Návrh vytlačovacího nástroje pro výrobu polymerního dílu

Bc. Václav Stoklásek
Univerzita Tomáše Bati ve Zlíně
Fakulta technologická
Ústav výrobního inženýrství
akademický rok: 2015/2016

ZADÁNÍ DIPLOMOVÉ PRÁCE
(PROJEKTU, UMĚLECKÉHO DÍLA, UMĚLECKÉHO VÝKONU)

Jméno a příjmení: Bc. Václav Stoklásek
Osobní číslo: T14320
Studijní program: N3909 Procesní inženýrství
Studijní obor: Výrobní inženýrství
Forma studia: kombinovaná

Téma práce: Návrh vyťlačovacího nástroje pro výrobu polymerního dílu

Zásady pro vypracování:

1. Vypracování literární studie na dané téma
2. Vypracování analýzy pro návrh nástroje dle vybraného profilu
3. Konstrukční návrh nástroje
4. Analýza nástroje (přezkoušení nástroje)
Rozsah diplomové práce:
Rozsah příloh:
Forma zpracování diplomové práce: tištěná/elektronická

Seznam odborné literatury:
Dle zadání vedoucího DP

Vedoucí diplomové práce: Ing. Michal Staněk, Ph.D.
Ústav výrobního inženýrství
Datum zadání diplomové práce: 8. ledna 2016
Termín odevzdání diplomové práce: 13. května 2016

Ve Zlíně dne 27. ledna 2016

doc. Ing. František Buřka, Ph.D.
děkan

prof. Ing. Berenika Hausnerová, Ph.D.
ředitel ústavu
Příjmení a jméno: Václav Stoklásek
Obor: Výrobní inženýrství.

PROHLÁŠENÍ

Prohlašuji, že

- beru na vědomí, že odevzdáním diplomové/bakalářské práce souhlasím se zveřejněním své práce podle zákona č. 111/1998 Sb. o vysokých školách a o změně a doplnění dalších zákonů (zákon o vysokých školách), ve znění pozdějších právních předpisů, bez ohledu na výsledek obhajoby \(^\text{1)}\);
- beru na vědomí, že diplomová/bakalářská práce bude uložena v elektronické podobě v univerzitním informačním systému dostupná k nahlédnutí, že jeden výtisk diplomové/bakalářské práce bude uložen na příslušném ústavu Fakulty technologické UTB ve Zlíně a jeden výtisk bude uložen u vedoucího práce;
- byl/a já seznámen/a s tím, že na moji diplomovou/bakalářskou práci se plně vztahuje zákon č. 121/2000 Sb. o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon) ve znění pozdějších právních předpisů, zejm. § 35 odst. 3 \(^\text{2)}\);
- beru na vědomí, že podle § 60 \(^\text{3)}\) odst. 1 autorského zákona má UTB ve Zlíně právo na uzavření licenční smlouvy o užití školního díla v rozsahu § 12 odst. 4 autorského zákona;
- beru na vědomí, že podle § 60 \(^\text{3)}\) odst. 2 a 3 mohu užít své dílo – diplomovou/bakalářskou práci nebo poskytnout licenci k jejímu využití jen s předchozím písemným souhlasem Univerzity Tomáše Bati ve Zlíně, která je oprávněna v takovém případě ode mne požadovat příměřený příspěvek na úhradu nákladů, které byly Univerzitou Tomáše Bati ve Zlíně na vytvoření díla vynaloženy (až do jejich skutečné výše);
- beru na vědomí, že pokud bylo k využití software poskytnutého Univerzitou Tomáše Bati ve Zlíně nebo jinými subjekty pouze ke studijním a výzkumným účelům (tedy pouze k nekomerčnímu využití), nelze výsledky diplomové/bakalářské práce využít ke komerčním účelům;
- beru na vědomí, že pokud je výstupem diplomové/bakalářské práce jakýkoliv softwarový produkt, považuji se za součást práce rovněž i zdrojové kódy, popř. soubory, ze kterých se projekt skládá. Neodvezdání této součásti může být důvodem k neobhájení práce.

Ve Zlíně 11. 5. 2016

[Podpisek]

\(^{1)}\) zákon č. 111/1998 Sb. o vysokých školách a o změně a doplnění dalších zákonů (zákon o vysokých školách), ve znění pozdějších právních předpisů, § 47 Zveřejňování zdůvodňujících práci;

\(^{2)}\) zákon č. 121/2000 Sb. o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon) ve znění pozdějších právních předpisů, § 35 odst. 3.
(1) Vysoká škola nevidělé nezveřejňuje disertační, diplomové, bakalářské a rigorózní práce, u kterých proběhla obhajoba, včetně posudků oponentů a výsledku obhajoby prostřednictvím databáze kvalifikačních prací, kterou spravuje. Způsob zveřejnění stanoví vnitřní předpis vysoké školy.

(2) Dílci, diplomové, bakalářské a rigorózní práce vede vzdělávací uchazeč k obhajobě musí být těž nejméně pět pracovních dnů před konáním obhajoby zveřejněny k nahlížení veřejností v místě určeném vnitřním předpisem vysoké školy nebo není-li tak určeno, v místě pracoviště vysoké školy, kde se má konat obhajoba práce. Každý si může ze zveřejněné práce pořizovat na své náklady výpisy, opisy nebo rozsáhlejší.

(3) Platí, že uvedením práce autor souhlasí se zveřejněním své práce podle tohoto zákona, bez ohledu na výsledek obhajoby.

(4) § 35 odst. 3: Do práva autorského také nezasahuje škola nebo školské či vzdělávací zařízení, užije-li nikoli za účelem přímého nebo neplněního hospodářského nebo obchodního prospechu k výuce nebo k vlastní potřebě dílo vytvořené žákem nebo studentem ke splnění školních nebo studijních povinností vyplývajících z jeho právního vztahu ke škole nebo školskému či vzdělávacímu zařízení (školní dílo).

§ 35 odst. 3b: Autor autorským a vzdělávací souvisejícím právem autorským a z hlavní některých zákonů (autorský zákon) ve znění pozdějších právních předpisů, § 60 Školní díla:

(1) Škola nebo školské či vzdělávací zařízení mají za obvyklých podmínek právo na uzavření licenční smlouvy o užití školního díla (§ 35 odst. 3j). Odprávňí-li autor takového díla udělit svolení bez vážného důvodu, mohou se tyto osoby domáháť nahrazení chybějícího projevu jeho vůle u soudu. Ustanovení § 35 odst. 3 zůstává nedařeno.

(2) Není-li sjednáno jinak, může autor školního díla své dílo užít alespoň jinému licenci, není-li to v rozporu s oprávněnými zájmy školy nebo školského či vzdělávacího zařízení.

(3) Škola nebo školské či vzdělávací zařízení jsou oprávněny požadovat, aby jím autor školního díla z výdělu jím dosaženého v souvislosti s užíváním díla a poskytnutím licence podle odstavce 2 přiměřené příspěv na úhradu nákladů, které na vytvoření díla vynaložily, a to podle okolností až do jejich skutečných výsledků; přitom se přihlédne k výši výdělu dosaženého školou nebo školským či vzdělávacím zařízením z užití školního díla podle odstavce 1.
ABSTRAKT

Cílem této práce je vytvoření vytlačovací hlavy. Plastový díl se používá jako rohový profil při omítání stěn domů.

Práce se skládá z teoretické a praktické části. Teoretická část popisuje technologii vytlačování, extrudery a části vytlačovacích linek. Praktická část se zabývá návrhem plastového dílu a vytlačovací hlavy. V praktické části byla provedena simulace toku materiálu vytlačovací hlavy. Pro návrh plastového dílů, vytlačovací hlavy a výkresové dokumentace bylo použito programu Solid Edge. Pro simulaci proudění byl použit software Femap a Virtual Extrusion Laboratory.

Klíčová slova: vytlačovací hlava, simulace toku, vytlačovací linka

ABSTRACT

The aim of this thesis is the creation of extrusion die. The plastic part is used in the corners when plastering walls of houses.

The work consists of a theoretical and practical part. The theoretical part describes extrusion technology, extruders and part of extrusion line. The practical part deals with the design of plastic part and extrusion die. In the practical part was a simulation of the flow extrusion head. For the design of plastic parts, extrusion die and drawings were used Solid Edge. For the simulation of flow was used FEMAP software and Virtual Extrusion Laboratory program.

Keywords: extrusion die, flow simulation, extrusion line
Zde bych rád poděkoval vedoucímu mé diplomové práce, panu Ing. Michalu Staňkovi, Ph.D., za odborné vedení, rady a čas, které mi po dobu této práce věnoval. Dále bych rád poděkoval společnosti COMPUPLAST za možnost provedení diplomové práce na jimi řešených projektech a společnosti COMPUPLAST INTERNATIONAL za provedení simulační analýzy.

Prohlašuji, že odevzdaná verze bakalářské/diplomové práce a verze elektronická nahráná do IS/STAG jsou totožné.
ÚVOD................................................................................................................................. 10

1 TEORETICKÁ ČÁST............................................................................................................. 11

1 VYTLAČOVÁNÍ POLYMERNÍCH MATERIÁLŮ ................................................................. 12

2 VYBRANÉ MATERIÁLY PRO VYTLAČOVÁNÍ................................................................. 13

2.1 POLYMETHYLACRYLÁT .............................................................................................. 13

2.2 POLYVINILCHLORID ................................................................................................. 13

2.3 POLYETYLEN ............................................................................................................. 13

2.4 POLYSTYREN ............................................................................................................ 13

3 REOLOGIE POLYMERŮ ................................................................................................ 14

3.1 VISKOZITA ................................................................................................................ 14

3.2 MĚŘENÍ VISKOZITY .................................................................................................. 16

3.3 INDEX TOKU TAVEREJNY ........................................................................................ 17

3.4 NORMÁLOVÁ NAPĚTÍ .............................................................................................. 19

3.5 ELONGAČNÍ VISKOZITA ........................................................................................... 20

3.6 RELAXACE NAPĚTÍ .................................................................................................. 20

4 LINKY PRO VYTLAČOVÁNÍ POLYMERNÍCH MATERIÁLŮ ..................................... 22

4.1 VYTLAČOVACÍ STROJE ............................................................................................. 22

4.1.1 Šnekové vytlačovací stroje .................................................................................. 23

4.2 VYTLAČOVACÍ HLAVY ............................................................................................ 25

4.2.1 Plochá vytlačovací hlava .................................................................................... 26

4.2.2 Vytlačovací hlava na profily ............................................................................. 28

4.2.3 Vytlačovací hlava na trubky ............................................................................. 29

4.3 KALIBRACE ............................................................................................................... 35

4.3.1 Průvlaková kalibrace ............................................................................................ 37

4.3.2 Přetlaková kalibrace ............................................................................................ 37

4.3.3 Podtlaková kalibrace ........................................................................................... 38

4.4 ODTAHOVÉ ZAŘÍZENÍ ............................................................................................ 39

4.5 DĚLICÍ ZAŘÍZENÍ ................................................................................................... 42

4.6 ODKLÁDACÍ NEBO NAVÍJEcí ZAŘÍZENÍ ................................................................... 43

II PRAKTIČNÍ ČÁST ............................................................................................................. 45

5 STANOVANÍ CÍLŮ DIPLOMOVÉ PRÁCE ..................................................................... 46

6 ZADANÝ VYTLAČOVANÝ DÍL ....................................................................................... 47

6.1 MATERIÁL VÝROBku ............................................................................................... 48

7 NÁVRH DUTINY VYTLAČOVACÍ HLAVY .................................................................. 49

7.1 MODELOVÁNÍ TVARU KONEČNÉHO VÝROBKU ....................................................... 49

7.2 TVAR VÝSTUPNÍ ŠTĚRBINY ..................................................................................... 50

7.3 MODELOVÁNÍ DUTINY VYTLAČOVACÍ HLAVY ......................................................... 50

8 TOKOVÁ ANALÝZA ..................................................................................................... 54
8.1 Vytvoření tokové geometrie v softwaru FEMAP ........................................54
8.2 Modelování toku ..........................................................................................57
8.3 Výpočet hodnot ..........................................................................................62
  8.3.1 Zhodnocení výsledků analýzy v modulu FEMAP ..................................64
  8.3.2 Výsledky analýzy v simulačním softwaru COMPUPLAST ...............70
9 Konstrukce vytlačovací hlavy ........................................................................73
10 Testování vytlačovací hlavy ........................................................................77
Závěr ....................................................................................................................83
Seznam použité literatury ..................................................................................84
Seznam použitých symbolů a zkratek ...............................................................86
Seznam obrázků ..................................................................................................87
Seznam tabulek ..................................................................................................90
Seznam příloh .....................................................................................................91
ÚVOD

Vytlačování polymerních materiálů je jednou z nejvyužívanějších technologií v plastikářském průmyslu. Téměř každý výrobek z plastu projde alespoň jednou během své životnosti vytlačovacím strojem a tedy i procesem vytlačování. Technologií vytlačování je možné vyřábět rozmanité druhy výrobků od plastových desek přes struny až po vlákna a fólie.

Při zpracování polymerních materiálů je nutná znalost fyzikálních a tokových vlastností a stejně tak nastavení správných procesních podmínek v průběhu vytlačování. Proces vytlačování je v současné době simulován v tomu určených softwarech.

Jednu z nejdůležitějších částí ve vytlačovacím procesu zaujímá návrh vytlačovací hlavy. Díky vytlačovací hlavě získává výrobek konečný tvar a rozměry. Návrh vytlačovací hlavy je ovlivněn mnoha faktory zejména materiálem, procesními podmínkami, požadavkem na vytlačovanou rychlost a samotným tvarem výrobku. V současnosti je návrh vytlačovacích hlav prováděn pomocí simulačních softwareů, jež jsou schopny simulovat tok materiálu uvnitř vytlačovací hlavy. Tato metoda velmi usnadňuje samotný návrh a rovněž i zlevníuje končné zavedení vytlačovací hlavy do provozu.
I. TEORETICKÁ ČÁST
1 VYTLAČOVÁNÍ POLYMERNÍCH MATERIÁLŮ

Vytlačování polymerních materiálů je kontinuální proces výroby, jež je z hlediska zpracovaného množství polymerních materiálů dominantní technologií v plastikářském průmyslu. Technologie vytlačování je technologická operace, při které je tavenina plastu kontinuálně vytlačována přes profilovací zařízení, jež představuje vytlačovací hlava do volného prostoru. Vytlačováním jsou v dnešní době vyráběny jak polotovary, tak i konečné výrobky. Dle tvaru polotovaru popřípadě konečného výrobku je možné proces vytlačování rozdělit do tří základních skupin:

- výroba trubek a profilů,
- výroba fólií a desek,
- další způsoby výroby (výroba vláken, oplášťování a jiné). [9,15]

Technologie vytlačování využívá pro dopravu taveniny nejčastěji šnekových vytlačovacích strojů, které jsou součástí výrobních linek pro výrobu vytlačovaných výrobků. Ostatní části výrobních linek jako kalibrace, odtah, chladící zařízení, skladovací zařízení a jiné části, které rovněž zajišťují kontinuální chod výrobní linky.[9,15]

Obr. 1 Ukázka vytlačovaných produktů
2 VYBRANÉ MATERIÁLY PRO VYTLAČOVÁNÍ

Mezi materiály nejčastěji používané pro vytlačování patří například polyvinylchlorid, polyetylén, polyypropylen, polymetylmetakrylát a celá řada dalších. Volba materiálu vždy záleží na požadavcích, které jsou kladeny na produkt vytlačování a také na požadavcích zákazníka.[4]

2.1 Polymetylmetakrylát

Polymetylmetakrylát je čirý materiál jež se vyznačuje dokonalou průhledností. Tato vlastnost umožňuje snadné zabarvování polymeru. Další výrazné vlastnosti jsou odolnost proti povětrnostním vlivům, dobré mechanické a elektroizolační vlastnosti, odolnost proti zředěným alkáliím a kyselinám a zdravotní nezávadnost. Nedostatkem polymetylmetakrylátu je nízká povrchová tvrdost.[3,7,8]

2.2 Polyvinilchlorid

Jeden nejčastěji zpracovávaných termoplastů současnosti. Tento polymer je zpracováván všemi základními technologiemi zpracování plastů, jako je vytlačování, vstřikování, vyfukování a jiné. Za relativně nízkou cenu je možné vyrábět výrobky, které mají požadované vlastnosti spotřebitelů. [3,7,8]

Polyvinylchlorid je nerozpustný v olejích, ve vodě ani v koncentrovaných anorganických kyselinách a zásadách. [3,7,8]

2.3 Polyetylen

Odolnost tohoto materiálu vůči kyselinám i zásadám z něj dělá další z velice používaných plastů současnosti. Polyetylen je materiál, který se používá pro výrobu fólií, trubek, ozubených kol, dětských hraček, vláken a jiných výrobků.[3,7,8]

Rozlišujeme nízkohustotní polyetylen (LDPE) a vysokohustotní polyetylen (HDPE). [3,7,8]

2.4 Polystyren

Polystyren je popisován jako poměrně tvrdý, ale křehký plast, který dobře odolává kyselinám a zásadám. Během procesu stárnutí polystyren křehne a vznikají v něm trhlinky. Špatně odolává organickým rozpouštědлům, jako je benzín a podobné látky. Citlivost na ultrafialové záření a malá odolnost vůči teplotě. [3,7,8]
3 REOLOGIE POLYMERŮ

Tokové chování polymerních tavenin je velmi důležité jak pro výrobce surovin, tak i pro konstruktéry výrobních zařízení pro zpracování polymerních materiálů. Výrobci surovin používají naměřené reologické parametry polymerů pro zajištění stejné kvality surovin pro výrobní proces. [3,4,9,13]

Reologické chování tavenin polymerů má charakter jak kapaliny, tak i tuhé látky a je nazýváno jako viskoelastické. Pro popis viskoelastického chování byly vypracovány modely, které toto chování popisují. Graficky toto chování vyjadřuje Maxwellův model.[3,4,9,13]

![Maxwellův model](image)

Obr. 2 Maxwellův model[3]

3.1 Viskozita

Vlastnosti kapalin mohou být charakterizovány viskozitou, která představuje míru vnitřního odporu při toku. Pro newtonovské kapaliny je viskozita konstantou ale pro roztoky polymerů a polymerní taveniny klesá s rostoucí smykovou rychlostí. Tato změna tokových vlastností v závislosti na smykovém namáhání polymerních tavenin je výsledkem protahování a rozplétání dlouhých polymerních řetězců.[3,4,9,13]

\[ \eta = \frac{\tau}{\dot{\gamma}} \quad [Pa.s] \quad (1) \]

\( \tau \) – smykové napětí [Pa]

\( \dot{\gamma} \) – smyková rychlost [1/s]
Kapaliny, u kterých viskozita není závislá na smykové rychlosti se nazývají newtonovské, které představuje například voda. Materiály u kterých s rostoucí smykovou rychlostí roste i viskozita se nazývají dilatantní které představují například suspenze škrobu s vodou. Jako pseudoplastické materiály se označují ty, u kterých s rostoucí smykovou rychlostí klesá i viskozita.[3,4,9,13]

- Závislost viskozity na smykové rychlosti

![Obr. 3 Závislost viskozity na rychlosti smykové deformace](image)

Pro jednoduchý popis viskózního chování polymerní taveniny lze použít mocninový zákon.

**Power-Law model:**

\[
\eta(\tau \dot{\gamma}) = m \cdot \alpha \cdot \dot{\gamma}^{n-1} 
\]

- \( m \) – měřítko konzistence (čím je \( m \) větší, tím je tavenina viskóznější)
- \( n \) – stupeň nenewtonovského chování (\( n=1 \) pro newtonovské látky, \( n<1 \) pro smykově závislé polymerní látky)
- \( \alpha \) – teplotní funkce
- Závislost viskozity na distribuci molekulových hmotností.

Molekulová struktura a distribuce molární hmotností je určující pro tvar viskózní křivky. Správné sestavení křivek z hodnot viskozity je důležité pro simulování postupu. [3,4,9]

Polymerní materiály se širokou distribucí molekulových hmotností jsou snadněji zpracovatelné.

Polymery s úzkou distribucí molekulových hmotností vyžadují při zpracování vyšší tlaky a jsou tak vhodné pro vstřikování.

- Závislost viskozity na teplotě a tlaku

Viskozita je velmi závislá na teplotě a tlaku. Se zvyšující teplotou klesá viskozita polymerní látky. Se stoupajícím tlakem stoupá i viskozita.

3.2 Měření viskozity

Pro měření viskozity polymerních materiálů je možné použít tyto přístroje:

- viskozimetr válec-válec,
- viskozimetr kužel-deska,
- kapilární viskozimetr.

Oblasti použití jednotlivých viskozimetrů je uvedena v následujícím obrázku.
3.3 Index toku taveniny

Index toku taveniny nebo také tavný index je veličina, jež je zavedena normou a je používána jak u výrobců polymerních matriálů tak i v oblasti zpracování u technologů a konstruktérů. Tavný index je definován jako hmotnost materiálu v gramech, který proteče přesně definovanou tryskou za dobu deseti minut při jasně stanovené teplotě a zatížení pístu. Díky znalosti zatížení pístu je znám tlak v komoře plastomeru a tedy i hodnota smykového napětí. Index toku taveniny je pouze bod na tokové křivce a jeho poloha není stálá, ale mění se s rychlostí smykové deformace a tedy s tokovými vlastnostmi taveniny. Určení charakterizace materiálu za použití pouze jednoho bodu je velmi nepřesné a proto se pro popis tokových vlastností tavenin polymeru využívá celá toková křivka. Rovněž pro porovnání materiálů slouží celá toková křivka, nikoli pouze index toku taveniny. Materiály se shodným indexem toku mohou mít rozdílné hodnoty viskozity. [3,4,9,13]
Obr. 6 Určení hodnot ITT pro dva materiály a různá zatížení [2]

Obr. 7 Princip měření ITT na kapilárním viskozimetru [3]
3.4 Normálová napětí

Smykové napětí, jež souvisí s viskozitou, působí při jednosměrném toku v rovině, na kterou je kolmý gradient rychlosti. Při jednorozměrném toku se objevují další napětí působící v normálových směrech. [3,4,9,13]

Obr. 8 Směr působení složek napětí [2]

Taveniny jsou v reologii považovány za nestlačitelné a není tedy nutné se normálovými složkami zabývat, fyzikální význam má pouze jejich rozdíly:

První rozdíl normálových napětí \( N_1 = \sigma_{xx} - \sigma_{yy} \)  \( (3) \)

Druhý rozdíl normálových napětí \( N_2 = \sigma_{yy} - \sigma_{zz} \)  \( (4) \)

První rozdíl normálových napětí je měřen na kapilárním nebo rotačním viskozimetru. V případě kapilárního viskozimetru působí normálové napětí ve stejném směru jako tlak pistu. Na výstupu je nulový tlak a je měřena síla, která působí na jednotku plochy, kolmo na osu y. U kapalin u kterých se nevyskytují normálová napětí, jako například voda je na výstupu naměřena nulová síla. Tato síla slouží k určení rozdílu normálových napětí.[2,3,4,9,13]

Při měření viskozimetru kužel-deska je využíváno stoupání po tyči, tedy Weissenbergova efektu.
Obr. 9 Weissenbergův efekt a první rozdílnormálových napětí N1 [3]

Normálovým napětím je rovněž možné použít pro charakteristiku polymerních látek. Polymery se širokou distribucí molekulových hmotností vykazují velké rozdíly normálových napětí. První rozdíl normálových napětí bývá hlavní příčinou narůstání polymerní taveniny za hubicí při procesu vytlačování.[2,3,4,9,13]

3.5 Elongační viskozita

Materiálové částice ve směru toku taveniny se pohybují rozdílnou rychlostí. Ke vzniku elongačního toku dochází při změnách rozměru štěrbiny, nebo při vyfukování dutých výrobků. Elongační viskozita je velmi obtížně měřitelná.[3,4,9,13]

3.6 Relaxace napětí

Obr. 10 Relaxace dvou polymerů [3]

Na obrázku je vidět porovnání relaxačního času dvou polymerů, kde polymer B má delší relaxační čas než polymer A. Průběhy relaxace polymerních materiálů jsou používány za účelem charakterizace. [3,4,9,13]

U jednotlivých polymerů je velmi důležité znát relaxační doby. Při dlouhých dobách relaxace může vznikat velký počet zamrznutých napětí, jelikož nedojde k jejich úplné relaxaci. [3,4,9,13]
4 LINKY PRO VYTLAČOVÁNÍ POLYMERŮ

Linky pro vytlačování polymerů se skládají z několika součástí, které na sebe vzájemně navazují.

Pro vytlačování uzavřených profilů a trubek se linka pro vytlačování skládá ze šnekového vytlačovacího stroje na něj přímo navazující vytlačovací hlavy a kalibračního zařízení a dále chladicího, odtahového a měřicího zařízení. Na konci vytlačovací linky je umístěno dělící a navijecí respektive odkládací zařízení. [1,15]

![Obr. 11 Vytlačovací linka](image)

4.1 Vytlačovací stroje

Vytlačovací stroje jsou hlavní součástí vytlačovacích linek a jsou určeny ke kontinuální nebo diskontinuální výrobě profilů, tyčí, trubek, desek, fólií a jiných plastových výrobků z kaučukových a plastových směsí. Princip vytlačování spočívá v převodu polymerního materiálu do plastického stavu a vytlačením do volného prostoru. [1,11]

Vytlačovací stroje rozdělujeme podle hlavní pracovní části na:

- pístové
- diskové
- šnekové
- speciální [1,4]
4.1.1 Šnekové vytlačovací stroje

Mezi vytlačovacími stroji pro zpracování plastů zaujímají šnekové vytlačovací stroje největší podíl zpracovatelských strojů. Šnekové vytlačovací stroje pracují jako kontinuální. Vyrábějí se v mnoha variantách a modifikacích, slouží k výrobě tradičních výrobků, jako jsou trubky, profily, fólie, desky ale také pro jiné aplikace. Šnekové stroje mají rovněž velké uplatnění jako plastikační jednotky vstřikovacích strojů.[1,2,15]

![Obr. 12 Šnekový vytlačovací stroj](image)

Vytlačovací stroj je možné rozdělit na tři hlavní části kdy každá s částí plní požadovanou funkci. Jedná se o vstupní, přechodovou a výstupní část. [1]

Ve vstupní části vytlačovacího stroje, jež slouží jako zásobovací je granulovaný nebo aglomerovaný materiál předešle zpracovaný a částečně stlačen. V přechodové nebo taky kompresní části je polymer dále stlačován, plastikován a homogenizován i s případnými přísadami. Ve výstupní části je již materiál ve formě tepelně i materiálově homogenní taveniny, která je pod tlakem kontinuálně vytlačována do nástroje, jež představuje vytlačovací hlava. [1,15]
Každý plast má jiné vlastnosti a teoreticky by vyžadoval svůj speciální šnek což je velmi neekonomické a proto se v praxi používá několik ověřených konstrukcí šneku. [15]
4.2 Vytačovací hlavy

Vytačovací hlava slouží jako nástroj pro formování taveniny při výstupu z vytačovacího stroje do požadovaného stavu. Vytačovací hlava musí mít takový profil, aby byl zajištěn pravidelný a trvalý tok polymerní taveniny. Hlava nesmí obsahovat žádná takzvaná mrtvá místa, ve kterých by se mohla polymerní tavenina zdržovat delší dobu než je nezbytně nutné a docházelo by k její degradaci.[2,9]

Funkci vytačovací hlavy je dosažení požadované tloušťkové distribuce při zajištění teplotní, napěťové, rychlostní a tlakové homogenity.

Vytačovací hlavy rozdělujeme podle polohy osy šneku a osy vytačovací hubice nebo také podle typu a funkce.

Rozdělení podle polohy osy šneku a osy hubice:

- přímé (trubky, tyče, profily, fólie),
- přičné (oplášťování, vyfukování),
- šikmé (tenké fólie),
- předsazené (trubky s vnitřní kalibrací).

Obr. 14 Rozdělení vytačovacích hlav [1]
Rozdělení vytlačovacích hlav podle typu a funkce:

- plochá vytlačovací hlava,
- vytlačovací hlava na profily,
- kruhová vytlačovací hlava,
- oplášťovací vytlačovací hlava.

4.2.1 Plochá vytlačovací hlava

Široko-štěrbinová vytlačovací hlava se používá pro vytlačování desek a fólií pro různé aplikace. Polymerní tavenina je rozváděna v celé šíři štěrbiny rozvodným kanálem. Pro dosažení optimální tloušťky desky nebo fólie je nutné zajistit, aby odpor v různých částech hlavy byl přibližně stejný. Plochá vytlačovací hlava je namáhána velkými silami, které způsobují oddalování spodní části od horní, zapříčinující ohýbání výstupní štěrbiny. Tyto velké síly vznikají v důsledku relativně vysoké viskozity polymerní látky a velké plochy vytlačovacích hlav. [3,4,8,9]
Plochá vytlačovací hlava se skládá s několika pásem:

- **Rozvodný vytlačovací kanál**
  Poměrně hluboký tokový kanál sloužící k distribuci polymerní taveniny do středu a k okrajům tokového kanálu. Pro dosažení adekvátní výstupní rychlosti z této sekce následuje redukce objemu na konci rozvodného kanálu.

- **Brzdný můstek**
  Následuje hned za rozvodným kanálem a jeho cílem je vytvoření rovnoměrného rychlostního profilu podél vytlačovací hlavy.

- **Relaxační komora**
  Cílem tohoto pásma je zpomalení toku taveniny natolik aby měla tavenina dostatek času na relaxaci napětí a zapomenutí předchozí tokové historie.

- **Výstupní štěrbiná**
  Poslední pásmo ploché vytlačovací hlavy, slouží ke konečnému nastavení fólie nebo povlaku. Výstupní štěrbiná je obvykle možné nastavovat, aby byly eliminovány variace v tloušťce fólie. [3,4,8,9]

\[Obr. 16 \text{Základní sekce ploché vytlačovací hlavy [3]}\]
4.2.2 Vytlačovací hlava na profily

Profilové vytlačovací hlavy jsou používány pro výrobu okenních profilů, profilovaných desek a profilů pro různé stavební a jiné aplikace. Cílem profilové vytlačovací hlavy je správná a účinná redistribuce polymerní taveniny uvnitř vytlačovací hlavy pro vytlačování daného profilu. Profilové vytlačovací hlavy jsou velmi náročné na návrh, proto se velmi často používá 3D modelování dutiny vytlačovaného profilu a její následný výpočet. Tento postup eliminuje následné úpravy profilové hlavy. Hlavní problém při návrhu profilové vytlačovací hlavy vzniká při nerovnoměrnosti tloušťek stěn vytlačovaného profilu. Materiál teče cestou nejmenšího odporu, a proto teče největší část taveniny nejširšími štěrbinami, zatímco v úzkých štěrbinách je taveniny nedostatek.[3,4,8,9]

Cílem návrhu designu profilové vytlačovací hlavy je konvertovat tok polymerní taveniny z kruhového kanálu vycházejícího z vytlačovacího stroje do toku, který vytváří požadovaný profil. Rychlost ve všech částech profilu na výstupu musí být přibližně stejná. [3,4,8,9]
Obr. 18 Profilová vytlacovací hlava a vytlacovaný profil

4.2.3 Vytlacovací hlava na trubky

Tato vytlacovací hlava má za úkol redistribuci toku polymerní taveniny z toku v trubce do kruhového prstence. Kruhová vytlacovací hlava je náročná na konstrukci své vnitřní části, správná konstrukce je nutná pro dosažení optimálního výstupního tvaru profilu. [4,5,9]

Kruhové vytlacovací hlavy rozdělujeme dle následující konstrukce:

- hlava s žebry,
- ze strany plněná hlava,
- hlava se spirálovým trnem,
- plochá spirálová hlava.

Hlava s žebry

Žebra slouží jako podpora trnu a umístění se v mnoha modifikacích. Nevýhodou těchto hlav kde žebra tvoří podporu trnu, jsou stokové čary, které se vytvářejí na výrobku a jsou způsobeny nutností taveniny obtékat žebra. Tyto stokové čary jsou nežádoucím jevem, který je optickou vadou a zároveň vyvolává slabá místa na profilu, jež jsou náchylná k praskání. Modifikované tvaru podpěr zajišťují lepší orientaci stokových čar. Výhodou hlav s žebry je jejich jednoduchý design jak mechanický tak reologický a malá spotřeba tlaku. [5,9]
Ze strany plněná hlava

U tohoto typu vytlačovacích hlav vzniká pouze jedna stoková čára v místě naproti plnícího otvoru. Tavenina vstupuje ze strany a obtéká trn ve tvaru srdce nebo ramínka. U těchto typů vytlačovacích hlav je nutné správné vyvážení toku, aby byla zajištěna správná distribuce polymerní taveniny. [4,5]
Hlava se spirálovým trnem

V současné době jedna z nejpoužívanějších možností pro vytlačování s vysokými výkony. Tyto vytlačovací hlavy nachází uplatnění zejména při výrobě trubek a parizónů a při využívání fólií.

Tavenina vstupuje do hlavy řadou vstupních kanálů a teče jak ve směru spirály tak současně se spirály může vytékat a těčí tak směrem k východním štěrbinám v radiálním směru. Tento typ konstrukce vytlačovací hlavy se vyznačuje velkou michací schopností a podstatně lepší orientací stokových čar na výrobku než u jiných typů konstrukce. [3,4,9]

Obr. 21 Trny ze strany plněných vytlačovacích hlav [5]

Obr. 22 Hlava se spirálovým trnem [5]
Návrh vytlačovací hlavy se spirálovým trnem je poměrně složitý na vytvoření rovnoměrného průtoku polymerní taveniny. Nerovnoměrnosti se projevují pulzací, která má za následek nerovnoměrnou tloušťku stěny vyráběné trubky nebo fólie. [3,4,9]

Obr. 23 Model spirálového trnu

Obr. 24 Hlava se spirálovým trnem
Plochá spirálová hlava

Pro výrobu vícevrstvých trubek je možné použít plochou spirálovou hlavu. Rozvod taveniny je vytvořen v plochých deskách kde jsou vyfrezovaly spirály které rozvádí taveninu až k výstupu. Toto řešení vytlačovací hlavy na trubky je velmi výhodné pro své prostorové uspořádání a podstatně snazší výměnu jednotlivých desek než v případě řešení se spirálovým trnem. [4,9]
Obr. 26 Deska ploché spirálové hlavy
4.3 Kalibrace

Kalibrační zařízení slouží k zafixování tvaru vytlačovaného profilu. Volba kalibrace závisí na požadavcích, jako je tvar a rozměr konečného výrobku. [1]

![Obr. 27 Ukázka kalibrace](image1)

![Obr. 28 Lamelový kalibr](image2)
Rozlišujeme tři základní typy kalibračních ústrojí:

- průvlaková kalibrace,
- přetlaková kalibrace,
- podtlaková kalibrace. [1]

Přetlaková kalibrace je používána při požadavcích na přesné vnější rozměry vytlačovaného produktu, naopak kalibraci podtlakovou používáme při požadavku na přesný vnitřní rozměr. Kalibrační zařízení je umístěno v přiměřené vzdálenosti od vytlačovací hlavy, kromě podtlakového kalibračního zařízení, které je umístěno přímo na vytlačovací hlavě. [1,9]

Kalibrační zařízení je ve většině případů spojeno s chladicí vanou, která dále ochlazuje vytlačovaný profil. Veškeré toto zařízení je umístěno na kalibračním stole, který působí jako kompaktní celek a slouží pro snadnější manipulaci a zajištění soustavost s vytlačovací hlavou a rovněž obsahuje ovládací prvky vany a kalibrace. [1,9]

Obr. 29 Kalibrační stůl
4.3.1 Průvlaková kalibrace

Průvlakové kalibrační zařízení tvoří pouzdro kolem vytlačovaného profilu. V případě vytlačování trubek je toto kalibrační pouzdro opatřeno šroubovou drážkou. Při průchodu trubky tímto pouzdrem se vytvoří šroubový kanál jímž, protéká chladící kapalina. Ochlazení povrchu trubky je velmi intenzivní a trubka si tak zachová svůj tvar, který je daný kalibračním pouzdem. Průvlaková kalibrace není vhodná pro tenkostěnné profily a trubky. [1,9]

![Diagram]

1 - kalibrovací pouzdro, 2 - chladící voda, 3 - kalibrační trubka, 4 - vytlačovací hubice

Obr. 30 Průvlaková kalibrace [1]

4.3.2 Přetlaková kalibrace

Přetlaková kalibrace, umístěna přímo na vytlačovací hlavě pracuje s přetlakem vzduchu uvnitř vytlačované trubky, který přitlačí trubku ke stěnám kalibračního pouzdra. Vzduch je přiváděn do trubky skrze vytlačovací trn, na jehož konci je upevněn řetízek se zátkou, která umožňuje pouze částečný únik vzduchu mezi zátkou a vytlačovanou trubkou. Kalibrační pouzdro je chlazeno vodou. Tento způsob kalibrace se využívá pro duté profily a trubky. [1,9]
4.3.3 Podtlaková kalibrace

Kalibrační pouzdro je chlazeno vodou, která protéká chladícími komorami. V kalibru jsou vytvořeny otvory nebo drážky, ve kterých je vytvořeno vakuum za použití vývěvy. V důsledku vytvoření vakua dolehne trubka nebo profil na stěny kalibru kde je zachlazen a vytvoří si tak požadovaný tvar. Tento způsob kalibrace je vhodný zejména pro členité profily a naopak nevhodný pro trubky tlustostěnné a trubky malých rozměrů. [1,9]
1 - vytlačovací hlava, 2 - kalibrační pouzdro, 3 - chladící komora,
4 - podtlaková komora, 5 - přívod chladicí vody, 6 - odvod chladicí
vody, 7 - odsávání, 8 – trubka

Obr. 32 Podtlaková kalibrace [1]

4.4 Odtahové zařízení

Odtahové zařízení je zařazeno v lince za chladicí vanou a způsob jeho konstrukce závisí na
požadavcích zákazníka a na tvaru vytlačovaného profilu. Za pomoci odtahového zařízení je
regulována rychlost odtahu vytlačovaného profilu. Pro odtah jsou používány odtahové pásy,
článkové odtahové pásy, kotouče nebo řetězy, jež jsou opatřeny na pracovní ploše pryžovou
vrstvou. Zařízení je navrženo v různých modifikacích umístění pášů a to například jako
dvoupásové nebo třípásové s ohledem na požadavky výrobku. Odtahové zařízení jsou kon-
struována tak aby umožňovala seřízení podle ostatních strojů v lince, které jsou seřízeny
podle osy vytlačovací hlavy. [1,15]

Odtahové zařízení obvykle obsahuje i zařízení měřící, které umožňuje měřit celkový počet
metrů vytlačovaného profilu. Nejčastěji je tímto zařízením odvalovací kolečko, pro svoji
jednoduchou konstrukci a použití. [1,15]
Obr. 33 Třípásový odtah
Obr. 34 Pásový odtah
4.5 Dělící zařízení

Zařízení, které slouží k řezání vytlačovaného profilu na požadovanou délku. Dělící stroj je ve vytlačovací lince zařazen za odtahové zařízení. Dělící zařízení bývá nejčastěji řešeno pomocí kotoučové pily nebo za pomoci tvarovaných nožů u velkých průměrů trubek bývá požito planetárního způsobu řezání.

Stroj pro dělení extrudovaných profilů musí být řádně zabezpečeno tak aby bylo znemožněno jakéhokoli kontaktu člověka s rotujícími součástmi stroje.

*Obr. 35 Dělící zařízení*
4.6 Odkládací nebo navíjecí zařízení

Odkládací zařízení jako například sklápěcí žlab je používán pro profily, které mají konečnou délku, jež je požadována zákazníkem. Na sklápěcím žlabu je čidlo, které je umístěno v požadované vzdálenosti a při kontaktu čidla s profitem je dán signál dělícímu zařízení které profil uřízne, po nakrácení profilu na požadovanou délku je žlab sklopen a profil nebo trubka v dané délce spadne do prostoru odkud je konečný výrobek odebírán a dále balen.

![Obr. 36 Sklápeci žlab](image)

Profily u nichž nedochází k dělení jako například u pružných výrobků, u kterých nedochází, při ohnutí k trvalé deformaci se používá navíjecího ústrojí, ve kterém jsou výrobky navijeny na bubny nebo kotouče. Navíjecí zařízení mohou být jednostanicové nebo vicestanicové čímž lze dosáhnout kontinuálního chodu a usnadňuje se tím obsluha linky.
Obr. 37 Dvoustanicové navíjecí zařízení
II. PRAKTICKÁ ČÁST
5 STANOVANÍ CÍLŮ DIPLOMOVÉ PRÁCE

Pro diplomovou práci byly stanoveny tyto cíle:

- Vypracování literární studie na dané téma
- Návrh vytlačovací hlavy pro zadaný profil
- Analýza návrhu
- 3D model vytlačovací hlavy
- Výkresová dokumentace
- Odzkoušení navržené vytlačovací hlavy

Literární studie přibližuje problematiku vytlačování, reologii polymerních látek, návrh a konstrukci vytlačovacích hlav a dalších zařízení, které obsahuje vytlačovací linka.

Praktická část diplomové práce se zabývá samotným návrhem vytlačovací hlavy tak i jejího posouzení ke k tomuto určených softwarech.

Další částí je 3D model vytlačovací hlavy a jeho výkresová dokumentace.

Poslední částí práce je odzkoušení vytlačovací hlavy a její reálná funkčnost.
6 ZADANÝ VYTLAČOVANÝ DÍL

Zadaný vytlačovaný výrobek má v konečné fázi sloužit jako rohový profil při omítání vnějších stěn domů a má tak usnadnit práci a zlepšit vzhled rohových částí domu.

Vytlačovaný výrobek je poměrně členitý s rozdílnou tloušťkou stěn a obsahuje i dva větší zoubky na každé straně profilu, které slouží pro pozdější připojení perlinky. Otvory v profilu budou vytvořeny před připojením perlinky ve vysekávacím zařízení.

Konečné požadované rozměry výrobku byly určeny zadavatelem. Hlavním rozměrem je délka spodních nožiček 25 milimetrů a jejich tloušťka 1,2 milimetru. Dalším důležitým rozměrem je délka a tloušťka horního praporku, přičemž délka je 15 milimetrů a je měřena od spodní hrany výrobku a tloušťka je 1,8 milimetru.

Pro vytlačovaný profil byly kromě požadovaných rozměrů zadány i jiné parametry, které souvisí s návrhem samotné vytlačovací hlavy.

Požadavky na konstrukci vytlačovací hlavy:

- Minimální požadovaná rychlost vytlačování 4m/min
  Pro zadanou rychlost výroby bylo vypočítáno množství materiálu, které bude dodáváno do hlavního a vedlejšího extruderu. Vytlačovaný výrobek bude vyráběn jako
koextruzní a to z důvodů možnosti modifikace horního praporku, jež bude měnit svoji délku.

- Zadané připojovací rozměry vytlačovací hlavy a způsob připojení k vytlačovacímu stroji

### 6.1 Materiál výrobku

Jako materiál výrobku byl zadavatelem určen polyvinylchlorid. Tento materiál je jedním z nejpoužívanějších materiálů pro vytlačování a je také poměrně dobře zmapováno jeho reologické chování.

Polyvinylchlorid je materiál, který snoubí cenovou dostupnost a velmi dobré vlastnosti a pro výrobu stavebních profilů je jedním z nejčastěji používaných.

*Tab. 1 Vlastnosti materiálu PVC*

<table>
<thead>
<tr>
<th>Vlastnost</th>
<th>Hranice</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEPOLETA TAVENÍ</td>
<td>1160 - 1450 kg/m³</td>
</tr>
<tr>
<td>TEPOLETA ZPRACOVÁNÍ</td>
<td>200 - 212 °C</td>
</tr>
<tr>
<td>TEPENLÁ VODIVOST</td>
<td>180 - 210 °C</td>
</tr>
<tr>
<td>MĚRNÉ TEPLO</td>
<td>0,15 - 0,29 kJ/kg.K</td>
</tr>
<tr>
<td>STUPEŇ NENEWTONOVSKÉHO CHOVÁNÍ</td>
<td>0,3</td>
</tr>
<tr>
<td>TEPENLÁ VODIVOST</td>
<td>0,15 - 0,29 W/m.K</td>
</tr>
<tr>
<td>CENA</td>
<td>1,3 - 1,8 EUR/kg</td>
</tr>
</tbody>
</table>
7 NÁVRH DUTINY VYTLAČOVACÍ HLAVY

Pro návrh dutiny vytláčovací hlavy bylo použito softwaru SolidEdge ve kterém byl namodelován nejdříve tvar výrobku a poté i tvar vnitřní dutiny vytláčovací hlavy. Systém SolidEdge umožňuje vymodelování vnitřní části dutiny a následně tento model přenést do softwaru pro analýzu toku taveniny. Pro tokovou analýzu byl použit modul programu SolidEdge a to konkrétně modul FEMAP ve kterém je metodou konečných prvků analyzovan průběh toku materiálu vytláčovací hlavou.

7.1 Modelování tvaru konečného výrobku

Tvar konečného výrobku byl vymodelován dle rozměrů zadavatele. Po vytvoření 3D modelu konečného výrobku byl vytvořen řez tímto výrobkem, ze kterého rozměrově vychází výstupní štěrbina vytláčovací hlavou.
7.2 Tvar výstupní štěrbiny

Dle tvaru řezu konečného výrobku byla vytvořena skica, jejíž střednice byla zvětšena o předpokládané smrštění výrobku při výstupu z vytlačovací hlavy. Podle této střednice byl zvětšen tvar výrobku v jeho délce o 6 procent a tloušťka štěrbiny byla zachována stejná jako na konečném tvaru výrobku.

Obr. 40 Tvar řezu profilu a jeho zvětšení o 6 %

7.3 Modelování dutiny vytlačovací hlavy

Po získání rozměrů výstupní štěrbiny vytlačovací hlavy byl proveden návrh dutiny v programu Solid-Edge.

Výsledný tvar dutiny tedy vychází z tvaru výstupní štěrbiny a známých připojovacích rozměrů vytlačovacího stroje. Dutina byla modelována postupně do tří desek, které představují vstupní, přechodovou a výstupní část vytlačovací hlavy. Po vytvoření sestavy těchto tří částí byla vytvořena dutina vytlačovací hlavy. Tvar dutiny je vytvořen jako koextruzní a to z důvodu možnosti výroby různých modifikací tohoto profilu na jedné hlavě bez nutnosti její kompletní demontáže. Dutina byla nakonec navržena tak, aby při změně tvaru profilu bylo nutné demontovat pouze výstupní a přechodovou část vytlačovací hlavy přičemž
vstupní dílec bude stále připojen k vytlačovacímu stroji. Toto řešení usnadní výměnu vytlačovací hlavy při změně výroby a rovněž zlevní výrobu případných modifikací vyráběné hlavy.

**Obr. 41** Ukázka možností modifikace vytlačovací hlavy

**Obr. 42** Výstupní část vytlačovací hlavy (hubice)
Obr. 43 Přechodová část vytlačovací hlavy

Obr. 44 Vstupní část vytlačovací hlavy

Z vnitřního tvaru dutiny byl vytvořen negativ, který bude sloužit pro analýzu toku polymerního materiálu. Pro tokovou analýzu bude použito modulu FEMAP a jeho podmodulu FLOW, který využívá metodu konečných prvků. Analýza vytlačovací hlavy se bude vztahovat pouze na jeden tvar profilu, protože se předpokládá, že u dalších modifikací budou výsledky toku velmi podobné.
Obr. 45 Tvorba negativu dutiny

Obr. 46 Negativ dutiny
8 TOKOVÁ ANALÝZA

Toková analýza vytlačovaného profilu dává přesnější představu o chování materiálu uvnitř vytlačovací hlavy.

Program FEMAP dokáže na základě zadaných materiálových charakteristik a známé tokové geometrie, vypočítat chování materiálu uvnitř dutiny vytlačovací hlavy. FEMAP analyzuje tok pomocí metody konečných prvků což je numerická metoda sloužící k simulaci průběhu napětí, deformace, proudění tekutin a jiných veličin. Zjišťované parametry jsou určovány v uzlových bodech.

Díky této 3D analýze je možné upravit tokovou geometrii ještě před konečnou výrobou, což velmi zlevní a zkráti konečný proces uvedení vytlačovací hlavy do výroby.

8.1 Vytvoření tokové geometrie v softwaru FEMAP

Z programu SolidEdge v němž byl vytvořen negativ dutiny vytlačovací hlavy byl tento 3D model přenesen do modulu FEMAP ve formátu stp. Formát stp umožní převod modelu dutiny do programu ve kterém je později vytvořena síť.

Obr. 47 Toková geometrie v softwaru FEMAP

Po zobrazení modelu ve výpočtovém softwaru FEMAP byla vytvořena nejdríve plošná síť a následně i síť vnitřní. Pomocí tetraedrů byl 3D model vysíťován v různé hustotě jednotlivých
části dutiny. Nejpřesnější výsledky je třeba znát na výstupní části vytlačovací hlavy, a proto měla síť tetraedrů největší hustotu na této výstupní části a postupně se tato hustota měnila směrem k vstupu vytlačovaného materiálu.

Obr. 48 Ukázka tvorby sítě v softwaru FEMAP

Při tvoření 3D sítě vznikaly nedostatky v mřížce hlavně v místech zaboření a přechodů z radiusů do ostré hrany což způsobovalo její chyby a bylo nutné tyto chyby odstranit za pomoci úpravy mřížky. Nejdejnější úpravou byla změna počtu bodů na hranách, čímž se mřížka postupně upravovala, až do konečné podoby kdy nevznikaly žádné vady a bylo možné celý model vysíťovat.
Vysíťovaný model bez jakýchkoli vad byl připraven pro modelování toku.

Obr. 49 Ukázka vad sítě

Obr. 50 Konečný vysíťovaný model
8.2 Modelování toku

Po vytvoření 3D sítě tetraedrů byl spuštěn modul FLOW v programu FEMAP. Modul FLOW umožňuje výpočet chování materiálu v průběhu toku.

Prvním krokem po spuštění FLOW panelu bylo nastavení základních jednotek výpočtu a základních charakteristik materiálu. Charakteristiky materiálu byly zadány na základě hodnot daných zadavatelem, které jsou popsány v kapitole materiál výrobku.

Obr. 51 Spuštění panelu pro výpočet toku

Obr. 52: Nastavení základních jednotek
Po zadání základních charakteristik materiálu byl následně na geometrii určen vstup a výstup polymerního materiálu. Na jednotlivých vstupech byl určen vypočtený hmotnostní průtok materiálu podle požadavků zadavatele. Pro požadovanou rychlost výroby bylo vypočteno množství materiálu na vstupech. Na hlavním vytlačovacím stroji bylo vypočteno množství 24 kg/h a na vytlačovacím stroji, jež slouží jako koextruzní bylo vypočteno 11 kg/h.

**Obr. 53 Nastavení základních charakteristik materiálu**

**Obr. 54 Nastavení vstupního hmotnostního průtoku na hlavním vstupu**
Po určení vstupních parametrů byly zadány výstupní charakteristiky. Jednou z hlavních charakteristik pro výpočet byl předpoklad, že na výstupu bude materiál vstupovat do prostředí běžného atmosférického tlaku, a tedy při výpočtu bude největší tlak na vstupu do vytlačovací hlavy a postupem k výstupu se bude tento tlak snižovat.
Po určení vstupních a výstupních charakteristik pro výpočet bylo nutné určit vhodný výpočtový model. Jako výpočtový model byl zvolen model Power-Law pro který byly zadány charakteristiky daného materiálu.

Před samotným spuštěním výpočtu bylo nutné upravit počet iterací tohoto výpočtu, což celkový výpočet ještě více upřesňuje.
Obr. 58 Nastavení počtu iterací výpočtu

Po úpravě iterací byly nastaveny požadované výstupy z výpočtu, jako je rychlostní profil nebo tlakový spád v dutině vytlačovací hlavy.

Obr. 59 Nastavení požadovaných výsledků výpočtu
8.3 Výpočet hodnot

Po spuštění výpočtu byl kontrolován jeho průběh pomocí generátoru výpočtu, který byl spuštěn, a tedy již v průběhu výpočtu bylo zřejmé, zda výpočet bude nebo nebude dokončen. Průběžnou kontrolou dat bylo zjištěno, zda je průběh toku běžný nebo se v něm vyskytují některé abnormality jako náhlá zpomalení nebo naopak zrychljení toku.

Obr. 60 Spuštění výpočtu

Během výpočtu byly prováděny průběžné kontroly výpočtových hodnot. V programu FEMAP je možné zobrazovat jak průběžné výsledky, tak i jejich grafický průběh. Pro zadanou diplomovou práci byly kontrolovány hodnoty průběhu rychlostí a průběhu tlaku ve vytlacovací hlavě.
Obr. 61 Průběh výpočtu

Obr. 62 Ukázka kontroly výpočtu
8.3.1 Zhodnocení výsledků analýzy v modulu FEMAP

Posouzení správnosti výpočtu bylo jednou z nejsložitějších částí celého návrhu vytlačovací hlavy. Hlavním kritériem, podle něž byla posuzována funkčnost vytlačovací hlavy, bylo správné a co nejvíce rovnoměrné rychlostní pole na výstupu z dutiny vytlačovací hlavy. Dalším kritériem byl tlakový spád ve vytlačovací hlavě, jehož nejvyšší doporučená hodnota je 20 MPa.

**Obr. 63 Výsledné rozdělení rychlostí v [m/s]**

Výsledné rozdělení rychlostí ve výstupní štěrbině vytlačovací hlavy, bylo shledáno jako velmi dobré a jelikož se výsledné rychlosti příliš nelišily, byl dobrý předpoklad pro to, aby byl polymer vytlačován rovnoměrně po celé výstupní štěrbině. Výsledná rychlost na výstupu se pohybovala v rozmezí 0,1 – 0,13 m/s.
Obr. 64 Výsledné rozdělení tlaků v [Pa]

Tlakové rozdělení podél vytlačovací hlavy na profily, které je zobrazeno na obrázku má požadovaný průběh. Nejvyšší tlak je na vstupní části vytlačovací hlavy a postupně směrem k výstupu se tlak snižuje až na tlak atmosférický. Výsledný tlakový spád ve vytlačovací hlavě je téměř 8 MPa a nepřesahuje hodnotu 20 MPa, vytlačovací hlava je tedy vhodná k použití ve vytlačovacím procesu. Pro zobrazení výsledků bylo použito různých náhledů a možností zobrazení pro získání názornějšího pohledu na chování taveniny uvnitř vytlačovací hlavy.
Obr. 65 Zobrazení výsledné rychlosti uvnitř vytlačovací hlavy [m/s]

I přesto že nejdůležitější a nejvíce kontrolovanou částí vytlačovací hlavy, byla výstupní štěrbiná, bylo provedeno několik řezů jak v přechodové tak ve vstupní části dutiny vytlačovací hlavy a to pro získání lepší představy o tokovém chování materiálu.
Obr. 66 Kontrola průběhů rychlosti ve výstupní části [m/s]
Obr. 67 Kontrola průběhů rychlosti v přechodové části [m/s]
Obr. 68 Kontrola průběhu rychlosti ve vstupní části v [m/s]
8.3.2 Výsledky analýzy v simulačním softwaru COMPUPLAST

Ve spolupráci se společností COMPUPLAST INTERNATIONAL byla provedena analýza v simulacním softwaru Virtual Extrusion Laboratory. Tento software je specializovaný pro analýzu vytlačovacích hlav a jeho výpočty by měli být podstatně přesnější a to z důvodu přesnějšího zadávání jak vstupních veličin, tak i procesních podmínek vytlačovacího procesu.

Do softwaru byl podobně jako u modulu FEMAP nahrán 3D model dutiny vytlačovací hlavy, který byl vysíťován. Pro 3D model byly přidány parametry materiálu a procesní podmínky.

Jako materiál pro výpočet byl zadán polyvinylchlorid. Pro vstup z hlavního vytlačovacího stroje bylo zadáno množství materiálu 24 kg/h a pro vedlejší vytlačovací stroj 11 kg/h. Dalším zadávaným parametrem byla hodnota teploty na vytlačovacím stroji, jejíž hodnota byla 180 °C.

Výsledky byly zpracovány za pomoci pracovníka společnosti COMPUPLAST INTERNATIONAL a jejich hodnoty sloužily ke kontrole vypočtené vytlačovací hlavy.

Nejdříve byly kontrolovány vypočtené hodnoty, které bylo možné zobrazit v obou výpočtových softwarech, což jsou hodnoty tlaku a rychlostního profilu ve vytlačovací hlavě. Software Virtual Extrusion Laboratory je schopen zobrazovat mnoho dalších hodnot jako je průběh teploty ve vytlačovací hlavě, smykovou rychlost na stěně a další, rovněž je zde možnost animace průběhu proudění. Díky většímu množství vypočtených hodnot je mnohem jednoduší předpovídat problémy uvnitř vytlačovací hlavy.
Obr. 69 Zobrazení výsledků rychlosti [mm/s]

Obr. 70 Zobrazení výsledků tlaku [MPa]
Obr. 71 Zobrazení průběhu teplot [°C]

Obr. 72 Zobrazení tokových čar uvnitř vytlačovací hlavy
9 KONSTRUKCE VYTLAČOVACÍ HLAVY

Po dokončení analýzy toku, podle které byly výsledky rychlostního profilu, a tlakového spádu velmi dobré byla navržena vytlačovací hlava. Jelikož již při modelování dutiny bylo počítáno s rozdělením vytlačovací hlavy na vstupní, přechodovou a výstupní část bylo pak jednoduché v jednotlivých deskách vytvořit otvory pro šrouby, které slouží ke spojení jednotlivých desek. Vstupní část vytlačovací hlavy a její připojovací rozměry byly určeny zadavatelem. Tato vstupní část bude připojena k vytlačovacímu stroji pomocí objímky.

Po vytvoření děr pro normálie byla vytvořena sestava vytlačovací hlavy včetně těchto normálií. Jelikož při montáži vytlačovací hlavy je nutné, aby se jednotlivé dutiny přesně navazovaly, bylo nutné vytvořit otvory pro kuželové kolíky, díky kterým je možné přesně spojit jednotlivé desky. Pro spojení jednotlivých desek byly použity šrouby s vnitřním šestihranem.
Pro vymodelovanou vytlačovací hlavu byl vybrán topný pás, který bude sloužit k ohřevu vytlačovací hlavy. Teplota ve vytlačovací hlavě je kontrolována za pomoci teplotního čidla.

Po dokončení modelování vytlačovací hlavy byly vytvořeny výrobní výkresy a hlava byla dle výkresové dokumentace vyrobená. Výkresová dokumentace je součástí příloh diplomové práce. Vyrobená vytlačovací hlava byla dodána na místo zkoušek.
Obr. 76 Vyrobená vytlačovací hlava

Obr. 77 Vyrobená vytlačovací hlava pohled ze strany vstupu
Obr. 78 Vyrobená vytlačovací hlava pohled z čela

Obr. 79 Vyměnitelná část vytlačovací hlavy
10 TESTOVÁNÍ VYTLAČOVACÍ HLAVY

Po převzetí vytlačovací hlavy od výrobce byla tato hlava podrobená zkouškám ve firmě zadavatele. Vytlačovací hlava označená D53 byla umístěna na vytlačovací stroj WEBER CE 5, kde byla nahřáta na provozní teplotu 180 °C. Koextruzní část je připojena rovněž na stroj WEBER s označením CE 3Z.

Obr. 80 Připojená vytlačovací hlava
Po dosažení požadované teploty byly spuštěny vytlačovací stroje.


Obr. 81 Začátek vytlačování profilu

Nejdříve byl odebrán volný výtok z vytlačovací hlavy, podle kterého bylo vidět, že spodní část nožiček vytlačovaného profilu teče pomaleji než část prostřední. Rozdíl rychlostí byl ovšem shledán jako zanedbatelný a proto se přistoupilo k samotnému vytlačování. Vytlačovaný profil procházel přes kalibrační zařízení, jež zafixovalo jeho tvar, do odtahu a následně do děrovacího a dělícího zařízení až ke sklápěcímu žlabu. Rozměry konečného výrobku byly měřeny na výrobku odebraném ze sklápěcího žlabu.
Konečné rozměry výrobku byly na první pokus nevyhovující, a bylo tedy nutné provést úpravu. Úprava byla provedena hned na místě za pomocí ruční frézičky. Problémovou částí byly spodní nožičky, které nedosahovaly požadovaných rozměrů, a bylo nutné upravit dutinu v přechodovém dílcí. Dutina v přechodovém dílcí byla v místě, kde chyběl materiál prohloubena, což mělo za následek zlepšení toku materiálu uvnitř vytláčovací hlavy.
Po dokončení úpravy byla vytlačovací hlava opět připojena k vytlačovacímu stroji a bylo spuštěno vyhřívání. Po dosažení požadovaných teplot byly spuštěny vytlačovací stroje.
Po dalším odzkoušení vytlačovací hlavy bylo dosaženo požadovaných rozměrů. Po konečné kontrole profilu byla vytlačovací hlava předána jako hotová a vhodná ke komerční výrobě.

Obr. 86 Profil po schválení
Obr. 87 Schválený profil - čelní pohled

Obr. 88 Schválený vytlačovaný profil
ZÁVĚR

Úvodní část diplomové práce se zabývá teoretickými základy procesu vytlačování, vybranými materiály pro vytlačování a součástmi vytlačovacích linek.

V praktické části diplomové práce je proveden vlastní návrh vytlačovací hlavy včetně posouzení tohoto návrhu v tomu určených softwarech. Pro návrh vytlačovací hlavy bylo využito programu SolidEdge a jeho pomocných modulů a pro kontrolu software od společnosti COMPUPLAST INTERNATIONAL. V modulu programu SolidEdge a jeho modulu FEMAP byla provedena analýza návrhu dutiny vytlačovací hlavy. Pro kontrolu první analýzy bylo využito softwaru Virtual Extrusion Laboratory jehož nespornou výhodou byla možnost zobrazení většího počtu výsledků, které dávají lepší představu o chování materiálu uvnitř vytlačovací hlavy.

Po dokončení analýzy vytlačovací hlavy byla vytvořena výkresová dokumentace a tato vytlačovací hlava byla ve spolupráci s nástrojnou vyrobena.

Pro vyrobenou vytlačovací hlavu byla provedena zkouška přímo v sídle zadavatele, která proběhla úspěšně a vytlačovaný profil byl předán jako hotový.

Hlavním cílem diplomové práce byl návrh vytlačovací hlavy, která bude použita pro komerční výrobu. Cíl práce byl splněn předáním vytlačovací hlavy zadavateli.
SEZNAM POUŽITÉ LITERATURY


Elektronické zdroje:


## SEZNAM POUŽITÝCH SYMBOLŮ A ZKRATEK

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Příznam</th>
<th>Jednotka</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \eta )</td>
<td>Smyková viskozita</td>
<td>Pa.s</td>
</tr>
<tr>
<td>( \tau )</td>
<td>Smykové napětí</td>
<td>Pa</td>
</tr>
<tr>
<td>( n )</td>
<td>Index nenewtonovského chování</td>
<td></td>
</tr>
<tr>
<td>( \gamma )</td>
<td>Rychlost smykové deformace</td>
<td>s(^{-1})</td>
</tr>
<tr>
<td>( m )</td>
<td>Měřítko konzistence materiálu</td>
<td></td>
</tr>
<tr>
<td>( \alpha )</td>
<td>Teplotní funkce</td>
<td>(^{\circ}K)</td>
</tr>
<tr>
<td>ITT</td>
<td>Index toku taveniny</td>
<td>g/10min</td>
</tr>
<tr>
<td>N1</td>
<td>1. rozdíl normálových napětí</td>
<td>Pa</td>
</tr>
<tr>
<td>N2</td>
<td>2. rozdíl normálových napětí</td>
<td>Pa</td>
</tr>
<tr>
<td>LDPE</td>
<td>Nízkohustotní polyetylén</td>
<td></td>
</tr>
<tr>
<td>HDPE</td>
<td>Vysokohustotní polyetylén</td>
<td></td>
</tr>
<tr>
<td>FEMAP</td>
<td>Pokročilý inženýrský produkt pro inženýrské simulace</td>
<td></td>
</tr>
<tr>
<td>TMG</td>
<td>Výpočtový panel pro tokovou analýzu v softwaru FEMAP</td>
<td></td>
</tr>
<tr>
<td>DHM</td>
<td>Distribuce molekulových hmotností</td>
<td></td>
</tr>
</tbody>
</table>
SEZNAM OBRÁZKŮ

Obr. 1 Ukázka vytlačovaných produktů.................................................................12
Obr. 2 Maxwellův model[3].....................................................................................14
Obr. 3 Závislost viskozity na rychlosti smykové deformace [4] .........................15
Obr. 4 Závislost viskozity na smykové rychlosti pro polymery s různou distribucí molekulových hmotností (DMH) [3] ............................................................16
Obr. 5 Oblasti použití jednotlivých typů viskozimetrů [3] ..............................17
Obr. 6 Určení hodnot ITT pro dva materiály a různá zatížení [2] ......................18
Obr. 7 Princip měření ITT na kapilárním viskozimetru [3] ...............................18
Obr. 8 Směr působení složek napětí [2] ...............................................................19
Obr. 9 Weissenbergův efekt a první rozdílnormálových napětí N1 [3] ..........20
Obr. 10 Relaxace dvou polymerů [3] .................................................................21
Obr. 11 Vyltačovací linka ......................................................................................22
Obr. 12 Šnekový vyltačovací stroj [15] ...............................................................23
Obr. 13 Princip šnekového vytlačovacího stroje [3] .........................................24
Obr. 14 Rozdělení vytlačovacích hlav [1] ............................................................25
Obr. 15 Plochá vyltačovací hlava .........................................................................26
Obr. 16 Základní sekce ploché vyltačovací hlavy [3] ........................................27
Obr. 17 Model části ploché vyltačovací hlavy ....................................................28
Obr. 18 Profilová vyltačovací hlava a vyltačovaný profil ...................................29
Obr. 19 Vyltačovací hlava s žebry .......................................................................30
Obr. 20 Ze strany plněná hlava [5] .......................................................................30
Obr. 21 Trny ze strany plněných vyltačovacích hlav [5] ....................................31
Obr. 22 Hlava se spirálovým trnem [5] .................................................................31
Obr. 23 Model spirálového trnu ...........................................................................32
Obr. 24 Hlava se spirálovým trnem .................................................................32
Obr. 25 Plochá spirálová hlava ............................................................................33
Obr. 26 Deska ploché spirálové hlavy .................................................................34
Obr. 27 Ukázka kalibrace ......................................................................................35
Obr. 28 Lamelový kalibr .......................................................................................35
Obr. 29 Kalibrační stůl .........................................................................................36
Obr. 30 Průvlaková kalibrace [1] .........................................................................37
Obr. 31 Přetlaková kalibrace [1] .........................................................................38
Obr. 32 Podtlaková kalibrace [1]..........................................................................................39
Obr. 33 Třípásový odtah ........................................................................................................40
Obr. 34 Pásový odtah .............................................................................................................41
Obr. 35 Dělící zařízení ............................................................................................................42
Obr. 36 Sklápěcí žlab ..............................................................................................................43
Obr. 37 Dvoustanicové navijecí zařízení ..................................................................................44
Obr. 38 Zadaný vytačovaný profil .........................................................................................47
Obr. 39 Model a základní rozměry vytačovaného výrobku ..................................................49
Obr. 40 Tvar řezu profilu a jeho zvětšení o 6 % ....................................................................50
Obr. 41 Ukázka možností modifikace vytačovací hlavy .........................................................51
Obr. 42 Výstupní část vytačovací hlavy (hubice) ....................................................................51
Obr. 43 Přechodová část vytačovací hlavy ............................................................................52
Obr. 44 Vstupní část vytačovací hlavy ....................................................................................52
Obr. 45 Tvorba negativu dutiny .............................................................................................53
Obr. 46 Negativ dutiny ...........................................................................................................53
Obr. 47 Toková geomertie v softwaru FEMAP .....................................................................54
Obr. 48 Ukázka tvorby sítě v softwaru FEMAP .....................................................................55
Obr. 49 Ukázka vad sítě ..........................................................................................................56
Obr. 50 Konečný vysíťovaný model .......................................................................................56
Obr. 51 Spuštění panelu pro výpočet toku ..............................................................................57
Obr. 52: Nastavení základních jednotek ...............................................................................57
Obr. 53 Nastavení základních charakteristik materiálu ........................................................58
Obr. 54 Nastavení vstupního hmotnostního průtoku na hlavním vstupu ..............................58
Obr. 55 Nastavení vstupního hmotnostního průtoku na vedlejším vstupu ............................59
Obr. 56 Nastavení výstupních charakteristik ......................................................................60
Obr. 57 Nastavení výpočtového modelu ...............................................................................60
Obr. 58 Nastavení počtu iterací výpočtu .............................................................................61
Obr. 59 Nastavení požadovaných výstupů výpočtu ..............................................................61
Obr. 60 Spuštění výpočtu ......................................................................................................62
Obr. 61 Průběh výpočtu ..........................................................................................................63
Obr. 62 Ukázka kontroly výpočtu ..........................................................................................63
Obr. 63 Výsledné rozdělení rychlostí v [m/s] .........................................................................64
Obr. 64 Výsledné rozdělení tlaků v [Pa] ..................................................................................65
Obr. 65 Zobrazení výsledné rychlosti uvnitř vytačovací hlavy [m/s] ..................................66
Obr. 66 Kontrola průběhu rychlostí ve výstupní části [m/s] .................................................67
Obr. 67 Kontrola průběhu rychlostí v přechodové části [m/s] ............................................68
Obr. 68 Kontrola průběhu rychlostí v vstupní části v [m/s] ..................................................69
Obr. 69 Zobrazení výsledků rychlosti [mm/s] .......................................................................71
Obr. 70 Zobrazení výsledků tlaku [MPa] ................................................................................71
Obr. 71 Zobrazení průběhu teplot [°C] ..................................................................................72
Obr. 72 Zobrazení tokových čar uvnitř vytačovací hlavy .......................................................72
Obr. 73 Jednotlivé části vytačovací hlavy ..............................................................................73
Obr. 74 3D model konstrukce vytačovací hlavy .................................................................74
Obr. 75 Model vytačovací hlavy včetně topného pásu .........................................................74
Obr. 76 Vyrobená vytačovací hlava .......................................................................................75
Obr. 77 Vyrobená vytačovací hlava pohled ze strany vstupu ..................................................75
Obr. 78 Vyrobená vytačovací hlava pohled z čela .................................................................76
Obr. 79 Vyměnitelná část vytačovací hlavy .............................................................................76
Obr. 80 Připojená vytačovací hlava .......................................................................................77
Obr. 81 Začátek vytačování profilu .........................................................................................78
Obr. 82 Ukázka volného vytoku profilu ..................................................................................79
Obr. 83 Ukázka zavedení profilu do kalibračního zařízení .......................................................79
Obr. 84 Ukázka profilu po první kontrole ...............................................................................80
Obr. 85 Úprava spodní části výstupní části .............................................................................80
Obr. 86 Profil po schválení ......................................................................................................81
Obr. 87 Schválený profil - čelní pohled ..................................................................................82
Obr. 88 Schválený vytačovaný profil .....................................................................................82
SEZNAM TABULEK

Tab. 1 Vlastnosti materiálu PVC .................................................................48
SEZNAM PŘÍLOH

P I – DVD s veškerou dokumentací včetně 3D modelů vytlačovací hlavy a simulací toku

P II – Výkres sestavy vytlačovací hlavy  A3

P III – Výkres hubice   A3

P IV – Výkres přechodové části  A3

P V – Výkres vstupní části vytlačovací hlavy  A3

P VI – Výkres montážního kolíku  A4

P VII – Výkres topného pásu  A4