Projekt zavádění totálně produktivní údržby na vybranou linku ve společnosti ZF TRW

Bc. Terézia Ružičková
ZADÁNÍ DIPLOMOVÉ PRÁCE
(PROJEKTU, UMÉLECKÉHO DÍLA, UMÉLECKÉHO VÝKONU)

Jméno a příjmení: Bc. Terézia Ružičková
Osobní číslo: M13437
Studijní program: N6209 Systémové inženýrství a informatika
Studijní obor: Průmyslové inženýrství
Forma studia: prezenční

Téma práce: Projekt zavádění totálně produktivní údržby na vybranou linku ve společnosti ZF TRW

Zásady pro vypracování:

Úvod
Definujte cíle práce a použité metody zpracování práce.

I. Teoretická část
 - Zpracujte literární rešerši vztahující se k dané oblasti a formulujte teoretická východiska pro zpracování praktické části diplomové práce.

II. Praktická část
 - Proveďte analýzu současného stavu ve společnosti ZF TRW.
 - Zhodnoťte výsledky analýzy a navrhněte východiska pro zlepšení současného stavu se zaměřením na zvýšení celkové efektivity zařízení.
 - Vypracujte projekt zavedení totálně produktivní údržby na vybranou linku v společnosti ZF TRW.
 - Zhodnoťte přínosy navrhovaného zlepšení.

Závěr
Rozsah diplomové práce: cca 70 stran
Rozsah příloh:
Forma zpracování diplomové práce: tiskená/elektronická

Seznam odborné literatury:

Vedoucí diplomové práce: Ing. Pavlína Pivodová, Ph.D.
Datum zadání diplomové práce: 15. února 2016
Termín odevzdání diplomové práce: 18. dubna 2016

Ve Zlíně dne 15. února 2016

doc. RNDr. PhDr. Oldřich Hájek, Ph.D.
depan

prof. Ing. Felicita Chromýaková, Ph.D.
redaktor ústavu
PROHLÁŠENÍ AUTORA
BAKALÁŘSKÉ/DIPLOMOVÉ PRÁCE

Bera na vědomí, že:

- odevzdání bakalářské/diplomové práce souhlasím se zveřejněním své práce podle zákona č. 111/1998 Sb. o vysokých školách a o změně a doplňení dalších zákonů (zákon o vysokých školách), ve znění pozdějších právních předpisů, bez ohledu na výsledek obhajoby;¹

- bakalářská/diplomová práce bude uložena v elektronické podobě v univerzitním informačním systému,

- na mou bakalářskou/diplomovou práci se plně vztahuje zákon č. 121/2000 Sb. o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon) ve znění pozdějších právních předpisů, zejm. § 35 odst. 3²;

- podle § 60 odst. 1 autorského zákona má UTB ve Zlínské právo na uzavření licenční smlouvy o užití školního díla v rozsahu § 12 odst. 4 autorského zákona;

¹ zákon č. 111/1998 Sb. o vysokých školách a o změně a doplňení dalších zákonů (zákon o vysokých školách), ve znění pozdějších právních předpisů, § 97 zveřejněního odstavce 1 právních předpisů

² zákon č. 121/2000 Sb. o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon) ve znění pozdějších právních předpisů, § 35 odst. 3
• podle § 60 odst. 2 a 3 mohu užít své dílo – bakalářskou/diplomovou práci - nebo poskytnout licenci k jejímu využití jen s předchozím písemným souhlasem Univerzity Tomáše Bati ve Zlíně, která je oprávněna v takovém případě ode mne požadovat přiměřený příspěvek na úhradu nákladů, které byly Univerzitou Tomáše Bati ve Zlíně na vytvoření díla vynaloženy (až do jejich skutečné výše);

• pokud bylo k vypracování bakalářské/diplomové práce využito softwaru poskytnutého Univerzitou Tomáše Bati ve Zlíně nebo jinými subjekty pouze ke studijním a výzkumným účelům (tj. k nekomerčnímu využití), nelze výsledky bakalářské/diplomové práce využít ke komerčním účelům.

Prohlašuji, že:

• jsem bakalářskou/diplomovou prací zpracoval/a samostatně a použití informačního zdroje jsem citoval/a;

• odevzdaná verze bakalářské/diplomové práce a verze elektronická nahrana do IS/STAG jsou tutožné.

Ve Zlíně 18.4.2018

[Podpisy]
ABSTRAKT

Hlavným cieľom tejto diplomovej práce je zvýšiť celkovú efektivitu zariadení na pilotnej linke CMF1 v spoločnosti ZF TRW (Slovakia) pomocou implementácie totálne produktívnej údržby. Tento cieľ je dosiahnutý analýzou dostupných zdrojov, pomocou ktorej je zistený vhodný prístup pri implementácii TPM. V praktickej časti je analyzovaný súčasný stav na oddelení údržby a na pilotnom pracovisku. K tomuto účelu je využité štúdium interných materiálov firmy, vývojový diagram, snímkovanie pracovníkov údržby, pareto diagram a spider analýza. Po porovnaní teoretických východisk a súčasného stavu dochádza k využití predovšetkým autonómnej údržby a preventívnej údržby za účelom zvýšenia celkovej efektivity zariadení. Pre získanie potrebných dát je vykonaná aj zmena v informačnom systéme údržby.

Kľúčové slová: Autonómna údržba, celková efektivita zariadenia, preventívna údržba, štandardizácia, totálne produktívna údržba

ABSTRACT

The main purpose of this diploma thesis is to improve the overall equipment effectiveness by implementing the total productive maintenance to the pilot line CMF1 in ZF TRW (Slovakia). The goal is met by analysing the theoretical sources, which are used to detect the appropriate approach to the implementation of the TPM. Then, in the practical part of diploma thesis, there is analysed the current situation in the maintenance department and on the pilot line. For this purpose the study of internal materials and the methods of flowchart, diary method, pareto diagram and spider analysis are used. After the comparison of theoretical background and current situation the autonomous maintenance and preventive maintenance are implemented. To gather the needed information the change in the information system of maintenance is made.

Keywords: Autonomous Maintenance, Overall Equipment Effectiveness, Preventive Maintenance, Standardization, Total Productive Maintenance
Tímto ďakujem všetkým mojím kolegom, ktorí mi pomohli pracovať na projekte, a teda aj diplomovej práci. Za ich čas, ochotu, odborné rady, spoluprácu a zábavu počas celej doby trvania by som chcel a podľať sa predovšetkým pánovi Milanovi Mašánovi, Rastislavovi Malároví, Ivanovi Jankemu, Dominikovi Škriečkovi, Lucii Habdákovej a Antonovi Doktorovi. Taktiež som vďačná aj tým, ktorí mi to robili trochu zložitejšie, pretože iba prekonávaním prekážok sa dostávame ďalej.

Ďakujem aj mojej rodine a priateľom, ktorí ma podporovali počas celej doby štúdia.

Prehlasujem, že odovzdaná verzia diplomovej práce a verzia elektronická nahraná do IS/STAG sú totožné.
4.2.1 POČIATOČNÉ ČISTENIE .. 43
4.2.2 ELIMINÁCIA ZDROJOV ZNEČIŠTENIA .. 44
4.2.3 NORMY ČISTENIA A MAZANIA ... 44
4.2.4 VŠEOBECNÁ KONTROLA ... 44
4.2.5 AUTONÓMNA KONTROLA ... 45
4.2.6 ORGANIZÁCIA A PORIADOK .. 45
4.2.7 ROZVOJ AUTONÓMNEJ ÚDRŽBY ... 45

4.3 PROGRAM PLÁNOVANEJ ÚDRŽBY ... 46
4.3.1 ROČNÝ PLÁN ÚDRŽBY .. 47
4.3.2 KLASIFIKÁCIA STROJOV A ZARIADENÍ .. 47
4.3.3 OPERATÍVNY PLÁN ÚDRŽBY .. 49

IX II ... 51
X PRÁCTICKÁ ČÁST .. 51
XI 5 PREDSTAVENIE SPOLOČNOSTI ... 52
5.1 HISTÓRIA A SÚČASNOSŤ ZF TRW ... 53
5.2 STRATEGICKÉ CIELE A VÍZIA ZF TRW ... 54
5.3 ORGANIZAČNÁ ŠTRUKTÚRA ZF TRW ... 54
5.4 CHARAKTERISTIKA VÝROBNÉHO PROGRAMU ZF TRW 55
5.4.1 CHARAKTERISTIKA VÝROBNÉHO PROGRAM ZF TRW (SLOVAKIA) 56
5.4.2 PRODUKCA SPOLOČNOSTI ZF TRW (SLOVAKIA) V ČÍSLACH 58

XII 6 ANALÝZA SÚČASNÉHO STAVU .. 60
6.1 SYSTÉM ÚDRŽBY V SPOLOČNOSTI ... 61
6.1.1 CIELE ÚDRŽBY .. 61
6.1.2 ORGANIZAČNÁ ŠTRUKTÚRA ÚDRŽBY ... 61
6.1.3 HLAVNÉ ČINNOSTI ÚDRŽBY ... 63
6.1.4 INFORMAČNÝ SYSTÉM V ÚDRŽBE ... 68
6.2 SNÍMKA DŇA TECHNIKA ÚDRŽBY ... 70

6.3 VÝBER PILOTNÉHO PRACOVISKA ... 76
6.3.1 VĚK STROJA .. 77
6.3.2 PORUCHOVOSŤ STROJOV .. 77
6.3.3 VYŤAŽENOSŤ LINKY .. 79
6.3.4 KONEČNÝ VÝBER PILOTNÉHO PRACOVISKA ... 79
6.4 ANALÝZA PILOTNÉHO PRACOVISKA ... 80
ÚVOD

Poruchy, prestoje, nedostatok náhradných dielov a zastaranosť strojného zariadenia sú len vrcholom ľadovca, s ktorými bojuje totálna produktívna údržba. Je to totiž spôsob, ktorým sa dá ovplyvniť skrátenie priebežnej doby výroby, zvyšiť kvalitu výrobkov, spokojnosť zákazníka a redukovať náklady. Je to spôsob ako vzdelávať a rozvíjať zamestnancov a ako rozšíriť povedomie o nutnosti udržiavať stroje v čo najlepšom stave do celej firmy.

Cieľom diplomovej práce na témě Projekt zavádzania totálné produktívnej údržby na vybranú linku v spoločnosti ZF TRW je zvýšiť celkovú efektívnosť zariadenia na pilotnej linke na základe zhodnotenia teoretických východisk a analýzy súčasného stavu.

Celá diplomová práca sa skladá z dvoch hlavných častí – z teoretickej a praktickej.

Teoretická časť bude zahŕňať základné pojmy na témě údržby, priemyselného inžinierstva, štihlej výroby a plytvania. V ďalšej jej časti sa bude autorka zaoberať nástrojmi štihlej výroby a nástrojmi na identifikáciu a elimináciu plytvania. V najváčšej miere je táto časť zamietaná na definovanie totálné produktívnej údržby a jej činností, histórie a postupu zavádzania.

V praktickej časti bude analyzovaný súčasný stav na oddelení údržby, a to pomocou analýzy interných dokumentov a snímkováním technikov údržby. Súčasný stav bude zisťovaný i na pilotnej linke, kde bude pozornosť smerovaná na analýzu prestojov a porúch.

V záverečnej časti, na základe problémov identifikovaných pri analýze súčasného stavu, bude prezentovaný projekt zavádzania totálné produktívnej údržby na pilotnú linku v spoločnosti ZF TRW. Projekt bude pozostávať z implementácie autonómnej údržby a preventívnej údržby. Okrem toho dôjde i k úprave informačného systému využívaného oddelením údržby.
CIELE A METÓDY SPRACOVANIA PRÁCE

Hlavným cieľom tejto diplomovej práce bude zvýšiť celkovú efektivitu zariadení na pilotnej linke v spoločnosti ZF TRW (Slovakia), a to pomocou implementácie metódy totálna produktívna údržba. Pilotné pracovisko bude vybrané na základe troch kritérií: vek strojného zariadenia, poruchovosť strojov a vytiaženosť linky.

Projekt bude na pilotnej linke započatý v septembri 2015 a bude trvať do mája 2016. Počas tohto času je cieľom dosiahnuť zvýšenie celkovej efektivity zariadení o 10 % na pilotnej linke a zvýšenie dostupnosti strojného zariadenia o 5 %. Dielčím cieľom je taktiež znížiť prestoje na strojnom zariadení spôsobené mechanickými a elektrickými poruchami o 2 %.

Pri realizácii projektu bude využitá štúdia odbornej literatúry a empirický výskum, a to konkrétne pozorovanie a meranie práce, ďalej kvantitatívny výskum pri analyzovaní pilotného pracoviska a kvalitatívny výskum predovšetkým pri analýze oddelenia údržby. V analytické časti, pri skúmaní súčasného stavu, bude využitý vývojový diagram, snímkovanie pracovníkov, pareto diagram, spider analýza, výpočet celkovej efektivity zariadení, analytické metódy použité pri štúdiu interných dokumentov firmy a neštandardizované rozhovory. Pri implementácii totálne produktívnej údržby budú prebiehať moderované workshopy, štandardizácia a vizualizácia a ďalšie vyhodnocovanie metódy.
I. TEORETICKÁ ČASŤ
1 DEFINOVANIE ZÁKLADNÝCH POJMÔV

Pre analyzovanie súčasného stavu a zvolenie správneho postupu pri zavádzaní projektu je nutné, aby boli na úvod ujasnené základné pojmy a vysvetlené základné oblasti, s ktorými táto téma súvisí.

1.1 Údržba

Legát a kol. (2013, s. 21) definujú údržbu ako kombináciu všetkých technických, administratívnych a manažérskych opatrení v priebehu životného cyklu objektu, zameraných na jeho udržaní v stave alebo jeho vrátenie do stavu, v ktorom môže vykonávať požadovanú funkciu. To prebieha pri zohľadnení optimálnych nákladov a požiadaviek na kvalitu, bezpečnosť a environment. Údržba, ako proces, sa delí na hlavné procesy, ktoré sú ďalej členené na procesy údržby, a tie sú realizované súborom činností. Toto členenie je zobrazené na obrázku 1. (Legát a kol., 2013, s. 128)

Legát a kol. (2013, s. 21, 128) popisujú údržbu ako jeden z významných procesov v podniku, ktorý ovplyvňuje produktivitu výroby. Pridaná hodnota údržby sa vyznačuje napríklad znížením negatívnych dôsledkov poruch, optimalizáciou investičných nákladov, dodržiavaním legislatívnych požiadaviek a vytváraním konkurenčnej výhody pre podnik. Poslaním procesu údržba je udržiavať a staráť sa o hmotný majetok tak, aby bezpečne, spoločnivo a ekonomicky plnil požadovanú funkciu pri dosiahnutí optimálneho užitočného života. Toto poslanie je dosiahnuté týmito činnostami:
• Presadzovanie princípov preaktívnej stratégie údržby;
• Riadenie rozvoja činností procesu údržby pre dosiahnutie optimálnej efektivity a synergických efektov;
• Metodické riadenie tvorby a realizácie stratégie údržby;
• Riadenie vývoja a implementácia metódiky pri tvorbe nástrojov podpory činností procesu údržby;
• Príprava, plánovanie, realizácia a vyhodnotenie odstávok a generálnych opráv;
• Presadzovanie zmien procesu údržby;
• Pravidelné sledovanie a vyhodnocovanie vývoja vybraných ukazovateľov.

V minulosti bolo úlohou údržby predovšetkým odstraňovať problémy a dobre organizovať prácu, avšak postupom času sa jej funkcia mení na oddelenie zvyšujúce spoľahlivosť, riadiaci majetek a jeho efektívne využívanie a oddelenie riadiace zásoby a rizík. V meniacich sa podmienkach konkurencie sa aj na oddelení údržby kladie dôraz na zjednodušovanie materiálnych a informačných tokov, obmezenie vstupov, zvýšenie flexibiliti a efektívnosti. Údržba, patriaca medzi primárne procesy spoločnosti, sa musí podieľať na zmenách a zlepšovaní procesov. (Legát a kol., 2013, s. 23)

1.2 Priemyselné inžinierstvo

Badiru (c2014, s. 4) uvádza, že vd'aka priemyselnému inžinierstvu fungujú systémy spolu lepšie, pričom je obmedzené plytvanie, kvalita je zvýšená a je využitý menší počet výrobných faktorov. Priemyselné inžinierstvo ďalej popisuje ako kombináciu technických odvet-
ví a vedeckého manažmentu, pričom sa využívajú najmä metódy a vedomosti z oblasti výroby a riadenia procesov. Objektom záujmu je v tomto prípade porozumenie pracovníkom a ich potrebám za účelom zvýšenia a zlepšenia výroby a služieb.

Aktivity a techniky priemyselného inžinierstva sa orientujú hlavne na určenie najefektívnejšieho spôsobu výkonu práce, na nastavenie štandardov práce a noriem pre kvalitu, množstvo a náklady a na navrhovanie a zavádzanie zariadení. Badiru (2014, s. 4)

1.3 Štíhla výroba

Koncom 80. rokov 20. storočia boli v USA uskutočnené výskumy, ktoré porovnávali americkú a západoeurópsku výrobu s japonskou koncepciou výroby. V týchto výskumoch bolo zistené, že japonské firmy dosahovali pri výrobe vyššiu produktivitu a nižšie dodacie doby pri použití menšieho množstva vstupov (mali k dispozícii menší počet ľudí, dodávateľov, menší kapacitu zariadení a výrobných plôch, menšie zásoby a nižšie investície do strojných zariadení). Na rozdiel od princípu hromadnej výroby, ktorý bol využívaný v USA a západnej Európe, ktorý bol zameraný na vysokú produktivitu a nízke náklady, pričom individuálne požiadavky zákazníka nepatrili medzi najvyššie priority, v Japonsku sa využíval koncept „štíhlej výroby“. (Keřkovský a Valsa, 2012, s. 88)

Podľa Keřkovského a Valsy (2012, s. 88), štíhla výroba umožňuje firmám pružne reagovať na požiadavky zákazníka a dopyt, ktorý je riadený decentralizované, prostredníctvom flexibilných pracovných tímov, pri nízkom počte na seba nadväzujúcich výrobných stupňov.

Vo Výkladovom slovníku průmyslového inženýrství a štíhle výroby (2005, s. 44) je štíhla výroba vysvetlená ako metodológia komplexného zlepšovania procesov, ktorá zefektívňuje činnosti spojené s výrobou a eliminuje v nich plytvania. Cieľom je redukovať priebežnú dobu výroby, znižiť rozpracovanosť a zásoby, znižiť náklady a zvýšiť kvalitu pomocou techník a nástrojov priemyselného inžinierstva.

Badiru (2014, s. 39) vo svojej publikácii uvádza tri hlavné principy štíhlej výroby:

- *Eliminácia plytvania* – obmedziť všetky formy plytvania v procesoch.
• **Ťažný systém výroby**, inak nazvaný ako „výroba na objednávku“, ktorý umožňuje firme vyrábať jednotky len vtedy, keď prijme objednávku.

Badiru (c2014, s. 39) menuje niekoľko výhod, ktoré so sebou prináša využitie štíhlej výroby:

- Zlepšenie produktivity;
- Celkové zníženie výrobného času;
- Zvýšenie kvality;
- Zmenšenie zásob;
- Šetrenie pracovnej plochy;
- Nižšie výrobné náklady a vyššie zisky a mzdy;
- Kratši čas cyklu (využitím výroby na objednávku namiesto výroby k uskladneniu);
- Bezpečnosť operácií.

1.4 Plytvanie

1. **Transformačné činnosti pridávajúce hodnotu priamo** sú činnosti, ktoré sú skutočnou prácou, teda primárne činnosti. Tieto činnosti odpovedajú akémukoľvek pohybu, ktorý pridáva hodnotu. Čím je väčší pomer medzi činnosťami, ktoré tvoria hodnotu a celkovo vynaloženými činnosťami, tým je väčšia pridaná hodnota procesov.

3. **Transformačné činnosti, ktoré nepridávajú žiadnu hodnotu** sú činnosti, ktoré nie je nutné, a ani žiadúce, vykonávať. Inak sa nazývajú plytvaním a je potrebné ich eliminovať.

1. Čakanie;
2. Zásoby materiálu;
3. Transport, či už vnútropodnikový alebo mimopodnikový;
4. Nekvalita;
5. Chyby vo výrobe;
6. Nadprodukcia;
7. Zbytočné pohyby.

Boledovič (2014, s. 61) uvádza i ďalšie delenie strát v podniku:

1. Straty na zariadení
2. Straty pracovníka
3. Straty výrobných zdrojov.

Straty pracovníka zahrňajú organizačné straty, zbytočné pohyby a nedostatočnú zručnosť, nedostatočné vyväženie práce, nesprávnu automatizáciu a nevhodnú kontrolu a nastavenie.

Straty výrobných procesov pokrývajú straty týkajúce sa výťažnosti materiálu, energie a straty vplyvom prípravkov a nástrojov.

Stratám na zariadení bola venovaná väčšia pozornosť, vzhľadom na charakter diplomovej práce.
1.4.1 Straty na zariadení

Boledovič (2014, s. 62 – 65) a Dennis (2007, s. 41) uvádzajú týchto 6 hlavných strát na zariadení:

- **Prestoje**
 1. **Poruchy**, teda strata schopnosti stroja plniť svoje funkcie, vzniká buď v závislosti na stroji (vplyvom mechanického, elektrického alebo pneumatického poškodenia), alebo nezávisle na stroji (chýbajúci materiál, nástroje, pomocné látky, atď.).

- **Straty rýchlostí**
 3. **Nečinnosť a malé prestávky**, ktoré zahŕňajú beh stroja na prázdno, abnormálnu činnosť senzorov, interferenciu stroja, zasekávanie počas chodu stroja a podobne.
 4. **Redukcia rýchlosti**, ako dôsledok nesúladu medzi navrhnutou a skutočnou rýchlosťou zariadení.

- **Chyby - nekvalita**
 5. **Chyby v procesoch a oprava** zastrešujúce nepodarky a nedostatky v kvalite, ktoré budú potrebovať opravu alebo sú odpadom, avšak musia byť opäť vyrobené podľa objednávky.
 6. **Straty pri rozbehu** sú straty, ktoré nastávajú v čase medzi štartom stroja a stabilnou prevádzkou.

Cieľom metód a nástrojov štihlej výroby je tieto straty a plytvanie identifikovať a eliminovať v najväčšej možnej miere.
2 NÁSTROJE IDENTIFIKÁCIE A ELIMINÁCIE PLYTVANIA A METÓDY ŠTÍHLEJ VÝROBY

K plytovaniu dochádza v každej fírne, avšak tie konkurencieschopné sa vyznačujú tým, že plytvanie vyhľadávajú a odstraňujú. (Burieta, 2014, s. 32) Každé plytvanie má totiž nepriamoúmerný vzťah k produktivite a jeho eliminácia vždy vedie k zniženiu nákladov – či už súčasných alebo potenciálnych. (Bauer, 2012, 26 – 28)

V tejto kapitole budú navrhnuté nástroje a metódy, ktoré je možné využiť pri identifikácií a eliminácii plytovania.

2.1 Snímka pracovného dňa

Metóda snímkovania sa zakladá na pozorovaní a meraní spotreby pracovného času v priebehu celej zmeny alebo jej časti a jej účelom je zistiť druhy pracovných činností a veľkosť pracovnej doby pre ich vykonanie. Predovšetkým sa teda sústredí na veľkosť a druhy časových strát, na odhalenie príčin ich vzniku a vypracovanie návrhov opatrení so zameraním na maximálne využitie pracovnej zmeny produktívnoj prácou. (Líbal a kol., 1974, s. 365)

Líbal a kol. (1974, s. 365 – 366) uvádzajú štyri etapy, v ktorých je spravidla vykonávaná snímka pracovného dňa:

1. **Príprava na pozorovanie.** Určuje sa cieľ snímku pracovného dňa. V súlade so zvoleným cieľom je vybraný pracovník a pracovisko, ktorí budú predmetom pozorovania. Pozorovateľ sa zoznámí so pracovníkmi, ktorého prácu bude sledovať, vysvetlí mu cieľ a význam snímky dňa. Tiež je nutné sa zoznámiť s organizáciou a obsluhou pracoviska, s výrobným zariadením a charakteristickými prvkami organizácie, ktorú bude sledovať. Príprava snímky pracovného dňa končí výberom vhodnej sústavy členenia spotreby pracovnej doby.

2. **Pozorovanie a meranie.** Pozorovateľ sleduje všetky aktivity na pracovisku, popisuje ich a zaznamenáva začiatok a koniec ich trvania. Spozorované údaje zaznamenáva do záznamného listu snímky pracovného dňa.
3. **Spracovanie a rozbor nameraných hodnôt.** Na základe nameraných hodnôt sú zostavované bilancie spotreby pracovnej doby a vypočítané sú i ukazovatele zobrazujúce hospodárenie s časom.

4. **Vypracovanie návrhu technicko-organizačných opatrení.** Hodnoty a ukazovatele zistené v predchádzajúcom kroku slúžia ako podklad pre záverečné vypracovanie zhodnotenia snímky pracovného dňa a návrhu s technicko-organizačnými opatreniami. Návrhy majú byť vypracované tak, aby viedli k odstráneniu zistených nedostatkov alebo k ich minimalizovaniu.

V praxi sú využívané tieto druhy snímkov pracovného dňa (Líbal a kol., 1974, s. 366):

- **Snímka pracovného dňa jednotlivca.** Predmetom pozorovania je jeden pracovník, ktorý vykonáva jednu prácu na jednom pracovisku. Tento spôsob sa vykonáva predovšetkým vtedy, ak záleží na podrobnom zachytení údajov o využití času zmeny produktívou prácou. Aby bolo zabránené skresleniu údajov, musí sa snímok pracovného dňa jednotlivca niekoľkokrát za sebou opakovať.

- **Hromadná snímka pracovného dňa.** Sleduje sa súčasne práca niekoľko samostatne pracujúcich pracovníkov, čím umožňuje získať skrité spotreby času súčasne u všetkých množstva pracovníkov. V tomto prípade nie je možné sledovať začiatok a koniec pracovnej činnosti každého pozorovaného pracovníka, preto pozorovateľ v priebehu pracovnej zmény obchádza postupne a v nepravidelných intervaloch sledovaných pracovníkov a zaznamenáva trvanie činností, ktoré vykonáva v danom okamžiku. Po skončení pozorovania zistí pozorovateľ početnosť výskytu jednotlivých kategórií činností každého pozorovaného pracovníka. Vynášobením dĺžky intervalu obchádzky je vypočítaná absolútna výška ich spotreby pracovnej doby za zmenu.

- **Snímka pracovného dňa čaty.** Pozorovaná je pracovná činnosť skupiny pracovníkov na spoločnej úlohe, ktorá je vykonávaná na jednom pracovisku.

- **Snímka vlastného pracovného dňa.** Táto snímka je vykonávaná samotným pozorovaným pracovníkom.

- **Snímka obsluhy viacerých strojov jedným pracovníkom.** Tento spôsob umožňuje získať mieru pracovného využitia pracovníka a stupeň časového využitia strojov.
2.2 Paretov diagram

Paretov diagram vychádza zo zásad Paretovej analýzy – teda že pomerne malá skupina aktivít má za následok väčšinu výsledkov. V tomto prípade sa konkrétne jedná o pravidlo, že 20 % vstupných faktorov prinesie 80 % výstupov. (Košturiak, 2010, s.189, Ward, 1998, s. 107)

Výkladový slovník průmyslového inženýrství a štihlé výroby (2005, s. 59) popisuje pareto-vu analýzu ako analýzu formou stĺpcového diagramu, ktorý je konštruovaný na základe dát získaných z dátových alebo frekvenčných tabuliek. Pomocou tohto diagramu je možné vyjadrovať relatívnu významnosť jednotlivých problémov a určovať priority pri ich odstraňovaní.

Košturiak (2010, s. 189 – 190) uvádza nasledovný postup pri zostavovaní paretovho diagramu:

1. Formulácia problému pre analýzu, popis faktorov, parametrov, charakteristik, prípadne vykonanie potrebných meraní.
2. Usporiadanie vstupných údajov podľa kvantitatívneho triedenia zostupne.
3. Vytvorenie kumulovaných súčtov ukazovateľov podľa skupín.
4. Vyjadrenie kumulovaných súčtov percentuálne.
5. Zostavenie Paretoho diagramu pre zvolené triedenie formou stĺpcového diagramu.
7. Stanovenie kritérií pre výber dôležitých faktorov.
8. Určenie prvkov množiny dôležitých faktorov a vykonanie zásahov na odstránenie príčin, ktoré ich spôsobujú.

2.3 Štandardizácia

Podľa Výkladového slovníka průmyslového inženýrství a štihlé výroby je štandardizácia program, ktorý sa orientuje na vytváranie a kontrolu štandardných postupov a procedúr. Štandard je ďalej definovaný ako 1. popis najlepšieho známeho postupu pre vykonanie danej činnosti; 2. akékoľvek akceptované pravidlo, hodnota ukazovateľa, model alebo kri-térium, pomocou ktorých je vykonávané porovnávanie; 3. technická špecifikácia.
Košturiak (2010, s. 205) tvrdí, že štandard popisuje spôsob vykonávania procesu z hľadiska činností, parametrov, času a poradia.

Dennis (2007, s. 30) definíuje, že štandard udáva jasný obraz o ideálnom stave a je ho použitie dôležité, pretože zvýrazňuje abnormality na základe ktorých sa môžu okamžite vykonáť nápravné opatrenia. Štandard je teda základom pre porovnanie ideálneho a aktuálneho stavu. Podmienky dobrého štandardu sú, že je jednoduchý, jasný a využíva vizualizačné prvky. Autori (Ježek, 2006; Tomek a Vávrová, 2012; Tomek a Vávrová, 2007) ďalej uvádzajú, že štandardy a normy sú záväzné pre celú organizáciu a musia byť akceptované firemným okolím. Štandardy pokrývajú postupy týkajúce sa výroby, montáže, technológie, logistiky alebo kontroly; jedná sa o organizačné normy, predpisy, určovanie vzťahov atď.

Z literatúry (Imai, 2005, s. 63 – 65; Košturiak, 2010; Dennis, 2007) vyplývajú nasledovné kľúčové vlastnosti štandardov:

- **Predstavujú najlepšie, najjednoduchšie a najbezpečnejšie spôsob ako vykonávať danú prácu.** Štandardy sú odrazom mnohoročných skúseností, sú najúčinnejším, najbezpečnejším a nákladovo najefektívnejším spôsobom vykonávania danej práce a je žiadúce, aby bol dodržiavaný zamestnancami na všetkých zmenách.

- **Ponúkajú najlepší spôsob ako zachovať know-how a odborné znalosti.**

- **Poskytujú spôsob merania výkonu.** Fungujú ako spravodlivá základňa na porovnanie výkonov zamestnancov.

- **Ukazujú vzťah medzi príčinou a následkom.** Neprítomnosť a nedodržiavanie štandardov vedie k abnoramlitám, variabilite a plytvaní.

- **Poskytujú základ pre udržiavanie a zlepšovanie.** Dodržiavanie štandardov vedie k udržiavaniu stavu, zvyšovanie ich úrovne prispieva k zlepšovaniu. Zvyšovanie ich úrovne je žiadúce, aby bol dodržiavaný zamestnancami na všetkých zmenách. Vtedy je nutné určiť príčinu a následne zrevidovať existujúce štandardy alebo preškoliť zamestnancov na ich dodržiavanie.

- **Poskytujú ciele a špecifikujú úlohy v oblasti školenia zamestnancov.** Štandardy sú sada vizuálnych znakov,ktoré zobrazujú ako vykonávať danú prácu. Môžu byť vo forme tlačených materiálov, obrázkov, nákresov alebo fotografií.
- **Poskytujú základ pre školenie zamestnancov.** Pri školení zamestnancov sú štandardy prvým bodom, na ktorý musia byť zaučení.

- **Tvoria základňu pre audity a diagnózy.**

- **Poskytujú prostriedky ako zabrániť opakovaniu chýb a minimalizovať variabilitu.** Kontrola kvality znamená kontrolu variability. Dôležité je identifikovať, definovať a štandardizovať klíčové kontrolné body v každom procese a zaistiť, aby tieto kontrolné body boli stále sledované.

Charakteristické pre štandardy je: exaktnosť – presnosť – všetkých výsledkov, záväznosť pre všetkých pracovníkov, ktorí sú určení štandardom, pružnosť a plánovitosť. Štandard tvoria odborníci celej firmy a snažia sa zachytiť nové a najlepšie riešenie pre štandardný stav. (Ježek, 2006; Tomek a Vávrová, 2012; Tomek a Vávrová, 2007, 71 – 74)

Košturiak (2010, s. 215) navrhuje takýto postup pri tvorbe štandardov:

1. Definovanie procesov;
2. Upresnenie začiatku a konca procesov;
3. Rozhodnutie o tvorbe operačného štandardu – produktového, pracovného miesta, zariadenia;
4. Vypracovanie operačného štandardu – popísie vykonávaných činností, parametrov, kritických bodov procesu, postupu odstránenia abnormality;
5. Oboznámenie a overenie správnosti, zrozumiteľnosti, prehľadnosti s používateľmi štandardu;
6. Implementácia, kontrola fungovania v prevádzke a uplatnenie prípadných opráv.

Dennis (2007, s. 31) rozdeľuje štandardy na tri typy podľa ich účinnosti: *napísané inštrukcie*, ktoré sú najmenej účinné; *štandard doplnený obrázkami* – účinnejší ako len písaný text; *príklad správneho a nesprávneho vykonania danej práce* - najúčinnejší.

2.4 Vizualizácia

Bauer (2012, s. 43) definuje vizuálny management ako súhrn grafických nástrojov, obrázkov, pomôcok, ktoré pomáhajú sprievadzať proces a sprístupňujú pochopenie situácie a procesov zainteresovaným stranám. Boledovič a Kormanec (2014, s. 103 – 105) tvrdia,
že vizualizácia je nástroj, pomocou ktorého je možné zabezpečiť efektívnu výmenu zdieľania dôležitých informácií.

Autori (Bauer, 2012, s. 43; Dennis, 2007, s. 31; Imai, 2002005, s. 97) vyzdvihujú, že vizuálny management využíva prostriedky, pomocou ktorých môžu zametnanci rýchlo pochopiť stav procesu, štandardy, odchýlky, a mnoho ďalších faktov. Medzi praktiky vizuálneho managementu zaradujú jasne viditeľné relevantné objekty, tabuľky, zoznamy a záznamy výkonov, ktoré tým prospievajú k uvedomieniu si kvality a nákladov na pracovisku.

Bauer (2012, s. 44 – 45) zaraduje medzi vizuálne techniky tieto:

- Farebné kódovanie a značenie;
- Obrázky a grafika;
- Kanbanové karty;
- Farebné čiary a línie;
- Signalizácia;
- Nástenky a informačné tabule;
- Diagramy;
- Obrázková dokumentácia;
- Farebné označenie abnormalít;
- Checklisty.

Dennis (2007, s. 36) delí vizuálny systém, teda skupinu vizuálnych zariadení navrhnutých pre zdieľanie informácií na prvý pohľad, do štyroch kategórií, zoradených v závislosti na informačnej hodnote, ktorú majú:

- **Vizuálne indikátory** – iba hovoria, patria sem napríklad značky a piktogramy;
- **Vizuálne signály** – upútajú pozornosť, ako napríklad andony a svetelné signály;
- **Vizuálna kontrola** – obmedzuje činy ako vizualizácia na pracovisku formou vyznačenia prechodu pre chodcov, priestoru pre rozpracovanú výrobu, hotové výrobky a podobne;
- **Garancia** – povoľuje len správne akcie, pre tento účel slúži pokaa-yoke.
Vizuálne pracovisko je pracovné prostredie, ktoré sa samo vyjadruje o svojom fungovaní a samo sa i zlepšuje. V prostredí vizuálneho pracoviska je každá neštandardná situácia okamžite viditeľná a to vedie k jej rýchlej náprave. Trojuholník vizuálneho managementu, ktorý zobrazuje jeho fungovanie, je na obrázku 2. (Dennis, 2007, s. 31)

Boledovič a Kormanec (2014, s. 103 – 105) zaraďujú medzi hlavné úlohy vizualizácie najmä zvýšenie bezpečnosti, zviditeľnenie problémov, uľahčenie reakcie na problémy, vyjasnenie pracovných postupov, uľahčenie komunikácie, rovnaké vnímanie informácií a zvýšenie pracovnej disciplíny.

Vizuálny management pozitívne vplyva na zdieľanie informácií, podporuje tímovú prácu, riadenie a kontrolu. Bauer (2012, s. 43 – 44) prezentuje tieto výhody vizuálneho managementu:

- Vytvára a udržiava pre organizáciu konkurenčné výhody;
- Vytvára a udržiava systematický prístup k zlepšeniam v organizácii;
- Prenáša požiadavky organizácie do vizuálnych stimulov, ktoré nemôžu byť ignoriované a sú využívané k vysvetleniu, oznamovaniu, ujasňovaniu, integrovaní misie, vízie, cieľov, hodnôt a kultúry v organizácii;
- Zobrazuje klíčové dáta a informácie cez senzorové správy zdôzorňujúce čo je v organizácii najdôležitejšie;
• Cez vizualizáciu problémov podporuje ich zviditeľnenie a následné riešenie;
• Udržuje bezpečnosť na pracovisku.

2.5 Tímová práca

Vytláčil a Mašín (1998, s. 153) definujú tímovú prácu ako efektívnu formu organizácie ľudskej práce, v ktorej centre záujmu je ľudský zdroj ako bytosť nadaná vlastným rozumom, tvorivými schopnosťami, skúsenosťami, znalosťami a vôľou pracovať na určitej motivačnej úrovni. Tímová práca je efektívna forma organizácie ľudskej práce, ktorá má viacdimenzionálny charakter, prebieha v trvalom rozvoji pracovných vzťahov členov tímu, ktorí majú určité pracovné role alebo si ich sami rozdeľujú a menia podľa vlastnej vôle. Ďalej uvádzajú, že skutočná tímová práca znamená predovšetkým súhru a súčinnosť jednotlivcov.

Boledovič a Kormanec (2014, s. 114) zdôrazňujú nasledovné dôvody pre zavádzanie tímovej práce:
• Snaha o zapojenie všetkých ľudí do riešenia problémov;
• Snaha o zvýšenie produktivity, pružnosti výroby, zníženie nákladov, skrátenie priebežných časov, zvýšenie kvality;
• Snaha o zvýšenie motivácie a flexibility pracovníkov a zvýšenie ich záujmu o výsledky firmy;
• Snaha o zlepšenie komunikácie.

V literatúre (Boledovič a Kormanec, 2014, s. 119; Košturiak a Frolík, 2006, s. 155 – 158) sa uvádzajú tieto znaky tímu v podniku:
• Má jasný spoločný cieľ;
• Zabezpečuje ucelený proces;
• Má ohraničenú veľkosť – od 5 do 15 členov;
• Má ohraničené pole pôsobnosti;
• Má definovanú kompetenčnú maticu;
• Má definované klíčové ukazovatele, ako absencie a produktivita;
Má definované pravidlá tímových stretnútí a iné štandardy;

- Využíva vizualizáciu;
- Zvyšuje si kvalifikáciu.

Dobrý, súdržný a akcieschopný tím sa podľa Legátu a kol. (2013, s. 124) vyznačuje nasledovnými znakmi:

1. Členovia tímu zdieľajú spoločné ciele.
2. Členovia udržujú a rozvíjajú intenzívne priateľské a féróvé vzťahy.
3. Ich pracovné prispevky sa dopĺňajú.
4. V tíme má každý člen dvojitú zodpovednosť – za seba a za tím a jeho výsledky.
5. Za to, čo člen robi pre svoj tím, dostáva od tímu všestrannú podporu.

V tíme vládne výrazný kolektívny duch a uspokojujú sa tri spáte potreby, ktoré sú v rovnováhe: potreba zaistiť splnenie cieľu (úlohy tímu), potreba udržiavať, budovať a rozvíjať tím, potreba stimulovať osobný rozvoj každého člena. Zabezpečenie rovnováhy pri uspokojovaní týchto troch potrieb je dôležité a jej narušenie vedie k dysfunkcii tímu. Preto je dôležité zabezpečiť pravidelné stretnutia tímu.

2.6 Workshopy

Jednou z najvyužívanejších foriem zlepšovania procesov sú workshopy. Výkladový slovník průmyslového inženýrství a štíhlé výroby (2005, s. 91) definuje workshop ako jednania tímu, ktorý sa zaobere odstraňovaním plytvania v danej oblasti. Cieľom workshopu je identifikovať rôzne formy plytvania a navrhnúť a realizovať opatrenia na ich elimináciu alebo minimalizovanie.

Mašín a Vytačil (2000, s. 157) nazývajú workshopom platformu pre dynamické zlepšovanie, ktoré sa zameriava na hlúbkovú analýzu procesu a na ktorom sa stretáva tím zainteresovaných pracovníkov. Dalej definujú nasledovné pravidlá pre workshop dynamického zlepšovania:

- tím sa zaobere obsahom;
- moderátor je zodpovedný za dodržiavanie času, postup riešenia a vol'bu moderačných techník;
- tím je zodpovedný za riešenia a návrhy opatrení;
- vedúci danej organizačnej jednotky je zodpovedný za realizáciu riešení;
- každý člen má krávo predstaviť svoj pohľad na problematiku;
- tím musí dosiahnuť súhlas, ktoré informácie poskytne pri prezentácii;
- spolupráca je založená na ochote príjmať a poskytovať informácie;
- každé opatrenie sa hodnotí z hľadiska potenciálu ročných prínosov a možných vyvolaných investícií;
- preferujú sa opatrenia, ktoré nič nestoja;
- členovia tímu sú uvoľnení zo svojich pracovných povinností počas workshopu.

Obrázok 3: Postup pri moderovanom workshopu
(Zdroj: Burieta, 2014, s. 61)
Počet účastníkov workshopu by nemal byť vyšší ako 12 ľudí a každý člen tímu musí poznáť svoj cieľ zodpovednosti na celkovej úlohe tímu. Workshop je zakončený vypracovaním katalógu opatrení a prezentáciou navrhnutých opatrení pred managementom firmy. Realizácia opatrení je tímom a moderátorom sledovaná aj po ukončení workshopu. Postup moderovaného workshopu je zobrazený na obrázku 3. (Burieta, 2014, s. 69; Mašín a Vytlačil, 2000, s. 160)

Aj keď existujú isté nevýhody workshopov – organizácia náročnejšia na čas, možnosť vzniku konfliktov, možné nerovnomerné vyťaženie členov – ich výhody sú nezanedbateľné. Medzi ich výhody patričné:

- Zapojenie väčšieho počtu ľudí a možnosť riešenia zložitejších problémov;
- Témy a ciele sú obvykle definované managementom podniku, ide teda o riadený a koordinovaný spôsob zlepšovania, ktorý vedie k naplneniu podnikových cieľov;
- Výskyt veľkého množstva nových riešení, ktoré sú vzájomne kombinované a vyľučované;
- Podporujú rozvoj tímovej spolupráce, riešenie konfliktov, vzájomnú komunikáciu a brainstomíng;
- Riešia problém štruktúrovane a systematicky. (Košturiak, 2010)
3 TOTÁLNE PRODUKTÍVNA ÚDRŽBA

Častým dôvodom strát, nízkej productivity a vysokých nákladov v spoločnosti je zlý stav strojov a zariadení. Tento neželaný stav nastáva vplyvom porúch, prestojov, nedostatku náhradných dielov a podobne. Cielom údržby stroja alebo zariadenia je to vylúčiť, a to elimináciou chýb vzniknutých na základe nevhodného spôsobu výroby, prevádzky a údržby, ale taktiež na základe ľudských chýb. (Legát a kol., 2013, s. 136)

Mnoho veľkých porúch sa vyskytnie preto, že maličkosťi sú ignorované. Pravidom produktívnej údržby je, že údržba musí maximálne prispievať k zvyšovaniu productivity. Totálne produktívna údržba je kľúčom k strojnej stabilité a efektivite. (Dennis, 2007, s.40; Legát a kol., 2013, s. 136)

V tejto kapitole bude definovaná totálne produktívna údržba, bude zobrazený vývoj tejto metódy a jej prínosy do podniku. V závere kapitoly bude pozornosť venovaná krokom pri zavádzaní TPM a potrebné dokumentácií.

3.1 Definícia a charakteristika TPM

Mašín a Vytlačil (1996, s. 183) označujú totálne produktívnu údržbu ako najmodernejšie systém organizácie a vykonávania údržby. Podľa Hartmanna (2007, s. 29) je to produktívna údržba, ktorá prebieha za účasti všetkých. Ďalej potom upresňuje, že TPM neustále zlepšuje celkovú efektívitu zariadení za aktívnej účasti zamestnancov.

Výkladový slovník průmyslového inženýrství a štíhlé výroby (2005, s. 81) definujú totálne produktívnu údržbu ako systematickú metódu zameranú na zvyšovanie celkového efektívneho využitia strojov a zariadení pri aktívnej účasti všetkých rozhodujúcich profesíí a pracovníkov.

TPM sa snaží o zapojenie všetkých pracovníkov do aktivít, ktoré smerujú k minimalizácii prestojov zariadenia, nehôd a zmetkov. Pri tejto metóde sa vychádza z toho, že človek, ktorý obsluhuje stroj má šancu zahytiť abnormality a prípadne zdroje budúcich porúch zariadení najskôr. Zatracuje sa tak tradičné delenie ľudí na tých, ktorí na stroji pracujú a tých, ktorí stroj opravujú. Košturiak a Frolík (2006, s. 93)
Legát a kol. (2013, s. 136) nazýva TPM „komplexnou produktívnou údržbou“, ktorú charakterizuje ako vzájomné prepojenie údržby a výroby s technickým zabezpečením udržovateľnosti a zaistenosti údržby.

Cieľom totálne produktívnej údržby je dosiahnuť nulové prestoje a eliminovať strojné poruchy pomocou odstránenia hlavných príčin strat, ktoré znižujú strojné využitie. Tieto straty boli popísané v kapitole 1.4.1. (Mašín a Vytlačil, 2000, 227 – 228)

Nakajima (1988, s. 10 – 11) tvrdí, že pre TPM je typických týchto päť bodov:

- Cieľom totálne produktívnej údržby je maximalizácia efektívnosti výrobného zarúdia;
- Je to systém produktívnej údržby v celom podniku;
- Pre efektívne fungovanie TPM je potrebná účasť manažerov, údržbárov, technikov a operátorov;
- TPM zahráva všetkých pracovníkov - od top managementu, až po pracovníkov obsluhy;
- Pre fungovanie TPM musí byť vykonávaná preventívna a produktívna údržba, ktorá spočíva v tímovej práci.

3.2 Vývoj TPM

Autorom totálne produktívnej údržby je Seichi Nakajima, ktorý postupne v 50. a 60. rokoch študoval systémy pre preventívnu a produktívnu údržbu v USA a Európe. Tieto prístupy ďalej rozvíjal a porovnával odlišnosti.

Porovnanie charakteristik prístupov v starostlivosti o stroje a zariadenia pri implementácii preventívnej údržby (PM) a totálne produktívnej údržby (TPM) sú v tabuľke 1.

<table>
<thead>
<tr>
<th>Systém</th>
<th>Charakteristika</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TPM</td>
</tr>
<tr>
<td>Systém</td>
<td>Charakteristika</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
</tr>
<tr>
<td>PM</td>
<td>PM sústredzuje špecialistov údržby. Zvýšenie efektívnosti strojov, zariadení a výroby chce dosiahnuť zlepšením údržby bez metód zlepšovania.</td>
</tr>
<tr>
<td>TPM</td>
<td>TPM je budovaná na princípe autonómnej údržby pre operátorov. Bežná údržba (čistenie, mazanie, dotáhovanie uvoľnených častí, kontrola) je povinnosťou operátorov. Inšpekcia zariadení, diagnostika a opravy sú zadané špecialistom údržby.</td>
</tr>
<tr>
<td>PM</td>
<td>V systéme PM sú operátori zasvätení len do výroby a všetky činnosti údržiavania a údržby vykonávajú špecialisti údržby.</td>
</tr>
<tr>
<td>TPM</td>
<td>TPM využíva na zvyšovanie efektívnosti zariadení tvorbu malých skupín TPM, pričom na ich činnosti sa podieľajú všetci členovia tímu. Mení sa formálna štruktúra organizácie práce z individuálnej na tímovú.</td>
</tr>
<tr>
<td>PM</td>
<td>PM nie je implementovaná prostredníctvom malých skupín, na ktorých sa podieľajú všetci členovia tímu. Je tvorená špecialistami údržby.</td>
</tr>
</tbody>
</table>

Nové prvky, ktorými sa TPM liši od ostatných systémov teda patrí:

- Zavedenie aktivít malých skupín;
- Údržba vykonávaná obsluhou stroja;
- Zavedenie prvkov bezpečnosti na pracovisku;
- Príjemné pracovné prostredie ako základ výkonnosti ľudí.

Seichi Nakajima svoje poznatky spracoval do návrhu, ktorý v roku 1971 predložil v Japonskej firme. V priebehu 70. rokov sa totálna produktívna údržba rozmohla u dodávateľov Toyoty a v 90. rokoch už bola považovaná za súčasť výkonných fíriem. Rozšírenie podporilo Japonské centrum produktivity a Japonský inštitút pre údržbu závodorov. (Boledovič et al., 2010, s. 15; Mašín a Vytlačil, 2000, s. 33 - 40)

3.3 Prínosy TPM

Totálna produktívna údržba presmerováva základné činnosti údržby, ako napríklad inšpekcia, čistenie, mazanie, na výrobných pracovníkov. Tento krok uvoľňuje údržbárov pre prediktívnu údržbu, zlepšovanie zariadení, tréning a ďalšie aktivity. (Dennis, 2007, s. 40)
Pretože po implementácii TPM pracovníci poznajú a ovládajú svoje zariadenia a preberajú za ne zodpovednosť, implementácia pozitívne vplyva na tieto oblasti:

Kvantitatívne zlepšenia

- Rast produktivity o 10 % - 50 %;
- Menej porúch o 50 %;
- Zvýšenie kvality produkcie o 2 % až 5 %;
- Rast disponibility zariadení o 20 % až 30 %;
- Zvýšenie pružnosti;
- Redukcia preotypovacích časov o 10 % až 80 %. (Boledovič, 2014, s. 32)

Obrázok 4: Presmerovanie základných činností na výrobu (Zdroj: Dennis, 2007, s. 40)

Obrázok 5: Priebeh znižovania porúch počas zavádzania TPM (Zdoj: Legát a kol., 2013, s. 152)
Kvalitatívne zlepšenia

- Cieľovo orientovaná tímová práca;
- Rozvoj spolupráce údržby a výroby;
- Bezpečnost procesu;
- Zvyšovanie kvalifikácie zamestnancov. (Boledovič, 2014, s. 32)

3.4 Kroky implementácie TPM

Implementácia totálnej produktívnej údržby so sebou prináša niekoľko krokov, ktoré je vhodné dodržať. Boledovič (2014, s. 41) a Košturiak a Frolík (2006, s. 105) ich uvádzajú takto:

1. Príprava projektu TPM

 - **Zmapovanie stavu údržby.** Pred zavedením totálnej produktívnej údržby je vhodné zistiť súčasný stav oddelenia údržby v klúčových oblastiach – manažment náhradných dielov, investícia do zariadení, ukazovatele a ciele údržby, systém riadenia údržby, workflow údržby, autonomná údržba, preventívna údržba a štandardizácia údržbárskych činností. Pre zmapovanie toho stavu je možné využiť spider analýzu, ktorej ukázka sa nachádza v prílohe 5.

 - **Získanie podpory manažmentu pre TPM.**

 - **Kampaň pre TPM.** Kampaň pre TPM zahŕňa jej propagáciu v podniku, informovanie zamestnancov, prekonanie skepticizmu zamestnancov a tréning pracovníkov. Kampaň je možné viest prostredníctvom podnikových novín, vizualizačných tabúľ; je vhodné usporiadať školenia pre kandidátov na riadiaci tím, pre výrobný management a údržbu.

 - **Vytvorenie TPM tímu.** V prvom kroku majú byť tatiež vytvorené realizačné tímy na rôznych úrovniach, určený koordinátor celého projektu, má prebehnuť výber a výcvik vhodného personálu pre implementáciu TPM.

 - **Definovanie cieľov a princípov TPM. Definovanie plánu zavedenia TPM v podniku.** V tomto kroku majú byť definované konkrétne ciele, ktoré majú
byť dosiahnuté, určený časový harmonogram a majú byť konkretizované jednotlivé ciele. Bude taktiež spracovaný detailný a záväzný plán realizácie TPM v podniku.

2. **Zavedenie TPM na pilotnú linku**

 V druhom kroku je metóda totálnej produktívnej údržby zavedená na pilotnú linku. Sú zapojené kooperujúce firmy, externí konzultanti a vzdelávacie firmy. Sú implementované vybrané pilie metódy a následne dochádza k vyhodnoteniu prvých skúseností.

3. **Implementácia TPM v celom podniku**

 V tretom kroku dochádza k zlepšovaniu celkovej efektivity zariadení vo výrobe, sú spracovávané programy autonómnej údržby v jednotlivých tímach, sú vytvárané a rozvíjané diagnostické nástroje a schopnosti pracovníkov v TPM tínoch. Pre oddelenie údržby sú vytvorené plány, ktoré zahŕňajú periodické a preventívne prehliadky, dbá sa na správne hospodárenie s náhradnými dielmi. Sú organizované ďalšie tréningy zamerané na riešenie detailných problémov v TPM tínoch.

4. **Stabilizácia**

 V záverečnom kroku implementácie sú vyhodnocované výsledky, sú stanovované vyššie ciele a je zdokonalovaná stabilizácia TPM programu v spoločnosti.

3.5 **Dokumentácia v TPM**

 Okrem štandardov, ktoré sú neoddeliteľnou časťou pri implementácii TPM, môžu byť využívané i ďalšie dokumenty, ktoré budú popísané v tejto kapitole.

3.5.1 **Záznamy o poruchách a ich odstranení**

 Z hľadiska TPM môžu byť tieto záznamy nazvané aj ako Karta porúch. Tento dokument je prehľad udalostí (porúch) súvisiacich s prevádzkou daného zariadenia. Uvádzajú dátum poruchy, jej príčinu (poruchu dielu, chyba obsluhy, atď), spôsob odstránenia poruchy, spotrebované náhradné diely, návrh opatrení pre predchádzanie tejto poruche.
Záznamy o poruchách vytvára a vedie údržba a slúžia ako pomôcka pri vytváraní a aktualizácii programov preventívnej údržby. (Legát a kol., 2013, s. 105)

3.5.2 Mazacie plány a návody

Mazacie plány obsahujú schému zariadení, na ktoré sú vyznačené miesta s olejovou náplňou, prípadne sú na nej vyväžené miesta, ktoré je nutné v stanovených intervaloch mazať olejom alebo mazacím tukom. Taktiež môže vyvažovať miesta, do ktorých je nutné olej alebo mazací tuk doplniť.

Okrem toho obsahujú aj mazacie plány špecifikáciu doporučených olejov a mazív a mazací plán, ktorý je určený pre prehľadné zapisovanie činností súvisiacich s namazaním zariadenia. Mazací plán definuje cyklus výmen a doplnení a určuje zodpovednosť za vykonanie mazania. (Legát a kol., 2013, s. 103 – 104)

3.5.3 Popis stroja

Legát a kol. (2013, s. 103) definujú popis stroja ako popis jednotlivých častí zariadenia a ovládacích prvkov na technickom výkrese alebo fotografii. Je vysvetlený účel všetkých častí a ovládacích prvkov, rovnako ako aj ich funkcia a dôraz na bezpečnosť práce obsluhy.

3.5.4 Plán údržby

Plán údržby je dokument, ktorý obsahuje prehľad činností, ktoré je nutné zaistiť v priebehu jednoho roku v stanovených cykloch obsluhou stroja, údržbou prevádzkovateľa alebo servisným technikom dodávateľa v priebehu jedného roka. Tento dokument vychádza z programu údržby a je tvorený za účelom zabezpečenia bezpečného a bezporuchového chodu zariadenia.

V pláne sa uvádza dátum vykonania údržby a osoba, ktorá činnosť vykonala a potvrdila svojím podpisom. (Legát a kol., 2013, s. 105)
4 AKTIVITY TOTÁLNE PRODUKTÍVNEJ ÚDRŽBY

Boledovič (2014, s. 19), Legát a kol. (2013, s. 142 – 143) uvádzajú tieto dva hlavné ciele totálnej produktívnej údržby:

1. **Pracovisko ako optimálny sytém človek – stroj.**

Človek zohráva hlavnú úlohu v tomto vzťahu a preto mu musí byť systém prispôsovený:

- musia byť nastavené optimálne prevádzkové podmienky;
- zariadenie musí byť udržiavané v optimálnych prevádzkových podmienkach.

2. **Zlepšenie celkovej kvality pracovného prostredia.**

Pre splnenie tohto cielu je dôležitá:

- zmena správania ľudí;
- zmena zariadenia, ktorá vplyva i na postoj pracovníkov k ich práci;
- zmena pracoviska.

Literatúra (Boledovič, 2014, s. 21; Mašín a Vytlačil, 1996, s. 194 – 195) uvádza, že filozofia totálnej produktívnej údržby sa skladá z piatich hlavných aktivít, ktoré sú zobrazené na obrázku 6. Prvé tri hlavné aktivity budú bližšie špecifikované v tejto kapitole.
4.1 Program zvyšovania celkovej produktivity zariadení

Kľúčovým ukazovateľom pri meraní efektivity strojov je celková efektivita zariadení. Celková efektivita zariadení je percentuálne vyjadrenie času efektívneho využitia stroja v porovnaní k času, kedy je stroj vo firme k dispozícii pre produkciu výrobkov. (Bauer, 2012, s. 61)

Košturiak a Frolík (2006, s. 95) uvádzajú, že hlavným cieľom tejto aktivity je maximalizácia produktívnejho využitia zariadenia, sledovanie a reducia všetkých druhov strát z kapacity zariadenia. Za dosiahnutie cieľov sú zodpovední členovia výroby, údržby, plánovania výroby, management a informačných technológií.

Postup pri meraní a zlepšovaní celkovej efektivity zariadení uvádza Boledovič (2014, s. 103) nasledovne:

1. **Zber vstupných dát.** Odpovedať si na otázky – Aké údaje majú byť zbierané? Ako čo najviac zjednodušiť zber údajov? Kto bude zbierať dátá?

Boledovič (2014, s. 23, 70), Mašín a Vytlačil (1996, s. 187 – 188) hovoria, že pri snahe zvyšovať produktivitu je žiadúce, aby sa spoločnosť neobmedzovala len na elimináciu porúch, ale zaoberala sa všetkými faktormi, ktoré ovplyvňujú efektívne využívanie strojov a zariadení, a to:

- **Dostupnosť** (miera využitia) – ideálne by hodnota tohto ukazovateľa mala dosahovať hodnotu najmenej 90 %;
- **Výkon** (miera výkonu) – ideálna hodnota tohto ukazovateľa je najmenej 95 %;
- **Kvalita** – je žiadúce, aby tento ukazovateľ dosiahol hodnotu najmenej 99 %.

2. **Spracovanie vstupných dát.** Na hodnotu jednotlivých ukazovateľov vplyva v akej miere je vo firme eliminované a minimalizované 6 typov strát (popísané v kapitole 1.4.1). Pre zistenie hodnoty jednotlivých ukazovateľov slúžia nasledovné výpočty:

\[
CEZ = \text{dostupnosť} \times \text{výkon} \times \text{kvalita}
\] \[1\]

\[
\text{Dostupnosť} = \frac{\text{Skutočný čas prevádzky - prestoje}}{\text{Teoretický čas prevádzky - plánované prestávky}}
\] \[2\]

4. **Nápravné opatrenia.** Na základe výpočtu celkovej efektivity zariadení je možné ohodnotiť mieru produktivity vo firme. V prípade nízkej hodnoty je vhodné analyzovať príčiny prestojov a identifikovať optimálne podmienky práce a navrhnúť spôsob akým súčasný nežiadúci stav zmeniť. Boledovič (2014, s. 103)

4.2 Program autonómnej údržby

Jednou z priorit tejto aktivity je zapojiť obsluhu do starostlivosti o stroj. Podľa Kormanca (2014, s. 7) autonómna údržba je udržovanie si svojho vlastného zariadenia a pomocou tohto procesu zároveň rozšírenie si vlastnej kvalifikácie.

Podľa Kormanca (2014, s. 14) a Legáta a kol. (2013, s. 148) má program autonómnej údržby tieto ciele:

1. Spojuje pracovníkov výroby a údržby za účelom stabilizácie a zvýšenia úrovne efektívneho využívania strojov a zariadení a zabránenia zhoršovania stavu strojov. Obsluha v tomto kroku vykonáva základné úkony rutinné údržby, ako napríklad čistenie a inšpekcia stavu stroja, mazanie, kontrola presnosti a jednoduché výmeny a opravy.

2. Program autonómnej údržby je navrhnutý tak, aby sa obsluha naužila čo najviac o funkcií zariadení, ktoré obsluhuje, aké problémy sa najčastejšie vyskytujú a prečo a ako týmto problémom predchádzať.

4. Zlepšuje predvídaťnosť prostredníctvom analýzy dát a zlepšenej komunikácie.

Bauer (2012, s. 63) považuje autonómnu údržbu ako základ zavádzania TPM, pričom implementácia autonómnej údržby by mala prebiehať za prítomnosti technológov, majstrov, pracovníkov údržby, zoraďovačov a TPM koordinátora. Tím pre zavedenie autonómnej údržby podľa Kormanca je zobrazený ma obrázku 7.

Obrázok 7: Tím autonómnej údržby (Zdroj: Kormanec, 2014, s. 18)

Košturiak a Frolík (2006, s. 95) navrhujú, že údržba by mala byť oprostená od každodenného operatív.

Pri zavádzani autonómnej údržby by malo byť dodržaných týchto sedem krokov:

1. Počiatočné čistenie
2. Eliminácia zdrojov znečistenia
3. Normy čistenia a mazania
4. Všeobecná kontrola
5. Autonómna kontrola
6. Organizácia a poriadok
7. Rozvoj autonómnej kontroly.

Prvé tri kroky slúžia k zabezpečeniu podmienok pre chod stroja. Krok 4 a 5 slúžia pre vykonávanie autonómnych prehliadok. Kroky 6 a 7 sú orientované na zlepšenie podmienok pracoviska. (Boledovič el al., 2010, s. 24 – 25). Sedem krokov autonómnej údržby budú ďalej popísané v tejto kapitole.

4.2.1 Počiatočné čistenie

Cieľom prvého kroku je umožniť operátorom vyhľadať nedostatky na zariadení, ako napríklad poškodené časti, priesaky oleja, uvoľnené časti, a overiť v praxi, že čistenie stroja je vlastne jeho kontrolou. Na základe vyhľadaných nedostatkov sú definované opatrenia na ich odstránenie tak, aby bolo zabránené rýchlemu opotrebeniu. (Kormanec, 2014, s. 20)

Autori (Kormanec, 2014, s. 23 – 44; Stöhr, 2012, s. 8) uvádzajú šesť základných krokov pre zavedenie prvého kroku autonómnej údržby:

- Príprava na počiatočné čistenie. Príprava formulárov, čistiacich pomôcok, červených kartičiek, strojnej dokumentácie a podobne.
- Stretnutie TPM tímu, na ktorom budú definované ciele úvodného čistenia a účastníci sa zoznámia so strojnym zariadením.
- Prvotné čistenie stroja, ktoré je vykonané podľa strojnej dokumentácie, označenie a odstránenie abnormalít, určenie prvotného návrhu strojného čistenia a mazania.
- Zlepšovacie opatrenia, ktoré sa týkajú odstránenia všetkých abnormalít a zlepšovania strojného čistenia.
- Vykonávanie pravidelnej strojnej údržby, čistenia, vyhotovovania evidenčných záznamov.
- Kontrola úspešnej implementácie prvého kroku TPM a vykonanie prvotného auditu.

Pri úvodnom čistení sú využívané červené kartičky, pomocou ktorých sú označované identifikované abnormality, poruchy alebo znečistenia. Označená abnormalita je vyfotografovaná a zapísaná do Karty abnormalít, porúch a znečistenia. Po vyčistení stroja sa koná workshop, na ktorom sú definované opatrenia pre odstránenie identifikovaných problémov, ktoré sa nepodarilo odstrániť na mieste. (Kormanec, 2014, s. 23 – 44)
4.2.2 Eliminácia zdrojov znečistenia

Podstatou druhého kroku je eliminovať zdrojov znečistenia, ktoré boli identifikované v prvom kroku. Okrem toho je vhodné, z hľadiska bezpečnosti, odstrániť i t'žažko prístupné miesta na stroji. Cielom je teda lokalizovať zdroj kontaminácie a zastaviť znečistenie priamo pri zdroji tak, aby bolo čistenie, mazanie a kontrola stroja pre obsluhu jednoduchšie. (Boledovič et al., 2010, s. 28 – 29; TPM for Every Operator, 1996, s. 68 – 69)

4.2.3 Normy čistenia a mazania

Po tom, ako bol stroj uvedený do pôvodného stavu a ako boli identifikované a eliminované zdroje znečistenia, nastáva čas ustáliť tento stav. Vďaka správnemu čisteniu a mazaniu sa zníži ďalšie opotrebenie stroja a to sa stane spoľahlivejší. (Mašín a Vytlačil, 2000, s. 140) Při tvorbe štandardov mazania a čistenia je podľa Kormanca (2014, s. 51) nutné špecifikovať:

- Čo treba urobiť? Aké body treba prehliadnut’?
- Prečo?
- Kedy? Ako často?
- Akým spôsobom?
- Kto to má urobiť?

Štandardy sú tvorené tíom autonómnej údržby, s tým, že musia dodržať jasne stanovený čas pre vykonanie čistenia a mazania. Tento čas by nemal prekročiť 2 % pracovnej doby. (Mašín a Vytlačil, 2000, s. 140) Pri implementácii štandardov čistenia a mazania do praxe, je možné využiť metódy vizualizácie a vyznačiť konkrétne miesta i pramo na stroji. (Kormanec, 2014, s. 66)

4.2.4 Všeobecná kontrola

Štvrtým krokom autonómnej údržby je všeobecná kontrola, ktorá sa zameriava na výcvik a tréning pracovníkov. Cieľom je naučiť pracovníkov funkcie a štruktúru zariadenia, jednoduché údržbárske zásahy, zadefinovať štandard popisu zariadenia. V štandarde popisu stroja by mali byť definované funkcie jednotlivých častí stroja a popísané najrizikovejšie
časti z pohľadu poruchovosti. Tréning a výcvik je na záver tohto kroku preverený testom operátorov o funkčných častiach a funkciách zariadenia. (Kormanec, 2014, s. 80)

Vďaka štvrtému kroku budú pracovníci strojnej obsluhy schopní detekovať viac strojných abnormalít ako doteraz a budú tiež schopní lepšie vykonávať autonómnu údržbu zariadenia. (Boledovič et al., 2010, s. 32; Mašín a Vytlačil, 2000, s. 147 – 148; TPM for every operator, 1996, s. 71)

4.2.5 Autonómna kontrola

Keď je operátor schopní rozoznať základné časti a funkcie strojného zariadenia, je možné jasne rozdeliť kompetencie medzi výrobou a údržbou v starostlivosti o stroj. V tomto kroku bude mať tím autonómnej údržby za úlohu vysokejšej štandary autonómnej kontroly – opätovne budú prehodnotené príčiny porúch z minulého obdobia a na ich základe, ako aj na základe skúsenosti, budú štandardy autonómnej kontroly vypracované. (Kormanec, 2014, s. 89 – 90)

Štandardy autonómnej kontroly určujú časti zariadenia, ktoré je nevyhnutné preventívne kontrolovať, aby sa predišlo vzniku pripadnej poruchy. Operátori obvykle vykonávajú kontrolu zariadenia pomocou ľudských zmyslov. Je vhodné kontrolované miesta vizualizovať pomocou značiek. Výstupom piateho kroku je, okrem štandaru, aj plán, ktorý určuje kedy sa bude inšpekcia vykonávať. (Kormanec, 2014, s. 90 – 100)

4.2.6 Organizácia a poriadok

Cieľom tohto kroku autonómnej údržby je zvyšovať efektívne využitie strojného zariadenia tak, že operátori výroby cieľene vyhľadávajú a eliminujú zdroje plytvania. Cieľom je zvýšiť kvalitu procesu, efektívitu práce a bezpečnosť. Stredom záujmu nie je len stroj, ale celé pracovné prostredie, ktoré je zahrnuté do programu autonómnej údržby. (Boledovič et al., 2010, s. 34; Mašín a Vytlačil, 2000, s. 161)

4.2.7 Rozvoj autonómnej údržby

V poslednom kroku je predmetom záujmu tvržné zlepšovanie. Aktivity tímu sa zameriavajú na spoluprácu medzi operátormi výroby a pracovníkmi údržby, sú vymýšľané rôzne zlepšenia, ktoré prispievajú predĺženiu životnosti a využiteľnosti strojného parku. Hlavným cieľom je minimalizácia strojných strát a prenesenie strojnej údržby na výrobných pracov-
níkov. Tí v tomto kroku sú schopní zaznamenávať a čiastočne analyzovať dáta, ktoré sa týkajú daného stroja, diagnostikovať strojné poruchy a podiel sa na trvalom zlepšovaní zariadenia. (Boledovič et al., 2010, s. 34, Mašín a Vytlačil, 2000, s. 162)

4.3 Program plánovanej údržby

V programe plánovanej údržby sa údržba venuje budovaniu systému údržby, plánovanej údržbe strojného zariadenia a optimalizácii nákladov na údržbu. Medzi hlavné činnosti tohto kroku patrí napríklad:

- Periodické prehliadky a údržba;
- Prediktívna údržba;
- Predĺženie životného cyklu zariadenia;
- Práca s náhradnými dielmi;
- Analýza porúch;
- Zvyšovanie spoľahlivosti zariadení;
- Optimalizácia procesov údržby. (Košturiak a Frolík, 2006, s. 95)

Táto časť diplomovej práce bude zameraná na metódy plánovania a rozvrhovania v plánovanej údržbe.

Žiadaným stavom v spoločnosti je zabrániť údržbám po poruche a nahradit ich periodickými, preventívnymi, prediktívnymi a plánovanými typmi. Program údržby je pribežne doplňovaný a upravovaný na základe skúseností pracovníkov údržby a podľa kategorizácie príslušného zariadenia. Medzi prínosy úspešného zavedenia metód plánovania a rozvrhovania patrí:

- Zahrnutie prevádzkovateľa strojov a zariadení do príprav a realizácie harmonogramu;
- Užšia spolupráca medzi jednotlivými disciplinami údržby;
- Zvýšenie efektivnosti práce;
- Skrátenie doby realizácie;
- Zníženie počtu pracovníkov;
• Zniženie nákladov. (Legát a kol, 2013, s. 88 – 89, 105)

4.3.1 Ročný plán údržby

Legát a kol. (2013, s. 80 – 81) uvádzajú, že ročný plán údržby má statický charakter. Je vypracovávaný na základe aktualizovaných programov preventívnej údržby a inšpekčných preventívnych a diagnostických prehliadok, prípadne z legislatívy sa určí počet a druh jednotlivých údržbárskych zásahov a celková ročná prácnosť v hodinách, ktorá je rozpišaná do ročného plánu podľa zariadení. Ročný plán obsahuje informácie, medzi ktoré patriú:

• Plánované terminy jednotlivých preventívnych údržieb (vrátane revízných prehliadok, rutinných preventívnych údržbárskych činností, väčších plánovaných opráv);
• Zoznam údržbárskych úloh pre jednotlivé stroje a zariadenia, súčasne s požiadavkami na údržbárské profesie.
• Požadovaný plánovaný objem pracností v normohodinách pre jednotlivé prevádzky.
• Požadovaný plánovaný objem finančných prostriedkov pre jednotlivé prevádzky a celkom.

Vhodne zostavené plány údržby dávajú podklad k požiadavkám na zdroje (kapacity) údržby a ich sumarizácia umožňuje celopodnikové plánovanie personálnych, technických a finančných zdrojov. Súčasťou plánu preventívnej údržby je plán diagnostických meraní, na základe ktorého sú získavané informácie o skutočnom stave zariadení. Výsledky týchto meraní môžu viest′ ku skráteniu alebo predĺženiu cyklov preventívnej údržby. (Legát a kol. 2013, s. 105)

Ďalej uvádzá, že pri existujúcich strojoch a zariadeniach by malo byť aktualizované ich zaradenie do jednotlivých skupín kritickosti na základe skúseností alebo potrebných nákladov.

4.3.2 Klasifikácia strojov a zariadení

Boledovič a Kormanec (2014, s. 15 – 17) uvádzajú strategické rozdelenie strojov a zariadení podľa troch kritérií:

1. Rozdelenie strojov podľa vplyvu poruchy na podnik do skupín:
Skupina A – stroj vždy po poruchе zastaví celú výrobu alebo linku, spôsobí vysoké straty alebo vysoké nebezpečenstvo úrazu.

Skupina B – stroj môže zastaviť výrobu alebo linku, pretože ho možno na krátku chvíľu vyradiť z prevádzky.

Skupina C – stroj nie je kritický pre výrobu.

2. Predvidateľnosť miesta poruchy – vysoká alebo nízka miera, do ktorej sa dá predvídať kde sa porucha vyskytne;

3. Pravdepodobnosť výskytu – vysoká alebo nízka pravdepodobnosť, že sa porucha na danom stroji vyskytne, prípadne sa dá odhadnúť kedy alebo ako často sa vyskytne.

Obrázok 8: Matica strategického rozdelenia strojov a zariadení (Zdroj: Boleďovič a Kormanec, 2014, s. 16)
Legát a kol. (2013, s. 87) popisujú, že operatívne plánovanie údržby nadvázuje na ročné plány a sú základným nástrojom pre efektívne riadenú údržbu. Ich základom je sústava operatívnych mesačných a následne týždenných operatívnych plánov údržby, ktoré sa konkrétizujú a rozvrhujú na denné rozvrhy úloh. Údržbárom tak určujú objem práce, požadovanú kvalifikáciu, potreby náhradných dielov a materiálu a trvanie odstávky výrobného procesu.

operatívny plán údržby

Legát a kol. (2013, s. 87) popisujú, že operatívne plánovanie údržby nadvázuje na ročné plány a sú základným nástrojom pre efektívne riadenú údržbu. Ich základom je sústava operatívnych mesačných a následne týždenných operatívnych plánov údržby, ktoré sa konkrétizujú a rozvrhujú na denné rozvrhy úloh. Údržbárom tak určujú objem práce, požadovanú kvalifikáciu, potreby náhradných dielov a materiálu a trvanie odstávky výrobného procesu.

Operatívny plán by sa mal zostavovať do 70 % plánovanej hodinovej kapacity dostupných údržbárskych profesí, pričom zvyšok – 30 % - sa necháva ako rezerva pre nedokončené práce a neplánované opravy. Legát a kol. (2013, s. 87) definujú obsah každého operatívneho plánu nasledovne:

- Termín výkonu (od – do);
- Plánovaný rozsah výkonu v normohodinách;
- Požadované náhradné diely a materiál;
- Doplňujúce údaje.

Obrázok 9: Klasifikácia a výber najlepšej stratégie údržby pre zariadenie (Zdroj: Boledovič a Kormanec, 2014, s. 17)

<table>
<thead>
<tr>
<th>Kategória</th>
<th>Vplyv</th>
<th>Predvýdajnosť</th>
<th>Pravdepodobnosť</th>
<th>Strategia</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Strategia po poruchu (min. vplyv)</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Strategia po poruchu (TPM, CIP)</td>
</tr>
<tr>
<td>3</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Strategia po poruchu (min. impact)</td>
</tr>
<tr>
<td>4</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Strategia po poruchu (TPM, CIP)</td>
</tr>
<tr>
<td>5</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Prediktívna údržba</td>
</tr>
<tr>
<td>6</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Prediktívna údržba (vysoká frekv., CIP)</td>
</tr>
<tr>
<td>7</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Podľa časových plánov</td>
</tr>
<tr>
<td>8</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Podľa čas. plánov (vysoká frekv., CIP)</td>
</tr>
</tbody>
</table>
ZHRNUTIE TEORETICKEJ ČASTI

V teoretickej časti diplomovej práce sa autorka zameralá na analýzu literárnych prameňov, ktoré súvisia s problematikou metód štíhlej výroby a totálne produktívnej údržby.

V úvode teoretickej časti boli približené základné pojmy a okruhy, ktoré s touto témou súvisia. Bola vyzdvihnutá úloha údržby vo firme a bolo poukázané na nutnosť toho, aby sa údržba podielala na zmenách. V každom podniku totiž existuje plytvanie, ktoré je spôsobené šiestimi veľkými stratami, ktoré boli taktiež popísané v prvej kapitole. Možnosť ako dosiahnuť elimináciu plytvania je využitie metód štíhlej výroby.

V ďalšej kapitole sa autorka zameralá na vysvetlenie nástrojov pre identifikáciu a elimináciu plytvania a metód štíhlej výroby. Boli ozrejmené nástroje ako Paretov diagnostický, snímkovanie pracovníkov, ktoré slúžia k mapovaniu stavu situácie. Taktiež boli predstavené metódy ako standardizácia, viualizácia, workshopy a práca v tme. Každá z týchto metód je uplatniteľná pri zavádzaní totálne produktívnej údržby.

Tretia kapitola už bola zamieraná na predstavenie TPM. Pojem totálne produktívnej údržby bol definovaný na základe charakteristik niekoľkých autorov. Autorka sa venovali i histórii tejto metódy, postupu pri zavádzaní a prínosom.

V štvrtej kapitole už bolo pojednávané o spôsoboch zavádzania totálne produktívnej údržby. Bolo spomenutých 5 aktivít totálne produktívnej údržby, z ktorých 3 boli bližšie špecifikované – program zvyšovania celkovej efektivity zariadení, program autonómnej údržby a program preventívnej údržby.

V programe zvyšovania celkovej efektivity zariadení bola predstavená metodika a spôsob výpočtu OEE. Pri programe autonómnej údržby bolo popísaných sedem krokov zavádzania. V prípade programu preventívnej údržby sa autorka sústredila na plánovanie a rozvrhovanie činností a na klasifikáciu zariadení a určovanie stratégie údržby.

Teoretická časť diplomovej práce slúži ako podklad pre praktickú časť. Metódy a nástroje spomenuté v teoretickej časti boli východiskové pre analýzovanie súčasnej situácie vo fírme.
II. PRAKTICKÁ ČÁST
5 PREDSTAVENIE SPOLOČNOSTI

Obrázok 10: ZF TRW, pobočka v Novom Meste nad Váhom. Zdroj: (ZF TRW, 2015b)

ZF TRW patrí medzi 10 hlavných dodávateľov v automobilovom priemysle. Predmetom podnikania spoločnosti je primárne vývojárska a výrobná činnosť so zameraním na aktívne a pasívne bezpečnostné systémy áut. ZF TRW má vedúce postavenie v oblasti vývoja bezpečnostných systémov a je dodávateľom pre väčšinu veľkých automobilových spoločností vo svete. S materskou spoločnosťou v Livonii (Michigan, Spojené štáty americké), je v súčasnosti rozšírená celosvetovo – má približne 185 pobočiek v 26 krajinách, ktoré zahŕňajú 22 technických centier a 13 testovacích centier. V roku 2015 spoločnosť ZF TRW zamestnáva vo svojich pobočkách viac ako 65 000 zamestnancov, z toho v Európe je to viac ako 35 000 zamestnancov. (ZF TRW: Cognitive safety systems, ©2015a; ZF TRW, 2015b)

5.1 História a súčasnosť ZF TRW

Medzi významné míľniky firmy patrí júl 2011, kedy nastala fúzia so sesterskou spoločnosťou TRW Automotive (Slovakia) Bytča a názov spoločnosti sa zmenil na TRW Automotive (Slovakia) spol. s r.o. so sídlom v Novom Meste nad Váhom. (ZF TRW, 2015b)

Obrázok 11: Logo spoločnosti ZF TRW
Zdroj: (ZF TRW, 2015b)
5.2 Strategické ciele a vízia ZF TRW

Denné operácie v spoločnosti ZF TRW sú uskutočňované na základe strategických cieľov, ktoré sú pre spoločnosť istým vodítkom pri alokácii zdrojov – či už pri podpore výskumu a vývoja, alebo pri výrobných investiciách a raste. (ZF TRW, 2015b)

ZF TRW sa orientuje na nasledovné strategické ciele:

- **Najvyššia kvalita** vo všetkom, čo sa v spoločnosti robí. Dôležité je, aby procesy, či už výrobné alebo nevýrobné, boli uskutočnené správne na prvýkrát a aby kvalitné produkty boli doručené zákazníkom v správny čas.
- **Celosvetový dosah**, a to nielen pre súčasných zákazníkov, ale zameriavať sa i na rast na nových trhoch.
- **Inovatívne technológie**, ktoré produkujú kvalitné produkty v oblasti aktívnej a pasívnej bezpečnosti pridávajúce hodnotu zákazníkom.
- **Nižšie náklady** pri zachovaní vysokej kvality a hodnoty zákazníkom. Toto sa spoločnosť snaží dosiahnuť využívaním metód štíhlej výroby. (ZF TRW, 2015b)

Víziou spoločnosti je sústrediť sa na 3 globálne trendy – orientáciu na bezpečnosť, dostupnosť produktov a efektívnosť emisií a pohoných hmôt. ZF TRW sa snaží produkovať výrobky, ktoré sú dostupné pre zákazníkov a pritom si zachovávajú vysokú kvalitu, výrobky, ktoré sú menšie, ľahšie a priateľskejšie k životnému prostrediu, a zároveň výrobky, ktoré sú typické svojou najvyššou expertízou v odvetví. (ZF TRW, 2015b)

5.3 Organizačná štruktúra ZF TRW

Organizačná štruktúra spoločnosti ZF TRW je pomerná jednoduchá. V čele stojí vice prezident a generálny manažér spoločnosti. Pre európsku oblasť spoločnosti mu je podriadených 5 riaditeľov – pre personalistiku, pre výrobu EPS motorov, pre výrobu systémov riadenia, pre financie a pre kvalitu. (ZF TRW, 2015b)

Riaditeľ pobočky ZF TRW (Slovakia) podlieha európskemu riaditeľstvu pre výrobu systémov riadenia. Pobočka v Novom Meste nad Váhom je ďalej rozdelená na sedem oddelení a každé z nich má svojho manažéra, ktorý má nielen riadiacu, ale aj reprezentačnú funkciu v spoločnosti. (ZF TRW, 2015b)
Pod jednotlivých manažérov ďalej spadajú vedúci jednotlivých úsekov oddelení a inžinieri. Špecifickým oddelením je kvalita, ktorá okrem samotného riaditeľstva pobočky priamo spadá pod riaditeľstvo kvality ZF TRW pre Európu. Organizačná štruktúra ZF TRW (Slovakia) je zobrazená na obrázku 12. (ZF TRW, 2015b)

Obrázok 12: Organizačná štruktúra spoločnosti ZF TRW (Slovakia) (ZF TRW, 2015b)

5.4 Charakteristika výrobného programu ZF TRW

Využívaním vývojárskej činnosti spoločnosť odpovedá na stále sa meniace podmienky, pričom integruje bezpečnostné technológie, ktoré pomáhajú vodičom predísť alebo znížiť počet nehôd a ochrániť majiteľa, ak sa nedá nehode predísť. Podľa interných materiálov ZF TRW (2015b), medzi klúčové produkty spoločnosti patria tieto:

- **Airbagové systémy a systémy bezpečnostných pásov** zahŕňajúce kompletný airbag systém na strane vodiča a spolucestujúceho, roletové airbagy, integrované sedadlá a integrované zaistenie detských sedadiel;

- **Bezpečnostná elektronika**, ktorá sa zaobírá nárazovými senzormi airbagov, senzormi na sedadle pre dieťa, modulovou diagnostikou a blokovacími systémami, senzormi nakláňania vozidla, senzormi vnímania a inteligentnou zabezpečovacou elektronikou;

- **Body control systémy** zastrešujúce kúrenie, ventiláciu, klimatizačné ovládače a aktiváory, vnútorné ovládače a vypínače, senzory svetla a dažďa, vypínače prevodovky;

- **Brzdné systémy** zaobírajúce sa automobilovými ovládacími systémami (ABS, kontrola pohonu, kontrolné systémy stability automobilu), základnými brzdnými produktami a ovládaním brzdového systému;
Prístupová a bezpečnostná elektronika obsahujúca diaľkové otváranie dverí, zabezpečenie proti krádeži, bezpečnostný systém a monitorovanie tlaku v pneumatikách;

Podporné systémy vodiča zahŕňajúce adaptívny tempomat a systém opustenia jazdnej dráhy;

Riadenie a pruženie, ktoré pozostáva zo silového a manuálneho ovládania, z ovládania motora a systémov, z elektrický podporovaného riadenia (EAS) a z pružiacich systémov a komponentov;

Riadenie systému kolies zahŕňajúce sa integrovaným riadením kolies a krytom airbagov.

Súčasti motora, ktoré obsahujú ventilové systémy a komponenty;

Štandardné riadiace systémy, medzi ktoré patria kompletné systémy a komponenty ako ovládané čerpadlá, ovládané motory, hriadeľ a riadiace tyče;

Upínadlá a komponenty zahŕňajú plastové upínacie systémy ako káblové zväzky, hadice a káble, upínače a záslepky, plastové komponenty medzi ktoré patria napríklad konzoly, rôzne držiaky a ventilovanie tlaku.

5.4.1 Charakteristika výrobného program ZF TRW (Slovakia)

Výrobný program spoločnosti ZF TRW (Slovakia) sa v priebehu rokov menil. Spočiatku bola produkcia zameraná na výrobu EPHS motorov, no v súčasnosti sa orientuje na výrobu EPS motorov a Belt Drive. (ZF TRW, 2015b)

Obrázok 13: Zobrazenie EPS motora po montáži do automobilu. Zdroj: (ZF TRW, 2015b)

Produkt Belt Drive, systém riadenia, začala spoločnosť vyrábať v roku 2011. V závode sú 3 linky produkujúce Belt Drive. Linky BD1 (pre zákazníkov Ford a Volvo) a BD2 (pre zákazníkov Ford, Volvo, Hyundai a Kia) vyrábajú Belt Drive s použitím vlastných EPS motorov. Tieto motory sú vyrábané na EPP linkách, ktoré sú súčasťou BD liniek. Treťou linkou produkujúcou Belt Drive pre zákazníka Renault je CMF1. (ZF TRW, 2015b)

Obrázok 14: Zobrazenie Belt Drive po montáži do automobilu. Zdroj: (ZF TRW, 2015b)

Medzi najnovšie rozšírenia produkcie patrí vybudovanie linky CMF1 v decembri 2014 a rozšírenie linky BD2 o produkty Hyundai v júni 2015 a Kia v októbri 2015. Layout výrobné haly sa nachádza v prílohe P1. (ZF TRW, 2015b)
5.4.2 Produkcia spoločnosti ZF TRW (Slovakia) v čísliciach

S výrobným programom sa v priebehu rokov menil i objem produkovaných kusov (obrázok 6). V začiatkoch, ako bolo spomenuté, prevládala výroba EPHS motorov, ktorá začala byť doplňovaná výrobou EPS motorov. Belt Drive, ktorý je v súčasnosti produkovaný v objeme takmer 140 miliónov kusov ročne, nebol vyrábané vôbec. (ZF TRW, 2015b)

Na obrázku 15 je viditeľné, že výrobný program sa radikálne zmenil v rokoch 2011 a 2012, keď výrobu EPHS motorov úplne vytlačila výroba EPS motorov a Belt Drive. V súčasnosti je produkcia Belt Drive viac ako dvojnásobná oproti roku 2011 a stúpla i výroba EPS motorov – na približne 70 miliónov ročne. (ZF TRW, 2015b)

Rozdelenie objemu výroby podľa zákazníkov je zobrazené na obrázku 16. Z tohto hľadiska bol v roku 2014 najvýznamnejším zákazníkom Ford, ktorý odberal 68 % produkcie ZF TRW (Slovakia), pričom z 54 % sa jednalo o Belt Drive a zvyšných 14 % tvorili EPS motory. Volvo odoberalo 17 % výrobkov a tak tiež išlo o Belt Drive. Volksvagen sa tiež zaraďuje medzi popredných zákazníkov – v roku 2014 odoberali 10 % produkovaných EPS motorov. Nižšie percentá sú zaznamenané pri ďalších spoločnostiach: Fiat (4 %) a Mazda (1 %). (ZF TRW, 2015b)

Vzhľadom na to, že v roku 2014 nebola zahájená výroba pre Renault, v grafe (Obrázok 7) mu prináleží 0 %, avšak v roku 2015 sa percentuálny podiel zmenil a pribudli i ďalší dôležití odberatelia – Hyundai a Kia. (ZF TRW, 2015b)

Obrázok 15: Objem produkcie spoločnosti ZF TRW (Slovakia) v miliónoch ks (ZF TRW, 2015b)
Obrázek 16: Rozdelení objemu výroby podle zákazníků v roce 2014 (ZF TRW, 2015b)
6 ANALÝZA SÚČASNÉHO STAVU

Z hľadiska riadenia výroby a údržby sa závod v Novom Meste nad Váhom delí podľa výrobného programu na dve oddelenia – EPS motory a Belt Drive. Pretože táto diplomová práca bola spracovávaná na linke CMF1, ktorá spadá do oddelenia Belt Drive, autorka sa v tejto práci ďalej venovala analyzovaniu systému výroby a údržby pre jednotku Belt Drive.

Cieľom analýzy súčasného stavu bolo odhalenie nedostatkov a plynutie v oblasti strojnej údržby a analyzovať stav strojov na pilotnom pracovisku za účelom zvýšenia celkovej efektivity zariadení. Pre dosiahnutie stanovených cieľov bola nevyhnutná znalosť systému údržby v spoločnosti ZF TRW (Slovakia) a pochopenie fungovania strojov a zariadení, ktorých sa budú prípadné opatrenia týkať.

Súčasný stav bol zisťovaný použitím metód uvedených v tabuľke č.2, a zároveň je uvedený i predmet záujmu, kým bol použitím metódy sledovaný.

Tabuľka 2: Použité metódy pre analyzovanie súčasného stavu (Zdroj: vlastné spracovanie)

<table>
<thead>
<tr>
<th>Predmet záujmu</th>
<th>Metóda</th>
<th>Strana</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sled činností pri poruchovej údržbe</td>
<td>Vývojový diagram</td>
<td>67</td>
</tr>
<tr>
<td>Aktivity technika údržby, odhalenie plynutia</td>
<td>Snímka pracovného dňa</td>
<td>70-76</td>
</tr>
<tr>
<td>Analýza prestojov a porúch</td>
<td>Histogram</td>
<td>78</td>
</tr>
<tr>
<td>Rozloženia strojov vo výrobné hale</td>
<td>Layout pilotného pracoviska</td>
<td>80</td>
</tr>
<tr>
<td>Analýza typu porúch na pilotnej linke</td>
<td>Pareto diagram</td>
<td>82</td>
</tr>
<tr>
<td>Výpočet celkovnej efektivity zariadení</td>
<td>Výpočet CEZ</td>
<td>81</td>
</tr>
<tr>
<td>Strategické rozdelenie strojov a zariadení</td>
<td>Klasifikácia strojov a zariadení</td>
<td>PIV</td>
</tr>
<tr>
<td>Zmapovanie celkového stavu údržby</td>
<td>Spider analýza</td>
<td>85</td>
</tr>
</tbody>
</table>
6.1 Systém údržby v spoločnosti
V nasledujúcej časti bude analyzovaný systém údržby v spoločnosti ZF TRW, so zameraním na ciele údržby, organizačnú štruktúru údržby a jej hlavné činnosti. Činnosti vykonávané pracovníkmi údržby boli zaznamenávané i pomocou snímky pracovného dňa technikov.

6.1.1 Ciele údržby
Cieľom údržby je minimalizovať nasledujúce riziká pri činnostiach súvisiacich so zariadením výroby:

- Výroba s nefunkčným zariadením;
- Výroba nekvalitných výrobkov na opotrebovaných zariadeniach;
- Výroba s nedostatočným zabezpečením náhradných dielov;
- Možnosti vzniku pracovného úrazu na nefunkčných bezpečnostných prvkoch výrobných zariadení;
- Environmentálne dopady z činnosti údržby. (ZF TRW, 2015b)

6.1.2 Organizačná štruktúra údržby
Oddelenie údržby pre Belt Drive zamestnáva celkom 19 technikov, ktorí pracujú na tri zmeny. Technici sa podľa odbornosti delia na:

Junior technik

Kľúčovými činnosťami junior technika je vykonávanie preotypovania strojov na linke, vymieňanie a nastavenie náhradných dielov na strojoch pod dohľadom skúsenejšího technika a výmena jednotlivých komponentov na stroji. Po skončení skúšobnej doby je junior technikovi pridelený stroj, za ktorý nesie zodpovednosť. (ZF TRW, 2015b)
Technik údržby

Pracovník, ktorý má minimálne tri roky skúseností v danom odbore a 5 rokov v podobnom odbore, prípadne junior technik, ktorý bol na danej pozícii minimálne jeden rok a prešiel schvalovacou komisiou. Podobne ako pri junior technikovi sú vitané znalosti pneumatických prvkov, PLC programovania a školenie o elektrickej vyhláške č. 508/2009 § 21.

Očakáva sa, že technik údržby zvládne sám odstrániť poruchy na linke – vyhľadáva ich a dokáže sledovať logický sled informácií v rámci jednej pracovnej operácie. Okrem svojho prideleného stroja je schopný zastupovania na minimálne dvoch strojových zariadeniach, aktivne sa podieľa na riešení úloh inžinieringu, kvality a výroby, prináša návrhy na zlepšenie úrovne údržby. Technik údržby spolu so správcom náhradných dielov taktiež koordinuje stav minimálneho počtu náhradných dielov. (ZF TRW, 2015b)

Technici údržby sa môžu špecializovať a podľa toho sa delia na:

- **Elektrikár** – rieši odstránenie elektrických závad, ako napríklad snímače, napätové závady a závady prenosových ciest;
- **Mechanik** – rieši odstránenie mechanických závad, ako napríklad držiaky snímačov a elektród, lisovacie hlavy, mechanika testerov. (ZF TRW, 2015b)

Senior technik

Senior technik splňa nasledovné požiadavky: minimálne desať rokov skúseností v podobnom odbore alebo päť rokov praxe mimo spoločnosť ZF TRW a tri roky zamestnaný vo firme ZF TRW, pričom z toho minimálne dva roky na pozícii technik údržby.

Senior technik je schopný zastupiť každého technika údržby na linke, TPM technika v plnom rozsahu a zastupuje úlohu majstra údržby v obmedzenom rozsahu. Pracovník na tejto pozícii je aktívny pri neustále zlepšovaní a dokáže riešiť neštandardné poruchy zariadení, zoradiť strojné zariadenie po havárii – zvláda logické toky kompletných zariadení. Medzi ďalšie klíčové aktivity patri organizácia výmeny a nastavenia najzložitejších časťí strojov a testerov a vypracovanie technologických postupov pri údržbe zariadení. (ZF TRW, 2015b)
TPM technik

Od TPM technika je očakávané, že bude mať minimálne tri roky praxe v odbore a bude preškolený v oblasti TPM, BOZP a špeciálna vyhláška pre eletro č. 508/2009 § 23.

Medzi klúčové činnosti tohto pracovníka patri zabezpečovanie výkonu, kontroly a zlepšovania systému TPM na linke, v spolupráci s majstrom údržby a inžinierom procesu vypracovávanie a aktualizácia predpisov TPM, metodické a odborné vedenie technikov údržby na linke pri vykonávaní predpísaných úkonov TPM a preverovanie faktického vykonávania preventívnej a prediktívnej údržby. (ZF TRW, 2015b)

Z hľadiska hierarchie je údržba vo firme rozdelená nasledovne:

Obrázok 17: Organizačná štruktúra oddelenia údržby v spoločnosti ZF TRW (Zdroj: vlastné spracovanie podľa interných dokumentov)

6.1.3 Hlavné činnosti údržby

Pri vykonávaní údržby sa činnosti delia do troch úrovní podľa požadovanej odbornosti:

Do levelu 1 sú zaradené jednoduché údržbárske práce, ktoré sú definované v preventívnom pláne údržby a sú vykonávané junior technikom, technikom údržby alebo zaškoleným operátorom. (ZF TRW, 2015b)
Level 2 obsahuje preventívne údržbárske práce a opravné zásahy vykonávané kvalifikovanými a zaškolenými technikmi údržby, senior technikmi a TPM technikmi.

V **leveli 3** sú zahrnuté špeciálne modifikačné práce alebo kalibrácie zariadení vykonávané špecializovanými firmami, prípadne pracovníkmi inžinieringu. (ZF TRW, 2015b)

Analyzovaním smerníct spoločnosti a pozorovaním boli definované tieto hlavné činnosti údržby:

Preotypovanie strojov

Výroba v spoločnosti a na jednotlivých linkách je rôznorodá, liši sa vo viacerých kritériách – napríklad podľa zákazníka, podľa modelu systému alebo podľa smeru riadenia – je preto potrebné, aby pri zmene výroby boli stroje pretypované na iný výrobný model. Junior technici a technici údržby asistujú pri pretypovaní strojov, sú zodpovední za dostavenie snímačov a kamier na strojoch, za výmenu set-upových prípravkov a za nahranie zmeny modelu v software na testeroch. (ZF TRW, 2015b)

Správa náhradných dielov a náradia

Správa náhradných dielov zahŕňa skladovanie nakúpených náhradných dielov, sledovanie a evidenciu stavu náhradných dielov s ohľadom na stanovené minimá pre jednotlivé položky v jednotlivých projektoch, objednávanie materiálu podľa požiadaviek údržby a inžinieringu, kooperáciu pri výrobe a opravách súčiastok podľa interných potrieb a vyhľadávanie dodávateľov náhradných dielov. (ZF TRW, 2015b)

Administrátor náhradných dielov sa taktiež stará o náradie, a to konkrétne o: vedenie osobných záznamov technikov so zoznamom prideleného náradia, vedenie evidencie vyradeného náradia, vedenie záznamu o pravidelnej kontrole – a to minimálne dvakrát ročne, doplnovanie náradia na základe požiadaviek majstra údržby a vedúceho inžinieringu, starostlivosť o spoločné náradie a jeho evidencia, opravy, doplnovanie a vyradovanie. (ZF TRW, 2015b)

Preventívna údržba

Preventívna údržba bola v spoločnosti zavedená za účelom zabezpečenia bezporuchového chodu strojnych zariadení pri súčasnom zabezpečení kvality výsledného produktu, a to me-
Dzi dvoma plánovanými opravami. Pod preventívnou údržbou sú zahrnuté obhliadky zariadení, kontroly tlakov, teplôt, prietokov, neporušiteľnosti elektrických obvodov, funkčnosti ovládacích a bezpečnostných prvkov, monitorovanie stavu prevádzkových a technologických náplní, stavu výrobných nástrojov a meradiel, čistoty zariadenia.

Mesačné plány preventívénej údržby sú vypracované pre všetky oblasti pôsobenia údržby a obsahujú presny rozsah prác, ktoré je potrebné vykonať na zariadení s uvedením časovej períody vykonávania, uvedením zodpovedného pracovníka a jeho zástupcu za vykonanie údržby a podpisovým poľom pre zaevidovanie vykonaného úkonu. Ukážka plánu preventívénej údržby je uvedená v prílohe P2. (ZF TRW, 2015b)

<table>
<thead>
<tr>
<th>Linka</th>
<th>Smer</th>
<th>Počet dní plánovanej preventívnej údržby</th>
<th>Počet dni predpísanej preventívnej údržby</th>
<th>Vykonané v %</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD1</td>
<td>Cell 120</td>
<td>23</td>
<td>57</td>
<td>97%</td>
</tr>
<tr>
<td>BD1</td>
<td>Cell 200</td>
<td>26</td>
<td>59</td>
<td>41%</td>
</tr>
<tr>
<td>BD1</td>
<td>Cell 354</td>
<td>15</td>
<td>34</td>
<td>44%</td>
</tr>
<tr>
<td>BD1</td>
<td>Cell 158</td>
<td>15</td>
<td>38</td>
<td>25%</td>
</tr>
<tr>
<td>BD1</td>
<td>Cell 25A</td>
<td>10</td>
<td>48</td>
<td>21%</td>
</tr>
<tr>
<td>BD1</td>
<td>Cell 28</td>
<td>17</td>
<td>37</td>
<td>46%</td>
</tr>
<tr>
<td>BD1</td>
<td>Cell 30</td>
<td>8</td>
<td>16</td>
<td>22%</td>
</tr>
<tr>
<td>BD1</td>
<td>Cell 55A</td>
<td>9</td>
<td>50</td>
<td>18%</td>
</tr>
<tr>
<td>BD1</td>
<td>Cell 25B</td>
<td>14</td>
<td>56</td>
<td>25%</td>
</tr>
<tr>
<td>BD1</td>
<td>Cell 40</td>
<td>4</td>
<td>21</td>
<td>19%</td>
</tr>
<tr>
<td>BD1</td>
<td>Cell 45</td>
<td>3</td>
<td>19</td>
<td>16%</td>
</tr>
<tr>
<td>BD1</td>
<td>Cell 50</td>
<td>8</td>
<td>50</td>
<td>16%</td>
</tr>
<tr>
<td>BD1</td>
<td>Cell 50</td>
<td>4</td>
<td>32</td>
<td>25%</td>
</tr>
<tr>
<td>BD1</td>
<td>Cell 70</td>
<td>34</td>
<td>34</td>
<td>100%</td>
</tr>
<tr>
<td>BD1</td>
<td>Cell 80</td>
<td>39</td>
<td>66</td>
<td>99%</td>
</tr>
<tr>
<td>BD1</td>
<td>Cell 90</td>
<td>9</td>
<td>45</td>
<td>50%</td>
</tr>
<tr>
<td>BD1</td>
<td>Cell 110</td>
<td>17</td>
<td>55</td>
<td>32%</td>
</tr>
<tr>
<td>BD1</td>
<td>Cell 120</td>
<td>18</td>
<td>37</td>
<td>50%</td>
</tr>
<tr>
<td>BD1</td>
<td>Cell 125</td>
<td>25</td>
<td>50</td>
<td>100%</td>
</tr>
<tr>
<td>BD1</td>
<td>Cell 150</td>
<td>19</td>
<td>39</td>
<td>100%</td>
</tr>
<tr>
<td>BD1</td>
<td>Cell 240</td>
<td>3</td>
<td>6</td>
<td>50%</td>
</tr>
<tr>
<td>BD1</td>
<td>Cell 545</td>
<td>34</td>
<td>54</td>
<td>100%</td>
</tr>
<tr>
<td>BD1</td>
<td>Cell 200</td>
<td>25</td>
<td>54</td>
<td>40%</td>
</tr>
<tr>
<td>BD1</td>
<td>Cell 210</td>
<td>25</td>
<td>50</td>
<td>20%</td>
</tr>
<tr>
<td>BD1</td>
<td>Cell 220A</td>
<td>33</td>
<td>55</td>
<td>95%</td>
</tr>
<tr>
<td>BD1</td>
<td>Cell 250</td>
<td>33</td>
<td>88</td>
<td>100%</td>
</tr>
<tr>
<td>BD1</td>
<td>Cell 260A</td>
<td>16</td>
<td>52</td>
<td>31%</td>
</tr>
<tr>
<td>BD1</td>
<td>Cell 280R</td>
<td>10</td>
<td>52</td>
<td>50%</td>
</tr>
<tr>
<td>BD1</td>
<td>Cell 240A</td>
<td>25</td>
<td>85</td>
<td>19%</td>
</tr>
<tr>
<td>BD1</td>
<td>Cell 240B</td>
<td>18</td>
<td>85</td>
<td>100%</td>
</tr>
<tr>
<td>BD1</td>
<td>Uncertain</td>
<td>1</td>
<td>9</td>
<td>9%</td>
</tr>
<tr>
<td>BD1</td>
<td>Pump</td>
<td>18</td>
<td>19</td>
<td>84%</td>
</tr>
<tr>
<td>EP1</td>
<td>Cell 05</td>
<td>8</td>
<td>9</td>
<td>89%</td>
</tr>
<tr>
<td>EP1</td>
<td>Cell 10</td>
<td>12</td>
<td>13</td>
<td>85%</td>
</tr>
<tr>
<td>EP1</td>
<td>Cell 30</td>
<td>42</td>
<td>45</td>
<td>95%</td>
</tr>
<tr>
<td>EP1</td>
<td>Cell 60</td>
<td>9</td>
<td>13</td>
<td>82%</td>
</tr>
<tr>
<td>EP1</td>
<td>Cell 50</td>
<td>4</td>
<td>8</td>
<td>50%</td>
</tr>
<tr>
<td>EP1</td>
<td>Cell 80</td>
<td>5</td>
<td>9</td>
<td>56%</td>
</tr>
<tr>
<td>EP1</td>
<td>Cell 20</td>
<td>3</td>
<td>7</td>
<td>43%</td>
</tr>
<tr>
<td>EP1</td>
<td>Cell 80</td>
<td>7</td>
<td>18</td>
<td>54%</td>
</tr>
<tr>
<td>EP1</td>
<td>Cell 50</td>
<td>4</td>
<td>28</td>
<td>15%</td>
</tr>
</tbody>
</table>

Obrázok 18: Stav plnenia preventívnej údržby na linkách BD1 a EPP1 vo februári 2015 (Zdroj: vlastné spracovanie)
Avšak súčasný stav vykonávania mesačnej preventívnej údržby v spoločnosti je kritický. Ako je zobrazené na obrázku 18, preventívna údržba bola vo februári 2015 na linkách BD1 a EPP1 vykonaná minimálne o 50 % menej, ako bolo predpísané na 28 strojoch zo 41, vykonanie medzi 50 % - 89 % v porovnaní s predpísaným stavom prebehlo na 11 strojoch a len na dvoch strojoch bola preventívna údržba splnená aspoň na 90 %. Vzhľadom na to, že sa na týchto výrobných linkách pracuje v trojzmennej prevádzke a preventívna údržba nebola vykonávaná z rôznych príčin (nedostatok vyhradeného času, nedostatok kapacit, zmena priorít, veľká objednávka od zákazníka), bola v nasledujúcom mesiaci snaha vykonávať mesačnú preventívnu údržbu počas obedných prestávok. Na linke BD1 bolo výsledkom dosiahnutie stavu 48 % splnené preventívnej údržby oproti plánu v marci 2015 a 55 % v apríli 2015. (ZF TRW, 2015b)

Okrem toho je nariadená i ročná preventívna údržba,ktorá vyžaduje kontrolu zariadení bud' podľa stanoveného dátumu, stanoveného počtu cyklov alebo stanoveného počtu motohodín. Je vykonávaná na základe ročného plánu periodickej údržby bud' technikmi údržby alebo externou firmou. V prípade, že periodickú údržbu vykonáva externá firma, výstupom je revízna správa, dodávací protokol o prácach alebo servisný list. Medzi preventívnu údržbu spadá i generálna údržba, ktorá je predpísaná výrobcom, je takiež vykonaná externou firmou a vyžaduje napríklad kalibráciu zariadení alebo výmenu všetkých namáhaných častí na stroji. (ZF TRW, 2015b)

Plánovaná údržba

Medzi ciele plánovanej údržby patri odstraňovanie technických porúch zistených počas preventívnej údržby a vykonávanie plánovanej modifikácie zariadenia. Plán opráv zostavuje TPM technik v spolupráci s vedúcim údržby na základe analýzy prestojov alebo požiadavky inžinieringu, pri požiadavke na modifikáciu zariadenia alebo pri doporučení výrobcu linky. (ZF TRW, 2015b)

Poruchová údržba

Poruchová údržba je neplánovaná činnosť údržby, ktoréj cieľom je odstrániti technickú poruchu zariadenia, ktorá vznikla v priebehu výroby. Poruchová údržba je v spoločnosti veľmi častou činnosťou a preto je jej priebeh zobrazený na obrázku 19 vo vývojovom diagrame.

Obrázok 19: Vývojový diagram poruchovej údržby vo firme ZF TRW (Slovakia) (Zdroj: ZF TRW, 2015b)
Prvý impulz, po tom, čo sa vyskytne porucha, prichádza od interného zákazníka (v tomto prípade sa jedná o oddelenie výroby, kvality, inžinieringu alebo vedenie spoločnosti) ako požiadavka na odstránenie poruchy. Technici údržby sú buď osobne vyhľadaní alebo privoláni telefónicky. Technici následne posúdza charakter poruchy – závažnosť a vplyv na výrobný proces, či je pri oprave nutná odstávka výroby a v prípade, že áno, na ako dlho. Opravy, ktoré neovplyvnia výrobu alebo len v minimálnej miere, sú vykonané ihneď. Pri oprave, ktorá vyžaduje odstránenie výroby na čas dlhší ako 1 hodinu, je nutné túto informáciu oznámiť majstrovú údržbu a výrobu a zabezpečiť spoluprácu inžinieringu, kvality a výroby. Vytvorí sa akčný plán pre odstránenie poruchy a taktiež je dôležité zistiť dostupnosť náhradných dielov.

Po odstránení poruchy je zariadenie odovzdané oddeleniu výroby. Oddelenie výroby a kvality zodpovedá za overenie zariadenia. Po ukončení opravy sú, v prípade váčších porúch, analyzované príčiny poruchy, zlikvidované použité náhradné diely a materiál a zásah je zaznamenaný do knihy údržby – využívaného informačného systému v spoločnosti. Pretože poruchová údržba je nepredvidateľná a najčastejšie sa vyskytuje, je v záujme plynulosti výrobného procesu minimalizovať jej výskyt.

6.1.4 Informačný systém v údržbe

V spoločnosti je využívaný informačný systém TeamSoft – ERP Systém x10. Napriek tomu, že je to komplexný informačný systém, v súčasnosti sa z neho využíva len jedna časť, a to Kniha údržby.

lém, ktorý bol riešený, jeho príčina a opatrenie na odstránenie problému. Príčinu problému však technici údržby vypĺňajú len zriedka, čím sa komplikuje následná analýza príčin prestojev.

Obrázok 21: Zápis údržbárskej aktivity do Knihy údržby, krok 1 (Zdroj: Kniha údržby – ZF TRW, 2015b)

Obrázok 20: Zápis údržbárskej aktivity do Knihy údržby, krok 2 (Zdroj: Kniha údržby – ZF TRW, 2015b)
Zápis údržbárskej aktivity do Knihy údržby, krok 3
(Zdroj: Kniha údržby – ZF TRW, 2015b)

6.2 Snímka dňa technika údržby

Pozorovanie a meranie práce technika údržby bolo vykonané dňa 22.7.2015 na rannej zmene, ktorá trvá od 6:00 do 14:00. Technik údržby má počas pracovnej doby nárok na 30 miňút prestávky. Snímka dňa bola vykonaná za účelom mapovania aktivít technika údržby a odhalenia plynutia.

Činnosti technika údržby boli zatriedené do nasledujúcich kategórií:

- **Údržba s prestojom** – poporuchová oprava, ktorú je nutné vykonať počas výrobného času a narúša výrobný proces;
- **Údržba bez prestoja** – údržba, ktorá je vykonaná bez narušenia výrobného procesu, napríklad počas prestávky operátorov alebo porucha vznikla na takej časti stroja, ktorej oprava neovplyvňuje chod výroby. Zahrňa obvykle i preventívnu a plánovanú údržbu;
- **Zlepšovanie** – úprava častí stroja, výroba prípravkov a iné zlepšovateľské zmeny, ktoré prispievajú k ergonómii na pracovisku, zniženiu poruchovosti alebo zrýchleniu výrobných cyklov;
- **Set up** – pretypovanie strojov pri zmene výroby;
- **Výmena nástrojov, prípravkov súčiastok a náhradných dielov** - pri vykonávaní údržby, zahrňa len samotnú výmenu, nezahrňa hl'adanie;
- **Hl'adanie nástrojov, prípravkov, súčiastok a náhradných dielov**;
- **Kontrola a meranie** – skúška zariadenia, overenie nastavených parametrov na stroji a podobne;
- **Dokumentácia** – štúdium technickej dokumentácie, manuálov, technické kreslenie, zápis do knihy údržby;
- **Rozhovor** – rozhovor týkajúci sa pracovnej činnosti, zahrňa zaškolenie, porady, emaily, telefonáty a podobne.
- Ďalšie: **Poriadok a čištenie, Manipulácia, Chôdza, Mimo pracovisko, Čakanie (nečinnosť), Prestávka pracovníka.**

Obrázok 23: Percentuálne vyjadrenie činností technika údržby – deň prvý (Zdroj: vlastné spracovanie)
Na obrázku 23 je zobrazený graf činností technika údržby, ktoré boli zaznamenané pomocou snímky pracovného dňa. Z grafu je možné si všimnúť, že najväčšiu časť pracovného dňa – 26 % - venoval technik poporuchovej údržbe (údržbe s prestojom). Technik bol prívolaný k niekoľkým poruchám, ktoré väčšinou odstránil do 5 minút. Ďalšia významná časť prislúcha údržbe bez prestoja, konkrétne 14 %, čo v tomto prípade bolo vykonávanie poporuchovej údržby v čase prestávky operátorov a údržba tých častí stroja, ktoré neovplyvňovali výrobný proces. Pokiaľ to bolo možné, technik údržby nahradil poškodenú súčiastku na stroji a opravu prevádzal mimo stroja. Zlepšovateľským zmenám technik venoval 13 % svojej pracovnej doby. Nezanedbateľnou časť pracovného dňa strávil i rozhovormi (17 %), ktoré z prevažnej časti pozostávali účasťou na poradách s vedením.

V grafe na obrázku 24 je zobrazené kolko percent pracovnej doby sa technik venuje svojej práci a kolko percent tvoria prestoje, medzi ktoré patri napríklad pobyt mimo pracovisko, nečinnosť alebo prestávka pracovníka. Z obrázka je jasné, že 81 % činnosti, ktoré technik počas pracovnej doby vykonáva patria do jeho pracovnej náplne. Do tejto kategórie však, okrem činností, ktoré pridávajú hodnotu, boli zahrnuté i tie, ktoré sú plynutím, napríklad chôdza (v tomto prípade predovšetkým zo strediska údržby k poruche na stroji), manipulácia alebo hľadanie nástrojov, pripravkov, súčiastok a náhradných dielov. Pretože zámerom

Obrázok 24: Percentuálne vyjadrenie práce a prestojov v činnostiach technika údržby – deň prvý (Zdroj: vlastné spracovanie)
bolo identifikovať plytvanie na oddelení údržby, činnosti technika údržby boli klasifikované podľa množstva pridanej hodnoty. Toto rozdelenie je zobrazené na obrázku 25.

Bolo vypozorované, že v sledovaný deň boli na linke viaceré technické problémy, ktoré vyžadovali zásah technika údržby. Poporuchová údržba a zúčastňovanie sa na poradách za účelom analyzovania prestojov patrili medzi hlavné činnosti pracovníka v ten deň.
Vzhľadom na to, že objem práce na oddelení údržby je premenlivý, bolo pozorovanie a meranie práce technika údržby zopakované. Druhé pozorovanie prebehlo dňa 11.8.2015, opäť na rannej zmene od 6:00 do 14:00.

Obrázok 26: Percentuálne vyjadrenie činností technika údržby – deň druhý
(Zdroj: vlastné spracovanie)
Aj napriek tomu, že na obrázku 26 je viditeľné, že priamo údržbou (poporuchovou, plánovanou alebo preventívnom) sa technik zaoberal len z jedenástich percent pracovnej doby, na obrázku 27, kde je graf zobrazujúci percentuálny pomer práce a prestoja, je vizualizované, že 74 % pracovného času sa technik venoval svojej pracovnej náplni. Percentuálne vyjadrenie prestoju v práci technika sa v tomto prípade pohybuje v hodnote 26 % a teda prišlo k zvýšeniu v porovnaní s prvým dňom o 11 %. Znížená potreba poporuchovej údržby začínať, že technik údržby musel prácu vyhľadávať, taktiež počas kontroly bezpečnostných prvkov musel dbať na to, aby nenarušil výrobný proces, preto dochádzalo k čakaniu na ukončenie činnosti stroja. Tento vzostup bol spôsobený spôsobený predovšetkým nárastom v kategórii čakanie (nečinnosť), ktorý vznikol kvôli menšiemu pracovnému vyťaženiu v ten deň.

Obrázok 27: Percentuálne vyjadrenie práce a prestojo v činnostiach technika údržby – deň druhý (Zdroj: vlastné spracovanie)

Najväčší rozdiel oproti prvému dňu je viditeľný na obrázku 28. Zatiaľ čo v prvom dni prevládali produktívne činnosti, v druhom dni technik údržby venoval týmto činnosťam len 12 % zo svojho celkového času. Okrem chybajúcej potreby spomínané poporuchovej údržby, technik sa v tento deň nezaoberal ani zlepšovaniu a úpravám. Najviac času zabrali neproductívne potrebné činnosti, medzi ktoré patrili, ako boli už vyššie spomenuté, pracovné rozhovory s kolegami, porady, kontrola a meranie bezpečnostných prvkov, zápisy do knihy údržby a práca s technickou dokumentáciou. Nárast bol zaznamenaný i v kategórii neproduktívnych činností, ktoréj hodnota stúpla na dvojnásobnú oproti prvému
dňu. Toto bolo zapríčinené väčšou potrebou hľadania náhradných dielov v sklade, zvýšenou manipuláciou a chôdzou a čakaním na dokončenie automatického chodu stroja.

6.3 Výber pilotného pracoviska

Pri výbere linky vhodnej na zavedenie metódy TPM boli spoločnosťou ZF TRW (Slovakia) zvažované nasledujúce kritériá:

- Vek strojov na linke,
- Poruchovosť strojov,
- Výťaženosť linky,

V tejto kapitole autorka popísala jednotlivé kritériá a uviedla dôvody pre výber daného pilotného pracoviska. Konečný výsledok spolu s váhami a bodovým ohodnotením bude uvedený v tabuľke 4.

6.3.1 Vek stroja

Výroba sa vo firme ZF TRW vyvíjala postupne a preto aj vek strojov na jednotlivých linkách nie je rovnaký. Stroje sú pomerne nové a v dobrej stave, konkrétne zoznam ich veku a výrobcov je uvedený v tabuľke 3.

Tabuľka 3: Zoznam veku strojov na linkách a ich výrobcov (Zdroj: vlastné spracovanie)

<table>
<thead>
<tr>
<th>Linka</th>
<th>Výrobca</th>
<th>Vek strojov</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD 1</td>
<td>Young Ill</td>
<td>6 rokov</td>
</tr>
<tr>
<td>BD 2</td>
<td>Young Ill</td>
<td>4 roky</td>
</tr>
<tr>
<td>EPP 1</td>
<td>ATS Singapur</td>
<td>6 rokov</td>
</tr>
<tr>
<td>EPP 2</td>
<td>ATS Malaysia</td>
<td>4 roky</td>
</tr>
<tr>
<td>CMF 1</td>
<td>Young Ill</td>
<td>3 roky</td>
</tr>
</tbody>
</table>

Spoločnosť sa rozhodla, že keďže sa jedná o pilotný projekt, najideálnejšie by bolo vybrať linku, ktorá je najnovšia. Ich zámerom bolo udržať dobrý stav strojov. To by prinieslo so sebou i výhodu, že v porovnaní s inými linkami by bolo potrebných menej zásahov a opráv, čím by sa zjednodušila implementácia metódy TPM.

6.3.2 Poruchovosť strojov

Obrázok 29: Analýza počtu porúch na výrobných linkách v spoločnosti (Zdroj: vlastné spracovanie podľa interných dokumentov)

Najväčšie množstvo porúch bolo na linke BD1 – celkom 1787 porúch, ktoré spôsobili zastavenie výrobné činnosti. 1372 porúch sa vyskytlo na linke BD2. Výrazný pokles je viditeľný na zvyšných troch linkách, kde bolo 849 porúch na linke EPP1, 647 porúch na linke CMF1 a 536 porúch na výrobnej linke EPP2.

Obrázok 30: Analýza dĺžky prestojov na výrobných linkách spoločnosti ZF TRW (Zdroj: vlastné spracovanie podľa interných dokumentov)
Avšak pri analyzovaní poruchovosti strojov je dôležitá nielen frekvencia porúch, ale aj dĺžka prestojov, ktoré boli týmito poruchami spôsobené. Analýza dĺžky prestojov sa nachádza na obrázku 30. Rovnako ako pri počte porúch, i v tomto prípade najviac času zabraľi prestoje na výrobnej linke BD1, ktoré tvorili 10409 minút za 8 mesiacov (približne 23 pracovných zmien). Linka BD2 bola s dĺžkou prestojov 8720 minút na druhom mieste (prestoje boli v prepočte približne 19 pracovným zmien). Nasledovala linka CMF1, kde prestoje tvorili 5305 minút, teda približne 11 pracovných zmien. Podobne na tom bola linka EPP1 (5011 minút) a na linke EPP2 zabrali prestoje 3606 minút (približne 8 pracovných zmien).

6.3.3 Vyťaženosť linky

Objem výroby na výrobných linkách záleží od objednávok zákazníkov. Pred začatím projektu fungovala trojzmenná prevádzka len na linke BD1 a k nej prislúchajúcej linke EPP1. Dvojzmenná prevádzka bola zavedená na linkách BD2 a EPP2. Na linke CMF1 sa vyrába lo len na rannej zmene.

Keďže už pri preventívnej údržbe bol problém s poskytnutím priestoru na linke počas výrobného času, spoločnosť sa rozhodla preferovať linku, ktorá mala najmenšiu vyťaženosť a tej priradíť najvyššie bodové hodnotenie. Nižšia vyťaženosť linky prináša výhody v podobe časového okna pre realizáciu zmien a úprav na strojných zariadeniach a v podobe menšieho počtu zamestnancov, ktorých je potrebné zaškoliť. Preto sa tento variant javil spoločnosti ako najideálnejší pre zavádzanie nového projektu.

6.3.4 Konečný výber pilotného pracoviska

Ako pilotné pracovisko pre analýzu a odstránenie nedostatkov bola vybraná linka CMF 1, na ktorej sa vyrábajú komplexné systémy podpory riadenia pre zákazníka Renault. Táto linka bola vybraná spoločnosťou na základe rozhodnutia, ktoré je zobrazené v tabuľke 4.
Tabuľka 4: Výber pilotného pracoviska pre zavedenie metódy TPM (Zdroj: vlastné spracovanie)

<table>
<thead>
<tr>
<th>Kritérium</th>
<th>Váha</th>
<th>Bodové ohodnotenie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>BD 1</td>
</tr>
<tr>
<td>Vek strojov na linke</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Poruchovosť strojov</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Vytáženosť linky</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Celkový výsledok</td>
<td>-</td>
<td>14</td>
</tr>
</tbody>
</table>

6.4 Analýza pilotného pracoviska

Obrázok 31: Layout pilotného pracoviska (Zdroj: vlastné spracovanie)
Pri zavádzaní metódy TPM na linku CMF 1 bolo v záujme spoločnosti zistiť celkovú efektívitu zariadení a určiť si cieľ, ktorý by chceli dosiahnuť. Ďalej prebehla klasifikácia strojov a určenie stratégie údržby, a následne boli analyzované typy prestojov. Tieto údaje sú obsiahnuté v kapitole ďalej.

6.4.1 Celková efektívitá zariadení na pilotnej linke

Pre pilotnú linku CMF1 bola sledovaná celková efektívitá zariadení (OEE) po týždňoch – v roku 2015 od prvého týždňa po týždeň 36, kedy bol naplánovaný začiatok projektu. Vývoj celkovej efektívity zariadení je uvedený na obrázku 32.

Obrázok 32: Celková efektívitá zariadení na pilotnej linke (Zdroj: vlastné spracovanie podľa interných dokumentov)

Tabuľka 5: Priemerné hodnoty ukazovateľov celkovej efektivity zariadení na pilotnej linke
(Zdroj: vlastné spracovanie)

<table>
<thead>
<tr>
<th></th>
<th>Skutočnosť</th>
<th>Cieľ</th>
</tr>
</thead>
<tbody>
<tr>
<td>OEE</td>
<td>49,40%</td>
<td>80%</td>
</tr>
<tr>
<td>Dostupnosť</td>
<td>79,90%</td>
<td>90%</td>
</tr>
<tr>
<td>Výkon</td>
<td>73,40%</td>
<td>95%</td>
</tr>
<tr>
<td>Kvalita</td>
<td>83,30%</td>
<td>90%</td>
</tr>
</tbody>
</table>

6.4.2 Analýza prestojov

Podľa tabuľky 5 je výška celkovej efektivity zariadení negatívne ovplyvnená prestojmi, ktoré na pilotnej linke vznikli. Z tohto dôvodu boli prestoje bližšie analyzované z hľadiska príčin ich vzniku. Paretova analýza príčin porúch na pilotnej linke je znázornená na obrázku 33.

Obrázok 33: Paretova analýza príčin porúch na pilotnej linke (Zdroj: vlastné spracovanie)

Podľa obrázku 33 je jasné, že väčšina porúch – až 43,4 %, ktoré v týždňoch 1 až 36 v roku 2015 vznikli, boli spôsobené mechanickými príčinami – posunutím do nesprávnej pozície, poškodením, opotrebením, uvoľnením, znečistením, netesnosťou a podobne. V 36,7 % percentách bolo príčinou elektronické zlyhanie – chyba databázy, programu, ich komunikácie alebo chyba softwaru zariadenia. Príčina poruchy ostala nezistená v 5,2 % prípadoch. Medzi ďalšie príčiny prestojov patrilo zlepšovanie, elektrické chyby (poškodené konektory,
kabeláž a podobne), kontrola a meranie alebo technologické prestoje ako výmena pásy v tlačiarni alebo sudu s vazelinou.

Pred spustením projektu neboli príčiny porúch analyzované, ani zaznamenávané.

6.4.3 Klasifikácia strojov

Potreba najzávažnejšej stratégie údržby bola odhalená na strojoch 15B, 10B, 30, 80, 210, 110 a 130, kde sa odporučilo zvoliť údržbu podľa časových plánov, pričom frekvencia údržby by bola vyššia ako na iných strojoch a odporučané boli i zlepšovateľské návrhy. Rovnako i pri zaradení autonómnej údržby sa by sa na týchto strojoch zvolila dôkladnejšia kontrola častí stroja. Pri ostatných strojoch na pilotnej linke bola odporučená buď údržba podľa časových plánov, preventívna údržba podľa stavu strojov alebo poporuchová údržba. Strojom na testline bola napríklad odporučená poporuchová údržba, aj napriek tomu, že sa jedná o zložité stroje, pretože sú v dvoch vetvách a ich krátkodobá porucha nezastaví výrobu.
ZHRNUTIE ANALÝZY SÚČASNÉHO STAVU

Pri analyzovaní súčasného stavu sa autorka zamerala na zistenie súčasnej situácie na oddeľení údržby a analýzu pilotného pracoviska. Fungovanie oddelenia údržby bolo prešetrené najmä pomocou snímkovania technikov údržby, ale i analýzou interných dokumentov.

Aby bola zhrnutá analýza súčasného stavu, v tabuľke 6 sú uvedené odhalené nedostatky, ktoré by firma chcela zlepšiť a navrhovaný spôsob akým by to bolo možné. Problemy sú ohodnotené podľa priority od 1 do 5; prioritá 1 má vysokú nutnosť riešenia, prioritá 5 označuje najnižšiu nutnosť riešenia problému.

Tabuľka 6: Identifikované problémy a navrhnuté riešenia na pilotnej linke po vykonaní analýzy súčasného stavu (Zdroj: vlastné spracovanie)

<table>
<thead>
<tr>
<th>Problém</th>
<th>Riešenie problému</th>
<th>Priorita</th>
</tr>
</thead>
<tbody>
<tr>
<td>Veľká variabilita vytiaženosti technikov údržby</td>
<td>Eliminácia poporuchovej údržby, zavenenie preventívnej údržby</td>
<td>4</td>
</tr>
<tr>
<td>Absencia zaznamenávania príčin vzniku porúch</td>
<td>Úprava Knihy údržby, odstránenie potreby dlhého zapisovania</td>
<td>5</td>
</tr>
<tr>
<td>Mechanické a elektrické príčiny vzniku prestojov majú vysoké hodnoty</td>
<td>Zavenenie autonómnej kontroly a preventívnej údržby</td>
<td>2</td>
</tr>
<tr>
<td>Ukazovateľ OEE dosahuje nízke hodnoty</td>
<td>Zvýšenie dostupnosti strojov</td>
<td>1</td>
</tr>
<tr>
<td>Rýchle opotrebenie strojov</td>
<td>Zavenenie autonómnej údržby</td>
<td>3</td>
</tr>
</tbody>
</table>

Sledovaním činností technikov údržby bolo zistené, že objem práce a pracovné zaťaženie je na tomto oddelení variabilné. Jednoznačným záverom však bolo, že k preventívnej údržbe dochádza vo firme ojedinele nielen kvôli častej vytiaženosti technikov poporuchovou údržbou alebo konzultáciami, ale i pre nedostatok vyhradeného času, nedostatok kapacít,
zmenu priorit alebo veľké objednávky od zákazníka. Zavedením metódy TPM by sa preniesla zodpovednosť za chod strojov čiastočne i na oddelenie výroby, čím by sa zvýšilo povedomie o nutnosti preventívnej údržby a zabezpečilo by sa i jej pravidelnejšie vykonávanie. Aby bolo oddelenie údržby posúdené ako celok, autorka použila hodnotiaci formulár zo spoločnosti IPA Slovakia, ktorý bol aplikovaný na spoločnosť ZF TRW (Slovakia) a je uvedený v prílohe 5. Súčasný stav údržby bol percentuálne ohodnotený, priradené percentá sú uvedené v tabuľke 7.

Tabuľka 7: Hodnoty ukazovateľov celkového súčasného stavu údržby (Zdroj: vlastné spracovanie)

<table>
<thead>
<tr>
<th>Ukazovateľ</th>
<th>Stav údržby</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ukazovatele a ciele údržby</td>
<td>25%</td>
</tr>
<tr>
<td>Systém riadenia údržby</td>
<td>35%</td>
</tr>
<tr>
<td>Workflow údržby</td>
<td>20%</td>
</tr>
<tr>
<td>Autonómna údržba</td>
<td>20%</td>
</tr>
<tr>
<td>Preventívna údržba</td>
<td>40%</td>
</tr>
<tr>
<td>Štandardizácia údržbárských činností</td>
<td>41%</td>
</tr>
<tr>
<td>Manažment náhradných dielov</td>
<td>51%</td>
</tr>
<tr>
<td>Investície do zariadení</td>
<td>31%</td>
</tr>
</tbody>
</table>

Obrázok 34: Zmapovanie celkového súčasného stavu údržby (Zdroj: vlastné spracovanie)

Zo zmapovaného stavu údržby vyplýnulo, že existujú rezervy, ktoré je možné zlepšovať. Zavedením totálne produktívnej údržby by sa hodnoty súčasného stavu oddelenia údržby primárne zvýšili pri ukazovateľoch systém riadenia údržby – vychádzaním z kategorizácii zariadení pri riadení údržbárskych aktivít, autonómna údržba – zapojením operátorov do...
autonómnej údržby, preventívna údržba – zohľadnením rizík pri preventívnej údržbe strojov, štandardizácia údržbárskych činností. Súčasný celkový stav údržby dosahuje hodnotu 33 %, čo je vizualizované na obrázku 34.

Pri analyzovaní pilotného pracoviska bola sledovaná dĺžka a početnosť prestojov, typ porúch podľa pričin vzniku a stroje na pilotnej linke boli klasifikované. Na základe klasifikácie bola navrhnutá stratégia údržby pre jednotlivé stroje a zariadenia, ktorá predtým nebola vo firme definovaná. Rovnako neboli zaznamenávané pričiny vzniku porúch do Knihy údržby, ale boli analyzované dodatočne pre účely projektu. Vzhľadom na to, že výrobná linka CMF1 je v dobrom stave, v záujme spoločnosti bolo zachovať ju v tejto kondícii čo najdlhšie. Jej nízka vyťaženosť bola ďalším pozitívnym faktorom pri výbere pilotnej linky pre implementáciu metódy TPM. Klíčovým ukazovateľom pre analyzovanie súčasného stavu, ale aj pre zhodnotenie stavu počas projektu, bola celková efektívnosť zariadení. Cieľ spoločnosti je dosahovať celkovú efektívitu zariadení na linke CMF1 vo výške 80 %.

V období pred projektom bola táto hodnota priemerne vo výške 49,4 %.

Angažovaním operátorov do údržby strojov, pravidelným čistením zariadení a ich kontrolou, vykonávaním preventívnej a plánovanej údržby spoločnosť očakávala zvýšenie hodnoty OEE. Spoločnosť ZF TRW sa rozhodla pre zavedenie metódy totálne produktívnej údržby na pilotnú linku a v prípade úspechu sa zaujímala o jej zavedenie do celej spoločnosti.
7 PREDSTAVENIE PROJEKTU

7.1 Názov projektu

Projekt zavádzania totálne produktívnej údržby na vybranú linku v spoločnosti ZF TRW

7.2 Ciele projektu

V projekte boli definované hlavne a čiastočné ciele.

7.2.1 Hlavné ciele projektu

- Zvýšiť priemernú celkovú efektívitu zariadení o 10 % v časovom horizonte od septembra 2015 do mája 2016;
- Zvýšiť dostupnosť strojov a zariadení na pilotnej linke o 5 % do mája 2016.

7.2.2 Čiastočné ciele projektu

- Zapojiť výrobných operátorov do údržby strojov na pilotnej linke;
- Redukovať mikro prestoje spôsobené nedostatočným mazaním a kontamináciou;
- Redukovať mechanické a elektrické poruchy o 2 % oproti pôvodnému stavu do mája 2016;
- Na základe analyzy príčin porúch identifikovať problémové časti strojov.

7.3 Členovia projektového tímu

- Vedúci inžinieringu
- Majster údržby
- TPM Koordinátor (študentka Terézia Ružičková)
7.4 Časový harmonogram projektu

Tabuľka 8: Gantov diagram projektu (Zdroj: vlastné spracovanie)
Gantov diagram zobrazený v tabuľke 8 zaznamenáva vývoj projektu – od definovania jeho cieľov, cez zavádzanie autonómnej údržby, až po začiatok implementácie preventívnej údržby na pilotnú linku.

7.5 SWOT analýza projektu

Tabuľka 9: SWOT analýza projektu (Zdroj: vlastné spracovanie)

<table>
<thead>
<tr>
<th>Silné stránky</th>
<th>Váha</th>
<th>Body</th>
<th>Slabé stránky</th>
<th>Váha</th>
<th>Body</th>
</tr>
</thead>
<tbody>
<tr>
<td>Časová dostupnosť na výrobné linke</td>
<td>0,35</td>
<td>3</td>
<td>Obmedzený čas pre autonómnu údržbu</td>
<td>0,25</td>
<td>2</td>
</tr>
<tr>
<td>Znalosti technikov údržby</td>
<td>0,25</td>
<td>2</td>
<td>Fluktuácia zamestnancov</td>
<td>0,25</td>
<td>2</td>
</tr>
<tr>
<td>Podpora projektu zo strany údržby a inžinieringu</td>
<td>0,3</td>
<td>3</td>
<td>Malý dôraz na dodržiavanie štandardov vo firme</td>
<td>0,35</td>
<td>3</td>
</tr>
<tr>
<td>Relatívne jednoduché strojné zariadenie z hľadiska údržby</td>
<td>0,1</td>
<td>1</td>
<td>Chýbajúca evidencia príčin vzniku prestojov</td>
<td>0,15</td>
<td>1</td>
</tr>
<tr>
<td>Celkom</td>
<td>2,55</td>
<td></td>
<td>Celkom</td>
<td>2,2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Príležitosti</th>
<th>Váha</th>
<th>Body</th>
<th>Hrozby</th>
<th>Váha</th>
<th>Body</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rozšírenie metódy TPM na všetky výrobné linky vo firme</td>
<td>0,3</td>
<td>3</td>
<td>Projekt nebude podporený manažmentom</td>
<td>0,25</td>
<td>3</td>
</tr>
<tr>
<td>Motivácia a vzdelanie operátorov</td>
<td>0,1</td>
<td>1</td>
<td>Neochota operátorov vykávať autonómnu údržbu</td>
<td>0,35</td>
<td>2</td>
</tr>
<tr>
<td>Zvýšenie dostupnosti strojov a zariadení na linke</td>
<td>0,3</td>
<td>3</td>
<td>Vopred stanovené ciele nebudú splnené</td>
<td>0,2</td>
<td>2</td>
</tr>
<tr>
<td>Zvýšenie celkovej efektivity zariadení na linke</td>
<td>0,3</td>
<td>3</td>
<td>Slabá alebo žiadna spolu-práca v rámci tímu</td>
<td>0,2</td>
<td>2</td>
</tr>
<tr>
<td>Celkom</td>
<td>2,8</td>
<td></td>
<td>Celkom</td>
<td>2,25</td>
<td></td>
</tr>
</tbody>
</table>
Z uvedenej SWOT analýzy je usúditeľné, že sa predpokladá úspešné zavedenie projektu, pretože silné stránky prevažujú nad slabými a príležitosti prevažujú nad hrozbami.

Medzi príležitosti, ktoré boli zároveň i cieľom tohto projektu, boli zaradené zvýšenie celkovej efektivity a dostupnosti strojov a zariadení. Okrem toho, v prípade, že budú dosiahnuté ciele, bude totálna produktívna údržba rozšírená na všetky linky v spoločnosti. Pri vykonávaní autonómnej údržby tiež stúpne vzdelanie operátorov, ukáže sa ich schopnosť činnosti v tomto smere. Medzi ďalšie hrozby spadá neohnota operátorov vykonávať autonómnu údržbu, s tým súvisiaca slabá alebo žiadna spolupráca v rámci tímu a nesplnenie vopred stanovených cieľov.

7.6 Logický rámec

V predproектovej fáze projektu je vhodné zostaviť logický rámec, ktorý zhrnie celý projekt. Nachádzajú sa v ňom hlavné ciele projektu, projektové ciele a výstupy projektu, ktorých dosiahnutie môžeme overiť pomocou obietivne overiteľných ukazovateľov. Objektívne overiteľné ukazovatele je možné nájsť v uvedených zdrojoch informácií.
Logický rámec tiež vymedzuje ktoré aktivity majú byť splnené, v akom časovom horizonte a s akými prostriedkami. Projektový tím zvažuje aké predbežné podmienky sú pre projekt vhodné a aké sú predpoklady a riziká projektu. Logický rámec pre tento projekt sa nachádza v prílohe VI.

7.7 Riziková analýza

Riziková analýza RIPRAN analyzuje riziká, ktoré boli uvedené v logickom rámci. Analýza RIPRAN pre súčasný projekt je v tabuľke 10, legenda k analýze je zobrazená v tabuľke 11.

Tabuľka 10: Analýza rizík projektu RIPRAN (Zdroj: vlastné spracovanie)

<table>
<thead>
<tr>
<th>P.č.</th>
<th>Hrozba</th>
<th>Pravdepodobnosť hrozby</th>
<th>Scénár</th>
<th>Pravdepodobnosť scenára</th>
<th>Celková pravdepodobnosť</th>
<th>Dopad</th>
<th>Hodnota rizika</th>
<th>Opatrenie</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nedostatočná podpora managementu</td>
<td>0,2</td>
<td>Probleém s akceptáciou projektu</td>
<td>0,9</td>
<td>0,18</td>
<td>NP</td>
<td>SD</td>
<td>NHR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Žiadny priestor pre vykonávanie TPM</td>
<td>0,75</td>
<td>0,15</td>
<td>NP</td>
<td>VD</td>
<td>SHR</td>
</tr>
<tr>
<td>2</td>
<td>Nesprávny postup pri zavádzaní metódy</td>
<td>0,3</td>
<td>Neúspešné zavedenie metódy TPM</td>
<td>0,6</td>
<td>0,18</td>
<td>NP</td>
<td>VD</td>
<td>SHR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nedosiahnutie stanovených cieľov</td>
<td>0,8</td>
<td>0,24</td>
<td>NP</td>
<td>VD</td>
<td>SHR</td>
</tr>
<tr>
<td>3</td>
<td>Nízka alebo žiadna ochota spolupracovať v tíme</td>
<td>0,4</td>
<td>Neúspešné zavedenie metódy TPM</td>
<td>0,3</td>
<td>0,12</td>
<td>NP</td>
<td>VD</td>
<td>SHR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Odmietnutie vykonávania autonómnej údržby</td>
<td>0,5</td>
<td>0,2</td>
<td>NP</td>
<td>VD</td>
<td>SHR</td>
</tr>
</tbody>
</table>
8 PRVÁ FÁZA REALIZÁCIE PROJEKTU

Projekt zavádzania totálne produktívnej údržby na výrobnú linku spoločnosti ZF TRW (Slovakia) prebiehal v niekoľkých krokoch. V tejto kapitole budú postupne popísané kroky, ktoré bolo nutné vykonáť v prvej fáze projektu:

- Zostavenie TPM tímu a jeho školenie;
- Úvodné čistenie a identifikácia abnormalít;
- Moderovaný workshop po úvodnom čistení;
- Odstránenie zdrojov znečistenia a ťažko prístupných miest;
- Tvorba prvotných štandardov čistenia a mazania.

8.1 TPM Tím

Aby mohlo byť zavedenie projektu úspešné, museli byť do neho zapojení všetci zainteresovaní ľudia. Zodpovednosť za fungovanie totálne produktívnej údržby bola nielen na oddelení údržby, ale so spustením autonómnej údržby sa zodpovednosť preniesla aj na oddelenie výroby. Po prehodnotení povinností spojených s projektom a delegovanie zodpovednosti za ne, boli do tímu zaradení títo ľudia:

- Majster údržby
- TPM technik
- TPM koordinátor (študentka T. Ružičková)
- Predák výroby
- Zástupca linky – Preline
- Zástupca linky – Mainline 1
- Zástupca linky – Mainline 2
- Zástupca linky – Testline.

Technickú stránku projektu zastrešovali majster údržby a TPM technik. Zodpovednosťou majstra údržby bolo delegovať úlohy na technikov údržby, dohliadať na vykonávanie preventívnej údržby, sprostredkovávať komunikáciu s inžinieringom a sprostredkovávať od-
borné školenia. Úlohou TPM technika bolo vykonávať technické zmeny a zlepšovanie na strojoch a zariadeniach, podávať odborné informácie o možnosti realizácie zmien na strojoch, spolupracovať s TPM koordinátorom pri tvorbe štandardov. Zodpovednosť za organizáciu ľudí pri vykonávaní autonómnej údržby mal predáč výroby. Keďže predáč výroby prichádza do bezprostredného kontaktu s operátormi výroby a jeho náplňou práce je koordinovať výrobu na linke, jeho zapojenie do projektu bolo nevyhnutné. Predáč výroby vydaival pokyn na vykonanie autonómnej údržby, pri absenci operátora bol zodpovedný za určenie náhradníka pre vykonanie autonómnej údržby, informoval o výrobných plánoch a podával spätňou väzbu o realizácii autonómnej údržby. Vzhľadom na vťasťin množstvo strojov, bol výrobný operátor vybraný traja zástupcovia a jeden zástupca z technikov údržby, ktorý zodpovedal za kontrolu vykonávania autonómnej údržby na jednotlivých úsekochoch. Vykonanie alebo nevykonanie údržby zaznačili do kontrolných hárkov autonómnej údržby. TPM koordinátor tvořil potrebnú dokumentáciu k projektu – štandardy čistenia a mazania, štandardy autonómnej kontroly a preventívnej údržby, reporty, kontrolné hárky. Koordinátor vykonával audity autonómnej údržby, organizovala stretnutia tímu, školila pracovníkov, podnecovala podnikanie ďalších krokov v projekte a bola zodpovedná za správne fungovanie a implementácie metódy TPM na výrobnú linku a tak tiež sledovala plnenie cieľov projektu.

Na začiatku projektu boli stretnutia tímu veľmi časte, tím preberal kroky, ktoré sa mali pri zavádzaní metódy podnikať, prebiehala aktualizácia stavu riešenia jednotlivých úloh a riešili sa vzniknuté problémy. Po ustálení projektu sa frekvencia stretnutí tímu upravila na jedenkrát mesačne. Z každeho stretnutia vznikol záznam a akčný plán, kde boli zaznané preberané témy a zamýšlené akcie, ktoré boli na základe toho podniknuté.

8.1.1 Školenie TPM tímu

Prvé školenie TPM tímu sa uskutočnilo 24.8.2015 v zasadacej miestnosti v sídle spoločnosti a bolo vedené TPM koordinátorkou. Majster údržby, TPM technik a TPM koordinátor už pred začatím projektu absolvovali školenie totálne produktívnej údržby od externej firmy. Preto úvodné školenie TPM tímu bolo orientované predovšetkým na oddelenie výroby. Predáčové výroby a zástupcom linky bol v prvej časti predovšetkým ideový zámer totálne produktívnej údržby, ciele projektu a postup zavádzania totálne produktívnej údržby. V druhej polovici školenia sa TPM tím presunul na výrobnú linku, kde absolvovali
prvotnú obhliadku strojov, bližšie sa zaoberali prvým krokom autonómnej údržby a delegovali úlohy, ktoré bolo potrebné vykonať pred jeho zahájením. Na základe tohto školenia bol zostavený akčný plán, ktorého náhľad je uvedený v tabuľke 12.

Tabuľka 12: Akčný plán autonómnej údržby (Zdroj: vlastné spracovanie)

<table>
<thead>
<tr>
<th>Počiatočné čistenie a identifikácia abnormalít</th>
</tr>
</thead>
</table>

Na úvod workshopu boli podľa checklistu opätovne skontrolované všetky potrebné po- môcky (viď Tabuľka 14) a pracovným skupinám boli priradené stroje, ktoré mali skonto- rovať. Skupinám boli taktiež rozdané červené kartičky s číslami. Po identifikovaní abnor- mality, poruchy alebo znečistenia pracovník označil miesto touto červenou kartičkou a miesto odfotografoval. Prípadné nájdené abnormality (i poruchy a znečistenia) mali za- znamenáť do záznamového hárku (Tabuľka 13).
Pretože vek linky bol, v porovnaní s inými výrobnými linkami, malý a boli využívané zásad 5S a vizualizácia, nebolo očakávané nájsť veľké abnormality a poruchy pri počiatočnom čistení. Pri kontrole a čistení strojov bola cieľom dostat stroje do pôvodného stavu, čo vyžadovalo odmontovanie krytov strojov a vyčistenie ťažko dostupných miest. Pre rýchlejšie riešenie boli tie abnormality, pri ktorých to bolo možné, odstránené priamo na mieste. Medzi okamžite odsúhlasiteľné abnormality patrili napríklad:

- **Znečistenie časti stroja.** Najčastejšie odhaleným problémom boli znečistené časti strojov od prachu, vazelínu, maziv, lepidiel a iných nečistôt, ktoré naznačovali slabú údržbu daných strojov. Príklady týchto znečistení sú zobrazené na obrázku 36.

- **Únik vazelíny mimo stroj.** V ďalšom prípade prišlo k úniku vazelíny mimo stroj (obrázok 35), na zem. Táto abnormalita bola pomerne nebezpečná, keďže vazelína

Tabuľka 14: Checklist čistiaciich pomôcok – ukážka

Zdroj: vlastné spracovanie

<table>
<thead>
<tr>
<th>Materiaľ / Pomôcky</th>
<th>Počet</th>
<th>Zabezpečil</th>
<th>Termin</th>
<th>Skopčal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utieh</td>
<td>5</td>
<td></td>
<td>31.8.2015</td>
<td></td>
</tr>
<tr>
<td>Handsfriz</td>
<td>20</td>
<td></td>
<td>31.8.2015</td>
<td></td>
</tr>
<tr>
<td>Vásik</td>
<td>1</td>
<td></td>
<td>31.8.2015</td>
<td></td>
</tr>
<tr>
<td>OPAD</td>
<td>2</td>
<td>Meister údržby</td>
<td>31.8.2015</td>
<td></td>
</tr>
<tr>
<td>Odetľhovat šošty</td>
<td>2</td>
<td>Meister údržby</td>
<td>31.8.2015</td>
<td></td>
</tr>
<tr>
<td>Mierta, logata, metlička-prameňak</td>
<td>5</td>
<td>TPK koordinátor</td>
<td>31.8.2015</td>
<td></td>
</tr>
<tr>
<td>Ľahká hliadka na odpadky</td>
<td>20</td>
<td>Predš. výrobcu</td>
<td>31.8.2015</td>
<td></td>
</tr>
<tr>
<td>Hakline</td>
<td>30</td>
<td></td>
<td>31.8.2015</td>
<td></td>
</tr>
<tr>
<td>Lopatka</td>
<td>3</td>
<td>Meister údržby</td>
<td>31.8.2015</td>
<td></td>
</tr>
<tr>
<td>Vyskáčal</td>
<td>1</td>
<td>Meister údržby</td>
<td>31.8.2015</td>
<td></td>
</tr>
<tr>
<td>Metlička, štice</td>
<td>5</td>
<td>TPK koordinátor</td>
<td>31.8.2015</td>
<td></td>
</tr>
<tr>
<td>Náradie na metličky</td>
<td>3</td>
<td>Meister údržby</td>
<td>31.8.2015</td>
<td></td>
</tr>
</tbody>
</table>

Tabuľka 13: Záznamový hárok abnormalít (Zdroj: vlastné spracovanie)

Zdroj: vlastné spracovanie
mohla zapričiniť klzký povrch, ktorý by viedol k pošmyknutiu a pracovnému úrazu. Odhalená abnormalita bola okamžite odstránená.

- **Uvoľnené skrutky.** Tie boli objavené na jednom zo zásobníkov na materiál, ktoré sú pripavené na strojoch (obrázok 37). Opäť aj v tomto prípade mohlo uvoľnenie celého zásobníka spôsobiť úraz a preto bola abnormalita ihneď odstránená.

- **Popadaný materiál v stroji** je zobrazený na obrázku 38.

Obrázok 36: Počiatočné čistenie – znečistenie častí stroja (Zdroj: vlastné spracovanie)

Obrázok 35: Počiatočné čistenie – únik vazelíny mimo stroj. Situácia pred a po odstránení problému. (Zdroj: vlastné spracovanie)

Obrázok 37: Počiatočné čistenie - uvoľnené skrutky. Situácia pred a po odstránení problému. (Zdroj: vlastné spracovanie)
Abnormality, ktoré boli časovo náročnejšie alebo neboli na ich odstránenie dostupné všetky prostriedky, alebo osoby, ktoré ich odhalili nemali dostatočnú kompetenciu, boli prezentované a riešené na moderovanom workshope po čistení. Medzi závažnejšie poruchy a abnormality patrilo napríklad:

- Chýbajúce krytovanie na stanici 50;
- Neuchytená a odkrytovaná kabeláž (Obrázok 39a);
- Únik vazelíny na stanici 50 (Obrázok 39b);
- Uvoľnené spínače na staniciach 50, 75 a 28 (Obrázok 39c);
- Postupné uvoľňovanie třña;
- Znečistenie klimatizácie.

Obrázok 38: Počiatočné čistenie – popadaný materiál v stroji (Zdroj: vlastné spracovanie)

Obrázok 39: Počiatočné čistenie – identifikované abnormality na pilotnej linke (Zdroj: vlastné spracovanie)
8.2.1 Moderovaný workshop

Po ukončení počiatočného čistenia na pilotnej linke sa TPM tím presunul do zasadacej miestnosti, kde pokračovali s moderovaným workshopom. Workshop viedla TPM koordinátorka. V prvom rade sa tím zameriaval na identifikované abnormality, poruchy a znečistenia. V druhom kroku sa zvažovali zdroje znečistenia, ako by ich bolo možné eliminovať a ako odstrániť ťažko dostupné miesta.

Tabuľka 15: Karta porúch (Zdroj: vlastné spracovanie)

<table>
<thead>
<tr>
<th>Foto</th>
<th>Číslo karty</th>
<th>Popis chyby na obraze (časť stroja)</th>
<th>Príčina</th>
<th>Nápravné opatrenie</th>
<th>Zodpovedný VÚ</th>
<th>Termín</th>
<th>Poruchy / odstrán</th>
<th>Dátum</th>
<th>Meno podpis</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Úvoľněné struhy</td>
<td>Neskôr tlačnú struhy</td>
<td>Pribehnut</td>
<td>Technik</td>
<td>ihned</td>
<td>1.9.2015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Únik vazelíny</td>
<td>Netesnost</td>
<td>Výmena lesmo</td>
<td>Technik</td>
<td>3.9.2015</td>
<td>3.9.2015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Znečistený stroj</td>
<td>Z procesu</td>
<td>Očistiť</td>
<td>Operator</td>
<td>ihned</td>
<td>1.9.2015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Uchytenie ďašky</td>
<td>Výmena</td>
<td>Uchytiť a zateľať ťašku</td>
<td>Technik</td>
<td>4.9.2015</td>
<td>4.9.2015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Znečistený šubienok kassetaže</td>
<td>Z procesu</td>
<td>Očistiť</td>
<td>Operator</td>
<td>ihned</td>
<td>1.9.2015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Malé poškodenie STOP čočka</td>
<td>Manipulácia a materiálom</td>
<td>Montáž čočky STOP čočka</td>
<td>Technik</td>
<td>5.9.2015</td>
<td>5.9.2015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Znečistené dutinové fíne</td>
<td>z procesu</td>
<td>Očistiť</td>
<td>Operator</td>
<td>ihned</td>
<td>1.9.2015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Znečistený dátový vazač</td>
<td>z procesu</td>
<td>Očistiť</td>
<td>Operator</td>
<td>ihned</td>
<td>1.9.2015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Prášková záhradka</td>
<td>montáž linky</td>
<td>Výmena záhradky</td>
<td>Technik</td>
<td>5.9.2015</td>
<td>5.9.2015</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

podľa typu – znečistenie zelenou farbou, porucha červenou farbou a abnormalita oranžovo-

8.2.2 Eliminácia zdrojov kontaminácie

Jednoznačne najväčším zdrojom znečistenia na linke CMF1 bola vazelína, ktorej sa použí-
va niekoľko druhov a na viacerých staniciach – 35A, 20, 45, 70, 110 a 120. Ďalšie mazivá
a lepidlá sú využívané na staniciach 10B a 25A. Pri snahe eliminovať tieto zdroje museli
byť v prvom rade porovnané skutočné dávkované množstvá vazelín, maziv a lepidiel
s predpísanými množstvami podľa kvalitatívnych predpisov. Ale keďže dávky boli nasta-
vené podľa predpísaného množstva, bolo treba zvážiť iné možnosti eliminácie zdrojov
kontaminácie.

Najviac problematická bola kontaminácia vazelínou na stanici 15B (Obrázok 40) a stanici
110 (Obrázok 41). Okrem toho, že znečistenie malo vplyv na kvalitu strojného zariadenia,
a výrobkov, čo bola situácia predovšetkým na stanici 15B, dochádzalo aj k veľkému plyt-
vaniu vazelínou a s tým spojených nákladov. Eliminácia zdrojov kontaminácie však nepre-
biehala ako jednorazová akcia, ale trvala počas celého projektu.

Obrázok 40: Kontaminácia vazelínou stanica 15B (Zdroj: vlastné spracovanie)

Na stanici 15B boli identifikované štyri trysky dávkujúce vazelínu. V okolí týchto trysiek
boli umiestnené kryty, na ktorých sa vazelína držala, čo spôsobovalo kontamináciu závito-
ých tyčí, ovplyvňovalo to kvalitu výrobku a zároveň to i roznášalo kontamináciu na ďalšie
stanice. Pre zniženie znečistenia trysiek a celého stroja bol modifikovaný tvar krytov;
voľnej kruhu bolo zvažované i vytvorenie náhradných krytov, ktoré by sa dali rýchlo
vymeniť za tie v stroji, čím by sa znižil čas potrebný na čistenie stroja. Okrem modifikácie
Krytov došlo k vytvorení programu na stanici 15B. Stroj po 100 kusoch automaticky dokončí všetky cykly, zablokuje vkladanie materiálu do stroja a vypíše hlášku o nutnosti vyčistiť stroj. Následne vznikne časový priestor 30 sekúnd, počas ktorých nie je možné stroj spustiť. V tomto čase operátor musí vyčistiť trysky a kryty v stroji. Vďaka tomuto opatreniu sa nestihnú vytvoriť na krytoch také nánosy vazelíny, ktoré by nepriaznivo kontaminovali výrobok.

V prípade stanice 110 bol okrem problému so znečistením i problém s únikom veľkého množstva vazelíny, ktoré sa odrážalo na nákladoch. Na jeden kus bol v špecifikácii určené použiť 1g + 1g vazelíny (na každú stranu). Operátor musel počas pracovnej zmeny odstrániť pomerne veľkú dávku vazelíny, pričom každú hodinu. Dávkovač použitý na stroji bol nesprávne navrhnutý, pretože prepúšťali vazelínu nepresne a tiež boli neprispôsobené vysoké viskozite vazelíny. Na jednej zmene sa týmto spôsobom vyplývalo približne 25g vazelíny. Spoločnosť sa preto rozhodla prehodnotiť systém dávkovania. Navrhlo sa použitie dávkovania so spätným ťahom, ktoré vydá predpísanú dávku a nadbytočné množstvo je vsaté späť do dávkovača.

8.2.3 Odstránenie t'azko prístupných miest

Pri počiatočnom čistení boli odhalené i t'azko prístupné miesta, ktoré mali byť odstránené. Jedno z nich bolo napríklad na stanici 70. Operátori mali t'azkosti dostáť sa k dávkovaču vazelíny pri vykonávaní SPC kontroly. Po identifikácii problému bol na workshope určený dátum, kedy bol vyrezaný otvor pre lepší prístup. Situácia je ukázaná na obrázku 42. Aby...
boli zachované podmienky BOZP, otvor sa nachádza až za bezpečnostnou svetelnou brá-

Obrázok 42: Odstránenie t'ažko prístupných miest – stanica 70 (Zdroj: vlastné spracovanie)

8.3 Tvorba štandardov čistenia

Potom, čo bolo vykonané počiatkočné čistenie a stroje boli v čo najlepšom stave, v záujme spoločnosti bolo ich v tomto stave zachovať. Preto boli po konzultácii s TPM tímom vytvorené prvotné štandardy čistenia pre každú stanicu. Štandardy boli tvorené na základe skúseností výrobných operátorov, technikov údržby, s využitím manuálu od výrobcu výrobné linky a tiež na základe vypracovanej Karty porúch z predchádzajúceho kroku. Na workshop, ktorý sa za týmto účelom konal, boli navrhnuté činnosti, ktoré mali byť do štandardu zahrnuté a tie boli na základe niekoľkých kritérií filtrované:

- **Podľa dôležitosti danej činnosti.** Nie všetky činnosti majú rovnakú prioritu pri vykonávaní pravidelného čistenia. Pri zostavovaní štandardov sa preto uvažovalo, či bude daná činnosť zaradená, a ak áno, tak s tým bolo viazané kritérium periodicnosti.

- **Podľa periodicnosti.** Pri zostavovaní prvotných štandardov čistenia boli vymedzené tri periód vykonávania čistenia stroja – denné čistenie, ktoré bolo vykonávané denne na začiatku každej zmeny; týždenné čistenie vykonávané raz týždeňne na
jednej zo zmen a rovnako i mesačné čistenie vykonané na jednej zo zmien. Týždenné a mesačné čistenie bolo vykonané na pokyn predáka, podľa výrobného plánu.

- **Podľa potrebného kvalifikácie umožňujúcej vykonanie danej činnosti.** Niektoré stroje, konkrétne tie na testline, bolo dovolené obsluhovať len technikom údržby, preto tomu museli byť štandardy čistenia prispôsobené.

- **Časovej náročnosti.** Spoločnosť vymedzila na vykonávanie autonómnej údržby desať minút na začiatku každej pracovnej zmeny.

Obrázok 43: Štandard čistenia – finálna verzia (Zdroj: vlastné spracovanie)
Prvotné štandardy čistenia boli dané do používania. Po pár týždňoch používania bolo zvolané stretnutie TPM tímu so všetkými operátormi, ktorí počas tejto doby štandardy využívali. Na základe ich pripomienok boli štandardy upravené do finálnej podoby. Úpravy obsahovali napríklad:

- **Zrušenie týždennej periodicity čistenia.** Týždenné termíny boli po odsledovaní kontaminácie na pracovisku zrušené a nahradené len mesačnými.

- **Zmena kompetencii pri čistení niektorých stanic.** Kvôli prácnosti pri čistení stanic 15B a 25A bola navrhnutá zmena. Pravidelné denné čistenie bolo vykonávané technikmi údržby na nočnej zmene, kedy sa na linke CMF1 nevyrábal.

- **Zmena frekvencie čistenia.** Pri určitých častiach strojov bola, na druhú stranu, zvýšená frekvencia čistenia – namiesto jedenkrát za zmenu na každé dve alebo každé štyri hodiny. Jednalo sa o miesta, na ktorých počas procesu vznikala väčšia kontaminácia alebo na strojoch s vyššou prioritou (stanice 15B, 10B, 30, 80, 210, 110 a 130). Avšak v tomto prípade muselo ísť o jednoduché úkony, ktoré vyžadovali minimum času.

V štandardoch bolo definované čo je potrebné spraviť, kto je za to zodpovedný, kedy je to nutné vykonať a aké pomôcky na to použiť. Inštrukcie boli doplnené vizuálnym vyobrazením čistených miest. Štandardy boli umiestnené do boxov, ktoré sa nachádzali pri jednotlivých strojoch. Ukážka štandardu čistenia je na obrázku 43.

Pretože mazanie bolo dané do kompetencie TPM technikov, štandardy mazania neboli vypracované vo fáze zavádzania autonómnej údržby, ale až počas preventívnej údržby, a to obdobným spôsobom.
9 DRUHÁ FÁZA REALIZÁCIE PROJEKTU

Po prípravných aktivitách, z ktorých pozostávala prvá fáza projektu, nasledovala druhá fáza, počas ktorej sa realizovala samotná autonómna údržba a vizualizoval si výstupy. Druhá fáza, ktorá bude popisána v tejto kapitole, zahŕňala tieto aktivity:

- Školenie výrobných operátorov;
- Vykonávanie autonómneho čistenia;
- Vizualizácia autonómnej údržby na pracovisku;
- Tvorba štandardov autonómnej kontroly;
- Monitorovanie vykonávania autonómnej údržby – audity autonómnej údržby.

9.1 Školenie pracovníkov a vykonávanie autonómneho čistenia

Na pilotnom pracovisku bolo definované, že denné čistenie bude prebiehať vždy na začiatku pracovnej zmeny. Na čistenie bolo vyhradených desať minút a operátor mal spravidla za úlohu vyčistiť priradený stroj a podlahu vo všetkých miestach, kde je potrebné. Operátorom boli pridelené stroje, na ktorých zodpovedali za vykonávanie autonómnej údržby. Tento krok podnetil, aby operátori dbali väčšej starostlivosti o svoj stroj, než keby ju vykonávali na náhodnom stroji, podľa toho kde by začínali svoju prácu. Na výrobných linkách totiž funguje rotácia po každej hodine pracovného času a operátor predchádza dovoľovalinosťou o svoj stroj, než keby ju vykonávali na náhodnom stroji, podľa toho kde by začínali svoju prácu. Na výrobných linkách totiž funguje rotácia po každej hodine pracovného času a operátor prejde niekoľko istých miest, kde je potrebné vykonávať čistenie stroja a následne sa presunul na stroj z predchádzajúceho dňa. Avšak pri snahe nájsť optimálne riešenie z hľadiska úspory času, lepšej organizácie a zároveň i dostatočnej kontroly stroja, bol časový harmonogram zmenený. Operátor po príchode na pracovisko vykonal čistenie na svojom pridelenom stroji a následne sa presunul na stroj z predchádzajúceho dňa. Avšak pri snahe nájsť optimálne riešenie z hľadiska úspory času, lepšej organizácie a zároveň i dostatočnej kontroly stroja, bol časový harmonogram zmenený. Operátor po príchode na pracovisko, rovnako ako v predchádzajúcom prípade, vykonal čistenie stroja. Následne, počas prvej hodiny,
ostal pracovať na pridelenom stroji a rotáciu na iné pracovisko začal až v druhej hodine. Výhodou tejto zmeny bola lepšia organizácia pracovníkov na linke, účinnejšie vykonávanie autonómnej kontroly a úspora času, ktorý predtým musel byť poskytnutý na presun. Ukázka z denného čistenia je zobrazená na obrázku 44.

Obrázok 44: Vykonávanie autonómneho denného čistenia (Zdroj: vlastné spracovanie)

Pracovník po vykonaní denného čistenia zaznamenal aktivitu do záznamového hárku, ktorý bol taktiež umiestnený na stroji. Ak nastala situácia, že pracovník, ktorý mal pridelený stroj ochorel alebo opustil zamestnanie, boli zvolení náhradníci, ktorí vykonali čistenie stroja. Zodpovedný za určenie náhradníka bol predák výroby. Robil tak aj na základe zoznamu operátorov a im pridelených strojov, ktorý bol pravidelne aktualizovaný TPM koordinátorom.

Mesačné čistenie zahŕňalo vyčistenie zásobníkov na materiál, kanbanové regále, krabičky na nezhodný materiál a bočné okná na strojoch. Prebiehalo na pokyn predáka výroby podľa výrobného plánu alebo počas vzniknutého prestoja.

Vo februári 2016 nastala zmena, keďže na výrobnej linke CMF1 sa prešlo z jednozmennej prevádzky na dvojzmennu. Táto situácia so sebou priniesla nových operátorov na pracovisko, ktorí boli po príchode zaškolení na prácu na strojoch, dodatočne boli zaškolení o na vykonávanie autonómnej údržby strojov a boli im pridelená zodpovednosť za čistotu strojov.

9.2 Vizualizácia autonómnej údržby

Vizualizácia totálne produktívnej údržby prebiehala v niekoľkých smeroch. Jednou formou boli už spomínané štandardy, ktoré boli, rovnako ako záznamové hárky, umiestnené v boxoch na strojoch. Pomocou tieňovej vizualizácie boli zobrazené čistiacie pomôcky na pracovisku. Tie boli umiestnené na stojanoch, ktoré sa nachádzali na troch miestach vo výrobné hale pre lepšiu dostupnosť. V tejto kapitole sa autorka bližšie venuje vizualizova-
niu autonómnej údržby pomocou nástenky nástenka poskytujúcej informácie o prebiehajúcom projekte a tabuľkám zobrazujúcim zodpovednosť za autonómnu údržbu na jednotlivých strojoch.

9.2.1 Informácie o projekte

Pre vizualizáciu informácií o projekte bola zriadená nástenka, ktorá bola umiestnená v priestoroch výrobné haly. Na nástenke (obrázok 45) boli umiestnené nasledujúce informácie:

- **Informácie o tíme.** Obsahovali mená členov tímu, ich pracovné pozície a fotografie.

- **Rozdelenie pracovníkov podľa zodpovednosti za autonómnu údržbu.** Súhrnný zoznam pracovníkov a ich pridelených strojov. Toto rozdelenie bolo tvorené na základe zoznamu pridelených pracovníkov na linku CMF1 a bol pravidelne, pri každej zmene, aktualizovaný. Taktiež poskytoval informácie o dostupných náhradníkoch, ktorí mohli vykonávať autonómnu údržbu, ak bol niektorý z určených operátorov dočasne práce neschopný.

- **Záznam zo stretnutia TPM tímu.** Pri každom stretnutí TPM tímu bola vytvorená zápisnica, ktorá poskytovala informácie o preberané agende, následne informovala podrobný o jednotlivých bodoch a výstupoch a boli v nej uvedené poznámky dôležité k ďalšiemu stretnutiu. V zápisnici bol uvedený zoznam členov, ktorí sa stretnutia zúčastnili, dátum stretnutia a termín nasledujúceho stretnutia TPM tímu.

- **Vyhodnotenie celkovej efektivity zariadení a dostupnosti strojov.** Počas celého trvania projektu sa sledoval stav celkovej efektivity zariadení a dostupnosti strojného zariadenia. Na nástenke bola zobrazená celková efektivita zariadení a dostupnosť za posledných 8 týždňov, pričom bol porovnávaný skutočný stav so stavom cieľovým. Okrem toho bol vizualizovaných 5 strojov s najdlhším trvaním prestojov v poslednom týždni. I na základe tejto informácie bol zostavovaný akčný plán.

- **TPM report.** Pomocou TPM reportu bolo jednoducho vizualizované vykonávanie mesačného čistenia a uskutočňovanie stretnutí tímu. Žltou farbou boli zobrazené plánované týždne, v ktorých by sa akcia mala udiať. V prípade, že bola akcia presunutá na iný termín, bolo to do akčného plánu zaznačené čiernou farbou, ak sa akcia
uskutočnila v termíne, bola použitá zelená farba. Keď akcia nebola uskutočnená, bola v reporte vyznačená červenou farbou.

- **Akčný plán.** Akčný plán vznikal na základe stretnutí TPM tímu, vyhodnotení celkovej efektivity zariadení, auditov autonómnej údržby alebo podnetov pracovníkov. Akčný plán bol aktualizovaný pravidelne TPM koordinátorkou.

- **Kontrolné hárky denného čistenia.** Slúžili pre záznam kontroly denného čistenia. Boli vypĺňané zástupcami jednotlivých častí liniek, ktorých úlohou bolo po každom vykonanom autonómnej údržbe (v tomto prípade na začiatku každej zmeny) skontrolovať stav a zaznačiť ho – splnenie zeleným krížikom, alebo splnenie s výhradami žltym krížikom, prípadne nesplnenie autonómnej údržby červeným krížikom. Ukážka kontrolného hárku je na obrázku 46.

- **Hlášenie znečistení, abnormalít a porúch.** Na nástenke sa nachádzala i krabička, do ktorej operátori mohli vložiť útržok kartičky informujúcej o znečistení, abnormalite alebo poruche. Tieto kartičky budú bližšie popísané v kapitole 9.3.2.

Obrázok 45: Nástenka zobrazujúca informácie o autonómnej údržbe (Zdroj: vlastné spracovanie)
Rozdelenie zodpovednosti za autonómnu údržbu

Zodpovednosť pracovníkov za autonómnu údržbu nebola vizualizovaná len na nástenke, ale aj priamo na jednotlivých strojoch. Na každom stroji bola totiž pripnutá magnetická tabuľka, na ktorej bolo napsané meno pracovníka zodpovedného za daný stroj a taktiež jeho fotka. Táto tabuľka je zobrazená na obrázku 47.

Pozitívnymi stránkami tabuliek bolo okamžité priradenie operátora k danému stroju, zvýšenie záujmu operátorov o starostlivosť o stroje. Negatívom bola počiatočná nevôľa operátorov.

Obrázok 46: Kontrolné hárky denného čistenia (Zdroj: vlastné spracovanie)

Obrázok 47: Magnetická tabuľka na stroj určujúca zodpovednosť za autonómnu údržbu (Zdroj: vlastné spracovanie)
9.3 Tvorba štandardov autonómnej kontroly

Keď boli vytvorené konečné štandardy čistenia, operátorom boli priradené stroje a bolo zabezpečené čistenie strojov podľa autonómnej údržby, boli vytvorené a uvedené do používania štandardy popisujúce strojné zariadenie a štandardy autonómnej kontroly.

9.3.1 Popis strojného zariadenia

Popis strojného zariadenia vznikol na žiadosť vedenia spoločnosti. Cieľom malo byť oboznámenie operátorov so strojom natoľko, že by časom boli schopní sami odstrániť základné abnormality. Tento zámer však zatiaľ nebol naplnený.

Popis strojného zariadenia bol vytvorený ku každému stroju na linke, na základe manuálu od výrobcu, konzultácie s procesným inžinierom a technikom údržby. Bol tvorený z textovej časti, ktorá obsahovala názov časti stroja, jej funkciu a najčastejšiu poruchu na tejto časti, a z vizuálnej časti, ktorá zobrazovala fotografie spomínaných častí stroja. Ukázka popisu strojného zariadenia je na obrázku 48.

Obrázok 48: Popis strojného zariadenia (Zdroj: vlastné spracovanie)
Ideou bolo vykonávať testovanie zamestnancov ohľadom ich znalostí o jednotlivých častiach stroja, o prípadných poruchách a príčinách porúch na týchto strojoch. Zatiaľ čo zamestnanci, ktorí boli na výrobné linke od začiatku zavádzania autonómnej údržby, mali základné znalosti o funkčných častiach stroja, noví pracovníci zatiaľ v tomto smere zaučení neboli.

9.3.2 Štandardy autonómnej kontroly

K vykonávaniu autonómnej kontroly boli vypracované štandardy a kontrolné body boli na stroji vyznačené pomocou piktogramu. Štandardy autonómnej kontroly boli tvorené na základe analýzy strojných porúch, po konzultácií s operátormi výroby, technikmi údržby a procesným inžinierom. Identifikovali sa problematické miesta, ktoré sa mali kontrolovať či už vizuálne alebo pomocou sluchu. V Štanderde sa zadeﬁnovalo i ako často má táto kontrola prebiehať, aké pomôcky sú pre ňu potrebné. Štandard autonómnej kontroly sa nachádza na obrázku 49.

Obrázok 49: Štandard autonómnej kontroly
(Zdroj: vlastné spracovanie)
Pre uľahčenie identifikácie kontrolných bodov na stroji, boli navrhnuté piktogramy – oko v žltom trojuholníku (vid' obrázok 50). Piktogramy boli umiestnené na kontrolné miesta na stroji.

Obrázok 50: Piktogram autonómnej kontroly
(Zdroj: vlastné spracovanie)

Obrázok 51: Kartička pre označenie abnormality a poruchy (Zdroj: vlastné spracovanie)
Po objavení abnormality operátor vypísal obe časti kartičky, určil o aký stroj sa jedná, popis problému, dátum a svoje meno. Kartičku rozdelil na dve časti, pričom časť s gumičkou pripevnil na stroj, na najbližšie možné miesto k nájdenému problému (obrázok 52). Druhú časť kartičky vhodil do krabičky na nástene. Kartička bola ďalej evidovaná do karty pořídrie a riešenie problému bolo delegované na technika údržby. Ten po odstránení problému evidoval aká bola príčina problému, ako dlho mu trvala oprava a kedy vykonal danú nápravu.

Zavedenie systému nahlasovania problémov pomocou kartičiek bolo pomerne náročné, operátori aj napriek niekoľkým preškoleniam preferovali informovať technika údržby o abnormalite, či poruche ústne, čím sa stávala i možnosť evidencie všetkých abnormalít na pilotej linke.

9.4 Audity autonómnej údržby

Zistovať, či sa autonómna údržba vykonávala správne a zároveň udržiavať motiváciu pracovníkov sa darilo pomocou auditou autonómnej údržby. Tie vykonával tim v zložení TPM koordinátorka, majster údržby a predák výroby pravidelne raz mesačne, prípadne podľa potreby.

Počas auditu údržby sa posúdzoval stav stroja – bol porovnávaný reálny stav na výrobnej linke so štandardami čistenia, bola kontrolovaná úplnosť dokumentácie a okrem toho boli operátori výroby dotazovaní na znalosti strojného zariadenia a používania štandardov. Vý-

Obrázok 53: Jednobodová lekcia o audite (Zdroj: vlastné spracovanie)

Taktiež prebiehali i samoaudity, ktoré boli denne zapisované do kontrolných hárkov denného čistenia, ktoré sú zobrazené na obrázku 46.
10 TRETIA FÁZA REALIZÁCIE PROJEKTU

10.1 Stretnutia TPM technikov

So znovuzavádzaním preventívnej údržby sa viazalo založenie výkonného tímu, ktorý mal zodpovedať za jej správne fungovanie. Tím TPM – preventívna údržba sa skladal z týchto členov:

- Majster údržby;
- TPM technik linky BD1;
- TPM technik linky BD2;
- TPM technik linky CMF1;
- TPM technik liniek EPP1 a EPP2;
- TPM koordinátorka.

Na stretnutiach tímu, ktoré prebiehali každý týždeň alebo podľa potreby, sa sústredili na plánovanie aktivít spojených s preventívou údržbou – boli určené časové plány pre preventívnu údržbu, určení pracovníci, ktorí majú údržbu vykonávať na jednotlivých strojoch. Bola zavedená vizualizácia na pracoviskách údržby, vykonaná kategorizácia strojov (pre linku CMF1 je zobrazená v prílohe 4) a navrhnuté ďalšie aktivity spojené s preventívou údržbou, ako napríklad termodiagnostika rozvádzačov. Zároveň bola zavedená zmena v Knihe údržby tak, aby boli zaznamenávané pričiny vzniku porúch.

Z každého stretnutia bol vytvorený zápis, ktorý obsahoval zoznam zúčastnených členov, dátum stretnutia, osnovu riešených bodov a závery plynúce z tohto stretnutia. Pre ďalšie stretnutie boli vždy zdôraznené základné body pre overenie, bol naplánovaný termín
ďalšieho stretnutia. Okrem zápisu bol zostavený i akčný plán pridelujúci úlohy pre splne-nie.

Najdôležitejšie zmeny pri zavádzaní preventívnej údržby sú ďalej popísané v tejto kapitole.

10.2 Úprava knihy údržby

Pri analyzovaní súčasnej situácie v spoločnosti bolo zistené, že informácie o poruchách a prestojoch nie sú dostatočné. Pri analyzovaní nebolo mnohokrát jasné prečo daná porucha vznikla, čo zároveň bránilo i jej prevencii. Pre účely tohto projektu boli prestoje analyzo-vané spätne, no aby sa zabránilo opätovnému vzniku situácie, bolo nutné upraviť zazname-návanie do Knihy údržby.

![Diagram](image_url)

Obrázok 54: Číselník príčin porúch (Zdroj: vlastné spracovanie)

Prostredie Knihy údržby po zavedení zmény je zobrazené na obrázkoch 55 a 56.

Obrázok 55: Číselný príčin porúch v Knihe údržby, časť prvá
(Zdroj: vlastné spracovanie)
Hoci ročný plán údržby vo firme existoval, bol dostupný len v elektronickej forme, čím sa stúžilo jeho sledovanie. Jedným z prvých krokov pri zavádzaní preventívnej údržby preto bolo aktualizovať ročný plán – zhodnotiť aktivity, ktoré sa v ňom nachádzali, vylúčiť tie, ktoré boli zbytočné a prípadne pridať nové. Tieto aktualizácie prebiehali po konzultáciách s TPM technikmi, s majstrom údržby a po študiu manuálov od výrobcov. Do reportu boli zahrnuté činnosti, ktoré boli bud naplánované na určitý dátum, alebo sa museli vykonávať po určitom počte cyklov, prípadne motohodín.

Okrem toho bol vypracovaný kvartálny report ročného plánu, do ktorého boli zaznačené aktivity, ktoré mali prebehnuť a boli naplánované do jednotlivých týždňov. Report (ukázka z linky BD1 je zobrazená obrázkom 57) bol umiestnený na nástennu údržby, kde bol dostupný pre každého. Tento krok prospeľ sledovaniu vykonávania činností zapisaných v ročnom pláne.
Technici údržby mali prerozdelené stroje, na ktorých vykonávali preventívnu údržbu. Vo firme toto pridelenie nazývali, že technik údržby bol tzv. „tatko stroja“ a myšlienkovou poznáť dokonale svoj pridelený stroj. Pri znovuzavádzaní preventívnej údržby, bolo vypracované nové rozdelenie strojov, podľa zložitosti stroja a skúseností technika. Každý technik bol zodpovedný približne za 5 strojov, ktoré sa nachádzali na Belt Drive linkách.

Určenie časového rámca pre vykonávanie preventívnej údržby bolo plánované pomocou doplnkového plánu preventívnej údržby. Doplnkový plán preventívnej údržby obsahoval činnosti, ktoré prebiehali častejšie ako tie z ročného plánu – aktivity sa diali buď na dennej, týždennjej alebo mesačnej báze. Ten bol vytvorený na základe existujúcich dokumentov plánovej údržby a najmä na základe skúseností technikov údržby. Technici údržby, ešte podľa starého rozdelenia strojov, zdielali svoje skúsenosti a vyplnením formulára poskytli podklad pre preventívnu údržbu. Príklad kontrolného formulára je na obrázku 58.

Keď boli všetky kontrolné formuláre zozbierané, boli činnosti filtrované a následne zaradené do doplnkového plánu. Doplnkový plán vznikol ako súbor, ktorý podľa dátumu generoval zoznam činností, ktoré bolo potrebné vykonáť v rámci preventívnej údržby. Jeho fungovanie v praxi prebiehalo tak, že technik údržby si z doplnkového plánu vytlačil for-

<table>
<thead>
<tr>
<th>Stanica</th>
<th>Čo kontrolovať</th>
<th>Frekvencia</th>
<th>Akým spôsobom?</th>
</tr>
</thead>
</table>
| 25 A | Tepelný zdroj | 1M | Vzdušné - termošôp
| | | 1M | Spalovacie - potrubie |
| | | 1M | T. údržba |
| | | 1M | V. kontrola škatuľ |
| | | 1M | V. údržba |
| | | 1M | V. kontrola škatuľ |
| 28 | Pohonové nářadie | 1M | T. riadenie
| | | 1M | V. kontrola škatuľ |

Obrázok 58: Kontrolný formulár pre vypracovanie doplnkového plánu preventívnej údržby (Zdroj: vlastné spracovanie)
11 ZHODNOTENIE PROJEKTU

V období od septembra 2015 do mája 2016 bola na linku CMF1 zavádzaná autonómna údržba. Po realizácii projektu bola taktiež zavádzaná preventívna údržba,ktorá prebiehala v spolupráci s technikmi údržby.

Z technickej stránky bolo výhodou projektu to, že stroje boli pomerne nekomplikované a čas potrebný pre ich údržbu bol malý. Táto skutočnosť prospešla zavádzaniu autonómnej údržby a rýchlemu začleneniu operátorov na jej vykonávanie. Ďalšou silnou stránkou bola technická podpora inžinieringu a znalosti technikov údržby. Medzi slabé stránky projektu patril počiatočný odpor pri zavádzaní totálne produktívnej údržby zo strany výroby a plánovania. Situácia sa však po čase stabilizovala a boli dosiahnuté kompromisy, vďaka ktorým bolo umožnené vykonávanie autonómnej a preventívnej údržby. V apríli 2016 spoločnosť ZF TRW zahájila implementáciu autonómnej údržby na ďalšiu linku, čím prejavila záujem o svoj rozvoj a neustále napredovanie.

Pre úspešnú implementáciu, či už autonómnej alebo preventívnej údržby, je nutné nielen zaškoliť pracovníkov, teda výrobných operátorov a technikov údržby, ale najdôležitejšia je podpora vedenia spoločnosti. Ak bude totálne produktívna údržba v spoločnosti ZF TRW podporovaná manažmentom, ak pracovníci dostanú časový priestor na vykonávanie autonómnej údržby a výrobný plán bude prispôsobený týmto činnostiam, bude zavedenie TPM úspešné. A to nielen na linke CMF1, kde prebiehal tento projekt, ale v celej spoločnosti.

V tejto kapitole boli zhnuté a vyčíslené výsledky plynúce zo zavedenia totálne produktívnej údržby na linku CMF1. Pretože okrem finančných prínosov, ktoré bohužiaľ nie sú zverejnené v zhodnotení projektu, vznikli i prínosy nefinančné, ktoré sú rovnako dôležité, sú zhnuté v zhodnotení projektu.
11.1 Nefinančné prínosy projektu

Zavedenie totálnej produktívnej údržby so sebou prinieslo niekoľko výhod, ktoré sa súči ne nedajú vyjadriť finančne, no značne ovplyvnili procesy a prostredie v spoločnosti:

- **Čistenie je kontrolou.** Zavedenie autonómnej údržby, ktorá operátorom zabralo približne 10 minút na začiatku zmeny, prospevo preventívnomu servisu. Operátori pri čistení strojov spozorovali uvoľnené alebo poškodené časti, ktoré mohli násled- ne nahlásiť technikom údržby.

- **Zlepšenie pracovného prostredia.** Stroje na pracovisku sa stali čistejšie, dokonca operátori túto zmenu ocenili a porovnávali s ostatnými linkami.

- **Podporenie tímovej spolupráce.** Pri spolupráci na zavádzaní totálnej produktívnej údržby operátori začali viac spolupracovať či už medzi sebou, s technikmi údržby, ale i s majstrom údržby a predákom. Operátori výroby začali mať záujem o vykonávanie autonómnej údržby.

- **Rozvoj operátorov výroby.** Ich práca je rozvínutejšia, operátori lepšie poznajú stroj na ktorom pracujú, vedia zabrániť vzniku častých porúch, vedia ako bezpešne a správne narábať so strojom a jeho časťami.

- **Vizualizácia.** Vizualizácia bola dôležitým krokom pri zavádzaní totálnej produktívnej údržby. Okrem vizualizácie výstupov na nástenke, boli zamestnanci informováni aj o časových plánoch autonómnej a preventívnej údržby, o akčných plánoch, o umiestnení čistiacich pomôcok; ďalej bola vizualizovaná aj napríklad zodpovednosť za vykonávanie autonómnej údržby na strojoch a boli označené pracoviská údržby vo firme.

- **Rozloženie práce technikov údržby.** Rôzny objem práce počas pracovných zmien technikov údržby sa pomerne vyvážil, a táto zmena nastala v dvoch krokoch:
 - Po zavedení *autonómnej údržby* sa časť zodpovednosti za stroje preniesla z technikov údržby na operátorov výroby, čím sa zvýšila i šanca predísť po- ruchám a podchytiť ich kým boli v stave abnormality. Znížila sa i potreba poporuchovej údržby.
 - Po zavedení *preventívnej údržby*, vďaka naplánovaniu činností technikov do ročného plánu a doplnkového plánu preventívnej údržby. Technici údrž-
by mali osnovu činnosti na ďalší deň. Opäť klesla potreba poporuchovej údržby, stúpol časový priestor pre zlepšovanie.

- **Dodržiavanie predpísaných štandardov.** Jedným zo žiadaných výstupov projektu bolo dodržiavanie štandardov zo strany operátorov, napríklad teda vykonávanie denného čistenia podľa predpísaných frekvencií aspoň na 90 %. Tento cieľ bol splnený v každom mesiaci od septembra 2015 do marca 2016. Ukázka záznamu z marca 2016 je na obrázku 60. V marci 2016 bolo denné čistenie vykonané na 100 % - tie políčka, ktoré sú nevyplnené hlásia o tom, že sa v danej dobe na linke nevyrábal. Z 91 % bola autonómna údržba splnená, v 9 % bola splnená s výhradami.

Obrázok 60: Kontrolný hárok denného čistenia – marec 2016 (Zdroj: vlastné spracovanie)
11.2 Finančné prínosy projektu

Hlavným definovaným cieľom tohto projektu bolo zvýšenie celkovej efektivity zariadení na pilotnej linke o 10 %. Vývoj celkovej efektivity zariadení od zahájenia projektu po 15. týždeň roku 2016 je zobrazený na obrázku 61.

Obrázok 61: Celková efektivita zariadení na pilotnej linke CMF1 po zahájení projektu (Zdroj: vlastné spracovanie)

Tabuľka 16: Porovnanie ukazovateľov pred a po zahájení projektu na linku CMF1 (Zdroj: vlastné spracovanie)

<table>
<thead>
<tr>
<th>Ukazovateľ</th>
<th>Percentuálna hodnota pred projekтом</th>
<th>Percentuálna hodnota po projekte</th>
<th>Požadované zlepšenie (v percentách)</th>
<th>Skutočné zlepšenie (v percentách)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Celková efektivita zariadení</td>
<td>49,4 %</td>
<td>60,5 %</td>
<td>10 %</td>
<td>11,1 %</td>
</tr>
<tr>
<td>Dostupnosť</td>
<td>79,9 %</td>
<td>85 %</td>
<td>5 %</td>
<td>5,1 %</td>
</tr>
<tr>
<td>Výkon</td>
<td>73,4 %</td>
<td>84 %</td>
<td>-</td>
<td>10,6 %</td>
</tr>
<tr>
<td>Kvalita</td>
<td>83,3 %</td>
<td>84,8 %</td>
<td>-</td>
<td>1,5 %</td>
</tr>
</tbody>
</table>

Aj keď sa produkcia na linke CMF1 zatiaľ neprirodzi ideálnym hodnotám ukazovateľov, vplyva na to aj fluktuácia zamestnancov, nábeh na druhú zmenu a neustále konštrukčné a informačné zmeny na linke.

Po implementácii totálnej produktívnej údržby bola situácia nasledovná:

- Celková dĺžka trvania prestojov (september 2015 – apríl 2016) 6912 minút
- Percentuálny podiel prestojov z mechanických príčín 38,5 %
- Percentuálny podiel prestojov z elektrických príčín 4,1 %

Hoci celková dĺžka trvania prestojov oproti pôvodnému stavu stúpla, je nutné poznamenať, že od februára 2016 začala na pilotnej linke dvojzmenná prevádzka, čím sa zvýšil i skutočný čas prevádzky. Ak teda pri porovnávaní týchto dvoch stavov zaobírime do úvažiť túto skutočnosť, zistíme, že dostupnosť strojného zariadenia skutočne vzrástla o 5,1 % i napriek zvýšenej hodnote celkového trvania prestojov. Pri sledovanej percentuálnej hod-
note prestojov spôsobených mechanickými príčinami bol cieľ splnený, dokonca prekročený – nastal pokles o 3,7 %.

Finančné vyčíslenie nákladov a výnosov nebolo na žiadosť spoločnosti uverejnené. I napriek tomu však je možné usúdiť, že výnosnosť projektu bola žiaduca, pretože spoločnosť sa rozhodla implementovať metódu TPM postupne na všetky výrobné linky v spoločnosti.
ZÁVER

Cieľom tejto diplomovej práce bolo úspešné zavedenie metódy totálne produktívnej údržby na pilotnú linku CMF1 v spoločnosti ZF TRW (Slovakia) tak, aby bolo dosiahnuté zvýšenie celkovej efektivity zariadenia. Dielčími cielmi bolo zvýšiť dostupnosť strojov a zariadení na výrobe linke a znižiť prestoje, ktoré boli spôsobené mechanickými a elektrickými prestojmi.

V teoretickej časti diplomovej práce boli definované pojmy, ktoré boli významné pre túto prácu – boli objasnené základné pojmy problematiky, následne bola pozornosť venovaná nástrojom, pomocou ktorých je možné indentifikovať a eliminovať plytvanie a predovšetkým bola pozornosť zameraná na totálne produktívnu údržbu. Autorka popísala metódu všeobecne a potom sa venovala spôsobom zavádzania jednotlivých ktokov.

Praktická časť bola v úvode zameraná na charakteristiku spoločnosti ZF TRW (Slovakia) a následne sa pozornosť presunula na aktuálny stav v tejto spoločnosti. Boli popísané procesy na oddelení údržby, práca technikov údržby bola sledovaná pomocou snímkov pracovného dňa. Skúmaná bola pilotná linka, na ktorej bola metóda TPM zavádzaná. Najprv bola vybraná na základe zvolených kritérií a potom bola analyzovaná predovšetkým z hľadiska strojného zariadenia a analýzy prestojov.

Po zmapovaní súčasnej situácie, v septembri 2015, začala byť na pilotnú linku CMF1 zavádzaná metóda totálne produktívnej údržby. Založený TPM tím začal s implementáciou siedmich krokov autonómnej údržby. Po ustálení tohto programu vznikla spolupráca s TPM technikmi na znovuzavádzaní preventívnej údržby. Okrem toho bol tiež vykonané zmeny v Knihe údržby, informačnom systéme pre oddelenie údržby.

Projekt zavádzania totálne produktívnej údržby na pilotnú linku v spoločnosti ZF TRW (Slovakia) trval od septembra 2015 do mája 2016. Aj keď v čase odovzdania tejto diplomovej práce bol projekt ešte aktívny, už vtedy sa dal považovať za úspešný. Ciele, ktoré boli stanovené – zvýšenie celkovej efektivity zariadení o 10 % na linke CMF1, zvýšenie dostupnosti strojov o 5 % a eliminácia prestojov spôsobených mechanickými a elektrickými príčinami o 2 % - boli splnené.

Projekt zavedenia totálne produktívnej údržby mal pre spoločnosť veľký prínos, a to nielen finančný Pozitívny dopad sa odrazil na stave strojného zariadenia, na motivácii pracovní-
kov, na organizácii práce technikov údržby a podobne. Spoločnosť taktiež ocenila tento projekt a rozhodla sa pre zavedenie metódy TPM na ďalšie linky vo firme.

Jediným odporúčaním pre spoločnosť pre ďalšie fungovanie projektu a jeho rozvoj, je väčšia podpora zo strany managementu a plánovania výroby. Tento projekt je totiž jasným dôkazom, že pravidelnou starostlivosťou o trojné zariadenie je možné zvýšiť celkovú produktivitu na linke, ovplyniť kvalitu výrobkov, zvýšiť bezpečnosť a spokojnosť zamestnancov.
ZOZNAM POUŽITEJ LITERATÚRY

BOLEDOVIČ, Ľudovít et al., 2010. Totálne produktívna údržba - TPM. Žilina: IPA Slovakia, 46 s.

BOLEDOVIČ, Ľudovít, 2014. Úvod do TPM. Celková efektívita zariadenia a jej zlepšovanie: TPM Expert Program. Žilina: IPA Slovakia,

Zoznam používaných symbolov a skratiek

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Oznámenie</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td>Podporný subsystém v automobile, kontrolujúci činnosť brzdovej sú-stavy s cieľom zabezpečiť účinné brzdenie automobilu na povrchoch s rôznou priľnavosťou.</td>
</tr>
<tr>
<td>ATĎ</td>
<td>A tak ďalej</td>
</tr>
<tr>
<td>Belt Drive</td>
<td>Kompaktný riadiaci systém</td>
</tr>
<tr>
<td>BOZP</td>
<td>Bezpečnosť a ochrana zdravia pri práci</td>
</tr>
<tr>
<td>CEZ</td>
<td>Celková efektivita zariadení</td>
</tr>
<tr>
<td>ECU</td>
<td>Riadiaca jednotka (Electronic Control Unit)</td>
</tr>
<tr>
<td>EPHS motory</td>
<td>Elektrické motory do posilňovačov riadenia, ktoré sú riadené pomocou ECU, poháňajúce hydraulické čerpadlo (Electrically Powered Hydraulic Steering Motors)</td>
</tr>
<tr>
<td>EPS motory</td>
<td>Elektrické motory do posilňovačov riadenia, riadené pomocou ECU (Electrically Powered Steering Motors)</td>
</tr>
<tr>
<td>ND</td>
<td>Náhradné diely</td>
</tr>
<tr>
<td>OEE</td>
<td>Celková efektivita zariadení</td>
</tr>
<tr>
<td>PLC</td>
<td>Programovateľný logický automat</td>
</tr>
<tr>
<td>PC</td>
<td>Počítač</td>
</tr>
<tr>
<td>PM</td>
<td>Preventívna údržba</td>
</tr>
<tr>
<td>SPC</td>
<td>Štatistická kontrola procesu</td>
</tr>
<tr>
<td>TPM</td>
<td>Totálna produktívna údržba</td>
</tr>
</tbody>
</table>
ZOZNAM OBRÁZKOV

Obrázok 1: Členenie činností údržby (Zdroj: Legát a kol, 2013, s. 128) .. 15
Obrázok 2: Trojuholník vizuálneho managementu (Zdroj: Dennis, 2007, s. 36) 27
Obrázok 3: Postup pri moderovanom workshopu (Zdroj: Burieta, 2014, s. 61) 30
Obrázok 4: Presmerovanie základných činností na výrobu (Zdroj: Dennis, 2007, s. 40) 35
Obrázok 5: Priebeh znižovania porúch počas zavádzania TPM (Zdroj: Legát a kol., 2013, s. 152) .. 35
Obrázok 6: Aktivity totálne produktívnej údržby (Zdroj: Boledovič, 2014, s. 21) 39
Obrázok 7: Tím autonómnej údržby (Zdroj: Kormanec, 2014, s. 18) 42
Obrázok 8: Matica strategického rozdelenia strojov a zariadení (Zdroj: Boledovič a Kormanec, 2014, s. 16) .. 48
Obrázok 9: Klasifikácia a výber najlepšej stratégie údržby pre zariadenie (Zdroj: Boledovič a Kormanec, 2014, s. 17) .. 49
Obrázok 10: ZF TRW, pobočka v Novom Meste nad Váhom. Zdroj: (ZF TRW, 2015b) ... 52
Obrázok 11: Logo spoločnosti ZF TRW Zdroj: (ZF TRW, 2015b) .. 53
Obrázok 12: Organizačná štruktúra spoločnosti ZF TRW (Slovakia) (ZF TRW, 2015b) .. 55
Obrázok 13: Zobrazenie EPS motora po montáži do automobilu. Zdroj: (ZF TRW, 2015b) .. 57
Obrázok 14: Zobrazenie Belt Drive po montáži do automobilu. Zdroj: (ZF TRW, 2015b) .. 57
Obrázok 15: Objem produkcie spoločnosti ZF TRW (Slovakia) v miliónoch ks (ZF TRW, 2015b) .. 58
Obrázok 16: Rozdelenie objemu výroby podľa zákazníkov v roku 2014 (ZF TRW, 2015b) .. 59
Obrázok 17: Organizačná štruktúra oddelenia údržby v spoločnosti ZF TRW (Zdroj: vlastné spracovanie podľa interných dokumentov) 63
Obrázok 18: Stav plnenia preventívnej údržby na linkách BD1 a EPP1 vo februári 2015 (Zdroj: vlastné spracovanie) ... 65
Obrázok 19: Vývojový diagram poporuchovej údržby vo firme ZF TRW (Slovakia)
(Zdroj: ZF TRW, 2015b) .. 67
Obrázok 20: Zápis údržbárskej aktivity do Knihy údržby, krok 2 (Zdroj: Kniha údržby – ZF TRW, 2015b) ... 69
Obrázok 21: Zápis údržbárskej aktivity do Knihy údržby, krok 1 (Zdroj: Kniha údržby – ZF TRW, 2015b) ... 69
Obrázok 22: Zápis údržbárskej aktivity do Knihy údržby, krok 3 (Zdroj: Kniha údržby – ZF TRW, 2015b) ... 70
Obrázok 23: Percentuálne vyjadrenie činností technika údržby – deň prvý (Zdroj: vlastné spracovanie) ... 71
Obrázok 24: Percentuálne vyjadrenie práce a prestojov v činnostiach technika údržby – deň prvý (Zdroj: vlastné spracovanie) ... 72
Obrázok 25: Percentuálne rozdelenie činností podľa ich pridané hodnoty – deň prvý (Zdroj: vlastné spracovanie) ... 73
Obrázok 26: Percentuálne vyjadrenie činností technika údržby – deň druhý (Zdroj: vlastné spracovanie) ... 74
Obrázok 27: Percentuálne vyjadrenie práce a prestojov v činnostiach technika údržby – deň druhý (Zdroj: vlastné spracovanie) ... 75
Obrázok 28: Percentuálne rozdelenie činností podľa ich pridané hodnoty – deň prvý (Zdroj: vlastné spracovanie) ... 76
Obrázok 29: Analýza počtu porúch na výrobných linkách v spoločnosti (Zdroj: vlastné spracovanie podľa interných dokumentov) ... 78
Obrázok 30: Analýza dĺžky prestojov na výrobných linkách v spoločnosti (Zdroj: vlastné spracovanie podľa interných dokumentov) ... 78
Obrázok 31: Layout pilotného pracoviska (Zdroj: vlastné spracovanie) ... 80
Obrázok 32: Celková efektivita zariadení na pilotnej linke (Zdroj: vlastné spracovanie podľa interných dokumentov) ... 81
Obrázok 33: Paretova analýza príčin porúch na pilotnej linke (Zdroj: vlastné spracovanie) ... 82
Obrázok 34: Zmapovanie celkového súčasného stavu údržby (Zdroj: vlastné spracovanie) ... 85
Obrázok 35: Počiatočné čistenie – únik vazeliny mimo stroj. Situácia pred a po odstranení problému. (Zdroj: vlastné spracovanie) ... 97
Obrázok 36: Počiatočné čistenie – znečistenie častí stroja (Zdroj: vlastné spracovanie)...97
Obrázok 37: Počiatočné čistenie - uvoľnené skrutky. Situácia pred a po odstránení problému. (Zdroj: vlastné spracovanie)...97
Obrázok 38: Počiatočné čistenie – popadaný materiál v stroji (Zdroj: vlastné spracovanie)...98
Obrázok 39: Počiatočné čistenie – identifikované abnormality na pilotnej linke (Zdroj: vlastné spracovanie)...98
Obrázok 40: Kontaminácia vazelínou stanica 15B (Zdroj: vlastné spracovanie).................100
Obrázok 41: Kontaminácia vazelínou stanica 110 (Zdroj: vlastné spracovanie).................101
Obrázok 42: Odstránenie t’ažko prístupných miest – stanica 70 (Zdroj: vlastné spracovanie)...102
Obrázok 43: Štandard čistenia – finálna verzia (Zdroj: vlastné spracovanie).....................103
Obrázok 44: Vykonávanie autonómneho denného čistenia (Zdroj: vlastné spracovanie)...106
Obrázok 45: Nástenka zobrazujúca informácie o autonómnej údržbe (Zdroj: vlastné spracovanie)...108
Obrázok 46: Kontrofné hárky denného čistenia (Zdroj: vlastné spracovanie)..................109
Obrázok 47: Magnetická tabuľka na stroj určujúca zodpovednosť za autonómnu údržbu (Zdroj: vlastné spracovanie)...109
Obrázok 48: Popis strojného zariadenia (Zdroj: vlastné spracovanie).................................110
Obrázok 49: Štandard autonómnej kontroly (Zdroj: vlastné spracovanie).......................111
Obrázok 50: Piktogram autonómnej kontroly (Zdroj: vlastné spracovanie).....................112
Obrázok 51: Kartička pre označenie abnormality a poruchy (Zdroj: vlastné spracovanie)...112
Obrázok 52: Označenie abnormality na stroji (Zdroj: vlastné spracovanie).....................113
Obrázok 53: Jednobodová lekcia o audite (Zdroj: vlastné spracovanie).............................114
Obrázok 54: Číselník príčin porúch (Zdroj: vlastné spracovanie)..116
Obrázok 55: Číselník príčin porúch v Knihe údržby, časť prvá (Zdroj: vlastné spracovanie)...117
Obrázok 56: Číselník príčin porúch v Knihe údržby, časť druhá (Zdroj: vlastné spracovanie)...118
Obrázok 57: Kvartálny report ročného plánu (Zdroj: vlastné spracovanie).......................119
Obrázok 58: Kontrolný formulár pre vypracovanie doplnkového plánu preventívnej údržby (Zdroj: vlastné spracovanie) ... 120
Obrázok 59: Formulár doplnkovej kontroly preventívnej údržby (Zdroj: vlastné spracovanie) .. 121
Obrázok 60: Kontrolný hárok denného čistenia – marec 2016 (Zdroj: vlastné spracovanie) .. 124
Obrázok 61: Celková efektivita zariadení na pilotnej linke CMF1 po zahájení projektu (Zdroj: vlastné spracovanie) ... 125
Obrázok 62: Paretova analýza príčin porúch na pilotnej linke (Zdroj: vlastné spracovanie) .. 127
ZOZNAM ROVNÍC

[1] Výpočet celkovej efektivity zariadení ...40
[2] Výpočet dostupnosti..40
[3] Výpočet výkonu...41
[4] Výpočet kvality..41
ZOZNAM TABULIEK

Tabuľka 1: Charakteristika preventívnej údržby a TPM (Zdroj: Legát a kol., 2013, 137 – 138).. 33

Tabuľka 2: Použité metódy pre analyzovanie súčasného stavu (Zdroj: vlastné spracovanie).. 60

Tabuľka 3: Zoznam veku strojov na linkách a ich výrobcovia (Zdroj: vlastné spracovanie).. 77

Tabuľka 4: Výber pilotného pracoviska pre zavedenie metódy TPM (Zdroj: vlastné spracovanie).. 80

Tabuľka 5: Priemerné hodnoty ukazovateľov celkovej efektivity zariadení na pilotnej linke (Zdroj: vlastné spracovanie).. 82

Tabuľka 6: Identifikované problémy a navrhnuté riešenia na pilotnej linke po vykonaní analýzy súčasného stavu (Zdroj: vlastné spracovanie).. 84

Tabuľka 7: Hodnoty ukazovateľov celkového súčasného stavu údržby (Zdroj: vlastné spracovanie).. 85

Tabuľka 8: Gantov diagram projektu (Zdroj: vlastné spracovanie).. 88

Tabuľka 9: SWOT analýza projektu (Zdroj: vlastné spracovanie).. 89

Tabuľka 10: Analýza rizík projektu RIPRAN (Zdroj: vlastné spracovanie).. 91

Tabuľka 11: Legenda k rizikovej analýze projektu (Zdroj: vlastné spracovanie).. 92

Tabuľka 12: Akčný plán autonómnej údržby (Zdroj: vlastné spracovanie).. 95

Tabuľka 13: Záznamový hárok abnormalít (Zdroj: vlastné spracovanie).. 96

Tabuľka 14: Checklist čistiacich pomôcok – ukážka (Zdroj: vlastné spracovanie).. 96

Tabuľka 15: Karta porúch (Zdroj: vlastné spracovanie).. 99

Tabuľka 16: Porovnanie ukazovateľov pred a po zahájení projektu na linku CMF1 (Zdroj: vlastné spracovanie).. 126
ZOZNAM PRÍLOH

PRÍLOHA PI: LAYOUT VÝROBNEJ HALY ZF TRW (SLOVAKIA)

PRÍLOHA PII: PLÁN PREVENTÍVNEJ ÚDRŽBY

PRÍLOHA PIII: ZOZNAM A CHARAKTERISTIKA STROJOV NA PILOTNOM PRACOVISKU

PRÍLOHA PIV: KLASIFIKÁCIA STROJOV NA LINKE CMF1

PRÍLOHA PV: ZMAPOVANIE STAVU ÚDRŽBY

PRÍLOHA PVI: LOGICKÝ RÁMEC
PRÍLOHA P I: LAYOUT VÝROBNEJ HALY ZF TRW (SLOVAKIA)
| Stanovené činnosti | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | Poznámka |
|-------------------|---|---|---|---|---|---|---|---|---|----|
| T Skontrolovať Poka Yoke zariadenie, uloženie, sŕžanie alebo upínací pripojok, či nie je poškodené, alebo opotrebované |
| M Premazanie klzných častí zariadenia |
| M Čistenie vzduchových filtra na elektroskriíní |
| M Kontrola a skúška funkčnosti STOP tlačítk |

Podpis Mechanika

Legenda:
- D- denné
- T- týždenné
- M- mesačné
- Mechanik zaznamenáva činnost Iomítkom /
- 2M - 2x mesačné
- časový úsek vykonania kontroly
PRÍLOHA P III: ZOZNAM A CHARakteristiKA STROJOv NA PILOTnom PRACoViSKU

<table>
<thead>
<tr>
<th>Stanica</th>
<th>Funkcia stroja</th>
<th>Umiestnenie</th>
<th>Plne automatizovaný</th>
</tr>
</thead>
<tbody>
<tr>
<td>35 A</td>
<td>Montáž ložísk do telesa systému</td>
<td>Pre-line</td>
<td>Nie</td>
</tr>
<tr>
<td>35 B</td>
<td>Montáž dorazového krúžku do telesa systému</td>
<td>Pre-line</td>
<td>Nie</td>
</tr>
<tr>
<td>20</td>
<td>Spojenie EPP motora a telesa systému</td>
<td>Pre-line</td>
<td>Nie</td>
</tr>
<tr>
<td>15 B</td>
<td>Mazanie závitovej tyče</td>
<td>Pre-line</td>
<td>Nie</td>
</tr>
<tr>
<td>25</td>
<td>Vkladanie závitovej tyče do telesa systému</td>
<td>Pre-line</td>
<td>Áno</td>
</tr>
<tr>
<td>25A</td>
<td>Montáž matice závitovej tyče</td>
<td>Pre-line</td>
<td>Nie</td>
</tr>
<tr>
<td>27</td>
<td>Montáž remenice</td>
<td>Pre-line</td>
<td>Nie</td>
</tr>
<tr>
<td>28</td>
<td>Montáž remeňa</td>
<td>Pre-line</td>
<td>Nie</td>
</tr>
<tr>
<td>10A</td>
<td>Vkladanie dorazového krúžku do príruby</td>
<td>Pre-line</td>
<td>Nie</td>
</tr>
<tr>
<td>10 B</td>
<td>Vkladanie silentblokov do príruby</td>
<td>Pre-line</td>
<td>Nie</td>
</tr>
<tr>
<td>30B</td>
<td>Tesnenie telesa & spojenie príruby a telesa systému</td>
<td>Pre-line</td>
<td>Nie</td>
</tr>
<tr>
<td>30</td>
<td>Automatické napínanie remeňa</td>
<td>Pre-line</td>
<td>Áno</td>
</tr>
<tr>
<td>40</td>
<td>Montáž systému</td>
<td>Pre-line</td>
<td>Nie</td>
</tr>
<tr>
<td>45</td>
<td>Vloženie kabeláže do sxaystému</td>
<td>Mainline</td>
<td>Nie</td>
</tr>
<tr>
<td>50</td>
<td>Montáž tyče riadenia</td>
<td>Mainline</td>
<td>Nie</td>
</tr>
<tr>
<td>60</td>
<td>Montáž krytu tyče riadenia</td>
<td>Mainline</td>
<td>Nie</td>
</tr>
<tr>
<td>70</td>
<td>Predmontáž krytu tyče riadenia</td>
<td>Mainline</td>
<td>Nie</td>
</tr>
<tr>
<td>75</td>
<td>Otočenie systému</td>
<td>Mainline</td>
<td>Áno</td>
</tr>
<tr>
<td>80</td>
<td>Montáž matice a tesniacej matice</td>
<td>Mainline</td>
<td>Nie</td>
</tr>
<tr>
<td>85</td>
<td>Automatické nanásanie vazeliny</td>
<td>Mainline</td>
<td>Áno</td>
</tr>
<tr>
<td>90</td>
<td>Montáž nastavovacej matice</td>
<td>Mainline</td>
<td>Nie</td>
</tr>
<tr>
<td>Stanica</td>
<td>Funkcia stroja</td>
<td>Umiestnenie</td>
<td>Plne automatizovaný</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>-------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>95</td>
<td>Otočenie systému</td>
<td>Testline</td>
<td>Áno</td>
</tr>
<tr>
<td>205</td>
<td>Konfigurácia EPP motora</td>
<td>Testline</td>
<td>Áno</td>
</tr>
<tr>
<td>210</td>
<td>Vibračný test</td>
<td>Testline</td>
<td>Áno</td>
</tr>
<tr>
<td>200A/B</td>
<td>Centrovanie a meranie profilu závitovej tyče a nadstavovanie vzduchovej medzery</td>
<td>Testline</td>
<td>Áno</td>
</tr>
<tr>
<td>220A/B</td>
<td>Testovanie tesnosti systému</td>
<td>Testline</td>
<td>Áno</td>
</tr>
<tr>
<td>230A/B</td>
<td>Testovanie mechanického trenia</td>
<td>Testline</td>
<td>Áno</td>
</tr>
<tr>
<td>240A/B</td>
<td>Dynamické testovanie pod záťažou a testovanie hlučnosti systému</td>
<td>Testline</td>
<td>Áno</td>
</tr>
<tr>
<td>110</td>
<td>Montáž spojovacej tyče</td>
<td>Mainline</td>
<td>Nie</td>
</tr>
<tr>
<td>115</td>
<td>Montáž krytu tyče riadenia</td>
<td>Mainline</td>
<td>Nie</td>
</tr>
<tr>
<td>120</td>
<td>Montáž manžet</td>
<td>Mainline</td>
<td>Nie</td>
</tr>
<tr>
<td>130</td>
<td>Montáž guľových čapov</td>
<td>Mainline</td>
<td>Nie</td>
</tr>
<tr>
<td>140</td>
<td>Finálna kontrola</td>
<td>Mainline</td>
<td>Nie</td>
</tr>
</tbody>
</table>
PRÍLOHA P IV: KLASIFIKÁCIA STROJOV NA LINKE CMF 1

<table>
<thead>
<tr>
<th>Časť</th>
<th>Stroj</th>
<th>Kategória</th>
<th>Vplyv poruchy na podnik</th>
<th>Predvidateľnosť (miesto)</th>
<th>Pravdepodobnosť (výskyt)</th>
<th>Strategia údržby</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preline</td>
<td>35A</td>
<td>A</td>
<td>↓</td>
<td>↑</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>Preline</td>
<td>35B</td>
<td>A</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>Preline</td>
<td>20</td>
<td>A</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>Preline</td>
<td>15B</td>
<td>A</td>
<td>↑</td>
<td>↓</td>
<td></td>
<td>↑</td>
</tr>
<tr>
<td>Preline</td>
<td>25</td>
<td>A</td>
<td>↑</td>
<td>↓</td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>Preline</td>
<td>25A</td>
<td>A</td>
<td>↑</td>
<td>↓</td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>Preline</td>
<td>27</td>
<td>A</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>Preline</td>
<td>28</td>
<td>A</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>Preline</td>
<td>10A</td>
<td>A</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>Preline</td>
<td>10B</td>
<td>A</td>
<td>↑</td>
<td>↓</td>
<td>↑</td>
<td></td>
</tr>
<tr>
<td>Preline</td>
<td>30B</td>
<td>A</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>Preline</td>
<td>30</td>
<td>A</td>
<td>↑</td>
<td>↓</td>
<td></td>
<td>↑</td>
</tr>
<tr>
<td>Preline</td>
<td>40</td>
<td>A</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>Mainline</td>
<td>45</td>
<td>A</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>Mainline</td>
<td>50</td>
<td>A</td>
<td>↑</td>
<td>↓</td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>Mainline</td>
<td>60</td>
<td>A</td>
<td>↑</td>
<td>↓</td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>Mainline</td>
<td>70</td>
<td>A</td>
<td>↑</td>
<td>↓</td>
<td></td>
<td>↑</td>
</tr>
<tr>
<td>Mainline</td>
<td>75</td>
<td>A</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>Časť</td>
<td>Stroj</td>
<td>Kategória</td>
<td>Vplyv poruchy na podnik</td>
<td>Predvídateľnosť (miesto)</td>
<td>Pravedepodobnosť (výskyt)</td>
<td>Stratégia údržby</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>-----------</td>
<td>-------------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Mainline</td>
<td>80</td>
<td>A</td>
<td>↑</td>
<td>↓</td>
<td>↑</td>
<td>Údržba podľa časových plánov - vyššia frekvenca, zlepšovanie</td>
</tr>
<tr>
<td>Mainline</td>
<td>85</td>
<td>A</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
<td>Preventívna podľa stavu</td>
</tr>
<tr>
<td>Mainline</td>
<td>90</td>
<td>A</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
<td>Preventívna podľa stavu</td>
</tr>
<tr>
<td>Mainline</td>
<td>95</td>
<td>A</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
<td>Preventívna podľa stavu</td>
</tr>
<tr>
<td>Testline</td>
<td>205</td>
<td>A</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
<td>Preventívna podľa stavu</td>
</tr>
<tr>
<td>Testline</td>
<td>210</td>
<td>A</td>
<td>↑</td>
<td>↓</td>
<td>↑</td>
<td>Údržba podľa časových plánov - vyššia frekvenca, zlepšovanie</td>
</tr>
<tr>
<td>Testline</td>
<td>200A</td>
<td>B</td>
<td>↓</td>
<td>↓</td>
<td>↑</td>
<td>Strategia po poruche - TPM, zlepšovanie</td>
</tr>
<tr>
<td>Testline</td>
<td>200B</td>
<td>B</td>
<td>↓</td>
<td>↓</td>
<td>↑</td>
<td>Strategia po poruche - TPM, zlepšovanie</td>
</tr>
<tr>
<td>Testline</td>
<td>220A</td>
<td>B</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>Strategia po poruche</td>
</tr>
<tr>
<td>Testline</td>
<td>220B</td>
<td>B</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>Strategia po poruche</td>
</tr>
<tr>
<td>Testline</td>
<td>230A</td>
<td>B</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>Strategia po poruche</td>
</tr>
<tr>
<td>Testline</td>
<td>230B</td>
<td>B</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>Strategia po poruche</td>
</tr>
<tr>
<td>Testline</td>
<td>240A</td>
<td>B</td>
<td>↓</td>
<td>↓</td>
<td>↑</td>
<td>Strategia po poruche - TPM, zlepšovanie</td>
</tr>
<tr>
<td>Testline</td>
<td>240B</td>
<td>B</td>
<td>↓</td>
<td>↓</td>
<td>↑</td>
<td>Strategia po poruche - TPM, zlepšovanie</td>
</tr>
<tr>
<td>Mainline</td>
<td>110</td>
<td>A</td>
<td>↑</td>
<td>↓</td>
<td>↑</td>
<td>Údržba podľa časových plánov - vyššia frekvenca, zlepšovanie</td>
</tr>
<tr>
<td>Mainline</td>
<td>115</td>
<td>A</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
<td>Preventívna podľa stavu</td>
</tr>
<tr>
<td>Mainline</td>
<td>120</td>
<td>A</td>
<td>↑</td>
<td>↓</td>
<td>↓</td>
<td>Údržba podľa časových plánov</td>
</tr>
<tr>
<td>Mainline</td>
<td>130</td>
<td>A</td>
<td>↑</td>
<td>↓</td>
<td>↑</td>
<td>Údržba podľa časových plánov - vyššia frekvenca, zlepšovanie</td>
</tr>
<tr>
<td>Mainline</td>
<td>140</td>
<td>A</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
<td>Preventívna podľa stavu</td>
</tr>
<tr>
<td>Rework</td>
<td>250</td>
<td>C</td>
<td>↓</td>
<td>↑</td>
<td>↓</td>
<td>Strategia po poruche</td>
</tr>
</tbody>
</table>
PRÍLOHA P V: ZMAPOVANIE STAVU ÚDRŽBY

Zdroj: Boledovič, 2014, s. 42

<table>
<thead>
<tr>
<th>0% - 20%</th>
<th>21% - 40%</th>
<th>41% - 60%</th>
<th>61% - 80%</th>
<th>81% - 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ukazovatele a ciele údržby</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systém riadenia údržby</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Workflow údržby</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autonómna údržba</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preventívna údržba</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 % - 20 %</td>
<td>21 % - 40 %</td>
<td>41 % - 60 %</td>
<td>61 % - 80 %</td>
<td>81 % - 100 %</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
PRÍLOHA VI: LOGICKÝ RÁMEC

<table>
<thead>
<tr>
<th>Hlavný cieľ</th>
<th>Strom cieľov</th>
<th>Objektívne overiteľné ukazovatele</th>
<th>Zdroj informácií k overeniu</th>
<th>Predpoklady a riziká</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zvýšenie objemu produkcie na pilotnej linke</td>
<td>Zvýšenie produkcie o 10 %</td>
<td>Výkazy spoločnosti, Vyrobný plán</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Projektový cieľ</th>
<th>1. Zavedenie metódy TPM na pilotnú linku</th>
<th>Zvýšenie celkovej efektivity zariadení o 10 %</th>
<th>Výpočet Line OEE, Diplomový projekt</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Zvýšenie dostupnosti strojného zariadenia</td>
<td>Zvýšenie dostupnosti strojných zariadení o 5 %</td>
<td>Výpočet Line OEE, Diplomový projekt</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Výstupy</th>
<th>1.1 Zavedenie autonómnej údržby</th>
<th>90 %-ná úspešnosť vykonávania autonómnej údržby</th>
<th>TPM dokumentácia, reporty</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2 Rozšírenie pracovnej náplne zamestnancov</td>
<td>Vykonávanie autonómnej údržby</td>
<td>TPM dokumentácia, nástenka, tabuľky na strojoch</td>
<td></td>
</tr>
<tr>
<td>1.3 Zavenedenie vizualizácie</td>
<td>Nástenka, magnetické kartičky na strojoch</td>
<td>TPM dokumentácia, nástenky</td>
<td></td>
</tr>
<tr>
<td>1.4 Zavedenie preventívnej údržby</td>
<td>Vizualizácia, zniženie mechanických a elektrických porúch o 2 %</td>
<td>TPM dokumentácia, plán údržby</td>
<td></td>
</tr>
<tr>
<td>2.1 Evidencia príčin vzniku porúch</td>
<td>Existencia Číselníku porúch</td>
<td>Kniha údržby</td>
<td></td>
</tr>
<tr>
<td>2.2 Eliminácia mechanických a elektrických príčín porúch</td>
<td>Zniženie mechnických a elektrických porúch o 2 %</td>
<td>Kniha údržby</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aktivity</th>
<th>Prostriedky</th>
<th>Časový rámec aktivít</th>
<th>Riziká:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1 Analyzovanie súčasného stavu</td>
<td>Internál dokumentácia, informačný systém spoločnosti, stopky, PC</td>
<td>1.1.1 Júl 2015</td>
<td>Nedostatočná podpora managementu, neodpovedné postup pri zavádzaní metódy, nižšia alebo žiadna ochota spolupracovať v čase, odmietanie štandardov</td>
</tr>
<tr>
<td>1.1.2 Zostavenie TPM tímu</td>
<td>Vedenie spoločnosti</td>
<td>1.1.2 August 2015</td>
<td></td>
</tr>
<tr>
<td>1.1.3 Školenie TPM tímu</td>
<td>PC, projektor</td>
<td>1.1.3 August 2015</td>
<td></td>
</tr>
<tr>
<td>1.1.4 Vykonanie počiatočného čistenia a workshop</td>
<td>Čistiaci prostriedky, červené kartičky, fotoaparát, PC, projektor</td>
<td>1.1.4 September 2015</td>
<td></td>
</tr>
<tr>
<td>1.1.5 Eliminácia zdrojov kontaminácie</td>
<td>Control plan, technická dokumentácia, náradie</td>
<td>1.1.5 September 2015</td>
<td></td>
</tr>
<tr>
<td>1.1.6 Školenie operátorov výroby</td>
<td>Prezentácia</td>
<td>1.1.6 Október 2015</td>
<td></td>
</tr>
<tr>
<td>1.2.1 Rozdelenie zodpovednosti za čistotu strojov medzi ope-rátorov</td>
<td>zoznam pracovníkov a strojov</td>
<td>1.2.1 Október 2015</td>
<td></td>
</tr>
<tr>
<td>1.2.2 Rozdelenie zodpovednosti za údržbu strojov medzi technikov údržby</td>
<td>zoznam pracovníkov a strojov</td>
<td>1.2.2 Marec 2016</td>
<td></td>
</tr>
<tr>
<td>1.3.1 Zostavenie štandardov čistenia a mazania</td>
<td>fotky, PC</td>
<td>1.3.1 Október 2015</td>
<td></td>
</tr>
<tr>
<td>1.3.2 Vizualizácia zodpovednosti za čistotu strojov</td>
<td>nástenka, dokumenty, magnetické kartičky na stroje</td>
<td>1.3.2 Október 2015</td>
<td></td>
</tr>
<tr>
<td>1.3.3 Vizualizácia výstupov</td>
<td>nástenka, dokumenty, PC</td>
<td>1.3.3 November 2015</td>
<td></td>
</tr>
<tr>
<td>Aktivity</td>
<td>Prostriedky</td>
<td>Časový rámec aktivít</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------------</td>
<td>----------------------</td>
<td></td>
</tr>
<tr>
<td>1.3.4 Zostavenie štandardov autonómnej kontroly</td>
<td>fotky, PC</td>
<td>1.3.4 Január 2015</td>
<td></td>
</tr>
<tr>
<td>1.3.5 Zostavenie štandardov preventívnej údržby</td>
<td>fotky, PC</td>
<td>1.3.5 Marec 2016</td>
<td></td>
</tr>
<tr>
<td>1.4.1 Analýza príčin vzniku porúč</td>
<td>PC, Kniha údržby</td>
<td>1.4.1 November 2015</td>
<td></td>
</tr>
<tr>
<td>1.4.2 Vytvorenie číselníku porúč</td>
<td>PC, Kniha údržby, analýza príčin vzniku porúč</td>
<td>1.4.2 December 2015</td>
<td></td>
</tr>
<tr>
<td>1.4.3 Tvorba plánu preventívnej údržby</td>
<td>PC, kalendár</td>
<td>1.4.3 Január 2016</td>
<td></td>
</tr>
<tr>
<td>1.4.4 Zostavenie kontrolných hárkov preventívnej údržby</td>
<td>PC, znalosti technikov údržby</td>
<td>1.4.4 Február 2016</td>
<td></td>
</tr>
</tbody>
</table>

Predbežné podmienky

Podpora vedenia firmy, komunikácia so zamestnancomi, ochota k zmene