 

In the first  part  we present an overview of history and current state on the field of distributed 

computations and parallel evolutionary algorithms. This includes classification of parallel genetic 

algorithms, description of parallelisation strategies and a summary of successful applications.

Then, a fully scalable framework for parallel/distributed applications is introduced and comparison 

of  different  parallelisation  strategies  on  this  platform  is  described.  This  platform  represents 

universal, very efficient and easily configurable framework which can be run on various platforms. 

It enables utilisation of tens, hundreds or even thousands of CPUs which normally idle in numerous 

common office computers in companies or at universities.

Parallelisation schemes of Differential Evolution (DE) and SOMA are analysed and implementation 

of both algorithms is extensively described. Four different parallelisation approaches of SOMA are 

presented, including their benchmark test results.

To validate algorithmic qualities of parallel SOMA three real-world engineering assignments were 

subject  to  optimisation  –  combustion  engine  optimisation,  relay  node  placement  in  energy-

constrained networks and aerodynamic wing optimisation.
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ABSTRAKT
Dizertační  práce  se  zabývá  myšlenkou  paralelizace  evolučních  algoritmů  s primárním  cílem 

vyvinout paralelní verzi algoritmu SOMA (SamoOrganizující se Migrační Algoritmus).

V první části práce je shrnuta historie a současný stav na poli distribuovaných výpočtů a paralelních 

evolučních  algoritmů,  což  zahrnuje  klasifikaci  paralelních  genetických  algoritmů,  popis 

paralelizačních schémat a přehled vybraných úspěšných aplikací paralelní optimalizace.

V následující  části  je  popsána  plně  škálovatelná  platforma  pro  paralelní/distribuované  výpočty 

a několik možných paralelizačních modelů. Tato platforma představuje univerzální, velmi efektivní 

a snadno konfigurovatelný framework pro distribuované úlohy.

Následuje  analýza  existujících  implementací  paralelní  Diferenciální  evoluce  a  popis  možností 

paralelizace algoritmu SOMA. Návrh čtyř různých paralelizačních schémat algoritmu je detailně 

popsán, včetně výsledků výkonnostních testů. 

Práci uzavírá popis optimalizace praktických inženýrských problémů. K ověření optimalizačního 

výkonu paralelní verze algoritmu SOMA byly zvoleny tři úlohy: optimalizace nastavení spalovacího 

motoru,  optimalizace  umístění  směrovacích  stanic  v bezdrátových  sítích  a  aerodynamická 

optimalizace geometrie křídla letadla.
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1 AIMS OF WORK
This work is aimed to parallel optimisation evolutionary techniques, especially to the very recent 

and  powerful  one  –  the  Self-Organizing  Migrating  Algorithm  (SOMA).  The  goal  is  parallel 

implementation  of  SOMA,  its  benchmarking  and   analysis  of  parallel  SOMA  running 

in environment of networked workstations.

The main issues considered and problems to be solved here can be summarized into the following 

points:

● to  summarise  the  current  state  on  the  field  of  distributed  computations  and  parallel 

evolutionary algorithms;

● to develop a platform for parallel computations. This platform will harness the processor-

power  of  ordinary  office  computers  mainly  situated  in  the  freely-accessible  classrooms 

across the university campus and utilise their free CPU-time for parallel optimisations;

● to  implement  parallel  SOMA in  the  master-slave  and  fine-grained  configurations.  This 

includes  benchmarking  tests  and  performance  comparisons  of  all  implemented 

parallelisation strategies..

● to  employ  the  developed  parallel  SOMA for  real-world  time-demanding  optimisation 

problems to validate its algorithmic qualities and high optimisation performance.

–7–



2 INTRODUCTION
Evolutionary algorithms  (EA)  based  on  principles  of  natural  selection  belong  to  very efficient 

methods  of  global  optimization.  They  are  successfully  used  in  many engineering  applications. 

In general, EAs are able to find a feasible solution of an optimization problem in a reasonable time. 

However, when using them for complex problems, the time required for finding a suitable solution 

might be unacceptably long. Therefore, many studies were published and lots of experiments were 

undertaken in  effort to speed-up evolutionary algorithms. In run of the time, parallelisation became 

one of the ways of improving the computational performance of  evolutionary algorithms.

Even  though  its  youth,  the  Self-Organizing  Migrating  Algorithm  (SOMA)  (Zelinka,  2002; 

Zelinka, 2004) already proved that it can be regarded as a very powerful optimisation technique, 

an algorithm which can easily beat most of its predecessors on vast majority of optimised problems. 

Recently, the family of evolutionary algorithms welcomed a new member – SOMA – and now it is 

time to show its outstanding performance to the world.

There  exist  many  successful  parallel  implementations  of  various  genetic  and  evolutionary 

algorithms.  Starting  with  Ant  Colony  Optimisation,  Simulated   Annealing,  including  Genetic 

Algorithm,  Differential  Evolution  (Storn  & Price,  1995)  or  many others,  we can  trace  that  all 

of them have already been parallelised. Until lately, SOMA remained the only algorithm without its 

parallel version. This work extends the SOMA's field of activity also on computational demanding 

optimisation problems, enabling it to walk in the immense world of challenging tasks. Sky is not 

a limit anymore.

The following literary exploration provides a brief view on the actual state in the field of parallel 

evolutionary algorithms. It describes parallel genetic algorithms, their classification, history of their 

development as well  as the importance and influence of communication topology to the run of 

a GA, including some examples. 

In the subsequent chapter we present a universal and high-performance computation framework, 

especially  developed  for  optimisation  using  the  Self-Organising  Migrating  Algorithm.  Besides 

detailed  description  of  its  capabilities  and  performance  there  are  several  examples  of  parallel 

application that can guide you in your own implementation of  parallel applications.

Thereafter,  parallelisation schemes of  Differential  Evolution (DE) and SOMA are  analysed and 

implementation of both algorithms is throughly described. Four different parallelisation strategies 

of SOMA are presented and compared, including their benchmark test results.
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In the  last  chapter  three  very successful  applications  of  optimisation  using the  parallel  SOMA 

algorithm are demonstrated. While the first part describes an assignment where settings of a modern 

four-cylinder internal combustion engine were a subject to optimisation, the second presents a task 

in which positions of relay nodes in wireless network had to be optimised. The third and perhaps 

most  impressive  attachment  of  SOMA  is  the  aerodynamic  optimisation  of  wing  geometry 

accomplished in cooperation with the Evektor company, a Czech leading civil aircraft manufacturer, 

for airplanes being already produced or coming to production very soon.

The main contribution of this work lies in the analysis, implementation and empirical validation 

of parallel SOMA evolutionary algorithm, which is primarily described in the “Parallel Evolutionary 

Algorithms –  DE & SOMA” chapter.
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3 STATE OF THE ART

3.1 Parallel genetic algorithm
Genetic algorithms (GA) are stochastic search algorithms based on principles of natural crossover 

and  selection.  They  search  for  the  optimal  solution  using  manipulation  with  a  population 

of individuals  representing possible solutions.  Single individuals  in the population are evaluated 

by fitness – a value characterising quality of the particular solution. The best individuals are chosen 

for further population reproduction, which improves quality of the entire population.

The  ground  of  the  genetic  algorithms  theory  is  based  on  the  theory  of  evolution  formulated 

by Charles Darwin. Bad traits are eliminated from the population because they appear in individuals 

which  do  not  survive  the  process  of  selection.  The  good  traits  survive  and  they  are  mixed 

by recombination (crossover,  mating) to  form better  individuals.  Mutation also exists  in genetic 

algorithms, but is considered as a secondary operator. Its function is to maintain diversity among 

individuals, so the genetic algorithm can continue to explore the space of possible solutions.

Often, individuals are composed of binary strings of a fixed length L and thus GAs explore a search 

space formed by 2L points. Initially, the population consists of individuals chosen randomly, unless 

there is a heuristic to generate good solutions for the domain. In the latter case, there is still part 

of the population generated randomly to ensure some diversity in the population.

The size of the population is an important parameter because it influences whether the GA can find 

a good solution in feasible time (Goldberg, Deb & Clark, 1992; Goldberg, 1994; Harik et al., 1997). 

If the population is too small, it can be difficult for the algorithm to identify good solutions. On the 

other hand, if the population is too large, the GA will waste computational resources processing 

unnecessary individuals. This balance between the quality of solution and the time the simple GA 

needs to find it also exists for parallel Gas; it will be explained how it affects their design later.

Each individual in the population is evaluated by its fitness. In general, fitness is a measure that 

depends  on  how  well  an  individual  solves  a  problem.  In  particular,  GAs  are  often  used  as 

optimizers,  and  fitness  of  an  individual  is  a  return  value  of  an  objective  function  in  a  point 

represented by a binary string. The selection process uses this value to identify individuals that will 

reproduce and mate to form next generation.

Genetic  algorithms  adopted  two  operators  from the  natural  genetics  -  crossover  and  mutation. 

Crossover  is  the  primary  exploration  mechanism  in  GAs.   This  operator  takes  two  randomly 

selected individuals from those already selected to form the next generation and exchanges random 
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substrings between them. As an example of crossover, consider the following individuals:

I1 = 1111 | 1111
I2 = 0000 | 0000

In a  binary string of  length L=8 there are  L-1=7 possible  points  of  crossover.  In the example, 

the position of crossover  is  chosen as 4 and indicated by the symbol  “|”.  After exchanging the 

genetic information, the newly created individuals are:

I'1 = 1111 | 0000
I'2 = 0000 | 1111 

The crossover operation can take many forms. The example above used 1-point recombination, but 

it is possible to use 2-point, n-point, or uniform crossover. More points of crossover result in a more 

exploratory search, but it can also cause extinction of individuals representing good solutions.  

Mutation is usually considered as a secondary search operator. Its function is to restore diversity that 

might be lost from the repeated application of selection and crossover. This operator alters some 

random values within the binary string. The following example sketches mutation in a string of 8 

bits on the 4th position:

I =  11111111
I' = 11101111

Likewise in the nature, the probability of applying mutation is very low in GAs, while the crossover 

frequency is usually very high.

There are several ways how to stop a genetic algorithm. One method is to stop after predetermined 

number of generations or function evaluations.  Other is  to halt  the algorithm when the average 

quality of  the population does not improve after some number of generations. Another often used 

alternative is to stop the GA when all individuals are identical.

3.2 Classification of Parallel Genetic Algorithms
The basic idea behind most parallel programs is to divide a task into chunks and to solve the chunks 

simultaneously using multiple processors. This divide-and-conquer approach can be applied to GAs 

in  many ways  and  literature  contains  inexhaustible  number  of  examples  of  successful  parallel 

implementations.  Some parallelisation methods use a single population,  while others divide the 

population into several  relatively isolated subpopulations.  Some methods can exploit  massively 

parallel computer architectures, while others better suit to computers with fewer but more powerful 

CPUs.
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According to (Cantú-Paz, 2000), there are four main types of parallel GAs:

1. global single-population master-slave GA,

2. single-population fine-grained GA,

3. multiple-population coarse-grained GA,

4. hybrid GA.

Figure 3-1: An example of master-slave parallel GA. The master stores the population, executes the 
selection, crossover and mutation process and distributes single individuals to slaves. The slaves 
only evaluate the fitness of the individuals.

In the master-slave GA there is  a single population (just  as in simple GAs),  but  the evaluation 

of fitness is distributed among several processors (see Figure 3-1). Since in this type of parallel GA 

the crossover and mutation handle the entire population, it is also known as global parallel genetic 

algorithm.

Fine-grained parallel GAs are suited for massively parallel computers and consist of one spatially-

structured population. Selection and mating are restricted to a small neighbourhood, neighbourhood 

overlaps  permit  some interaction  among all  the  individuals  (see  Figure  3-2).  The  ideal  case  is 

to have one individual available for every CPU.

The  multiple-population  parallel  GAs  are  more  sophisticated  as  they  consist  of  several 

subpopulations  which  exchange  individuals  occasionally  (see  Figure  3-3).  This  exchange 

of individuals  is  called migration and is  controlled in many different  ways.  Multiple-population 

parallel  GAs  are  very  popular.  But  they  are  also  the  class  of  GAs  which  is  very  difficult 

to understand because the effects of migration are not fully understood. Multiple-population parallel 

GAs have slightly different behaviour comparing to simple (serial) GAs.
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Figure 3-2: An example of fine-grained parallel GA. This class of parallel GAs has one spatially-
structured population and can be efficiently implemented on massively parallel computers.

Multiple-population parallel  GAs are  known under different  names.  Sometimes,  they are  called 

as “distributed GAs”, because they are very often implemented on distributed memory computers 

(MIMD).  In  the  case  the  ratio  of  computations  and  communication  is  very  high,  they  are 

occasionally called “coarse-grained GAs”. Other example of parallelisation is  the island model, 

when the subpopulations are relatively isolated from all others and they exchange individuals only 

rarely.

Figure 3-3: An example of multiple-population parallel GA. Every process is a standalone GA 
which sometimes exchanges an individual with its neighbours. 
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As emphasised in (Cantú-Paz & Mejía-Olivera, 1994) , the master-slave parallelisation method does 

not affect  the behaviour of the algorithm, while the others change the way the GA works.  The 

parallel version of master-slave GA takes into account the entire population where every individual 

can mate with all other ones, the other methods consider only a subset of individuals and limit the 

possibility of crossover only to one  subpopulation. 

The multiple-population coarse-grained parallel GAs combine multiple populations with the master-

slave or fine-grained method. This class is called hierarchical parallel GAs. At higher level they are 

multiple-population algorithms with single-population parallel  GAs (either  master-slave or  fine-

grained)  at  the  lower  level.  A  hierarchical  parallel  GA can  combine  the  advantages  of  its 

components and might offer a better performance than any of them alone.  

3.3 History of Parallel Genetic Algorithms
As early as in 1976, Bethke described a global parallel implementation of a classic GA and GA with 

a  generation  gap  (Bethke,  1976).  He  conducted  an  efficiency  analysis  and  identified  some 

bottlenecks that limit the parallel GA efficiency. Five years later, (Grefenstette, 1981) proposed four 

types of GA. The first three were variations of the master-slave scheme and the fourth one was 

a multiple-population GA. In 1985, Grosso presented an idea of realisation of a serial simulation of 

parallel GA run (Grosso, 1985). Its first implementation is described in the work by (Pettey, Leuze 

&  Grefenstette,  1987a).  They divided  the  population  to  several  subpopulations,  every  element 

of their computation system had assigned one group of individuals that were processed separately.

In the same year Cohoon, Hedge, Martin and Richards adopted the theory of punctuated equilibria 

from the natural  systems and applied it  on artificial  algorithms (Cohoon et  al.,  1987). In 1989, 

Belding  became  the  first  man  who  implemented  GA  on  hypercube  parallel  computer 

(Belding, 1995). (Manderick & Spiessens, 1989) created the term of the island model parallel GA. 

Very important theoretical questions were raised by (Starkweather, Whitley & Mathias, 1991) about 

comparison of solution-quality between parallel and serial GA. They claimed that relatively isolated 

subpopulations  converge  to  different  solutions  and  that  migration  and  crossover  combine  only 

partial solutions. A complete summary of the advances of the research in parallel genetic algorithms 

till 2000 could be found in  (Cantú-Paz, 2000; Crainic & Toulouse, 1997; Cung et al., 2001).

The number  of  papers  increased incredibly with the advances of  computer  sciences  in  the last 

decade (Alba & Troya, 2001; Alba & Troya, 2002; Cantú-Paz, 2000; Rivera, 2001). One of the very 

fruitful studies is the dissertation of Eric Cantú-Paz (Cantú-Paz, 2000). The author describes many 

new techniques of rational design of fast and accurate parallel genetic algorithms. Many researchers 
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follow  his  guidelines  to  decide  about  the  topology  configuration  and  number  and  size  of 

subpopulations.  He  emphasises  the  importance  of  accurate  design  of  population  size, 

impracticability of isolated subpopulations, improvements in quality and efficiency by migration, 

advantage of fully connected topologies, effects of topology and optimal allocation of computing 

resources.

(Sefrioui  &  Périaux,  2000)  proposed  Hierarchical  Genetic  Algorithms  with  multi-layered 

hierarchical  topology and  multiple  models  for  optimisation  problems.  (Rivera,  2001)  reviewed 

strategies of parallel GAs including many implementations and results from their tests. Further, he 

discussed important issues regarding the scalability of parallel genetic algorithms.

(Alba  &  Troya,  2001)  created  a  common  framework  for  studying  parallel  GAs.  The  authors 

analysed the importance of synchronism in the migration step of various parallel distributed GAs. 

The synchronisation problem might influence the search time and also the speed-up. This study 

extended significantly the existing knowledge about structured-population GAs and demonstrated 

linear and even super-linear speed-up when run in a cluster of  workstations (COW).

In (Alba & Troya,  2002),  the authors compared the properties of  steady-state,  generational  and 

cellular genetic algorithms and extended the idea to consider a distributed model consisting of the 

ring of the GA islands. Time complexity, selection pressure, processing rate, efficiency in finding 

the  optimum,  speed-ups  and  scalability  were  the  analysed  features.  In  addition,  they  briefly 

discussed how the migration policy affects the search.

(Xio & Amstrong, 2003) proposed a new model of parallel evolutionary algorithms (EAs) called 

Specialised Island Model (SIM). The model was derived from the island model, in which an EA is 

divided into several subEAs that exchange individuals among themselves. In SIM, each subEA is 

responsible for optimising its local subset of objective functions. Seven different scenarios with 

different number of subEAs and properties of various topologies are compared in this paper.

(Gagné, Parizeau & Dubreuil, 2003) compare the classic master-slave and the island models, which 

they  implemented  for  Beowulf  and  a  network  of  heterogeneous  workstations  (NOW).  They 

identified the key features of a good computing system for evolutionary computation: transparency, 

robustness  and  adaptivity.  As  hard  network  failures  caused  many problems,  they  adjusted  and 

extended the master-slave model in order to overcome them. 

3.4 Master-Slave Parallel GA
Genetic algorithms in configuration master-slave use only a single population of individuals and the 

evaluation  of  individuals  (and  possibly  also  application  of  other  genetic  operators)  are  done 
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in parallel.  As in the serial GAs, each individual may compete and mate with any other. Global 

parallel  GAs are  usually  implemented  as  hierarchical  master-slave  programs,  where  the  master 

stores the population and the slaves evaluate the fitness.

The  most  common  operation  that  is  parallelised  is  the  fitness  evaluation  because  fitness 

of an individual  is  independent  on  the  rest  of  the  population.  Moreover,  there  is  no  need 

for communication during this operation. The evaluation of individuals is parallelised by assigning 

a single  or  a  group  of  individuals  to  each  available  processor.  After  processing  of  assigned 

individuals, they are sent back to the master computer. 

If the algorithm stops and waits to receive evaluated individuals from all slaves before proceeding 

into the  next  generation,  then the algorithm is  called synchronous.  A synchronous master-slave 

parallel  GA has  exactly  the  same  properties  as  a  simple  serial  GA,  where  speed  is  the  only 

difference.  Although  most  of  the  parallel  GA implementations  is  synchronous,  there  are  also 

asynchronous implementations of some GAs where the algorithm does not stop to wait for any slow 

processors. However, they work in a different way than the simple serial GAs.

The  global  parallelisation  model  does  not  assume  anything  about  the  underlying  computer 

architecture and can be effectively used on computers with shared or distributed memory. On shared 

memory  multiprocessor  systems   is  the  population  stored  in  shared  memory  and  each  of  the 

processing  units  can  access  the  assigned  individual  directly  and  write  back  its  fitness  directly 

without any conflicts.

On distributed memory systems, the population is stored on one computer – master. This master unit 

is responsible for assigning individuals (or group of individuals) to its subordinated computers – 

slaves. Slaves evaluate the fitness of received individuals and return them back to master, where 

other  genetic  operators   are  applied and new generation is  created.  The  number  of  individuals 

assigned to a single processor may be constant, but in some cases (e.g. when exploiting computers 

in freely accessible classrooms where the utilization of  CPUs is variable) it  may be necessary 

to balance the computational load among the processors by using some dynamic task scheduling 

algorithm.

(Fogarty & Huang, 1991) attempted to develop a set of rules for a load balancing application. They 

used a network of transputers which CPUs were especially designed for parallel computations. Each 

of  the  transputers  was able  to  communicate  with any other  either  directly or  by retransmitting 

messages. Because the message passing was a significant time consuming operation, they attempted 

to minimize this performance losses by interconnecting the transputers in different topologies. They 
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concluded  that  there  is  no  significant  difference  in  parallel  computations  performance  caused 

by different network configurations. Although they obtained reasonable speed-ups, they identified 

the fast growing communication overhead as an impediment for further improvements in speed.

In (Abramson & Abela 1992), the authors implemented a parallel GA on 16-CPU shared memory 

computer to search for efficient timetables for schools. They reported only limited speed-ups and 

blamed some serial parts of code. Later, on a different machine (Fujitsu AP10000 with 128 CPUs) 

and with modified code, they reached a significant speed-ups for up to 16 processors, bud speed-ups 

degraded  significantly  as  more  processors  were  added,  mainly  due  to  the  increase 

in communication.

Other implementation of a global parallel GA by (Hauser & Männer, 1994) gave other possible 

explanation - inadequate task scheduling. They claimed that it is necessary to consider all possible 

parameters  influencing  the  overall  performance  when designing  a  parallel  GA.  It  is  a  mistake 

to focus only on a single criterion.

Other aspect of GAs that can be parallelised is the application of genetic operators. Crossover and 

mutation can be parallelised  using the same idea of partitioning the population and distributing the 

work among multiple computers. Nevertheless, this operations are computationally so undemanding 

that  it  is  very  likely  that  the  time  required  for  transferring  individuals  back  and  forth  would 

neutralise any performance gains.

In  conclusion,  parallel  master-slave  algorithms  are  very easy to  implement  and  it  can  be  very 

efficient  method  of  parallelisation  when  fitness  evaluation  is  very  time  demanding  while  the 

communication costs are low. Besides, this method does not change the GA's behaviour, so we can 

apply all the theory already developed for serial genetic algorithms directly.

3.5 Multiple-Population Parallel GA
This class of parallel GAs works with several relatively large subpopulations and belongs to the 

most  popular  parallel  methods.  For  that  reason,  there  are  many papers  describing  innumerable 

aspects and details of their implementation.   

Probably the first systematic analysis of multiple-population parallel GA was Grosso's dissertation 

(Grosso,  1985).  His  objective was to  simulate  interaction  of  several  parallel  subcomponents  of 

an evolving  population.  Grosso's  population  was  divided  into  five  subpopulations.  Each 

subpopulation exchanged individuals with all others with a fixed migration rates. Grosso concluded 

that  the  improvement  of  average  population  fitness  was  the  faster  the  smaller  was  the 

subpopulation.  This  confirms  a  long-held  principle  of  population  genetics  –  favourable  traits 
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(e.g. traits ensuring higher probability of survival) spread faster when the population is small than 

in the case  when the population  is  large.  He also  observed that  when the  subpopulations  were 

isolated, the rapid rise in fitness stopped at a lower fitness value comparing to a large population. 

With a low migration frequency the subpopulations behaved independently and explored different 

regions of the searched space. The migrants did not have significant influence on the receiving 

subpopulation  and  quality  of  the  global  solution  was  then  very  similar  to  the  case  when  the 

subpopulations were isolated. However, by reasonable migration rate, the divided population found 

solutions comparable to those found by a single population. These observations indicate that there is 

a critical migration rate below which the performance of algorithm is obstructed by the isolation 

of subpopulations, and above which the partitioned population finds solutions of the same quality as 

the GA with a single monolithic population. 

(Pettey, Leuze & Grefenstette, 1987b) proposed a similar parallel GA. A copy of an individual is 

sent to the neighbouring subpopulations after every generation loop. The purpose of this constant 

communication was to ensure a good mixing of individuals. Like Grosso, the authors of this paper 

observed that parallel GAs with such a high level of communication found solution of the same 

quality like the serial GA with a single population. This observations prompted some questions like: 

(1) What is the level  of communication necessary to make a parallel  GA behave like a single-

population  serial  GA?  (2)  What  are  the  costs  of  this  communication?  And  (3)  are  the 

communication costs low enough to make this a viable alternative for the design of parallel GAs? 

Some of them are not solved till now.

It is interesting that such important observations were made so long ago. (Tanese, 1987) proposed 

a parallel  GA with  subpopulations  interconnected  in  the  4-D  hypercube  topology.  In  Tanese's 

algorithm, migration occurred at  fixed intervals between processors along one dimension of the 

hypercube. Migrants were selected randomly from a group of the best in the source subpopulation 

and replaced the worst individuals in the receiving subpopulation. The most significant finding was 

that the increasing migration rate degrades the performance of parallel GA. After other numerous 

simulations  she  discovered  that  GA  with  n subpopulations  and  m individuals  without  any 

communication  can  reach  the  same results  as  the serial  GA with  n x  m individuals.  However, 

average quality of the final population is much lower. 

A following paper by (Belding, 1995) confirms Tanesse's findings. The individuals were sent to 

randomly selected nodes connected in a hypercube instead to they neighbours in his experiment. 

Author claims, that in most of the cases the global optimum was found more often when migration 

was used than in the completely isolated cases.
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3.6 Coarse-Grained parallel GA
In  the  early  90',  when  the  potential  and  future  of  genetic  algorithms  was  indisputable,  the 

researchers started to concentrate on problems of speed-ups of parallel GAs and to understand better 

the way they work. Around this time, first theoretical studies began to appear and the theoretical 

research attempted to identify the favourable parameters. Parallel GAs started to be tested by large 

and  very  difficult  test  functions.  One  of  the  first  contributions  was  the  publication  from 

(Mühlenbein, Schomisch & Born,  1991). They described a parallel GA which could find a global 

optimum  of  several  functions  which  are  now used  as  benchmarks  for  optimisation  algorithms. 

In that time, there were many publications describing various successful implementations of parallel 

GAs, but theoretical studies were very rare.

Very important question is if, when and under what conditions is the parallel GA able to find better 

solution than the classical  serial  GA. (Starkweather,  Whitley & Mathias,  1991)  came with two 

observations regarding this questions. The first one was that relatively separated populations are 

likely  to  converge  to  different  solutions  and  only  partial  solutions  are  shared  and  combined 

by migration. Authors speculated, whether the parallel GA with low migration rate is able to find 

better solutions than the one with high migration rate. Conclusion of the second observation was 

that if the recombination of partial solutions results in individuals with lower fitness, then the serial 

GA might have an advantage. 

In the majority of parallel GA with multiple populations the migration is synchronous, which means 

that  it  is  performed  in  predetermined  constant  intervals.  However,  migrations  may  also  be 

asynchronous,  controlled  by  some  events.  One  such  an  example  of  this  behaviour  can  be  the 

Grosso's  dissertation (Grosso,  1985),  where he experimented with  a  delayed migration  scheme. 

In this work the migration was enabled until the population was close to converge.

(Braun, 1990) used the same idea and presented very similar algorithm where migration occurred 

after the subpopulations fully converged. The purpose of the consequent communication (migration 

of  individuals)  was  to  restore  the  diversity  in  populations  and  thereby  to  prevent  premature 

convergence into a low-quality solution. Afterwards, a number of  authors studied the same strategy. 

(Cantú-Paz & Goldberg, 1997) presented theoretical models predicting quality of solutions when 

a fully connected topology was used.

At this point it might be interesting to raise a question: When is the right time to migrate? It seems 

that if migration occurs too early during the run, the quality of solution represented by migrating 

individual might be low and time-expensive communication resources would be wasted. On the 

–19–



other  hand  when  the  individual  is  passed  too  late,  a  valuable  information  is  shared  to  other 

subpopulations and thus the search process will be slowed down. 

A different approach to migration was developed by (Marín, Trelles-Salazar & Hernández,  1994). 

They proposed a centralised scheme in which slave processors execute genetic operations on their 

local populations and send their partial results to a master process periodically. Then, the master 

process chooses the fittest individual found so far and distributes it to all slaves. Their experimental 

results  proved  the  possibility  of  linear  performance  growth  up  to  six  processors.  The  authors 

claimed  that  this  principle  can  be  scaled  up  to  larger  number  of  processors  because  the 

communication is infrequent.

3.7 Fine-Grained parallel GA
Fine-grained parallel  GA has  only one  population,  but  it  has  a  spatial  structure  that  limits  the 

interaction among individuals. An individual can only compete and mate with its neighbours, but 

since the neighbourhoods overlap, a good solution can spread in the population. (Sarma & De Jong, 

1996) analysed the influence of the size and  the shape of the neighbourhood on the selection 

mechanism and found that the ratio of the radius of the neighbourhood to the size of the whole grid 

is a critical parameter which determines the speed of convergence of the whole population. 

In this case, the individuals are allocated to a two-dimensional grid because the processing elements 

are connected in this topology in many massively parallel computers. However, most of this systems 

has also a global router that can send messages to any processor in the network (at a higher cost, 

naturally) and thus different topologies can be studied.  

3.8 Communication topologies
Communication topologies are closely connected with the area of parallel genetic algorithms. The 

topology is an important factor in the performance of parallel GAs because it determines how fast or 

how slow is a good solution disseminated across the whole population. If the topology has a dense 

connectivity, good solutions are spread to other subpopulations fastly and may quickly dominate 

them. On the other hand, if the topology is sparsely connected, solutions are spread slowelier and 

the subpopulations are be more isolated from each other, resulting in higher number of different 

solutions. Recombination of these partial solutions  may potentially lead to a better global solution. 

The communication topology is also important because it is a major factor in the cost of migrations. 

A densely  interconnected  topology  may  ensure  better  interaction  of  individuals,  however,  the 

communication costs will be higher. 

The general trend of multiple population parallel GA is to use static topologies that are specified 

–20–



at the  beginning  of  the  run  of  the  algorithm and  remain  unchanged.  Most  of  the  parallel  GA 

implementations with static topologies use the native topology of the computer system available. 

Therefore the topologies of a hypercube, a ring or a tree are common.  

Some empirical  studies like (Cantú-Paz & Mejía-Olivera,  1994) showed that parallel  GAs with 

dense communication topologies find the global solutions using fewer function evaluations than 

GAs with sparsely connected ones. This study includes tests performed on networks in topologies 

of 4-D hypercube, 4x4 toroidal mesh and unidirectional and bidirectional rings.

The other major choice is the dynamic topology. In this method, any of the processors is forced 

to communicate with any concrete partner(s), but instead of that migrants are sent to subpopulations 

that meet some criteria. The motivation behind dynamic topologies is to identify the subpopulations 

where migrants are likely to produce some effect. Typically, the criteria might be the population 

diversity (Munetomo, Takai & Sato, 1993) or a measure of genotypic distance between the two 

populations (Lin, Punch & Goodman, 1994).

3.9 Hierarchical parallel GA
Some  researchers  tried  to  combine  two  or  more  methods  of  GA  parallelisation,  producing 

hierarchical parallel GAs. Some of these new hybrid algorithms add a new degree of complexity 

to the already complicated world of parallel GAs. 

When two methods of parallelising GAs are combined, they form a hierarchy. At the top level, most 

of the hybrid algorithms can be viewed as  multiple-population algorithms. Some of them have fine-

grained  GA at  the  lower  level  (see  Figure  3-4).  Other  type  of  algorithms  are  those  presented 

in Figure 3-5, where each island is a separate master-slave GA. The third variant of hybrid GAs are 

those with multiple populations on both top and bottom levels (Figure 3-6). The main idea of this 

approach is to force mixing of individuals on the low level using a high migration rate and a dense 

topology, while a low migration rate with limited mixing of individuals is used at the high level. 
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Figure  3-4: An example of hierarchical parallel GA combining the island model on higher level  
and fine-grained GA on the lower level.

Figure 3-5: Scheme of an hierarchical parallel GA. While the top level is considered as the island  
model, the lower level is represented by a master-slave GA.
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Figure 3-6: An example of hybrid parallel GA with the island model on both levels. At the lower  
level, the migration rate is higher and the communication topology denser than at the upper level.

3.10 Applications of parallel GAs
There is a countless number of occasions where to use genetic algorithms. Successful applications 

can be found from mathematics and the graph theory (numeric functions optimisation, scheduling 

problems,  mission  routing  problems),  in  computer  science  (searching  for  weights  of  neural 

networks, optimisation of server load or database queries), in finance and economics (time series 

predictions,  systems  modelling,  logistics  problems)  to  technology and  engineering  tasks  (VLSI 

circuits optimisation, optimisation of mechanic constructions or ultrasonic signals).  

To the most  impressive  applications  belongs the practical  three-dimensional  shape  optimisation 

for aerodynamic design of a supersonic aircraft wing by (Oyama, Obayashi & Nakamura, 2000). 

The  authors  called the  algorithm ARGA (Adaptive Range Genetic  Algorithm),  which had both 

binary and real value representations. Aerodynamic optimisations resulted in very enhanced wing 

design and proved the feasibility of the parallel genetic approach.

(Bevilacqua, Campanini & Lanconelli, 2001) investigated the improvement obtained by applying 

a parallel GA to a problem of parameter optimisation in the medical images analysis. The authors 

set  a  method  for  the  detection  of  clustered  microcalcifications  in  digital  mammographs  based 

on statistics and multiresolution analysis by means of wavelet transformation.

(Alba, Nebro & Troya, 2002) implemented distributed parallel GA in Java able to run on various 
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operating  systems  interconnected  by  different  kinds  of  networks.  This  algorithm  exploits  the 

computation resources offered by modern LANs and the Internet.  The authors analysed the way 

in which such heterogeneous systems affect the genetic search for two example problems. 

In 2002, the new version of automatic distribution framework for evolutionary algorithms DREAM 

(Distributed  Resource  Evolutionary  Algorithm  Machine)  was  released.  (Arenas  et  al.,  2002) 

describes a  virtual  machine built  from a large number of  individual  computers on the Internet. 

DREAM is a project on very high level of development. The highest level offers the possibility 

of graphical design of evolutionary algorithm. The lowest level of the framework is a P2P mobile 

agent system that could automatically distribute processes of the evolutionary algorithms.
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4 PLATFORM FOR PARALLEL COMPUTATIONS
The goal of creating a platform for parallel computations was to provide a tool for time-demanding 

computations and simulations in the heterogeneous environment of Tomas Bata University's campus 

network. A classic computational cluster would require high investments in infrastructure and other 

necessary equipment. Computers would be used only for high performance computing tasks and 

in case when there are no tasks to process they would stay without any assignment.

To avoid very high initial costs when obtaining a high performance system there is an idea of using 

common  office  computers  and  connecting  them  to  a  virtual  cluster.  There  is  a  high  number 

of computers allocated across the entire campus,  particularly in the library and freely-accessible 

classrooms, mainly used only for office-like applications where their CPUs idle for the most part 

of the  computer's  lifetime.  These  computers  offer  high  performance  on  low or  even  no  costs. 

Moreover, they are regularly maintained and upgraded. By employing this large group of computers 

we can obtain enough CPU time for our time demanding heavy computational tasks.

As an initial inspiration for this platform served the well-known seti@home project, which is based 

on similar principle. Its assignment is an analysis of an incredibly large amount of data acquired 

from the Arecibo radio-telescope observatory. Chunks of measured data are sorted and stored into 

databases and later distributed and analysed by computers offered by many people all around the 

world interested in this project.

Requirements on the cluster were formulated as follows:

1. General purpose platform

For wide range of applications, effortlessly configurable.

2. Portable

Server and also the terminal side must be able to run on arbitrary hardware and operating system.

3. Easy to use

Development process of the cluster application must be as easy as possible, preferably without or 

with only a slight involvement of the user in the problems of parallel processing.

Used technologies:

● JAVA

Applications developed at the Java platform are easily portable among various hardware and 
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operating  systems.  The  only requirement  is  availability  of  Java  Virtual  Machine  (JVM) 

for the  target  platform.  Nowadays,  there  are  virtual  machines  for  every  widely  used 

operating system available on the Java's home site (java.sun.com).

● PHP

Open source hypertext preprocessor widely used for web-based applications.

● Linux

An outstanding operating system. Slackware 10.2 distribution was used for our server. 

● MySQL/PostgreSQL

Open source databases offering all needed functions and high performance meeting all our 

requirements.

4.1 Brief history of the platform
The  aim  of  the  former  design  was  to  develop  an  application  interface  (API)  for  distributed 

applications  to  enable  to  a  commonly skilled  user  develop  a  parallel  version  of  his  algorithm 

in an easy way. On the server  side,  user created an instance of  the ClusterServer class,  which 

provided   all  necessary  server  services  (information  about  the  application  progress,  interface 

for creating,  updating,  and  removing  the  task  packages).  The  ClusterServer  class  was  also 

a communication gateway for all terminals.  On the terminal side, the ClusterTerminal class was 

used to provide communication channel to the server application. It provided also some other useful 

services as login, logout, getData and setData. The user did not have to be interested in the network 

communication problems and have any knowledge about the inner cluster functions.

This approach seemed to be really reasonable and advantageous that time, but only as long as the 

cluster did not need to be used for multiple applications. Moreover, this primordial version did not 

support automated class updating on the terminal side(s) and always, when there was a new build 

of the  terminal  application,  the  user  had  to  go  around  all  occupied  computers  and  upload  the 

modified classes manually. And this became to be very laborious task when we started to use more 

and more terminals.

For this purpose a really general-purpose platform for parallel computations was created. Although 

it  became  a  little  more  complicated  for  the  user,  the  new  approach  brought  many  useful 

improvements such as automated updating of terminal-application's classes on terminals performed 

by the UpdateManager, ability of transparent cluster management using the ClusterGuruGUI web 
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interface and also an ability to create virtual-topology computing networks.

During last few years the cluster computation platform underwent several major evolutionary steps 

and its last version represents very reliable and highly efficient framework for parallel applications.

4.2 General cluster description
The overall structure of the cluster software can be seen in Figure 4-1. After start of the ServerMng 

(i.e. start of the server), the ApplicationMng is run in a new thread. ApplicationMng starts or stops 

the user applications (ServerApplication) according to the project's activity flag in the database. 

ServerApplications run also in separate threads to be able to work concurrently. After  initialization 

they create task-description/data packages (taskParts).

Start of the terminal (TerminalMng class) triggers the log-in and update process. First of all, the list 

of local classes is sent to the server. In case they are out-of-date, terminal receives new, actualized 

classes.  The  update  mechanism updates  both  the  user's  and  the  platform's  classes.  Then,  after 

initialization, a taskPart is requested from the server. Subsequently, a corresponding user's terminal 

application is launched and the data from the taskPart are passed as its parameter . Its return value is 

again a taskPart package, which is sent as a result to the server. 

Figure 4-1: Cluster structure including interconnection of its inner modules

TaskParts  on  the  server  side  are  distributed  according  to  the  flag  indicating  their  status.  After 

a taskPart  is  picked  up  by a  terminal,  its  status  is  changed from  WAITING (=to  be  processed) 

to BUSY (=being processed). In case the terminal does not return the taskPart during a certain period 

of time (the default taskPart's timeout can be set in the server configuration file, explicitly can be 

modified for every single taskPart  when inserting it  into  database),  the state of this  package is 

changed to  WAITING again. If a taskPart is returned after this period is over, it  is stored to the 
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database. If any other terminal has already been assigned this task, the processing on such a terminal 

is interrupted and terminal receives a new job (if available).

Cluster applications can operate in two modes. In the seti@home-like mode the ServerApplication 

prepares numerous chunks of data to be analysed or many packages describing a partial assignment 

for the terminal. We call this packages  taskParts. These taskParts are stored in the database (they 

might be optionally saved in separate files on the file system) and picked up by terminals. After 

being analysed/solved, they are sent back and saved into database. Later, when all taskParts are 

processed, the server application picks them up and assembles all partial results together. Terminals 

can not see any others and do not communicate to each other.

In the grid mode, terminals create a virtual-topology network. Initialization of application is done 

in the same way as in the first mode – terminals obtain an assignment from the server. However, 

they do not return immediate partial solution back, they cooperate together until the task is finished. 

In this mode, additional code is employed to establish a virtual network and to provide additional 

communication ability for terminals. This feature is described in chapter concerning the terminal's 

ConnectionMng class.

4.3 Database structure
All cluster-controlling flags and data (optionally) are stored in the 'cluster' database. The following 

SQL snippets ambiguously define four tables.

The table projects describes the cluster application (the user's program). In the column cpu_time the 

used terminal's CPU time is aggregated and after the project has finished, it is possible to calculate 

the speed-up ratio as R = cpu_time / (stop_time – start_time).

CREATE TABLE `projects` (
  `id` text NOT NULL,
  `name` text NOT NULL,
  `description` text,
  `status` text NOT NULL,
  `start_time` bigint(11) default '0',
  `stop_time` bigint(11) default '0',
  `cpu_time` bigint(11) default '0',
  PRIMARY KEY  (`id`(128))
) ENGINE=MyISAM;

In  the  table  task_parts,  information  with  a  task  description  and  necessary  data  are  stored  . 

The column status may contain only the string WAITING, BUSY or DONE. If the time of processing 

a taskPart exceeds the task_part_busy_timeout value, its status is set back to WAITING.

CREATE TABLE `task_parts` (
  `project_id` text NOT NULL,
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  `status` text NOT NULL,
  `terminal_address` text NOT NULL,
  `start_time` bigint(11) NOT NULL default '0',
  `data` longblob NOT NULL,
  `task_part_id` text NOT NULL,
  `temp_id` text NOT NULL,
  `timeout` bigint(11) NOT NULL default '0',
  PRIMARY KEY  (`task_part_id`(128))
) ENGINE=MyISAM;

Table  terminals contains  a  list  of  physical  terminals  (computers).  Each  of  the  participating 

terminals has its own log, where the number of taskParts processed (tasks_completed) and the total 

CPU time used for  computations  (cpu_time)  are  recorded.  The column  status can only contain 

strings  CONNECTED and  DISCONNECTED.  Terminals  do  not  have  to  respond  on  a  fixed 

communication  port  (this  feature was added due  to  restrictions  on  some classrooms),  they can 

automatically detect a free/opened port and adapt to local situation. The address and port columns 

are to keep the information how to reach a specific terminal (this is not important only for the server 

but also for other terminals when running an application in grid mode).

CREATE TABLE `terminals` (
  `location` text NOT NULL,
  `configuration` text NOT NULL,
  `status` text NOT NULL,
  `tasks_completed` bigint(11) default '0',
  `address` text NOT NULL,
  `logged_in_last_time` bigint(11) NOT NULL default '0',
  `id` text NOT NULL,
  `cpu_time` bigint(11) unsigned default '0',
  `port` bigint(11) unsigned NOT NULL default '0'
) ENGINE=MyISAM

Table files represents a list of classes and all other files that belong to each of the cluster projects. 

Files  with  the  flag  destination set  to  TERMINAL or  SHARED are  uploaded  to  terminals  and 

automatically updated. SERVER files are intended to be launched only on the server side. Server and 

terminal  application  managers  launch only classes  with  the  flag  runnable set  to  YES,  all  other 

classes are considered to be only supporting classes for user's applications.

CREATE TABLE `files` (
  `name` text NOT NULL,
  `file_name` text NOT NULL,
  `project_id` text NOT NULL,
  `type` varchar(5) NOT NULL default '',
  `runnable` varchar(4) NOT NULL default 'NO',
  `destination` varchar(8) NOT NULL default ''
) ENGINE=MyISAM;
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4.4 Structure and functions of the platform
A detailed description of each of the cluster parts is given in this chapter. There are three packages – 

for the server side, for the terminal side and also a package of classes that are shared by both sides. 

The web-based cluster management interface is described in the next chapter.

4.4.1 Package cluster.server
This chapter describes in detail the functionality of the server side - process of logging in and out, 

automated updating of classes and the communication between server and terminal (see Figure 4-2).

Figure 4-2: Schema of server structure

ServerMng

Server manager is the main class of the server, which creates its own RMI registry and registers 

itself as an RMI service. Furthermore, it initializes a database connection pool that all other server 

modules will use. It offers the  ServerMngI interface, through which all communication between 

server and terminals is routed to all other server modules. 

public interface ServerMngI extends Remote {
    boolean login(TerminalDescriptor td) throws RemoteException;
    void logout(String terminalAddress) throws RemoteException;
    ClusterData getClusterData(ClusterData data) throws RemoteException;
    TerminalDescriptor[] getListOfConnectedTerminals() throws RemoteException;
    void passMessage(TaskPartBean tpb) throws RemoteException;
} ////:~

Vast majority of the messages are handled by the getClusterData() method. Three different events 

can be processed here:

● request for update → handled by the UpdateMng,
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● request for an assignment (taskPart)  →  if there is any available,  TaskMng returns data; if 

not, terminal is instructed what to do (typically to hibernate for a while and ask again later), 

● incoming processed taskPart → passed to TaskMng.

ServerMng provides also some additional useful methods. First of them is login(), which registers 

terminal into database (if it is still not there, it will be added), sets its status to  CONNECTED and 

records the time of last registration. It returns true if at least one parallel project is up and running. 

Method logout() was primarily created to maintain the list of online and offline terminals up-to-date. 

The  passMessage()  method  is  used  when  an  application  is  running  in  the  grid  mode.  It  was 

implemented for direct access to the server-application's message box from all terminals.

UpdateMng

Update manager contains only one public method – update(). A list of classes owned by terminal is 

passed  as  a  parameter.  This  list  is  then  compared  to  the  server's  list  of  classes  and  files 

(the assumption is, that classes on server are always up-to-date) and those which terminal does not 

have or has older versions of them are returned. The return value is an array of  the ClassDescriptor 

type. This data class contains a time stamp of last modification, name and size of the file, class 

name  and  also  a  binary  copy  of  transferred  class.  The  server's  list  is  refreshed  in  the 

FILE_LIST_RELOAD_INTERVAL directive specified in the configuration file.

TaskMng

This module handles requests for taskParts and saves processed and new taskParts into a database. 

In order to balance high load caused by many terminals requesting and returning taskParts, two 

caches were implemented – the first one for taskParts waiting to be processed (NewTPQueue) and 

the  second  one  for  solved  taskParts  which  are  to  be  stored  into  database  (SolvedTPQueue). 

Properties of both buffers can be modified using QUEUE_LENGTH and  QUEUE_CHECK_INTERVAL 
parameters. 

In the getTaskPart() method, all incoming requests for assignment are processed. If there is at least 

one project running (any project with status =  ENABLED) and there are also any taskParts in the 

NewTPQueue,  the  return  value  is  a  TaskPartBean (TPB)  containing  besides  the  projectID and 

taskPartID the name of the class to be launched on terminal  and data which are  passed to the 

executed class as a parameter. Furthermore, the TaskPartBean carries also other useful information 

like cpuTime (processing time of the TPB, it is set when sending TPB back to server), taskPart 

timeout (taskPart's expiration time) and IP address of the terminal that processed the TPB.  

The saveSolvedTaskPart() method funnels a processed taskPart to the SolvedTPQueue. This queue 
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is emptied by saving all contained TPB into database either periodically or when it is full (depends 

on which event comes first).

ServerApplicationMng

Server application manager is a separate thread, which checks the projects list in the database and 

compares  it  with  the  list  of  already  running  applications  in  a  time  period  determined  by  the 

projects_list_check_interval parameter.  If  a  change  in  the  flag  status is  detected, 

a relevant action is performed:

● Transition from DISABLED to ENABLED → new ServerApplicationThread is created and in 

this thread a class with parameters type=SERVER_APPLICATION and runnable = YES in the 

'project' table is launched. The technique of starting the class will be explained later.

● Transition  from  ENABLED to  DISABLED  → according  to  the  project_id the  reference 

of relevant application thread is found and a termination signal is sent to it. The reference is 

then  removed  from  the  list.  Nevertheless,  the  real  halt  of  the  thread  depends  on  the 

ServerApplication  and  the  user  (programmer)  has  to  take  this  signal  into  account  and 

terminate his application (the exact procedure will be described later).

● Transition from ENABLED to  FINISHED → the thread terminates itself, only the reference 

from the list of threads is removed.

Besides  the  above  mentioned,  the  ServerApplicationMng  provides  useful  supporting  services 

for ServerApplication (the user's server application) via the following methods:

public boolean areAllTaskPartsSolved(String projectId) {….},

returns true if all taskParts have already been solved and the ServerApplication can pick them up.

public void setProjectFinishedStatus(String projectId) { ….}

This  method  is  used  just  after  all  taskParts  were  reassembled  to  a  complete  result  and  the 

ServerApplication is going to terminate itself (finish). Internally, this changes the status flag (see the 

table 'projects' above) from  RUNNING to  SUSPENDING, which tells to the ServerApplicationMng 

(SAM) to remove the current thread from the inner list of running applications. After that, SAM 

changes the status flag to the value FINISHED. 

The following method

public void addNewTaskPart(String projectId, String taskPartId, long timeout, Object data) {….} 

servers the ServerApplication to add new taskParts to a project.  TaskPartId is better to be defined 
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by user (although it may bring some uncomfortableness) than automatically generated as it is more 

transparent way to maintain user's own database of created objects. Furthermore, here can be the 

value of taskPart's timeout specified. Then, the taskPart itself is passed as the data parameter.

public void removeTaskPart(String taskPartId) {….} 

Using this method the user can remove an arbitraty taskPart form the project's list. Remember, that 

removing  a taskPart  which is currently processed from the database does not stop its processing 

on the terminal side. You can also remove all taskParts belonging to a project using the following 

method:

public void removeAllTaskParts(String projectId) {….}.

public Object getTaskPart(String taskPartId) {….}
public Object[] getAllTaskParts(String projectId) {….}

The  methods  mentioned  above  are  used  for  withdrawing  taskParts  from  the  database.  These 

methods do not remove the taskParts from DB, they must be removed explicitly by the user. 

There are also methods for server-to-terminal(s) communication. They can be used in the grid mode 

and their definitions are as follows:

public TerminalDescriptor[] getListOfConnectedTerminals()
public synchronized boolean sendMessageTo(TerminalDescriptor td, String projectID, Object message)
public synchronized void sendMessageTo(TerminalDescriptor[] td, String projectID, Object message)
public Object[] getMessages(String projectID)

The first method is designed to obtain a list of currently connected terminals. Because the terminals 

connect and disconnect during run of the project, it is very recommended to re-read this list more 

often than only once after start of the project. The other two methods are intended to send a message 

to  one  or  to  a  selected  list  of  terminals  (to  a  message  box  identified  by  the  projectID).  The 

getMessages() method picks up all messages delivered to the local message box – messages for the 

ServerApplication.

Process of launching a ServerApplication consists of the following steps:

● An instance of a class with flags destination = SERVER and runnable = YES is created. This 

is done using the ServerApplicationI (sai) interface and the Class.forName() call.

● New ServerApplicationThread (sat) is started and instance of ServerApplicationI (sai) is 

passed  as  sat's  contructor  parameter.  Then,  sat calls  the  sai.go() mehtod and the server 

application is launched.

● When  a  thread  with  server  application  is  running,  its  reference  is  saved 
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to a ServerApplicationMng's  list  of  active  threads  (ServerApplicationThreadsTable).  This 

table  is  also  the  place,  where  the  ServerApplicationMng  can  obtain  an  instance 

of ServerApplicationI to pass it a termination message.

To reduce the network load, ServerApplicationMng can optionally compress the taskParts using the 

ZIP algorithm. Activation of this  feature is  defined by the  use_compression directive in  the 

configuration file. However, it is good to remember that in some cases zipping numerous and/or 

large  taskParts  can  considerably  increase  the  server  load  (at  least  during  some  time  after  the 

ServerApplication was started) and thus eliminate any benefits gained from network load reduction.

ServerApplicationThread

ServerApplicationThread stands for a thread which encapsulates the ServerApplication. It calls the 

go()  method  defined  by  the  ServerApplicationI  interface  and  thereby  launches  the 

ServerApplication. It is the only point of communication contact between the server application and 

ServerApplicationMng and also the only way how to stop the server application.

ProjectDescriptor

ProjectDescriptor  is  a  data  class  in  which  information  about  project  is  stored.  It  is  used 

by ServerApplicationMng  in  ServerApplicationThreadsTable  to  observe  any  changes  in  states 

of defined projects.

Database layer

The  database  layer  represents  an  intermediate  layer  between  the  database  and  server  modules. 

It maintains  a  pool  of  database  connections  and provides  all  necessary services  for  ServerMng 

(logging in and out, keeping up a list of terminals), UpdateMng (maintaining and updating a list 

of files  that  have  been  changed),  TaskMng  (handling  with  taskParts)  and  ApplicationMng 

(all services needed when launching, terminating and working with the user's server application). 

This  unit  creates  some  kind  of  translator  between  the  world  of  SQL and  world  of  objects. 

Furthermore, it is a primary point where the change in status of a project is detected (e.g. a transition 

between RUNNING to TERMINATING) and in which an appropriate event is started. It also observes 

the  state  of  taskParts  stored  in  the  database  (a  'zombie  watch').  In  the  case  when 

solving/analysing/processing of a taskPart exceeds its time-out (which in most cases means that the 

terminal on which the task had been assigned has crashed or has been restarted), this taskPart is 

redeployed to the other terminal requesting a task.

4.4.2 Package cluster.terminal
Implementation  of  the  terminal  side  (see  Figure  4-3)  is  thoroughly  explained  in  this  section. 
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It includes description of the log-in and log-out process, the procedure of updating local files and 

classes (including terminal itself). Also the method of requesting taskPars from server is depicted. 

The  last  part  of  this  chapter  covers  the  virtual-grid  feature,  its  potential,  advantages  and 

characteristics. 

Figure 4-3: Schema of  terminal structure

TerminalMng

Terminal is a standalone application typically running as a system service (on NT) or a detached 

process (on Linux) on many computers across the university's campus network. Terminal manager is 

the main class of the terminal application. 

When the  TerminalMng is launched, connection to the server as an instance of remote object is 

created. If the server is down or not responding for some other reason, terminal becomes suspended 

for  a  time period   given  by the  HIBERNATE_TIME directive.  If  the  connection  is  successfully 

established and terminal is logged-in, the first update procedure is started. This process does not 

involve only terminal application files, it also includes update of the terminal itself. Subsequently, 

the TaskMng, UpdateMng and ConnectionMng are initialized and the terminal is waiting to receive 

an assignment. 

TerminalMng also provides the TerminalMngI interface for other terminals to be able to connect and 

communicate to each other. It offers the following methods, their functionality is described in the 

“ConnectionMng” section.

int ping() throws RemoteException;
void passMessage(TaskPartBean tpb) throws RemoteException;
boolean connect(TerminalDescriptor td) throws RemoteException;
boolean disconnect(TerminalDescriptor td) throws RemoteException;
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Classes  used  by  the  user's  terminal  application  are  stored  in  a  directory  where  the 

TERMINAL_CLASSES_STORAGE_DIRECTORY directive  from  the  terminal's  configuration  file 

points. Also the $CLASSPATH system variable should have an entry pointing to this directory. If it 

has not, the  TerminalMng tries to set it up by itself, but it may not succeed. For the critical case 

when the classes  are not  loaded by the system class  loader,  there  is  a specially designed class 

utils.CL (ClassLoader) which serves as a custom class loader and also as a last stage when all other 

attempts fail.

UpdateMng

The  update  manager  looks  after  local  classes  and  files  to  keep  them  up-to-date.  It  includes 

maintaining  a  list  of  versions  in  the  file  .file.list stored  in  the 

TERMINAL_CLASSES_STORAGE_DIRECTORY.  This file contains a serialized array of BinaryFile 

classes describing each file stored on the terminal computer. 

When  UpdateMng is  initialized,  the  list  of  local  files  is  compared  and,  if  necessary,  modified 

to reflect the actual state. Then, an update request is periodically sent to the server in order to get 

up-to-date classes and files. The period is given by  FILES_AUTO_UPDATE_INTERVAL directive, 

where  5  minutes  is  a  recommended interval.  Note  that  this  interval  strongly depends on  size 

of classes and data files you wish to transfer to terminals. The user should consider the network load 

the update process may cause.

Server response to the update request is again an  BinaryFile array or  null as a sign that there is 

nothing to be updated.

TaskMng

Terminal's task manager communicates directly with the server's task manager. It is a module which 

in  TASK_MNG_CHECK_INTERVAL requests  taskParts  from  the  server.  When  a  processing 

of a taskPart is started, TaskMng requests immediately other task to minimize the delay between the 

moments  when  one  task  is  finished  and  sent  back  to  server  and  a  new  one  is  obtained;  the 

subsequent task is started right after the previous one has finished and before it is submitted to the 

server.

TerminalApplicationMng

Terminal application manager is a simplified equivalent to the  ServerApplicationMng. Only one 

user's terminal application can be run at the same time. TerminalApplicationMng provides a few 

services for the terminal application and you can see them below.

public Object[] getMessages() {....}
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public boolean sendMessageToNeighbours(Object message) {....}
public boolean sendMessageToServer(Object message) {....}

These methods have sense only in the grid mode and have the following meaning: the first one 

returns all  messages which have been received for the running user's application.  Messages are 

assorted according to the projectID which comes with the taskPart and is supplied by the TaskMng. 

The other methods are to send messages either to the server or to the terminal's neighbours. How are 

the neighbours defined is described in the following section. As you can see, the type of a message 

is the Object class, which means that you can send any kind of a message. The only requirement is 

that the class must implement the Serializable interface.

The  runnable  class  representing  the  terminal  application  must  obligatorily  implement  the 

TerminalApplicationI interface. For an illustration how to implement a custom terminal application 

see the examples below.

ConnectionMng

Connection manager is a brand new terminal module which has been added recently. It is designed 

to enable terminals to communicate among each other and to create a kind of a virtual network. 

Its basic functionality lies  in performing the process of logging in and out and maintaining the 

server connection.

The advanced functionality and the so-called  cluster grid mode was primarily developed in order 

to parallelize the SOMA evolutionary algorithm in a way to support the evolutionary process  (see 

the  chapter  about  parallel  SOMA).  For  progress  of  SOMA it  is  better  to  propagate  a  leading 

individual from one to other computation nodes (terminals) slower than faster. In other words, it is 

better to share more (albeit local) leaders than to have only a single global leader. This causes higher 

diversity in the population and thus may lead to better results. 

For that reason, the basic configuration of the virtual network is a mesh where each terminal has 

four neighbours. There are no edges in the network and you can imagine it, for example, as to be 

covering  a  surface  of  a  sphere.  The  information  about  a  leader  spreads  step-by-step  trough 

neighbouring terminals  and  in  the  case  the  leader  is  of  high  quality,  it  may gradually  become 

a global leader.

Establishing of this virtual mesh is the advanced mission of ConnectionMng and it proceeds in the 

following steps:

1. A list of all currently connected terminals is obtained from the server. 

2. 'Ping' of all terminals from the list is performed. This is to sequence terminals according to 
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their ping time and also to get the information about the number of free slots. The term free 

slots indicates the number of  neighbouring terminals that the pinged terminal is missing.

3. Four terminals with best pings and at least one free slot are asked to establish a connection. 

4. If the free slots are not taken by other terminals in the mean time between the ping and 

connection request, a connection is established. Otherwise a subsequent terminal from the 

list is requested to establish a connection.

As  terminal  computers  may  be  restarted,  turned  off  or  even  crash,   all  connections  to  the 

neighbouring terminals are periodically checked. If a connection to a neighbour fails, the procedure 

described above is repeated to find the missing connection(s). 

What  is  more,  even  when  all  terminals  in  the  network  are  fully  connected,  the  network  is 

periodically reconfigured in order to find neighbours with the lowest value of ping time for every 

terminal  (to find the best location in the virtual mesh). Whenever a terminal with a better ping and 

a free slot is found, connection to this terminal replaces the connection to the worst terminal already 

connected.

Each terminal running in the grid mode establishes its own RMI registry to enable other terminals 

(and also the server) to communicate with them. Due to various restrictions (e.g. firewalls) in the 

freely-accessible classrooms and IT-labs the RMI registry port is not a fixed value, the terminal can 

dynamically  adapt  to  the  local  situation.  Because  of  this,  information  about  a  terminal  port  is 

associated with the remote terminal IP address and is included in the list of terminals obtained from 

the server.

4.4.3 Package cluster.shared
The cluster.shared package contains classes shared by the server and also by the terminal side. 

BinaryFile

BinaryFile  represents  a  class  or  a  general  file  that  is  transported  during  the  update  process. 

It contains all necessary information about a file. It is used by the update manager either as a file 

descriptor without any data inside (local file list) or as a full-bodied data file including the binary 

image of the file (for transportation of the file).

ClusterData

The class ClusterData (see Figure 4-4) stands for a general wrapper for all other data objects sent 

among server and terminals. There are four possible types of this object: UPDATE, DATA_REQUEST, 

DATA_RESULT and TASK_DATA.
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Figure 4-4: Data classes that are transported within ClusterData

TaskPartBean

This is a transportation data class for the taskPart – the assignment for a terminal. It contains the 

following items:

● projectID – to identify the project,

● taskPartID – to identify the taskPart,

● className – a user terminal application's class that processes this task,

● cpuTime – time spent with processing this task (used for terminal and project statistics),

● timeout  –  after  this  time  is  the  taskPart  status  in  the  database  changed  from  BUSY 
to WAITING. Then, it  might be assigned to other terminal. The taskPart has to be solved by 

this time,

● terminalAddress – address of the terminal which processed this taskPart,

● data – an argument/return value of the terminal application main class.

The data transported within the TaskPartBean may be optionally compressed.

TerminalDescriptor

TerminalDescriptor class supplies useful information about a terminal – its IP address, port of its 

RMI registry where it accepts connections and messages from neighbouring terminals or the server, 

terminal  location  and  configuration,  ping  time,  and  also  the  instance  of  a  remote  terminal  as 

an object (TerminalMngI) when a terminal is connected. It is used by the terminal ConnectionMng.

ClusterException

ClusterException stands for an exception class that represent a wrapper for all exceptions that may 
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be raised in the cluster (except RemoteException). Its purpose is to reduce the number of exceptions 

that might be passed to the user application and filter cluster inner exceptions.

FixedPortRMISocketFactory

FixedPortRMISocketFactory overrides the original Java's  RMISocketFactory in order to be able 

to set  the  RMI's  responding  port.  In  general,  RMI  service  creates  a  port  on  which  incoming 

connections are accepted. When a connection is accepted, the socket moves to other port, which is 

used  for  communication  (i.e.  data  transfer).  To  be  able  to  specify the  responding  port,  it  was 

necessary to modify the RMISocketFactory implementation.

MessageBox

MessageBox represents a postman that delivers, receives and sorts messages sent among terminals 

and server. 

4.4.4  Package cluster.utils

ClassLoader (CL)

ClassLoader  is  a  custom class  loader  used  when  starting  a  user's  terminal  application  and  the 

runnable class  was  not  loaded  by  the  Java  class  loader  for  some  reason  (the  class  is  not 

in CLASSPATH or has been downloaded after last restart of the terminal). 

MyProperties

MyProperties  is  class  facilitating  access  to  cluster  configuration  file.  It  periodically  observes 

changes in configuration and modifies the cluster parameters.

MyUtils

The MyUtils class embodies several useful methods that can be also used by the user's application. 

They are: 

● getUniqueId(String prefix) – helpful for generating IDs for taskParts,

● zipObject(Object o) and unzipObject(byte[] b) to compress/decompress data objects, 

● loadTaskPartFromFile(String taskPartID) and saveTaskPartToFile(String taskPartID, Object 

data)  –  provide a direct  access  to taskParts  when they are  stored in  files  instead of  the 

database  and  the  user  wants  to  bypass  the  standard  taskPart  handling  mechanism.  The 

location  where  the  taskParts  are  stored  can  be  changed  by  setting  the 

USE_DB_FOR_TASK_PARTS directive in the cluster configuration file to 0 or 1.
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4.5  ClusterGuruGUI
All tools needed for administration of cluster and user applications are accessible via a graphic user 

interface (GUI) on the web. This approach was chosen primarily for its easy accessibility for anyone 

from anywhere having just a web browser. Using this interface you can create, modify, launch or 

terminate your parallel projects. Furthermore, you can see the actual state of running projects, the 

time the running projects need to be finished and also the total time spent on processing a particular 

project. Owing to this web management interface, users can comfortably access all results without 

having direct access to the server's console. The other advantage is that the cluster administration is 

accessible from various mobile devices like cell phones, PDAs and others.

Figure 4-5: Main page of cluster's administration interface. Here you can see state of a parallel  
project, start and stop time, CPU time used for processing this assignment and also the speed-up  
ratio. In addition to this, it is possible to modify the project properties, to start/terminate or create  
new parallel project.

On the main page of  the cluster  administration centre,  you can see a  list  of  projects  wrapping 

parallel  applications.  Here is  displayed the project name, its  brief  description,  projectID (which 

uniquely identifies the project's files and taskParts), status (including a button to start or stop the 

project), taskParts summary (indicating the number of taskParts that are waiting to be processed (the 

W flag), queued in the task manager's buffer (Q), being processed (B) and already finished (F)). 

In addition to this, there is also the time when the project has started and the in case the project has 

finished by its own, you can find the project's stop time as well. As duration of a project run can be 

calculated from these two values and as also we log and store the sum of used CPU time, we can get 

the speed-up ratio. This ratio can be understood as a number of CPUs participated on the parallel 
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project with 100% efficiency.

To create a new project, click on the [:add_project:] button. You can set up here the project name, its 

brief description and an ID which will be used as a unique identifier for project files (used by the 

update manager) and taskParts (handled by task manager).

Figure 4-6: Creating new project

Figure 4-7: Project settings. Here you can add and remove classes/files to/from a project.
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By clicking  on  the  project  name  on  the  ClusterGuruGUI's  main  page  you  access  the  project 

properties. Besides the project name and its description, project attributes can be modified here (see 

Figure 4-7). 

Classes and other files belonging to the project are uploaded, maintained and removed here. There 

are five types of files -  CLASS,  BLOB,  TEXT,  XML,  PROP. Only one class can be set as runnable 

on both the server and the terminal side. TEXT, XML and PROP files can be modified using a simple 

text editor. As a last attribute, the  destination flag of a file must be defined. Files are transferred 

to connected  terminals  (destination set  to  values  TERMINAL or  SHARED)  according  to  this 

parameter.

The [:terminals_list:] button redirects you to the terminals inventory. Here are all terminals that 

participate  on  parallel  computations  in  the  cluster.  Their  IP  address,  status  (CONNECTED or 

DISCONNECTED), location of the terminals' computers, CPU type, number of completed tasks and 

used CPU time can be seen on this page.

Figure 4-8: Terminals list and their statistics
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4.6 Cluster configuration file 
After  ServerMng  or  TerminalMng  is  launched,  the  configuration  file  is  processed  and 

server/terminal modules are initialized using these values. While on the Linux platform the default 

configuration  is  stored  in  c4.linux.conf, the  name  of  the  configuration  file  is  c4.win32.conf 

on Windows   This chapter presents an example of typical cluster configuration file. 

When creating a package to be distributed (installed) on terminal computers, it  is recommended 

to remove the server settings section as it contains sensitive information. On terminals there is a risk 

that the configuration file might be misused by a potential intruder.

# c4.linux.conf

# ---------------------------------------------------------------------------
# Server settings
# ---------------------------------------------------------------------------

DB_URL = localhost
DB_PORT = 3306
DB_USER = cluster
DB_PASSWORD = ****
DB_NAME = cluster4

QUEUE_LENGTH = 200
QUEUE_CHECK_INTERVAL = 4000

# taskParts can be stored in DB or in files
USE_DB_FOR_TASK_PARTS = 1
# when user_db_for_task_parts = 0 it stores task parts to following directory. Put '/' as the last character.
TASK_PARTS_STORAGE_DIRECTORY = _task_parts/

# location where the user's application data is stored (both terminal and server) Put '/' as the last character.
SERVER_FILES_STORAGE_DIRECTORY = _server_files/

# interval of terminal's hibernation when receives a WAIT message:
GET_TASK_REPEAT_DELAY_FOR_TERMINAL_START = 1000
# with each additional number of terminals
GET_TASK_REPEAT_DELAY_FOR_NUM_TERMINALS = 2
# increase wait:
GET_TASK_REPEAT_DELAY_FOR_TERMINAL_INCREMENT = 1000

# project list check interval (for the server's ApplicationMng)
PROJECT_LIST_CHECK_INTERVAL = 5000

# Compress the taskParts with ZIP?
USE_COMPRESSION = 0

# UpdateMng:
FILE_LIST_RELOAD_INTERVAL = 10000

# ---------------------------------------------------------------------------
# Shared settings
# ---------------------------------------------------------------------------
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DEBUG = 1
# LOGGING_LEVEL - see java.util.logging.Level 
# values: OFF, SEVERE, WARNING, INFO, CONFIG, FINE, FINER, FINEST, ALL
LOGGING_LEVEL = ALL
LOG_FILE = cluster4.log

RMI_REGISTRY_URL = 195.178.89.168
RMI_REGISTRY_PORT_SERVER = 4004
RMI_SERVICE_NAME_SERVER = cluster_server

# Port on which RMI will handle request after accepting on RMI_REGISTRY_PORT:
RMI_FIXED_RESPONDING_PORT = 4005

# ---------------------------------------------------------------------------
# Terminal settings
# ---------------------------------------------------------------------------

# information describing terminal's configuration and location:
TERMINAL_HW_CONFIGURATION = P4/2400
TERMINAL_LOCATION = alypsia

# if there's nothing to do, wait this interval and ask again:
HIBERNATE_TIME = 10000

# directory, where terminal application's classes are stored. 
# MUST BE IN CLASSPATH! Put '/' as the last character.
TERMINAL_FILES_STORAGE_DIRECTORY = _terminal_files/

# how often perform terminal files update (5min)
FILES_AUTO_UPDATE_INTERVAL = 300000

# how often to check if next new task part is downloaded to terminal.
TASK_MNG_CHECK_INTERVAL = 1000

SHOW_PROGRESSBAR = 1

# Terminal's default port and RMI service name (used in the grid mode only):
RMI_REGISTRY_PORT_TERMINAL = 4006
RMI_SERVICE_NAME_TERMINAL = cluster_terminal
# Number of neighbours in grid. Zero turns off the grid mode.
NUMBER_OF_NEIGHBOURS = 4

The configuration file can be located in the operating system temp directory (e.g. /tmp), in user 

home directory (Java  user.home system property)  or  preferably in  the  Cluster  distribution  root 

directory.

4.7 How to write a cluster application
This chapter describes two sample applications to provide instructions for a potential user of the 

cluster.

4.7.1 Example #1 – Primes
In this section, a very simple parallel application searching for primes is presented. This example 
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finds primes within a given range. The assumption is, that the numbers are in the range of double.

Version for one processor could look like this snippet of code:

/**
 * @return true if the number given by argument is a prime.
 */
  public static boolean isPrime(double number)  {

double maxDivisor = (double)Math.ceil(Math.sqrt(number));
double divisor = 2; // ( inverzni delitel ;)

boolean isPrime=true;
while(divisor < maxDivisor) {

 if(Math.ceil(number/divisor)==(number/divisor)) {
  isPrime=false;
  break;
 }
 divisor++;
}

 return isPrime;
  } ////:~

/**
 * Validates numbers in given range whether they are primes or not.
 */
  public static void findPrimes(double fromNumber, double toNumber)  {

for(double i=fromNumber ;i<=toNumber;i++) {
  System.out.print("Validating number "+i);

 if(isPrime(i))  {
 System.out.println("Number "+i+" IS a prime.");

 }
}

  } ////:~

How to parallelize this code? We can move the validation of each number on a separate processor. 

To reach this,  for every single number the server part  of the parallel  application creates a task 

(taskPart) which will be analysed on the terminal side. The taskPart for this example might look like 

this data class:

//PrimesData.java

import java.io.*;
public class PrimesData implements Serializable {

private double number;
private boolean state;

public void setNumber(double number) {
this.number=number;

}
public double getNumber() {

return number;
}
public void setState(boolean state) {

this.state = state;
}
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public boolean isPrime() {
return state;

}
}///:~

Note that this class must implement the Serializable interface, because it is serialized for saving 

into the database and also for the network transfer.

The terminal application detects if the number is prime or not. Its implementation is very simple, the 

method isPrime() is the same as in the one-cpu version.

//PrimesTerminal.java
import cluster.shared.TerminalApplicationI;

public class PrimesTerminal implements TerminalApplicationI {

public PrimesTerminal() {}

public static boolean isPrime(double cislo)  {
// the same code as in the one-cpu version

}

public Object go(Object parameters) {
      PrimesData dta = (PrimesData)parameters;
      dta.setState(isPrime(dta.getNumber()));
      return (Object)dta;
}

}///:~

As you can see, the PrimesTerminal class implements the TerminalApplicationI interface with the 

mandatory go() method that accepts Object in its argument and returns Object as well. Handling the 

Object within the  go() method is fully up to the programmer.  In this  case,  the argument is  our 

PrimesData class defined above. The number stored inside this data class is checked for being or not 

being a  prime  number,  the  result  is  using  the  setState()  method saved into  the  data  class  and 

PrimesData are returned to terminal's application manager. Then, the taskPart is sent to the server 

and another one is obtained to be processed.

Implementation of the server side of the primes-application follows:

// PrimesServer.java
import cluster.server.applicationmng.ServerApplicationI;
import cluster.server.applicationmng.ServerApplicationMng;

public class PrimesServer implements ServerApplicationI {

private boolean go = true;
private ServerApplicationMng sam;
private final static String projectID = "primes";
private final static long timeout = 30000; // 30 seconds
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public PrimesServer() {
sam = ServerApplicationMng.getInstance();

}

private void createTaskParts(double fromNumber, double toNumber) {
sam.removeAllTaskParts(projectID); // delete old task_parts
 PrimesData pd = new PrimesData();
// first we will create task parts:
for(double i=fromNumber; i<=toNumber; i++) {

    pd.setNumber(i);
    // the analyzed number will be used as the taskPartID:
    String taskPartID = "task_"+String.valueOf(i);
    sam.addNewTaskPart(projectID, taskPartID, timeout, (Object)pd);
}
System.out.println(" All task_parts were created."); // printed to the server's console

}

public void go() {
int i;
double fromNumber = Double.parseDouble("8888888888880000");
double toNumber = Double.parseDouble("8888888888881000");

    
createTaskParts(fromNumber, toNumber);

    
while(go) {

try { Thread.sleep(10000); } catch (InterruptedException ex) {}
if(sam.areAllTaskPartsSolved(projectID)) go = false;
System.out.println("PrimesServer : areAllTaskPartsSolved = 

"+sam.areAllTaskPartsSolved(projectID));
} //while

    
sam.setProjectFinishedStatus(projectID);

    
Object[] obj = sam.getAllTaskParts(projectID);

 PrimesData[] pdat = new PrimesData[obj.length];
try {

for(i=0;i<obj.length;i++) {
pdat[i]=(PrimesData)obj[i];

}
} catch(ClassCastException ex) {

System.out.println("PrimesServer : *** ClassCastException ***");
ex.printStackTrace();

}

System.out.println("\nThe following numbers are primes :");
for(i=0;i<pdat.length;i++) {

if(pdat[i].isPrime()) {
System.out.println(" Number "+pdat[i].getNumber()+" is prime");

}
}
System.out.println("PrimesServer : APPLICATION FINISHED");

}

public void stop() {
go = false;

}
} ////:~
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The  PrimesServer class  implements  the  ServerApplicationI  interface  in  which  there  are  two 

mandatory methods –  go()  and  stop().  The  go() method is  the main method of the user  server 

application. The taskParts are created in the first  step. Then the server application waits (in the 

while  loop  checking  result  of  the  sam.areAllTaskPartsSolved() method)  until  all  taskParts  are 

processed. Afterwards, as all taskParts are processed and (this) application is not going to create any 

other batch of tasksParts, the project status is set to FINISHED. Finally, the taskParts are picked up 

from the database and obtained results are printed into the server console (can be written to a file or 

processed in another way).

The stop() method is to tell the user's server application to stop when the flag status in the database 

is changed by the user via the ClusterGuruGUI. The programmer must take into consideration this 

change. 

Instance of the server application manager is obtained in the PrimesServer's constructor.

The described program searching for prime numbers is just an example application. Most of the 

numbers  are  divisible  by  small  numbers  (divisors)  which  practically  results  in  an  immediate 

response from the terminal (taskPart is processed in a very short time). If there was a higher number 

of terminals processing such a short tasks and instantly requesting new assignments, the server load 

would be very high. Therefore it is advised to aggregate small tasks into bigger units and thus save 

the server and network resources.

4.7.2 Example #2 – TimeCluster
The original intention of creating this group of classes was to measure the cluster efficiency. This 

parallel application represents a simulation of a heavy computational task. The terminal application 

pretends a 10 seconds long computation (waits for 10 seconds). There are 600 taskParts created, 10 

seconds each. This stands for a 6000 seconds long computation (=100 minutes). Dividing this value 

by the number of active terminals (terminals participating on the test), we get a theoretical time 

needed to process all taskParts. Then we compare this value to the real time in which the project 

was completed and get the cluster efficiency (see the subsequent Cluster performance chapter).

Let us have a look at the source code. Here is the shared data class:

// TimeData.java
public class TimeData {

private long delay;
public void setDelay(long delay) {

this.delay=delay;
}
public long getDelay() {

return delay;
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}
} ////:~

Source of a simple terminal application is:

//TimeTerminal.java
import cluster.terminal.TerminalApplicationI;
public class TimeTerminal implements TerminalApplicationI {

public TimeTerminal() {}

public Object go(Object data) {
      try {
          Thread.sleep(((TimeData)data).getDelay());
      } catch(InterruptedException ex) {}
return data;
}

} ///:~

And here is the corresponding server application:

//TimeServer.java
import java.util.Date;
import java.util.Random;
import cluster.server.applicationmng.ServerApplicationI;
import cluster.server.applicationmng.ServerApplicationMng;

public class TimeServer implements ServerApplicationI {
private TimeData td;
private Random rnd;
private ServerApplicationMng sam;
private boolean go = true;

private final static String projectID = "time";
private final static long timeout = 30000; // 30 seconds

public TimeServer() {
td = new TimeData();
rnd = new Random();
sam = ServerApplicationMng.getInstance();

}

/**
  * @param String prefix

     * @return String unique ID
  */
public String getUniqueID(String prefix) {      // creates ID of time[ms] + rnd int

String retVal = prefix+String.valueOf(new 
Date().getTime())+"_"+String.valueOf(Math.abs(rnd.nextLong()));

  return retVal;
 }

private void createTaskParts(long delay, int numPacks) {
sam.removeAllTaskParts(projectID);  // delete old task_parts

for(int i=0 ;i<numPacks;i++) {
  td.setDelay(delay);

  String taskPartID = getUniqueID("time_task_");
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  sam.addNewTaskPart(projectID, taskPartID, timeout, (Object)td);
}

}

public void go() {
        long delay = 10000; // 1000 = 1s

        int numPacks = 600;
        System.out.println("TimeServer : createTaskParts started");

        createTaskParts(delay,numPacks);
        System.out.println("TimeServer : all task_parts were created");

      
        while(go) {

try { Thread.sleep(1000); } catch (InterruptedException ex) {}
        if(sam.areAllTaskPartsSolved(projectID)) go=false;

        System.out.println("TimeServer : isFinished = "+sam.areAllTaskPartsSolved(projectID));
        }

      
        sam.setProjectFinishedStatus(projectID);

       sam.removeAllTaskParts(projectID); // clean-up
       System.out.println("TimeServer : FINISHED");
    }

    
    public void stop() {

    go = false;
   }

} ///:~

4.8 Cluster performance 
Every distributed application has certain efficiency. Loss of performance may originate on server, 

where the server side is not capable to handle terminals requests fast  enough (for example due 

to slow database responses). Other factor decreasing cluster efficiency might be high load of the 

server computer, which results in slowing down the user server application that can not create new 

taskParts as fast as terminals request them and thus terminals have to wait. Performance might also 

be reduced by slow communication among computers caused by network components (long time 

delays when opening a socket, slow data transfers). 

Besides  the  network  throughput  and  the  server  (computer)  performance,  other  two  factors  are 

brought by the cluster platform. The first one is the project-state check interval. The test is executed 

in a period  given by the  PROJECTS_LIST_CHECK_INTERVAL directive.  It means that there is 

a latency between the  start  of  the  project  using  the  web interface  (status  of  the  project  in  the 

projects table is changed to ENABLED) and the thread with user server side application is actually 

launched.  Very  similar  factor  is  the  interval  of  calling 

ServerApplicationManager.areAllTaskPartsSolved() method  (returns  true  if  all  taskParts  have 

already been processed; used in the user server side program where it waits to pick all taskParts up 

and to reassemble the partial solutions to a global one). If these two periods were too short it would 

result in higher server load, which may lead to some problems described in the previous paragraph 
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(recommended value is about or more that 500ms).

The  goal  of  the  tests  was  to  determine  the  cluster  efficiency.  The  experimental  applications 

TimeCluster, PrimeCluster and DataCluster were tested in the library classroom where there are 41 

Athlon XP 2200+ computers with 512MiB RAM on the 100BASE-TX network, running Windows. 

Server hardware configuration was Intel Celeron at 800 MHz, 768MiB RAM with Slackware Linux 

installed. Every simulation setpoint was performed 10 times and measured data represent its average 

value.

Presented data was measured during weekends when the classrooms are not available to students 

and  the  terminal  computers  run  without  any  accidents.  In  workday-opening  hours,  the  cluster 

efficiency might be lower because of students rebooting or even turning-off computers running the 

cluster terminal program.

4.8.1 TimeCluster
TimeCluster is a purely testing parallel application. There are 6000 taskParts created, computation 

time of each taskPart is 10 seconds (10 seconds long wait on the terminal side). This task in one-

CPU configuration should last 6000 * 10 s = 1000 min ~ 16 hours 40 minutes. After splitting this 

task, for example, to 10 computers, the theoretical time to finish this parallel task is 100 minutes. 

The  difference  between  the  real  and  the  theoretical  time  needed  to  process  this  task  is  the 

investigated cluster efficiency.

In  Figure  4-9 and  Table  4-1 one  can  see  that  with  increasing  number  of  terminals  the  cluster 

efficiency very slightly decreases. This might be caused by higher task request rate handled by the 

TaskMng. In addition to this, the task manager project check interval setting causes losses of several 

seconds  deteriorating the overall performance. However, comparing to previous cluster versions, 

where the efficiency was around 96% (version 3), the cluster efficiency is now fairly higher. Results 

provided by the profiler shows, that most of the delays are caused by server and terminal settings.

Table 4-1: TimeCluster – test results
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TimeCluster Delay [s] 10
Num taskPart 6000

Number of computers 1 10 20 30 40
Time of processing [s] 6054 604 303 203 152
Ideal time of proc. [s] 6000 600 300 200 150

Delay [s] 54 4 3 3 2
Delay [%] 1 0,67 1,00 1,50 1,33

Efficiency [%] 99,11 99,34 99,01 98,52 98,68



Figure 4-9: TimeCluster – test results

4.8.2 PrimeCluster
This example was primarily used as a test of server task manager's performance. Most of the tasks 

were returned to the server almost immediately, which caused some kind of a 'taskPart storm'. There 

were  no  significant  time-delays  detected.  This  set  of  experiments  proved  that  the 

NewTaskPartQueue and SolvedTaskPartQueue modules together with the completely rewritten and 

improved DatabaseLayer stand no longer for a bottleneck in the cluster performance.

4.8.3 DataCluster
The DataCluster test was designed to determine the network throughput influence on the cluster 

efficiency. Messages of a size from 10kB to 2MB were tested with simulated data processing time 

on the terminal side. This resulted more in a network performance test than a test of the cluster 

platform.  In  general,  we  can  claim  that  running  a  cluster  on  the  100BASE-TX network  with 

applications we need at most (evolutionary algorithms) absolutely complies our requirements. 

4.9 Chapter Summary
This chapter describes the first necessary step in the process of SOMA  parallelisation. The cluster 

platform stands for a foundation stone on which the further work is built up. It represents a fully 

scalable,  high-performance,  universal  and  multiplatform  framework  for  parallel/distributed 

applications.  This  versatile  cluster  platform  was  designed  in  order  to  utilise  free  CPU  time 

of ordinary office computer that are present in relatively high numbers at all universities and many 

companies.  As  it  can  be  seen  from  the  test  results,  the  platform  demonstrated  very  decent 

performance and high reliability during all performed tests. With efficiency about 99% it is ready 

to be used anywhere where there is a need for high-performance computational tasks.
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5 PARALLEL EVOLUTIONARY ALGORITHMS – DE & SOMA

5.1 Differential evolution
Differential Evolution (DE) is a modern optimisation method capable of handling nondifferentiable, 

nonlinear and multimodal objective functions. DE has been designed as a stochastic parallel direct 

search method that utilizes concepts borrowed from the broad class of evolutionary algorithms. The 

method typically requires few easily chosen control parameters. Many experimental results have 

shown that DE has good convergence properties and proves better performance than other well 

known  evolutionary  algorithms  like  Simulated  annealing,  Genetic  algorithm  or  Ant  colony 

optimisation. It is based on principles similar to genetic algorithms – it works with a population 

of individuals  that  mate  in  generation-steps.  Kenneth Price's  and Rainer  Storn's  work  (Storn & 

Price, 1995) is one of the early applications involving the idea of Differential evolution. 

5.1.1 Serial DE
The goal of DE is to cultivate the best possible individuals in terms of their cost function values. 

During run of the Differential evolution algorithm the following steps are performed:

 1. Specification of parameters – parameters controlling the evolution process are determined. 

Related parameters are:

● F ∈ <0, 2> – the mutation constant,

● CR ∈ <0, 1> – crossover threshold,

● NP –  number  of  individuals  in  the  population.  The  most  used  population  size  is 

NP = 10*D, where D denotes dimensionality of the optimized problem.

Furthermore, a prototype individual (specimen) has to be defined – to classify the parameter-

types (e.g. integer, double, string etc.) of the individual.

 2. Generation of initial population is done by creating individuals according to the prototype 

vector (specimen). Every individual consists of a set of parameters for each dimension of the 

optimized problem and one extra value – the cost value describing fitness of the individual.

 3. Evolutionary loop. Individuals are taken one by one and the following step is performed 

during every generation.

 4. Evolutionary step. To the one active (source/target) selected individual other three from the 

population are randomly chosen. The first is subtracted from the second one which gives so 

called differential vector. It is multiplied by the mutation constant F that alters (mutates) it. 

–54–



The product,  weighted differential vector,  is added to the third selected individual, which 

gives  a  noise  vector.  From the  noise  vector  and  the  active  individual,  a  trial  vector  is 

assembled – a random number in range <0, 1> is generated and confronted to the crossover 

threshold (CR) constant. If this number is lower than CR then a component (element in the 

vector) to the trial vector is taken from the noise vector, from the active vector otherwise. 

This is done for every pair of elements in the vectors. Further, the trial vector is evaluated 

and if its cost value is lower than the source vector's (individual's) cost value, the source 

individual is replaced by the newly spawned one. 

The whole population is modified in order to replace old (worse) individuals with better 

ones. By returning to step #3, next individual is selected and the evolutionary loop repeats 

until all individuals are processed. This way a new generation of offsprings (individuals) is 

created.

 5. Stopping criterion test.  DE is  terminated  after  specified  number  of  generations  (given 

by user). This algorithm does not have any other stopping parameter.

5.1.2 Parallel DE
As mentioned in the chapter about parallel  genetic algorithms above, there are several  possible 

strategies how to parallelise an evolutionary algorithm. Various parallel models have been proposed 

(Cantú-Paz, 2000; Adamidis, 1998):

● objective function evaluation level (master-slave model), where only the evaluation of the 

objective function is parallelised,

● population  level (multi-population model, also called  island or migration model),

● elements level (called as cellular, diffusion or neighbourhood model).

The cellular model leads to fine-grained parallelisation while the other two lead to coarse-grained 

parallelisation.

In (Tasoulis et al., 2004), the authors present a coarse-grained approach. They employ the Parallel 

Virtual  Machine  (PVM)  framework,  which  de  facto  stands  for  a  standard  message  passing 

interface. It is and integrated set of software tools and libraries that encapsulate a general-purpose, 

flexible, heterogeneous concurrent computing framework on interconnected computers of varied 

architectures.  PVM  is  designed  to  link  computing  resources  and  to  provide  user  a  parallel 

platform for running his  computational  applications.  It  is  capable of harnessing the combined 

resources  of  typically  heterogeneous  networked  computing  platform to  deliver  high  levels  of 
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performance and functionality. Its key concept is that it makes a collection of computers to appear 

as one large virtual machine, hence its name Parallel Virtual Machine (Geist et al., 1994).

DE, like other evolutionary algorithms, can be very easily parallelised due to the fact that each member 

of the population is evaluated individually. The only phase of the algorithm that requires communication 

among individuals is reproduction. This phase can also be parallelised for pairs or quartets (depends 

on modification  of  DE)  of  individuals.  Authors  remind  that  there  are  two  strong  models  for 

parallelisation of evolutionary algorithms. The first employs fine-grained parallelism, in which each 

individual is assigned to a separate processor. However, this approach is problematic when the number 

of available processors is limited or when the computation of the fitness function requires information 

from the entire population.

The second model, that the authors of (Tasoulis et al., 2004) chose, maps a whole subpopulation 

to one CPU. Thus each subpopulation evolves independently toward a solution. This allows each 

subpopulation to develop its own solution independently without being influenced by a progress 

in  other  subpopulations.  To  promote  information  sharing,  the  best  individual  of  each 

subpopulation  is  injected  to  other  subpopulations  according  to  a  predefined  topology.  This 

operation is called migration (do not confuse with the term migration in SOMA). Authors propose 

a topology in which computing nodes form a ring, where individuals from each subpopulation are 

allowed to  migrate  to  the next  subpopulation  of  the ring.  This  concept  reduces  the  migration 

among subpopulations and also the number of messages exchanged among processors. Migration 

of  best  individuals  is  controlled  by the  migration  constant φ, φ ∈ <0,  1>.  At each  iteration, 

an uniformly distributed random number in the interval <0, 1> is chosen and compared with the 

migration  constant.  If  the  migration  constant  is  larger,  then  the  best  individual  of  each 

subpopulation migrate and take the place of a randomly selected individual (different from the 

best one) in the next subpopulation on the ring. Otherwise no migration is performed. 

A high level description of the algorithmic scheme follows:

At the master node:

 1. Spawn N subpopulations; each one on a different processor.

 2. For each generation:

 3. Receive an individual from each subpopulation.

 4. Determine for each individual if it  is going to migrate. Decision on migration is based 

on the φ parameter.
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 5. Perform migration of chosen best individuals to the next subpopulation on the ring.

 6. If  the  termination  criterion  for  the  objective  function  is  met,  send  a  stop  signal  to  all 

subpopulations.

At each subpopulation:

1. For each generation:

2. Perform a DE step.

3. Send the best individual to the master node.

4. Receive a migrated individual if such one exists and assign it to a random individual.

5. If a termination signal is received, terminate execution of the loop.

Authors also suggest a modification based on ageing of individuals. This would prevent individuals 

from surviving indefinitely and should improve robustness of the algorithm.

In the experimental  section,  the authors of (Tasoulis  et  al.,  2004) primarily  studied  impact  of  µ 

(mutation)  and  ρ (recombination)  constants.  Brief  analysis  of  the  influence  of  the  migration 

constant φ on the performance of parallelised DE showed that selecting an appropriate migration 

constant has a significant impact on the performance of the parallelised algorithm. It appears that 

setting φ close to zero or one leads to a substantial decrease in the algorithm efficiency. A superior 

performance is typically obtained for intermediate values of φ. Further, the paper (Tasoulis et al., 

2004) discuss the influence of  the  µ,  ρ and  φ parameters on the robustness of the algorithm. 

Unfortunately,  any deeper  investigation  of  dependency of  parallelised  DE performance on the 

migration parameter was not made. Presented values of speed-up were performed only for value 

of φ = 0.5 and showed rather low efficiency of described parallel DE implementation.

(Zahaire & Petcu, 2003) investigated a parallel implementation of the Differential evolution also 

based on the multi-population model. Their reasons for choosing this approach were inspired by 

existence  of  the  spatial  structure  in  the  natural  populations  and  ability  of  this  structure  of 

preserving the population diversity through the migration process.

To  avoid  difficulties  related  with  the  parameters  choice  of  parallelised  DE  mentioned 

in (Lampinen,  1999),  the author  propose  his  own adaptive  modification of  the  DE algorithm, 

in which they claim the parameter settings should not be a problem.

The  model  presented  in  (Zahaire  &  Petcu,  2003)  is  based  on  dividing  the  population  into  s 

–57–



subpopulations of the same size µ. On each subpopulation, an adaptive DE is executed for a fixed 

number τ of generations. Each DE corresponding to a subpopulation works with its own set of randomly 

initialized  adaptive  parameters.  After  each  τ generations,  a  migration  process  (based  on  random 

connection topology) is started. More specifically, the migration strategy follows this principle: each 

individual  from each subpopulation can be swapped (with a  given  migration probability pm)  with 

a randomly selected individual from a randomly selected subpopulation (including the subpopulation 

which contains the initial individual).

Due to the migration process, a subpopulation with a low diversity can be “revived” after the migration 

takes place. Hence the multi-population approach allows avoiding premature convergence situations 

in DE.  Zahaire and Petcu demonstrated this by numerical results obtained for several benchmark 

test functions. They simulated a random topology between the processes of a parallel code on PC 

cluster with eight Pentium 4 1500 MHz with 256 MiB RAM interconnected via a Myrinet switch 

and optical fibre cables ensuring a transmission of 2Gbps. 

Besides  the  random  topology,  the  authors  examined  the  ring  topology  with  connections 

established in a random manner each time a migration took place. Various migration strategies 

were implemented and their influence on the process of evolution was studied. The following one 

can serve as an example:

The user can decide if the subpopulation will be treated in one or more processes. One processor 

of the cluster system can treat one or more processes. A random communication topology is used 

in  the  migration  process.  An individual  is  moved  with  respect  to  user  defined  probability  in 

a random  position  of  randomly  selected  population.  In  the  selected  position  being  occupied 

by another individual, the later one migrates to the former position of the incoming individual. 

If the destination subpopulation is  treated by the same process,  it  suffices a  simple exchange. 

Otherwise,  the  individual  is  gathered  in  a  message  buffer   together  with  the  others  willing 

to migrate  from the  current  process.  This  message buffer  is  sent  to  all  other  processes  which 

extract  data  corresponding to  the incoming individuals  and send back the  data  corresponding 

to the individuals  being replaced. The algorithm stops when one of subpopulation satisfies the 

termination condition.

Authors conclude that the parallel execution on the cluster is able to speed-up the DE algorithm 

significantly and the global optimum is found with a higher probability even if there exist many 

similar sub-optimal solutions.  Improvements in convergence were obtained even by sequential 

implementation due to the ability of the migration process to preserve the population diversity and 
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thus to avoid premature convergence. Efficiency of the described implementation of parallelised 

adaptive DE algorithm varies between 85% and 100%, depending on size of the population and 

used objective function.

5.2 Self-Organising Migrating Algorithm
Recently, group of evolutionary algorithms welcomed a new brave member – the Self-Organising 

Migration  Algorithm  -  SOMA  (Zelinka,  2002;  Zelinka,  2004).  It  is  very  modern  optimisation 

algorithm, which in most cases of test function benchmarks and also real-world optimisation tasks 

outperforms  all  other  evolutionary-based  optimisation  techniques.  Successful  applications  like 

active compensation of disturbing signals on a Langmuir probe measuring properties of RF-driven 

plasmas  (Zelinka,  2004;  Nolle  et  al.,  2005),  symbolic  regression (Zelinka & Oplatková,  2005), 

a robot's trajectory optimisation (Oplatková & Zelinka, 2006), real-time deterministic chaos control 

(Zelinka,  2006),  neural  network  synthesis  (Zelinka  &  Volná,  2005),  combustion  engine 

optimisation,  relay node placement in energy-constrained networks (Červenka & Zelinka,  2006) 

or aerodynamic optimisation of wing geometry (last three examples are thoroughly described in the 

Applications chapter) proved very high performance of this algorithm and predetermine SOMA to 

be employed in the most difficult assignments where the conventional optimisation methods cannot 

be used or other algorithms fail.

SOMA is based on the competitive-cooperative behaviour of intelligent creatures solving a common 

problem. Such behaviour of intelligent creatures can be observed anywhere in the world. A group 

of wolves or other predators may be a good example. If they are looking for food, they usually 

cooperate and compete so that if one member of the group is more successful than the previous best 

one (e.g. has found more food) then all members change their trajectories towards the new most 

successful member. It is repeated until all members meet at one food source. In SOMA, wolves are 

replaced  by individuals.  They ‘live’ in  the  optimized  model’s  hyperspace,  looking  for  the  best 

solution. It can be said, that this kind of behaviour of intelligent individuals allows SOMA to realize 

very successful searches.

5.2.1 Serial SOMA
Because SOMA uses the philosophy of competition and cooperation, the variants of SOMA are 

called strategies. They differ in the way how the individuals affect the others. The basic strategy is 

called 'AllToOne' and consists of the following steps:

 1 Definition of parameters. Before starting the algorithm, the SOMA parameters (popSize, 

Dim, PathLength, Step, PRT, Migrations, MinDiv) has to be defined. The user must also 
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create the specimen and the cost function that will be optimized. Cost function is a wrapper 

for the real model and must return a scalar value, which is used as a gauge of the position 

fitness.

 2 Creating a population. New population with PopSize individuals is randomly generated.

 3 Migration loop:

 3.1 Each individual is evaluated by a cost function and the leader (individual with the best 

fitness) is chosen for the current migration loop.

 3.2 All individuals except the leader perform their run towards the leader. The movement 

consists of jumps determined by the Step parameter until the individual reaches the final 

position  given  by  the  PathLength  parameter.  For  each  step  of  the  individual,  the 

PRTVector is recreated, the cost function for the actual position is evaluated and the best 

value is saved. Then, the individual returns to the position, where it found the best cost 

value on its trajectory.

 3.3 New leader is chosen.

 4 Termination conditions test. If the difference in cost values between leader and the worst 

individual is lower than value of the MinDiv parameter or the maximum of migration loops 

has  been  reached,  the  run  of  SOMA is  terminated  and  the  best  position  (the  best  set 

of parameters) is returned. In other case, the algorithm continues in step 3.

To  get  more  information  about  this  powerful  evolutionary algorithm,  please  visit  the  SOMA's 

homepage at http://www.fai.utb.cz/people/zelinka/soma/.

5.2.2 Parallel SOMA
Inspired by models of evolutionary algorithms parallelisation summarized by Eric Cantú-Paz in his 

book  (Cantú-Paz,  2000),  considering  implementation  of  already  parallelised  genetic  and 

evolutionary  algorithms,  avoiding  dead  ends,  including  promising  ideas  and  regarding  our 

possibilities of employing parallel applications and taming CPU power in our university labs and 

classrooms,  it  appears  that  four  feasible  models  parallelising  the  SOMA  algorithm  can  be 

implemented. 

Parallelisation at the objective function level (evolutionary algorithm running in one master process, 

evaluation of the objective function is migrated to subordinate processors) is not discussed here due 

to its high communication costs resulting in low efficiency.
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Synchronous island model

This  approach suits  parallel  SOMA running in  the  above described  cluster  platform very well. 

At each  computation  node,  randomly  initialized  subpopulation  are  created  according 

to configuration given by the master node (server). A node performs one SOMA migration (do not 

confuse with migration of individuals in parallel DE) and sends local leader to the server. After 

a migration loop is done on all terminals, server compares cost values of all received local leaders 

and chooses  a  global  leader.  This  leader  is  then sent  back to  terminals  and replaces  the worst 

individual  in  local  populations.  This  process  is  repeated  until  the  termination  conditions  are 

satisfied.

As you can guess, the bottleneck of this implementation is the synchronism. A lot of CPU time 

of more powerful workstations is wasted by waiting for slow terminals to finish their migration 

loop. Due to heavy losses in computational performance, this approach was replaced by the next 

model. Nevertheless, only this parallelisation of SOMA could be fully compared to the simple serial 

version. As mentioned before, parallelisation can emerge higher robustness and performance to the 

world of evolutionary algorithms. If one want to compare evolutionary performance of serial and 

parallel version of the algorithm, this model of parallelisation must be used.

Asynchronous island model 

To avoid time delays in the former parallelisation approach, synchronism of sharing and selecting 

the best individual was removed. After a terminal finishes its migration loop, local leader is sent 

to the server. Task of the master node is to maintain a global leader – every time it receives a leader 

from a  subordinated node, it compares its cost value with the value of global leader and stores the 

better one. Consequently, the global leader is passed back to the terminal node where next migration 

loop is started. Again, this process is repeated until the stop conditions are fulfilled.

This parallelisation approach is also used outside the cluster platform. There was a need to use 

parallel SOMA on the Matlab and Mathematica platforms, but the cluster platform accepts only 

objective functions implemented in Java. Therefore a simple message passing interface enabling 

sharing a  global  leader  among subpopulations  was created (MPI,  UDPOptCluster).  The SOMA 

algorithm itself is implemented in the languages of Matlab and Mathematica and instantion of the 

UDPOptCluster Java extension is created before SOMA is started. In SOMA, after migration of all 

individuals  is  finished  and  a  local  leader  determined,  it  is  passed  via  the  MPI  to  all  other 

subpopulations. Then, a global leader is picked up from a local message box and next migration 

loop can follow. After the termination conditions are met,  a message is  sent to all  other nodes 

to stop. Flow diagram of this process can be seen in Figure 5-1.
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Usage of the UDPOptCluster extension for sharing a leader among subpopulations is limited only 

to local  network  as  UDP  packets  (UDP  multicasts  are  employed  to  deliver  a  leader  to  all 

participating computers) are not forwarded by routers present in the network. It means that this 

approach can be used only by limited number of computers. 

Figure 5-1: Diagram of integration UDPOptCluster into SOMA implemented in Matlab or 
Mathematica and its communication with other terminals. 

Originally,  the  UDPOptCluster  was  implemented  only  as  a  helper  when  limited  number 

of computers  was  needed  to  perform  some  optimisation  tasks.  Later,  when  experiments  with 

openMosix (http://www.openmosix.org) and Mathematica were undertaken, UDPOptCluster served 

as a simple and useful MPI.

Asynchronous hybrid island - global population model

This approach combines a global population whose parts live on separate islands for some period 

of time.  At  the  beginning  of  somalisation (optimisation  using  SOMA),  a  global  population  is 

created and randomly initialised. According to the number of available terminals, the population is 

divided into subpopulations by random selection of individuals (a portion of individuals is saved 
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aside to create a 'buffer' of not assigned individuals). These subpopulations are further distributed 

to subordinated  processors.  After  a  migration  loop  (or  loops,  there  may be  more  than  one)  is 

performed, local population is sent back to the server where individuals are stored into their former 

positions in the global population. Then, another subpopulation of not used individuals (individuals 

that are not  currently processed) is  randomly assembled  and the process is  repeated.  A surfeit 

of individuals ensures mixing of individuals when there is only one batch of not used individuals 

in the global population (otherwise identical subpopulation would be returned back to terminal).

Cellular model

The  most  advanced  approach is  the  cellular  model  (also  called  as  neighbourhood  or  diffusion 

model). Terminals of the cluster platform can create a virtual network – a grid, which is used for 

parallelisation  of  the  SOMA  algorithm.  Information  about  position  of  a  leader  is  passed 

asynchronously and not to all subpopulations at once.

Information  about  the  position  of  the  leader  is  spread  over  other  terminals  in  steps,  which  is 

displayed in Figure 5-2. After a migration loop is finished (for example at the terminal in the middle 

marked with 0), local leader is passed to four neighbouring terminals (marked with 1) in the first 

step. After they finish their own migration, they compare the received leader to the local one. If the 

received leader is better than the local leader, it is adopted and replaces the worst individual in the 

population. Further, after next migration is done and in case the adopted leader still remains the best 

one in the population, it is passed again to neighbouring nodes in the second step (marked with 2). 

This communication strategy ensures that SOMA does not handle a single local solution, which 

results in more exhaustive exploration of the model hyperspace.

Figure 5-2: Spreading of information in virtual network of terminals. Influence of a 'good' leader 
extends in steps across the entire grid.
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Information about local leader is not sent only to terminals in the neighbourhood but also directly 

to the  server.  Server  continuously  collects  incoming  candidate  solutions  and  decides  about 

termination of the search process. Normally, the stop condition in SOMA is based on comparison 

of the distance between the best and the worst individual. Here, as we cannot access all individuals 

to find the worse one, we do it in a different way: if there has not been observed any change in cost 

value of incoming leaders for some time, it  could indicate that the optimisation process stopped 

in global (or local) extreme and is not going to continue. Then the termination condition is satisfied 

and we can stop the search process. The second option is to stop somalisation after given number 

of migration loops. As the master process knows how many terminals participate on the task, it can 

compute number of accomplished migration loops of the number of received leaders divided by the 

number of active processors.

5.2.3 Parallel SOMA performance
Parallelised SOMA was tested on teaching of a neural network. Described network configuration 

and training set were chosen only for this efficiency tests,  they have no other meaning. SOMA 

configuration was: step = 0.11, pathLength = 3, prt = 0.3, minDiv = 0, migrations = 400. Number 

of modified neuron-wages = 315, population size = dim*2 = 630 individuals.  The network had 

4 layers with 3 neurons in the input layer, two hidden layers, 15 neurons each, and 3 neurons in the 

output layer. Linear transfer function was used in all neurons. The teaching set had 21 input and 

21 output vectors and its structure can be seen in  Table 5-1. Teaching process on single computer 

using SOMA lasted about 82 minutes (this test was executed on a workstation with configuration B 

(see the list of computers below)). Output listing of the teaching procedure can be seen in the same 

figure in the right column.

Regarding the time reduction of optimisation using SOMA, our parallel  implementation proved 

very high performance and efficiency. Performance tests were executed on following computers:

Server:

●  CPU AMD Athlon XP 1800+, 768 MiB RAM. 

Server did not perform any somalisation tasks, it only controlled the search process.

Workstations:

● 4 x Intel P4 2000 MHz, 256 MiB RAM (A)

● 8 x Intel P4 1800 MHz, 256 MiB RAM (B)
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Table 5-1: Training set for neural network and its real output used as a time-demanding objective  
function example for the process of somalisation

Computers  were  interconnected  by the  100BASE-TX LAN.  As  there  were  two  different  types 

of processors, they were added into the cluster in order to obtain linear increase in computation 

power.  It means  that  for  4  CPUs  we  employed  processors  ABBB,  for  8  CPUs  processors 

AAABBBBB and finally, for 10 CPUs we used processors in the AAABBBBBBB configuration. 

Tests  for  every  cluster  configuration  were  executed  10  times,   average  efficiency  of  tested 

parallelisation strategies running on various cluster configurations can be seen in Table 5-2.

Synchronous and asynchronous island models and cellular model were tested using the author's Java 

cluster platform with neural network as an objective function. As the time constants were set very 

low, maximal time losses caused by the platform were limited to 4 seconds. 

For  UDPOptCluster  MPI  experiment,  manually  executed  Matlab  with  SOMA  calling  the 

“Glauert2_cf”  cost  function  (see  the  “Aerodynamic  optimisation  of  wing  geometry”  chapter 

in Applications below) were used. SOMA configuration was: step = 0.11, pathLength = 2.4, prt = 

0.1,  minDiv = 0, migrations = 45,  population size = dim*4 = 60 individuals.  35.8 minutes are 

normally required to perform this optimisation task on a computer in configuration A.
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INPUTS REQUESTED OUTPUTS Neural network OUTPUTS
Input 1 Input 2 Input 3 Output 1 Output 2 Output 3 Output 1 Output 2 Output 3
-1,00 -1,00 -1,00 -1,00 -1,00 -1,00 -1,00 -1,00 -1,00
-0,90 -0,90 -0,90 -0,90 -0,90 -0,90 -0,90 -0,90 -0,90
-0,80 -0,80 -0,80 -0,80 -0,80 -0,80 -0,80 -0,80 -0,80
-0,70 -0,70 -0,70 -0,70 -0,70 -0,70 -0,70 -0,70 -0,70
-0,60 -0,60 -0,60 -0,60 -0,60 -0,60 -0,60 -0,60 -0,60
-0,50 -0,50 -0,50 -0,50 -0,50 -0,50 -0,50 -0,50 -0,50
-0,40 -0,40 -0,40 -0,40 -0,40 -0,40 -0,40 -0,40 -0,40
-0,30 -0,30 -0,30 -0,30 -0,30 -0,30 -0,30 -0,30 -0,30
-0,20 -0,20 -0,20 -0,20 -0,20 -0,20 -0,20 -0,20 -0,20
-0,10 -0,10 -0,10 -0,10 -0,10 -0,10 -0,10 -0,10 -0,10
0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10
0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20
0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30
0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40
0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50
0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60
0,70 0,70 0,70 0,70 0,70 0,70 0,70 0,70 0,70
0,80 0,80 0,80 0,80 0,80 0,80 0,80 0,80 0,80
0,90 0,90 0,90 0,90 0,90 0,90 0,90 0,90 0,90
1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00



Table 5-2: Overview of parallel SOMA test results

Figure 5-3: Performance comparison of various parallelisation models
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Synchronous island model
Serial SOMA Parallel SOMA

Number of processors 1 4 8 10 12
Average processing time  [s] 4920 1278 659 535 449

Ideal processing time [s] 4920 1230 615 492 410
Time loss [s] 0 48 44 43 39
Efficiency [%] 100,00 96,24 93,32 91,96 91,31

Asynchronous island model
Serial SOMA Parallel SOMA

Number of processors 1 4 8 10 12
Average processing time  [s] 4920 1251 634 512 429

Ideal processing time [s] 4920 1230 615 492 410
Time loss [s] 0 21 19 20 19
Efficiency [%] 100,00 98,32 97,00 96,09 95,57

Cellular model
Serial SOMA Parallel SOMA

Number of processors 1 4 8 10 12
Average processing time  [s] 4920 1236 621 499 418

Ideal processing time [s] 4920 1230 615 492 410
Time loss [s] 0 6 6 7 8
Efficiency [%] 100,00 99,51 99,03 98,60 98,09

UDPOptCluster
Serial SOMA Parallel SOMA

Number of processors 1 4 8 10 12
Average processing time  [s] 2310 595 307 250 209

Ideal processing time [s] 2310 578 289 231 193
Time loss [s] 0 18 18 19 17
Efficiency [%] 100,00 97,06 94,06 92,40 92,11
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As we can see from Table 5-2, the drop in efficiency is mostly caused by almost constant time-loss. 

This (especially visible at the cellular model) might be influenced by the overall cluster platform 

efficiency. As it was expected, the synchronous island model showed relatively low productivity, 

which has been significantly increased in its asynchronous alternative. Very promising is the cellular 

model; its efficiency is on the edge of the cluster framework efficiency. On the other hand, we must 

admit that the UDPOptCluster approach was a little less efficient than we expected, but considering 

the fact that it is just an ad-hoc instant cluster substituting a real parallel machine, it showed rather 

decent performance. However, it is good to remind that these simulation test were performed under 

almost  ideal  conditions.  In  real  deployment  situation,  the  efficiency  will  be  definitely  lower, 

decreased  by  disturbances  like  students  rebooting  or  turning  off  computers  used  as  terminals 

or other accidents happening in computer networks every day.

5.3 Chapter Summary
In this chapter two modern and very powerful evolutionary algorithms, the Differential Evolution 

(DE) and the Self-Organising Migrating Algorithm (SOMA), are presented. In the first section, the 

principle of Differential Evolution (DE) and its parallelisation strategies are described. The second 

section concerns with the parallel SOMA implementation. Four parallelisation strategies inspired 

by approaches  used  in  parallel  DE  and  other  parallel  genetic/evolutionary  algorithms  are 

exhaustively analysed and results of benchmark tests are provided (see Table 5-2 and Figure 5-3). 

Based  on  the  obtained  results,  we  can  claim,  that  the  Cellular  model  is  the  most  efficient 

parallelisation strategy of the SOMA algorithm.

Search for any algorithmic improvements of SOMA brought by parallelisation was not successful. 

All investigated modifications of SOMA with the aim to increase its robustness or performance 

failed. This opens a question: Might the current design of SOMA be the most optimal one?
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6 APPLICATIONS
This chapter thoroughly describes  three realized applications  of  SOMA algorithm. Organisation 

of all section is as follows: First, the used theory is introduced, then an existing reference example is 

analysed (if available) and finally, the particular solution to given problem is presented.

6.1 Combustion engine optimization
Optimisation  of  a  modern  four-cylinder  engine  was  an  application  where  parallel  SOMA 

demonstrated its high performance for the first time. This project was accomplished in cooperation 

with  Department  of  Electric  and  Electronic  Engineering  (DEEE)  at  Strathclyde  University 

in Glasgow, UK.

Model of the engine was created by Simon Flint for his dissertation (Flint, 2004) as a model of 

a real engine in cooperation with the Visteon company (see Figure 6-1). The author's primary aim 

of making this model was the application of twin independent variable camshaft timing (TIVCT) 

to the engine. Because this model covers the entire engine, it was also used at DEEE for controller 

design for valves, cams and other engine equipment. 

Figure 6-1: TIVCT engine installation in Visteon

The  optimisation  task  was  to  minimise  three  output  values  by  modification  of  input  values 

for certain number of set point combinations of other two input values. Specifically, the input values 

were:

● MAP – manifold pressure (optimised),

● IV – inlet valve timing (optimised),

● EV – exhaust valve timing (optimised),
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● SA – spark advance (optimised),

● RPM – revolutions per minute (set point),

● TQ - torque (set point).

Set of output values which had to be minimised was:

● BSFC – break specific fuel consumption,

● BSNOx – break specific NOx,

● TQError = (current TQ – desired TQ) – deviation from the desired torque.

The optimised model was created in Matlab Simulink, consisting of neural-networks, fuzzy blocks 

and lookup tables. A first level of block schema can be seen in Figure 6-3. Computation of the cost 

function was done using

costValue = abs BSNOx⋅35absBSFC abs TQError⋅100060−INdegEXdeg⋅2pen ,

where INdeg and EXdeg are positions of inlet and exhaust valves and pen stands for penalisation, 

which was applied when the model output values of TQ and/or BSFC were (surprisingly) negative.

Figure 6-2: Block encapsulating model of the optimised engine and representing an interface 
between SOMA and the model

As mentioned above,  optimal  input  values were searched for combination of RPM and TQ set 

points.  RPM values  were  in  a  range  from 500 to  6000/min,  torque  between 10  and 120 Nm. 

An example of set points, found input values and corresponding outputs can be seen in Table 6-1.
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Figure 6-3: Block schema of the optimised engine
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Table 6-1: Output of the engine optimisation process
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RPM Torque MAP IV EV SpAdv CostValue BSNOx BSFC Tqerror
500 10 12,1888 20,1688 46,2981 45,5170 246,8691 -2,1102 0,5793 0,0004
500 20 12,0884 24,1299 42,1244 46,6889 156,0896 -0,0024 0,0005 0,0000
500 30 12,0949 36,5190 42,1288 59,9361 172,9437 1,0944 2,7485 0,0026
500 40 26,2241 49,4581 48,3869 -3,7326 240,1321 3,4634 0,7497 0,0015
500 50 26,0733 49,8631 44,5849 -0,9131 251,1632 3,9715 1,2059 0,0020
500 60 26,1523 49,8146 39,2663 1,1032 268,1833 4,7665 2,2918 -0,0003
500 70 26,3406 49,5339 32,5074 2,7908 293,9875 5,9224 0,7270 0,0000
500 80 26,7177 49,9297 34,5595 9,5090 331,4693 6,7618 5,4677 -0,0009
500 90 27,5408 49,4967 20,1155 12,0051 372,2903 9,4926 2,1376 2,2946
500 100 29,3945 49,5294 23,2436 16,8318 424,0615 11,0167 12,5407 2,4463
500 110 29,5251 41,1297 23,2335 14,4847 505,1512 12,0200 0,1709 0,0002
500 120 26,4801 28,4863 20,7871 21,1926 3684,9902 15,6619 216,7096 -20,7176

1000 10 12,2488 20,1408 47,2222 44,2162 180,0141 -0,1484 1,2612 -0,0003
1000 20 12,2382 30,9918 47,5156 50,2636 155,2721 0,0589 0,1291 0,0000
1000 30 28,1479 46,9693 46,8612 -9,3026 232,7321 3,0121 0,3172 -0,0001
1000 40 27,3354 49,9627 46,6416 -4,5161 231,8721 3,3268 1,7913 -0,0300
1000 50 27,5820 47,3744 43,4613 -3,2523 252,2918 3,9781 0,4432 -0,0007
1000 60 27,5108 49,9451 37,5271 -0,7858 270,4861 4,8937 0,2816 -0,0038
1000 70 27,3602 49,8423 38,5068 4,4365 297,1102 5,6631 0,5309 0,0052
1000 80 27,4812 49,3997 20,0497 7,6334 328,0391 8,9059 17,8115 7,4478
1000 90 28,2360 49,4195 28,5105 9,4624 372,9062 8,3505 6,2340 0,0541
1000 100 29,3730 49,7832 24,8585 12,7069 417,9270 10,4588 13,8034 2,4483
1000 110 29,5266 40,8831 21,5395 11,4348 509,2096 12,1202 3,8509 0,0060
1000 120 29,5299 25,8802 20,0163 17,2928 787,6198 16,8411 89,8944 0,0000
1500 10 12,0240 21,4523 49,8313 45,0762 229,4324 1,4376 3,2905 0,0019
1500 20 12,0373 35,7789 47,8893 53,6662 238,3804 2,6816 0,2006 0,0010
1500 30 29,0190 48,1777 49,1947 -8,4678 216,1141 2,6518 1,2077 -0,0004
1500 40 28,8243 49,9044 45,6979 -6,0843 223,2676 3,1163 3,3876 -0,1916
1500 50 29,0846 49,5542 41,5629 -4,8110 238,8258 3,8315 0,3059 0,0032
1500 60 29,2317 49,2013 36,3140 -3,6610 262,3410 4,8260 4,1808 0,0023
1500 70 28,8331 49,7221 38,2962 1,5571 290,5440 5,4898 1,0760 0,0002
1500 80 29,1182 49,4216 33,4735 3,2242 325,3320 6,6532 2,0766 -0,0359
1500 90 29,4487 48,9724 28,0296 5,0887 359,6934 8,0343 1,1349 0,0067
1500 100 29,4805 48,2777 23,8334 9,0630 432,6704 9,7019 21,4747 -0,0068
1500 110 29,5116 34,0558 20,2633 9,9772 529,8172 14,6644 24,8498 5,5274
1500 120 29,5299 21,1603 20,1707 11,3552 682,8903 15,3465 27,5995 -0,0001
2000 10 25,7217 49,4614 48,7244 -9,9442 366,8758 0,6724 222,1708 0,0075
2000 20 28,9986 49,8778 49,9802 -9,9072 255,8419 1,8291 69,3322 0,0024
2000 30 29,1847 49,9874 49,5550 -7,6043 244,3468 2,2913 45,0363 0,0003
2000 40 29,4839 49,6395 46,0361 -6,4386 253,0077 2,7976 41,2504 0,0009
2000 50 29,5294 48,0556 49,0982 -3,1174 255,6044 3,4344 11,5742 0,0000
2000 60 29,4378 47,9684 47,9660 -0,2261 278,6599 4,2312 10,3137 0,0003
2000 70 29,4562 48,9305 46,3120 3,1576 308,9284 5,2858 8,3849 0,0107



6.2 Relay node placement in energy-constrained networks
Due to the fast progress in electronics and electromechanics, wireless networks based on a large 

number of inexpensive miniature devices with sensing, computing and communication capability 

are comming to everyday life. 

One possible application of these networks is a weather monitoring sensor array spread over a large 

geographic area.  Data generated from all  points  of the sensor field is  gathered using multi-hop 

communication to a base station for further processing.

The weak point  of  this  network  is  the  limited  power  source  capacity of  single  nodes  that  are 

powered  by  batteries.  A number  of  papers  has  already  been  concerned  with  optimal  sensor 

placement  (Dasgupta,  Kukreja  &  Kalpakis,  2003),  energy  efficient  routing  designs  (Chu, 

Haussecker & Zhao, 2002; Krishnamachari  & Ordóñez,  2003) and protocols with the objective 

of maximizing lifetime (Bhardwaj & Chandrakasan, 2002) or amount of transmitted data.

The aim of this work was to develop a method for finding optimal positions for a certain number 

of relay nodes  to  maximise  the  network  lifetime.  To  reach  this,  the  Self-Organizing  Migration 

Algorithm (SOMA) was used on message routing models described in (Falck et al., 2004; Floréen 

et al., 2005). 

This  project  was  based  on  cooperation  with  the  Laboratory  for  Theoretical  Computer  Science 

at Helsinki University of Technology, Helsinki, Finland.

6.2.1 Network model and balanced data gathering as a flow LP
The authors of (Falck et al., 2004) consider a network consisting of n sensor nodes, m relay nodes 

and a base station, all with predetermined locations except the relay nodes whose locations may be 

changed. The set of all nodes is denoted as V = B ∪ S ∪ R, where B, S and R represent the sets 

consisting of the base station node, sensors and relays.

Each node i∈V has an initial energy supply of ei units. The sink node is handled as a special case 

with ei=∞. The mission of the network is to gather data generated at the sensor (source) nodes to the 

base station (sink) node under their energy constraints during the desired operation time T.

It is assumed that the sensors generate data asynchronously and in such small unit packets that the 

process can be modelled by assigning an offered data rate parameter si, i ∈ S, to each sensor node. 

The energy cost of  forwarding a unit of data from node i to node j is given by a parameter dij and 

the cost of receiving a unit of data is given by a parameter c. It is also assumed that the transmission 

rates are low enough, so that collisions and signal interferences can be ignored in the model.
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The model places no restriction on the values of the parameters  dij and  c. In the commonly used 

simple radio-link, models  dij would be taken to be proportional to  ct + Dij
α, where  ct corresponds 

to the energy consumed by the transmitter electronics and Dij
α corresponds to the energy consumed 

by the transmit amplifier to achieve an acceptable signal-to-noise ratio at the receiving node. Dij is 

the physical distance between nodes  i  and  j and the exponent  α∈<2, 4> models the decay of the 

radio signal in the ambient medium. The cost c corresponds to the energy consumed by the receiver 

electronics.

A flow variable fij indicates the rate of data forwarded from node i to node j, the energy constraints 

in  the network can be expressed as  ∑ j d ij f ij∑ j c f ji⋅Tei for  all   i∈V.  Because of  the 

energy constraints in the network, the sensors cannot usually achieve their full offered data rates 

productively. Therefore variable ri indicates the actual achieved data rate at each sensor. One goal 

of the  data  flow design  for  the  network  is  to  maximise  the  total,  or  equivalently,  the  average 

achieved data rate 1 /n∑i∈S
r i . However, taking this as the singular objective might lead to the 

“starvation” of some sensor nodes. Typically, the average data rate objective is maximised by data 

flows that only forward data generated close to the sink and do not allocate any energy towards 

relaying data generated at distant parts of the network.

To counterbalance this tendency, there is a  minimum achieved rate variable  l, with the constraint 

ri > l for all i∈S, which is to be maximised simultaneously with the average data rate. The trade-off 

between these two conflicting objectives is determined by a parameter λ, , where value λ=0 gives 

all  weight to the average achieved rate objective and value  λ=1 to the minimum achieved rate 

objective. The combined objective Fλ is called the balanced data rate or balanced rate.

Different sensors may submit different types of data.  At each unit  of  time, the average amount 

of data transmitted from one sensor might be one bit and from another sensor ten bits; however, the 

one bit may be equally valuable for the application as the other sensor's ten bits. As a generalisation, 

weights  wi are assigned to  the data  rates from different  sensors  according to  their  importance. 

A natural choice is wi = 1/si, which normalises the data rates of all sensors to the interval [0, 1] and 

expresses the idea that an equal proportion of each sensor's offered data should be transmitted. 

For simplicity,  this  model  uses  equal  offered  data  rates  and  equal  weights  for  all  types 

of communication.

The variable fij models the flow of data from i to j. Variable qi models the quantity of data generated 

at source i and ultimately received at the sink. Described model can be formulated as the following 
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linear program, which can then be solved using standard techniques.

Maximise F := 1−
1
n∑i∈S

wi ri l

F := 1−avg
i∈S

q imin
i∈S

qi   (1)

subject to ∑
j∈V

f 1j = 0

∑
j∈V

f ij = r i∑
j∈V

f ji i∈S

∑
j∈V

f ij =∑
j∈V

f ji i∈R

∑
j∈V

Td ij f ij∑
j∈V

Tcf jiei i∈V

risi i∈S
wi ril i∈S
f ij0 i , j∈V
f ii=0 i∈S

A flow matrix fij, obtained as a solution of this linear program, can be used to route approximately ri 

unit-size data packets from each source node i in S to the sink node 1, assuming that all the ri and fij 

values are large. At each node k, simply forward the first [fk1] packets to node 1 (the sink), the next 

[fk2] packets to node 2, the next [fk3] packets to node 3 and so on. A little more elegant solution is 

to randomise the routing strategy so that each incoming packet at node i is forwarded to node j with 

probability f ij /∑k
f ik .

6.2.2 The effect of relay nodes
The performance of the sensor network can be improved by augmenting the network by a number 

of auxiliary relay nodes.  Unlike  sensor,  whose  locations  are  assumed to  be  predetermined,  the 

locations of the relay nodes may be chosen to optimise the network performance. The relay nodes 

do not generate data themselves, they are entirely oriented on forwarding data to other nodes in the 

network. Relay nodes are supposed to be powered by stronger energy source than sensor nodes.

Grid and incremental relay node placement methods

In the case of a square area covered by sensor nodes, a straightforward method to place m = k2 relay 

nodes is to position them in a regular k x k grid inside the square.

The authors of (Falck et al., 2004) suggest other solution to the relay node placement problem. Their 

algorithm performs a multidimensional search in the following manner. Given a starting point  y, 

a suitable direction  d is first determined and then the flow problem is optimised in this direction 
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by performing a line search. Thereafter, a new direction d' is chosen and, again, the flow problem is 

optimised starting from the previous optimum in the direction  d'.  The process is  repeated until 

a good solution is found, or the algorithm converges to a (possibly) local optimum. The starting 

point y1 is chosen as the centre of mass of the offered data rates si and achieved data rates ri.

The idea is to place a new relay node initially in a region of the network where the achieved data 

rates  ri are small compared to the offered rates  si. It is reasonable to think that the ideal location 

of the node would be, at least with high probability, somewhere between this region and the sink. 

Therefore  the  first  search  line  is  chosen  in  direction  of  the  sink  node.  This  idea  is  extended 

to determine the remaining search directions as the algorithm proceeds. The search directions are 

chosen  pairwise:  in  the  direction  of  the  sink  node  and  orthogonal  to  it.  Line  searches  can, 

in principle,  be  performed  by  almost  any  standard  one-dimensional  search  method,  the  main 

limiting factors are the complexity and possible roughness of the objective function Fλ.

Relay node placement using SOMA

Relay node placement represents an optimisation problem which suits SOMA very well.  The model 

described above handles with an objective function (1), which represents a counterbalance between 

two objectives – to maximise the average quantity of data  and also to maximise the minimum 

quantity of data gathered from the network.

In this optimization task, the modified parameters of the model are the positions of relay nodes 

within the area covered by sensor nodes, which means that we search for relay nodes coordinates. 

Therefore, the structure of SOMA’s individual is defined as:

individual i = {x1 , x2 ,.... , xn , y1 , y2 , .... , yn ,} , i∈〈1, popSize〉 ,

where n is number of relay nodes and popSize the number of individuals in population.

The cost function for SOMA returns negative value of the Fλ objective function (negative because 

SOMA is searching for minimal value of the cost function but the objective function should be 

maximised).

For both simulation experiments, the network settings were as follows. Sensor nodes were placed 

in a square area with the length of the edge 1 km. The sink was located at the centre of the southern 

side. While sensor nodes had energy of 20 J, the relay energy constraint was set to 2000 J. These 

settings are equal to those used in (Falck et al., 2004). All simulations were performed with the 

balancing factor λ set to 0.5.

The aim of the first test was to compare and contrast the results of relay node placement to a regular 
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grid of sensors (see  Figure 6-4) provided by SOMA versus results generated by the incremental 

relay node placement algorithm presented in (Falck et al., 2004). In fact, this step was aimed more 

on verification of the correctness of node placement by SOMA and to confirm the conjecture that 

value of the objective function of regular grid network might  depend on the amount  of energy 

brought into network with the relay nodes linearly. 

3 relay nodes 4 relay nodes

6 relay nodes 8 relay nodes

Figure  6-4: Examples of  relay node placement experiments to a regular grid of  sensors.  Gray  
circles represent sensor nodes, small red squares are relay nodes and the large grey node at the  
south side of the area is a sink where all data is collected

As you can see in Figure 6-5, SOMA provided slightly better results than the incremental relay node 

placement algorithm presented in (Falck et al., 2004). Variances among positions of relay nodes 

seem  to  be  based  more  on  influence  of  rounding  errors  than  on  differences  in  algorithmic 

performance. Since solving this task using SOMA was rather demanding and at that time there were 

–76–



no spare computers exploitable for parallel computations, experiments were performed only up to 6 

relay nodes. 

Figure 6-5: Balanced data rate F0.5 as a function of the number of relay nodes. Results for array 

with 100 source nodes placed in regular grid 10x10 without any obstacles in the landscape 

In the second experiment, the relay node placement by SOMA on network of 36 randomly placed 

sensor nodes was tested. To make this task a little more complicated, two obstacles were placed 

into the landscape. While the first type of obstacle represents a building - an impenetrable obstacle 

for signal, the second one is a lake, which the radio transmission can overcome.  No node can be 

placed into both types of obstacles.

Simulation results for varied number of relay nodes (from 0 up to 10 relays) can be seen in  Figure

6-6.  On the  top  of  every network schema,  you can see components  avg(qi) and  min(qi) of  the 

balanced data rate Fλ objective function. The aim was to maximise both these components.

Figure  6-7 shows values  of  the objective  function  for  experiments  with  1  to  10 nodes.  Found 

positions do not have to be the true optimal ones, but we can say that this is the best  solution 

for used  SOMA settings  and  number  of  iterations.  Although  SOMA appears  to  be  very robust 

algorithm, it can happen that the process of searching for global extreme can stop in a local solution.

–77–

0 1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

45

SOMA
Incremental relay 
node placement 
algorithm

Number of relay nodes

V
al

ue
 o

f o
bj

ec
tiv

e 
fu

nc
tio

n



0 relay nodes 1 relay node

2 relay nodes 3 relay nodes

4 relay nodes 5 relay nodes

–78–



6 relay nodes 7 relay nodes

8 relay nodes 9 relay nodes

10 relay nodes

Figure 6-6: Examples of relay node placement experiments on a network with 36 randomly placed 
sensor nodes. Gray circles represent sensor nodes, small red squares are relay nodes and the large 
grey node at the south side of the area is a sink where all data is collected.
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Figure 6-7: Balanced data rate F0.5 as a function of the number of relay nodes. Results for array  
with 36 randomly placed source nodes with obstacles in the landscape.

To conclude this,  new pioneering method offering an alternative solution to the problem of relay 

node placement using evolutionary algorithms was developed. In cases, where ordinary techniques 

can be insufficient, evolutionary approach might help. Results obtained from performed simulations 

proved that employing evolutionary algorithms for this type of problem can be a good choice.

6.3 Aerodynamic optimisation of wing geometry
Development  of  an  aerodynamic  shape  optimisation  methods  is  important  to  improve  design 

efficiency in today's competitive environment for the commercial aircraft industry. Aerodynamic-

wise optimal shape of an aircraft does not only delight an expert's eye, it is a crucial factor affecting 

the plane performance and thus its success on the world markets.

In this chapter, we focus on optimisation of a wing geometry. To optimise a shape of a wing does 

not only mean to reduce its drag and maximise lift. There are also other factors that influence the 

fitness of a wing for a particular aeroplane. Results presented here are based on collaboration with 

the Evektor company, the Department of Aerodynamics. Theoretical part of this section is based 

on (Florián,  1963;  Houghton  & Carpenter,  2003)  and  stimulating  discussions  with  enthusiastic 

aerodynamicists.

6.3.1 The vortex system theory
Based on the Zhukovsky theorem, influence of an infinite wing put into a flow of liquid on this 

liquid can be substituted by influence of a potential vortex. The vortex system can be divided into 

three main parts: the starting vortex, the trailing vortex and the bound vortex system (the last one is 
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also denominated as a lifting vortex).  Each of these may be treated separately,  but they all  are 

component  parts  of  one  whole  system.  The  total  vortex  system associated  with  a  wing  form 

a complete vortex ring that satisfies all physical laws. The starting vortex, however, is soon left 

behind and the trailing pair stretches effectively to infinity as steady flight proceeds. For practical 

purposes the system consists of the bound vortices and the trailing vortex on either side close to the 

wing. This three-sided vortex has been called the horseshoe vortex (Figure 6-8).

Figure 6-8: The horseshoe vortex

Study of the completely equivalent vortex system is largely confined to investigating wing effects 

in close proximity to the wing. For estimation of distant phenomena the system can be simplified 

to a single bound vortex and trailing pair, known as the simplified horseshoe vortex (Figure 6-9).

Figure 6-9: The simplified horseshoe vortex
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Intensity of a vortex, i.e. total amount of vorticity passing through any plane region within a flow 

field is called circulation (Γ). From the Helmholtz's second theorem, the strength of the circulation 

around any section of the wing is the sum of the strengths of the vortex filaments cut by the section 

plane. As the section plane is progressively moved outwards from the centre section (root of the 

wing) to the tips, fewer and fewer bound vortex filaments are left for successive sections to cut so 

that the circulation around the sections diminishes. In this way, the spanwise change in circulation 

around the wing is related to the spanwise lengths of the bound vortices. Now, as the section plane 

is moved outwards along the bound bundle of filaments, and as the strength of the bundle decreases, 

the strength of the vortex filaments so far shed must increase, as the overall strength of the system 

cannot diminish.  Thus the change in circulation from section to section is  equal to the strength 

of the vorticity shed between these sections.

Figure 6-10: The relation between spanwise load variation and trailing vortex strength

Figure 6-10 shows a simple rectangular wing shedding a vortex trail with each pair of trailing vortex 

filaments completed by a spanwise bound vortex. A line joining the ends of all the spanwise vortices 

forms a curve that, assuming each vortex is of equal strength and give a suitable scale, would be 

a curve of the total strengths of the bound vortices at any section plotted against the span. This curve 

has been plotted for clarity on a spanwise line through the centre of pressure of the wing and is 

a plot  of  (chordwise)  circulation  Γ  measured  on  a  vertical  ordinate,  against  spanwise  distance 
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from the centre-line (CL) measured in the horizontal ordinate. Thus at a section z from the centre-

line, sufficient hypothetical bound vortices are cut to produce a chordwise circulation around that 

section equal to Γ. At a further section z+δz from the centre-line the circulation has fallen to  Γ- δΓ, 

indicating that between section z and z+δz trailing vorticity to the strength of δΓ has been shed.

If the circulation curve can be described as some function of z, f(z), then the strength of circulation 

shed is given by

 =−df  z 
dz

 z .

Now at any section the lift per span is given by the Kutta-Zhukovsky theorem

l = v (2)

and for given flight speed v and air density Γ is thus proportional to lift l. But l is the local intensity 

of lift or lift grading, which is either known or is the subject to the analysis.

The substitution of the wing by a system of bound vortices has not been rigorously justified at this 

stage. The idea allows a relation to be built up between the physical load distribution on the wing, 

which depends on the wing geometric and aerodynamic parameters and the trailing vortex system.

6.3.2 The elliptic distribution of lift
In order to demonstrate the general method of obtaining the aerodynamic characteristics of a wing 

from its loading distribution, the simplest load expression for symmetric flight is taken - a semi-

ellipse.  This  substitution  is  held  to  be  a  good  approximation  to  many  (mathematically)  more 

complicated distributions and is thus suitable for use as the first  prediction in our performance 

estimates.

Figure 6-11: Elliptic loading

The spanwise variation in circulation is taken to be represented by a semi-ellipse having the span 2s 

as the major axis and the circulation at mid-span Γ0 as the semi-minor axis (see Figure 6-11). Then 

the general expression for an ellipse is
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2

0
2

z2

s2 = 1 or  = 01− z
s 

2

. (3)

Lift for elliptic distribution
By substituting (3) in

L =∫s

s
vdz

we get

L =∫−s

s
c01− z

s 
2

dz = v0
s
2

,

whence

0 =
L

1
2
v s .

Or introducing

L = CL
1
2
 v2 S

0 =
C L v S
 s

giving the mid-span circulation in terms of the overall aerofoil lift coefficient CL and geometry.

Downwash (induced velocity) for elliptic distribution

Derivation of equation for downwash results in

w =
0

4s
,

which says that for a  rectangular wing and elliptic distribution of lift  is  the downwash constant 

along the wing span.

Induced drag for elliptic distribution
From general equation for drag

DV =∫−s

s
w dz , (4)

using the substitution of (3) in (4), induced drag for a rectangular wing and elliptic distribution of 

lift results in

CDv =
C L

2

 AR , (5)

where
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aspect ratio AR  = 4s2

S
= span2

area
.

Equation (5) establishes quantitatively how CDv falls with a rise in AR and also says that at zero lift 

in symmetric flight CDv is zero and the other condition is that as AR increases (to infinity for two-

dimensional flow) CDv decreases (to zero).

6.3.3 The general distribution of lift
In the previous section, our attention was directed to the distribution of circulation (or lift) along the 

span,  in  which  the  load  was  assumed to  fall  symmetrically  about  the  centre-line  according  to 

a particular family of load distributions. For steady symmetric manoeuvres this is quite satisfactory 

and the previous distribution formula may be arranged to suit certain cases. Its use, however, is 

strictly limited and it is necessary to seek further for an expression that will satisfy every possible 

combination  of  wing design  parameter  and  flight  manoeuvre.  For  example,  it  has  so  far  been 

assumed that  the  wing was  an  isolated  lifting  surface  that  in  straight  steady flight  had  a  load 

distribution rising steadily from zero at the tips to a maximum at mid-span (Figure 6-12a). The 

general  wing, however,  will  have a fuselage located in the centre sections that  will  modify the 

loading in that region (Figure 6-12b) and engine nacelles or other excrescences may deform the 

remainder of the curve locally.

Figure 6-12: Typical spanwise distribution of lift

The load distributions on both the isolated wing and the general aeroplane wing will be considerably 

changed in anti-symmetric flight. In rolling, for instance, the upgoing wing suffers a large decrease 

in lift, which may become negative at some incidences (Figure 6-12c). With ailerons in operation, 

the curve of spanwise loading for a wing is no longer smooth and symmetrical but can be rugged 

and  distorted  in  shape  (Figure  6-12d).  It  is  clearly  necessary  to  have  an  expression  that  will 
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accommodate all these various possibilities. From previous work the formula l=ρvΓ for any section 

of span is familiar. Writing l in the form of the non-dimensional lift coefficient and equating to ρvΓ 

 =
C L

2
vc

is obtained. This shows that for a given steady flight state the circulation at any section can be 

represented by the product of the forward velocity v and the local chord length c.

Now in addition the local chord can be expressed as a fraction of the semi-span s, and with this 

fraction absorbed in a new number and the numeral 4 introduced for later convenience, Γ becomes

=4C s ,

where  CΓ is  dimensionless circulation,  which will  vary similarly to Γ across the span.  In other 

words,  CΓ is the shape parameter or variation of the  Γ curve and being dimensionless, it can be 

expressed  as  the  Fourier  series  ∑1

∞
Ansin n ,  in  which  the  coefficients  An represent  the 

amplitudes and the sum of the successive harmonics describes the shape. The sine series was chosen 

to satisfy the end conditions of the curve reducing to zero at the tips where y=±s. These correspond 

to the values of θ = 0 and π. It is well understood that such a series is unlimited in angular measure 

but  the portions beyond 0 and  π can be disregarded here.  Further,  the series can fit  any shape 

of curve but, in general, for rapidly changing distributions as shown by a rugged curve, for example, 

many harmonics are required to produce a sum that is a good representation. 

In particular the series is simplified for the symmetrical loading case when the even terms disappear 

(Figure 6-13 II). For the symmetrical case, a maximum or minimum must appear at the mid-section. 

This is only possible for sines of odd values of  π/2. That is, the symmetrical loading must be the 

sum of symmetrical  harmonics.  Odd harmonics are  symmetrical.  Even harmonics,  on the other 

hand,  return to  zero again at  π/2 where in  addition  there is  always a  change in  sign.  For  any 

asymmetry in the loading one or more even harmonics are necessary.

With  the  number  and  magnitude  of  harmonics  effectively  giving  all  possibilities,  the  general 

spanwise loading can be expressed as

 = 4 s v∑1

∞
An sinn.

It should be noted that since  l=ρvΓ holds, the spanwise lift distribution can be expressed as

l = 4 v2 s∑1

∞
Ansin n.
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Figure 6-13: Loading make-up by selected sine series

6.3.4 Aerodynamic characteristics for symmetrical general loading

Lift on the wing
From the definition of lift

L =∫−s

s
v dz

by changing the variable z = - s cosθ

L =∫0


v ssin d 

and substituting for the general series expression, we get

L =∫0


v s2∑ Ansin nsin d 

= 4s2v2∫0



∑ An[cos n−1 −cosn1]d 

= 4s2v2 1
2[∑ An sinn−1

n−1
−

sin n1
n1 ]0



.

The sum within the squared brackets equals zero for all values of n≠1 when it becomes
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[ lim
n−1 0

A1
sinn−1
n−1 ]

0



= A1 .

Thus

L = A1
1
2
v2 4 s2 = CL

1
2
v2 S

and writing aspect ratio (AR) = 4s2/S gives

CL = ARA1 .

This indicates the rather surprising result that the lift depends on the magnitude of the coefficient 

of the  first  term only,  no  matter  how many terms  may be  present  in  the  series  describing  the 

distribution. This is because the terms A3 sin3θ,  A5 sin5θ, etc., provide positive lift on some sections 

and negative lift  on others  so that  the overall  effect  of  these is  zero.  These terms provide the 

characteristic variations in the spanwise distribution but do not affect the total lift of the whole, 

which is determined solely from the amplitude of the first harmonic. Thus

CL =ARA1 and L = 2v2 s2 A1 .

Downwash

The derivation of equation for downwash results in

w = v∑ n An sin n
sin

.

This involves all the coefficients of the series and will be symmetrically distributed about the centre 

line for odd harmonics.

Induced drag
The resulting formula for induced drag is

CDv =
CL

2

AR 
[1] ,

where

= 3A3
2

A1
2 

5A5
2

A1
2 

7A7
2

A1
2 .... .

Plainly δ is always a positive quantity because it consists of squared terms that are always positive. 

CDv can be a minimum only if  δ = 0. That is if A3 = A5 = A7 = .... = 0 and the only term remaining 
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in the series is A1sinθ.

6.3.5 Determination of the load distribution on a wing
Determination of the load distribution on a wing is the direct problem broadly facing designers who 

wish to predict the performance of a projected wing before the long and costly process of model 

tests begins. This does not imply that such tests need not to be carried out. On the contrary, they may 

be important steps in the design process towards a production aircraft.

The problem can be rephrased as follows. The designers wish to have some indication how the wing 

characteristics vary as,  for example,  change of the geometric parameters of the projected wing. 

In this  way they can balance  the aerodynamic  effects  of  their  changing ideas  against  the basic 

specification – provided there is a fairly simple process relating the changes in design parameters 

to the aerodynamic characteristics. Of course, this is stating one of the design problems in its baldest 

and simplest  terms,  but  as in  any design work,  plausible theoretical  processes yielding reliable 

predictions are very comforting. 

The general theory for wings of high aspect ratio

A start is made by considering the influence of the end effect, or downwash, on the lifting properties 

of an aerofoil section of some distance z from the centre-line of the wing. Figure 6-14 shows the lift-

versus-incidence curve for an aerofoil section of a certain profile working two-dimensionally and 

working  in  flow regime  influenced  by  end  effects,  i.e.  working  at  some point  along  the  span 

of a finite lifting wing.

Figure 6-14: Lift-versus-incidence characteristic for an aerofoil section of a certain profile

Assuming that both curves are linear over the range considered, i.e. the working range, and that 
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under both flow regimes the zero-lift incidence is the same, then

CL = a∞ [∞−0] = a [−0] .

Taking the first equation with α∞ = α – ε, we have

CL = a∞ [−0−] . (6)

But at the same time from (2)

CL =
lift per unit span

1
2
v2 c

= l
1
2
v2c

=
v

1
2
v2 c

,

C L =
2
vc

.

(7)

By equating (6) and (7) and rearranging, we get

2
ca∞

= v [−0−] .

And since

v = w =− 1
4

∫−s

s
d /dz

z−z1
dz ,

we get
2 z 
c z a∞

= v −0
1

4∫−s

s d / dz
z−z1

dz (8)

Equation (8) is the Prandtl's integral equation for the circulation Γ at any section along the span in 

terms of all the aerofoil parameters. The solution of this equation cannot be found analytically for 

all points along the span but only numerically at selected spanwise stations and at each end of the 

wing.

Glauert's solution to Prandtl's equation

This method is based on utilisation of Fourier series to solve the equation (8). We transform the z 

variable as follows:

z =−
l
2

cos

and denote l/2 = s (semi-span). Since
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z1 =−
l
2

cos 1 ; dz1 =
l
2

sin1 d 1 ; 
d 1

dz1
=

2
l sin1

,

thus

z1−z =−
l
2
cos1−cos  ,

d 
dz1

=
d 
d 1

d 1

dz1
= 2

l
d 
d 1

1
sin1

.
(9)

And after substituting (9) into (8) we get

 =
1
2

a∞v∞c[a−
1

2 l v∞
∫0



d 
d 1

d 1

cos1−cos ] . (10)

Because  Γ = 0 for θ = 0 and θ = π and Γ reaches maximum values for θ = π/2, the Fourier series 

contains only sin nθ1 terms. Then the circulation is

 = 2 l v∞∑n=1

∞
An sin n1 , (11)

where the unknowns An are to be found. By differentiating (11) we obtain

d 
d 1

= 2 l v∞∑n=1

∞
nAncos n1 . (12)

Equating (12) to (10)

2 l v∞∑n=1

∞
Ansin n1 =

1
2

a∞v∞c[a−
1
∫0

∑n=1

∞
nAn cosn1

cos1−cos 
d 1] . (13)

Because nAn is for each term of the series a constant, we can express (13) as

2 l∑n=1

∞
Ansin n1 =

1
2

a∞c[a−
1
∑n=1

∞
nAn∫0

 cos n1

cos1−cos
d 1] . (14)

Since

∫0

 cosn1

cos1−cos
d 1 =

sin n
sin

the equation (14)   after rearrangement read as
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a∞c∑n=1

∞
Ann sin n4 l sin∑n=1

∞
Ansin n = a∞a xsin .

By substituting
a∞ c
4 l

=

we obtain

∑n=1

∞
 nsinsin n⋅An =  sin .

This equation is applicable for all stations on the semi-span, using it we can calculate the values An. 

For symmetrical wing and symmetric flow, it is also the distribution of circulation symmetric, thus

=2 l v∞∑n=1

∞
Ansin n = 2l v∞∑n=1

∞
Ansin n− = −.

Because for even  n is  sin n(π-θ) = - sin nθ and for odd n is  sin n(π-θ) = sin nθ , it is clear that 

coefficients An with even n are equal to zero. They are not equal to zero only for non-symmetrical 

wing (with ailerons in operation) or for non-symmetrical flow.

6.3.6 Optimised wing model
Aerodynamic  model  of  the  wing  is  based  on  the  Glauert's  solution  of  Prandtl's  equation  (8) 

described above. We do not use linear lift slope characteristics for computing local lift coefficient. 

They were replaced by full non-linear aerofoil lift and drag characteristics to provide more accurate 

results, especially in cases close to critical angle of attack.

The wing was divided into three sections (see  Figure 6-15) to enable us to manipulate with the 

following geometric parameters of the wing:

1. Section intermediate point 1 – y coordinate of transition between sections 1 and 2,

2. Section intermediate point 2 – y coordinate of transition between sections 2 and 3,

3. Chord length 1 – length of the root chord of the wing (profile cut next to the fuselage),

4. Chord length 2 – length of the chord on the transition between sections 1 and 2,

5. Chord length 3 – length of the chord on the transition between sections 2 and 3,

6. Chord length 4 – length of the tip chord,

7. Twist 1 – geometric twist of the root chord,

8. Twist 2 – geometric twist of the chord between sections 1 and 2,

–92–



9. Twist 3 – geometric twist of the chord between sections 2 and 3,

10. Twist 4 – geometric twist of the tip chord,

11. Wing span

12. Profile 1 – aerofoil type for the root cut,

13. Profile 2 – aerofoil type for cut between sections 1 and 2,

14. Profile 3 – aerofoil type for the cut between sections 2 and 3,

15. Profile 4 – aerofoil type for the tip cut.

The ranges  of  optimised parameters  were set  according to  the  requirements for  each particular 

aeroplane. Coordinates of section intermediate points were usually set between 1m and the wing 

semi-span, chord lengths limited between 0.1 and 2 m (however, the root chord length was mostly 

defined by the dimensions of the centroplane), geometric twist of the profiles represents absolute 

rotation of the particular cut against  plane fuselage. Wing span range is given by the aeroplane 

loading, for example for ultralights was set between 7 and 12 meters. There were two available 

models of aerofoils for parameters 12-14 – LS0417MOD and MS0313.

Figure 6-15: Modified parameters of a wing

The following computed output parameters were to be minimised:

1. induced drag,

2. surface-friction drag,

3. overall wing area,
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4. difference CL – 0.9*CLMax in 70% of semi-span, 

5. difference CLMax – CL in y = <0, 40%> of semi-span.

Last two items represent requirements on shape of the lift curve. To meet the requirements on wing 

stall characteristics, there must be at least 10% reserve of lift on the ailerons when the flow on root 

part of the wing is starting to separate (air flow separates from the wing at high angles of attack 

or low speeds; the value of critical angle of attack and minimum speed is given by used aerofoils). 

The second requirement maximises the overall lift of the wing.

The resulting computation of fitness is represented by weighted sum of minimised parameters:

costValue = inducedDrag⋅100 frictionDrag⋅100S /10
40pDiff⋅10070pDiff⋅100penalisation .

There is one additional requirement on the wing expressed by the penalisation value. It encapsulates 

the condition 

S⋅CLMax wing   k , k =
2⋅m⋅g
⋅v2 ,

where S is the wing surface, CLMax the maximal lift of the wing, m stands for weight of the airplane, 

g = 9.81, ρ represents air density and v denotes velocity. It is desired to keep S * CLMax  as close as 

possible to k but not below.

The stall properties of the wing (requirements on shape of the lift curve) are computed at stall speed 

given by FAA directives (here 45 knots) and the other properties at maximal speed of steady level 

flight (given by construction of particular aeroplane).

6.3.7 Optimisation results
In this section, wing optimisation results for different aeroplanes are presented. The first one is a 

proposal  of  modification  of  the  wing  for  the  SportStar  ultralight  plane.  The  second  group  of 

optimisation was performed in order to modify the VUT-100 Cobra wing to improve its properties. 

The third group of evolved wings is a study of a completely new wing for VUT-100 Cobra without 

any restrictions used in the previous simulations.
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Figure 6-16: Aeroplanes from Evektor production: a two-seated very light aeroplane “Harmony” 
(left) and the four-seated VUT100 Cobra (right). Source: www.evektor.cz

SportStar

Wing optimisation of this ultralight aeroplane was performed under following constraints: 

● wing consists of 2 sections (2 and 3; length of section 1 set to zero),

● length of chords 1, 2 and 3 is fixed at 1.25 m (geometry section 1 is not optimised),

● maximum wing-span is 12 m,

● minimum y coordinate of chord 3 (transition between sections 2 and 3) is 3.5 m,

● twist of chords 1, 2 and 3 is zero, twist of chord 4 allowed between -5 and +5 degrees,

● LS0417MOD aerofoils are used for chords 1, 2 and 3, type of aerofoil for chord 4 is chosen 

by SOMA,

● S * CLMax > 18.4,

● stall speed 45 knots, maximum speed 108 knots.

The resulting wing parameters are summarised in Table 6-2 and the values obtained from the 

optimisation process can be seen in Table 6-3.

Wing area = 11.7942 Wing CL = 0.3476
CLMax = 1.6236 Friction drag = 0.0108

S*CLMax = 19.1492 Induced drag = 0.0250

Table 6-2: SportStar: wing properties
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Section intermediate point 1 = 0 Twist 1 = 0
Section intermediate point 2 = 3.5000 Twist 2 = 0

Chord length 1 = 1.2500 Twist 3 = 0
Chord length 2 = 1.2500 Twist 4 = -4.9999
Chord length 3 = 1.2500 Profile 1 = LS0417MOD
Chord length 4 = 0.1000 Profile 2 = LS0417MOD

Wing span = 11.5100 Profile 3 = LS0417MOD
Profile 4 = MS0313

Table 6-3: SportStar: overview of optimised wing parameters

Figure 6-17: SportStar: shape of evolved wing and its lift characteristics

Let us explain the lift diagrams: MaxCL (red) stands for maximum lift of the wing. This value is 

given by the maximum lift of used aerofoils. The CurrentCL (blue) represents current state of lift 

distribution along the span. By increasing the angle of attack this curve changes its shape according 

to actual state. CLForZeroTwist describes spanwise lift for the case the wing is under such an angle 

of attack that it has zero lift. This curve shows the influence of geometric twist on lift of the wing. 

And  finally,  the  NormalCL curve  (green)  symbolises  lift  normalised  to  1  at  the  root  profile. 

By multiplying this value on selected station along the span by local lift coefficient, we get value 

of current lift. Small cross (magenta) in 70% of the wing semi-span indicates the 10% reserve of lift 

on the ailerons.  Curve of the current CL must  go through this  point to ensure good wing stall 

characteristics of the wing.
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VUT-100 Cobra 

VUT-100 Cobra is an all-metal four-seat aircraft comming to serial production in 2006. We decided 

to compare the already designed wing with a wing optimised by SOMA. The constraint conditions 

of the wing were as described below:

● wing consists of 3 sections,

● length of chords 1, 2 fixed at 1.579 m (centroplane section),

● maximum wing-span 12 m,

● y coordinate of chord 2 fixed at 1.25 m (centroplane section length)

● y coordinate of chord 3 (transition between sections 2 and 3) may vary between 3 m and the 

wing-span,

● twist of chords 1 fixed to zero, twist of chord 1 allowed between -1 and 1 degree, twist 

of chord 3 allowed from -3 to +3 degrees and  twist of chord 4 (tip) allowed between -5 and 

+5 degrees,

● LS0417MOD aerofoils are used for chords 1 and 2, type of aerofoils for chords 3 and 4 are 

optimised,

● S * CLMax > 20.8,

● stall speed 45 knots, maximum speed 120 knots.

Values obtained from the optimisation process are:

Section intermediate point 1 = 1.2765 Twist 1 = 0
Section intermediate point 2 = 3.0046 Twist 2 = 0.9034

Chord length 1 = 1.5790 Twist 3 = -3.7972
Chord length 2 = 1.5790 Twist 4 = -5.6718
Chord length 3 = 1.2001 Profile 1 = LS0417MOD
Chord length 4 = 0.2933 Profile 2 = LS0417MOD

Wing span = 11.9849 Profile 3 = MS0313
Profile 4 = MS0313

Table 6-4: VUT-100 Cobra, approach I: overview of optimised wing parameters
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Wing area = 13.2957 Wing CL = 0.1939
CLMax = 1.6121 Friction drag = 0.0098

S*CLMax = 21.4344 Induced drag = 0.0085

Table 6-5: VUT-100 Cobra, approach I: wing properties

Figure 6-18: VUT-100 Cobra, approach I: shape of evolved wing and its lift characteristics

Geometry of this wing seems to be very acceptable, nevertheless, there is one substantial problem. 

There might be doubts about construction of the main girder as the sweep-back angle and the wing-

depth  reduction  from  root  to  tip  is  rather  significant.  Therefore,  we  decided  to  modify  the 

constraints – to fix the length of chord 3 also at 1.579 meters. Below you can assess results of this 

modification:

Section intermediate point 1 = 1.2765 Twist 1 = 0
Section intermediate point 2 = 3.0000 Twist 2 = 0

Chord length 1 = 1.5790 Twist 3 = 0
Chord length 2 = 1.5790 Twist 4 = -5.0000
Chord length 3 = 1.5790 Profile 1 = LS0417MOD
Chord length 4 = 0.5101 Profile 2 = LS0417MOD

Wing span = 12.0000 Profile 3 = LS0417MOD
Profile 4 = LS0417MOD

Table 6-6: VUT-100 Cobra, approach II: overview of optimised wing parameters

–98–



Wing area = 15.7412 Wing CL = 0.3048
CLMax = 1.5976 Friction drag = 0.0100

S*CLMax = 25.1490 Induced drag = 0.0290

Table 6-7: VUT-100 Cobra, approach II: wing properties

Figure 6-19: VUT-100 Cobra, approach II: shape of evolved wing and its lift characteristics

From the construction point of view is this shape of the wing much more feasible than the previous 

one. The increase in the wing area also increased the overall lift, however, also the values of both 

drags are higher. There is only a very narrow space for the optimisation algorithm to reach the 

desired wing parameters. You can also see that the S*CLMax parameter is quite far from the requested 

value and high twist on chord 4 tries to improve the wing characteristics in a very similar way as it 

happened also in the SportStar's wing optimisation case.

A very interesting question arises here: What would be the best wing geometry of the VUT-100 

Cobra aeroplane? To find a satisfactory answer we must remove some of the expendable constraints.

Unconstrained parameters for VUT-100 Cobra wing

In this  approach we wanted  to  find  the  best  possible  wing for  the  VUT-100 Cobra  aeroplane. 

We omitted all constraints except the loading capacity requirement – S * CLMax > 20.8. 

The resulting wing we obtained proves superior performance – very low drag and lift characteristics 

very close to the desired values. However, the aerofoil of chord 1 (MS0313) is not usually used 

for root profile of the wing for construction reasons (not matter of aerodynamics). 
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Section intermediate point 1 = 0.2735 Twist 1 = 0
Section intermediate point 2 = 1.1849 Twist 2 = -1.9775

Chord length 1 = 1.4668 Twist 3 = -2.4952
Chord length 2 = 1.4465 Twist 4 = -5.8831
Chord length 3 = 1.3099 Profile 1 = MS0313
Chord length 4 = 0.7758 Profile 2 = LS0417MOD

Wing span = 11.8136 Profile 3 = LS0417MOD
Profile 4 = LS0417MOD

Table 6-8: VUT-100 Cobra, approach III: overview of optimised wing parameters

Wing area = 13.1574 Wing CL = 0.0568
CLMax = 1.5827 Friction drag = 0.0099

S*CLMax = 20.8238 Induced drag = 0.0008

Table 6-9: VUT-100 Cobra, approach III: wing properties

Figure 6-20: VUT-100 Cobra, approach III: shape of evolved wing and its lift characteristics

Note on the chord #3 y-coordinate limitation

The optimisation  process  tends  to  evolve  wings  with  a  high aspect  ratio.  This  trend  is  mainly 

supported by the fact, that a wing with these characteristics has significantly lower values of drag 

(from the theory of aerodynamics infinite wings have zero drag). By demanding minimisation of the 

wing area (the S*CLMax condition) and drag we force SOMA to make wings more slender and longer.
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Section intermediate point 1 = 1.2500 Twist 1 = 0
Section intermediate point 2 = 1.5716 Twist 2 = 0.8752

Chord length 1 = 1.5790 Twist 3 = -2.9948
Chord length 2 = 1.5790 Twist 4 = -4.8837
Chord length 3 = 1.3285 Profile 1 = LS0417MOD
Chord length 4 = 0.6889 Profile 2 = LS0417MOD

Wing span = 11.2948 Profile 3 = MS0313
Profile 4 = LS0417MOD

Table 6-10: VUT-100 Cobra, the dead end: overview of optimised wing parameters

Wing area = 13.1048 Wing CL = 0.1548
CLMax = 1.5869 Friction drag = 0.0097

S*CLMax = 20.7968 Induced drag = 0.0067

Table 6-11: VUT-100 Cobra, the dead end, approach III: wing properties

Figure 6-21: VUT-100 Cobra, the dead end: shape of evolved wing and its lift characteristics

But there is still the question why we limited the y-coordinate of chord #3 to 3 metres. If we had 

not,  we  would  obtain  a  wing  geometry  as  displayed  in  Figure  6-21.  Considering  the  wing 

parameters, we obtained a high performance wing (compare to VUT-100 Cobra approach I wing 

parameters in  Figure 6-18, tables  6-6 and 6-7), however, the construction of a wing of this shape 

might be a bit tricky.  By setting the length of section 2 to a fixed value, we limit the sweep-back 

angle of the leading edge to reasonable values. 
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The  second  reason  why,  without  this  chord  3  y-coordinate  constraint,  we  obtain  such  shapes 

of wings  is  that  in  the  model  there  are  included  only aerodynamic  characteristics  without  any 

construction limitations.

6.4 Chapter Summary
This  chapter  entirely  describes  three  applications  of  parallel  SOMA,  which  were  successfully 

accomplished in cooperation with the Strathclyde University in Glasgow, the Helsinki University 

of Technology and the Evektor company.

In the first  assignment,  parameters  of  a  modern four  cylinder  internal  combustion engine were 

a subject  to  optimisation.  The  output  parameters  –  fuel  consumption,  amount  of  exhaust  and 

deviation from the desired torque – were minimised by optimising four input parameters – manifold 

pressure,  inlet  valve  timing,  exhaust  valve  timing  and  spark  advance  for  given  combinations 

of engine's setpoints - RPM (revolutions per minute) and torque. Created software and simulation 

results  obtained  from computer  model  of  the  engine  was  later  used  by a  North-American  car 

producer for parametric optimisation directly on a real engine.

The second challenging task  for  parallel  SOMA was  the  optimisation  of  relay nodes  positions 

aggregating and forwarding data from wireless sensor array to a central data-collection node. The 

aim of this work was to develop a method for finding optimal positions for a certain number of relay 

nodes  to  maximise  the  lifetime  of  a battery-powered  network.  Comparing  to  conventional 

algorithms, SOMA demonstrated an alternative approach to a complex engineering problem.

The third and the most impressive application was the aerodynamic optimisation of wing geometry 

for an aeroplane being prepared for production by a Czech leading aircraft producer, the Evektor 

company.  Obtained  results  meet  the  desired  wing  parameters  and  support  assumptions  made 

by experts on aerodynamics. Wings evolved by SOMA tend to be of high aspect ratio with high 

values  of  lift  and  low drag.  Created  aerodynamic  model  together  with  developed optimisation 

software will be used as a requisite for future wing design in the company.

Described models of combustion engine and the wing were optimised by parallel SOMA using the 

UDPOptCluster extension due to their implementation in the Matlab environment (UDPOptCluster 

represents a message passing interface (MPI), especially developed for parallelising SOMA on the 

MathWork's  Matlab  and  Wolfram's  Mathematica  platforms).  The  relay  node  optimisation  was 

performed using the Cluster framework as parts of the model were a combination of C++ and Java 

code.
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7 CONCLUSIONS
Evolutionary algorithms based on principles of natural selection belong to very efficient methods 

of global  optimisation.  They  use  mechanisms  inspired  by  biological  evolution:  reproduction, 

mutation,  recombination,  natural  selection  and  survival  of  the  fittest.  Evolutionary  algorithms 

perform consistently well  approximating solutions to all types of problems and are able to find 

a feasible solution of many engineering problems in a reasonable time. However, when employing 

them for  more  complex  problems,   the  time required  for  finding  a  suitable  solution  might  be 

unacceptably  long.  Therefore,  many  researchers  are  concerned  with  parallelisation  of  various 

genetic and evolutionary algorithms. By employing computational clusters, grids, parallel computers 

and  networks  of  workstations  we  can  broaden  their  sphere  of  activity  on  complicated  heavy-

computational optimisation tasks.

This  work  is  primarily  aimed  to  parallel  optimisation  evolutionary  techniques.  The  main 

contribution of this thesis lies in the analysis, implementation and empirical validation of parallel 

SOMA evolutionary algorithm.

At the beginning of this work, the current state on the field of parallel genetic and evolutionary 

algorithms is summarised. This overview starts with classification of parallel genetic algorithms, 

summarizes  the history and characterises  various  parallelisation  approaches  and communication 

strategies in detail.

The first essential step to parallelise the SOMA algorithm was to prepare a foundation, on which the 

further  work stands.  As the foundation  stone,  a  fully scalable,  high-performance,  universal  and 

multiplatform framework for parallel/distributed applications was developed. This versatile cluster 

platform was designed in  order to  utilize  free CPU time of  common office computers that  are 

present in relatively high numbers at all universities and many companies and are  used for ordinary 

non-demanding  office  tasks.  It  proved  very decent  performance  and  high  reliability  during  all 

performed tests. With efficiency about 99 %  is the framework ready to be used anywhere where 

there is a need for high-performance computational tasks.

After  considering  numerous  parallelisation  models  and  analysing  parallel  implementations 

of various  evolutionary  algorithms,  we  chose  those  promising  high  efficiency  of  the  complete 

distributed system. Since our parallelised application (SOMA) does not require synchronism for its 

run, we were able to avoid this factor, which may significantly decrease the overall performance. 

A separate chapter is devoted to an analysis of parallelisation models of  Differential Evolution (DE) 

and  its  already  existing  parallel  implementations.  Consequently,  a  concept  of  parallel  SOMA 
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inspired  by  parallel  DE  approaches  is  presented  and  thoroughly  described.  The  following 

parallelisation strategies were chosen to parallelise SOMA (in order from less to most efficient): 

synchronous  island  model,  asynchronous  island  model  I  (using  the  cluster  framework), 

asynchronous island model II (running in the UDPOptCluster) and cellular/diffusion model using 

the cluster's Virtual network feature. The last model appears to be the most suitable for parallelising 

the SOMA algorithm and brings the highest optimisation performance. In several studies of parallel 

DE, some improvements  in  robustness  of  the algorithm are described,  however,  search for  any 

algorithmic improvements of SOMA brought by parallelisation was not successful. 

To validate algorithmic qualities and  high optimisation performance of parallel SOMA, three real-

world engineering applications were successfully accomplished in cooperation with the Strathclyde 

University in Glasgow, the Helsinki University of Technology and the Evektor company.

In the first  assignment,  parameters  of  a  modern four  cylinder  internal  combustion engine were 

a subject  to  optimisation.  The  output  parameters  –  fuel  consumption,  amount  of  exhaust  and 

deviation from the desired torque – were minimised by optimising four input parameters – manifold 

pressure,  inlet  valve  timing,  exhaust  valve  timing  and  spark  advance  for  given  combinations 

of engine's setpoints - RPM (revolutions per minute) and torque. Created software and simulation 

results obtained from the computer model of the engine was later used by a North-American car 

producer for parametric optimisation directly on a real engine.

The second challenging task  for  parallel  SOMA was  the  optimisation  of  relay nodes  positions 

aggregating and forwarding data from wireless sensor array to a central data-collection node. The 

aim of this work was to develop a method for finding optimal positions for a certain number of relay 

nodes  to  maximise  the  lifetime  of  a battery-powered  network.  Comparing  to  conventional 

algorithms,  SOMA  reached  very  similar  results  and  demonstrated  an  alternative  approach 

to a complex engineering problem.

The third and the most  impressive application was aerodynamic optimisation of wing geometry 

for an aeroplane being prepared for  production in  the Evektor  company, a leading civil  aircraft 

producer in the Czech Republic. There were 15 optimised parameters minimising induced drag, 

surface-friction  drag  and  overall  wing  area.  Furthermore,  to  meet  the  directives  on  wing  stall 

characteristics, there was an requirement on shape of the lift curve. Results obtained for various 

wing configurations meet the desired wing parameters and support assumptions made by experts 

on aerodynamics. Wings evolved by SOMA tend to be of high aspect ratio with high values of lift 

and low drag. Created aerodynamic model together with developed optimisation software will be 
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used as a requisite for future wing design in the company.

To  sum  up,  this  work  describes  the  current  state  on  the  field  of  parallel  genetic/evolutionary 

algorithms  and  analyses  parallelisation  principles  of  various  algorithms  with  the  focus 

on Differential Evolution. Then, a parallelisation schema of the SOMA algorithm is proposed and 

four different implementations  carefully benchmarked. In the last  part  of this  work, three very 

successful  applications  of  optimisation  using  SOMA  evolutionary  algorithm  were  presented. 

All of them demonstrate  pioneering approach to  engineering problems to  which companies face 

every day. As the World is  full  of  heavy and complex optimisation tasks,  there will  always be 

countless  number  of  problems  which  SOMA  can  help  to  deal  with.  An  infinity  number 

of landscapes in which the SOMA's wolves can look for better and richer source of food.
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