

English Doctoral Thesis

Usability of the Artificial Intelligence and Modern
Techniques for Securing Computer Systems

Ing. David Malaník

Supervisor: doc. Mgr. Roman Jašek, Ph.D.

Tomas Bata University in Zlín
Faculty of Applied Informatics

Department of Informatics and Artificial Intelligence
Zlín, 2011

Acknowledgements:

I would like to express my warm thanks to:

Ø My supervisor assoc. prof. Roman Jašek, for his support and

invaluable discussions during my study and research on this

thesis.

Ø Martina Vaculíková for her love which helps me a lot.

Ø and my parents who supported me during my studies

RESUMÉ

Tato práce je zaměřena na možnosti využití neuronových sítí v oblasti

zabezpečení počítačových systémů. Hlavní část této práce je zaměřena na

využitelnost neuronových sítí pro identifikaci uživatelů. Neuronové sítě představují

inteligentní systém, který je adaptovatelný na specifické vlastnosti uživatelů a lze jej

použít i pro inteligentní rekonstrukci a identifikaci uživatelů.

Počítačová bezpečnost hraje v současném světě velmi významnou roli, PC

systémy si postupně našly cestu do životního stylu, a mnoho lidí (potenciálních

uživatelů) si už svět bez počítačů nedovede představit. Z tohoto vyplývá jedno

bezpečnostní úskalí, kterým je personifikace dat uložených v těchto systémech.

Uživatelé mají v PC systémech stále více svých osobních dat. Řešení této situace je

ale velmi jednoduché, stačí mít svůj vlastní uživatelský účet a osobní data si chránit

pomocí hesla. Problém tohoto řešení je v jisté uživatelské nepřívětivosti a v horší

dostupnosti těchto dat.

Tato práce se zaměřuje na další možný postup ověřování uživatelů. Metody

popsané v této práci zvyšují soukromí uživatelů PC. Neuronová síť je využitelné pro

inteligentní verifikaci uživatelů, hlavní přínosy využití neuronových sítí jsou

popsány v následujících kapitolách. Můžeme mezi ně zařadit možnost rekonstrukce

poškozených verifikačních vzorků, nebo schopnost identifikovat jednotlivé

biometrické vzorky. Sebeopravné funkce jsou demonstrovány na příkladu

Hopfieldovy sítě. Další možnosti využití jsou popsány jako kombinace standartního

uživatelského jména s heslem a biometrické identikace. Jednou z nejlepších

vlastností neuronových sítí je schopnost se dynamicky přiučovat na měnící se

charakteristiky chování ověřovaných uživatelů. Zde hlavně na jejich přirozené a

vrozené charakteristiky. Tyto charakteristiky se s věkem mohou vyvíjet a je nutné

aby na tento vývoj reagovala inteligentní struktura, které je schopná se na ně přiučit.

Tento problém nastává hlavně u nestejně starých vzorků chování na které má systém

reagovat.

V další části práce je popsáno jiné možné využití neuronové sítě, jedná se o

možnost využití neuronové sítě jako cryptografického aparátu pro zabezpečení

komunikace. Další část ukazuje nový pohled na verifikaci uživatelů. Běžné metody

pro ověřování uživatelů jsou založeny na jednorázové identifikaci uživatele.

Navržený systém ale obsahuje inteligentní rutinu, která periodicky ověřuje identitu

uživatele. Toto oveření ale není realizováno pomocí dotazu na jméno a heslo ale

využívá statistického vzorce chování uživatele. Systém je tedy schopen detekovat

změnu uživatele bez korektního odhlášení stávajícího uživatele a přihlášení nového.

V poslední části této práce je popsán návrh systému, který obsahuje

neuronovou síť pro biometrickou identifikaci uživatelů (otisky prstů v kombinaci se

snímkem tváře).

Každá z popsaných aplikací je zaměřena na bezpečnost počítačových

systémů a popisy jsou také přizpůsobeny tomuto vědnímu oboru.

Klíčová slova: bezpečnost počítačových systémů, umělé neuronové sítě,

identity manager, autentizace uživatelů, biometrická identifikace, kryptografie

SUMMARY

This thesis is aimed to practical usability of the neural network in computer

security application. The main point of this thesis is focused on the small part of

neural network inside the user verification process. The neural network represented

some intelligent system which might be adapted to specific user characteristic and

might be usable for the smart reconstruction and identification users.

The computer security plays the one of the most important role in present

World, computer system is embedded inside the living style and many people (or

potentially users) do not imagine the World without some computers. But the

computers and the data saved inside the computer systems represent potential

dangerous. The dangerous is flowing from the personalization of data inside the

computer world. The problem has a simple solution, just make your own account

and protect these data by the username and password. This is not the best solution

for the usability from the use friendly angle of view.

This work describes the next potential level of the user authorization and

verification. The method described inside this thesis might grow of the user personal

security and privacy. The neural network represents the intelligent structure which

might be used for the smart and secure user verification. The abilities showing

inside this thesis represent the procedures how to reconstruct the damaged samples

for the biometric identification. This application is described on the Hopfield neural

network with self-repair function. The next par of usability might be represented the

user identification based on the combination of biometric and standard user

verification processes. The best ability of each neural network is the ability to learn

the network for the new problems and the dynamically self-teaching connected to

the nature evolution of verifies users, because each user characteristic (this mean

occasionally the behaviour of tested user) might be changed by the time. One of the

best examples is the face identification problem based on the age difference between

the stored sample and the actually scanned sample.

Other part of this work deals with the next potentially usability of smart

neural network. One of these parts includes the cipher algorithms based on the

neural network. Other one represented the new angle of view onto user verification.

The commonly base method use only one-time user verification. But the systems

included some intelligent behaviour, might periodically checking the user identity.

Obviously not by providing the username and some password, but by processing the

statistics analyses of current user. These systems are able to detect the user-

switching without the correct logout and login procedure.

The last part of this thesis is based on the description of designed solution

which contains the neural network for the user identification based on the biometric

methods (fingerprint and the face identification in this case).

Each of these applications is focused to the computer security and

description is adapted to this part of computer science.

Keywords: computer security, artificial neural networks, identity manager,

user authentication, biometric identification, cryptography.

- 9 -

CONTENTS

LIST OF FIGURES ... 11	

LIST OF TABLES ... 14	

LIST OF SYMBOLS AND ABBEREVIATIONS .. 15	

1	
 INTRODUTION AND STATE OF ART ... 16	

2	
 DISSERTATION GOALS .. 19	

3	
 USER VERIFICATION PROBLEM ... 21	

	
 BIOMETRIC IDENTIFICATION .. 21	
 3.1

3.1.1	
 Self-repair functions of neural network .. 21	

3.1.2	
 Neural network identification ... 22	

3.1.3	
 Advanced security for the username and password ... 23	

	
 MULTIDIMENSIONAL AUTHENTICATION METHOD .. 24	
 3.2

3.2.1	
 Authentication continuum ... 24	

3.2.2	
 Blind shooting algorithm (BSA) ... 25	

4	
 NEURAL NETWORK CRYPTOGRAPHY ... 29	

	
 CRYPTOGRAPHIC COMPLEXITY .. 29	
 4.1

	
 CRYPTOGRAPHY STRUCTURE ... 30	
 4.2

	
 CRYPTOGRAPHY ALGORITHM .. 30	
 4.3

5	
 SECURITY TOKEN .. 33	

6	
 SELF REPAIR ABILITIES .. 37	

	
 HOPFIELD NEURAL NETWORK - FINGERPRINTS .. 37	
 6.1

	
 HOPFIELD NEURAL NETWORK – FACE .. 40	
 6.2

6.2.1	
 Face reconstruction .. 40	

7	
 CLASSIFICATION OF SAMPLES ... 45	

	
 NON-SECURE CLASSIFICATION .. 45	
 7.1

	
 SECURING THE CODE BY BCH CODE .. 45	
 7.2

8	
 NEURAL NETWORK FINGERPRINT IDENTIFICATION .. 47	

	
 TRAINING PROCESS DEFINITION ... 48	
 8.1

	
 TRAINING PROGRESS ... 48	
 8.2

8.2.1	
 Progress – one hidden layer with 30 neurons .. 49	

8.2.2	
 Progress – one hidden layer with 50 neurons .. 51	

8.2.3	
 Progress – one hidden layer with 100 neurons .. 52	

8.2.4	
 Progress – one hidden layer with 1000 neurons .. 54	

- 10 -

8.2.5	
 Progress – two hidden layer with 500,100 neurons ... 55	

8.2.6	
 Progress – two hidden layer with 750,300 neurons ... 57	

8.2.7	
 Progress – two hidden layer with 1000,500 neurons ... 58	

8.2.8	
 Progress – three hidden layer with 1000,1500,1000 neurons 60	

8.2.9	
 Progress – three hidden layer with 1000,3000,1000 neurons 62	

	
 RESULTS – USABILITY OF NN .. 64	
 8.3

9	
 NEURAL NETWORK FACE IDENTIFICATION ... 65	

	
 TRAINING PROCESS DEFINITION ... 66	
 9.1

	
 TRAINING PROGRESS ... 66	
 9.2

9.2.1	
 Progress – one hidden layer with 30 neurons .. 67	

9.2.2	
 Progress – one hidden layer with 50 neurons .. 68	

9.2.3	
 Progress – one hidden layer with 100 neurons .. 70	

9.2.4	
 Progress – one hidden layer with 1000 neurons .. 71	

9.2.5	
 Progress – two hidden layer with 500,100 neurons ... 73	

9.2.6	
 Progress – two hidden layer with 750,300 neurons ... 74	

9.2.7	
 Progress – two hidden layer with 1000,500 neurons ... 76	

9.2.8	
 Progress – three hidden layer with 1000,1500,1000 neurons 77	

9.2.9	
 Progress – three hidden layer with 1000,3000,1000 neurons 79	

	
 RESULTS – USABILITY OF NN .. 81	
 9.3

10	
 SECURITY SYSTEM .. 82	

	
 VERIFICATION GUI ... 83	
 10.1

10.1.1	
 User identification process ... 84	

10.1.2	
 Class and function documentation ... 85	

	
 ADMIN GUI ... 93	
 10.2

10.2.1	
 Creating security token ... 93	

10.2.2	
 Class and function documentation ... 94	

11	
 CONCLUSION AND DISCUSSIONS ... 98	

12	
 LIST OF AUTHOR’S PUBLICATION ACTIVITIES .. 101	

13	
 REFERENCES ... 103	

APPENDIX ... 105	

- 11 -

LIST OF FIGURES

Fig. 1.1 - User name and password dialog .. 16	

Fig. 1.2 – Eye IRIS and fingerprint .. 17	

Fig. 3.1 - Hopfield neural network schema [26] .. 21	

Fig. 3.2 - BSA schema .. 26	

Fig. 3.3 - BSA progress .. 27	

Fig. 4.1 - Basic/extended (real) structure of neural network ... 29	

Fig. 4.2 - Public and private part of crypto-network ... 30	

Fig. 4.3 - Encryption process ... 31	

Fig. 4.4 - Decryption process ... 32	

Fig. 5.1 - Security token structure .. 33	

Fig. 5.2 - Duplex trust relationship .. 34	

Fig. 5.3 - One way trust model ... 35	

Fig. 6.1 - Testing samples .. 37	

Fig. 6.2 - Output string format ... 37	

Fig. 6.3 -75% noise, testing samples .. 38	

Fig. 6.4 - Testing result .. 39	

Fig. 6.5 - Source faces .. 40	

Fig. 6.6 - 40% on noise .. 41	

Fig. 6.7 - 40% of noise – reconstruction .. 42	

Fig. 6.8 - 60% of noise ... 43	

Fig. 6.9 - 60% of noise - reconstruction .. 44	

Fig. 8.1 - Training set generation process ... 47	

Fig. 8.2 - Input pair generation process .. 48	

Fig. 8.3 - Training error L30 ... 50	

Fig. 8.4 - Training error difference L30 .. 50	

Fig. 8.5 - Training error L50 ... 51	

Fig. 8.6 - Training error difference L50 .. 52	

Fig. 8.7 - Training error L100 ... 53	

Fig. 8.8 - Training error differences L100 ... 53	

Fig. 8.9 - Training error L1000 ... 54	

- 12 -

Fig. 8.10 - Training error differences L1000 ... 55	

Fig. 8.11 - Training error L500, L100 .. 56	

Fig. 8.12 - Training error differences L500, L100 ... 56	

Fig. 8.13 - Training error L750, L300 .. 57	

Fig. 8.14 - Training error differences L750, L300 ... 58	

Fig. 8.15 - Training error L1000, L500 .. 59	

Fig. 8.16 - Training error differences L1000, L500 ... 59	

Fig. 8.17 - Training error L1000, L1500, L1000 ... 61	

Fig. 8.18 - Training error differences L1000, L1500, L1000 ... 61	

Fig. 8.19 - Training error L1000, L3000, L1000 ... 63	

Fig. 8.20 - Training error differences L1000, L3000, L1000 .. 63	

Fig. 9.1 - Training set generation - face ... 65	

Fig. 9.2 - Input pair generation process ... 65	

Fig. 9.3 - Training error L30 .. 67	

Fig. 9.4 - Training error differences L30 ... 68	

Fig. 9.5 - Training error L50 .. 69	

Fig. 9.6 - Training error differences L50 ... 69	

Fig. 9.7 - Training error L100 .. 70	

Fig. 9.8 - Training error differences L100 ... 71	

Fig. 9.9 - Training error L1000 .. 72	

Fig. 9.10 - Training error differences L1000 ... 72	

Fig. 9.11 - Training error L500, L100 .. 73	

Fig. 9.12 - Training error differences L500, L100 ... 74	

Fig. 9.13 - Training error L750, L300 .. 75	

Fig. 9.14 - Training error differences L750, L300 ... 75	

Fig. 9.15 - Training error L1000, L500 .. 76	

Fig. 9.16 - Training error differences L1000, L500 ... 77	

Fig. 9.17 - Training error L1000, L1500, L1000 ... 78	

Fig. 9.18 - Training error differences L1000, L1500, L1000 .. 78	

Fig. 9.19 - Training error L1000, L3000, L1000 ... 80	

Fig. 9.20 - Training error differences L1000, L3000, L1000 .. 80	

Fig. 10.1 - Security system UserGUI .. 82	

- 13 -

Fig. 10.2 - Security system Admin part .. 83	

Fig. 10.3 - User verification process .. 84	

Fig. 10.4 - Interface UserGUI .. 85	

Fig. 10.5 - Class SecurityToken ... 86	

Fig. 10.6 - Class UserCharacteristics .. 87	

Fig. 10.7 - Class Characteristic ... 88	

Fig. 10.8 - Class DatabaseClass .. 89	

Fig. 10.9 - Class ImageOperations .. 90	

Fig. 10.10 - Class NeuralNet ... 91	

Fig. 10.11 - Class NeuralNetOperations ... 92	

Fig. 10.12 - Creating of security token .. 93	

Fig. 10.13 - Class AdminGUI ... 95	

Fig. 10.14 - Class BCHCodes .. 96	

Fig. 10.15 - Class FileOperations .. 97	

- 14 -

LIST OF TABLES

Table 3.1 - Binary and double neuron comparision ... 22	

Table 3.2 - userhash generator ... 23	

Table 7.1 - Non-secure classification .. 45	

Table 7.2 - Secure classification by the BCH code ... 46	

Table 8.1 - Training L30 ... 49	

Table 8.2 - Training L50 ... 51	

Table 8.3 - Training L100 ... 52	

Table 8.4 - Training L1000 ... 54	

Table 8.5 - Training L500, L100 ... 55	

Table 8.6 - Training L750, L300 ... 57	

Table 8.7 - Training L1000, L500 ... 58	

Table 8.8 - Training L1000, L1500, L1000 .. 60	

Table 8.9 - Training L1000, L3000, L1000 .. 62	

Table 9.1 - Training L30 ... 67	

Table 9.2 - Training L50 ... 68	

Table 9.3 - Training L100 ... 70	

Table 9.4 - Training L1000 ... 71	

Table 9.5 - Training L500, L100 ... 73	

Table 9.6 - Training L750, L300 ... 74	

Table 9.7 - Training L1000, L500 ... 76	

Table 9.8 - Training L1000, L1500, L1000 ... 77	

Table 9.9 - Training L1000, L3000, L1000 .. 79	

- 15 -

LIST OF SYMBOLS AND ABBEREVIATIONS

symbol description

B/W 2 colour picture, Black and White

Double type of programing variable, 64-bit
number

NN neural network

BSA blind shooting algorithm

GUI Graphical user interface

userhash combination of hash value from
username and password

IDS Intruder detection system

- 16 -

1 INTRODUTION AND STATE OF ART

The computer security is one of the most expandable parts of the computer

science in the modern world. Some companies starting solve the problem of the

computer security. Obviously the first problem is secure authentication of

employees. The classical method for solving this problem is the authentication

manager based on simply method such as a user name and assignment password.

This will be a good solution for same basic level of authentication. It will be secure

or very unsecure; it depends on usage of these methods [22].

Fig. 1.1 - User name and password dialog

Fig. 1.1 shows the typical login screen based on username and password

authentication. There is only one level of security, each people, which known the

username and the password are able to log into this computer. Each people don’t

mean the allowed people, because the login credentials are specific for each user.

Access permission granularity is based on specific user names. But the username

and the password are distributive. It is only the text information, which will be

revealed, stole or gifted [9,4].

More secure methods for authentication people, which are allowed for

working with specific computer is biometric identification. Each people have

- 17 -

specific biometric markants, which identified everyone. These markants are findable

in fingerprints, voice, eyes, ears and DNA. Reliability of these biometric branches

is not the same. There are more factors witch affecting percent of potentially errors

in the identification. The most commonly used markants are shown on Fig. 1.2 [2].

Fig. 1.2 – Eye IRIS and fingerprint

The combination of these two main featured methods is one the most

discussed solution for the computer security round the World. This combination is

based on very simple username and password authentication, but there is something

more; the human originality. The difference is original biometric factor for secure

authentication of each user. The user name and the password will be stolen or gifted;

inside biometric methods are these potentially dangerous weakness minimized.

Stealing or gifting of biometric data is quite complicated. Now there is a complexity

password with originally biometric information about the user.

The commonly uses biometrical system for user verification procedures

work with the markant, the specific type of fingerprint structures [2,7,11]. But using

of these specific part income the specific problem. If there is only few number of

markants or the scanned sample has poor quality, the system could not verify this

sample (or user). The quality and the amount of data, in this case amount of visible

markants affect the identification process. The next widely described problem is the

question of some few injuries, for example the scratch on the finger. This might hit

the marginal markants and system identification is impossible.

More or les, the biometrical identification is suggested to places with the

high level of security or with the very limited access [7,9,19,22,24].

- 18 -

This thesis deals with the next generation of the user authentication

methods. These methods are represented as a multidimensional functions collected

from many factors of the user identification. Each dimensions of the security token

represents the one originally and stable user account attribute for the user

authentication. The result will be graphically shown as a multidimensional function

with the local and the global extreme values.

- 19 -

2 DISSERTATION GOALS

The aim of the work is to apply and verify that it is possible to create a new

angle of view to the assembly of the neural networks to the computer security. The

aim of the verify part contains the verification procedures for the specific usability

of the neural networks in user identification and verification problems.

The steps leading to this dissertation could be summarized as follows:

Ø To prove that there is the place for the assembly of the neural

networks to the user verification processes

Ø To prove that the neural network might successfully verified

the user or might repaired the sample used for the user

verification

Ø To prove that the speed of the solution based on the neural

network is inside the practical limited (for example: the time

for the learning, identification, etc.)

Ø To define the part of standard user verification procedure that

might be replaced or proved by the neural network.

Ø To define the limited of usage for the neural network inside

the computer security application.

Ø To develop a system prototype for testing neural network

application inside the computer security processes.

- 20 -

THEORETICAL FRAMEWORK

- 21 -

3 USER VERIFICATION PROBLEM

 Biometric identification 3.1

The biometric identification is the perfect solution for the verification of

computer users. There are many methods to minimize the incorrect verification. But

there is the one so important problem. The problem is quality of the scanned

fingerprint or the eye iris. The quality of these “pictures” will be

perfect/normal/poor. The technical environment might produce a less detailed

picture. These messy pictures might produce the fail during the user authentication.

This failure might be critical in emergency systems such as the biometric lock on the

door.

 The artificial neural network will solve question of quality,

especially by self-repair functions of neural network.

3.1.1 Self-repair functions of neural network

The thesis deals with the self-repaired function of the Hopfield neural

network for reconstruction of fingerprints. The Hopfield artificial neural network

was chosen for this excellent self-repaired function [27]. The general schema of

used neural network shows Fig. 3.1.

Fig. 3.1 - Hopfield neural network schema [26]

- 22 -

Experiments described in 6.1 tested three basic samples of fingerprints

markants. The first step was teaching the network for specific samples. Samples

were prepared as a binary string of monochromatic fingerprint. Each neuron in

network represented one pixel of the source image. The sample with dimension 300

x 400 pixels required the neural network with 120 000 binary neurons. This amount

of binary neurons t represents the big problem for the computer system, high loading

and slow computing.

The next possible step for the minimizing these affect is compression or

grouping of the neurons/pixel of pictures. The solution might be in grouping binary

pixel with representation B/W colours to Double type values. Examples are shown

below.

Table 3.1 - Binary and double neuron comparision
Picture size n. binary neurons in Hopfield NN n. of double neurons in NN

300 x 400 120 000 1 875

280 x 320 89 600 1 400

This step reduces the size of NN and allows fast teaching process.

3.1.2 Neural network identification

The next problem that is flowing from the user authentication or verification

processes is the problem of identification. This problem will be solved by the neural

network classification. The first step is teaching the network with the pattern

samples such as fingerprints from verified users, users face, and specific users

characteristics. This method for authentication is occasionally un-implementable

from the start. The starting point must be some commonly used method for user

verification. Then might be learned the NN and process might continue. The basic

problem from the auto classification of testing samples is flowing from the problem

of code differences between the samples. There is impossible (extremely dangerous)

to design the NN classification as an increment ID number for the user, because

- 23 -

there is only the 1 bit code differences between the neighbours samples. This

problem is detailed described in 7.2.

3.1.3 Advanced security for the username and password

The username and password hash represents the potential security issues in

any databases or other methods for authentications systems. In the front of this

potential dangerous which is flowing from the potentially misuse of the username,

demonstration program used in this thesis implement different type of authentication

with username and password.

The commonly based systems use username and passwords as a two values

stored in the internal or external database. The username is stored as a blank test and

the password is stored as a hash function of real password. The problem is coming

from the data-mining methods. If the attacker receives the username, he is able to

use it. If the attacker stole the password hash, he is able to try crack it.

Next possible method is store username as a hash and password as a hash,

but the problem is still same. If there is a full hash of various string values, it is

possible to try crack it by the brutal force.

This system use combination of both hashes as the userhash authentication

string for secure verification of user identity. The principle is quite simple. There are

two hashes at the start. The first of them is has of username and the second one is

the hash from the password. Next, the system mixes it to one hash. The odd

characters of final hash are the odd characters from the username hash and the even

characters are the even characters from the password hash.

This principle is better illustrated in the table bellow.

Table 3.2 - userhash generator
Username hash ee26b0dd4af7e749aa1a8ee3c10ae9923f61898077...

Password hash 021b5b2ac76d969722e8b55d88d7a0c83dc61a73f...

Final userhash e22bbbda47fd…

- 24 -

Some information about username and hash is missing, but amount of

information is still sufficient. If the attacker stole the userhash he does not have full

information about username or password.

 MULTIDIMENSIONAL AUTHENTICATION 3.2
METHOD

There are many methods for the user authentication. Every method is built

on the small group of cryptographic models. The most commonly using method for

user password verification is hash verification. The password is as a hash code of the

password string. The authentication routine just compares the stored hash code and

the hashed password which user type to the authentication window. But after this

verification is the user verified or not. This action is only once. This is only at the

beginning of work. There were some other methods to prevent a user changing

without de-authorization and other user authentication. The common rule is: if you

leave your computer, you must log out or lock your account. But this is not real in

many organisations. For example: if user goes to the toilet, the user doesn’t log out

his account with some processing work. In many cases, the user just goes. In

minority cases, the user locks his account.

The problem of commonly using authentication methods is, that the user

was verified only once; at the beginning of work. Next, the user is verified until he

stop his work and “touch logout button”. During his work, the authentication

environment doesn’t check if the working user is the authentication user. The system

just trusts him [7].

3.2.1 Authentication continuum

The developing system is based on the authentication continuum. The

continuum is assignment to the user action and using multidimensional space for a

multifactor authentication of user login. The main point is approximation of the user

character. Each user is original. Each user has specific characterisation, which might

verify him. It will be the specific style of writing (the statistics style – not the

- 25 -

literal). The aim is combine this user characteristic factor to one multidimensional

function combined with his password. Each characteristic represents one dimension

of the user verification surface. The surface is deformed by many factors. There is

some basic verification surface based on the specific function such as the Ackley,

the De Jong, the Rana, etc.; this surface is combined with the user characteristic and

makes the originally surface with the global extreme value. The extreme value is the

floating point in the multidimensional space, which represent the originally user

private key. This is the one private key forever. The extreme value is not stable, it is

not the one point with coordinates {x,y,z,...}. It is floating point; it must be

adaptable to the human life. This adaptability is solving with the neural network,

especially by the one feature of the neural network. The feature is dynamic self-

learning of the neural network.

The authentication subsystem periodically collects user characteristic and if

is in the safe limit, the system allow the neural network adaptation. Next, the system

controls the specific extreme point of the user behaviour. If the extreme position and

the value is the same as in the multidimensional user surface, the system allows the

user to continue in working (user doesn’t know that the system made some actions).

If there are some unexpected changes, the system logout the user for preventing

potentially unsecure behaviour and save the log contains this action.

3.2.2 Blind shooting algorithm (BSA)

The BSA was developed as the algorithm for finding extreme values and

location of the multidimensional function. The algorithm was named as a “Blind

Shooting Algorithm”. The origin behaviour of the BSA is in nature behaviour

sequent from the shooting without vision.

The basic schema of the BSA is shows on the figure below, there were many

parallel computing values during searching for the local extreme in the specific area

[6]. The BSA is written as a multithread algorithm for extreme finding application.

- 26 -

Fig. 3.2 - BSA schema

F

- 27 -

The graphical progress of the algorithm is on the Fig. 3.3. The algorithm

starts at the top left part of the picture and end at the right bottom part.

Fig. 3.3 - BSA progress

The first part of the picture represented the starting point of the algorithm.

The blue point is the starting point. This point was generated as a random set of

coordinates. The black cone is the searching area for this step. The black points are

generated point coordinates for calculating values. The black points represent the

next potentially starting point. After the calculation, there is the algorithm for

finding the best value in testing set of black points. This algorithm computes with

some stochastic behaviour and might choose a different value that the local

maximum value. The stochastic part is adjustable by BSA parameters. The local

extreme was marked as the red point. This is the starting point for the next iteration.

The second part of the Fig. 3.3 (the right top) describes the second iteration

of the BSA. There is a new starting point marked as blue point and a new shooting

black cone. The cone is in direction with the gradient between the last starting point

- 28 -

and the present starting point. In this case, the iteration was not found a better value

than is the starting point. The BSA produces rotation of the searching cone. The

rotation is user specified. The rotation is present as the green cone in the picture

simulation. The new best value is marked as the red point.

The left bottom part shows the last position changing in the algorithm. The

BSA possibly found the best solution. There was a user specified parameter, which

represent the maximal number of rotation from one starting point. Rotations are

marked as green cones on the picture.

The last part of the picture shows the end of searching. The red point

represents the global extreme of the testing function.

The detailed test outputs from BSA are described in APPENDIX A.

- 29 -

4 NEURAL NETWORK CRYPTOGRAPHY

The neural network will be used for the cryptography. The main subject,

which is important for this purpose is complexity and structure with connection

between nodes (neurons). The node couldn’t be connected only with the one other

node. One node occasionally has more parents and more children in neural network

hierarchy. There will be connections between levels of neural network. The basic

schema of neural network shows Fig. 4.1. The left side of figure shows very simple

type of artificial neural network, there are only 3 levels/layers of network. The input

layer is for incoming values. The output layer is for displaying results and the

hidden layer for transforming data. The right side represents the massive structure of

neural network. There are many connections, layers and nodes [28].

Fig. 4.1 - Basic/extended (real) structure of neural network

 Cryptographic complexity 4.1

As is shown on the figure above, the structure of “the basic network” will be

reproduced significantly easy. There are only 3 layers and 9 neurons. The number of

combination is relatively small. But the right side of Fig. 4.1 contains many

hundred/thousand/million/etc. neurons and many connections. It is impossible to

reproduce the network without knowing the information about structure,

connections and weights. The number off possibilities is enormous. This property

(extremely complexity of crypto analysis) is one of the best features for

cryptography [5].

- 30 -

 Cryptography structure 4.2

The complexity of structure is the main point. Firstly, there was a structure

with many neurons and layers. The minimal limit for layers is 8 layers. The minimal

limit for neurons in the next layer depends on previous layer as shows below. The

letter i represents layer index, the letter n is number of neurons in specific layer.

 !!!! ≫ !! (3.1)

 The Fig. 4.2 represents the crypto-neural network. There are 8 binary

neurons in the input layer. The network will encrypt 8-bit words (ASCII). The left

part, which includes the input layer and some randomly generated part of the

network, is as a public part of the algorithm. Everybody might use it and publish.

The other part is the private part with output/result layer and reminders neurons of

the network.

Fig. 4.2 - Public and private part of crypto-network

 Cryptography algorithm 4.3

Firstly, specify the dimension of inputs. It depends on the cryptography

input text. It is not recommended to use the network with one binary input. For text

is recommended to use a 16 binary input layer, the 16 binary words represent

Unicode coding extension. The number of input neurons depends on data string,

- 31 -

which is used for data in secured message. The quantum of input neurons is

unlimited.

The next step is generation pseudorandom noise of the message. The

generated noise string must have the same dimension as the source (open) message.

There were 3 vectors of binary numbers:

1. Binary representation of open message (OM ={0,0,0,1,1,0,1,1,0,1,})

2. Pseudorandom binary noise of message (PRN={0,1,1,1,1,0,1,0,1,1})

3. Binary message as an input to the network – source open message with

pseudorandom noise !" = !" + !"# (IM = {0,0,0,1,1,0,1,0,0,1}). The

addition of noise is realizes by first layer of the neural network. The noise

vector is a part of he neural network structure.

The training set for teaching of neural network contains OM and OM.

The OM is set with inputs to network; the OM is set of requested outputs. Next

continue with training of network by the Back propagation algorithm, the

Differential evolution or the Genetic algorithms.

Now there was the learned network. Then it is necessary to generate a

random cutting path between layers of the neural network. The cut distribute the

network to two main parts. The first is the public part, which contain input layer

and some hidden layer of the network. The second part contains the output layer

and some rest neurons.

The encryption process shows Fig. 4.3. The network cut represented

output layer from the public part of crypto-network.

Fig. 4.3 - Encryption process

Open	
 mesage	
 Adding	
 pseudo-­‐
random	
 noise	

Send	
 to	
 neural	

network	

Send	
 message	

from	
 network	
 cut	

- 32 -

 The decryption process is applied rest part of the network (signed as

private part of the neural network). The cut place works as an input layer of the

“new” neural network. Output layer of rest neural network represent the decrypted

message.

Fig. 4.4 - Decryption process

Received	
 message	
 Send	
 to	
 neural	

network	

Output	
 from	
 network	

=	
 Open	
 message	

- 33 -

5 SECURITY TOKEN

The security token represents the virtualized solution for the user

authorization. The token is a combination of each previously described technique.

The token uses the biometric identification subroutine, which enables the biometric

identification of the user. The self-repair function of the biometric identification is

included inside these biometric subroutines. The next part of the security token is

the multidimensional user identification subsystem, which represents the real-time

verification system. This system could identify the user switching without the logoff

and the login actions. The data was secure by the neural network cryptography

subsystem. The token assembly the neural network technologies and produce the

complete package for using. The package is shown on the Fig. 5.1.

Fig. 5.1 - Security token structure

Security	
 token	

Neural	
 crypto	
 network	
 subsystem	

Mul?dimensional	
 verifica?on	

subsystem	

Biometric	
 subsystem	
 with	
 neural	

network	

- 34 -

The token can work in 2 different states. The first is the user authentication

token, which produces the user credentials to secured system. The second function

might be the whole security authentication system, which has trust relations with the

master security system. The trust relationship is secure with asymmetric key pair

sharing between the token security system and the master security system [22]. The

key exchange is shown on the Fig. 5.2.

Fig. 5.2 - Duplex trust relationship

The relationship is trust model between the security token and the master

security system. The relationship might be duplex or the one way. It is possible to

have one way trust model between the security token and the master system which

mean, the master system trust user verification produced by the security token. The

one-way relationship is on the Fig. 5.3.

SE
C

U
R

IT
Y

 T
O

K
E

N

M
A

ST
E

R
 S

E
C

U
R

IT
Y

SY
ST

E
M

 Token’s public key

Master system’s public key

- 35 -

Fig. 5.3 - One way trust model

The token might content several key pairs for trust relationships with

various security systems. The token with relationship works as the external database

with user credentials and general rights.

SE
C

U
R

IT
Y

 T
O

K
E

N

M
A

ST
E

R

SE
C

U
R

IT
Y

SY
ST

E
M

Token’s public key

- 36 -

PRACTICAL PART

- 37 -

6 SELF REPAIR ABILITIES

 Hopfield neural network - fingerprints 6.1

Fig. 6.1 shows the tested samples. There were 3 different samples of the

real fingerprint. Source pictures were digitalized and cleaned from noise and

graphically mistakes. This cleaning and repairing wasn’t effect the self-repair

function of the Hopfield neural network. The cleaning operation was made only for

showing the pictures.

Fig. 6.1 - Testing samples

The second step was digitalization of used samples to monochromatic

binary neuron structures. These processes was realized by custom C# language

program which open the bmp picture and produce the data string contains structures

binary values which represented each pixel of source image. The structured output

shows Fig. 6.2.

{{0,1,1,1,1,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,1…},{0,0,1,1

,1,1,1,0,0,0,1,0,1,0,…},{...}}

Fig. 6.2 - Output string format

The third step was teaching of the Hopfield neural network with 3 testing

samples.

After upper described steps, there was the fitted neural network, which is

able to repair and recognize 3 samples of fingerprints. The simulation of critical

- 38 -

factor, which produce noise or lower quality of the scanned finger, was realized with

generated noise. The noise was generated as the uniform resolution noise. The next

step was adding this noise to testing samples. Fig. 6.3 shows testing samples with

75% of noise. The left side of the picture shown below represents testing samples

with 75% of noise. The right side represented the original clear samples for testing

the self-repair function of the Hopfield neural network.

Fig. 6.3 -75% noise, testing samples

Tests were realized in the Wolfram Mathematica 8 simulation environment.

Testing results shows Fig. 6.4. Samples with added noise are on the left part of

picture shown below. The right part of picture shows the original clear sample. The

middle part of this result shows repaired samples with Hopfield neural network.

- 39 -

	
 	
 	

	
 	
 	

	
 	
 	

Fig. 6.4 - Testing result

The result shows, that the NN has a huge potential in self-repairing

procedures. This potential might be used as the entry point to the next authentication

procedure. The NN is able to pre-prepare the damaged sample for the main

identification procedure. This step reduces the amount of data that must be inside the

sample. The NN might repair unreadable data and the verification procedure

receives a clear sample for the next identification process.

The self-repair ability is successful until the noise level is lower than 75%.

This is flowing from the experimental testing with real fingerprints.

- 40 -

 Hopfield neural network – face 6.2

The neural network for the picture reconstruction is based on the Hopfield

neural network. The testing samples contained pictures of six different faces. There

were some woman’s and man’s faces captured from different positions. These faces

are shown on Fig. 6.5.

Fig. 6.5 - Source faces

6.2.1 Face reconstruction

The next was producing the images with the lower quality. There was used a

noise for simulation the nature problems such as the rain, the fog and the limited

visibility. The testing procedure contained the learned neural network (network was

learned with the samples of faces). These experiments were realized 100 times and

the followed picture represents the reconstructed samples. The Fig. 6.6 represents

the minority noise. The noise does not affect each sample. Some samples are still

relatively clear and processing system might identify it.

- 41 -

The next figure describes the samples with 40% of the noise. This level

made marginally changes in some samples, especially the first and the second from

the left in the second line. The identification of these samples is quite complicated,

because these samples lost some of the specific biometric characteristics.

Fig. 6.6 - 40% on noise

The reconstruction showed in the Fig. 6.7 represents, that the neural network might

repair these damaged samples to the original state.

- 42 -

Fig. 6.7 - 40% of noise – reconstruction

The Fig. 6.8 shows the medium level of the noise at the 60% level. The source

samples are damaged and the human operator does not recognize the original

samples. The pixel comparison method does not work, because the samples lost

marginal numbers of biometric identification markants [14]. The pictures are

damaged.

- 43 -

Fig. 6.8 - 60% of noise

The result from the neural network repair procedure is shown on the Fig.

6.9. The network could repair the original samples with extremely accuracy. The

pictures were reconstructed to their original state. The identification system might

analyse these samples and provide the positive or negative identification of selected

users/peoples. The huge potential of the neural network self-repair function is

representing by these results.

- 44 -

Fig. 6.9 - 60% of noise - reconstruction

- 45 -

7 CLASSIFICATION OF SAMPLES

 Non-secure classification 7.1

The Neural network might be used as an identification element. This meant

that this NN has output layer that specify which sample was at the entry layer. The

non-secure classification is based on the 1 bit code differences between samples.

Table 7.1 - Non-secure classification
Input binary layer Output layer

{1,1,1,0,0,1,0,1,0,1,0,0,1,1,0,1,0,1,1,0,…..} {0,0,0,1}

{1,0,0,0,0,1,0,1,0,1,1,1,1,1,0,1,0,1,1,0,…..} {0,0,1,0}

{1,1,0,0,0,1,0,1,0,1,0,1,1,1,0,1,0,0,1,0,…..} {0,0,1,1}

{1,1,1,0,0,1,0,1,0,1,1,1,1,0,0,1,0,1,0,0,…..} {0,1,0,0}

{0,1,1,0,0,0,0,1,0,1,1,1,1,1,0,1,0,0,1,0,…..} {0,1,0,1}

This method for classification has a big security problem. The problem is

inside the code differences between neighbour samples. If there is a huge damage or

the sample is quite similar (not the same), the classification might jump to the

known sample and verification process is corrupted. The solution of this issue is in

securing the output code by some redundant code.

 Securing the code by BCH code 7.2

Upper described problem is solved by the adding the redundant information

to the output from the layer. There was chosen the BCH code with 31 bit length and

15 bit redundant bits, known as BCH 31/15. This code might detect the corrupted

string and if the amount of the corrupted bits is in limit, the code might correct the

sample. So the output layer does not have only 1 bit differences and the verification

process could not be corrupted by the 1 corrupted bit in the output layer of NN.

- 46 -

Table 7.2 - Secure classification by the BCH code
Output layer BCH

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1

0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0

0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1

0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0

0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1

Table 7.2 shows the incremental counter for generation user ID number.

The differences between the number is 1(in decimal non-secure notification), but

inside the NN there is greater bit difference.

- 47 -

8 NEURAL NETWORK FINGERPRINT

IDENTIFICATION

This identification is based on the multi-layer neural network. This network is

trained to recognize specific samples of fingerprint pictures. The pictures are

converted to the B/W colour pictures. The next step is conversion of picture pixels

to their binary neuron representation. The process is adapted to the Double value

neurons. Each 64-bit neuron is converted to one Double value. This value

represented the one input neuron to the designed network. The samples are scanned

by the Biomini fingerprint scanner. The size of samples is fixed to 280x320 pixels.

This provide 89 600 binary pixel with value 0 or 1. There were 1400 Double value

neurons after conversion raw binary neuron to the Double value testing neurons.

After this, there was a training set to neural network. The output is generated as the

ID code secured by BCH code. This process is shown on Fig. 8.1.

Fig. 8.1 - Training set generation process

The training set contains the input vectors represented by the Double

neurons loaded from the fingerprint and the BCH code of ID.

Type of the network was chosen as a multilayer network with variable

number of layers. The minimal number of layers is 3 that represented the input layer

for the picture information, one hidden layer and output layer with one Double

neuron with the secured ID of fingerprint. Practical part of this process is shown on

the Fig. 8.2.

Scanning	
 finger	
 convert	
 picture	
 to	

B/W	

convert	
 binary	

neurons	
 to	
 Double	

neurons	

Generate	
 input	

pair	
 of	
 training	
 set	

Generate	
 output	

pair	
 of	
 training	
 set	
 Training	
 set	

- 48 -

 Training process definition 8.1

Training process has 2 ending mechanisms; the first of them is the

acceptable error of training. This value s super user defined during the training

process. The second stopping mechanism is the difference between training errors.

The system supported the set of this difference for the emergency stopping

mechanism. If there are too les number of neurons inside the hidden layer or layers,

this stopped the infinite loop of the training process. Thus this mechanism must

receive 30 differences with less value than user defined in a row. After this, the

training is stopped.

The default training error was set to 0. 000 000 1 or less in each tests

described inside this work. This value represented the allowed differences between

the binary value of the ideal value and the value received from the neural network.

 Training progress 8.2

The training progress is represented by the graphical sequence of training

error during the process. The progress is visualised as a graph with the training error

during the training process. The second graph represented the differences between

steps. This differences was computed a difference between the last training error and

the actual training error.

The last part of training process information is the table with the time and

statistic information which is flowing from the simulation.

List of

binary

values

List of Double

values = input pair

of training set

Fig. 8.2 - Input pair generation process

- 49 -

The next chapters represent the experimental output affording on the number

of layers and number of neurons in hidden layers. Each experiment has own table

with the settings and statistic information and graphical output from the testing

procedures.

8.2.1 Progress – one hidden layer with 30 neurons

Table 8.1 - Training L30
Number of fingerprints 31

Input layer 1400 neurons

1. hidden layer 30 neurons

Output layer 31 neurons

Acceptable training error 0.0000001 (1 . 10 -7)

Acceptable training error difference 0.0000001 (1 . 10 -7)

No. training epoch 417

Training duration 00:00:06.23 (H:M:S)

Last training error value 1.8624 . 10-9

- 50 -

Fig. 8.3 - Training error L30

Fig. 8.4 - Training error difference L30

- 51 -

8.2.2 Progress – one hidden layer with 50 neurons

Table 8.2 - Training L50
Number of fingerprints 31

Input layer 1400 neurons

1. hidden layer 50 neurons

Output layer 31 neurons

Acceptable training error 0.0000001 (1 . 10 -7)

Acceptable training error difference 0.0000001 (1 . 10 -7)

No. training epoch 136

Training duration 00:00:03.47 (H:M:S)

Last training error value 7.2884 . 10-8

Fig. 8.5 - Training error L50

- 52 -

Fig. 8.6 - Training error difference L50

8.2.3 Progress – one hidden layer with 100 neurons

Table 8.3 - Training L100
Number of fingerprints 31

Input layer 1400 neurons

1. hidden layer 100 neurons

Output layer 31 neurons

Acceptable training error 0.0000001 (1 . 10 -7)

Acceptable training error difference 0.0000001 (1 . 10 -7)

No. training epoch 42

Training duration 00:00:02.37 (H:M:S)

Last training error value 6.9461 . 10-11

- 53 -

Fig. 8.7 - Training error L100

Fig. 8.8 - Training error differences L100

- 54 -

8.2.4 Progress – one hidden layer with 1000 neurons

Table 8.4 - Training L1000
Number of fingerprints 31

Input layer 1400 neurons

1. hidden layer 1000 neurons

Output layer 31 neurons

Acceptable training error 0.0000001 (1 . 10 -7)

Acceptable training error difference 0.0000001 (1 . 10 -7)

No. training epoch 32

Training duration 00:00:06.2273562 (H:M:S)

Last training error value 9.4832 . 10-8

Fig. 8.9 - Training error L1000

- 55 -

Fig. 8.10 - Training error differences L1000

8.2.5 Progress – two hidden layer with 500,100 neurons

Table 8.5 - Training L500, L100
Number of fingerprints 31

Input layer 1400 neurons

1. hidden layer 500 neurons

2. hidden layer 100 neurons

Output layer 31 neurons

Acceptable training error 0.0000001 (1 . 10 -7)

Acceptable training error difference 0.0000001 (1 . 10 -7)

No. training epoch 86

Training duration 00:00:49.30 (H:M:S)

Last training error value 1.0095 . 10-8

- 56 -

Fig. 8.11 - Training error L500, L100

Fig. 8.12 - Training error differences L500, L100

- 57 -

8.2.6 Progress – two hidden layer with 750,300 neurons

Table 8.6 - Training L750, L300
Number of fingerprints 31

Input layer 1400 neurons

1. hidden layer 750 neurons

2. hidden layer 300 neurons

Output layer 31 neurons

Acceptable training error 0.0000001 (1 . 10 -7)

Acceptable training error difference 0.0000001 (1 . 10 -7)

No. training epoch 81

Training duration 00:01:21.46 (H:M:S)

Last training error value 6.3390 . 10-12

Fig. 8.13 - Training error L750, L300

- 58 -

Fig. 8.14 - Training error differences L750, L300

8.2.7 Progress – two hidden layer with 1000,500 neurons

Table 8.7 - Training L1000, L500
Number of fingerprints 31

Input layer 1400 neurons

1. hidden layer 1000 neurons

2. hidden layer 500 neurons

Output layer 31 neurons

Acceptable training error 0.0000001 (1 . 10 -7)

Acceptable training error difference 0.0000001 (1 . 10 -7)

No. training epoch 97

Training duration 00:02:29.17 (H:M:S)

Last training error value 3.2802 . 10-16

- 59 -

Fig. 8.15 - Training error L1000, L500

Fig. 8.16 - Training error differences L1000, L500

- 60 -

8.2.8 Progress – three hidden layer with 1000,1500,1000 neurons

Table 8.8 - Training L1000, L1500, L1000
Number of fingerprints 31

Input layer 1400 neurons

1. hidden layer 1000 neurons

2. hidden layer 1500 neurons

3. hidden layer 1000 neurons

Output layer 31 neurons

Acceptable training error 0.0000001 (1 . 10 -7)

Acceptable training error difference 0.0000001 (1 . 10 -7)

No. training epoch 602

Training duration 00:35:07.87 (H:M:S)

Last training error value 1.3241 . 10-14

- 61 -

Fig. 8.17 - Training error L1000, L1500, L1000

Fig. 8.18 - Training error differences L1000, L1500, L1000

- 62 -

8.2.9 Progress – three hidden layer with 1000,3000,1000 neurons

Table 8.9 - Training L1000, L3000, L1000
Number of fingerprints 31

Input layer 1400 neurons

1. hidden layer 1000 neurons

2. hidden layer 3000 neurons

3. hidden layer 1000 neurons

Output layer 31 neurons

Acceptable training error 0.0000001 (1 . 10 -7)

Acceptable training error difference 0.0000001 (1 . 10 -7)

No. training epoch 148

Training duration 00:15:02.23 (H:M:S)

Last training error value 1.3981 . 10-8

- 63 -

Fig. 8.19 - Training error L1000, L3000, L1000

Fig. 8.20 - Training error differences L1000, L3000, L1000

- 64 -

 Results – usability of NN 8.3

The output from the previously described steps is the trained neural network

with high level of self-repairing function. This NN is able to identify the known

fingerprint samples. This network is stored into SQLite database and used for the

verification of people. There are two different usability of the NN; the first is inside

using the one neural network for all fingerprint samples, which system must detect

and successfully identify. This process required that system administrator must have

the whole database of fingerprint identification pictures. Next there was a network

that is trained with these specific samples. This process is applicable in user

environment with zero or minimal user migration.

The second usability is flowing from the using one neural network for each

user. The network is able to identify only the owner of this NN. This allows using

the network as a portable verification token. Each user has specific neural network

that will be trained with each finger. The user security token contains the user neural

network. Verification network is the portable. The results of the identification

process are detailed described in APPENDIX B.

- 65 -

9 NEURAL NETWORK FACE IDENTIFICATION

The face identification process is particularly similar than the fingerprint

identification. The source data are similar. There is a picture captured by the camera.

This picture represents the face of the scanned user. If there is a noise or lower light

environment, the picture cannot be compare with the original sample stored in

internal database pixel by pixel. The first potentially issues is flowing from the

partial changes of the face; for example the beard. The next problem of

identification is the different position of scanned face. The neural network might

reconstruct this face and it is less addicted on the quality of pictures. There is a place

for a few error limits, which cannot change the result of the verification procedure.

Fig. 9.1 - Training set generation - face

The identification engine uses the similar principle as the fingerprint identification

process. Firstly, there is a scanning of face; the webcam build in notebook or other

portable device realizes this operation. This process produces the colour picture with

the face. The next operation is conversion to the B/W colour pallet and creating

binary neurons. Binary neurons are converted to the double input neurons and added

to the training set as inputs. The ID number secured with the BCH code represents

the outputs. The procedure of creating training set is shown on Fig. 9.2.

Scanning	
 face	
 convert	
 picture	
 to	

B/W	

convert	
 binary	

neurons	
 to	
 Double	

neurons	

Generate	
 input	

pair	
 of	
 training	
 set	

Generate	
 output	

pair	
 of	
 training	
 set	
 Training	
 set	

List of

binary

values

List of Double

values = input pair

of training set

Fig. 9.2 - Input pair generation process

- 66 -

 Training process definition 9.1

Training process has 2 ending function; the first of them is the acceptable

error of training. This value s super user defined during the training process. The

second stopping mechanism is the difference between training errors. The system

supported the set of this difference for the emergency stopping mechanism. If there

are too les number of neurons inside the hidden layer or layers, this stopped the

infinite loop of the training process. Thus this mechanism must receive 30

differences with less value than user defined in a row. After this, the training is

stopped.

The default training error was set to 0. 000 000 01 or less in each tests

described inside this work. This value represented the allowed differences between

the binary value of the ideal value and the value received from the NN.

 Training progress 9.2

The training progress is represented by the graphical sequence of training

error during the process. The progress is visualised as a graph with the training error

during the training process. The second graph represented the differences between

steps. This differences was computed a difference between the last training error and

the actual training error.

The last part of training process information is the table with the time and

statistic information which is flowing from the simulation.

The next chapters represent the experimental output affording on the number

of layers and number of neurons in hidden layers. Each experiment has own table

with the settings and statistic information and graphical output from the testing

procedures.

- 67 -

9.2.1 Progress – one hidden layer with 30 neurons

Table 9.1 - Training L30
Number of fingerprints 31

Input layer 1400 neurons

1. hidden layer 30 neurons

Output layer 31 neurons

Acceptable training error 0.00000001 (1 . 10 -8)

Acceptable training error difference 0.00000001 (1 . 10 -8)

No. training epoch 887

Training duration 00:00:15.10 (H:M:S)

Last training error value 3.2967 . 10-17

Fig. 9.3 - Training error L30

- 68 -

Fig. 9.4 - Training error differences L30

9.2.2 Progress – one hidden layer with 50 neurons

Table 9.2 - Training L50
Number of fingerprints 31

Input layer 1400 neurons

1. hidden layer 50 neurons

Output layer 31 neurons

Acceptable training error 0.00000001 (1 . 10 -8)

Acceptable training error difference 0.00000001 (1 . 10 -8)

No. training epoch 104

Training duration 00:00:03.24 (H:M:S)

Last training error value 7.0081 . 10-18

- 69 -

Fig. 9.5 - Training error L50

Fig. 9.6 - Training error differences L50

- 70 -

9.2.3 Progress – one hidden layer with 100 neurons

Table 9.3 - Training L100
Number of fingerprints 31

Input layer 1400 neurons

1. hidden layer 100 neurons

Output layer 31 neurons

Acceptable training error 0.00000001 (1 . 10 -8)

Acceptable training error difference 0.00000001 (1 . 10 -8)

No. training epoch 55

Training duration 00:00:03.33 (H:M:S)

Last training error value 3.4690 . 10-10

Fig. 9.7 - Training error L100

- 71 -

Fig. 9.8 - Training error differences L100

9.2.4 Progress – one hidden layer with 1000 neurons

Table 9.4 - Training L1000
Number of fingerprints 31

Input layer 1400 neurons

1. hidden layer 1000 neurons

Output layer 31 neurons

Acceptable training error 0.00000001 (1 . 10 -8)

Acceptable training error difference 0.00000001 (1 . 10 -8)

No. training epoch 30

Training duration 00:00:41.79 (H:M:S)

Last training error value 5.4860 . 10-9

- 72 -

Fig. 9.9 - Training error L1000

Fig. 9.10 - Training error differences L1000

- 73 -

9.2.5 Progress – two hidden layer with 500,100 neurons

Table 9.5 - Training L500, L100
Number of fingerprints 31

Input layer 1400 neurons

1. hidden layer 500 neurons

2. hidden layer 100 neurons

Output layer 31 neurons

Acceptable training error 0.00000001 (1 . 10 -8)

Acceptable training error difference 0.00000001 (1 . 10 -8)

No. training epoch 123

Training duration 00:01:16.46 (H:M:S)

Last training error value 1.2855 . 10-10

Fig. 9.11 - Training error L500, L100

- 74 -

Fig. 9.12 - Training error differences L500, L100

9.2.6 Progress – two hidden layer with 750,300 neurons

Table 9.6 - Training L750, L300
Number of fingerprints 31

Input layer 1400 neurons

1. hidden layer 750 neurons

2. hidden layer 300 neurons

Output layer 31 neurons

Acceptable training error 0.00000001 (1 . 10 -8)

Acceptable training error difference 0.00000001 (1 . 10 -8)

No. training epoch 60

Training duration 00:01:05.21 (H:M:S)

Last training error value 2.0808 . 10-10

- 75 -

Fig. 9.13 - Training error L750, L300

Fig. 9.14 - Training error differences L750, L300

- 76 -

9.2.7 Progress – two hidden layer with 1000,500 neurons

Table 9.7 - Training L1000, L500
Number of fingerprints 31

Input layer 1400 neurons

1. hidden layer 1000 neurons

2. hidden layer 500 neurons

Output layer 31 neurons

Acceptable training error 0.00000001 (1 . 10 -8)

Acceptable training error difference 0.00000001 (1 . 10 -8)

No. training epoch 64

Training duration 00:01:55.80 (H:M:S)

Last training error value 7.5042 . 10-10

Fig. 9.15 - Training error L1000, L500

- 77 -

Fig. 9.16 - Training error differences L1000, L500

9.2.8 Progress – three hidden layer with 1000,1500,1000 neurons

Table 9.8 - Training L1000, L1500, L1000
Number of fingerprints 31

Input layer 1400 neurons

1. hidden layer 1000 neurons

2. hidden layer 1500 neurons

3. hidden layer 1000 neurons

Output layer 31 neurons

Acceptable training error 0.00000001 (1 . 10 -8)

Acceptable training error difference 0.00000001 (1 . 10 -8)

No. training epoch 1070

Training duration 01:14:46.56 (H:M:S)

Last training error value 5.6115 . 10-9

- 78 -

Fig. 9.17 - Training error L1000, L1500, L1000

Fig. 9.18 - Training error differences L1000, L1500, L1000

- 79 -

9.2.9 Progress – three hidden layer with 1000,3000,1000 neurons

Table 9.9 - Training L1000, L3000, L1000
Number of fingerprints 31

Input layer 1400 neurons

1. hidden layer 1000 neurons

2. hidden layer 3000 neurons

3. hidden layer 1000 neurons

Output layer 31 neurons

Acceptable training error 0.00000001 (1 . 10 -8)

Acceptable training error difference 0.00000001 (1 . 10 -8)

No. training epoch 178

Training duration 00:21:34.32 (H:M:S)

Last training error value 6.6971. 10-9

- 80 -

Fig. 9.19 - Training error L1000, L3000, L1000

Fig. 9.20 - Training error differences L1000, L3000, L1000

- 81 -

 Results – usability of NN 9.3

The output from the previously described steps is the trained neural network

with high level of self-repairing function. This NN is able to identify the known face

samples. This network is stored into SQLite database and used for the verification

of people. There are two different usability of the NN; the first is inside using the

one neural network for all possible face samples, which system must detect and

successfully identify. This process required that system administrator must have the

whole database of faces identification pictures. Next there was a network that is

trained with these specific samples. This process is applicable in user environment

with zero or minimal user migration.

The second usability is flowing from the using one neural network for each

user. The network is able to identify only the owner of this NN. This allows using

the network as a portable verification token. Each user has specific neural network

that will be trained with each view and angle. The user security token contains the

user neural network. Verification network is the portable. The results of the

identification process are detailed described in APPENDIX B.

- 82 -

10 SECURITY SYSTEM

The designed security system is divided to two independent applications.

Each of these applications has own user interface and specific purpose. The first

application is only for the verification process. The prototype user interface is shown

on Fig. 10.1.

Fig. 10.1 - Security system UserGUI

 The prototype of the admin part of application is shown on Fig. 10.2.

- 83 -

Fig. 10.2 - Security system Admin part

 Verification GUI 10.1

This part of security application is developer for the verification process.

The application used GUI with 2 picture parts. The left one is for fingerprint; this

part has highlighted area for the fingerprint. The fingerprint must have the central

point inside the highlighted area. The second part is for the user face picture. The

application provides live view to the camera; the user might correct the position of

face and press Capture button below the picture.

The next part is represented by the username and password. These

credentials is using for the generation of the specific userhash. The userhash is

combination of hash values from the username and the password. The detail

description is in chapter 3.1.3.

- 84 -

10.1.1 User identification process

The user identification process is flowing from the Fig. 10.1. The

identification procedure is shown on Fig. 10.3.

Fig. 10.3 - User verification process

The first step is providing the credential information; the valid username and

the password. The next part contains the biometric identification procedures

including the neural network for the fingerprint and face identification. The user

manages the capture process. The user performs click action inside the GUI and

captures the fingerprint picture. Next the user clicks onto Capture button below the

webcam screen. The verification process continues with the verification of created

userhash and two neural networks for identification. The first is for the fingerprint

identification and the second one is for the face identification process.

Creden?als	

• username	
 	

• password	

Fingerrpint	

• capture	
 fingerprint	
 from	
 BioMINI	

Face	

• capture	
 from	
 webcam	

Iden?ficaion	

process	

• Verifica?on	
 of	
 provided	
 creden?als	

• NN	
 fingerprint	
 iden?fica?on	

• NN	
 face	
 iden?fica?on	

Security	
 token	

• security	
 token	
 compila?on	

- 85 -

10.1.2 Class and function documentation

10.1.2.1 Interface UserGUI

The UserGUI represents the interface and the main part of verification

security subsystem. This class contains security token for user verification. The

token contains two neural networks for user biometric verification and generated

userhash from successful login operation. This token has default value as null. The

next structure inside this class is UserCharacteristic structure which assembly the list

of controlled user specification.

Fig. 10.4 - Interface UserGUI

The UserGUI interface also contains methods for the basic verification

operations such as: Login and Logout actions, supported operation for capturing

fingerprint and face picture. The checking operation which control the right format

of provided credentials is represented by the method CheckForm(). The specific user

characteristic is collected by the CollectUserCharacteristics() function. The function

- 86 -

also provide the intelligent comparison between stored characteristic and the new

one. The statistic information about neural network stored inside the security token

shows the function WriteNetInfo().

10.1.2.2 Class SecurityToken

 This class represented the security center of designed solution. The class

wraps user verification information. The TokenID is the same value that user has

inside internal credential database. The ValidHash is the userhash value. The

certificate array contains certificates of external systems with trust relationship;

system which used this security token as a trust user token. The FingerIdentification

is a class with the neural network for the fingerprint identification. The variable

FaceIdentification is the neural network for face identification process.

Fig. 10.5 - Class SecurityToken

 The class also wraps the method for user verification process. The first is the

ValidateHash method for periodical check of userhash value. This is security system

disallow any changes of userhash; this value does not be changed without login

logout procedure. The PublicHash get the public part of user certificate; these

- 87 -

certificates might be imported to external systems for the trust relationship. The

ImportCertificate contains function for certificate import. This function is for

available two way trust relationship.

10.1.2.3 Class UserCharacteristics

 The UserCharacteristcs class wrap the functions for operations with the

array of each user characteristics. The CharacteristicArray contains the array of each

Characteristic.

Fig. 10.6 - Class UserCharacteristics

The methods contain the basic operation with the user characteristics such as

add user characteristics represented by the method called AddUserCharacterists.

Function GetValue is for return of specific user characteristics identify by the

characteristic label. The method called as Update contains update function for the

user characteristics, this update must be allowed by the supervisor function which

determined which change is inside the limit and which might represents the potential

security issue. The periodical function CollectCharacteristics running at the

background and periodically collecting and updating user characteristics. The

- 88 -

periodical check prevents the user-switching without correct user logout and login

process.

10.1.2.4 Class Characteristic

 This class wrap the function for operation with each of the user

characteristics. It represents the atomic part of user characteristics. The class

contains variable with the original label of characteristic (variable Label), the

specific value of this characteristic (variable Value) and the formal description of

characteristic (variable Description). The description contains the text description of

characteristic in “human” based style: for example “average no. alphabetic chars

click per second”. The method provides functions for the Set and Get value of each

variables in this class. The function Update provides updating of class variables.

Fig. 10.7 - Class Characteristic

- 89 -

10.1.2.5 Class DatabaseClass

 The class wraps the SQLite database functionalities. The local variable

represents the connection string to existing SQLite database. This solution was

chosen for his high availability. The database type switching will be realized by

creation of new Class with the operation with other database type: for example

MySQL, MSSQL or other.

Fig. 10.8 - Class DatabaseClass

 The methods inside this class wraps provide operation with the SQLite

database. There are methods for generate connection string (CreateConnection), for

creating database (CreateDatabase), user operations (AddUser – add new user to

database), user exist check (IsUserExist), functions for userhash generation

(GenerateUserHash). The method SaveNetworkToSQLite provides functionality for

saving the neural network to the SQLite database.

 The method GetDataNetworkFromDB provides operations for the loading

neural network from SQLite database. Methods DatabaseFilePut and

- 90 -

DatabaseFileRead collect function for the export or import neural network to or

from binary file.

10.1.2.6 Class ImageOperations

 This class simplifies the build in image operation. The class provide the

functions for the image colour conversion to B/W colour model. The method

convertImages provide batch conversion operation on array of files.

Fig. 10.9 - Class ImageOperations

10.1.2.7 Class NeuralNet

 This class simplify the neural network creation and basic operation with

neural network. It provides some simple interface for the Encog neural network

framework.

 The class constructor builds the structure of the neural network. The

LoadNetwork loads serialized neural network to the Encog framework. The function

SaveNetwork serialize Encog network and export it to the database or file.

- 91 -

Fig. 10.10 - Class NeuralNet

10.1.2.8 NeuralNetOperations

 This class wraps he operation with the neural network. It represented the

bridge between the security system and the Encog neural network framework. The

variable netwotk represents the neural network. The TrainingSet is the training set

for the neural network training process. The Train is the progress and status from

training operation. The NoNILayer represents the number of neurons in input layer

(based on the size of input vector). The variable NoNOLayer contain the number of

neurons in output layer; 31 neurons in this application. The OutputErrorString is the

log string with training error progress. The OutputErrorDiffString represents the log

string with error difference during training.

- 92 -

Fig. 10.11 - Class NeuralNetOperations

The methods included inside this class provide the functionalities for the

operations with the neural network model. There are some methods for returning

the private value from the call container: GetNoNILayer, GetNoNOLayer, The next

- 93 -

is the support function for the operation with the string values and double arrays:

GetStringFromArray and GetNDigits, ConvertToBit, ConvertToDoubleA,

GetPixels. The other function is implemented for the operations with neural

network: GenerateNetwork, GenerateTrainingSet, NNTraining, TestSet,

GenerateInputs, GenerateOutputs, LoadNN, LoadNNFromSQLite, SaveNN,

GetSerializedNN, TestExample and TestFile.

 Admin GUI 10.2

10.2.1 Creating security token

The next picture describes the process of security token generation. The

Admin GUI realizes this process.

Fig. 10.12 - Creating of security token

Creden?als	

• user	
 must	
 provide	
 the	
 username	
 and	
 the	
 password	

• crea?ng	
 a	
 userhash	
 and	
 the	
 database	
 entry	

Fingerprint	

• user	
 must	
 provide	
 the	
 fingerprint	
 set	

• crea?on	
 of	
 neural	
 network	

• training	
 neural	
 network	
 with	
 the	
 fingerprints	

Face	

• user	
 must	
 provide	
 the	
 face	
 picture	

• crea?on	
 of	
 neural	
 network	
 	

• training	
 neural	
 network	
 with	
 the	
 face	
 samples	
 	

Token	

crea?on	

• crea?on	
 of	
 security	
 token	
 	

• save	
 token	
 to	
 database	

- 94 -

The first step of token creation operation is collecting standard user

credentials such as username and password. Then there is created a userhash value.

The userhash represents the one verification parameter of security process. The next

step is providing the fingerprint sample; it is possible to collect more than one

sample as the sample set. The created neural network depends on provided samples;

the effect of variant number of hidden layer and number of neurons inside these

hidden layer is shown in chapter 8.2. The number of hidden layers affects the

quality and the time of training procedure. The output from the training process is

the trained neural network that is able to identify learned samples.

The next procedure needs the face sample pictures. These pictures are used

for the training process of face identification process. The affect of various

combinations of hidden layer and number of neurons is shown in chapter 9.2.

The finish operation creates the original token. This token might be portable

or standalone.

10.2.2 Class and function documentation

10.2.2.1 Interface AdminGUI

The AdminGUI interface is built for the creating a security token for the

users. This console is using by the administrator. The administrator might add user

to the internal database and create the security token for him.

- 95 -

Fig. 10.13 - Class AdminGUI

 The interface includes the variable for the security token (token) and user

characteristics (UserCharacteristic). The methods are following: InitWindow for

creating a GUI window of application. The CheckForm is the standard function for

control the form data before executing the main procedure. The ConvertPictures is

the method for converting colour pictures to B/W pictures. The CheckUser is the

method for verification if the user exists in the database. This is for the preventing

duplicity entries in database. The procedure AddUser provides operation for adding

new user to database. The editing function is implemented ad AddUser with special

parameter. The CreateNetwork function is for creating the neural network; this is

abstract function, which might generate neural network for finger and face. The

WriteNetInfo returns the information from training process to application. The

CollectUserCharacteristic specify the file of user characteristic which will be start

after login procedure.

- 96 -

10.2.2.2 Basic Class

The basic/core classes are the same that in UserGUI interface. The detailed

list of these method and classes is described between chapter 10.1.2.2 and 10.1.2.8.

10.2.2.3 Class BCHCodes

This class is implemented for the operation with BCHCodes. The class

represented the simplification of BCHCode usage. The static variable represents the

generated binary string for the BCH code securing. The method implements the

basic operation with the BCH code. The GetBCHCode returns the 31/15 BCHCode

from the user-defined number. The method CheckBCHCode provide test function

for the checking the BCHCode, this is the method for detecting errors. The

DecodeBCHCode returns the corrected BCH code from damaged samples. The

method used the private method TryRepair for the test or reconstruct able; if the

repair is impossible, the TryRepair function returns error value.

Fig. 10.14 - Class BCHCodes

10.2.2.4 Class FileOperations

This class implement the basic operations with files. The class represented

the bridge between the system file function and security system. This class wraps

the method for the get file list from specific folder (method GetFiles). The method

- 97 -

WriteOutPutData is for writing test progress to the backup txt file. The backup file

example is in APPENDIX C. The CreateTXTOutput is the function for creating txt

file and prepare it for writing. The CloseTXTOutput finalize the backup file and

close the connection stream.

Fig. 10.15 - Class FileOperations

- 98 -

11 CONCLUSION AND DISCUSSIONS

The token represents the complete security solution. This token is the

multipurpose routine for user verification, which combines several subsystem based

on artificial neural network features. The previously described part of the final

solution of the thesis aim represents the usage of the artificial neural network as a

result of the modern security verification system for user authentication. The

artificial neural network works as the basic feature of all described subsystems,

which make the complete solution; the security token. The designed solution

combines two totally different views to user verification systems. The classical

verification system uses some internal database with users and verification

information. The next level is roaming profile such as the European academic

wireless network Eduroam. The designed solution uses both methods. It is usable as

a standalone system for the user verification process. But it is usable as the

autonomy security verification system, which uses the asymmetric key exchange for

creating trust relationships with other systems. The token is hybrid solution, which

combines the standalone and the roaming system of verification.

The thesis presents the modern usability of artificial neural networks in the

security focus. The usability is really wide, because the network represents the

similar system as a human brain; in very simply approximation. The network might

react to problems, which are not the binary clear. It might repair some damaged

data, it might learns (especially dynamically learning) the human behaviour and

specific characteristics. The security system described in this work used neural

network for fingerprint and face identification; the process of identification is

significantly easy and realized by the common technologies, but the neural network

has better results with the non-ideal samples, which are affected by the outside

environment. The samples might be damaged. The network might applicable his

self-repair function and successfully identify/classify the sample from database. The

next advantage is flowing from the structure and functionalities of neural network.

There is not necessary to save the user biometric data such as fingerprint and face

- 99 -

picture inside database. The neural network does not save any sensitive personal

data of verified user.

The previously described features of the artificial neural network represent

the future usability of these networks. Now, there is one huge problem with usage of

neural networks. The learning process is limited by speed of the present computer

system. The intelligent behaviour of the security systems represents the future of

identification systems. The pure standard algorithm is dummy computer program,

which does not support any adaptability. The samples are verified bit by bit. The

neural network might bring the artificial intelligence inside this process. The neural

network is commonly using in IDS security system [18]. The user verification is still

waiting for the intelligent application.

The aim goals started at the beginning of this thesis are fulfilled in previous

chapters in the following way.

Ø To prove that there is the place for the assembly of the neural

networks to the user verification processes

o The chapter 1 described the state of art; there is a very large

place for application of neural networks. The practical

application is detailed described in chapter 8 and chapter 9.

Ø To prove that the neural network might successfully verified the

user or might repaired the sample used for the user verification

o This problem is described in chapter 3.1.2, chapter 8 and

chapter 9.

Ø To prove that the speed of the solution based on the neural network

is inside the practical limited (for example: the time for the learning,

identification, etc.)

o This problem is showed in chapter 8 and chapter 9, the speed of

identification and self-repair procedure is addicted to the

- 100 -

structure and size of the neural network. The basic test consume

a few second for the training process. The identification process

is fast.

Ø To define the part of standard user verification procedure that

might be replaced or proved by the neural network.

o The definition is showed in chapter 8, chapter 9 and chapter 10.

The chapters represent the practical usage of this neural network

identification process.

Ø To define the limited of usage for the neural network inside the

computer security application.

o The potentially limits of the neural network identification is

flowing from the size of the neural network and from the time

which identification process consumes. This limited id showed

in chapters in chapter 8 and chapter 9.

Ø To develop a system prototype for testing neural network

application inside the computer security processes.

o The developed prototype is described in chapter 10.

These points seem to be fulfilled too.

- 101 -

12 LIST OF AUTHOR’S PUBLICATION ACTIVITIES

2008
1. MALANÍK, D., DULÍK, T., DRBÁLEK, Z., ČERVENKA, M.: System for

capturing, streaming and sharing video files, WSEAS Press (IT),
Proceedings of the 8th WSEAS International Conference on DISTANCE
LEARNING and WEB ENGINEERING, Venice, 2008, 86-91, ISBN-ISSN
978-960-474-005-5

2009

1. MALANÍK, D.: Bezpečnost přihlašování v moderní síti Internet, Informační
a datová bezpečnost ve vazbě na strategické rozhodování ve znalostní
společnosti
Zlín, 24. – 25. 3. 2009, ISBN-ISSN 80-238-6782-7

2. MALANÍK, D., KOUŘIL, L., HECZKO, M. Disease- Simulation
Environment.,České národní finále Imagine Cup 2009, Sborník soutěžních
prací. Egypt 09 imagine cup Microsoft. 2009

3. MALANÍK, D.: Possibilities of usage single login technologies to different
web services, Information and Data Security, Crisis Managementand
Strategic Decision-making in Knowledge Society Zlin, Czech Republic, 24.
– 25. 3. 2009, ISBN-ISSN 80-238-6782-7

2010

1. MALANÍK, D. Nature Behavior in Stochastic Extreme Finding Methods
(2010). 1205-1207, Annals of DAAAM for 2010 & Proceedings of the 21st
International DAAAM Symposium, ISBN 978-3-901509-73-5, ISSN 1726-
9679, pp 0603, Editor B. Katalinic, Published by DAAAM International,
Vienna, Austria 2010

2. MALANÍK D., Possible issues in extreme finding algorithms, XXXV.
Seminar ASR '2010 " Instruments and Control" Ostrava 2010, ISBN 978-
80-248-2198-7

3. MALANÍK D., JAŠEK R., POSSIBILITIES OF USAGE NEURAL
NETWORKS IN CRYPTOGRAPHY, Internet, bezpečnost a
konkurenceschopnost organizací, Zlín 2010 ISBN 978-83-61645-16-0

- 102 -

4. MALANÍK D., JAŠEK R., PHYSICAL SECURITY IN IT SYSTEMS,
Internet, bezpečnost a konkurenceschopnost organizací, Zlín 2010 ISBN
978-83-61645-16-0

5. JASEK R., MALANIK D.: Speed Differences between Mathematica and C#
Languages in Identiying Extreme Values in Applications, Proceedings of the
Workshop: Methods and Applications of Artificial intelligence, 23-24
September 2010, The College of Informatics and Management, Bielsko-
Biava, pp. 27-37, ISBN 978-83-62466-02-3.

6. MALANÍK D., Význam fyzického zabezpečení IT systémů, Security Revue
- ISSN 1336-9717 September 28th, 2010

2011

1. MALANÍK D.,THE PENETRATION TESTING OF WIFI NETWORKS,

Internet, bezpečnost a konkurenceschopnost organizací, ISBN: 978-80-
7454-012-7, pp 263 - 170 , Published by Tomas Bata University in Zlín,
2011, Faculty of Applied Informatics.

2. MALANÍK D.,THE SECURITY ISSUES DURING DEVELOPING WIFI
NETWORKS, Internet, bezpečnost a konkurenceschopnost organizací,
ISBN: 978-80-7454-012-7, pp 270 - 275 , Published by Tomas Bata
University in Zlín, 2011, Faculty of Applied Informatics.

3. BOUDNÁ H., MALANÍK D., KVANTOVÁ KRYPTOGRAFIE, Internet,
bezpečnost a konkurenceschopnost organizací, ISBN: 978-80-7454-012-7,
pp 57 - 62 , Published by Tomas Bata University in Zlín, 2011, Faculty of
Applied Informatics.

4. MALANÍK D.,SYSTEMS FOR THE IDENTIFICATION OF ENTRY
AND BIOMETRIC SYSTEMS, Internet, bezpečnost a
konkurenceschopnost organizací, ISBN: 978-80-7454-012-7, pp 57 - 62 ,
Published by Tomas Bata University in Zlín, 2011, Faculty of Applied
Informatics.

5. MALANIK D., JASEK R., NEURAL NETWORK FACE
IDENTIFICATION, The 11th WSEAS International Conference on
APPLIED INFORMATICS AND COMMUNICATIONS (AIC '11), ISBN
978-1-61804-028-2, pp 129 - 134, Published by WSEAS Press 2011

- 103 -

13 REFERENCES

1. BÍLA, J. Umělá inteligence a neuronové sítě v aplikacích. Vyd. 2.,
přepracované. Praha : ČVUT, 1998. ISBN: 9788001017692.

2. BITTO, O. Šifrování a biometrika, aneb, Tajemné bity a dotyky. Vyd.
1. Kralice na Hané : Computer Media, 2005. ISBN: 9788086686486.

3. BOXER, L. Algorithms sequential & parallel  : a unified approach.
2nd ed. Hingham Mass. : Charles River Media, 2005. ISBN:
9781584504122.

4. COLE, E. Network security bible. 2nd ed. Indianapolis IN
  ;Chichester : Wiley  ;;John Wiley, 2009. ISBN: 9780470502495.

5. DELFS, H. Introduction to cryptography principles and applications.
Berlin  ;;New York  : : Springer,, 2007. ISBN: 9783540492436.

6. DROZDOWSKI, M. Scheduling for parallel processing. Dordrecht  : :
Springer,, 2009. ISBN: 9781848823105.

7. GRAHAM, B. Security analysis  : principles and technique. 6th ed.
New York : McGraw-Hill, 2009. ISBN: 9780071592536.

8. HEATON, J. Introduction to neural networks for C#. 2nd ed. St.
Louis : Heaton Research Inc., 2008. ISBN: 9781604390094.

9. HUANG, S. Network security. New York  ;;London  : : Springer,,
2010. ISBN: 9780387738208.

10. KATZ, J. Introduction to modern cryptography. Boca Raton :
Chapman & Hall/CRC, 2008. ISBN: 9781584885511.

11. LEIWO, J. et al. A Security Design for a Wide-Area Distributed
System. In SONG, J. (ed.). Information Security and Cryptology -
ICISC’99. Berlin, Heidelberg : Springer Berlin Heidelberg, 2000 [cit.
2011-10-28], p. 236-256. URL
<http://www.springerlink.com/index/10.1007/10719994_19>. ISBN:
978-3-540-67380-4, 978-3-540-45568-4.

12. LOCKHART, A. Network security hacks. 2nd ed. Sebastopol CA :
O’Reilly, 2007. ISBN: 9780596527631.

13. MA, J. Security Access in Wireless Local Area Networks From
Architecture and Protocols to Realization. Berlin, Heidelberg :
Springer-Verlag Berlin Heidelberg, 2009. ISBN: 9783642009419.

14. MALTONI, D. Biometric authentication  : ECCV 2004 International
Workshop, BioAW 2004, Prague, Czech Republic, May 15th, 2004  :
proceedings. Berlin  : : Springer,, 2004. ISBN: 9783540224990.

15. MCCLURE, S. Hacking bez záhad. 1. vyd. Praha : Grada, 2007.
ISBN: 9788024715025.

16. MICCIANCIO, D.; PANJWANI, S. Adaptive Security of Symbolic
Encryption. In KILIAN, J. (ed.). Theory of Cryptography. Berlin,
Heidelberg : Springer Berlin Heidelberg, 2005 [cit. 2011-10-28], p.

- 104 -

169-187. URL <http://www.springerlink.com/index/10.1007/978-3-
540-30576-7_10>. ISBN: 978-3-540-24573-5, 978-3-540-30576-7.

17. NASH, T. C# 2010  : rychlý průvodce novinkami a nejlepšími postupy.
Vyd. 1. Brno : Computer Press, 2010. ISBN: 9788025130346.

18. PALOMO, E. J. et al. A Competitive Neural Network for Intrusion
Detection Systems. In LE THI, H. A.; BOUVRY, P.; PHAM DINH,
T. (eds.). Modelling, Computation and Optimization in Information
Systems and Management Sciences. Berlin, Heidelberg : Springer
Berlin Heidelberg, [cit. 2011-10-28], p. 530-537. URL
<http://www.springerlink.com/index/10.1007/978-3-540-87477-
5_56>. ISBN: 978-3-540-87476-8, 978-3-540-87477-5.

19. SALOMON, D. Foundations of computer security. London, UK  : :
Springer,, 2006. ISBN: 9781846281938.

20. SOLANAS, A. Advances in artificial intelligence for privacy
protection and security. Singapore  ;;Hackensack NJ : World
Scientific, 2010. ISBN: 9789812790323.

21. ŠNOREK, M. Neuronové sítě a neuropočítače. Vyd. 1. Praha :
Vydavatelství ČVUT, 2002. ISBN: 9788001025499.

22. TIPTON, H. Information security management handbook. Boca
Raton, FL  : : Auerbach Publications,, 2007. ISBN: 9781420013580.

23. VALAGUSSA, F.; VALAGUSSA, L. [Community cardiology and
health promotion through schools]. Italian Heart Journal: Official
Journal of the Italian Federation of Cardiology. 2004-11, vol. 5
Suppl 8, p. 42S-44S; discussion 52S-53S, 116S-121S. PMID:
15615359.

24. XIAO, Y. Handbook of security and networks. Hackensack, NJ  : :
World Scientific,, 2011. ISBN: 9789814273046.

25. ZELINKA, I. Aplikovaná informatika, aneb, Úvod do fraktální
geometrie, buněčných automatů--. Vyd. 2. Ve Zlíně : Univerzita
Tomáše Bati Fakulta technologická, 2005. ISBN: 9788073182755.

26. ZELINKA, I. Aplikace umělé inteligence. Vyd. 1. Zlín : Univerzita
Tomáše Bati ve Zlíně, 2010. ISBN: 9788073188986.

27. ZELINKA, I. Umělá inteligence, aneb, Úvod do neuronových sítí,
evolučních algoritmů--. Vyd. 2. Ve Zlíně : Univerzita Tomáše Bati,
2005. ISBN: 9788073182779.

28. ZELINKA, I. Umělá inteligence - hrozba nebo naděje? 1. vyd. Praha
: BEN - technická literatura, 2003. ISBN: 9788073000684.

29. ZHU, X.; YU, Y.; WANG, H. Research of Immune Neural Network
Model Based on Extenics. In LI, K. et al. (eds.). Bio-Inspired
Computational Intelligence and Applications. Berlin, Heidelberg :
Springer Berlin Heidelberg, [cit. 2011-10-28], p. 18-27. ISBN: 978-3-
540-74768-0, 978-3-540-74769-7.

- 105 -

APPENDIX

APPENDIX A: BSA testing results

APPENDIX B: : Neural network– finger/face identification

APPENDIX C: Backup file example

APPENDIX D: Curriculum vitae

- 106 -

APPENDIX A: BSA testing results

Function Equation Extremes
DeJong1st

− !〚!〛!
!"#$%&"'#&

!!!

1 GE1

DeJong2nd
− ((1 − !〚!〛)! + 100(!〚!〛! − !〚! + 1〛)!)
!"#$%&"'%&!!

!!!

1 GE

DeJong3rd
− !〚!〛
!"#$%&"'#&

!!!

1 GE

DeJong4th
− !!〚!〛!
!"#$%&"'%&

!!!

1GE

Rastrigin
−20 (!〚!〛! − 10cos (2!"〚!〛))

!"#$%&"'%&

!!!

? GE, n LE2

Schwefel
−!〚!〛 sin !〚!〛

!"#$%&"'#&

!!!

1 GE, n LE

Griewangk

1 − cos (
!〚!〛

!
)

!"#$%&"'%&

!!!

+
!〚!〛!

4000

!"#$%&"'%&

!!!

? GE, n LE

SineWave

−
sin! 0.5 − !〚!〛! + !〚! + 1〛!

0.001 !〚!〛! + !〚! + 1〛! + 1
! + 0.5

!"#$%&"'%&!!

!!!

? GE, n LE

Ackley

− −20!!!.!"!"#! !〚!〛!!!〚!!!〛!

!"#$%&"'%&!!

!!!

− !!.! !"# !!"〚!〛 !!"# !!"〚!!!〛 + 20 + !

1 GE, n LE

1 Global extreme

2 Local extreme

- 107 -

Function Visualisation

DeJong1st

DeJong2nd

DeJong3rd

DeJong4th

Rastrigin

- 108 -

Schwefel

Griewangk

SineWave

Ackley

- 109 -

DeJong1st

Start point(the blue point) [-7.70071 ; -9.02031]

Start value(fitness) -140.667
Number of iteration 131
Number of fitness
calculation 4 250

Found extreme position [6.83359×10-13 ;
4.0505×10-13]

Found extreme
value(fitness) -6.31044×10-25

Known extreme position [0 ; 0]

Known extreme
value(fitness) 0

DeJong2nd

Start point(the blue point) [-5.83628 ; 7.36614]

Start value(fitness) -7 1314.8
Number of iteration 7 281
Number of fitness
calculation 218 750

Found extreme position [1 ; 1]
Found extreme
value(fitness) -1.96979×10-15

Known extreme position [1 ; 1]

Known extreme
value(fitness) 0

DeJong3rd

Start point(the blue point) [-3.08531 ; -3.06706]

Start value(fitness) -6.15237
Number of iteration 195
Number of fitness
calculation 6 149

Found extreme position [6.1169×10-14 ;
7.03989×10-13]

Found extreme
value(fitness) -7.65158×10-13

Known extreme position [-1.97503×10-11 ; -
8.97822×10-11]

Known extreme
value(fitness) -1.09532×10-10

- 110 -

DeJong4th

Start point(the blue

point)
[3.72643 ; -9.5665]

Start value(fitness) -16 943.9

Number of iteration 102

Number of fitness

calculation
3 366

Found extreme position [1.60697×10-6 ; -1.74361×10-6]

Found extreme

value(fitness)
-2.51541×10-23

Known extreme

position
[5.75571×10-9 ;1.03158×10-8]

Known extreme

value(fitness)
-2.37464×10-32

Rastrigin

Start point(the blue point) [-2.74829 ; 2.71306]

Start value(fitness) -346.421

Number of iteration 103

Number of fitness

calculation
3 410

Found extreme position
[1.15187×10-6 ;

7.50246×10-7]

Found extreme

value(fitness)
400

Known extreme position [0.994959 ; 0.994959]

Known extreme

value(fitness)
360.202

- 111 -

Schwefel

Start point(the blue point) [216.4 ; -314.912]

Start value(fitness) -465.985

Number of iteration 511

Number of fitness

calculation
15 810

Found extreme position [-5.2392 ; -5.2392]

Found extreme

value(fitness)
7.8906

Known extreme position [-5.2392 ; -5.2392]

Known extreme

value(fitness)
7.8906

- 112 -

Griewangk
Start point(the blue point) [-5.08967 ; -6.12683]

Start value(fitness) 1.15253
Number of iteration 36
Number of fitness
calculation

1 393

Found extreme position [-6.28636 ; -4.44736]

Found extreme
value(fitness)

2.01481

Known extreme position [3.14316 ; -1.57772×10-30]

Known extreme
value(fitness)

2.00247

SineWave

Start point(the blue point) [8.68038 ; 0.890169]

Start value(fitness) -1.24946
Number of iteration 15
Number of fitness
calculation

756

Found extreme position [9.73699 ; 1.92922]
Found extreme
value(fitness)

-0.500002

Known extreme position [-0.252603 ; -0.431499]

Known extreme
value(fitness)

-0.5

Ackley

Start point(the blue point) [-0.421008 ; -7.2625]

Start value(fitness) -14.9501
Number of iteration 182
Number of fitness
calculation

5 780

Found extreme position [8.16448×10-15 ; -
7.77028×10-16]

Found extreme
value(fitness)

- 2.13163×10-14

Known extreme position [-1.7045×10-16 ; -
1.76405×10-16]

Known extreme
value(fitness)

0

- 113 -

n-D space

Tests with n-D space were simulated in C# framework version 4.0.
As examples were choose DeJong1st and DeJong3rd 20D space.

Function DeJong1st
Dimension 20
Start position [2.29; -6.46; 8.99; -9.79; -2; 1.85; 3.47; 9.47; -5.58; 4.38; -5.13;

6.96; 8.55; -6.95; -0.22; 3.07; -1.42; 3.29; 6.53; -9.29]
Start value -730.5273
Localized extreme
position

[0.02069; -0.02549; 0.01073; 0.0062; -0.00207; -0.00333;
0.00918; 0.00413; -0.00014; 0.02934; 0.00782; -0.02393; -

0.0278; -0.01543; -0.01986; 0.01003; 0.01591; 0.00935;
0.01579; -0.00932]

Localized extreme value -0.005025
Known extreme position [0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0]
Known extreme value 0

Function DeJong3rd
Dimension 20
Start position [-9.78; -2.22; -4.79; 1.69; -4.51; 8.87; -6.97; 4.22; -8.62; -0.78; -

7.29; -7.37; 0.18; -8.88; 6.89; 5.92; 8.82; 4.56; 9.82; 6.83]
Start value -119.01
Localized extreme
position

[-0.01329; 0.00035; 0.0007; -0.0182; 0.00522; 0.0209; -0.00167;
0.00986; -0.00941; -0.00655; 0.00444; -0.04244; 0.02599;

0.00288; 0.00852; -0.0023; 0.00201; -0.00297; 0.01511;
0.00463]

Localized extreme value -0.197437
Known extreme position [0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0]
Known extreme value 0

Function Rastrigin
Dimension 20
Start position [-5.96; -7.62; -5.91; -1.79; -5.07; 6.99; -1.91; 4.23; 6.94; 8.87;

8.3; -0.36; 0.33; -5.39; -0.33; -7.48; 3.62; 2.68; -0.15; -8.97]
Start value -193 840
Localized extreme
position

[0.123554; 0; 0.345197; 0.853444; -0.094958; -0.114789;
0.652301;

0.200874; -0.320911; -0.390018]
Localized extreme value 339.879
Known extreme position [0.;2.01948×10-28;0.;6.16298×10-33;-0.994959;6.46235×10-

27;2.06795×10-25;0.994959;-0.421216;0.]
Known extreme value 340.202

- 114 -

APPENDIX B: Neural network training process – finger/face identification

Network with one hidden layer – 30 neurons

No. samples = 31

No. neuron in input layer = 1400

No. hidden layer = 1

No. neuron in 1st hidden layer = 30

No. neuron in output layer = 31

Acceptable error = 0.0000001

Accept error difference = 0.0000001

No. epoch = 417

Duration = 00:00:06.22

Final training error = 1.8624 . 10-9

########################### test output ##############################

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1

- 115 -

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,0,1,0,0,0,0,1,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,0,1,0,0,0,0,1,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,0,1,1,0,0,0,0,1,1,0,1,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,1,0,1,1,1,1,1,0,0,0,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,1,0,1,1,1,1,1,0,0,0,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,1,0,1,1,0,1,0,0,0,0,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,1,0,1,1,0,1,0,0,0,0,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0,1,1,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0,1,1,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0,1,1,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0,1,1,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1,0

- 116 -

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,0,1,1,1,1,1,1,1,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,0,1,1,1,1,1,1,1,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,1,1,0,0,1,0,0,1,0,1,0,1,1,0,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,1,1,0,0,1,0,0,1,0,1,0,1,1,0,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,0,1,0,0,0,0,1,0,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,0,1,0,0,0,0,1,0,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,1,0,1,0,0,0,1,0,1,1,1,0,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,1,0,1,0,0,0,1,0,1,1,1,0,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,0,0,1,0,0,0,1,0,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,1,0,1,1,1,1,1,0,0,0,1,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,1,0,1,1,1,1,1,0,0,0,1,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,1,0,0,1,1,1,0,1,1,1,0,1,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,1,0,0,1,1,1,0,1,1,1,0,1,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1,0,0

- 117 -

Network with one hidden layer – 50 neurons

No. samples = 31

No. neuron in input layer = 1400

No. hidden layer = 1

No. neuron in 1st hidden layer = 50

No. neuron in output layer = 31

Acceptable error = 0.0000001

Accept error difference = 0.0000001

No. epoch = 136

Duration = 00:00:03.47

Final training error = 7.2884 . 10-8

########################### test output ##############################

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0,0

- 118 -

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,0,1,0,0,0,0,1,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,0,1,0,0,0,0,1,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,1,1,0,0,0,0,1,1,0,1,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,1,0,1,1,1,1,1,0,0,0,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,1,0,1,1,1,1,1,0,0,0,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,1,0,1,1,0,1,0,0,0,0,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,1,0,1,1,0,1,0,0,0,0,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0,1,1,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0,1,1,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0,1,1,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0,1,1,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,1,1,0,0,1,0,0,1,1,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,0,1,1,1,1,1,1,1,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,0,1,1,1,1,1,1,1,0,1

- 119 -

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,1,1,0,0,1,0,0,1,0,1,0,1,1,0,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,1,1,0,0,1,0,0,1,0,1,0,1,1,0,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,0,1,0,0,0,0,1,0,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,0,1,0,0,0,0,1,0,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,1,0,1,0,0,0,1,0,1,1,1,0,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,1,0,1,0,0,0,1,0,1,1,1,0,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,1,0,1,1,1,1,1,0,0,0,1,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,1,0,1,1,1,1,1,0,0,0,1,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,1,0,0,1,1,1,0,1,1,1,0,1,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,1,0,0,1,1,1,0,1,1,1,0,1,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1,0,0

- 120 -

Network with one hidden layer – 100 neurons

No. samples = 31

No. neuron in input layer = 1400

No. hidden layer = 1

No. neuron in 1st hidden layer = 100

No. neuron in output layer = 31

Acceptable error = 0.0000001

Accept error difference = 0.0000001

No. epoch = 42

Duration = 00:00:02.37

Final training error = 6.9461 . 10-11

########################### test output ##############################

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0,0

- 121 -

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,0,1,0,0,0,0,1,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,0,1,0,0,0,0,1,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,1,0,1,1,1,1,1,0,0,0,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,1,0,1,1,1,1,1,0,0,0,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,1,0,1,1,0,1,0,0,0,0,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,1,0,1,1,0,1,0,0,0,0,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0,1,1,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0,1,1,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0,0,1,1,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0,1,1,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,0,1,1,1,1,1,1,1,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,0,1,1,1,1,1,1,1,0,1

- 122 -

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,1,1,0,0,1,0,0,1,0,1,0,1,1,0,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,1,1,0,0,1,0,0,1,0,1,0,1,1,0,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,0,1,0,0,0,0,1,0,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,0,1,0,0,0,0,1,0,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,1,0,1,0,0,0,1,0,1,1,1,0,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,1,0,1,0,0,0,1,0,1,1,1,0,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,1,0,1,1,1,1,1,0,0,0,1,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,1,0,1,1,1,1,1,0,0,0,1,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,1,0,0,1,1,1,0,1,1,1,0,1,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,1,0,0,1,1,1,0,1,1,1,0,1,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1,0,0

- 123 -

Network with one hidden layer – 1000 neurons

No. samples = 31

No. neuron in input layer = 1400

No. hidden layer = 1

No. neuron in 1st hidden layer = 1000

No. neuron in output layer = 31

Acceptable error = 0.0000001

Accept error difference = 0.0000001

No. epoch = 32

Duration = 00:00:37.39

Final training error = 9.4832 . 10-8

########################### test output ##############################

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0,0

- 124 -

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,0,1,0,0,0,0,1,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,0,1,0,0,0,0,1,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,1,0,1,1,1,1,1,0,0,0,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,1,0,1,1,1,1,1,0,0,0,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,1,0,1,1,0,1,0,0,0,0,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,1,0,1,1,0,1,0,0,0,0,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0,1,1,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0,1,1,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0,1,1,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0,1,1,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,0,1,1,1,1,1,1,1,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,0,1,1,1,1,1,1,1,0,1

- 125 -

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,1,1,0,0,1,0,0,1,0,1,0,1,1,0,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,1,1,0,0,1,0,0,1,0,1,0,1,1,0,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,0,1,0,0,0,0,1,0,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,0,1,0,0,0,0,1,0,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,1,0,1,0,0,0,1,0,1,1,1,0,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,1,0,1,0,0,0,1,0,1,1,1,0,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,1,0,1,1,1,1,1,0,0,0,1,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,1,0,1,1,1,1,1,0,0,0,1,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,1,0,0,1,1,1,0,1,1,1,0,1,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,1,0,0,1,1,1,0,1,1,1,0,1,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1,0,0

- 126 -

Network with two hidden layer – 500,100 neurons

No. samples = 31

No. neuron in input layer = 1400

No. hidden layer = 2

No. neuron in 1st hidden layer = 500

No. neuron in 2nd hidden layer = 100

No. neuron in output layer = 31

Acceptable error = 0.0000001

Accept error difference = 0.0000001

No. epoch = 86

Duration = 00:00:49.30

Final training error = 1.0095 . 10-8

########################### test output ##############################

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1

- 127 -

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,0,1,0,0,0,0,1,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,0,1,0,0,0,0,1,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,1,0,1,1,1,1,1,0,0,0,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,1,0,1,1,1,1,1,0,0,0,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,1,0,1,1,0,1,0,0,0,0,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,1,0,1,1,0,1,0,0,0,0,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0,1,1,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0,1,1,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0,1,1,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0,1,1,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1,0

- 128 -

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,0,1,1,1,1,1,1,1,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,0,1,1,1,1,1,1,1,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,1,1,0,0,1,0,0,1,0,1,0,1,1,0,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,1,1,0,0,1,0,0,1,0,1,0,1,1,0,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,0,1,0,0,0,0,1,0,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,0,1,0,0,0,0,1,0,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,1,0,1,0,0,0,1,0,1,1,1,0,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,1,0,1,0,0,0,1,0,1,1,1,0,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,1,0,1,1,1,1,1,0,0,0,1,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,1,0,1,1,1,1,1,0,0,0,1,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,1,0,0,1,1,1,0,1,1,1,0,1,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,1,0,0,1,1,1,0,1,1,1,0,1,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1,0,0

- 129 -

Network with two hidden layer – 750,300 neurons

No. samples = 31

No. neuron in input layer = 1400

No. hidden layer = 2

No. neuron in 1st hidden layer = 750

No. neuron in 2nd hidden layer = 300

No. neuron in output layer = 31

Acceptable error = 0.0000001

Accept error difference = 0.0000001

No. epoch = 81

Duration = 00:01:21.46

Final training error = 6.3389 . 10-12

########################### test output ##############################

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1

- 130 -

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,0,1,0,0,0,0,1,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,0,1,0,0,0,0,1,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,1,0,1,1,1,1,1,0,0,0,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,1,0,1,1,1,1,1,0,0,0,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,1,0,1,1,0,1,0,0,0,0,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,1,0,1,1,0,1,0,0,0,0,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0,1,1,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0,1,1,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0,1,1,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0,1,1,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1,0

- 131 -

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,0,1,1,1,1,1,1,1,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,0,1,1,1,1,1,1,1,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,1,1,0,0,1,0,0,1,0,1,0,1,1,0,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,1,1,0,0,1,0,0,1,0,1,0,1,1,0,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,0,1,0,0,0,0,1,0,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,0,1,0,0,0,0,1,0,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,1,0,1,0,0,0,1,0,1,1,1,0,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,1,0,1,0,0,0,1,0,1,1,1,0,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,1,0,1,1,1,1,1,0,0,0,1,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,1,0,1,1,1,1,1,0,0,0,1,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,1,0,0,1,1,1,0,1,1,1,0,1,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,1,0,0,1,1,1,0,1,1,1,0,1,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1,0,0

- 132 -

Network with two hidden layer – 1000,500 neurons

No. samples = 31

No. neuron in input layer = 1400

No. hidden layer = 2

No. neuron in 1st hidden layer = 1000

No. neuron in 2nd hidden layer = 500

No. neuron in output layer = 31

Acceptable error = 0.0000001

Accept error difference = 0.0000001

No. epoch = 97

Duration = 00:02:29.17

Final training error = 3.2802 . 10-16

########################### test output ##############################

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1

- 133 -

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,0,1,0,0,0,0,1,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,0,1,0,0,0,0,1,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,1,0,1,1,1,1,1,0,0,0,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,1,0,1,1,1,1,1,0,0,0,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,1,0,1,1,0,1,0,0,0,0,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,1,0,1,1,0,1,0,0,0,0,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0,1,1,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0,1,1,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0,1,1,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0,1,1,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1,0

- 134 -

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,0,1,1,1,1,1,1,1,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,0,1,1,1,1,1,1,1,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,1,1,0,0,1,0,0,1,0,1,0,1,1,0,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,1,1,0,0,1,0,0,1,0,1,0,1,1,0,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,0,1,0,0,0,0,1,0,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,0,1,0,0,0,0,1,0,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,1,0,1,0,0,0,1,0,1,1,1,0,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,1,0,1,0,0,0,1,0,1,1,1,0,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,1,0,1,1,1,1,1,0,0,0,1,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,1,0,1,1,1,1,1,0,0,0,1,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,1,0,0,1,1,1,0,1,1,1,0,1,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,1,0,0,1,1,1,0,1,1,1,0,1,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1,0,0

- 135 -

Network with three hidden layer – 1000,1500,100 neurons

No. samples = 31

No. neuron in input layer = 1400

No. hidden layer = 3

No. neuron in 1st hidden layer = 1000

No. neuron in 2nd hidden layer = 1500

No. neuron in 3rd hidden layer = 1000

No. neuron in output layer = 31

Acceptable error = 0.0000001

Accept error difference = 0.0000001

No. epoch = 602

Duration = 00:35:07.87

Final training error = 1.3241 . 10-14

########################### test output ##############################

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1

- 136 -

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,0,1,0,0,0,0,1,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,0,1,0,0,0,0,1,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,1,0,1,1,1,1,1,0,0,0,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,1,0,1,1,1,1,1,0,0,0,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,1,0,1,1,0,1,0,0,0,0,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,1,0,1,1,0,1,0,0,0,0,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0,1,1,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0,1,1,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0,1,1,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0,1,1,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1,0

- 137 -

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,0,1,1,1,1,1,1,1,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,0,1,1,1,1,1,1,1,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,1,1,0,0,1,0,0,1,0,1,0,1,1,0,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,1,1,0,0,1,0,0,1,0,1,0,1,1,0,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,0,1,0,0,0,0,1,0,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,0,1,0,0,0,0,1,0,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,1,0,1,0,0,0,1,0,1,1,1,0,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,1,0,1,0,0,0,1,0,1,1,1,0,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,1,0,1,1,1,1,1,0,0,0,1,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,1,0,1,1,1,1,1,0,0,0,1,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,1,0,0,1,1,1,0,1,1,1,0,1,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,1,0,0,1,1,1,0,1,1,1,0,1,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1,0,0

- 138 -

Network with three hidden layer – 1000,3000,100 neurons

No. samples = 31

No. neuron in input layer = 1400

No. hidden layer = 3

No. neuron in 1st hidden layer = 1000

No. neuron in 2nd hidden layer = 3000

No. neuron in 3rd hidden layer = 1000

No. neuron in output layer = 31

Acceptable error = 0.0000001

Accept error difference = 0.0000001

No. epoch = 148

Duration = 00:15:02.23

Final training error = 1.3980 . 10-08

########################### test output ##############################

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1

- 139 -

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,0,1,0,0,0,0,1,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,0,1,0,0,0,0,1,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,1,0,1,1,1,1,1,0,0,0,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,1,0,1,1,1,1,1,0,0,0,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,1,0,1,1,0,1,0,0,0,0,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,1,0,1,1,0,1,0,0,0,0,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0,1,1,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0,1,1,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0,1,1,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0,1,1,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1,0

- 140 -

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,0,1,1,1,1,1,1,1,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,0,1,1,1,1,1,1,1,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,1,1,0,0,1,0,0,1,0,1,0,1,1,0,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,1,1,0,0,1,0,0,1,0,1,0,1,1,0,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,0,1,0,0,0,0,1,0,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,0,1,0,0,0,0,1,0,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,1,0,1,0,0,0,1,0,1,1,1,0,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,1,0,1,0,0,0,1,0,1,1,1,0,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0,0,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,1,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,1,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,1,0,1,1,1,1,1,0,0,0,1,1,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,1,0,1,1,1,1,1,0,0,0,1,1,0

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,1,0,0,1,1,1,0,1,1,1,0,1,0,1

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,1,0,0,1,1,1,0,1,1,1,0,1,0,1

actual = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1,0,0

ideal = 0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1,0,0

- 141 -

APPENDIX C: Backup file example

NEURAL NETWORK TEST
No. Fingerprints = 31
No. neurons in input layer = 1400
NN with 1 hidden layer
No. neurons in 1st hidden layer = 100
No. neurons in output layer = 31
Acceptable error value = 0.0000001
Acceptable error difference = 0.0000001

Start 28.10.2011 10:09:27

Epoch #1 Error : 0,276193424208195 errorDiff :-1(0)
Epoch #2 Error : 0,23659436390292 errorDiff :0,276193424208195(0)
Epoch #3 Error : 0,203445691317325 errorDiff :0,0395990603052754(0)
Epoch #4 Error : 0,159611919403142 errorDiff :0,0331486725855951(0)
Epoch #5 Error : 0,153573721884102 errorDiff :0,0438337719141832(0)
Epoch #6 Error : 0,151280502404022 errorDiff :0,00603819751903983(0)
Epoch #7 Error : 0,141251460469447 errorDiff :0,00229321948007999(0)
Epoch #8 Error : 0,133398253955433 errorDiff :0,0100290419345748(0)
Epoch #9 Error : 0,120885775516566 errorDiff :0,0078532065140143(0)
Epoch #10 Error : 0,122450448198426 errorDiff :0,0125124784388664(0)
Epoch #11 Error : 0,100807148580961 errorDiff :0,00156467268185974(0)
Epoch #12 Error : 0,0904302886922183 errorDiff :0,021643299617465(0)
Epoch #13 Error : 0,0755124988567182 errorDiff :0,0103768598887428(0)
Epoch #14 Error : 0,0637496323313809 errorDiff :0,0149177898355002(0)
Epoch #15 Error : 0,0583620538983033 errorDiff :0,0117628665253372(0)
Epoch #16 Error : 0,0492518640361818 errorDiff :0,00538757843307761(0)
Epoch #17 Error : 0,0357677339578212 errorDiff :0,00911018986212158(0)
Epoch #18 Error : 0,0311578994327217 errorDiff :0,0134841300783605(0)
Epoch #19 Error : 0,0226998043987406 errorDiff :0,0046098345250995(0)
Epoch #20 Error : 0,0192710360782683 errorDiff :0,00845809503398115(0)
Epoch #21 Error : 0,0156943403654152 errorDiff :0,00342876832047227(0)
Epoch #22 Error : 0,0124040068161883 errorDiff :0,00357669571285313(0)
Epoch #23 Error : 0,00995843561623019 errorDiff :0,00329033354922689(0)
Epoch #24 Error : 0,00479339286604866 errorDiff :0,00244557119995808(0)
Epoch #25 Error : 0,0126347616842386 errorDiff :0,00516504275018153(0)
Epoch #26 Error : 0,0127731298805257 errorDiff :0,00784136881818993(0)
Epoch #27 Error : 0,00385760212283293 errorDiff :0,000138368196287115(0)
Epoch #28 Error : 0,00517754476853115 errorDiff :0,00891552775769278(0)
Epoch #29 Error : 0,00476449168669168 errorDiff :0,00131994264569822(0)
Epoch #30 Error : 0,00554732546554842 errorDiff :0,000413053081839474(0)
Epoch #31 Error : 0,00271992345873342 errorDiff :0,00078283377885674(0)
Epoch #32 Error : 0,0020394888213752 errorDiff :0,002827402006815(0)
Epoch #33 Error : 0,00198295892495039 errorDiff :0,000680434637358225(0)
Epoch #34 Error : 0,000130167945201663 errorDiff :5,65298964248051E-05(0)
Epoch #35 Error : 0,000352371530487376 errorDiff :0,00185279097974873(0)
Epoch #36 Error : 3,65265738327438E-06 errorDiff :0,000222203585285713(0)
Epoch #37 Error : 0,000602590869251439 errorDiff :0,000348718873104102(0)
Epoch #38 Error : 0,0020814734840477 errorDiff :0,000598938211868165(0)

- 142 -

Epoch #39 Error : 0,00316802640733244 errorDiff :0,00147888261479626(0)
Epoch #40 Error : 0,000216022085657566 errorDiff :0,00108655292328474(0)
Epoch #41 Error : 4,0537586700043E-07 errorDiff :0,00295200432167488(0)
Epoch #42 Error : 6,94610593698264E-11 errorDiff :0,000215616709790565(0)

Test-------------------------------------
 actual=0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1
ideal=0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1

 actual=0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0
ideal=0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0

 actual=0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1
ideal=0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1

 actual=0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0
ideal=0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0

 actual=0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1
ideal=0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1

 actual=0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0
ideal=0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0

 actual=0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1
ideal=0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1

 actual=0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0,0
ideal=0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0,0

 actual=0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1
ideal=0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1

 actual=0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1
ideal=0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1

 actual=0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1,0
ideal=0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1,0

 actual=0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,0,1,0,0,0,0,1,0,1
ideal=0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,0,1,0,0,0,0,1,0,1

 actual=0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0,0
ideal=0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0,0

 actual=0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,1,0,1,1,1,1,1,0,0,0,1,1
ideal=0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,1,0,1,1,1,1,1,0,0,0,1,1

- 143 -

 actual=0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1,0
ideal=0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1,0

 actual=0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,1,0,1,1,0,1,0,0,0,0,0,1
ideal=0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,1,0,1,1,0,1,0,0,0,0,0,1

 actual=0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0,0,0
ideal=0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0,0,0

 actual=0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0,1,1,1,1,1
ideal=0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0,1,1,1,1,1

 actual=0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0,0,1,1,1,1,1
ideal=0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0,1,1,1,1,1

 actual=0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1,0
ideal=0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1,0

 actual=0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,0,1,1,1,1,1,1,1,0,1
ideal=0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,0,1,1,1,1,1,1,1,0,1

 actual=0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1,0,0
ideal=0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,0,1,1,0,0

 actual=0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,1,1,0,0,1,0,0,1,0,1,0,1,1,0,1,1
ideal=0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,1,1,0,0,1,0,0,1,0,1,0,1,1,0,1,1

 actual=0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,0,1,0,0,0,0,1,0,1,0
ideal=0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,0,1,0,0,0,0,1,0,1,0

 actual=0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,1,0,1,0,0,0,1,0,1,1,1,0,0,1
ideal=0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,1,0,1,0,0,0,1,0,1,1,1,0,0,1

 actual=0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0,0,0
ideal=0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0,0,0

 actual=0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,1,1
ideal=0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,1,1

 actual=0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,1,1
ideal=0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,1,1

 actual=0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,1,0,1,1,1,1,1,0,0,0,1,1,0
ideal=0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,1,0,1,1,1,1,1,0,0,0,1,1,0

 actual=0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,1,0,0,1,1,1,0,1,1,1,0,1,0,1
ideal=0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,1,0,0,1,1,1,0,1,1,1,0,1,0,1

 actual=0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1,0,0
ideal=0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1,0,0

- 144 -

End of training 28.10.2011 10:09:29

Duration 00:00:02.3671354

 -------------------------- Data errors --------------------------------------
{0.276193424208195,0.23659436390292,0.203445691317325,0.159611919403142,0.15357
3721884102,0.151280502404022,0.141251460469447,0.133398253955433,0.12088577551
6566,0.122450448198426,0.100807148580961,0.0904302886922183,0.0755124988567182,
0.0637496323313809,0.0583620538983033,0.0492518640361818,0.0357677339578212,0.0
311578994327217,0.0226998043987406,0.0192710360782683,0.0156943403654152,0.012
4040068161883,0.00995843561623019,0.00479339286604866,0.0126347616842386,0.012
7731298805257,0.00385760212283293,0.00517754476853115,0.00476449168669168,0.00
554732546554842,0.00271992345873342,0.0020394888213752,0.00198295892495039,0.0
00130167945201663,0.000352371530487376,3.65265738327438 * 10 ^ -
06,0.000602590869251439,0.0020814734840477,0.00316802640733244,0.0002160220856
57566,4.0537586700043 * 10 ^ -07,6.94610593698264 * 10 ^ -11}

-------------------------- Data errors diff --------------------------------
{-
1,0.276193424208195,0.0395990603052754,0.0331486725855951,0.0438337719141832,0.
00603819751903983,0.00229321948007999,0.0100290419345748,0.0078532065140143,0.
0125124784388664,0.00156467268185974,0.021643299617465,0.0103768598887428,0.01
49177898355002,0.0117628665253372,0.00538757843307761,0.00911018986212158,0.01
34841300783605,0.0046098345250995,0.00845809503398115,0.00342876832047227,0.00
357669571285313,0.00329033354922689,0.00244557119995808,0.00516504275018153,0.
00784136881818993,0.000138368196287115,0.00891552775769278,0.0013199426456982
2,0.000413053081839474,0.00078283377885674,0.002827402006815,0.000680434637358
225,5.65298964248051 * 10 ^ -
05,0.00185279097974873,0.000222203585285713,0.000348718873104102,0.00059893821
1868165,0.00147888261479626,0.00108655292328474,0.00295200432167488,0.00021561
6709790565}

- 145 -

APPENDIX D: Curriculum vitae

Europass –
Curriculum

Vitae

Personal data

First name(s) /
Surname(s)

Malaník David

Address(es) Dřevnická 4126, 76001 Zlín (Česká republika)
Telephone(s) +420 607 823 175

E-mail david.malanik@gmail.com

Nationality ČR

Date of birth 01. March 1984

Gender Male

Work experience

Dates 01. June 2011 →
Occupation or position

held
Ph.D. student - CEBIA-Tech

Main activities and
responsibilities

Research team member

Name and address of
employer

Tomas Bata University in Zlin

Dates 01. September 2008 → planned end of study 12/2011
Occupation or position

held
Ph.D. student

Main activities and
responsibilities

Teaching: Computer viruses and security, Security of
information systems, Data security, Operation systems and

- 146 -

his security.
Supervision a bachelor and master thesis with aim to
computer security
Project accompanying

Name and address of
employer

Tomas Bata University in Zlin

Dates 2006 - 2008
Occupation or position

held
Lector

Main activities and
responsibilities

Teaching the courses for the certification (Windows XP,
Server 2003)

Name and address of
employer

APS Brno s.r.o., Brno

Dates 2006 - 2007
Occupation or position

held
Student researcher

Main activities and
responsibilities

Creating of SW models for subject TPA. Software command
tools for MAXON motors. Project supervisor: assoc. prof.
Ing. František Hruška, Ph.D.

Name and address of
employer

Tomas Bata University in Zlin

Education and
training

Dates 2008 →
Principal

subjects/occupational
skills covered

Information technologies, Ph.D. IT
Dissertation theme: Usability of the artificial intelligence and
modern techniques for securing computer systems

Name and type of
organisation providing
education and training

Tomas Bata University in Zlin, Faculty of applied
informatics (Ph.D.)
Zlin

Dates 2003 - 2008

- 147 -

Title of qualification
awarded

Bc., Ing.

Principal
subjects/occupational

skills covered

Information technologies

Name and type of
organisation providing
education and training

Tomas Bata University in Zlin, Faculty of applied
informatics
Zlin

Dates 1999 - 2003
Name and type of

organisation providing
education and training

Střední průmyslová škola Zlín
Specialisation: Technical lyceum, IT

Dates 15/05/2011 - 17/05/2011
Title of qualification

awarded
Absolvent

Principal
subjects/occupational

skills covered

Wireless Hacking

Name and type of
organisation providing
education and training

VERGILIUS IT Expert, s.r.o.
Praha

Dates 15/11/2010 - 16/11/2010
Title of qualification

awarded
Absolvent

Principal
subjects/occupational

skills covered

Hacking Unlimited

Name and type of
organisation providing
education and training

VERGILIUS IT Expert, s.r.o.
Praha

Dates 01/10/2009 - 28/02/2010
Title of qualification

awarded

Principal
subjects/occupational

Researcher/programmer

- 148 -

skills covered
Name and type of

organisation providing
education and training

Haute Ecole de la province Liege
Liege (Belgium)

Dates 2007 - 2007
Title of qualification

awarded
Microsoft Certified Professional (MCP: 70-290)

Principal
subjects/occupational

skills covered

Managing and Maintaining a Microsoft Windows Server
2003 Environment

Name and type of
organisation providing
education and training

APS Brno s.r.o.
Brno

Dates 2007 - 2007
Title of qualification

awarded
Microsoft Certified Professional (MCP: 70-291)

Principal
subjects/occupational

skills covered

Implementing, Managing, and Maintaining a Microsoft
Windows Server 2003 Network Infrastructure

Name and type of
organisation providing
education and training

APS Brno s.r.o.
Brno

Dates 2007 - 2007
Title of qualification

awarded
Microsoft Certified Professional (MCP: 70-270)

Principal
subjects/occupational

skills covered

Installing, Configuring, and Administering Microsoft
Windows XP Professional

Name and type of
organisation providing
education and training

APS Brno s.r.o.
Brno

- 149 -

Personal skills
and competences

Other language(s)

Self-assessment Understanding Speaking Writing

European level (*) Listening Reading Spoken
interaction

Spoken
production

English B
2

independent
user

B
2

independent
user

B
2

independent
user

B
2

independent
user

B
2

independent
user

Slovak B
2

independent
user

B
2

independent
user

B
2

independent
user

B
2

independent
user

B
2

independent
user

French A
1

basic user
A
1

basic user
A
1

basic user
A
1

basic user
A
1

basic user

German A
1

basic user
A
1

basic user
A
1

basic user
A
1

basic user
A
1

basic user

 (*) Common European Framework of Reference for
Languages

Social skills and
competences

communicativeness, time flexibility, thoroughness,
creativity, responsibility

Organisational skills
and competences

team management, project management, crisis management,
coordination of e-learning projects, communication and
cooperation with foreign team, coordination of projects
implemented in different locations online EU

Computer skills and
competences

Many years of experience with the administration and
deployment of operating systems: Microsoft Windows,
Linux, MAC OSX
Office applications: Microsoft Office, Open Office
Programming languages: C + +, C #, PHP, HTML, MYSQL,
.NET
Security: OS Hacking, Wireless Hacking, penetration tests,
Social engineering, Exploiting

Driving licence B

