
Eng. Rohitha Keerthiwansa, Ph.D.

Doctoral Thesis Summary

of the Methods 

of the Hyperelastic Properties

Design and Validation 

for Comprehensive Characterization 

 of Elastomers



 1  

 

 

Doctoral Thesis Summary  

 

Design and Validation of the Methods for 

Comprehensive Characterization of the Hyperelastic 

Properties of Elastomers 

 
Návrh a validace metod pro komplexní charakterizaci 

hyperelastických vlastností elastomerů 

 

 

 

 

Author:           Eng. Rohitha Keerthiwansa, Ph.D. 

 

 

Degree programme: P3909 Production Engineering 

 

Degree course:  3909V013 Tools and Processes 

 

Supervisor: Associate Prof. Ing. Jakub Javořík, Ph.D. 

 

External examiners: Prof. Dr. Ing. Petr Horáček 

Doc. Ing. Jan Krmela, Ph.D. 

Doc. Ing. Dagmar Měřínská, Ph.D. 

 

 

 

Zlín, November 2020 



2 

 

 

 

 

 

© Eng. Rohitha Keerthiwansa, Ph.D. 

 

 

 

 

 

Published by Tomas Bata University in Zlín in the Edition Doctoral Thesis 

Summary. 

The publication was issued in the year 2020.       

 

 

 

 

 

 

Key words : hyperelestic materials, data fitting, mechanical characterization, 

elastomers, rubber, strain energy density, hyperelestic material models 

 

Klíčová slova: hyperelestické materiály, analýza experimentálních dat, 

elastomery, pryž, hustota deformační energie, mechanické vlastnosti, 

hyperelestické materiálové modely 

 

 

 

Full text of the doctoral thesis is available in the Library of TBU in Zlín.  

  

 

 

 

 

 

 

 

 

ISBN 978-80-7454-965-6     



3 

CONTENTS 

 

ABSTRACT  ......................................................................................................... 4 

ABSTRACT (CZECH) ......................................................................................... 5 

1. INTRODUCTION .......................................................................................... 7 

2. THE OBJECTIVE .......................................................................................... 9 

2.1 The Problem ............................................................................................. 9 

2.2 The Aim .................................................................................................... 9 

2.3 The Solution ............................................................................................. 9 

2.4 The Approach ........................................................................................... 9 

3. STATE OF THE ART .................................................................................... 9 

3.1 The Chemistry of Rubber ......................................................................... 9 

3.2 An Introduction to General Purpose Elastomers.................................... 10 

3.3 Additives and Rubber Compounding ..................................................... 11 

3.4 Mathematical Models ............................................................................. 11 

3.5 Curve Theory .......................................................................................... 11 

3.6 Statistical Tools ...................................................................................... 12 

3.7 Metrology and Theory of Digital Image Correlation (DIC) .................. 12 

4. RESULTS AND DISCUSSION  .................................................................. 13 

4.1 Presentation of Problem (Experiment -1) .............................................. 13 

4.2 Initial Attempt in Solving the Problem (Experiment -2) ....................... 14 

4.3 An Improvement to the Initial Solution ((Experiment -3) ..................... 16 

4.4 The Detailed Solution to the Problem (Final Experiments) ................... 17 

5. CONCLUSION ............................................................................................ 31 

CONTRIBUTION TO SCIENCE AND PRACTICE ........................................ 32 

ACKNOWLEDGEMENT .................................................................................. 33 

LIST OF SYMBOLS AND ACRONYMS ......................................................... 34 

LIST OF IMAGES AND TABLES .................................................................... 35 

REFERANCE ..................................................................................................... 37 

CURRICULUM VITAE ..................................................................................... 43 

 

 

  



4 

ABSTRACT 

This thesis and the research work surrounding it, is oriented towards finding a 

solution to a problem in obtaining accurate material constants whenever only a 

single data set (i.e. uniaxial tension test data) is available in hyperelestic material 

characterization.  

To begin with, the serious nature of the problem was highlighted through 

results of set of experiments. There, several material models were tried with two 

data fitting methods and the inaccuracy of data fitting with single data set could 

be proved beyond doubt from this exercise.  

At the next stage, as a preliminary solution to the problem, a suggestion was 

given in the way of secondary data set generation from available data. The 

question at this point was about the method which could be adopted to generate 

the second data set. As an initial trial, exponential function was used with several 

exponents in order to generate data which could be consequently used as biaxial 

data. Amid some minor discrepancies, method delivered some promising results. 

Second approach was sorted in order to get a better trajectory for the generated 

biaxial data. In this method, initial uniaxial data set was divided in to two 

segments and each segment was differently addressed. As a result, the trajectory 

of generated data nearly resembled the real biaxial data. Data fitting preceded the 

data generation, provided very encouraging results too. However, method had 

some serious shortcomings such as, unit incompatibility, and lack of use of 

uniaxial data in the later half. Due to these reasons, the method was not further 

examined for the use in the work.      

Final experiments were done with six materials. Base material and other 

constituents were different in each of these cases and it resulted in varied data 

distributions in both uniaxial and biaxial data. An exponential function was once 

again used with a different exponent in finial tests.  Proximity of generated data 

against real biaxial data was statistically tested. For the testing, 95% confidence 

interval was selected and most of the instances, generated data distribution was 

within the limit. Situations where, results differed, adjustment of confidence 

interval could be proposed with justification considering the hyperelestic material 

properties. Finally, Mooney-Rivlin model was used for data fitting as to further 

emphasize the results. 
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ABSTRACT (CZECH) 

Dizertační práce a výzkum provedený v průběhu doktorského studia se 

zaměřuje na nalezení řešení v oblasti získání přesných materiálových konstant, v 

případě, že je k dispozici pouze omezený soubor dat k charakterizaci 

hyperelastických materiálů.  

Na začátku práce je zdůrazněna závažnost výše zmíněného problému skrze 

výsledky experimentů. Datové soubory z testování hyperelastických materiálů 

byly vyhodnoceny na několika materiálových modelech za použití dvou různých 

metod pro určení hyperelastických konstant. Nepřesnost určení konstant při 

využití dat pouze z měření jednoosého tahu byla jasně prokázána. V další fázi 

výzkumu, bylo navrženo předběžné řešení tohoto problému, a to ve formě 

generování druhého souboru dat (dvouosý tah) z dostupných dat pro jednoosý tah. 

Předmětem výzkumu tedy bylo stanovení vhodné metody pro generování druhého 

datového souboru. Pro prvotní testování byla pro toto generování zvolena 

exponenciální funkce. 

Mimo drobné nesrovnalosti, byly výsledky této metody slibné. Dalším krokem 

řešení bylo v nalezení přesnější funkce pro generovaná biaxiálních dat. V rámci 

této metody se křivka pro dvouosý tah rozdělila na dva segmenty, přičemž každý 

segment byl řešen odděleně. Byla získána data, která blízce připomínala skutečný 

biaxiální datový soubor. Avšak tato metoda vykazovala vážné nedostatky, jako je 

například nekompatibilita jednotek generovaných dat a nedostatečný počet dat v 

druhém segmentu. Z těchto důvodů nebyla tato metoda dále použita. Finální 

experimenty byly provedeny se šesti různými elastomery. Ty se lišily základním 

materiálem kaučukové směsi a dalšími složkami, což se projevilo v různorodosti 

jednoosých i dvouosých dat. Shoda generovaných dat se skutečným dvouosým 

tahem, byla statisticky testována. Pro testování, byl zvolen interval spolehlivosti 

95 %, a ve většině případů, byla shoda potvrzena. Pro situace, ve kterých se 

výsledky lišily, bylo navrženo upravení intervalu spolehlivosti, což bylo 

odůvodněno hyperelastickými vlastnostmi materiálů. V závěru práce je přínos 

výsledků ověřen při určení materiálových konstant pro Mooney-Rivlinův 

hyperelastický model. 
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1. INTRODUCTION 

Materials that exhibit large elastic strains at relatively moderate loads are 

called hyperelastic materials [1-4]. There are many materials in this category and 

applications are also many [5]. At the same time these materials show some 

outstanding properties [6-10]. However, due to nonlinear behaviour, mechanical 

characterization of them is difficult. As these materials are complicated to 

annualize, process is done in stages [11-13].  

When it comes to mechanical characterization of rubber like materials, the task 

is challenging due to nonlinear behaviour.  Characterization is usually done 

through set of pre-selected material models. There are many as forty models to 

select with and selection is done after consideration of application and few other 

factors. Consequently, material constants are obtained through data fitting. 

Fitting is done using data collected through laboratory experiments. Due to 

difficulties in obtaining data with several deformation modes, only uniaxial   test 

data is often used for fitting. However, method proved to be inaccurate. Therefore, 

with this work, it is expected to find a method to get an accurate material constants 

in such instances.  

The very first hyperelestic material model was introduced by Melvin Mooney 

as a general strain energy function in 1940 [14] and data required for the testing 

of models was then provided by Treloar [15]. In 1948, Rivlin improved the first 

model, and it came in to existence as Mooney-Rivlin model [06]. This is the most 

frequently used model for the elastomer characterization. The simplest model of 

all, the Neo Hookean model [16], is a special case of the two parameters Mooney-

Rivlin model. Further to these initial models, in 1967, Valanis and Landel [17], 

introduced a new method of representing the strain energy function. There are 

few common models developed later on by Ogden, Yeoh [18], Arruda and Boyce 

[19]. There are many other models which are less known and could be used in 

specific applications [20-27]. There are many researchers who contributed to this 

particular field and some of their works are specifically related to present work 
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here [28-50].  Furthermore, material testing methods in this field also were 

examined extensively [51-68] in order to improve the standard of experiments.  
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2. THE OBJECTIVE 

As so far mentioned, hyperelastic material characterization leaped along 

several fronts over the last eighty or so years. Numerous models came in to 

existence and new methods of analysis were tried. In addition to that, advanced 

methods for testing of different strain modes were also established. Development 

of powerful computers and introduction of FEA tools also further simplified the 

hyperelastic material characterization.  

However, amid all these new developments in the hyperelastic material 

research area, the problem of elimination of complicated laboratory tests such as 

eqi-biaxial testing for data collection, seems yet to be addressed. On the other 

hand, due to such complexities and cost concerns a single data set, i.e. uniaxial 

data, is frequently used. Amid repetitive use, method known to be erroneous. 

Therefore an investigation for an alternative solution to address this issue became 

a necessity and could be well justified.  

2.1 The Aim 

Having mentioned the necessity, we could clearly outlined the aim or the 

objective of the work as follows. That is to find a method of obtaining realistic 

and accurate material constants whenever only uniaxial data is available.  

2.2 The Solution  

Throughout this research work, possibilities of replacing data obtained through 

complicated and sometimes inaccurate biaxial experiments, by set of artificial 

data generated through uniaxial data is examined.  

2.3 The Approach 

First of all, uniaxial data set is obtained through typical standard test. 

Consequently, data set thus obtained is manipulated through a mathematical 

formula in such a way that, second set of data could be obtained. Thereafter, this 

second set of data, which could be considered as an alternative to the missing 

biaxial data could be used for the combined data fitting together with uniaxial 

data.  
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3. STATE OF THE ART 

 

3.1 The Chemistry of Rubber 

Rubber is, in simple terms, a material that can be stretched as much as twice 

or more of its original size and still could be formed in to its initial shape once 

released. The structure gives the rubbery effect to the material. Chemically rubber 

is a hydrocarbon and its main constituent is polyisoprene. Typical appearance of 

these molecules is depicted in figure 3.1. 

 

Fig. 3.1 Chain like structure of rubber [40] 

To improve the rubber material strength and to transform it to useful engineering 

material, during the early ages of the development, a process called vulcanization 

was introduced. 

The Vulcanizing Process 

In this process, the long chain molecules of rubber materials are cross-linked 

through added foreign material at elevated temperature (140°–180° C) as shown 

in figure 3.2. 

Fig. 3.2 Rubber vulcanization process [40] 

3.2 General Purpose Elastomers 

Elastomers or rubberlike materials that are found in the industry can be broadly 

categorize in to two groups as general and special purpose elastomers. Bulk of 

rubber products manufactured today fall in to the group of general purpose 

elastomers.  They comprised mostly, natural Rubber (NR), polyisoprene (IR), 
polybutadiene (BR), styrene-butadiene (SBR), nitrile-butadiene (NBR) and 

ethylene propylene rubber (EPR / EPDM). These elastomers are often used 

because of their good physical properties, processability and adoptability. In 
addition to that, they are economical too. Though there are many positives, some 
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negative properties are also there. Less heat, oil and solvent resistant are dominant 

in negative side of these materials. Besides, some of them are susceptible to ozone 

and oxygen attacks too [43]. 

3.3 Additives and Compounds 

In the industry of rubber, there are many diverse applications as we already 

mentioned. These applications demand specific properties from rubber materials. 

Base materials alone cannot provide such exact properties. Therefore, they are 

mixed with various additives to achieve desirable effects. 

Carbon Black, Silica and Talc are the main additives in rubber making process. 

Besides, there are some other minor adding agents used at the rubber mixing stage 

such as oils, wax, and fatty acids for process improvement and pigments for 

aesthetics and colour. 

3.4 Mathematical Models 

When one needs to select a hyperelestic model for mechanical characterization 

of a particular elastomer, there is a large group of modal forms to select from. 

However, it is established that the selection of model depends on factors such as 

material application, corresponding variables and available data [8]. Four major 

qualities of good material model are identified [9]. 

From these models, Neo-Hookean model, Mooney-Rivlin model, Yeoh, 

Arruda-Boyce model and Ogden model are more prominent.  

3.5 Curve Theory 

The main task of this work is to obtain a data set which matches a distribution 

similar to the typical biaxial data distribution. Uniaxial data set is used to obtain 

this biaxial data distribution. Therefore, in order to get a one distribution from the 

other, it is vital to study mathematical options available for this task. 

Power function is a one such function that gives a specific shaped curve in the x-

y domain. It can be given as in Eq. 3.1 

y = xn           3.1 

Then, there is the general and natural exponential functions.  They can 

be given as in eq. 3.2 and3.3 respectively.  

y = bx          3.2 

y=ex           3.3 
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Other than these general curves, there are certain manipulations that can be 

done on general curves to get specific effects on them. Transitions, Enlargement 

and contraction, Reflection can be considered as common such manipulations.  

3.6 Statistical Tools 

Statistical tools are normally used to evaluate raw data obtained through 

laboratory experiments to get a meaningful results for further analysis. In this 

particular case, data obtained through three basic tests are fitted in to a 

predetermined model using non-linear regression technique. 

3.7 Digital Image Correlation (DIC) 

Metrology is one major corner stone of any research.  It provides the data 

required for evaluation part to the research work. For hyperelestic material 

characterization, this involves in basically results of three tests. Namely these tests 

are, uniaxial, biaxial and pure shear. In order to get accurate results Digital Image 

Correlation (DIC) is used in our work. 

Digital Image Correlation is a non-contact optical strain measuring technique. 

The measuring system comes complete with a digital camera, zoom objective and 

PC software. 

 

Fig. 3.3 Migration of subset due to deformation 

In DIC, a shift in image pixel position is tracked through series of images when 

deformation is taking place due to the applied load on specimen during the test 

(Fig. 3.19). 
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4. RESULTS & THE DISCUSSION 

 

This chapter presents the results of experiments carried out during the full 

stretch of the work.  Apart from final set of experiments, three other experiments 

were done related to this work. These initial experiments were done using the data 

previously obtained. At the end, final experiments were done in order to test the 

proposed solution and reach ultimate objectives of the research.  

 

4.1 Presentation of Problem (Exp. -1) 

As a starting point to the research work, the risk of using only single data set, 

i.e. uniaxial data for fitting, in general to most hyperelastic material models, and 

in particular to Mooney-Rivlin model was established with scientific evidence. In 

this effort, a detailed comparison was done related to Mooney-Rivlin two, 

parameters, Mooney-Rivlin three parameters and Yeoh models.  

 

Fig. 4.1 Mooney two p. model comparison (a-only uniaxial, b-combined) 

 

Figure 4.1 to - figure 4.3 show resultant curves obtained for this analysis. 

Three models tested for single and combined data fitting showed mixed results. 

Mooney-2 seems the most improved due to the combined data fitting. Mooney-3 

model could be considered partially improved with the multiple data set fitting, 

while Yeoh model seems not responsive to change in data fitting technique. 

However, discrepancies in all three models related to only uniaxial data fitted 

curves prove that method is not accurate and therefore less suitable for the 

mechanical characterization. 
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Fig. 4.2 Mooney three p. model comparison (a-only uniaxial, b-combined) 

 

Fig. 4.3 Yeoh model comparison (a-only uniaxial, b-combined) 

4.2 Initial Attempt in Solving the Problem (Exp. -2) 

It was proven from first experiment that one data set used alone in data fitting, 

is not sufficient to obtain accurate results for material constants and thereby, for 

the mechanical characterization of rubber like materials. The status quo of the 

problem is as such, an effort was exerted in order to address the problem and 

several attempts were made to get a feasible solution to it. At this stage, a second 

experiment was done related to the topic and results of the experiment are 

presented here.  
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In this experiment, a set of stress-strain data was collected using uniaxial tension 

upon SBR rubber samples and it was then manipulated using a simple 

mathematical formula to get a hypothetical second data set. The equation used 

here is given in 4.1. 

uay

b ey 
          4.1 

In the formula given, yb is the generated biaxial stress while yu is the 

corresponding uniaxial stress. Factor a is used with three values, 0.6, 0.7 and 0.8. 

Generated data is given in fig. 4.4.a. After a close visual inspection, data set that 

resembles most to the original data set, 0.8 set was selected. With that data set as 

biaxial data, combined data fitting was done and Fig. 4.4.b gives the results.  

 

 

 

 

 

 

 

 

Fig. 4.4. a Comparison of generated biaxial data  Fig. 4.4. b Combined data fitting 

with generated data.  

In order to ascertain the improvement due to newly adopted method, a  

comparison was done between combine data fitting which utilized the data of 

uniaxial and newly generated biaxial and single data set fitting, i.e. uniaxial data, 

of results previously given in figure 4.1 (a).  

Residue analysis was also done as to evaluate the data fitting.  Resultant values 

are given in table 4.1.  
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Table 4.1. Residue Error values for two cases. 

Fom the outcomes of this experiment therefore, clear improvement in fitting 

results could be observed both visually and statistically compared to only uniaxial 

data fitting. 

4.3 An Improvement to the Initial Solution (Exp. -3) 

Since there had been some 

discrepancies in the generated data set 

compared to real biaxial data in the 

previous experiment, further 

refinement of formula was needed. In 

order to improve results, some changes 

were done. The method which was 

adopted for the refinement of data is 

briefly given here.   

In this experiment, uniaxial data set 

was separated in to two segments. 

Consequently, they were treated 

separately with two different formulas. 

With the use of two new equations, the 

biaxial stress data was generated. Two 

formulas used for the purpose is given 

in equations 4.2 and 4.3. 

For X<0.6,     ub yeY  7.0

      4.2 

For X> or = 0.6,  
)6.0(2

6.0



  ux

ub eyY      4.3 

The data set obtained through the method then plotted in a graph alongside 

real biaxial and uniaxial data in order to examine the compatibility (Fig. 4.5).  

Curve type 

R.S.S. for only 

uniaxial data fitting 

(Fig. 5.1 (a) 

R.S.S. for combined data fitting 

(Exp. uniaxial and gen. biaxial data) 

(Fig. 5.5) 

Uniaxial 1.7155 3.1275 

Biaxial 32.025 1.1595 

Pure shear 8.2099 1.6638 

Fig. 4.5 Gen. Bi. Data and Exp. 

Bi. Data with Uni. data 
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Furthermore, data fitting was done separately with four different models, 

Mooney 2, Mooney 3, Yeoh, and Ogden to investigate the success of the method. 

Figures 4.6 to 4.9 give results of this comparison. Uniaxial, Biaxial and pure shear 

curves are named in these graphs as U, B and P respectively. 

When consider these results, except for the Yeoh model, curves of all models 

show remarkable improvement related to the data fitting. Discrepancy showed by 

the Yeoh model might have been due to the fact that particular model is not 

suitable in representing this specific material characterization. Basically, it could 

be apportioned to a mismatch between the model and the material. 

  

Fig. 4.6 Mooney-2 model comparison.  Fig. 4.7 Mooney 3 comparison 

 

Fig. 4.8 Yeoh model comparison.      Fig. 4.9 Ogden model comparison 
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4.4 The Detailed Solution to the Problem (Final Experiments) 

As to prove our approach in finding additional biaxial data set and thereby to 

establish the validity of the method, a set of experiments were done. There are six 

different types of material, M1 to M6, which is to be tested. The experiments 

which were planed here consisted of 30 uniaxial experiments and 10 biaxial 

experiments for each material. Therefore, given number of experiments were 

planned and carried out for each of them. In this section, the results of these 

experiments are discussed in detail. 

Results of these experiments could be divided in to three segments. First 

section discusses the resultant data distribution related to both biaxial and uniaxial 

experiments. The next section would be dealing with the statistical analysis. Final 

and the last section discusses the fitted model curves related to real data and the 

generated data. Additional topic would be allocated to discuss the possibility of 

optimizing the solution. 

Data Distribution Comparison 

In order to get a relationship between uniaxial data and biaxial data, first of all, 

each material needed to be represented by single unique uniaxial and biaxial data 

set.  

  

Fig. 4.10 Distribution of uniaxial data Fig. 4.11 Distribution of biaxial data 

As there were more than one set of data from each material, this was achieved by 

obtaining the average of multiple data sets. All thirty data sets were adjusted to 

have same number of data points and thereafter averaged data values were 

calculated by taking simple average with 30 number of points. 
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Averaged uniaxial data distributions of all materials are given in Fig.4.10. 

According to the figure, in general, all data sets depict typical uniaxial 

distributions. However, if we consider each distribution separately and observe 

closely, there are some minor differences. Two materials namely M4 and M5 

stand out from others. They show unique distribution pattern. Furthermore, 

materials M1, M2 and M6 lies very close to each other. Position of material M3 

is somewhat away from the rest. If we take the material M4, it is some out of 

general shape of biaxial data distribution. The trajectory in this case is unique and 

visibly has two portions to it. First segment appear to be rapidly increasing from 

zero up to around 10% strain. During the second half, data dispersion seems 

flattening.  

By and large, all data sets seems having the sag in the middle potion. In some 

data sets, the middle portion sag is prominent while in others it is less dominant. 

Distribution related to biaxial data for same six materials are given in figure 

4.11. Initial visual inspection of this figure reveals a picture similar to the uniaxial 

data distributions previously discussed. However, in this case, differences 

between each individual set seems much dominant than previous instance.  

In this case, all data distributions are shifted more towards stress axis as with 

the typical biaxial data distributions. Like in previous case, same three data sets 

are visibly separated from the rest. Though it might not be significant, two data 

sets, M4 and M5 are crossing each other at somewhere in the vicinity of 70% 

strain. Data set M4, change its trajectory in this case at around 6% strain which is 

little earlier than in previous uniaxial case. Out of two segments of this 

distribution, first segment seems steeper than in previous instance.  
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The Relationship between Uniaxial and Biaxial Data Distributions   

In order to construct a relationship between uniaxial data and biaxial data, 

each data set must be representative average curve of the respective material. 

Therefore, in the previous section, these average curves were obtained for each 

material for both uniaxial and biaxial deformation modes. Considering the data 

distributions of these materials, and the relationship we already discussed, a 

mathematical formula which is given in equation 4.4 is arranged in order to link 

two data sets. 

x

ub e  4.4 

In the equation, b is the biaxial stress at an arbitrary point in the stain axis while 

u  is the corresponding uniaxial stress at the same point. Exponent x of the 

exponential function is a positive real number.  

Using this relationship, several biaxial data sets were calculated after assigning 

different values to the unknown number x. From these initial trials, it could be 

selected a suitable value for x somewhere near 0.4, considering the generated 

biaxial data and the actual biaxial data. After that, further improvements were 

done and x was fixed at 0.35.  

With selection of particular value for x, using above equation, corresponding 

biaxial values could be generated for each uniaxial stress. Using this method, all 

biaxial stresses were calculated and plotted together with related uniaxial and 

experimental biaxial data, as given below from figures 4.12-4.17. Newly created 

substitute data for biaxial stress- strain distributions are, for identification 

purposes called hereafter as generated data whenever given in the text. 

 
Fig. 4.12 Generated data for M1                  Fig. 4.13 Generated data for M2 
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Fig. 4.14 Generated data for M3                     Fig. 4.15 Generated data for M4 

 

       Fig. 4.16 Generated data for M5              Fig. 4. 17 Generated data for M6 

As visible from these graphs, generated data sets are located in general, close 

proximity to the respective experimental data sets. Only exception is the M4 data 

set where generated data set is taking a trajectory similar to uniaxial and hence 

not showing close resemblance to the biaxial experimental data distribution. 

However, in this particular case, the said difference could be observed when 

compare uniaxial and biaxial experimental data sets as well.  On the other hand, 

when we examine all generated curves closely, a certain deviation could be 

observed at the later part of strains for each material. These deviations are 

happened to be in various proportions according to each of these materials.  

Out of all generated biaxial data sets related to these six materials, the data 

generated using uniaxial data of material 5 seems the best and the closest to the 

original data. 
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The Statistical Reasoning  

After generating biaxial data distributions for each and every material tested, 

next task was to test statistically how close these generated data to the real data. 

In order to do verify this, we followed a typical significant test devised as to suite 

this particular case.  

Significant testing is normally done in order to estimate the level of confidence 

with witch one can forecast the population from a sample. This is a typical 

statistical testing method and here, it is adopted to include this particular situation 

as follows. 

According to the method discussed here, first of all averaged biaxial data set 

is divided in to five equal segments. This is done according to the stress obtained 

by dividing maximum average stress in to five (Fig. 4.18). Idea behind this effort 

is to get five different points in the data distribution to compare real and generated 

biaxial data. 

Thereafter, corresponding strain values were selected. By plotting generated 

biaxial data distribution according to the material in the same graph, equivalent 

generated biaxial stress values for these strain tapping points could be calculated. 

At the same time, all experimental biaxial data were plotted in the same graph and 

equivalent stress values corresponding to each tapping point strain is also 

collected.  

 

Fig. 4.18 five tapping points 
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For the demonstration purpose, the stress values obtained for material M1 is given 

in the table 4.2, below for the ten sample graphs and for that of generated graph. 

The first column of the table gives each tapping point strains collected through 

average curve maximum stress dividing in to five.  

Table 4. 2 Stress values for five tapping points for M1 

Tap. 

Pt. 

strain 

[%]  

Curve number  & corresponding stress [Mpa] Gen. 

curve 

Stress  

[MPa] 

1 2 3 4 5 6 7 8 9 10 

11.53 0.68 0.54 0.52 0.52 0.48 0.51 0.42 0.56 0.46 0.57 0.49 

38.85 1.21 1.18 0.99 1.05 1.00 1.02 0.76 1.08 0.93 1.17 1.07 

63.51 1.71 1.71 1.42 1.50 1.46 1.48 1.14 1.54 1.36 1.68 1.55 

87.83 2.22 2.31 1.91 2.01 1.98 2.01 1.84 2.04 1.86 2.30 2.08 

108.43 2.70 2.87 2.37 2.50 2.47 2.51 2.37 2.52 2.35 2.95 2.53 

 

Ten stress data values were examined against respective generated stress value 

using statistical significant test. For the statistical significant test or t-test, null and 

alternative hypothesis arguments were constructed as follows.  

Null Hypothesis 

Ho :  x         4.5 

Alternative Hypothesis 

H1 :  x         4.6 

Where,  is the Generated stress while x is the mean of ten values of ten curves 

at the same taping point. Results of this significant test are tabulated here. (Table 

4.3) 
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Table. 4.3 p values derived using student’s t-distribution  

Material  Stain point & value [%] p value  

M1 

  

  

  

  

1. 11.53 0.095 

2. 38.85 0.454 

3. 63.50 0.378 

4. 87.83 0.551 

5. 108.43 0.676 

 M2 

  

1. 9.32 0.389 

2. 27.82 0.113 

3. 49.88 0.197 

4. 69.16 0.861 

5. 85.15 0.178 

M3 

  

  

  

  

1. 7.21 0.179 

2. 25.67 0.522 

3. 47.94 0.391 

4. 67.32 0.951 

5. 83.29 0.425 

M4 

  

  

  

  

1. 0.94 0.016 

2. 3.08 0.001 

3. 8.76 0.001 

4. 37.94 0.000 

5. 65.42 0.000 

M5 

  

  

  

  

1. 4.04 0.000 

2. 16.90 0.041 

3. 34.07 0.462 

4. 49.88 0.086 

5. 64.35 0.257 

M6 

  

  

  

  

1. 4.04 0.001 

2. 15.79 0.059 

3. 39.77 0.676 

4. 62.66 0.929 

5. 79.90 0.227 

By referring the third column of the table, we can see that critical p values for 

most of the significant tests are above 0.05. This means that the forecast can’t be 

rejected or in other words, with 95 percent confidence we can say that null 

hypothesis cannot be rejected in such cases.  

However, there are few exceptions where, the p value is less than 0.05. In 

particular, for the material M4, with relation to all points of concern, shows such 
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low values. As we have already mentioned, this particular material seems 

deviating from others and behaving differently from the group. Therefore, such a 

result could be expected for the statistical test as well. 

 In other cases where P value is less than 0.05, it would be appropriate to lower 

the confidence interval and check the results once again. This suggestion could 

be justified as typical behavior of rubber materials allow such wide margins in the 

testing.   

The Generated Biaxial Data Set Optimization 

As part of the generalized biaxial generating formula is an exponential 

function, the exponent can take many values. The value of exponent affect the 

relative position of the generated data set. Therefore, we examine the possibility 

of getting a unique value for the exponent which would provide the optimal 

position for the data set related each material.  At the end, further examination 

was done as to find one optimal value representing whole material group.  

The method used here is explained as follows. Considering the five tapping 

points used for extraction of data for statistical calculation, by referring figure 

4.19, in order to minimize the error between biaxial experimental data and 

generated data (∆y), following formula could be drawn (Eq. 4.7-4.9). 

Fig. 4.19 Error between real and generated biaxial data 
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Using this formula, by allocating values to exponent x, from 0.005 to 0.7, f(x) vs 

x was drawn. Graph drawn for material M1 to M6 are given below from Fig. 4.20 

to 4.25 looks as follows. From these graphs, it is possible to find the value of 

exponent x where, error of real biaxial data set and generated data is minimal.  

Fig. 4.20 Error calculation for M1             Fig. 4.21 Error calculation for M2 

Fig. 4.22 Error calculation for M3 Fig. 4.23 Error calculation for M4 

Fig. 4.24 Error calculation for M5            Fig. 4.25 Error calculation for M6 
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From these graphs, it can be evaluated the optimal value of x for materials M1 to 

M6 as follows. (Table 4.4) 

 

Table 4.4 Optimal values for Exponent. 

Material  Optimal Value  

M1 0.35 

M2 0.35 

M3 0.36 

M4 0.27 

M5 0.46 

M6 0.38 

Furthermore, considering all the data together, it is possible to get a one 

exponent for all materials. Idea is to get a one formula for the material group. For 

this task, calculations were done and related plot was presented in Fig. 4.26. 

Fig. 4.26 Error calculation for all materials together 

Considering the overall graph, optimal value for this material group could be 

fixed at 0.3525. 

The model testing for the newly generated biaxial data 

Having examined and obtained positive results for the statistical testing, next 

and the last step was to see how these artificial data would work with some of the 

common models when used for combined data fitting with uniaxial data.  In this 

section of the work, several models were examined for the compatibility and to 



27 

obtain the correct model to represent the material group. However, some of the 

material models tested were not compatible with this material group and showed  

inconsistence results. Mooney two parameter model was the most compatible. 

Results of this model fitting for six materials separately are given from figures 

4.27 to 4.32.  

Fig. 4.27 Mooney-2 model: Generated and real data comparison – M1 

Combined data fitting of both real biaxial data with uniaxial data and generated 

biaxial data with uniaxial data were done separately. Uniaxial model seems 

coinciding in these two instances (Fig. 4.27). 

Data fitting results given in for material 2 in figure 4.28, also shows similar 

results like in previous case. However, unlike previous instance, in these cases, 

data and the model curves seems somewhat compatible with each other. 

Material 3 data fitting results given in figure 4.29 also gives a set of curves 

somewhat similar to M2 curves, though with higher stresses.  

As it was the case with M4, the model curves seems deviating from the data 

distributions (Fig. 4.30). On the other hand, two combined data fitted modal 

curves are deviating from each other from early strain value 
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Fig. 4.28 Mooney-2 model: Generated and real data comparison – M2 

Fig. 4.29 Mooney-2 model: Generated and real data comparison – M3 
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Fig. 4.30 Mooney-2 model: Generated and real data comparison – M4 

Fig. 4.31 Mooney-2 model: Generated and real data comparison – M5 

For the material M5, (Fig. 4.31) once again, biaxial and generated biaxial model 

curves are close to each other, but data set seems away from the models. In the 

case of uniaxial this is very much improved and all three are laying near to each 

other. Stresses are relatively high in this case.  
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Fig. 4.32 Mooney-2 model: Generated and real data comparison – M6 

In the case of M6, (Fig. 4.32) model curves are crammed between two data 

sets. This means, model is lower in the biaxial and higher in the uniaxial when it 

comes to represent respective data. However, for both instances, real and 

generated data fitted models give somewhat similar trajectories, though in biaxial 

case, at later part the generated curve is little off-shoot from the real one.  

Altogether, data fitting for Mooney-2 model shows mixed results for six 

materials discussed. As these materials are different from one another in the way 

of hardness and carbon black content which consequently leads to property 

change, such variations could be expected. 
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5. CONCLUSION 

The research work included in this thesis touched the area of hyperelestic 

material characterization. As materials of this nature are not the easiest to 

characterize, the only way of doing it is by fitting data to an appropriate model.  

There are many Models to select with. However, in order to get material 

constants, due to lack of enough data sets, usually one data set was selected for 

fitting. This practice proved to be erroneous.  Therefore, effort was taken herein 

to solve this problem by generating an additional data set whenever one data set 

is available.  

To begin with, error in the data fitting with one data set was established. In 

this effort, two data fittings, only uniaxial and combined uniaxial plus biaxial 

were done and results were compared.  Biaxial data and curves were not in any 

way matching in the case of single data fitting, where as in combined fitting, 

curves were nicely seen near to respective data. With that results, it was proved 

the erroneous behaviour of the method of single data fitting.  

Having done that, first proposal was given in the way of exponential function 

as to obtain a second data set from the available uniaxial data. The outcome of 

first effort showed promising results in the way of secondary data.  Second data 

set obtained through the method was consequently used together with uniaxial 

data for combine data fitting. Clear improvement in fitting results could be 

observed both visually and statistically, compared to only uniaxial data fitting.   

Possibility of further improvement to the method of generating of secondary data 

was examined. In this method, uniaxial data was divided in two segments and 

each segment was separately addressed with different empirical formula to get the 

second data set. Final results of this experiment showed a further improvement to 

the overall fitting results. However, this method creates some complexities to the 

solution and therefore, was not further tested for application possibility.  

Thereafter, final experiments were done using six different materials. Once 

again, exponential function was used with a different exponent. This time, overall 

results were encouraging and therefore continued with further testing. Out of six 

materials, five were reasonably successful. Only material M4 showed some 

resentment to the method. Later on, a statistical confidence interval test was done 

in order to check the closeness of two biaxial data dispersions. Students T table 

was used for this examination. Consequently, a combined data fitting also was 

done with Mooney 2 model and results thus obtained once again were indicating 

to the useful nature of the method. However, Material M4 showed some 

incompatibilities in data fitting results as well. 

 Finally, exact exponent was searched for to use in exponential function in 

each material case. Certain type of lest squire method was used here. In this 

search, it was found out that most of the time exponent value oscillate as around 

0.35. When method used with all material data together, value came to stand at 

0.355 exact figure. 
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CONTRIBUTION TO SCIENCE AND PRACTICE  

 

The thesis aimed at providing a solution to a problematic situation that arises 

when there is not sufficient data sets available for data fitting in the mechanical 

characterization of hyperelestic materials. By providing secondary data set which 

resembles biaxial data, the problem could be overcome with reasonably accurate 

results. Such solution of the problem, contributed to the science in following 

manner. 

• Method could improve the results by eliminating erroneous practice of single 

data set fitting. 

• This is a cost-effective method of mechanical characterization of hyperelestic 

materials. 

• The method reduces aggregate time consumed for characterization by way of 

additional experiments. 

• Eliminate inaccuracies attached with biaxial testing as method nullifies the 

requirement for additional tests.  

• The method open up a new area of research to find extra pure shear data set 

with similar type of method 

• At the same time, method could be further developed to accommodate many 

more materials. 
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