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General Notations 
 

, ,a b   Scalars 

a,b,θ  Vectors 
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( ), ( )A z B s  Polynomials 

 

Functions and Operators 
 

Variables 
 

a parameter vector of the local model 
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  width of the validity function 

θ

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Chapter 1 INTRODUCTION 

1.1 Background 

Technology development is constantly bringing more complex production facilities 

and thus raises the need of appropriate tool for engineers to help them understand and 

solve such systems. In everyday life, the strategy how to solve a complex problem is 

called divide & conquer. The problem is divided into simpler parts, which are solved 

independently and together yields the solution to the whole problem. The same strategy 

can be used for control of non-linear systems, where the non-linear plant is substituted 

by locally valid set of linear sub models. The model should satisfy two criteria: it must 

be simple enough so that it can be easy understood and complex enough in order to 

provide accurate predictions. The accurate model that characterizes important aspects 

of the system being controlled is a necessary prerequisite for design of a controller. 

Therefore, system identification has become a key issue in the control literature.  

To accurately model the nonlinear system, a wide variety of techniques has been 

developed such as nonlinear autoregressive moving average with exogenous inputs 

(NARMAX) models [1], Hammerstein models [2] or Multiple Layer Perceptron (MLP) 

neural network [3]. Even though, these methods offer improved accuracy over a single 

linear model, the black box representation of dynamics in these methods fails to exploit 

the theoretical results available in the conventional linear modelling and control 

domain. Moreover, the black-box representation of MLP networks lacks transparency. 

Besides MLP networks, Radial Basis Function (RBF) networks, which were initially 

introduced for multivariable interpolation, are other popular neural networks. They 

have been successfully applied in the fields of aerospace, robotics, power generation 

and chemical manufacturing.  

The Multiple Model approach that utilizes different models for different operating 

points offers both transparency and possibility to include the a priori knowledge about 

the system [4]. The Multiple models method appears in the literature under many 
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different names, including local model networks or operating regime decomposition. 

The idea of approximation based on multiple models (MM) is not new. The piece-wise 

linear approximations [6], which use the set of local models and switching, clearly fall 

into this category. Fuzzy identification approach [7] is probably the first example of the 

piecewise model with soft transitions. Due to the structure of the local model networks 

and the similarity to the neural networks, it is hard to decide whether local model 

networks belong to the category of fuzzy systems or neural networks. 

Local Model Networks are networks which are composed of locally accurate 

models, whose output is interpolated by smooth, locally active validity functions. This 

divide-and-conquer strategy is a general way of coping with complex systems. The 

architecture of LMN benefits from being able to incorporate the a priori knowledge 

about the system and conventional system identification methodology. The LMN 

structure also gives transparent and simple representation of the nonlinear system. 

Contrary to the black box representation of the nonlinear process by the neural 

networks, the conventional design methods can be utilized for nonlinear controller 

design. The idea of the LMN approach is to split the whole operating region into 

several sub-regions where in each sub-region the process has close to linear behaviour. 

For each region, a local linear model is developed to approximate the non-linear 

dynamics and associated with a validity function. This function can be viewed as a 

weighting function of the local models. The value of the validity function is high if the 

input vector lies inside the operating region and decreases with distance between the 

input vector and the centre of the region. The main feature of the validity function is to 

blend local models to give a nonlinear approximation of the system. During the 

learning algorithm, the local models, validity functions and the form of their blending 

have to be determined. 

There is no specific method to determine correctly the structure and parameters of 

the LMN, however, the following issues should be concerned: 

 The structure and number of the local models 

 The division of the operating range into regimes  

 Interpolation among the local models 

Variety of different methods and algorithms for structure optimization has been 

developed. The task of training can be divided into two parts: structure optimization 
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and local model parameters estimation. Structure optimization comprises the 

determination of the shapes of the operating regions, i.e. the number of the local 

models, their type and parameters of the validity functions. The Expectation 

Maximization [8] algorithm is usually used for the Gaussian process models although it 

requires the prior knowledge of complexity of the system or more precisely the number 

of local models. Xue and Li in [9] developed the Satisfying Fuzzy c-mean Clustering 

Algorithm which adds a new cluster centre if the modelling performance index, 

defined by Root Mean Squared Error, is not satisfied. Methods developed by Johansen 

and Foss, [5], Nelles,  [10] start with a single model and hierarchically partition 

operating space and iteratively increase the number of models and thus preventing 

from overfitting. McLoone et al. in [11] proposed an off-line hybrid training method 

for LMN which combines the full memory Broyden-Fletcher-Goldfarb-Shanno method 

(BFGS) for estimating nonlinear parameters and the linear LSM for linear weight 

estimation of local model parameters. Sharma, McLoone and Irwin in [12] describe 

identification of both the validity functions and local model parameters using the 

genetic learning approach. Other methods are also mentioned in the Structure 

Identification section of the thesis.  

As employed local models are usually linear, after the parameters of validity 

functions are determined the problem is reduced to a simple linear optimization 

problem, and thus can be solved by the standard least-squares or weighted least-

squared method. Two different learning methods can be implemented for parameter 

computation. Global learning is based on the assumption that all the parameters are 

estimated in a single regression, which is not always computationally feasible for 

problems with a large number of data. An alternative to global learning, which 

estimates the parameters of each local model independently is local modelling. Due to 

local modelling, local models can be interpreted independently and can be seen as local 

approximations of the nonlinear system. The comparison of both methods can be found 

in [13]. To achieve good trade-off in terms of global fitting and local linearization 

weighted performance index can be defined as in [9]. 

Once the LM network has been formulated, the local controller network can be 

defined in turn. Since the neural network can accurately model the nonlinear dynamics, 

the local model network can be implemented in the control structures that demand the 
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predictions of future outputs, such as predictive control [14] or internal model control 

[15], [16]. Two different multiple model controller design methods can be employed to 

maintain the performance. In one case, a controller is designed for each local model 

and the control action is then weighted according to the value of validity functions 

[17]. Dougherty and Cooper developed a multiple model control strategy for dynamic 

matrix control (DMC), where outputs of multiple linear DMC controllers are weighted 

to obtain an adaptive DMC controller [18]. Li et al. in [19] proposed a Multiple Model 

Predictive Control (MMPC) which uses different predictive controllers for different 

fuzzy rules of the Takagi-Sugeno model of the process. The use of local model 

networks is not limited only to predictive control. Brown and Irwin in [20] used local 

GMV controllers to form a nonlinear controller network. The major advantage of this 

approach is that each controller can be designed using different technique known from 

linear theory, i.e. pole placement, GMV, LQ etc. For the other case, a single controller 

is used. The process models were scheduled using the process variable measurement 

and the resulted model is used to design a controller [21]. Abonyi et al, in [22] 

proposed a model-based predictive controller that is based on a local linear 

approximation of the fuzzy-based process model around the current operating point. 

Dharaskar and Gupta in [23] use the interpolated step responses that are easy to obtain 

to handle the nonlinearity of the chemical processes. Townsend et al. in [21] developed 

a control structure, where the process model was substituted by the local model 

network. This LMN contained a set of ARX models and had been trained by hybrid 

training algorithm. Narendra and Xiang in [24]  designed multiple model controllers 

using both fixed and adaptive models. Criterion based on the prediction errors of 

models is used for switching between the controllers.  

The Multiple Model control does not have to imply blending or interpolation. The 

use of local linear models without interpolation has been suggested by several authors. 

The simplest form of scheduling is hard switching between controllers or control 

parameters. The switching algorithm (controller selection) is usually based on the 

modelling error where model with the lowest modelling error initializes corresponding 

controller. The idea has been used in [25] to develop the Multiple Switched Model 

(MSM) control scheme. This control scheme is capable of handling plants with rapid 

change of parameters. The modelling error is used as a criterion for controller selection 
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which can be justified by the fact that a controller is highly dependent on a plant 

model. The stability and robustness description can be found in [24]. The switching 

between the controllers is based on “hard” transitions between the models or 

controllers. The local controllers can be also associated with processing element of a 

self-organizing map (SOM) which is trained using the input-output data [26]. Banerjee 

et al. merged multiple models into a global one by probability integration, and used 

probability as a scheduling variable to select proper controller [27]. 

1.2 Aims of thesis 

The LMNs provide models with high accuracy and transparency. The model can be 

easily interpreted in the terms of physical system. Moreover, a priori information can 

be included during the structure development and parameter estimation. One of the 

aims of this work is development and investigation of various techniques for 

optimization of the local model network parameters, i.e. parameters of local models 

and validity function. Experimental identification from input/output data should utilize 

affine local ARX models. Since the main application for nonlinear dynamics model is 

dynamic optimization and predictive control, the other aim is to investigate various 

control algorithms that employ the local model network as a nonlinear model for 

control output computation. In order to examine the practical applicability of the local 

model network the modelling and control algorithms are tested in several simulation 

studies and laboratory experiments. 

1.3 Overview of thesis 

The thesis is organized as follows. In Chapter 1 the background concerning the 

multiple model control and identification is given. Chapter 2 gives introductory details 

of local model networks structure and shows how it can be viewed as a general case of 

the Radial Basis Function (RBF) neural network. Different forms of operating regions 

and validity functions are presented.  
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 In Chapter 3 the training approaches for local model networks are summarized. 

This chapter also deals with the structure identification of nonlinear systems from 

input/output data. Main differences between local and global training techniques are 

pointed out. The algorithm of Johansen and Foss as a typical example of heuristic 

strategy with growing number of models is described. Structure identification using 

evolutionary algorithm that offers easy incorporation of constraints in relation to 

transparency and interpretability is mentioned. Parameter optimization method that 

implements Quadratic Programming (QP) to include the constraints on model 

parameters is presented. Chapter 4 deals with the model based control algorithms 

based on local model description of the nonlinear system. The first scheme used in this 

thesis is a predictive control scheme, which uses a local model network to predict the 

future trajectory of the controlled variable. The LMN also provides the parameters of 

the plant on the future trajectory. The second scheme is the Internal Model Control 

scheme that uses the LMN as the model of a process and linearization of LMN for 

analytical inversion of the model. 

In Chapter 5 experimental results including simulation studies on pH neutralization 

plant and experiments on laboratory plants are presented.  

Chapter 6 finishes the thesis with some general conclusions and suggestions for 

future work in this rapidly expanding field.  
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Chapter 2 LOCAL MODEL 

NETWORKS 

This chapter begins with the description of the Radial Basis Function neural 

networks and shows the connection with the Local Model Network structure. The 

chapter continues with an overview of the basic structure of local model network 

where specifications of validity functions and local models are given. The similarity 

between LMNs and Takagi-Sugeno fuzzy models is explained. The problems 

connected with normalization of the validity functions and purely local linear models 

are also mentioned.  

2.1 Introduction 

There exists mismatch between the available theoretical tool and most of the 

problems encountered in practice. While plenty of theoretical analysis and methods 

have been developed for linear systems, the practitioners are confronted with systems 

with apparent nonlinearities of the real world. An appealing approach to bridge the 

existing gap is to decompose a complex nonlinear control problem in a number of 

simpler linear problems, each associated with restricted operating region. Local Model 

Network employs this divide-and–conquer strategy of dividing a complex problem into 

several simple sub-problems, whose individual solution yields the solution to the 

complex problem. Local model network [4] belongs to the class of multiple model 

approaches with interpolation, wherein a small number of relatively simple models is 

blended together. Typically, each local linear or affine model is associated with a 

corresponding weighting function that defines the validity of the model. The role of 

blending is to provide smooth interpolation between the outputs of local models. The 

LMN framework provides transparency and enables incorporation of a priori 
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knowledge, which is important for practical applications. The resulting nonlinear 

representation is either discrete or continuous-time depending on the form of the local 

models. Although much more attention to date has been given to the discrete-time 

models, several works concerning the continuous-time case can be found in  [29][30]. 

2.2 Radial Basis Network 

RBF networks were introduced into the neural network literature by Broomhead 

and Lowe in [31] and Poggio and Girosi in [32]. It was soon discovered that this new 

architecture had a number of important advantages over the Multilayer Perceptron 

(MLP), in terms of training and locality of approximation. Hence, interest in the 

network grew rapidly and it became widely used as an alternative to MLPs for many 

modelling and control problems. 

The RBF network is a three-layer feed-forward network that uses a linear transfer 

function for the output units and a nonlinear transfer function (normally the Gaussian) 

for the hidden units. 

Many different types of nonlinearity have been proposed as basis functions. Those 

with a strong theoretical backing include the Gaussian, thin-plate spline, multiquadratic 

and inverse multiquadratic functions. Radial functions are special types of functions. 

Their characteristic feature is that their response decreases or increases monotonically 

with distance from the central point. The centre, the distance scale, and the precise 

shape of the radial functions are parameters of the model. A typical radial function is 

the Gaussian function, which in case of a scalar input is given,  

 
2

2
( ) exp

2
i

i

x c
x



  
  

 
 

 (2.1) 

where the parameters of the Gaussian function are its centre ic and width i . The 

Gaussian function responds only to a small region of the input space where the 

Gaussian function is centred. The key to successful implementation of these networks 

is to find suitable centre for the Gaussian functions. 
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Figure 1 RBF network 

 

Figure 1 illustrates an RBF network with 3 inputs, 2 neurons and 1 output. The 

RBF network consists of one hidden layer of basis functions, or neurons. At the input 

of each neuron, the distance between the neuron centre and the input vector is 

calculated. The output of the neuron is then formed by applying the basis function to 

this distance. The RBF network output is formed by a weighted sum of the neuron 

outputs and the unity bias shown. 

RBF networks can be used to solve a common set of problems such as 

 Function approximation 

 Classification 

 Modelling of dynamic systems and time series 
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2.3 RBF-ARX Model 

In model based control strategies for nonlinear systems, RBF networks provide a 

framework for modelling the system to be controlled. However, in many real 

applications many RBF centres are needed for required precision which leads to the 

problems in parameter estimation. State-dependent AutoRegresive model with 

eXogenous variable (ARX) can be often used for modelling complex nonlinear 

systems. Connection of ARX models with the RBF network has the advantages of both 

the state-dependent ARX models for description of dynamics of the system and the 

RBF networks in function approximation. In general RBF-ARX network uses far fewer 

RBF centres when compared with a standard RBF network model.   

The nonlinear system can be described by the following nonlinear ARX model 

 
( ) ( ( 1)) ( )

( 1) [ ( 1),.... ( ), ( 1),... ( )]a b

y k f k e k

k y k y k n u k u k n

  
     

φ

φ
 (2.2) 

where ( )y k is the output, ( )u k is the input, e(k) is the white noise and ( 1)k φ  is a 

regression vector.  Various kinds of function can be used to approximate the nonlinear 

function (.)f . A general version is the state-dependent ARX model.  

 0 , ,
1 1

( ) ( ( 1)) ( ( 1)) ( ) ( ( 1)) ( ) ( )
a bn n

y i u i
i i

y k k k y k i k u k i e k  
 

         φ φ φ  (2.3) 

where 0 , ,, ,y i u i   are the coefficients which depend on the vector ( 1)k φ . Here, 

( 1)k φ is regarded as vector of past input and output values at the step k, but in many 

cases ( 1)k φ  can be only output signal, input signal or any other measured signal. 

The basic idea of the state-dependent ARX model is to provide the local linearization 

of the general NARX model. The RBF network can be used to approximate the state-

dependent coefficient because it can approximate any function. The model derived is 

called the RBF-ARX model and can be defined by 
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where ( 1.. , , )i
kZ k m i y u  are the centres of RBF networks; ( 1.. , , )i

k k m i y u   are 

the scaling factors; 0 , ,, ,u i y i   are the state-dependent coefficients; 

0
, ,( 0,1,.. ), ( 1,2,... ; 0,1,.. ), ( 1,2,... ; 0,1,.. )y u

k i k y i k uc k m c i n k m c i n k m     are the scalar 

constants and 
2

denotes the vector 2-norm. In general case, the RBF network may 

have a different centre for different regressive variables. However, in some 

applications the RBF networks can share the same centres because of the 

autoregressive structure of the ARX model. The locally linearized model can be easily 

obtained by fixing the state vector ( 1)k φ . This property is very useful because it 

allows using linear model-based control method to design a controller, which cannot be 

done when using RBF network. In some applications of RBF networks, a large number 

of centres is necessary to obtain a good representation of the nonlinear system, which 

results in overfitting. However, the RBF-ARX model transfers the complexity into 

ARX part, so far fewer centres is necessary to obtain similar modelling properties.  

2.4 Local Model Networks 

Local Model networks (LMN), first introduced by Johansen and Foss [5], describe a 

set of sub-models, each valid for a specific regime in the operating space, weighted by 

some activation function. LMN is generalization of the radial basis function network 

(RBF), in which individual neurons are replaced by local submodels with basis 

functions defining the regions of validity of individual submodels, according to the 

expected operating regions of the plant [4].  



    
 

 23 
  

 

 

Figure 2 Local Model Network scheme 

 

Here, the same input, ( )k , is fed to all the models and the outputs are weighted 

according to some scheduling variable or variables, . The underlying local models 

can be either linear or nonlinear. The LM network output is given by: 

 
1

( ) ( ( )) ( )
M

i i
i

y k k y k


 ψ
 

 (2.5) 

where   is a vector of scheduling variables, ( ( ))i k ψ   is a validity function and 

( )iy k


 is the output of the i-th model. The network form of Equation 2.6 is shown in 

Figure 2.  
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Figure 3 The nonlinear input/output approximation (c) is obtained by combining three 

linear models (a) with validity functions (b) 

The modelling performance of the LMN is depicted in Figure 3, where three local 

models are combined with three two-dimensional validity functions to produce 

nonlinear approximation. The assumption for the local modelling approach is that the 

modelled plant has to undergo significant changes in operating conditions as it moves 

in the operating space. Introducing the simpler models can reduce the complexity of 

the nonlinear system. For example, local state-space and ARMAX models can be 

formed using localised perturbation signals and then blended to produce global 

nonlinear state-space and NARMAX (nonlinear ARMAX) representations. 
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2.5 Validity functions 

The blending of local models is calculated using the weighting or validity functions. 

Although any function with locally limited activation might be applied as a validity 

function, a common choice for this function takes the form of Gaussian. Other popular 

validity functions as B-splines or multiquadratic functions have been proposed. 

Gaussian basis functions are the most common choices for weighting the outputs of 

local models. The Gauss function for j-th model is given by  

     21
( ) exp

2

T

j j j jc c         
 

  (2.6) 

where parameters 2,j jc  , define the Gaussian centre and width, respectively and the 

scheduling variable can be a system state or any system variable. The centre point 

defines where the model is most active. The number of centres and widths depends on 

the number of scheduling variable. For one scheduling variable the weighting function 

is a typical bell-shaped curve. 

 

Figure 4 Effect of varying width, 2  , for 2-dimensional Gaussian validity function 

 

Normalisation of the basis function is often motivated by the desire to achieve a 

partition of unity. By partition of unity it is meant that at any point in the input space 

sum of all normalised basis functions equals unity. i.e.
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( ) 1
M

j
j




 ψ  (2.7) 

Validity function represents the partition of the input space in the local model network 

structure. The normalised form of the validity function is denoted by ( )j ψ , for the 

basis functions associated with local model j  

 1

( )
( )

( )

j
j M

j
j

 
 

 









 (2.8) 

However, normalization also leads to a number of other important side-effects that 

have consequences for the resulting network [33].  

2.6 Side-effects of the normalization of validity functions 

The normalized validity functions are often homogenous validity functions with 

different parameters. Once normalized, the shape of the validity function usually 

differs from the un-normalized basis function. The shape of the validity function is not 

only influenced by its width but also by the proximity of other validity functions. It can 

be seen from Equation 2.9 that each validity function is a function of all the original 

validity functions. Therefore, a change in the parameters of one validity function 

influences all other normalized validity functions. Other problem connected with the 

normalization of validity function is reactivation and shift in maxima. If centres are not 

uniformly distributed or the validity functions differ in widths, the maximum of the 

basis function may no longer be at its centre. Furthermore, the validity function can 

become multi-modal, i.e. it increases as the distance from the original centre increases, 

instead of continuously decreasing.  
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Figure 5 Reactivation of the validity functions for scalar scheduling variable x 

In general, assuming monotonically decreasing basis functions, the reactivation 

point is the point at which the distance metric for the first basis function, d1, is no 

longer smaller than that of the nearest basis function, d2. For the i-th Gaussian function, 

the distance metric is given by: 

 
2

i i
i

c
d



   

 
 

(2.9)
 

For two neighbouring Gaussian validity functions, the condition for reactivation can be 

stated as: 

 12

1 2

c

c


 




  (2.10)
 

This condition can be regarded as constraint for choosing the centres and widths of 

the validity functions. Alternatively, to ensure that there will be no reactivation, 

uniformly wide basis should be used.  

B-splines are an alternative choice for the validity functions. The advantage of B-

splines over the Gauss functions is their inherent normalization. Therefore, there are no 

side-effects associated with the normalization. Unfortunately, B-splines are subject to 

curse of dimensionality, limiting their usefulness for low dimensional problems. 
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2.7 Local Models 

The dynamics of an individual model is of particular interest as it provides basis for 

the design of local controllers. One of the advantages with local modelling is that the 

structure of the local models does not need to be very complex. Usually simple linear 

models are sufficient. However, the local models f in Equation (2.2) can be of any 

form; they can be linear or nonlinear; have state-space or input-output description, or 

be discrete or continuous-time. The models can be even of different character, i.e. 

parametric models for operation conditions where description is available a priori and 

neural network where there is lack of physical description.  However, this 

heterogenous LM network would require different optimization techniques and 

therefore the same type of local models throughout the LMN structure is used.  

There is an obvious trade-off between the number of operating regimes and 

complexity of the local model. If there were only one model for the entire operating 

space, it would be very complex and it would be the global model. On the other hand, 

if the operating space were decomposed into numerous small operating regions, the 

complexity of the local models would be much smaller. If the local model were 

described only by a constant, LMN structure would be identical to RBF network. The 

discrete-time nonlinear system is considered to have the general form  

( ) ( ( 1),.. ( ), ( 1).... ( ), ( 1).... ( )) ( )y u ey k f y k y k n u k d u k d n e k d e k d n e k           
    

(2.11) 

Here, ( )y k is the system output, ( )u k is the input, ( )e k is a zero-mean disturbance 

term and d represents the time-delay. This type of model is known as the NARMAX 

(Nonlinear ARMAX) model and has been studied widely in nonlinear system 

identification. If we define the data vector as 

 ( 1) [ ( 1),...., ( ), ( 1),... ( ), ( 1),..., ( )]T
a b ck y k y k n u k u k n e k e k n         φ  (2.12) 

then the system can be rewritten as 

 
( ) ( 1) ( )Ty k k e k  θ φ  (2.13) 

where the T denotes the transpose operator and θ is a vector of parameters defined as 
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 1 1 1,..., , ,..., , ,...,
a b c

T

n n na a b b c c   θ  (2.14) 

The aim in empirical modelling is to find a parameterized structure which emulates 

the nonlinear function f. 

Using the Equations (2.13) and (2.14) the linear system can be written in the form  

 
1 1

1 1

( ) ( )
( ) ( ) ( )

( ) ( )

B z C z
y k u k e k

A z A z

 

    (2.15) 

Here, the 1z is a unit delay operator and the polynomial A, B, C are  

 

1 1
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1 1
1

1 1
1
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  

  

   

   

   

 (2.16) 

An obvious benefit of using local linear models is that their parameters can be 

identified using standard optimization techniques, once the weighting functions have 

been defined. Rather than globally learning the local model parameters, it is sometimes 

better to train each local model individually using locally-weighted, least-squares 

regression and employing only the training data local to the model. 

2.8 Affine modelling 

Mathematically, off-equilibrium linearization leads to local affine models, which 

have an extra degree of freedom. i.e., the bias term to make the models more flexible, 

so they can be shifted upwards and downwards in the operating space. The bias term 

can significantly improve the modelling accuracy of the LLM. However, due to the 

bias term the affine models do not possess the superposition property fundamental to 

the linear systems. Thus, there is a lack of continuity with established linear theory. 

The inhomogeneous term can become large and significantly influnce the solution, 

while the change of parameters A and B only have minor influence on the local model 

accuracy. Therefore, the bias cannot be simply regarded as a small approximation error 

or disturbance. With local linear models , one can achieve accurate approximation of 

either the linearized dynamics or the trend, but not both simultaneously. With the 
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affine model structure there are no such limitations [34]. Since strictly linear models 

have a common point in the origin (Figure 6), local affine models clearly result in an 

accurate approximation with a valid interpretation as a local linearization.  
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Figure 6 Strictly linear and affine ARX models 

2.9 Fuzzy-based local modelling 

The use of weighting functions for partitioning the system’s operating space into 

several operating regimes is not restricted to local model networks. A similar approach 

can be found in literature in the guise of the Takagi-Sugeno (TS) fuzzy models. In fact, 

for specific conditions, the LM network and TS fuzzy have equivalent functional 

behaviour. The LMN network is functionally equivalent to the TS fuzzy model if the 

following conditions are satisfied: 

1. The number of local models in the LM network is equal to the number of  

if-then rules.  

2. The membership basis functions within each rule are chosen as Gaussian 

functions.  

3. The operator chosen to compute each rule's firing strength is the product. 

4. Both the LM network and the TS model use the same method to derive 

the overall outputs, i.e. either normalised or un-normalised weights. 
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2.10 Concluding remarks 

The main features of the local model network have been described in this chapter. It 

has been shown that LMN can be viewed as generalization of the Radial Basis 

Function network where output constants at each neuron are replaced by a local model. 

In the research literature the local models are often linear and the validity functions 

take form of Gaussian basis function. To provide partition of unity the validity function 

are normalized which can cause side-effects such as shift in maxima or loss of local 

support. These side effects degrade the transparency and interpretability of the 

network. These side-effects can be avoided by using B-splines, however due to the 

curse of dimensionality; they are limited to the low dimensional problems. The link 

between the LM network and the fuzzy-based Takagi-Sugeno model has been also 

shortly outlined in this chapter. Under certain conditions, the two global models are 

functionally equivalent. Thus, research analysis for both nonlinear representations is 

interchangeable. The advantage of the LMNs is that it does not suffer from the 

“stability-plasticity dilemma” which is a common design problem with adaptive 

control where the algorithm is adapting to the new operating region, it is also forgetting 

the previous regions.  
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Chapter 3 NONLINEAR 

SYSTEM MODELLING USING 

LOCAL MODEL NETWORKS 

Modelling nonlinear dynamic systems from the observed data and prior knowledge 

is an important area of science and engineering. Training is a key issue in the 

application of the Local Model Networks because there is the added complexity of 

having to determine the number and the structure of sub-models as well as the 

parameters of the validity functions in addition to parameter identification,. There are 

several methods for modelling a nonlinear system and the choice of a particular 

modelling method depends on the aim of modelling. If the aim of modelling is control 

design then the identification technique should lead to simple, transparent and 

mathematically tractable models. In many applications it is necessary to combine the 

information obtained from the numerical data with heuristic knowledge. Another major 

requirement for nonlinear system modelling algorithm is the universality in the sense 

that a wide class of structurally different systems can be described. The described 

architecture of local model networks is capable of fulfilling these requirements and can 

be applied to tasks where high degree of flexibility is required. Construction of models 

of such structure involves a linear estimation of the regression models and nonlinear 

optimization of the parameters of the validity functions. A general approach to 

parameter estimation is to minimize some criterion that measures the difference 

between the output of the model and the observation data. This is called global 

learning. If the parameters of each model are identified separately using the weighted 

subset of data the approach is called local modelling.  
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3.1 Divide and Conquer Strategy 

Divide and Conquer approaches have drawn attention in recent years in the area of 

controlling nonlinear plants over a wide range of the operating conditions. These 

approaches decompose the complex nonlinear problem in a number of simpler 

problems, each associated with restricted operating region. This results in transparent 

representation of the control system with the opportunity to use the conventional linear 

control design techniques. The Divide-and-Conquer strategies can be divided into two 

groups: analytical approaches and the learning approaches. While the first one requires 

the analytical form of description of the system to be controlled, the latter is based on 

the input-output observations data.  

Analytical approaches 

- Linearization 

- Gain scheduling 

- Feedback linearization  

Learning approaches  

- Modular architecture 

- Local learning 

When no analytical model is available but the assumption of linearity is reasonable, 

linear system identification methods are used to estimate the system’s parameters. 

Linear techniques have been also employed for the nonlinear systems using the 

adaptive algorithms. Here the on-line identification algorithm provides the linear 

approximation of the nonlinear system in order to track variations in the dynamics. The 

idea of learning techniques is to approximate the unknown relation between state of the 

system and control actions by using nonlinear optimization techniques. The divide-

and-conquer idea has taken two different forms: the global learning and the local 

learning. Although the global learning uses a combination of local models, their 

identification is still performed on the basis of the whole dataset. Although the 

simplification can be made by using the local linear models, the problem is still 

nonlinear and requires the same procedures used for generic global models.  
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Figure 7 The operating range of complex systems is decomposed 

into a number of operating regimes (the axis represent  two scheduling variables) 

3.2 The modelling process 

The divide-and-conquer strategy helps to improve the techniques for the design of 

models of nonlinear systems with the aid of computationally data-driven techniques. 

The modelling process involves integrating the knowledge about the system with the 

experimental data.  The typical sources of information of the system could be: 

 Experimental data, such as responses to perturbations  

 A possibly incomplete nonlinear model that may be too simple or too 

complicated 

 Qualitative knowledge, i.e. behaviours or engineer’s heuristics 
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The model can only represent certain aspects of the system, so it is necessary to know 

the purpose of the model in order to decide which aspects should model capture. 

 

 Figure 8 Engineering approach to model development 

The abstract modelling cycle (Figure 8), which covers a number of further tasks 

that are essential in modelling: 

 Experiment design and data acquisition 

 Raw data processing and analysis 

 Analysis of a priori knowledge. Physical laws and available models 

 Structure and parameter optimization 

 Model reduction and simplification  

 Model validation, analysis and interpretation 
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The experimental data is used for the parameter and structure identification so it is 

necessary that the data covers the important aspects of the system. The input signal 

should exhibit enough amplitude and appropriate frequency range in order to excite all 

interesting modes of the plant, however these requirements are often in disagreement 

with the industrial practice. Once the experiments are designed, the actual input and 

output sequences have to be collected. In many processes it is important to have 

accurate models in stable areas than less accurate models throughout the whole 

operating range, as the system usually spends most of the time in the stable area. It is 

also necessary to have appropriate amount of identification data in the regions where 

the system is most complex or the control is most critical. Lack of data from a certain 

operating region can explain why the related local model parameters are not accurately 

identified. As it can be seen, the choice of appropriate data for structure and parameter 

identification is a crucial part of the modelling and requires more consideration then 

subsequent machine learning [34].  

 

3.3 Structural identification 

Although a priori knowledge is important to define the model structure, in some 

cases the system complexity is not well understood for the model structure to be 

specified in advance. So it is often necessary to adapt the structure based on the 

information in the training data.  Optimization of the model structure M is, however, a 

difficult non-convex optimization problem. The goal of the structure identification 

procedure is to relate the density and the size of operating regimes to the complexity of 

the system. The desirable features of the identification algorithm: 

 Convergence – as the number of training points increases the algorithm should 

provide more accurate model of the system being modelled 

 Parsimony – the model structure should be the simplest possible to achieve the 

required accuracy 

 Robustness – the model structure produced should be robust to the noisy data 
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 Interpretability – the model structure should be as interpretable as possible 

given the local models, their validity functions and available data 

 

The techniques for the optimization of positions and dimensions of the local regions 

fall into several classes: 

 Fixed Selection 

In this approach the centres are selected randomly from the input data or 

distributed uniformly [36]. The widths of operating regions are calculated to 

some thumb rules based on a priori information.  If the complexity of the 

problem is unknown a large number model is necessary for fine approximation 

of the nonlinear system. This is a rather bad clustering solution because even a 

small region can be highly nonlinear.  

 Self-organizing and clustering  

In this approach the centres of the operating regimes are trained in an 

unsupervised learning fashion. Abonyi et al, in [38] and [39] used Expectation 

Maximization algorithm (EM) to identify simultaneously and directly the 

operating regimes and the parameters of the local models.   The disadvantage 

of these algorithms is that the local models are clustered according to the 

density of the data, not according to the complexity of the problem.  

 Non-optimal construction algorithms with heuristic growing strategies 

These techniques start with a simple structure, e.g. a global linear model, 

and divide the input space into smaller areas. Examples are local linear model 

tree (LOLIMOT) [10], Johansen and Foss algorithm [5], algorithm of Aarhus 

[40] that is trying to find a split point in which to carry out the decomposition 

of the input space to reduce the prediction error. Kavli in [41] developed an 

ASMOD algorithm that uses B-Splines to represent general nonlinear and 

coupled dependencies in multivariable observation data. Jakubek and Kreuth 

[42] created an iterative construction algorithm that tries to fit the local models 

to the available data using statistical criteria along with regularization. 
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 Splitting and merging 

These algorithms try to adjust the network complexity according to the 

complexity of the problem. The algorithm splits an operating region into two, 

if the behaviour of the model is not satisfactory and two neighboring models 

are merged together if they have nearly identical parameters to limit the 

complexity of network.  

 Fine-to-course learning  

These techniques start with a large number of local models and during training 

the local model are merged together to get a simple structure [43]. 

 

While the comparison between the algorithms of Johansen and Foss and Nelles can 

be found in [44], the work by McGinnity and Irwin [45] compares the hybrid 

optimization algorithm by McLoone and Johansen and Foss algorithm. 

All the structure identification algorithms are computationally expensive. This 

problem becomes crucial if a number of models or input dimension of the network 

becomes large. Therefore, it is always advantageous to consider the maximum possible 

a priori information about the system.  

3.4 Heuristic strategies for structure identification 

The following part addresses the problem of identifying a model of an unknown 

non-linear system on the basis of a sequence of N input/output pairs 

  ( (1), (1)),........, ( ( ), ( ))N u y u N y ND  (3.1) 

where ( ), ( )y k u k are the system outputs and input respectively. A global model can be 

formed  

 
1

( ) ( , ) ( )
M

i
i

y f 


ψ θ φ ψ


 (3.2) 

where ψ is the vector of scheduling variables. The addressed problem is estimation of 

this function, since the function immediately gives the model equations. The model 

structure based on modular description of N regimes can be written  
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  , ,N i i iM Z f


 (3.3) 

where regime Zi represents subspace of the whole operating space. The modelling 

problem consists of the following sub-problems: 

1. Choose the variables which to characterize the operating regimes with 

2. Decompose Operating space Z into regimes and choose local model structure 

3. Identify the local model parameters for all the models 

An appropriate order for the identified model may be determined by the Akaike 

information criterion (AIC) [46]. The procedure is to repeat the identification process 

for different orders and choose the final model by looking for a small AIC value, 

together with appropriate model dynamics.  

The AIC is defined as 

 log 1 2
d

AIC J
N

       
 (3.4) 

where d is a total number of estimated parameters, N is the length of the data record 

and J is the loss function for the structure in question.  

 

3.4.1 Johansen and Foss Algorithm 

 

For modelling the nonlinear process the J&F algorithm [5], which incorporates an 

outer loop for structure optimization and inner loop for parameter identification, can be 

used. The scheduling variables have to be known beforehand. The J&F algorithm starts 

with only one model and the weighting function is unity over the whole operating d-

dimensional space Z, where d is the number of scheduling variables. Using the least-

squares method, the parameters estimation of the only model can be performed. The 

algorithm then divides the operating space into two parts (Figure 9). Since an infinite 

number of divisions is possible it is necessary to reduce the number of divisions being 

investigated. This is done by only allowing the regime to be divided in a direction 

parallel to an axis of the box Z1 which defines an operating regime, and at a finite 

number of points along each axis.  
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Figure 9 Operating regime decomposition 

 

Thus for a d-dimensional box with s splitting points, a total of ds new 

decompositions are formed. New parameters of weighting functions are determined by 

the limits of each working regime  

 
max min

max min

0.5( )

0.5 ( )

j j j

j j j

c z z

z z 

 

 
 

(3.5)
 

where parameter  influences the overlapping of Gauss function and max
jz , min

jz  are 

limits of the j-th regime. For small values of   the functions will not overlap and for 

large values the transition from one region to another will be smooth. Once the 

weighting functions parameters are obtained, the parameters of the local models can be 

estimated by least-squares method (Chapter 3.7) or weighted least-squares method 

(Chapter 3.8). 

For each split the value of cost function is calculated and the parameters of local 

models are determined. After considering all possible splits, the one with the lowest 

cost function is then chosen and the procedure is repeated. This process continues until 

either a maximum number, M, of regimes is found or until some pre-specified 
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modelling cost criterion is satisfied. The construction algorithms can also effectively 

determine which variables are required to suitably decompose the operating space. If 

no splits are formed over a particular axis, then the variable associated with that axis 

can be ignored. 

3.4.2 LOLIMOT algorithm 

 

This method splits up the identification procedure into two parts. In the outer loop, 

the structure of the local model network is optimized by a tree construction algorithm. 

In a inner loop the parameters of the local models are estimated by local modelling 

technique. The construction algorithm partitions the input space by orthonormal cuts 

dividing the worst performance local model along the input axis, which yields the 

highest improvement [10]. Consequently, the nonlinear model complexity 

automatically adapts to the complexity of the process.  

At first sight, both algorithms appear to be very similar. However, there is an 

obvious trade-off between computation complexity and model optimality. While the 

J&F technique tries to achieve an optimal model at the expense of intensive 

computation, LOLIMOT minimizes the computational effort involved at the risk of 

producing a sub-optimal model. In general, the J&F algorithm produces a more 

accurate representation than LOLIMOT but with a considerable increase in 

computational effort required. Comparison on the computational costs and modelling 

performances of both techniques can be found in [44]. 

 

3.5 Structure optimization via the SOMA algorithm 

 

Self-Organizing Migration algorithm (SOMA) [48] is a genetic algorithm that is 

based on the competitive-cooperative behaviour of intelligent creatures solving a 

common problem. Such behaviour of intelligent creatures can be observed anywhere in 

the real world. A group of wolves or other predators may be a good example. If they 
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are looking for food, they usually cooperate and compete so that if one member of the 

group is more successful than the previous best one (e.g. has found more food) then all 

members change their trajectories towards the new most successful member. The 

procedure is repeated until all members meet at one food source. In SOMA, wolves are 

replaced by individuals. They ‘live’ in the optimized model’s hyperspace, looking for 

the best solution. This kind of behaviour of intelligent individuals allows SOMA to 

realize very successful searches.  

Because SOMA uses the philosophy of competition and cooperation, the variants of 

SOMA are called strategies. They differ in the way the individuals affect all others. 

The basic strategy is called 'AllToOne'. Before starting the algorithm, the SOMA 

parameters such as population size or number and migrations has to be defined. The 

user must also create the specimen and the cost function that will be optimized. Cost 

function is a wrapper for the real model and must return a scalar value, which is used 

as gauge of the position fitness.  

SOMA, as well as the other evolutionary algorithms, works on a population of 

individuals. Each individual represents an actual solution of the given problem. In fact, 

it is a set of parameters for the cost function, whose optimal setting is being searched. 

The cost function response (cost value) to the input parameters is associated with each 

individual. The cost value represents the fitness of the evaluated individual. It does not 

take part in the evolutionary process itself; it only guides the search process. 

For LMN optimization with local ARX models an individual that represents 

possible solution of the optimization problem have the following structure: 

 

Figure 10 Individual representing possible solution of the optimization problem 

 

Usage of all the model parameters for optimization leads to the same problems as in 

the global learning technique since each local model influences all the other models. 

Possible solution is combination of SOMA optimization algorithm for optimization of 
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the validity function parameters combined with the least-squared method for local 

model parameters estimation.  

In the SOMA optimization process it is easy to penalize the LMNs with unstable 

local models or with the reactivation of the validity function by simply adding a 

constant to the value of modelling criterion to prevent these LMNs to create possible 

global optimum of the optimization problem.  

3.6 Parameter Estimation in Local Model Network 

Structure 

The problem of parameter estimation for systems which are linear in parameters is 

reasonably well understood, with variety of efficient optimization techniques to 

optimize the parameters θ of the local models. Parameter optimization for a given 

model structure finds the optimal costs  

  

 *( , ) min ( , , )J JM D θ M D  (3.1) 

where M is a given structure of the network 1( , , ... )
MnM MM c σ (i.e. centers 

and widths of the validity functions and local models structure) and D is the 

training data set ( ( 1), ( ), 1.. )k y k k N  D . 

3.7 Global learning 

If we assume models linear in parameters and fixed parameters of validity function, 

the learning problem is the application of the least-squares method to obtain the 

parameters θ


. Using the matrix form we obtain the following regression model  

 T y θ Φ ε  (3.2) 

where the matrix Φ  contains the rows defined by the term 
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  1( ( )) ( ),....., ( ( )) ( )k Mk k k k Φ ψ φ ψ φ  (3.3) 

where ( )kφ is a regression data vector. In Equation (3.3) the values of the validity 

functions are fixed either for one individual of the SOMA algorithm or one possible 

division point of the Johansen and Foss algorithm.  

Matrix Φ , regression vector ( )kφ , output data vector y , error vector ε and 

parameters vector θ


are defined as follows: 
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 (3.4) 

Criterion for the least squares estimation is given by  

 
1

( )
TT TJ

N
        θ y θ Φ y θ Φ

  
 (3.5) 

where N stands for the size of measured data and parameter estimates can be obtained 

using the equation  

 1( )T T  θ Φ y Φ Φ Φ y


 (3.6) 

where Moore-Penroseho pseudoinverse +Φ  [35], can be calculated using the singular 

decomposition. Using the singular decomposition the matrix Φ  can be divided into 

terms so that:  

 

T

T


+ +

Φ USV

Φ = VS U  (3.7) 

The numerical algorithm for the calculation of the pseudoinverse is called Singular 

Value Decomposition SVD. Once the singular values have been zeroed, the parameters 

of the local models can be computed. 

  T +θ VS U y


 (3.8) 
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3.8 Local Learning 

Global learning is based on the assumption that parameters of all the local models 

are estimated in one step. In general, the global learning is more accurate than local 

learning. In Murray-Smith and Johansen [4] showed that global learning does not 

guarantee to produce local models that will be close approximation to local 

linearization of the system. Global learning can also become computationally if a large 

number of models or data are used. The other choice which does not posses the 

aforementioned disadvantages is to estimate independently parameters of each model.  

Parameters of the local models are estimated using the weighted criterion for i-th 

model 

 
1

( )
TT T

j j j j jJ
N
        θ y θ Ω Q y θ Ω

  
 (3.9) 

where 1,...j M . jQ is an N x N diagonal weight matrix, where diagonal elements 

of the matrix are used to weight the importance of the different samples in the training 

set on i-th local model. The matrix of measured data Ω  is defined as  
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 
 
 
 

φ

Ω

φ

 (3.10) 

The importance of the samples to j-th model is given directly by the unnormalized 

individual validity function that are fixed either for one individual of the SOMA 

algorithm or one possible division point of the Johansen and Foss algorithm. 

 ( ( (1)),..., ( ( )))j j jdiag N Q ψ ψ   (3.11) 

Parameters ,jθ y


 in the Equation (3.9) remain the same as in the previous chapter. The 

locally weighted estimates of parameters of a local model  jθ


 are given by minimum 

of the criterion jJ .  

   1T T
j j j


θ Ω Q Ω Ω Q y


 (3.12) 
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3.9 Incorporating a priori knowledge 

A major advantage of the local model networks is that they are not only useful 

architectures for general learning tasks, but that it is relatively easy to introduce the a 

priori knowledge about a particular problem. A priori information is initial knowledge 

about the system or a problem in question. As can be seen from Figure 8 a priori 

knowledge plays an important role at each stage of the modelling process. A priori 

knowledge includes goals of the problem, characteristics of the system, its parameters 

and effect of the environment (disturbances and noise). The most general form of 

information is the expected dynamic order of the models, the form of the models (e.g. 

ARX models) and the sampling period. In many cases, there will not be sufficient data 

to train the model throughout the input space, especially outside the areas of normal 

operation. This can be overcome by fixing a priori models to the areas where system is 

well understood and applying the learning techniques only where data is available and 

reliable. A further option, for cases where a complex and too complicated model exists 

and is valid for certain operating regimes, is to pre-set the fixed local models obtained 

through the linearization of the nonlinear model. The linearization of the nonlinear 

model can also be used for comparison with the model obtained from the experimental 

data.  

The problem of choosing the local model dynamic order and the sampling period is 

not a simple task. The problem of order selection and sampling period is widely 

discussed in the identification literature [49]. 

Determining model parameters from a finite set of observation is an ill-posed 

problem, since a unique model may not exist or it my not depend on the observations. 

Even if the data are not corrupted by noise, the model can exhibit random behaviour at 

an operating point that is not exactly captured by the observation data set. It is often 

desirable to employ all the available prior knowledge and observation data to obtain a 

better conditioned problem. This will generally lead to a better model. The available 

prior knowledge used through optimization can have several forms: smoothness of the 

model behaviour, partially or completely known local models, constraints on the 
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validity function, constraints on the parameters (stability, process gain, settling time) 

and empirical data measured through experiments.  

Knowledge about the process gain, stability and settling time could be translated 

into the form of inequality constraints. Thus optimization in the form of quadratic 

programming (QP) can be used to obtain model parameters, instead of conventional 

least-squared method as described in the following section.  

If the system to be identified is assumed stable there exist several limits on the 

parameters of local models. For the system of the second order with the denominator 

given by 
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 (3.13) 

the following stability margins for the parameters 1 2,a a can be inroduced if the system 

is stable 
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 (3.14) 

which can be translated as the inequality conditions for QP 
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 (3.15) 

If the interval of the static gain or at least the sign of the gain is known beforehand 

the following inequality condition has to be satisfied: 
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So the linear inequality constraints are given 
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If the global modelling approach is employed in the training algorithm and 

following regression model is used 

 T y Φ θ ε  (3.18) 

with affine ARX models of the second-order, the regression matrix and vector of 

outputs are defined: 
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   1( ( )) ( ),....., ( ( )) ( )T
k Mk k k k Φ ψ φ ψ φ  (3.20) 

The least-squares method can be solved by  

 1( )T Tθ Φ Φ Φ y


 (3.21) 

The constrained optimization problem can be formulated as: 

 
1

min
2

T T  
 θ

θ Hθ c θ
  

 (3.22) 

with  

 2 , 2T T  H Φ Φ c Φ y  (3.23) 

and the constraints  

 inq A θ b


 (3.24) 

 

By using the constraints during the training process, more accurate model with 

improved interpretability can be identified using the input-output data [50].  
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3.10  Validation 

Practically it is impossible to develop a model that would completely describe the 

true system. There will be always some features in the true system, which the model 

cannot describe. At this stage the quality of the mode is evaluated by analyzing how 

well it captures the data. Usually, validation is performed by combination of statistical 

measures that evaluate the generalization capability of the mode, and qualitative 

criteria, focus on establishing how the model relates to a priori knowledge, how it easy 

to be used and interpreted. In literature there are several methods for model validation, 

see [49] for a thorough discussion. The most common technique is to compare the 

predictions generated by the model with the measured data.  

When validating a model a cross validation method is often used. This means that a 

model is validated using new data. For this purpose the data set is divided into two 

parts where one set is used for identification purposes and one for validation. 

3.11 Concluding Remarks 

At the beginning of the chapter the basics of divide-and-conquer strategy and 

identification from experimental data are given. An important aspect when creating a 

learning algorithm for local model structure is the trade-off between achieving a good 

global fit and good local representation. Global learning methods are computationally 

more expensive and obtained models can not be interpreted as valid linearizations of 

the underlying nonlinear system because each model is influenced by all the other 

models. When identifying the local models by minimizing locally weighted prediction 

error criteria, the local models have locally valid interpretations as linearizations. On 

the other hand, the global prediction performance is typically inferior to what can be 

achieved by global optimization. Analysis and comparison of local and global learning 

method can be found in [4]. A learning algorithm for a local model network has to 

perform two tasks: identification of the network structure and estimation of local model 

parameters. Structure identification comprises of the determination of the number and 
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distribution and shape of the operating regions and the parameters of the weighting 

functions. Description of various learning techniques for training of local model 

networks has been given in the previous sub-sections. Constructive techniques which 

gradually increase the number of models to achieve better model representation have 

several advantages. Firstly, the main features of a process are captured first, then 

details. The overfitting protection of the constructive algorithm also limits overtraining. 

Since the number of divisions is restricted in these algorithms, better global fit can be 

achieved via optimization technique that utilizes the evolutionary algorithms. SOMA 

algorithm for the construction of the local model network has been proposed. The 

approach optimizes either all the local model parameters or only the parameters of the 

validity functions and constraints that ensure transparency and local interpretability can 

be easily integrated.  The use of constraints is useful to identify interpretable local 

models, especially when the assumption for excitation is not strongly satisfied. The 

modelling performances of the training algorithms approaches have been evaluated 

using simulated data from pH neutralization process in the experimental part of this 

thesis. 



    
 

 51 
  

Chapter 4 CONTROLLER 

DESIGN BASED ON LOCAL 

LINEAR MODEL 

DESCRIPTION 

The local model network control structure utilizes, in most cases, two local model 

networks. One network is responsible for identification, while the other servers as a 

controller. In an adaptive scheme the identification network is updated at each 

sampling interval.   

The multiple model controller design method is characterized by three steps 

1. the plant is modelled by local model network composed of M local linear 

models 

2. a feedback controller is designed for each local model in order to guarantee 

local stability and robustness 

3. global controller is obtained by combining the local controllers via the validity 

functions 

This approach seems quite similar to the Gain scheduling approach but there are 

two main differences: 

1. In the LMN scheme the local models are not linearized about the equilibrium 

points but about generic operating points 

2. Unlike the Gain scheduling, the LMN approach requires no analytical 

description of the system 

Basically, there are two ways to design controllers for local model structures, the 

linearization based and the local model-based approach. For linearization-based 

approach the local model network is linearized at the current operating point and linear 
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controller is designed. The linearization of the LM network is very simple due to the 

structure of the model. This approach is used for the controller design in the next 

sections. In the second approach a local controller is designed for each local model and 

the control output is then calculated as an interpolation of the local controller according 

to the current operating point. 





Figure 11 Controller design using linearization and local models (LLM – local linear 

model, LLC local linear controller) 

Only the SISO systems are considered within this chapter, however, extension for 

the MIMO case can be easily derived for predictive controller.  

4.1 Local Controller Networks 

Once the LMN is constructed, local controller network, the control version of LMN 

is defined in turn. In general, the global control signal is determined by 

 
1

( ) ( ( ), ( ( )))
M

c
i i

i

u k C k k


 φ ψ  (3.25)    

where iC denotes the local controller for a local model i. The local controllers are 

blended using the same validity functions i , which are used in LM network. The 

controller information vector cφ consists of past controller outputs, current and past 

plant outputs and the current and past values of reference signal. There are two 



    
 

 53 
  

different possibilities of handling the states of the controller. Either the local 

controllers may share common states or each controller can have its own states. 

4.2 Model Predictive Control 

Model-based Predictive control is becoming widely used in industry due to its 

ability to handle difficult control problems such as multi-input multi-output processes 

or constraints in the system variables. Model Predictive Control (MPC) refers to a class 

of algorithms that compute a sequence of manipulated variable adjustments in order to 

optimize the future behaviour of the plant. Camacho and Bordons in [51] provide 

practical aspects of the most commonly used MPC strategies and also an overview of 

commercially available MPC technology. MPC algorithms possess common elements, 

in which different options for each element give different algorithm.  

 Most MPC technologies are based on linear input-output models (transfer 

functions, step response models). These models are usually identified from the 

plant input-output data. The accuracy of the identified model is crucial for the 

performance of the MPC algorithm. 

 At each sampling point the inputs are determined from optimization of a 

quadratic performance objective over finite prediction horizon.  

 Future outputs are specified by set-points or reference trajectories. 

 Input and output constraints, which can be hard or soft, are included in the 

optimization process.  
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Figure 12 The receding horizon strategy, the basic idea of predictive control 

 

The basic idea of the model predictive control ( Figure 12) is to determine the control 

action u(k) at time t =kT, by using the sampling period time T and solving a finite-

horizon optimization problem over a time interval of  , ( )t kT k N T  . At the 

new time instant a new control u(k+1) is found by solving a new optimization 

problem for the next time interval. The one-step prediction of the nonlinear 

system is given  

  ( 1) ( ),...., ( 1), ( ),...., ( 1)y uy k f y k y k n u k u k n       


, (4.1)  

where f


is an approximation of the nonlinear system. Moreover, the input and 

output vectors 

    , , 1,.., , 1,..,p cy k i Y u k j U i H j H     
 (4.2)  

 u(k),y(k) must lie within the boundaries given by Y and U which are compact sets mR  

and rR respectively. The control is determined by minimization of the quadratic 

objective function defined as  
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( ) ( ) ( ) ( )
p c

H H
T T

i j

J e k i e k i j u k j
 

        (4.3)  
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where the vector ( ) ( ) ( )e k i w k i y k i    
represents the error between the desired 

output and predicted output at time ( )t k i T  . ,p cH H are prediction and control 

horizons respectively. u is defined as an incremental 

change ( ) ( ) ( 1)u k u k u k    since it is the change of the input signal that is 

unwanted. The coefficient   is usually a constant or an exponential sequence that 

penalizes the differences of future efforts. Since the predictive control strategy is based 

on the receding horizon, so that at each instant the horizon is displaced towards the 

future, which involves application of the first control signal of the sequence solved at 

each sampling time.  

Although only the first element of the vector ( ),..., ( 1)cu k u k H  is used for 

control, the other elements can be effectively used to initiate the optimization 

procedure at the step ( 1)t k T  . 

4.3 Nonlinear Model Predictive Control 

In general, industrial processes are nonlinear, but most MPC applications are based 

on the use of linear models. The first reason is that identification of a linear model is 

relatively simple and the linear models are sufficient when the plant is operating in the 

neighbourhood of the operating point. Secondly, the use of linear models with 

quadratic objective function gives rise to a convex problem which can be solved by 

Quadratic Programming. Thus two major issues limit its application to nonlinear 

systems. Firstly, the assumption for the predictive control is a quite accurate model of 

the system. However, complex systems are often connected with nonlinearities, wide 

operating range or uncertainty.  The second is that a nonlinear non-convex 

optimization problem must be solved for each sampling period with very 

computationally demanding algorithms. A wide variety of models has been used for 

nonlinear model predictive algorithms.  

These include: 

 Nonlinear differential equations 

 Hammerstein [52], Wiener, Volterra [53]and Laguerre models [54] 



 
 
 
 
 
  

 56 

 NARMAX models  

 Neural networks [14],[55],[56],[57] 

 Fuzzy models  

The local linear model structure offers several advantages in the model predictive 

control scheme. The LLM network provides good prediction of the future trajectory of 

the system but also the parameters of the plant at each operating point. If the local 

models are of the affine ARX form 

 0 1 1( ) ( ) .... ( ) ( ) ... ( )i i i i
i na a nb bf a a y k a y k n b u k b u k n           (4.4) 

then the nonlinear network is given 

 0 1 1( 1) ( ) ... ( ) ( ) ... ( )na a nb by k A A y k A y k n B u k B u k n           (4.5) 

which is an ARX model with its parameters defined at each operating point: 

 1 1 1 1
1 1

( ) , ( ) ,....
M M

i i
j j

j j

A a B b   
 

    (4.6) 

This technique allows the use of a linear predictive controller and thus avoids the 

problems associated with computation time and optimality of the nonlinear solution. 

This technique can be viewed as a successive linearization around the operating point 

which yields linear MPC. The local model structure enables easy linearization of the 

nonlinear model due to its structure. For nonlinear systems the parameters of the 

linearized model can vary from the parameters of the system along the prediction 

horizon. The techniques to compute the model parameters along the prediction horizon 

are described in Chapters 4.4 and 4.5. 

 

4.4 Single-model predictions 

The predictor of the linearized model for the prediction horizon Hp is given by  

 ( ) ( ) ( )k k k  y Px R Qu  (4.7) 

where ( )k Px R is free response of the system that depends only on the past inputs 

and outputs and ( )kQu represents forced response that depends only on future inputs. 
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 ( ) ( 1),....., ( )
T

pk y k y k H    y
 

 (4.8) 

  ( ) ( ),..., ( 1), ( 1),...,. ( 1)
T

a bk y k y k n u k u k n     x  (4.9) 

  ( ) ( ),...., ( 1)ck u k u k H  u  (4.10) 
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 1[ .... ]
p

T
Hr rR  (4.13) 

The coefficient of matrices P, Q, R for the affine second-order ARX models and 

prediction horizon equal to control horizon are given 
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 (4.16) 

To eliminate steady-state errors caused by the modelling mismatch between the 

plant and model the estimated modelling error err(k) is computed at each sampling  

step  

 ( ) ( ) ( )err k y k y k    (4.17) 
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where ( )y k


is the 1-step ahead prediction at time (k-1). The estimate of error is then 

filtered to minimize the instability introduced by modelling error feedback. More 

complicated observers/compensators can be implemented within the control loop to 

prevent from the effect of model/plant mismatch that are responsible for static offset 

[58].  

The predictive control algorithm consists of applying a control sequence that 

minimizes a cost function of the form   

  2 2

1 1

( | ) ( ) ( 1)
p c

N N

j j

J y k j k w k j u k j
 

          (4.18) 

Expression (4.18) can be rewritten as 

 ( ) ( )T TJ err err          Px Qu R T w Px Qu R T w u u  (4.19) 

where matrix T is defined as 

 
1

2 1

1 1 2 2

1

1

i i i

t

t a

t a t a t 


  
  

 (4.20) 

The minimum of J, assuming there are no constraints on the control signals and 0  , 

can be found by making the gradient J equal to zero, which leads to:  

 1( ) [ ] [ ( ) ( ) ( )]T Tk k k err k   u Q Q Q W PX R T  (4.21) 

where ( ) [ ( 1),..., ( )]T
pk w k w k H  W is a vector of future set-points and err(k) 

is an estimate  of modelling error ( ) ( ) ( )e k y k y k   . 
 
Equation (4.19) with omitting the parts that do not involve the future control signal u 

and only shift the value of the cost function J can be rewritten as 
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2
T TJ  u Hu b u  (4.22) 
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where the matrix M is defined as  

 

0 0 0

0 0
0

, ( 1)0

0
0

0 0

u k




 



 

 
     
    
  
  
   

M N




  


  


 (4.24) 

If constraints are introduced the quadratic programming (QP) problem has to be solved 

in every instant.   

 

Implementation 

 

1. Initialization - Construction of the LMN network based on a priori knowledge 

or process data using the training algorithms mentioned in Chapter 3. 

2. Linearization – Based on model input vector, the LMN produces the one-step 

ahead prediction, which is used for calculation of the parameters of the linear 

model. 

3. Control – Using the parameters of the linear system, the optimal output 

sequence is computed. Even though the control sequence is computed for the 

whole prediction horizon, only the first one is actually implemented. 

The steps 2 a 3 are repeated every sampling period.  

4.5 Multi-model predictions  

In the single-model method, the local linear model at the current time k, 

( ) ( , )k kM k A B , is used for the entire prediction horizon. For long prediction 

horizon, the influence of the approximation errors may significantly deteriorate the 

performance.  This can be overcome by computing the model parameters along the 

simulated trajectory, i.e. a sequence of models M(i) is obtained for each sample in the 

prediction horizon. First scheme uses linearization about the predicted trajectory 
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system for the entire prediction horizon and the sequence pf models M(i) is obtained at 

one step.  

In this case the prediction for a second order system 

 1 2 1 2( 1) ( ) ( 1) ( ) ( 1)k k k ky k a y k a y k b u k b u k         (4.25) 

with prediction horizon Hp=2 and control horizon Hc=2 is defined as: 

1 2 2 1
1 1 1 1 1 1

1 1 2 1 2 1 2 1 1 2 1

0k k k k

k k k k k k k k k k

a a b b

a a a a a a b a b b b     

    
              

y x u

 (4.26) 

where 1
1
ka  represents the parameters of the model obtained from the linearization of  

LMN using the predicted output y(k+1)  as a scheduling variable. 

 

1. Linear model M(k) is used to compute the control signal u over the prediction 

horizon. 

2. Simulate the system over the prediction horizon 

3. Compute the parameters of the model at each point in the predicted trajectory 

to obtain ( 1)..... ( )pM k M k H  . 

4. Use all the models ( 1)..... ( )pM k M k H  to compute the control signal for 

entire prediction horizon. 

 

Steps 3 and 4 are repeated until u converges. In order to provide convergence the 

method needs initial value for control signal. Single-model method as in steps 1 and 2 

can be used to provide such an initial value. 

 

In [60] different scheme has been proposed 

1. Use the already obtained linear model M(k) and compute the control signal 

u(k) over the entire prediction horizon 

2. Use u(k) to compute ( 1)my k   

3. Compute the parameters of the local model around the point 

( ( 1), ( ))my k u k to obtain M(k+1) 
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4. Use M(k) and M(k+1) and compute the new control sequence u for the whole 

prediction horizon 

5. Take u(k) and u(k+1) and compute y(m+2) 

Steps 3 through 5 are repeated for 1,...., pi k k H   . All the models 

( )..... ( )pM k M k H are used to compute final control u. The above method is 

apparently slow due to its iterative character for control signal computation.  

4.6 Internal Model Control based on Local Linear 

Models 

When the model is available, the Internal Model Control (IMC) is one of the widely 

used approaches for control of the linear systems. The IMC scheme, first proposed in 

[61], has found a number of successful applications. Figure 13 shows the standard IMC 

control structure where Gs represents the transfer function of the process, GM is the 

process model and GR is the asymptotically stable transfer function. The feedback 

signal is the difference y y  and the controller contains a model of the process 

explicitly. In fact, the IMC is a generalization of the Smith predictor.  

 

Figure 13 IMC block diagram 

The IMC synthesis is a two step method. The Controller GR is divided into two 

parts: 

 R Q FG G G  (4.27) 
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 Firstly, the parameters of the controller GR have to be determined.  The best policy 

is to choose GQ as an approximated inverse of the process model GM, which will yield 

good tracking and disturbance rejection. In the second step the low-pass filter GF is 

augmented to ensure robustness. The structure and parameters of GF are chosen to 

achieve balance between robust stability and performance. The filter constant is the 

only parameter that has to be tuned, thus making the controller design simple. The IMC 

structure can be easily converted to the classical feedback control loop. If the process is 

of the first order time-lag system the controller will become PI [61].  

The IMC approach can be easily extended to nonlinear models based on local 

model description [65]. In general, the inversion of nonlinear model is not simple and 

analytical solution may not exist. Let us consider the output of the local model network 

given by the equation 

 ( ) ( )
M

i
i i

y f  


 φ


 (4.28) 

If the models fi are defined as linear ARX type, the output of the local model network 

can be written as a nonlinear ARX model, i.e. NARX model. The parameters ,i ia b of 

NARX model thus depend on the operating point. For the given NARX model the 

following exact inverse control law can be postulated: 

 1 2

21

( ) ( ) ( 1) ..... ( 1)1
( )

( 1) .... ( 1)
na

nb

v k a y k a y k a k na
u k

b u k b u k nbb

        
        

 (4.29) 

In IMC structure the v(k) replaces the y(k+1) which is not available at the time k by the 

filtered set-point response 

 ( 1) ( ) ( ( ) ( ))Fy k v k G w k d k     (4.30) 

where ( ) ( ) ( )d k y k y k   . In the case where IMC filter is chosen to be of the first 

order only one design parameter c is needed. 

1

1

1F

c
G

cz





 (4.31) 

It has been proved in [61] that if the open-loop plant is stable, and if the model is 

perfect and inverse stable, the closed-loop system is also stable if the controller is the 

exact inverse of the model.  
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4.7 Concluding Remarks 

There are two ways of designing controllers for local model structures, the 

linearization based and the local controllers approach. For linearization-based approach 

the local linear model is obtained from the nonlinear description through linearization 

and a single controller is designed based on the linear model. In the second approach a 

local controller is designed for each local model and the control output is then 

calculated as an interpolation of the local controller according to the actual operating 

point. There are two different possibilities how to manage the states of the local 

controllers. Either all the controllers may share the states or each controller has its own 

states. 

Predictive control scheme that incorporates affine ARX model obtained through the 

linearization of the local model network has been proposed. In order to minimize the 

steady-state error arising in the standard MPC schemes due to model/plant mismatch 

and the model degradation through linearization the modelling error is included in the 

cost criterion for control sequence computation.  

It may happen that at time sample k the control sequence is computed for model Mi 

but after applying control sequence u(k) the plant is at operating point which is 

different from the model Mi. This can lead to bad performance if the difference 

between the models is large. To avoid such problems predictive control that uses 

linearization of the nonlinear model along the predicted trajectory can be implemented. 

The main advantage of this scheme is that it results in convex optimization problem.  
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Chapter 5 SIMULATION AND 

EXPERIMENTAL STUDIES 

Several identification and control schemes that use multiple model description have 

been described in previous chapters. In Chapter 5 these techniques are tested on 

simulation experiments and laboratory models. First part of Chapter 5 presents the 

result on the simulation experiment of the pH neutralization plant. The pH 

neutralization plant represents a highly nonlinear process with dynamics dependent on 

the operating point which makes it suitable for testing nonlinear modelling schemes 

and control algorithms. The results of laboratory experiments on real plants are 

presented in the second part of the chapter. The chapter closes with discussion of 

results and comparisons. 

5.1 Simulation Studies 

This section is divided into two parts. In the first sub-section the identification of 

the structure and parameters of the local model network is studied. The second sub-

section deals with the control of the nonlinear plant using the identified local model 

network.  

 

5.2 pH Neutralization Plant 

The studied system is a pH neutralization tank. A schematic diagram of the pH 

neutralization process is depicted in Figure 15. The neutralization process represents a 
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highly nonlinear process. The dynamic model used in this work has been developed in 

[62], [64] and has been used to test single loop strategies in [63].  

 

 

Figure 14 pH neutralization plant scheme 

 

The process consists of an acid (HNO3) stream, a buffer (NaHCO3) stream and a base 

(NaOH) stream being continually mixed in the tank. The model is based on 

assumptions that the streams are perfectly mixed, the density is constant in the whole 

tank. The process aims at controlling the pH value (controlled variable) of the outlet 

stream by varying the inlet base stream Q3 (control variable). The outlet flow-rate is 

dependent on the fluid height in the tank as well as the position of the valve.  

The chemical reactions for the system are as follows: 

 

2 3 3

2
3 3

2

H CO HCO H

HCO CO H

H O OH H

 

  

 

 

 

 

 (5.1) 

The corresponding equilibrium constant are defined  
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 

3

1
2 3

a

HCO H
K

H CO

         (5.2) 

 
2

3

2

3

a

CO H
K

HCO

 



      
  

 (5.3) 

 
 2

w

OH H
K

H O

         (5.4) 

 

Reaction invariants are used to derive the pH process [62] 

 
 

2
3 3

2
2 3 3 3

2a

b

W H OH HCO CO

W H CO HCO CO

   

 

                 
        

 (5.5) 

The invariant Wa is a charge related quantity, while Wb represents the concentration 

of the CO3
2- ion. The pH can be determined from Wa and Wb, using an implicit 

equation:  

 

1 1 2
2

1 1 2
2

2

1

a a a

w
a b

a a a

K K K

H HK
W H W

K K KH
H H

 




 


               
      

 (5.6) 

Solving the equation for H    , the pH can be computed:  

 10logpH H      (5.7) 

A differential equation that describes the total mass balance of the tank is  

  1 2 3

1dh
Q Q Q c h

dt A
     (5.8) 

where c is a valve constant, A is the tank cross-section area and h is a tank level. 

Differential equations for the effluent reaction invariants Wa and Wb can be derived: 

  1 1 2 2 3 3

1
( ) ( ) ( )a

a a a a a a

dW
Q W W Q W W Q W W

dt Ah
     

 (5.9) 

  1 1 2 2 3 3

1
( ) ( ) ( )b

b b b b b b

dW
Q W W Q W W Q W W

dt Ah
       (5.10) 
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where Wai and Wbi are chemical reaction invariants of the i-th stream. The variables 

are defined in Table 1. 

 

Symbol Variable Nominal value 

A Tank area 207 cm2 

h Tank level 14 cm 

Q1 Acid flow-rate 16.6 ml/s 

Q2 Buffer flow-rate 0.55 ml/s 

Q3 Base Flow-rate 15.6 ml/s 

c Valve constant 8 /ml s cm  

Wa1  3 1
HNO  0.003 mol 

Wa2  3 2
NaHCO  -0.03 mol 

Wa3    3 3 3
NaHCO NaOH  -0.00305 mol 

Wb1  3 1
NaHCO  0 mol 

Wb2  3 2
NaHCO  0.03 mol 

Wb3  3 3
NaHCO  0.00005 mol 

pKa1 -log10Ka1 6.35 

pKa2 -log10Ka2 10.33 

pKw -log10Kw 14 

Table 1 Parameters of the pH neutralization plant 

The initial conditions have been set to 0.000436 ,aW mol  

0.000528 , 7bW mol pH  . The estimation of the titration curve which shows the 

nonlinearity of the system was obtain by using several step function for the base flow-

rate and recording the steady-state outputs. The experimental studies have shown that 

not only the static gain but also the time constants and dumping of the system are 

dependant on pH value.  
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 Figure 15 Titration curve 

For the identification study, the acid and buffer flow-rates are kept constant at their 

nominal values and the base flow-rate Q3 is used to excite the plant dynamics.  From 

the titration curve it can be clearly seen that the process is nonlinear and thus suitable 

for evaluation and comparison of various local model identification and control 

algorithms. 

5.3 Structure and Parameter Identification of the Local 

Model Network  

This study uses data from the simulated pH neutralization plant. Training and test 

data were obtained using perturbations on the base flow-rate, with sample period of 

15s. The local models were chosen to have the form of the second-order ARX model 

such that the local model network had the form: 
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  
1

( ) ( ) ( ( ))
M

i
i

pH k k f k


 ψ φ  (5.11) 

where ( )kψ is a vector of scheduling variables 

 ( ) ( 1)k pH k ψ  (5.12) 

The local models are given by  

 0 1 2

1 3 2 3

( ( )) ( 1) ( 2)

( 1) ( 2)

i i i
i

i i

f k a a pH k a pH k

b Q k b Q k

     

   

φ
 (5.13) 

The operating space of pH neutralization plant was restricted to 

33,11 , 5 / , 25 /pH Q ml s ml s  . The training and test data were generated 

using perturbations on the flow-rate of the base stream. Training and test data used for 

training and validation of the local model network are shown in Figure 16 and Figure 

17. 
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Figure 16 Training data for structure and parameter identification 
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Figure 17 Test data for model validation 
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To compare the abilities of the identification algorithms several models were 

developed: 

 a single ARX model 

 a local model network with 5 equidistantly distributed models 

  local model network whose parameters are optimized via Johansen and Foss 

algorithm 

 LMN with all the parameters optimized using the evolutionary algorithm 

In order to quantify the modelling performances of construction algorithms the mean 

sum squared error as in Equation (5.14) is used to measure the modelling performance. 

Here, y is a vector of measured outputs, y


 is a vector of predicted outputs, i.e. infinite-

step-ahead predictions. So the prediction y


at step k+2 depends on the previous 

predictions ( 1)y k 
and ( )y k


, and model inputs ( 1)u k  and ( )u k . 

    1 T
J

N
 y - y y - y

 
 (5.14) 

Low value of the criterion signifies a good modelling performance. The static gain 

between the pH and the base flow rate varies considerably as the latter changes. From 

the titration curve five regions in which the gain is fairly constant can be recognized. 

So the growing optimization strategy was stopped when five local models were 

reached. The evolution algorithm used also five models to cover the whole operating 

space. Operating regions in Johansen and Foss algorithm were divided at 5 possible 

split points. The overlap parameter γ was set to 0.7. 

For SOMA optimization, population of 20 individuals search for optimal solution 

for 50 migration steps. 
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Figure 18 Parallel model predictions for training set – single model 

In the following figures the parallel model predictions for training data set are 

shown. The black line shows the simulated nonlinear pH plant output and the red line 

represents the predicted output in each case. 
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Figure 19 Parallel model predictions for training set – J&F algorithm with 5 models 
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Figure 20 Parallel model predictions for training set – equidistantly distributed models 
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Figure 21 Parallel model predictions for training set – SOMA optimized 
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Figure 22 Parallel model predictions for test set – SOMA optimized 

 

 

 

 

 

Network J (Training Data) J (Test Data) 

Single ARX model 0.2759 0.3956 

5 Equidistantly 

distributed Models 

0.0117 0.1785 

J&F 0.0174 0.2645 

SOMA optimization 0.0082 0.1227 

Table 2 Comparison of structure identification algorithms 

 

Considerably better performance than the single model is obtained when using 

multiple models. Naturally, the J values for the test data are larger than for the training 

data in all cases. The values in Table 2 clearly demonstrate the modelling capabilities 
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of the 3 algorithm, with the SOMA evolution algorithm achieving the most accurate 

nonlinear representation, but for the highest computational costs. The validity functions 

parameters and transfer responses of local model parameters without the offset terms 

are shown in Figure 23 and Figure 24. These parameters were obtained with SOMA 

optimization of all the parameters. In all these figure one colour corresponds to one 

model.  
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Figure 23 Responses of the local models for a step change of 1ml/s of the flow-rate in 

the corresponding operating point 



 
 
 
 
 
  

 76 

3 4 5 6 7 8 9 10 11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pH [-]

va
lid

ity
 f

un
ct

io
ns

 

Figure 24 Validity functions of the local models 

The bias term a0 in the ARX local models provide that the models do not have a 

common intersection point in origin as can be seen in Figure 25.   
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Figure 25 Local model network approximation of the nonlinear pH plant 
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5.4 Predictive Control using LMN  

Like identification, the control of this nonlinear plant is hard due to strong 

dependency on the operating point. In this part of simulation studies the LMN-based 

predictive control is applied to control the pH value of the fluid flowing out of the tank. 

All the experiments are started with the same configurations of the LMN. The LMN 

used in these experiments was obtained using the SOMA optimization and its 

parameters can be found in the previous part. The LMN-based predictive control is 

compared with a predictive control that uses a single ARX model for predictions.  
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Figure 26 LMN-based predictive control (red-system output, black-reference signal, 

blue- control signal) 

 

A control horizon and prediction horizon of 9 steps and the penalization constant 

0.2 were for the design of predictive controller. The control results at Figure 26 and 

Figure 27 show that LMN-based predictive control technique performs better than a 
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single model and without steady-state error, which could be expected because a single 

ARX model cannot sufficiently represent nonlinear dynamics of the plant.  
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Figure 27 Predictive control with a single model (red-system output, black-reference 

signal, blue- control signal) 

5.5 Nonlinear Model Predictive Control  

For many-step-ahead control, the influence of the approximation errors may 

significantly deteriorate the performance of the predictive control. This can be 

remedied by computing the model parameters along the future trajectory. It can be seen 

that the controller based on the set of local models performs better than the controller 

that is using only a single local model along the whole prediction horizon. The 

improvement is larger if the set-point changes cross several local models as can be seen 

in Figure 28 between 1200 and 1600s when the plant outputs crosses all five operating 

regions with different dynamics. In the experiment the same model as in the previous 

examples is used. 
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Figure 28 Comparison of single and multiple model predictions (blue-single 

model, red-multiple model ) 

5.6 Internal Model Control using LMN 

The IMC control strategy was applied to control the pH in pH neutralization plant. 

The same LMN network scheduled on pH as in the predictive control scheme was used 

to model the plant dynamics. The robustness filter   

  

 
1

0.02

1 0.98FG
z


 (5.15) 

was added to the analytical inverse of the model.  
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Figure 29 IMC control of pH neutralization plant – set-point tracking 

 

Figure 30 compares the set-point tracking performance of the internal model 

controller that uses LMN as internal model with IMC controller that uses only a single 

linear model during the whole experiment. 
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Figure 30 Setpoint tracking (blue –LMN based IMC, red-IMC with linear model) 

Figure 31 shows the disturbance rejection capabilities of the IMC controller for the 

change of buffer flow rate from 0.55 to 0.15 ml/s at the time t = 200s. This reduction 

significantly increases the process gain.  
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Figure 31 Disturbance rejection (blue –LMN based IMC, red – IMC with linear model) 
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5.7 Laboratory Experiments 

This section deals with the application of proposed identification and control 

algorithms to real plants. The three-tank model has been chosen for this purpose 

because it demonstrates nonlinear behaviour. The laboratory process consists of three 

plexiglas cylindrical tanks with identical cross-sections supplied with distilled water. 

The liquid levels are measured via the piezoresistive transducers. The laboratory model 

is depicted in Figure 32. Water is supplied to the first tank through a controlled pump. 

Additionally, another connection to the reservoir lies at each tank, enabling the 

introduction of disturbances in the form of leaks. The process is connected to the PC 

through a data acquisition board. The identification and control software is written 

under MATLAB, using the Real–Time Toolbox to collect data from the process. The 

sampling time in all the experiments is set to 1s. The level of the liquid in the first tank 

is measured and its value is limited from 0 to 0.6m.   

 

Figure 32 Scheme of the three-tank system 

For all the experiments only the tanks h1 and h2 are used. The task is to control the 

level in the tank h1 using the voltage applied to the pump 1. The valve between the tank 

T1 and T3 is fully open. The valve from the tank T1 is closed and the valve from tank 

T3 is partially open.  
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5.8 Nonlinear Modelling and Control of the Two-tank 
System 

A LMN was used to model the nonlinear dynamic relationship between the input 

voltage to the pump and the tank level from the process operating data. Since the input 

signal in MATLAB units lies in range (-1, 1), signal was shifted by adding 1 to the 

input signal. Thus input signal can vary from 0 to 2, where 0 means that the pumps are 

off. The process operation is divided into three operating regions. Two data sets were 

collected from the process. During the experiments random signal was applied to the 

system, with the sampling period of 5 second. The structure of the network was chosen 

to be affine local ARX models of the second order. 

 0 1 2 1 2( 1) ( ) ( 1) ( ) ( 1)y k a a y k a y k b u k b u k         (5.16) 

The centres of validity function were restricted to lie within the operating region (0 

m, 0.1 m), (0.1 m, 0.3 m), (0.3 m, 0.6 m) respectively. The dynamics of the models is 

assumed to be stable and the gain of local plant must lie within the limits (0.01 m/MU, 

3 m/MU). The previous limits on the process behaviour where translated to the form of 

inequalities.  For the optimization of the validity function parameters the SOMA 

algorithm was used in combination with identification of the local model parameters 

using quadratic programming with constraints. Figure 33 shows the training and test 

data used for network training and validation. Comparing the step responses of the 

local models, one can find that the local model 1 has lower gain and time constant.   
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Figure 33 Data for training the LMN 
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Figure 34 LMN prediction on training data 



    
 

 85 
  

The LMN based predictive controller was developed to control the tank level. For 

control purposes the constrained optimal control problem is solved with a sampling 

period of 5 second and choosing the prediction and control horizons to be Hc =20 and 

Hp=20 time steps. The penalization constant  = 0.05 was used within the criterion to 

stress the importance of the control error. Assuming the physical bounds on the flow-

rate supplied by the pumps, the constraints (0, 2) were imposed into the optimisation 

problem. Figure 35 shows the performance of the LMN based predictive controller.  
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Figure 35 Predictive control with LMN network 

To compare the capabilities of the standard linear MPC without any offset 

compensation was used in the same experiment. As can be observed the standard MPC 

guarantees a stable response without constraints violation, but with static offset. These 

deviations can be attributed to the fact that there is no offset compensation. The effect 

of the nonlinear model in the predictive controller is minor.    
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Figure 36 Single model predictive control 

5.9 Internal Model Control of Two-tank system 

The IMC control strategy was applied to the control of the level in the first tank. 

The parameters of the model for computation of the model inversion were obtained by 

scheduling on the level at the step k-1. Figure 37 demonstrates the performance of the 

LMN controller. The filter  

 1
1

0.1
( )

1 0.9FG z
z





 (5.17) 

was added as part of the controller to improve the robustness to model uncertainty.   
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Figure 37 Internal Model Control of the level in the first tank 

The IMC control enables easy application of LMN network, where only the 

parameters of the filter have to be specified. The control performance of the IMC based 

on LMN is also satisfactory.  

5.10 Discussion and Concluding Remarks 

By using a pH neutralization model plant it has been shown that LMN approach can 

provide an improvement in modelling accuracy over a single linear model when used 

to represent a dynamics of a chemical plant over a wide operating range. The 

modelling performance of J&F algorithm and SOMA optimization algorithm were 

evaluated using simulated data from pH neutralization plant. The SOMA optimization 

achieves an optimal model but at the expense of intensive computation, while J&F 

algorithm produces less accurate model also with local interpretability but with much 

less computational effort.  
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The incorporation of the prior knowledge to the parameter identification allows 

building models that accurately approximate the plant both globally and locally. 

Moreover, it allows modelling of accurate models where less experimental data is 

available.  

The Model Predictive Control algorithm uses linearization of the LMN model at 

current operating point to compensate nonlinearity in process dynamics. The control 

algorithm was applied for control of the pH neutralization plant. In experiments better 

performance in terms of set-point tracking was achieved comparing to a single model 

representation of the process. In order to minimize the steady-state off-sets the internal 

loop is implemented to the control loop by changing the reference signals supplied to 

standard MPC structure. As could be observed the incorporation of the offset 

compensator contributes to remove the static offset caused by the model/plant 

mismatch.  

A situation when at time k the controller output signal u(k) drives the nonlinear 

plant to a operating region represented by another local linear model can occur. In this 

case, the control signal is computed for one system and is applied to control another 

system. This can badly affect the quality of control if there is a considerable difference 

between the dynamics of both models. This can be overcome by using the predicted 

trajectory to compute the future linearized models on the predicted trajectory. Higher 

value of penalization constant λ in the quadratic cost function J which prevents from 

fast changes of the controlled variable can also prevent from mentioned undesired 

effects.  

LMN with ARX local model can be easily incorporated into the internal model 

control framework since the required model inverse can be analytically obtained.  

Simulation results for a pH neutralization plant show the significantly improved set-

point tracking and disturbance rejection of both control schemes compared to the single 

linear model. The experiments on the three-tank system show that the only small 

improvement can be achieved with LMN description of the process. This can be 

contributed to the fact that level control in the first tank that is of cylindrical shape is a 

weakly nonlinear process.  
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Chapter 6 Concluding Summary 

and Future Work 

This thesis has examined the LMN structures for identification and control of 

nonlinear systems. The idea beyond these networks is to divide the operating range of 

nonlinear system into smaller part where the nonlinear system can be represented by a 

simple model. In combination with weighting function relatively accurate 

approximation can be achieved. LMN models are also easier to interpret than nonlinear 

models based on MLP networks and are suitable for building a nonlinear controller that 

is composed of local linear controllers. The LMN network can be viewed as 

generalization of Radial Basis Function (RBF) network and under specific condition is 

functionally equivalent to Takagi-Sugeno fuzzy model. Although normalization of the 

weighting function is necessary to provide partition of unity it can also cause several 

undesired side-effects such as reactivation or loss of local support.  

The learning algorithms can be divided into two classes: local learning techniques, 

which are less computationally expensive and create models which are closer to local 

linearizations of the nonlinear dynamics and global learning techniques with better 

global fit. In Chapter 2 several training algorithms are described and new training 

algorithm that utilizes Self-Organizing Migration algorithm for validity function 

optimization and quadratic programming for local model parameters estimation is 

proposed. This method is able to find improved model compared to the heuristic 

Johansen and Foss algorithm. Allowing the splits to be at any point of the operating 

space can reduce the number of models and achieve better accuracy. On the other hand, 

large number of model evaluations is necessary for optimization. Also the number of 

models has to be specified beforehand while heuristic algorithms constantly increase 

the number of models and user can choose the best compromise between the accuracy 

of the model and its complexity.  
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One the main advantages of the LMN is easy integration of a priori knowledge. If 

prior knowledge about the system is available it can be included in the training 

algorithm in the form of inequalities. In this case the conventional least-squares 

method or weighted least-squares method is substituted by quadratic programming. 

The construction algorithms J&F and SOMA have been compared and their 

modelling performances were illustrated using both simulated and real data. The 

obvious trade of between the computational complexity and the model quality has been 

highlighted. The SOMA optimization algorithm searches for an optimal model but at 

the expense of complex computation. 

The predictive control scheme that uses linearization of LMN for prediction future 

outputs and compensation for model/plant mismatch has been proposed. Results from 

experiments have shown that incorporation of the modelling error into the cost 

criterion ensures good tracking performance despite modelling errors. If the LMN 

consists of ARX models, the required model inverse can be analytically computed and 

thus can be implemented in the Internal Model Control scheme. Simulation results 

show the improved performance of the proposed schemes compared with a single 

model.  

Results of various simulation studies have been presented in Chapter 5 that showed 

the satisfactory performance of the proposed identification schemes. All the 

experiments and simulations within the thesis have been only on single-input single-

output systems. Since the predictive control can be easily adopted for MIMO systems 

the future research would involve predictive control of MIMO systems. During the 

design of LMN-based control schemes, the global stability of the closed-loop system 

has not been investigated and may be a part of future research.  
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