
Web Application for Automatic
Newsletter Distribution

Bc. Jakub Vitásek

Master’s thesis
2021

I hereby declare that:

• I understand that by submitting my Master’s thesis, I agree to the publication of
my work according to Law No. 111/1998, Coll., On Universities and on changes
and amendments to other acts (e.g. the Universities Act), as amended by subse-
quent legislation, without regard to the results of the defence of the thesis.

• I understand that my Master’s Thesis will be stored electronically in the univer-
sity information system and be made available for on-site inspection, and that a
copy of the Master’s Thesis will be stored in the Reference Library of the Faculty
of Applied Informatics, Tomas Bata University in Zlín.

• I am aware of the fact that my Master’s Thesis is fully covered by Act No.
121/2000 Coll. On Copyright, and Rights Related to Copyright, as amended by
some other laws (e.g. the Copyright Act), as amended by subsequent legislation;
and especially, by §35, Para. 3.

• I understand that, according to §60, Para. 1 of the Copyright Act, Tomas Bata
University in Zlín has the right to conclude licensing agreements relating to the
use of scholastic work within the full extent of §12, Para. 4, of the Copyright
Act.

• I understand that, according to §60, Para. 2, and Para. 3, of the Copyright
Act, I may use my work – Master’s Thesis, or grant a license for its use, only if
permitted by the licensing agreement concluded between myself and Tomas Bata
University in Zlín with a view to the fact that Tomas Bata University in Zlín must
be compensated for any reasonable contribution to covering such expenses/costs
as invested by them in the creation of the thesis (up until the full actual amount)
shall also be a subject of this licensing agreement.

• I understand that, should the elaboration of the Master’s Thesis include the use
of software provided by Tomas Bata University in Zlín or other such entities
strictly for study and research purposes (i.e. only for non-commercial use), the
results of my Master’s Thesis cannot be used for commercial purposes.

• I understand that, if the output of my Master’s Thesis is any software product(s),
this/these shall equally be considered as part of the thesis, as well as any source
codes, or files from which the project is composed. Not submitting any part of
this/these component(s) may be a reason for the non-defence of my thesis.

I herewith declare that:

• I have worked on my thesis alone and duly cited any literature I have used. In the
case of the publication of the results of my thesis, I shall be listed as co-author.

• The submitted version of the thesis and its electronic version uploaded to IS/STAG
are both identical.

In Zlín; dated: 11.5.2021 Bc. Jakub Vitásek v.r.

ABSTRAKT

Cílem této práce je analýza existujících řešení ve sféře komerčních platforem pro auto-
matickou rozesílku newsletteru a představení výsledného open-source systému, vyvin-
utého na základě analýzy trhu. Výsledná webová aplikace je implementována v PHP 8
za pomoci Nette Frameworku, Doctrine ORM a Vue.js, a byla publikována na platfor-
mách Github a Packagist. Aplikace nabízí unikátní editor newsletteru a mnoho dalších
funkcionalit, které jsou mezi komerčními platformami dnes již standardní. Při vývoji
byl kladen důraz na bezpečnost aplikace a kvalitu kódu. Výsledkem této práce je sys-
tém, který dalším vývojářům umožní vytvořit si jeho instanci pro své klienty a případně
si jej dále upravovat.

Klíčová slova: Webová aplikace, Nette Framework, Doctrine ORM, Vue.js, mailing
systém, automatická rozesílka newsletteru, open-source

ABSTRACT

This thesis aims to give a comprehensive account of the current commercial mailing
platforms and present the open-source system implemented based on the market analy-
sis. The resulting web application was built in PHP 8 using Nette Framework, Doctrine
ORM and Vue.js, and was published on platforms Github and Packagist. The system
offers a unique mailing editor and many functionalities considered standard in commer-
cial platforms, while focusing on security and code quality. As a result of this thesis,
developers can use this system to create a self-hosted mailing platform for their clients.

Keywords: Web Application, Nette Framework, Doctrine ORM, Vue.js, Mailing Sys-
tem, Newsletter System, Open-Source

In loving memory, this thesis is dedicated to Miroslav Smékal, an exceptional father,
grandfather and husband.

TABLE OF CONTENTS

INTRODUCTION... 11

I THEORETICAL PART ... 12

1 MARKET RESEARCH ... 13

1.1 Global Commercial Platforms ... 14
1.1.1 Mailchimp .. 14
1.1.2 SendInBlue ... 15
1.1.3 Constant Contact .. 15

1.2 Czech Commercial Platforms ... 16
1.2.1 Ecomail .. 17

1.3 Open-source platforms .. 17
1.3.1 phpList .. 17
1.3.2 Mailtrain .. 18
1.3.3 Listmonk .. 19

2 BEST PRACTICES... 21

2.1 User Interface.. 21
2.1.1 Mailing Editor .. 21
2.1.2 Layouts .. 22
2.1.3 Background Styling.. 23
2.1.4 Text Formatting .. 23
2.1.5 Fonts ... 23
2.1.6 Statistics .. 24
2.1.7 Calendar View .. 25
2.1.8 Templates ... 26
2.1.9 Responsive Preview ... 26

2.2 Functionality ... 27
2.2.1 Conversion Tracking .. 28
2.2.2 Bounce Management .. 30
2.2.3 Recipient Rating ... 30
2.2.4 Concurrent Sendouts.. 31
2.2.5 User Segmentation... 31
2.2.6 Sendout Planning .. 31

3 SECURITY ... 32

3.1 PHP Vulnerabilities .. 32
3.1.1 SQL Injection ... 32
3.1.2 Cross Site Scripting (XSS) .. 33

3.1.3 Cross-site Request Forgery (CSRF) ... 34
3.1.4 File Upload... 34
3.1.5 Session Hijacking ... 34

3.2 Password Hashing .. 35

3.3 GDPR... 35

II PRACTICAL PART .. 37

4 MODELS .. 38

4.1 ER Diagram... 38

4.2 Use Case Diagram... 39

4.3 Entities ... 39
4.3.1 Account.. 39
4.3.2 User ... 40
4.3.3 Recipient .. 41
4.3.4 Recipient Group .. 41
4.3.5 Mailing .. 41
4.3.6 Element.. 42
4.3.7 Conversion.. 42
4.3.8 Queue .. 42
4.3.9 Sendout.. 43
4.3.10 Unsubscribe .. 43

4.4 Repositories.. 43
4.4.1 Element Repository ... 43
4.4.2 Mailing Repository .. 44
4.4.3 Recipient Repository.. 44
4.4.4 User Repository .. 44

4.5 Commands .. 45
4.5.1 SendMailingsCommand .. 45

5 MODULES.. 47

5.1 Introduction to Presenters ... 47

5.2 Front Module... 48
5.2.1 Secured Presenter .. 48
5.2.2 Sign Presenter ... 49
5.2.3 Home Presenter ... 49
5.2.4 Datagrid Presenter .. 49
5.2.5 Mailing Presenter .. 49
5.2.6 Recipient / RecipientGroup Presenter .. 50

5.2.7 Sendout Presenter ... 50
5.2.8 Editor Presenter .. 50
5.2.9 Unsubscribe Presenter .. 50

5.3 API Module... 51
5.3.1 Editor Endpoint .. 52
5.3.2 Conversion Endpoint.. 52
5.3.3 Element Endpoint ... 52
5.3.4 Image Endpoint... 52
5.3.5 Queue Endpoint .. 53
5.3.6 RecipientGroup / SelectedRecipientGroup Endpoints 53
5.3.7 Unsubscribe Endpoint .. 54

5.4 Admin Module... 54
5.4.1 BaseAdmin Presenter ... 54
5.4.2 Account Presenter ... 54
5.4.3 User Presenter... 55

6 UI ... 56

6.1 Latte Components.. 56

6.2 Forms... 56
6.2.1 Vulnerability Protection ... 57

7 TECHNOLOGIES ... 58

7.1 Front-end.. 58
7.1.1 Latte.. 58
7.1.2 Sass ... 58
7.1.3 Vue.js... 59
7.1.4 Vuex .. 60
7.1.5 Bootstrap 5 .. 60

7.2 Back-end ... 62
7.2.1 PHP 8.. 62
7.2.2 Doctrine 2 .. 63
7.2.3 Symfony Console ... 65
7.2.4 Redis ... 65

7.3 Nette ... 66
7.3.1 Signals ... 67
7.3.2 Snippets ... 67
7.3.3 MVC Design Pattern ... 67
7.3.4 Factory Design Pattern .. 68

7.4 VCS .. 69
7.4.1 Git .. 69

8 EXTENSIONS .. 70

8.1 Application Structure .. 70

8.2 Third-party Libraries .. 71

9 STATIC ANALYSIS .. 72

9.1 PHPStan .. 72

9.2 PHP_CodeSniffer .. 72

10 AUTOMATED TESTS .. 73

10.1 Acceptance Tests ... 73

10.2 Integration Tests .. 73
10.2.1 Database .. 74
10.2.2 Latte.. 74

10.3 Unit Tests ... 75

11 USER TESTS.. 76

11.1 Add Import File Sample... 76

11.2 Add Test Sendout Function ... 76

11.3 Save Mailing When Clicking on Preview................................. 77

12 PUBLISHING ... 78

12.1 Git / Github ... 78

12.2 Composer / Packagist .. 78

CONCLUSION ... 80

REFERENCES ... 81

LIST OF ABBREVIATIONS ... 84

LIST OF FIGURES... 85

LIST OF TABLES... 87

LIST OF APPENDICES ... 88

TBU in Zlín, Faculty of Applied Informatics 11

INTRODUCTION

Marketing e-mails are the driving force of every e-commerce project. When done
right, mailings can bring potential clients to a website with a high conversion rate at
a fairly low expense. The market is well aware of that fact and takes advantage of
the opportunity. As a result, there are basically no platforms offering a free plan and
all of them have severe limitations for the non-paying customer.

The goal of this thesis is to design and create an open-source platform that will fill
this gap. The resulting system has to provide the standard features like an intuitive
dynamic editor, conversion tracking, user segmentation and sendout planning. On
the technical side, the system has to be written utilizing the latest technology – so
that other programmers can extend it easily to meet their specific needs. There is
also the rising requirement of proper security, since mailing systems often deal with
sensitive personal data.

In the theoretical part, this thesis describes existing commercial platforms and their
respective pros and cons. Furthermore, it goes over existing open-source platforms
and the reason why these are not sufficient for today’s regular user. The next chapter
deals with best practices of the aforementioned platforms, both for user interface (UI)
and the system’s functionality. Finally, the thesis explores all the necessary require-
ments for both application and data security.

The first chapter of the practical part shows results of modeling the system entities
using the Object-relational mapper (ORM) Doctrine 2 as well as via Unified Modeling
Language (UML) diagrams. The next chapter carefully describes important technolo-
gies essential for the implementation process and the resulting system itself. Lastly,
the thesis mentions both interface and unit tests created to allow for seamless CI/CD
processes.

TBU in Zlín, Faculty of Applied Informatics 12

I. THEORETICAL PART

TBU in Zlín, Faculty of Applied Informatics 13

1 MARKET RESEARCH

There are many mailing platforms currently available on the market, ranging from
minimalist dashboards to sophisticated systems. The core features this thesis will be
looking at are these:

• Starting Price: this is the price of the lowest-level premium plan, which unlocks
various extra features and augments the volume of the maximum number of
recipients and groups (in some cases also called audiences).

• Free Plan: if a platform offers a free plan, it means a client can use the system
without providing his credit card information, but with some limitations, e.g.
a certain maximum total number of recipients (also called subscribers).

• Responsive Test: this means that the user is able to preview his mailings in
a mobile, tablet or desktop view (more in Chapter 2.1.9).

• Automation: automation provides a way for the user to schedule e-mails based on
the recipient’s activity – e.g. when a specific link is clicked, the recipient receives
a follow-up e-mail.

• Segmentation: this means the user can categorize recipients into segments based
on conditional statements and use these segments to address mailings (more in
Chapter 2.2.5).

• Planning: when a system provides the planning feature, the user can schedule
the sendout of his mailing to execute at a given time (more in Chapter 2.2.6).

The comparison of these features across the mainstream platforms is shown in the Table
1.1.

Table 1.1 Existing Platforms Feature Comparison

Mailchimp SendInBlue CC Ecomail
Starting Price $29 $25 $20 $4.5
Free Plan 3 3 7 3

Responsive Test 3 3 3 3

Automation 3 3 3 3

Segmentation 3 3 3 3

Planning 3 3 3 3

TBU in Zlín, Faculty of Applied Informatics 14

It is important to note that all the platforms mentioned provide all the core features
that clients expect. This is the basis for best practices analysis in Chapter 2. Outside
of similarities in best practices, there are some difference in the price of the offered
plans and the possibility of creating a free account with a baseline for the maximum
number of subscribers. Other distinctions are of a more cosmetic variety, like a more
original interface or an intuitive mailing planner.

1.1 Global Commercial Platforms

There are many popular world-renowned platforms that come to mind when discussing
mailing systems (also known as newsletter systems). Each of them has its own spe-
cialities and focuses on different types of users. An interesting graph showing trends
in Google searches for mainstream mailing platforms is shown in Figure 2.4.

Figure 1.1 Google Trends Statistics for Selected Platforms

The client distribution of these platforms can be seen in Table 1.2, with Mailchimp
holding the majority of the mailing system market share. Each of these platforms is
unique with its own place on the market, targeting differently sized businesses and
different client types.

Table 1.2 Market Share of Global Mailing Platforms [1]

Platform Market Share
Mailchimp 69.58%

Constant Contact 5.99%
SendInBlue 0.77%

1.1.1 Mailchimp

Dubbed as the "gold standard" [2] among mailing systems, Mailchimp1) is the most
used global commercial platform to date. Founded in 2001, Mailchimp was designed

1)Mailchimp https://mailchimp.com/

https://mailchimp.com/

TBU in Zlín, Faculty of Applied Informatics 15

as an alternative to the oversized, expensive email software of the early 2000s. It
gave small business owners who lacked the high-end tools and resources of their larger
competitors access to technology that empowered them and helped them grow. [3]
What really sets it apart from others is a plethora of integration options, allowing
users to connect their account to applications and tools they are already using. The
main advantages and disadvantages of Mailchimp are summarized in the Table 1.3.

Table 1.3 Pros and Cons of Mailchimp

Pros Cons
Intuitive UI Sendout schedule only in paid version

In-depth statistics High cost of premium plans
Reliable mailing editor

When it comes to the mailing editor, this thesis takes a lot of inspiration fromMailchimp.
Mailchimp’s editor is trendsetting: it is simple, easy to use, reliable and effective. It
provides the right components and allows users to customize necessary attributes.

1.1.2 SendInBlue

This mailing platform is a relative newcomer (being founded in 2012), with the least
market share of all the systems mentioned in this thesis – but that does not mean it
is in any way substandard. SendInBlue2) currently supports more than 180 000 active
clients across 160 countries [4] and primarily focuses on SMBs (Small and Midsize
Businesses). Table 1.4 shows the main pros and cons of SendInBlue.

Table 1.4 Pros and Cons of SendInBlue

Pros Cons
Wide automation range Time-consuming initial setup
A/B testing capabilities Mailing builder needs work

1.1.3 Constant Contact

Constant Contact3) flaunts a minimalist and intuitive interface, providing the majority
of standard features like responsive preview and sendout planning (which works in
the free plan, in contrast to Mailchimp). As a bonus, Constant Contact offers extra
features which allow users to create landing pages, connect e-mail accounts, chat with
website visitors in real time or a complete CRM (Customer Relationship Management).

2)SendInBlue https://www.sendinblue.com/
3)Constant Contact https://www.constantcontact.com/

https://www.sendinblue.com/
https://www.constantcontact.com/

TBU in Zlín, Faculty of Applied Informatics 16

Unfortunately, since the year 2019, users have been voicing complaints4) that there is no
way to cancel their account through the dashboard (only accessible when a credit card
information is provided). Only by calling Constant Contact’s support center and being
on hold for many minutes, people report their account has finally been suspended. This
seems like a very dishonest tactic devised to retain a maximum of clients by Constant
Contact. Pros and cons of the system can be found in the Table 1.5.

Table 1.5 Pros and Cons of Constant Contact

Pros Cons
Intuitive UI Limited automation capabilities

Social media integration Only basic customization of templates
Dishonest behavior of Constant Contact

1.2 Czech Commercial Platforms

For business owners with local branches only, it may be beneficial to use a local mailing
platform. Each country has its own specifics, including different e-shop box solutions,
language abnormalities and even own social networks. In the Czech market, it is a
good idea to use a Czech mailing system for these reasons:

• They offer integrations for local e-shop solutions, like Shopsys5), oXyShop6) and
Shoptet7).

• They are optimized for the local market, enhancing deliverability of mailings.

• They support special traits of the Czech language, like declension.

• They support local name days.

• They can detect the recipient’s gender based on local names.

• They seamlessly integrate into local CSEs (Comparison Shopping Engines) like
Heureka8) and Zbozi9).

• They provide documentation and the system’s interface in Czech language, which
could be a big advantage for users who do not speaking English.

4)User complaints against Constant Contacts https://community.constantcontact.com/t5/
Account-Settings-Billing/Cancel-online/idi-p/330769

5)Shopsys https://www.shopsys.cz/
6)oXyShop https://www.oxyshop.cz/
7)Shoptet https://www.shoptet.cz/
8)Heureka https://www.heureka.cz/
9)Zbozi https://www.zbozi.cz/

https://community.constantcontact.com/t5/Account-Settings-Billing/Cancel-online/idi-p/330769
https://community.constantcontact.com/t5/Account-Settings-Billing/Cancel-online/idi-p/330769
https://www.shopsys.cz/
https://www.oxyshop.cz/
https://www.shoptet.cz/
https://www.heureka.cz/
https://www.zbozi.cz/

TBU in Zlín, Faculty of Applied Informatics 17

1.2.1 Ecomail

This local platform largely focuses on deliverability to free Czech email services like
Seznam.cz and Volny.cz, and it centers its features around e-commerce businesses.
For a relatively new system (founded in 2015 [5]), Ecomail10) surprisingly has all the
important functionality seen in global platforms such as Mailchimp paired with a sleek,
intuitive and reliable user interface. In its free version, a user can have a maximum
of 200 recipients with a ceiling of 200 sent e-mails per month. For unlimited use of
the platform (including no limitation of the amount of sent e-mails), the user has to
upgrade to a paid plan for approximately $4.5 – the price comparison was shown in
Table 1.1.

An interesting feature that Ecomail is currently developing is machine learning11),
which could primarily help big e-commerce accounts to recommend products. With
plenty of order data and with the help of web-tracking, Ecomail would be able to train
the AI (artificial intelligence) to effectively generate product purchase recommendations
for each recipient. This could give Ecomail the edge to be the most advanced mailing
system in Czechia.

1.3 Open-source platforms

Since the resulting PHP12) (Hypertext Preprocessor) application of the practical part
of this thesis (called NWSLTR) is open-source, it makes sense to explore open-source
self-hosted platforms (platforms which allow developers to set up their own instance of
the system). During this research, only few packages met the criteria of a self-hosted
mailing system, with only one being written in PHP.

1.3.1 phpList

The application closest to the attributes of the practical part of this thesis is phpList13).
At the time of writing this, phpList was in version 3.6.0, released on January 11, 2021.
There is a small community around the package, maintaining its core. The package is
decoupled, separating the actual core application from the front facade. Unfortunately,
the whole admin module is largely written without OOP (Object-oriented Program-

10)Ecomail https://ecomail.cz/
11)Ecomail Features https://www.ecomail.cz/features
12)PHP https://www.php.net/
13)phpList https://www.phplist.org/

https://ecomail.cz/
https://www.ecomail.cz/features
https://www.php.net/
https://www.phplist.org/

TBU in Zlín, Faculty of Applied Informatics 18

ming) in pure PHP, mixing HTML with back-end code and using old, ineffective and
disorganized structures. The core application uses Symfony14) with Doctrine15) and is
a little closer to a modern PHP solution.

UI is where phpList has its biggest problems, from an unattractive and outdated user
environment to the mailing editor. Instead of the standard dynamic drag’n’drop user-
friendly editor, there is only a single WYSIWYG-enabled (What You See Is What You
Get) textarea where a user is supposed to build the mailing template, as visible in
Figure 1.2. The whole front-end of this package really lags behind what is expected
in the year 2021, making it usable only for developers who code the HTML template
themselves and just need a means of sending it.

Figure 1.2 Mailing Editor in phpList

1.3.2 Mailtrain

Compared to phpList, Mailtrain16) is a bit more modern package, built on Node.js17)

and MySQL 818) / MariaDB 1019). Even though this thesis looks primarily into PHP
platforms, it is fair to say more about Mailtrain. It offers standard functionality,
ranging from list management, segmentation and a basic template editor.

14)Symfony https://symfony.com/
15)Doctrine https://www.doctrine-project.org/
16)Mailtrain https://mailtrain.org/
17)Node.js https://nodejs.org/en/
18)MySQL 8 https://www.mysql.com/
19)MariaDB https://mariadb.org/

https://symfony.com/
https://www.doctrine-project.org/
https://mailtrain.org/
https://nodejs.org/en/
https://www.mysql.com/
https://mariadb.org/

TBU in Zlín, Faculty of Applied Informatics 19

The problems arise when users try to schedule a specific date for a sendout, which
is not possible, with users requesting this feature since the year 2017. Mailtrain’s
mailing editor uses two open-source packages: GrapeJS20) and Mosaico21). This puts it
a little closer to the current standards of its commercial counterparts – and while these
packages work fine, the editor design is quite outdated (as displayed in Figure 1.3),
generating unattractive e-mail templates.

Figure 1.3 Mailing Editor in Mailtrain

1.3.3 Listmonk

Listmonk22) has possibly the best-designed user interface out of all mentioned self-
hosted open-source mailing packages. It is written in Go23), and paired with detailed
documentation, it provides the essential tools for effective e-mail marketing – from
standard recipient management and web service integration to a robust media library.

Once again, the problem with Listmonk is the editor (shown in Figure 1.4), which
is more on the technical side and requires a skilled user (maybe even a developer)

20)GrapeJS https://github.com/artf/grapesjs
21)Mosaico https://github.com/voidlabs/mosaico
22)Listmonk https://listmonk.app/
23)Go https://golang.org/

https://github.com/artf/grapesjs
https://github.com/voidlabs/mosaico
https://listmonk.app/
https://golang.org/

TBU in Zlín, Faculty of Applied Informatics 20

to actually build an attractive and performance-driven mailing template. The editor
supports the Go templating language to inject the HTML with dynamic data for each
recipient (basically Golang’s macros), providing functionality like the ability to address
the client by name or to create conditional statements based on user information.
Diverging from the best practices of a standard drag’n’drop editor with components,
this platform is not usable by the regular user.

Figure 1.4 Mailing Editor in Listmonk [6]

TBU in Zlín, Faculty of Applied Informatics 21

2 BEST PRACTICES

Webster defines best practices as a procedure that has been shown by research and
experience to produce optimal results and that is established or proposed as a standard,
suitable for widespread adoption. [7] In the context of UI in web applications, this
pertains to component layout, color and contrast decisions, fonts and to the interface
of interactive elements – which applies to both desktop and mobile design. There are
also functional best practices, defining the optimal way of how a feature should work
to keep the system secure, effective and intuitive.

In this thesis, the emphasis is on best practices of the actual components used in mailing
platforms, like the mailing editor, formatting and styling possibilities, statistics or the
predesigned templates. In the next chapters, this thesis provides a detailed analysis
of each key component, its industry standards and a comparison of different solutions
across the mainstream global platforms.

2.1 User Interface

By definition, user interface is a software that is designed to allow a computer user
to interact with a system. [8] In other words, UI is the facade of an application with
which a user interacts to control what the application does. In web applications, this
is called the front-end and compared to back-end development, it is a more on the
softer side of web development skills, since it involves graphic design and requires a
good understanding of the end users – so that the final interface provides users a good
experience. This field of expertise is called UX (User Experience) design. This part
of the thesis will be looking into the ways of how certain functionality is achieved and
how it interfaces with the user.

2.1.1 Mailing Editor

All existing platforms tested in this thesis use a template editor – a dynamic canvas
allowing users to insert components and reorder them at will. While the components
differ (as shown in Table 2.1), the core principles remain the same across all mainstream
platforms. A user selects a component, adds it into the template via drag’n’drop and
subsequently enters the data required. Dragging an inserted component to a different
position also allows for seamless content reordering.

TBU in Zlín, Faculty of Applied Informatics 22

Table 2.1 Components In Commercial Platforms

Mailchimp SendInBlue CC Ecomail
Text 3 3 3 3

Video 3 7 3 3

Image 3 3 7 3

Divider 3 7 3 3

Spacer 7 3 3 3

Button 3 3 3 3

HTML 3 7 3 3

Social 3 3 3 3

Product 7 7 7 3

In the Table 2.1 is a set of components which could be considered the standard in
e-mail marketing systems. These components work with layouts (Chapter 2.1.2) to
enable multiple possibilities of content formatting.

2.1.2 Layouts

Layouts define the template structure as well as the space to insert components into.
They can be full-width or multi-column, usually following the basic grid structure of
Bootstrap1). This poses its own problem, because smaller displays cannot fit four
columns in a row and have to be reformatted in a responsive manner. Figure 2.1 shows
how Ecomail works with layouts.

Figure 2.1 Layouts in Ecomail

1)Bootstrap https://getbootstrap.com/

https://getbootstrap.com/

TBU in Zlín, Faculty of Applied Informatics 23

2.1.3 Background Styling

A mailing template does not necessarily have to be white with black text. Mainstream
platforms provide an option to change background color, but some of them (Constant
Contact) even offer placing a repeating pattern into the background, making the tem-
plate more visually interesting. Apart from a static image, there is even a possibility
to add an interactive background, which changes upon mouse hover – however, as
with everything around mailing templates, only a subset of MUAs (Mail User Agent)
actually support interactivity:

• Gmail / Gmail App

• iOS Mail

• Samsung Mail

• Yahoo

• AOL

2.1.4 Text Formatting

Users expect a possibility to format text paragraphs similarly to Microsoft Word2) or
WYSIWYG editors. For this reason, mainstream platforms provide a way to do this.
The standard solution is a tooltip (a "bubble" floating above the active input field)
with basic formatting options such as bold, italic, underline, paragraph align, heading,
list and link. It is obvious that popular platforms toe the line of compromise – allowing
users to "over-format" could result in inconsistent and unsightly mailings. The typical
tooltip formatting solution can be seen in Figure 2.2.

2.1.5 Fonts

The topic of text formatting (Chapter 2.1.4) is by nature associated with fonts. Much
like formatting text, users are used to the option of changing a font for headers, body
or some emphasized text. Some platforms offer that option – Figure 2.3 perfectly
shows the option to change font in a mailing template with a defined background
pattern (more in Chapter 2.1.3) in Constant Contact template builder. As mentioned

2)Microsoft Word https://www.microsoft.com/en-us/microsoft-365/word

https://www.microsoft.com/en-us/microsoft-365/word

TBU in Zlín, Faculty of Applied Informatics 24

Figure 2.2 Text Formatting In Mailchimp

in Chapter 2.1.4, there are several arguments why it is not the best idea to allow more
advanced formatting options in mailing templates, so some platforms shy away from
the font change option.

Figure 2.3 Font Change Option in Constant Contact’s Text Component

2.1.6 Statistics

Along with the mailing editor (Chapter 2.1.1), this is perhaps the most important
part of the user interface. Here, users can measure the success of their endeavor and
subsequently make the proper changes to better engage with their audience.

That being said, the most rudimentary mailing measurement are opened e-mails. Show-
ing the rate of opened and unopened e-mails, this measurement can indicate if e-mails
reach the recipients and if clients are even interested in the content they receive. Other
metrics range from unsubscribe reasons to number of clicks for each link in the mail-
ing. Figure 2.4 shows the statistics module in SendInBlue, which provides an outlook

TBU in Zlín, Faculty of Applied Informatics 25

of the amount of opened e-mails, a sendout’s clickthrough rate and the number of
unsubscribes caused by a sendout.

Figure 2.4 Campaign Statistics In SendInBlue

2.1.7 Calendar View

Mailings are usually displayed in a list view (also called a datagrid), which provides an
uncluttered way of filtering and managing mailings. From the perspective of planning,
however, it is far more effective to display sendout-ready mailings in a calendar view –
similarly to how Google Calendar shows planned meetings. An example of this module
can be seen in Figure 2.5.

Figure 2.5 Calendar View in ConstantContact

TBU in Zlín, Faculty of Applied Informatics 26

2.1.8 Templates

The majority of the platforms provide predesigned templates so that users do not have
to start fresh each time. These templates equip the user with the ability to make more
significant design changes that cannot be made through the editor. However, once a
template is selected, the user has to follow through or create a new mailing with a
different template.

For example, the template builder in the free version of Mailchimp offers a very small
amount of 5 predesigned templates (as shown in Figure 2.6): 3 of those with white
background a 2 with different background colors. Each templates has its own default
component layout, placeholders and text formatting. Compared to other existing plat-
forms, the templates in Mailchimp are rather conservative and do not provide much of
additional styling.

Figure 2.6 Predesigned Templates Selection in Mailchimp

On the other hand, SendInBlue has a respectable amount of 65 templates in its template
gallery, grouped into special categories like event, e-commerce, transactional or webi-
nar, which makes for easy navigation. Unfortunately, the templates are not searchable
in SendInBlue, so the user has to rely on the templates being accurately categorized.
These templates can be seen in Figure 2.7.

SendInBlue’s templates come with prearranged sections of images, often paired with
headlines matching the style of the template (as shown in Figure 2.8). In terms of
templates, however, ConstantContact takes the prize with 318 searchable predesigned
stylish mailing arrangements.

2.1.9 Responsive Preview

Nowadays, having the possibility to check if everything displays properly on the phone
is a must. More than 70 % of people read their email in a mobile app, with most

TBU in Zlín, Faculty of Applied Informatics 27

Figure 2.7 Predesigned Templates Selection in SendInBlue

checking their email in the morning. [9] That is why all the mainstream mailing
platforms offer this feature (as presented in Table 1.1).

Since the creative process of building a campaign takes place on a desktop device with
a bigger monitor, it is essential to allow users a preview of both mobile and tablet view.
In the UI, this is usually handled via a group of buttons with icons representing different
platform previews, shown in Figure 2.9. The change of platform is done dynamically,
so the page does not have to reload and the user does not lose their progress – this
could be achieved by either AJAX (Asynchronous JavaScript and XML) or by a more
modern solution using Vue.js3) (more in Chapter 7.1.3).

2.2 Functionality

Having covered best practices of the UI, it is crucial to go over functionality features
as well. Each mainstream platform handles them differently and in contrast to the UI,
they are a little harder to analyze without some reverse engineering. Many of these
functions have been adopted in this thesis and their implementation will be explained
in detail further in the text.

3)Vue.js https://vuejs.org/

https://vuejs.org/

TBU in Zlín, Faculty of Applied Informatics 28

Figure 2.8 Advanced Image Layering in SendInBlue Template

Figure 2.9 Responsive
Preview Switcher

2.2.1 Conversion Tracking

Obviously, without some form of conversion tracking, a mailing platform would be
essentially useless – the user has to be able to monitor the performance of each sendout,
so he can make changes based on real data and the behavioral patterns of his clients.
That is why all the mainstream platforms offer a reporting section, showing not only
the number of recipients actually opening the e-mail, but also the clickthrough rate
for each link, since both of these actions are considered a conversion in the mailing
domain. The reporting dashboard of Constant Contact can be seen in Figure 2.10.

Technically, there are multiple ways of being automatically notified when a recipient
opens an e-mail. Most mailing platforms use the pixel method – a 1x1 pixel image,
invisible to the recipient, is inserted to the e-mail template with a specific URL in

TBU in Zlín, Faculty of Applied Informatics 29

Figure 2.10 Reporting Section in Constant Contact

its source (Figure 2.11 shows Ecomail’s implementation). This URL is accessed when
the recipient displays the e-mail with images, prompting the e-mail client to execute
HTTP requests to all images placed in the e-mail’s body. The tracking URL contains
data for the mailing system to be able to assign it to a specific recipient and mailing.
This information then gets persisted into a database layer, while the script returns
the appropriate image headers and an actual blank image. Mailchimp talks about this
technique openly in its knowledge base4). The application created in the practical part
of this thesis uses the pixel method and its implementation is described in Chapter 5.3.5.

Figure 2.11 Tracking Pixel in Ecomail

Albeit a less used technique, another method is Message Disposition Notifications
(MDNs). This technique largely depends on the MUA, which can ignore this header
by default. If the MUA respects the header, it sends a response e-mail containing the
information that the message has been opened. A script can then parse the mailbox

4)Mailchimp Open Tracking https://mailchimp.com/help/about-open-tracking/

https://mailchimp.com/help/about-open-tracking/

TBU in Zlín, Faculty of Applied Informatics 30

and map these responses to the sendouts, basically tracking opened e-mails – achieving
the same functionality as open tracker graphics without relying on recipients to allow
the MUA to display images.

2.2.2 Bounce Management

Maintaining a healthy list of recipients is also an essential item in the domain of mailing
system functionality. Bounces occur when an email can’t be delivered to an email
address. [10] There are two types of bounces:

• Soft bounce: the message is returned to sender for various reasons (e.g. full
mailbox)

• Hard bounce: because an error occurred or the address is invalid, the message
cannot be delivered at all

To fight against spammers, internet service providers (ISPs) monitor bounce rates for
each e-mail account. Sending too many e-mails resulting in a bounce can lead to having
the account blacklisted and even disabled. Bounces can happen with an out-of-date
mailing list, typos in e-mail addresses or errors during recipient import.

All mainstream platforms offer automated bounce management, usually unsubscribing
the bounced e-mail address. This soft-delete approach enables the user to later check
for unsubscribed recipients caused by a bounce and even track bounce rates in the
reporting section.

2.2.3 Recipient Rating

To provide a better overview of recipient engagement, mailing systems have a rat-
ing system in place. Every recipient is assigned a rating based on his engagement,
subscribed time and bounce rate. The user can then use this rating to create seg-
ments to which he can address personalized mailings to. An example use would be
an e-commerce platform rewarding their most engaged recipients with a free shipping
coupon.

TBU in Zlín, Faculty of Applied Informatics 31

2.2.4 Concurrent Sendouts

Perhaps it may seem self-evident, but it is important to mention that a mailing plat-
form should be able to function concurrently. Since businesses can operate based on
engagement analysis and plan their sendouts in the most effective times, there has to
be a way to send more than one mailing at one given time.

2.2.5 User Segmentation

User segmentation is basically advanced grouping of recipients. That means the user
himself creates the candidate rules for each segment, mostly via a graphical represen-
tation of conditional statements. As can be seen in Figure 2.12, this interface allows
users to add conditions and change the logical operator between them – for example,
this segment would only include users who’s MUA is Thunderbird and their locale is
Czech. Created segments are then addressable as the recipient group of a mailing.

Figure 2.12 User Segmentation in Mailchimp

2.2.6 Sendout Planning

Once the mailing template is built, its recipient groups selected and its metadata filled,
the user is able to either send the mailing instantaneously, or decide on a specific date
and time of the sendout. This is important, take this model situation, for example:
the user runs a pizza delivery business. They know that their mailing performs best if
received one hour before lunch on most workdays. So that the marketing team does
not have to remember to send the mailing, the user utilizes sendout planning. Since
they know that it takes about 30 minutes for the sendout to their thousand-member
recipient list to finish, they plans it for 10:30 AM to start from Monday to Thursday
and 5:30 PM on Friday and Saturday.

TBU in Zlín, Faculty of Applied Informatics 32

3 SECURITY

In a system that is dealing with sensitive data like storing thousands of e-mails and
tracking recipient behavior, it is essential to properly secure the data, the environment
and the application against exploits and possible attacker entry-points. This chapter
will address all the main threats when it comes to PHP web applications and what
precautions this application takes to maintain the highest level of security.

3.1 PHP Vulnerabilities

As with any other web development language, PHP is also sensitive to various types of
vulnerability exploits. Apart from implementing the necessary precautions explained
in the upcoming chapters, it is good practice to follow these security-conscious habits:

• Nothing is 100% secure: someone will try something you have not thought
of, or invent a new attack, and then you have to respond. [11]

• Never trust user input: always assume that users are out to get you, and then
take steps to keep bad things from happening. [11]

• Defense in depth is the only defense: applying piecemeal sanitization to
user input forms will just amount to a lot of code that is hard to maintain and
use – however, having a function that cleans user input makes the code usable
and scalable. [11]

• Simpler is easier to secure: if you can look at a piece of code and figure out
what it does in a minute, it’s a lot easier to secure it than if it takes you half an
hour to figure out what it does. [11]

• Peer review is critical to security: a simple peer review process at regular
intervals can keep bad things from happening to you and your application [11]

3.1.1 SQL Injection

Every time you solicit user input to construct a database query, you are permitting
that user to participate in the construction of a command to the database server. A
benign user may be happy enough to specify that he wants to view a collection of men’s
long-sleeved burgundy-colored polo shirts in size large; a malicious user will try to find

TBU in Zlín, Faculty of Applied Informatics 33

a way to contort the command that selects those items into a command that deletes
them, or does something even worse. [11]

Thankfully, all user input in the application created in the practical part comes from
Nette Forms (more in Chapter 6.2) in Nette\Utils\ArrayHash format, and is later
passed into objects via setter methods. These objects are then persisted with the use
of EntityManager::persist() method, which automatically handles all SQL injection
attempts, according to the Doctrine ORM documentation: You can consider all values
on Objects inserted and updated through Doctrine\ORM\EntityManager::persist()

to be safe from SQL injection. [12] Some parts of this application use Doctrine’s
QueryBuilder, which is also implicitly safe from SQL injection with the exception of
the Expression API. This API is not used in this application, so there are no possible
ways of a SQL injection attack.

3.1.2 Cross Site Scripting (XSS)

Unlike SQL injection (discussed in Chapter 3.1.1), which attempts to insert malicious
SQL instructions into a database query that is executed out of public view, XSS at-
tempts to insert malicious markup or JavaScript code into values that are subsequently
displayed in a web page. This malicious code attempts to take advantage of a user’s
trust in a website, by tricking him (or his browser) into performing some action or
submitting some information to another, untrustworthy site. [11] The attacker could
contort the URL to a similar form as shown in Figure 3.1.

Figure 3.1 XSS in URL

Nette Framework uses something called Context-Aware Escaping1), which escapes out-
putted data automatically based on the current context of the code. This makes XSS
virtually impossible to happen. The context check can be turned off when needed
(through a Latte filter noescape), but developers are only advised to do so when the

1)Latte Context-Aware Escaping https://latte.nette.org/en/safety-first

https://latte.nette.org/en/safety-first

TBU in Zlín, Faculty of Applied Informatics 34

variable’s content being outputted cannot be changed or is not supplied by the user –
as mentioned in Chapter’s 3.1 list of security-conscious habits: never trust user input.

3.1.3 Cross-site Request Forgery (CSRF)

A Cross-Site Request Forgery attack is that the attacker lures the victim to visit a
page that silently executes a request in the victim’s browser to the server where the
victim is currently logged in, and the server believes that the request was made by the
victim at will. Server performs a certain action under the identity of the victim but
without the victim realizing it. It can be changing or deleting data, sending a message,
etc. [35]

Nette Framework automatically solves this potential security problem by preventing
requests being sent from another domain. This is beneficial in form submitting or Nette
signals (more in Chapter 7.3.1), which automatically disallow cross-site requests.

3.1.4 File Upload

Many web applications require users to upload files. This poses an issue, since files
are a very dangerous user input and if not handled and validated correctly, they can
lead to the application being exploited. An example of this type of attack would be
uploading a PHP file and reverse engineering the upload script to understand where
user files are stored. Then it is easy to execute this file by accessing it via the browser.
The attacker could then change PHP’s ini settings, run a delete operation on the whole
directory structure or fetch the files and thus break the privacy of all data, which could
mean a leak of sensitive user content.

It is essential to disallow execution of dangerous files in directories where user files
are uploaded (as shown in Figure 3.2) and checking the MIME (Multipurpose Internet
Mail Extensions) type of the files uploaded by users, ending all uploads of potentially
dangerous files with a user error.

3.1.5 Session Hijacking

There are many types of session vulnerabilities, usually connected with stealing or
spoofing a session ID, thus gaining access to the application’s secured sections without
actually being authenticated. This can be fought by setting the right configuration

TBU in Zlín, Faculty of Applied Informatics 35

Figure 3.2 Disallowing Dangerous Files in .htaccess

in PHP’s ini file, however, Nette Framework does this automatically – provided the
ini_set() directive is allowed.

3.2 Password Hashing

The application uses Nette Passwords2) for hashing and verifying passwords. This
class uses PHP’s PASSWORD_DEFAULT method with the algorithmic cost of 12 (unless
configured differently), and can be passed to other classes via dependency injection,
unlike its older version which could only be used statically.

Behind the scenes, the PASSWORD_DEFAULT constant currently defaults to BCRYPT, which
is a password hashing algorithm and it is not the same as just encryption in general. It
is used specifically for encrypting and securely storing passwords. It is used primarily
when a user enters a password and that password needs to be stored in a database in
a way that the original password could not be guessed even if the system was attacked
and the database got compromised. [13]

3.3 GDPR

The General Data Protection Regulation (GDPR) is the toughest privacy and security
law in the world. Though it was drafted and passed by the European Union (EU),
it imposes obligations onto organizations anywhere, so long as they target or collect
data related to people in the EU. The regulation was put into effect on May 25, 2018.
The GDPR will levy harsh fines against those who violate its privacy and security

2)Nette Passwords https://doc.nette.org/en/3.1/passwords

https://doc.nette.org/en/3.1/passwords

TBU in Zlín, Faculty of Applied Informatics 36

standards, with penalties reaching into the tens of millions of euros. [14]

When discussing GDPR security in the context of mailing systems, it is important to
realize that the transactional URLs sent within the e-mail template can be abused.
To unsubscribe a recipient, for example, the common way would be to send a link
structured like this: example.com/unsubscribe/example@gmail.com. It is obvious
where the problem lies now – the attacker can write a script looping through an e-
mail dictionary, send request to this URL and monitor server responses. If the server
returns a 404 code, it can be inferred that this person is not in the recipient database,
and if the server returns a 200 code, the attacker knows this e-mail address exists in
the database. Even if the server always return a unified response code, the resulting
HTML can be parsed and understood by the attacker as well.

That is why this application never sends transactional links containing any personal
information which could be exploited. Instead, every link contains a Queue object
hash, which allows the application to identify the entities involved: e.g. the recipient
who is trying to unsubscribe. This hash cannot be reverse engineered and thus the
unsubscribe link is safe from this type of attack, which would lead to a private data
leak.

TBU in Zlín, Faculty of Applied Informatics 37

II. PRACTICAL PART

TBU in Zlín, Faculty of Applied Informatics 38

4 MODELS

A model represents the underlying logical structure of data in a software application
and the high-level class associated with it. This object model does not contain any
information about the user interface. [15] In this chapter, the thesis will cover the
model representation used in this application – specifically Doctrine entities and their
respective repositories.

4.1 ER Diagram

The Entity-Relationship Diagram (ERD) for this application can be found in Ap-
pendix 1. It maps the attributes of each entity and pairs the foreign key indices to
related entities, showing the cardinality of both sides of the relationship, using the
crow’s foot representation (shown in Figure 4.1 and 4.2). There are also three types of
ER diagrams: conceptual, logical and physical. The one provided in Appendix 1 is a
physical ERD, since it provides column types, primary keys and foreign keys.

Figure 4.1 show the one-to-many relationship between the Element entity and the
Conversion entity. One element can have multiple conversions.

Figure 4.1 One-to-Many Relationship

Figure 4.2 shows the many-to-many relationship between the Recipient entity and the
RecipientGroup entity. Many recipients can have many groups they belong to. This is
represented by a junction table, which is then automatically joined by Doctrine upon
receiving any queries involving recipients and their groups.

TBU in Zlín, Faculty of Applied Informatics 39

Figure 4.2 Many-to-Many Relationship

4.2 Use Case Diagram

Since mailing platforms are role-driven systems, the key attribute of back-end business
logic is the user role. This dictates the user’s capabilities. A standard user is able
to manage recipients, recipient groups and mailing. They are also allowed to switch
accounts (provided they have more than one), view sendout statistics, import recipients
into recipient groups, change mailing status and send test sendout of a mailing. The
administrator role inherits the standard user permissions and extends them with user
and account management capabilities.

In this thesis, management of an entity means browse, read, edit, add and delete rights
– which is known as BREAD, but also as DAVE (Delete, Add, View, Edit), CRAP
(Create, Replicate, Append, Process) or CRUD (Create, Read, Update, Delete). The
different capabilities of all system user roles can be found in the Use Case diagram
(Figure 4.3).

4.3 Entities

Drawing from the diagrams presented in chapters 4.1 and 4.2, the application’s database
is generated automatically based on the schema defined in Doctrine entities. This
chapter lists all entities found in the system, detailing their contents.

4.3.1 Account

It is imperative to start with the Account entity, as it allows users to have multiple
dashboards to manage while keeping all settings, statistics and mailings completely
separate. This way, each account can have its own SMTP configuration and recipients,
thus resulting in unique statistics reports. Apart from separate SMTP configuration,
the Account entity provides an option to select a primary and secondary color to style

TBU in Zlín, Faculty of Applied Informatics 40

Figure 4.3 Use Case Diagram

the mailings in the design of the account brand. Users can also upload a logo that is
shown in the mailing’s header.

4.3.2 User

The User entity allows the application to house many different users, store their cre-
dentials, roles and their owned Accounts. A User’s status and role is mapped via a
class constant rather than a standalone entity, since there is no need to add new roles
and states from the user side. A User can have two roles: administrator or user. An
administrator can manage Users and Accounts, while a basic user can only manage
entities that pertain to mailings only. User status was implemented in case there is a
need for user registration from the front-end. A user would then have to be activated
before they can sign in.

TBU in Zlín, Faculty of Applied Informatics 41

4.3.3 Recipient

To complete a mailing blast, the application needs a set of subscribed recipients to send
to. It is possible to fill out their name and surname, but the only required field is the
recipient’s e-mail – along with pertinence to different recipient groups and a Boolean
flag to mark if the user is still subscribed.

4.3.4 Recipient Group

To be able to target mailings on various unique segments of recipients, it must be
possible to create recipient groups. These just serve as a list of names with clear
demarcation of user accounts they belong to.

4.3.5 Mailing

Perhaps the most important entity in the system, the Mailing entity, represents a
mailing users build in the editor (Chapter 2.1.1). This entity has a set of states it can
be in, with the first one being a concept. Once a user sets the status to ready, the
application fetches the mailing inside of the sendout script and decides if it should be
sent. That only happens if specific conditions (shown in Figure 4.4) are met.

Figure 4.4 The method deciding if a mailing should be sent

TBU in Zlín, Faculty of Applied Informatics 42

Another important part of this entity is the attribute jsonData, which houses all data
from Vue.js sent from the editor. This data is later interpreted into Latte templates,
which are compiled into HTML and sent to the recipient.

4.3.6 Element

To provide statistics not only on e-mail opening but also on click-through rates of
different links in the e-mail itself, it is necessary to route these links through the
application. To achieve this, once a user creates a link inside the editor, its database
counterpart gets created immediately and generates a link to replace the original one.
This way, a recipient click the rerouted link pointing to the application’s URL – there, a
visit is recorded into statistics and the user is redirected to the original link destination.

4.3.7 Conversion

As mentioned in the previous section, the entity Element is the application’s way of
keeping track of recipients’ click-through rate. Usually, this is the ultimate goal of
mailings and thus could be called a conversion. Obviously, the actual conversion only
happens after the recipient not only visits the website, but buys a product or sends an
inquiry – still, the client does this based on the conversion inside of the mailing itself.

The entity Conversion saves every click-through of the component Button, saving the
e-mail of the recipient completing the transaction and the Article where the link resides.
This way, an administrator can view how different buttons perform in a single Article
and make informed placement decision in the future.

4.3.8 Queue

The Queue entity is used in the SendMailingsCommand (more in Chapter 4.5.1) script,
where it is initialized and filled with recipients for each Article getting sent. The queue
is then emptied while maintaining a status to be able to distinguish sent and unsent
rows – this is achieved by a simple Boolean flag. The same applies for the information
if the e-mail was opened or not.

TBU in Zlín, Faculty of Applied Informatics 43

4.3.9 Sendout

This entity serves as a record of individual sendouts of each mailing. A mailing can be
sent multiple times, since clients usually want to test if the mailing displays properly
on all devices before sending it to the production recipient database. The application
notes the time the sendout started and when it ended, indicating the total time it took
for the sendout script to dispatch the queue.

4.3.10 Unsubscribe

It is possible for a client to choose if an unsubscribing recipient is required to enter a
reason of his opt-out. That is why the Unsubscribe entity exists. Otherwise, it would
be sufficient to only toggle the subscription flag in the recipient record directly.

4.4 Repositories

To work with Doctrine entities, the developer can call the entity manager to retrieve
an entity repository via its class name. Repository is a design pattern used to imple-
ment DAL (Data Access Layer) along with DAO (Data Access Objects) and is ideal
for methods fetching a collection of objects or adding some new entity. With Doctrine,
a repository is a class extending EntityRepository – in this application, the general-
ization is furthered by having a base abstract class AbstractRepository from which
all project repositories inherit.

4.4.1 Element Repository

This repository is mainly used to create an Element entity out of a button component.
The method ElementRepository::fromButton(<array>) takes an array variable re-
ceived from the mailing editor via the internal API, checks the necessary attributes
and persists a new Element record in the database. If the entity is persisted success-
fully, the entity is returned; otherwise the method returns null. This method is used to
replace the actual URL of a button with a special link which allows the application to
track the clickthrough rate of each button component. Upon visiting this link, the visit
is noted in the database and the recipient is then redirected to the original destination
specified in the editor.

TBU in Zlín, Faculty of Applied Informatics 44

4.4.2 Mailing Repository

Since this application works with user accounts which can be switched arbitrarily, it
is necessary to fetch entities with respect to the account designation. Mailings follow
the same constraints, and to adhere to the DRY (Don’t Repeat Yourself) principle,
the method MailingRepository::getByAccount(<int>) takes the account ID and
returns the QueryBuilder object. This way, the query can be specified further in each
context, before the results are fetched.

4.4.3 Recipient Repository

Upon sending a mailing, all recipients are paired with the mailing to be sent and pushed
into a sendout queue. This is done via the Queue entity, which maps the recipient to his
e-mail to speed up the sendout algorithm – the script then only has to access a string
object, instead of a whole Recipient entity. This creates a problem when a recipient
wants to unsubscribe: for security reasons (more in Chapter 3), the only identifier sent
inside the actual mailing is a hash, identifying a Queue entity.

Once the application has the Queue entity of the recipient, it has to somehow find
the recipient with that e-mail and unsubscribe him. The important part here is that
the application has to unsubscribe this recipient only for the account of the mailing
which prompted the opt-out. Otherwise, the recipient would be unsubscribed from
all accounts in the database. For these reasons, RecipientRepository has a method
findByQueue(<Queue>, <bool>), which is used in the unsubscribe API endpoint to
find either a subscribed recipient from an account, or an unsubscribed recipient from
an account – since the recipient has the option to resubscribe after filling the opt-out
form.

4.4.4 User Repository

The only important method in this repository returns a User entity object or null, if
no results are found. The method UserRepository::findOneByEmail(<string>) is
used in the UserAuthenticator class, which handles the authentication of a sign-in
request.

TBU in Zlín, Faculty of Applied Informatics 45

4.5 Commands

Usually, bigger clients require thousands of recipients segmented across multiple recip-
ient groups. Consequently, it is not possible to send mailings that take more time to
completely send than a standard PHP timeout directly in the browser. It could be
done in 60 second batches via an HTTP cron job, but that is a fairly unreliable and
outdated solution.

Nowadays, it is easy to interface with a PHP application via the CLI (Command Line
Interface), which provides a virtually unlimited timeout. For this reason, it is a good
idea to write scripts meant to be run periodically as console commands. An ideal
tool for this is Symfony Console (more in Chapter 7.2.3), which creates a wrapper
offering the programmer an easy interface with a single execute method with access
to both input and output. Thanks to that, console commands can be decorated with
arguments and parameters resembling classic bash commands. Figure 4.5 is an example
of a crontab entry that makes the application check the queue every minute.

Figure 4.5 Crontab Entry for Mailing Sendout

4.5.1 SendMailingsCommand

This command is possibly the most indispensable section of code in the whole appli-
cation, since it takes care of the actual sending of e-mails. The command optionally
receives a test flag, but is run without it in production Crontab, as shown in Figure 4.5.
This could have been done with separate methods in a presenter or as a helper function
in a repository, but since there are fewer limitations in CLI, it has been written as a
console command. The command uses a rather simple algorithm which handles a set

TBU in Zlín, Faculty of Applied Informatics 46

of various tasks, shown in the list below:

1. Get all mailings that are ready to send

2. For each mailing, set that status to sending

3. Push each recipient of the mailing into the queue

4. Create a new Sendout instance

5. Start emptying the queue and for each record, either:

• If the application is running in development mode, output a debug string

• If the application is running in production mode, send the e-mail

As mentioned in the item 1 of the list above, it is imperative that the application
fetches correct mailings to be sent. The query in Figure 4.6 returns only those mailings
that are actually ready and not planned to be sent in the future.

Figure 4.6 Algorithm Fetching Mailings Ready for Sendout

TBU in Zlín, Faculty of Applied Informatics 47

5 MODULES

Nette Framework internally allows structuring the application into modules, presenters
and actions. A typical use of this feature would be having a Front module and a CMS
module, logically separating the two different environments. This separation then al-
lows for different user storage and different authentication – so the Front authenticator
can handle sign-in requests of users in the front-end (like clients of an e-shop accessing
their account), and the CMS authenticator can handle administrators accessing the
content management system. Also, modules make creating internal links much more
organized. Inside a module environment, Nette defaults to the current module unless
explicitly specified, so a link like Presenter:action is enough. However, if a link
should traverse to another module, it can be specified as Module:Presenter:action.
The structure of the application needs to adhere to these principles, with some room
for customization – more on this in Chapter 8.1.

5.1 Introduction to Presenters

Nette Framework is built upon the MVC (Model-View-Controller, more in 7.3.3) de-
sign pattern with some slight changes – for example, controllers are called presenters.
A presenter fetches data from models and provides it to a view template. Technically,
presenter is a class that represents a specific page of a web application, such as home-
page, product or sign-in page. A presenter’s task is to process a request and return a
response (which can be an HTML page, JSON or even a redirect). [16]

In Nette, presenter is any class that implements the class Application\IPresenter.
A presenter has its own life cycle, consisting of methods called in a specific order, as
shown in Figure 5.1. These methods do not need to be implemented unless there is a
need to override them, e.g. for checking if the user is authorized to view the page in the
startup() method or to send specific variables to the template in the render<View>

method.

There is a small semantic difference between action<Action> and render<View>meth-
ods, which this application utilizes. Since the action method runs before the render
method, it makes sense to fetch all the data from models and prepare them into class
attributes, which are then accessible in the render method where they just get injected
into the template. Another important feature of a presenter is signal handling, which
is principally used for asynchronous calls from AJAX. Chapter 7.3.1 visits this topic
in detail.

TBU in Zlín, Faculty of Applied Informatics 48

Figure 5.1 Nette Presenter Life Cycle

5.2 Front Module

In this application, there is basically no module completely accessible without the user
being authenticated. Commonly, the Front module would be public, showing the client-
side of a web application. However, to be able to use the functions of this system, the
user has to be authorized to make changes in the system, which is only possible if the
user is authenticated.

5.2.1 Secured Presenter

All presenters are classes implementing the Application\IPresenter interface and
can extend any classes meeting this constraint. This inheritance is useful, since many
presenters require the same services from the DI (Dependency Injection) container.
Also, it is possible for the inherited abstract presenter to provide common variables
(like the website title, for example) to the template. For this reason, all Front module
presenters extend SecuredPresenter to some degree, because it checks if the user is
authenticated and implements some basic functionality necessary for all other presen-
ters.

TBU in Zlín, Faculty of Applied Informatics 49

5.2.2 Sign Presenter

This presenter, even though it extends Secured Presenter (Chapter 5.2.1), does not
require the user to be authenticated. If it did, there would be an endless cycle of
redirects. That is why SignPresenter actually overrides the checkRequirements()

method, where the authentication check resides in the inherited presenter. The impor-
tant fact to mention here is that the session section account has to be purged with
each sign-in or sign-out, so that the user does not spoof the session data with different
account’s ID, or, if the account was deactivated, the account’s ID is not stuck in the
session data.

5.2.3 Home Presenter

HomePresenter is virtually the application’s dashboard. It only has one action, fetching
various statistics data and condensing it into an ArrayHash variable, which is then sent
to the template. The template then uses Chart.js1) to present the data in graphs and
charts.

5.2.4 Datagrid Presenter

This is an abstract presenter, which initializes the QueryBuilder and applies all filter
and sort rules based on inherited persistent2) class attributes. It also contains the meth-
ods which change the sort type and direction, or the filter query and field. Datagrid
presenter also houses the handleChangeStatus method, which provides the function-
ality of switching a status type to a different value, and the handleToggleField field,
working similarly but only in Boolean context, toggling a field to a desired bit value.

5.2.5 Mailing Presenter

This presenter extends the class DatagridPresenter, and is a typical list-view control
node, sending an array of Mailing entities to be listed in the datagrid. It also creates
the SendTestForm component, which allows users to provide a test e-mail address to
instantly send a preview of the mailing. Also, since the Editor presenter (Chapter 5.2.8)
often persists empty entities, it is essential that the list does not show empty records
with no data filled. This is achieved in the template with a Latte macro called skipIf.

1)Chart.js https://www.chartjs.org/
2)Nette Persistent Parameters https://doc.nette.org/en/3.1/components

https://www.chartjs.org/
https://doc.nette.org/en/3.1/components

TBU in Zlín, Faculty of Applied Informatics 50

5.2.6 Recipient / RecipientGroup Presenter

These presenters not only provide the data to list the entities in datagrid view, but
also automatically fill the entity form if an existing record is being edited. This is
achieved with the method actionForm(<?int>), which can receive an ID of the record
to be edited. If no ID is supplied, the application assumes the request is to create
a new entity. This principle is repeated in all presenters that create an entity form
component.

5.2.7 Sendout Presenter

Apart from the list-view data fetching, this presenter assembles the statistics data for
the sendout detail template, which shows a chart representing the rate of opened /
unopened e-mails. Another information this presenter shows is the click-through rate
of each Element entity present in the mailing of the sendout.

5.2.8 Editor Presenter

EditorPresenter houses an interesting algorithm – since the Vue.js editor (more in
Chapter 7.1.3) works with progressive saving and can be essentially left unfilled, it is
important to first create the entity that all the entered data will pertain to. If no
ID is provided to the EditorPresenter::actionDefault(<?int>) method, the script
automatically creates a new empty Mailing entity and redirects the user to the same
method, but now with an ID. The user does not notice any unusual behavior. Also,
since the user is able to request a preview of the mailing template he built in the
editor, the method EditorPresenter::actionPreview(<int>) handles this request
and supplies the HTML of the Mailing entity to the template.

5.2.9 Unsubscribe Presenter

This presenter is yet another instance of a presenter overriding the checkRequirements()
method so that it is accessible without authentication. This is because the presenter’s
templates need to be viewed by a recipient who will not have an account in the mailing
system and thus cannot sign-in. First, the recipient is identified by a combination of
Queue hash, Mailing ID and also an Unsubscribe ID (which is created in the endpoint
one step before – more in Chapter 5.3.7). The presenter then automatically fills the

TBU in Zlín, Faculty of Applied Informatics 51

opt-out form (if shown) with the recipient data. If the recipient made a mistake and
wants to resubscribe, he is given a choice with a button that displays after a successful
opt-out. The algorithm then finds the Unsubscribe entity of that recipient, changes the
Boolean value of the resubscribe field and amends the subscribed flag in the Recipient
entity.

5.3 API Module

Often times, modern applications need a way of communicating between front-end and
back-end – in this case, PHP with Javascript. In contrast to Laravel3), Nette does not
provide API features out of the box, so it is beneficial to use a community package
supplementing this behavior. In this application, the package contributte/api-router
is used to create RESTful API routes. In this context, RESTful means the developer
can specify which HTTP method will the endpoint support, and handle the supplied
data accordingly. This can be done either with annotations or inside Nette Router.
Figure 5.2 is an example of this routing.

Figure 5.2 API Router Implementation

Essentially, these endpoints are just standard presenters with predefined methods like
actionRead, actionCreate and so on. The Contributte package then makes sure that
a GET request is sent to actionRead, POST request to actionCreate, etc. In the
following chapters, there are examples of the endpoints and their purpose.

3)Laravel https://laravel.com/

https://laravel.com/

TBU in Zlín, Faculty of Applied Informatics 52

5.3.1 Editor Endpoint

Starting with the most important endpoint, the API\Editor class, this endpoint sup-
ports a POST and a GET HTTP request. With a GET request, the endpoint receives
a JSON string from Vue.js containing the editor contents, followed with a Mailing ID.
Once decoded from JSON, the endpoint checks if the data is consistent and ready to
be persisted. Apart from editor’s components, the mailing meta data like the title or
the subject are parsed and saved into the database.

5.3.2 Conversion Endpoint

As briefly mentioned in Chapter 3 detailing the application’s security measures, the
actual recipient’s e-mail is not present in any links inside the mailing – instead, the
sendout algorithm creates a unique hash for each Queue entity, which is later used to
identify the recipient internally. A request to the link’s destination is handled by the
API module, so when the recipient clicks any button link, they are sent to the method
API\Conversion::actionRead. This method receives two strings: a Queue hash and
the ID of the clicked Element entity. This gives the application enough data to create a
new Conversion entity, create the correct relationships and persist it – but only for the
first click, so an attacker cannot overflow the database with bogus conversions. After
that, the recipient is redirected to the original URL of the button.

5.3.3 Element Endpoint

This is an internal API endpoint which handles the creation of an Element entity from
a button using a method detailed in Chapter 4.4.1. Upon successful entity persistence,
the endpoint returns the link to replace the original one. This link is then sent inside
the e-mail template and delivered to the recipient. If clicked, the endpoint described
in Chapter 5.3.2 handles the redirect to the original link.

5.3.4 Image Endpoint

Another internal API endpoint, API\Image, works with the Vue.js editor to upload a
user-provided image. In the HTTP POST request, Vue.js sends base64 encoded image
data. The endpoint’s role is to convert it to an object of the Utils\Image class and
save it to the server, returning its path to Vue.js, which then displays it in the editor.

TBU in Zlín, Faculty of Applied Informatics 53

5.3.5 Queue Endpoint

Perhaps a more interesting endpoint than others, this public endpoint handles the mon-
itoring of mailings being opened. As detailed in Chapter 2.2.1, this application uses
the pixel method to track opened e-mails. This is achieved by inserting an image with
a URL with this endpoint as a destination to the end of the e-mail template. When
the recipient accesses it upon displaying all images in the e-mail (basically opening
it), the endpoint is sent the Queue hash and the Mailing entity ID. With this infor-
mation, the application is able to change the flag opened in the Queue entity to true.
After persisting the edited entity, the endpoint returns a binary response, as show in
Figure 5.3.

Figure 5.3 The Pixel Method Implementation

5.3.6 RecipientGroup / SelectedRecipientGroup Endpoints

These two internal endpoints help the Vue.js editor to work with recipient groups.
While the API\RecipientGroup endpoint returns all possible groups for the selected
account, the API\SelectedRecipientGroup returns already selected recipient groups
for a mailing. First, the Mailing entity is found via an ID sent as a parameter of
the GET request. The endpoint’s algorithm then finds the correct entity and returns
the result formatted as a JSON array, containing the ID and title of each selected
RecipientGroup.

TBU in Zlín, Faculty of Applied Informatics 54

5.3.7 Unsubscribe Endpoint

API\Unsubscribe is a very important endpoint, since it provides the functionality of
opting out of receiving mailings, which is legally required to send marketing e-mails.
The method API\Unsubscribe::actionRead() takes a Queue hash and a Mailing ID
to identify the recipient to unsubscribe. Using the RecipientRepository’s method
findByQueue (described in Chapter 4.4.3), the script unsubscribes all the found recipi-
ents and sets their subscribed attribute to false. If the account of the mailing has a set
unsubscribe redirect URL, the recipient is then redirected to that URL. Otherwise, the
recipient is redirected to a default Unsubscribe template – detailed in Chapter 5.2.9.

5.4 Admin Module

The application offers a separation of user roles, defining a user and an admin role.
Admin users are allowed to manage other users and also manage accounts. A normal
user can only edit his own profile with some limitations. This module is designed so
that the developer self-hosting this application can create multiple accounts for his
various clients.

5.4.1 BaseAdmin Presenter

All Admin module presenters extend the BaseAdminPresenter class. This class takes
care of checking the role of the user via the method User::isAdmin() with one excep-
tion – if a user is accessing the User form of his own user account, the script lets them
through.

5.4.2 Account Presenter

This presenter handles the classic list view and the entity form actions, which work
the same as in all other presenters. The interesting part of this presenter is a special
handle method which deletes a logo from an account. First, the script finds the account
and checks if the current user is authorized to manage the Account entity in question.
If this check is successful, the physical file is deleted from the application using the
Utils\FileSystem class. Then the logo attribute of the Account entity is set to null
and the entity is persisted.

TBU in Zlín, Faculty of Applied Informatics 55

5.4.3 User Presenter

The User presenter only provides a list view and the entity form without any special
methods. If the form method is supplied a user ID, the form action provides the right
default values to the form, as seen in Figure 5.4.

Figure 5.4 User Form Default Values

TBU in Zlín, Faculty of Applied Informatics 56

6 UI

The UI section of this application can be found in the app/UI directory, and serves the
purpose of storing reusable components working across all modules. It contains Latte
templates, form factories and all modal windows.

6.1 Latte Components

When a Mailing entity is to be sent, it has to be converted into an HTML template
in order to be viewed in a MUA. For this reason, every Vue.js editor component has a
Latte counterpart in the app/UI/Components section. There is also a common layout
file inside of which all the components are included. The layout Latte file has important
CSS definitions, ensuring the template’s styling will work in most e-mail clients.

All Latte components are built as HTML tables because of big differences between
rendering engines of MUAs. Although this started to change recently, especially with
Gmail’s major update last year, some email clients still do not support a lot of HTML
and CSS. The most notable: Microsoft’s Outlook family of email clients, which use
Microsoft Word as their rendering engine. Since Outlook is still hugely popular, email
designers have to use tables in some capacity if they want their campaigns to display
properly to subscribers. [17] This is clearly visible in a code snippet in Figure 6.1, which
is the simplest of all the Latte mailing components used in this application. Notice
the table scaffolding with inline styling and non-semantic use of HTML elements –
something that would not pass as modern HTML code nowadays.

6.2 Forms

Every form in this application was implemented using the Application\UI\Form class
– a package which allows developers to define fields, field types, rendering, event han-
dling and validation rules (both client-side and server-side), all within one class. Nette
Framework documentation primarily shows how to use Nette Forms in presenters, in-
cluding their creation and event handling. However, since all forms are essentially Nette
components, this application uses factory design pattern1) (more in Chapter 7.3.4) to
create the form separately and then only use the createComponent<Name> method in
the presenter. This decouples the form from the presenter in a more intuitive way

1)Factory Design Pattern https://www.oodesign.com/factory-pattern.html

https://www.oodesign.com/factory-pattern.html

TBU in Zlín, Faculty of Applied Informatics 57

Figure 6.1 Latte Template of the Paragraph Component

and also makes it possible for all form classes to reside in the UI section. Because all
components are created in separate methods, the code is cleaner and easier to read.

6.2.1 Vulnerability Protection

According to its documentation, Nette Framework puts a great effort into security.
Since forms are the most common user input, Nette forms must be impenetrable.
In Nette forms, all is maintained dynamically and transparently, nothing has to be
set manually. In addition to protecting the forms against attacks targeted at well-
known vulnerabilities such as Cross-Site Scripting (XSS, Chapter 3.1.2) and Cross-Site
Request Forgery (CSRF, Chapter 3.1.1), it does a lot of small security tasks that the
developer no longer has to think about. [18] More information about Nette Framework’s
security can be found in Chapter 3.

TBU in Zlín, Faculty of Applied Informatics 58

7 TECHNOLOGIES

Undoubtedly, today’s web application development is largely based on using the right
technologies for the task at hand. These tools help programmers streamline their work
without having to reinvent the wheel, so to speak, and they come in two main categories
– front-end and back-end.

7.1 Front-end

Starting with front-end technologies, web applications can utilize a plethora of client-
side tools that help style the content or make it more dynamic. The core of these
technologies is the combination of HTML for markup, CSS for styling and JavaScript
for interactivity. To make programming more effective, it is a good idea to use extension
languages or frameworks, which offer a superstructure allowing developers to trivially
solve everyday tasks that are achieved with difficulty in vanilla versions.

In this thesis, HTML has been streamlined with a template engine which ships with
Nette Framework: Latte (Chapter 7.1.1). As for styling, the CSS preprocessor Sass
(Chapter 7.1.2) has been used. Lastly, the JavaScript framework Vue.js (Chapter 7.1.3)
is utilized to implement the interactive mailing editor.

7.1.1 Latte

This template engine is a great help in separating the controller layer from the view
layer – in other words, there is no PHP mixed in HTML files, which makes for unclut-
tered application structure following the MVC design pattern (more in Chapter 7.3.3).
Apart from perfectly integrating into Nette Framework, Latte is secure: it is the first
PHP templating engine that introduced context-aware escaping and link checking. [19]

7.1.2 Sass

Sass makes writing CSS easier not only by introducing syntactic sugar, but by allowing
the developer to define variables and use them across the stylesheets. This allows for
high reusability and scalability of stylesheets – without a preprocessor, CSS is very
difficult to maintain.

There are a number of CSS preprocessors on the market, but three are on the top,

TBU in Zlín, Faculty of Applied Informatics 59

according to Slant.co. [20] With Sass leading the way, Stylus and Less are not far
behind. It could be argued that Sass gained popularity since Bootstrap ships with Sass
and includes some interesting Sass maps.

7.1.3 Vue.js

Over the last few years, JavaScript frameworks have been a highly discussed topic in
web application development. The market is swarming with different JS frameworks
and there are even some frameworks on top of frameworks (Nuxt.js for Vue.js and
Next.js for React), so it is easy to get confused with this wide selection. This is
not necessarily a bad thing, because improving JavaScript was long overdue. jQuery1)

(2006) was one of the first mainstream JavaScript frameworks, but is now being replaced
by newer frameworks or Vanilla JavaScript, currently receiving ECMAScript updates
every year, all the while rendering jQuery obsolete and needlessly cumbersome.

One might speculate that the tidal wave of JS frameworks was foretold by Jeff Atwood,
one of StackOverflow’s founders, who famously blogged this statement:

Any application that can be written in JavaScript, will eventually be written
in JavaScript. [21]

Perhaps the most interesting and important dynamic front-end technology used in this
thesis, Vue.js, is the driving force of the mailing editor and all of its components.
The Vue paradigm assembles a page out of smaller components which can be freely
combined – each component has its own microcosm with own HTML, CSS and JS.
This makes it ideal for the mailing system’s editor, since the user essentially stacks
components after each other. This way, the markup and styling is contained to aid in
decoupling of JS code.

The whole editor is a Vue component of its own, providing a list of sub-components a
user can add to the editor canvas. This is achieved using the v-on directive, which lis-
tens to DOM (Document Object Model) events and runs specified JavaScript code when
the events are triggered. [22] In this case, each components has its own v-on:click

directive pointing to a method. The algorithm in these methods is analogous in each
sub-component – it consists of saving the index of the latest component added, initial-
izing the new item with respective parameters and committing the item to the Vuex2)

1)jQuery https://jquery.com/
2)Vuex https://vuex.vuejs.org/

https://jquery.com/
https://vuex.vuejs.org/

TBU in Zlín, Faculty of Applied Informatics 60

store (more in 7.1.4).

To provide a dynamic preview, the main Vue component iterates over all the compo-
nents in the Vuex store and calls their template, providing the component’s type and
key. This is necessary, since there can be multiple components of the same type. Each
component is then rendered according to the rules encapsulated in the component’s
code, which makes for a very clean and scalable JavaScript code. If a developer decides
to create new components, e.g. a gallery, it is easy to do so following this paradigm.

7.1.4 Vuex

This application uses Vuex 3 to introduce the state management pattern to Vue.js.
It serves as a centralized store for all the components in an application, with rules
ensuring that the state can only be mutated in a predictable fashion. [23] This proves
useful when changing the state of the editor body or reordering the editor components.
For each of these actions, there is a Vuex mutation carrying it out inside the Vuex
store.

7.1.5 Bootstrap 5

Bootstrap is an HTML, CSS and JS framework, offering a toolbox of useful libraries
that make developing a responsive and semantic front-end code easier. These are some
of the reasons to use Bootstrap:

• The web application is abstracted into a set of components and layouts

• Bootstrap consolidates3) differences caused by distinct rendering engines of browsers

• It provides a grid layout and flex utilities4), making it easy to define different
layouts for each display width

• Bootstrap ships with its own JS functions like collapse5), modal6), tooltips7) etc.
3)Bootstrap Reboot https://getbootstrap.com/docs/5.0/content/reboot/
4)Bootstrap Flex https://getbootstrap.com/docs/5.0/utilities/flex/
5)Bootstrap Collapse https://getbootstrap.com/docs/5.0/components/collapse/
6)Bootstrap Modals https://getbootstrap.com/docs/5.0/components/modal/
7)Bootstrap Tooltips https://getbootstrap.com/docs/5.0/components/tooltips/

https://getbootstrap.com/docs/5.0/content/reboot/
https://getbootstrap.com/docs/5.0/utilities/flex/
https://getbootstrap.com/docs/5.0/components/collapse/
https://getbootstrap.com/docs/5.0/components/modal/
https://getbootstrap.com/docs/5.0/components/tooltips/

TBU in Zlín, Faculty of Applied Informatics 61

Since this project focuses mainly on solid back-end functionality and intuitive UI, a
CSS framework like Bootstrap is the optimal choice, making it easy to create modern,
responsive and performance-driven templates effectively.

Grid Bootstrap’s grid system uses a series of containers, rows, and columns to layout
and align content. [24] There are six different grid breakpoint tiers in Bootstrap:

• Extra small (XS)

• Small (SM)

• Medium (MD)

• Large (LG)

• Extra large (XL)

• Extra extra large (XXL)

These breakpoints have predefined widths across which the grid changes, as presented
in Table 7.1.

Table 7.1 Bootstrap Breakpoints

XS SM MD LG XL XXL
Display Width <576px ≥576px ≥768px ≥992px ≥1200px ≥1400px

Container None (auto) 540px 720px 960px 1140px 1320px
Class prefix .col- .col-sm- .col-md- .col-lg- .col-xl- .col-xxl-

Modal In some cases, it is beneficial to use modal windows instead of redirecting the
user to a different page. This application uses this approach upon prompting an entity
deletion for the user to confirm they actually intend to remove the record. The same
principle applies to the import of recipients into groups, displaying the import form
inside of a modal window rather than a separate page. The last instance of using a
modal is when a user prompts a test sendout of a mailing, so they can specify the
desired test e-mail address.

TBU in Zlín, Faculty of Applied Informatics 62

7.2 Back-end

The server-side part of this application is responsible for the functionality of each entity
and their interactions. It also provides the database layer, querying the information
necessary in each controller, and implements new entry points that interface with the
application – such as a CLI.

7.2.1 PHP 8

Web applications can be written in one of many different server-side programming
languages, the popular ones currently being PHP8), Python9), Ruby10), C#11) and
NodeJS12). Each of these languages then offer multiple frameworks extending the us-
ability of that language.

The last years have witnessed a significant overhaul of PHP’s internals, bringing it
on par with other modern back-end web development languages. The most important
changes are these:

• 5.3: Namespace support

• 5.4: Trait support

• 7.0: Scalar type declarations, return type declarations

• 7.1: Nullable types, void functions

• 7.2: Abstract method overriding

• 7.4: Typed properties in classes

• 8.0: Union types, named arguments

• 8.1: Enums

PHP received a lot of censure in its older versions – mainly originating in Wordpress’
core, having been written without OOP and never being refactored to adhere to modern

8)PHP https://www.php.net/
9)Python https://www.python.org/

10)Ruby https://www.ruby-lang.org/en/
11)C# https://docs.microsoft.com/en-us/dotnet/csharp/
12)NodeJS https://nodejs.org/en/

https://www.php.net/
https://www.python.org/
https://www.ruby-lang.org/en/
https://docs.microsoft.com/en-us/dotnet/csharp/
https://nodejs.org/en/

TBU in Zlín, Faculty of Applied Informatics 63

PHP programming principles. Apart from Wordpress, PHP is used by 79.2 % of all the
websites whose server-side programming language is known. [25] It can be stipulated
that this created a great deal of legacy code not functioning properly, furthering the
disrepute of PHP.

This application is written in PHP 8.0, utilizing strict typing, typed properties in all
classes, return type declarations and of course, traits and namespaces. All of this makes
PHP a dependable object-oriented web development language, hopefully mending its
bad reputation.

7.2.2 Doctrine 2

A big part of web development is modeling, creating and querying the database layer.
Since the application’s code follows the OOP paradigm closely, it makes sense to also
use classes to represent database tables – as separate entities. In Doctrine 2, entities
are defined as PHP objects that can be identified over many requests by a unique
identifier or primary key. [26] The workflow of a typical ORM is as follows:

1. Writing the entity class, defining its name, attributes and methods

2. Specifying data types for both PHP and Doctrine via annotations

3. Specifying relations for one-to-one, one-to-many, many-to-one and many-to-many
related attributes

4. Generating the schema (in SQL) of the actual database via the ORM’s schema
tool

5. Migrating the generated queries

6. Working with the database via an entity manager and repositories

Working with Doctrine 2 is effective, since the developer only has to write the code
once. For example, with Laravel’s Eloquent database layer, the developer needs to
write a database migration and an Eloquent model, tying the database and application
layers together by Laravel’s auto-wiring magic. Even then, the developer has to repeat
his work, create getter / setter methods and specify type-hints in order to approximate
the ease of use of ORM entities. The entities used in this thesis are described in
Chapter 4.3.

TBU in Zlín, Faculty of Applied Informatics 64

To easily integrate Doctrine with Nette Framework, this application uses Nettrine
package developed by Contributte, a famous group of Czech developers creating open-
source code extending Nette Framework.

Traits Some entity attributes would be repeated over multiple classes – e.g. the en-
tity’s title, active flag, created/updated time etc. Traits are a different way of achieving
composition, which is usually done over inheritance. When there is need of different
combinations of features, traits are the ideal solution. It also makes sense from the re-
sponsibility point of view, since traits assemble the parts of one class without spreading
the responsibility to other classes.

Life-cycle Callbacks Doctrine offers event-based life-cycle callbacks, which are en-
abled with a simple annotation of the entity class (HasLifecycleCallbacks). Once
an entity is persisted, Doctrine dispatches a set of events:

• preRemove - The preRemove event occurs for a given entity before the respective
EntityManager remove operation for that entity is executed. It is not called for
a DQL DELETE statement. [26]

• postRemove - The postRemove event occurs for an entity after the entity has
been deleted. It will be invoked after the database delete operations. It is not
called for a DQL DELETE statement. [26]

• prePersist - The prePersist event occurs for a given entity before the respec-
tive EntityManager persist operation for that entity is executed. It should be
noted that this event is only triggered on initial persist of an entity (i.e. it does
not trigger on future updates). [26]

• postPersist - The postPersist event occurs for an entity after the entity has
been made persistent. It will be invoked after the database insert operations.
Generated primary key values are available in the postPersist event. [26]

• preUpdate - The preUpdate event occurs before the database update operations
to entity data. It is not called for a DQL UPDATE statement nor when the com-
puted changeset is empty. [26]

• postUpdate - The postUpdate event occurs after the database update operations
to entity data. It is not called for a DQL UPDATE statement. [26]

TBU in Zlín, Faculty of Applied Informatics 65

• postLoad - The postLoad event occurs for an entity after the entity has been
loaded into the current EntityManager from the database or after the refresh
operation has been applied to it. [26]

In this application, all entities have a createdAt and updatedAt attribute. The
createdAt setter listens for the prePersist event, while updatedAt listens for the
preUpdate event. Once triggered, the attribute is set to the current DateTime.

Query Builder While repositories are a great solution for simple fetching of object
collections, Doctrine’s query builder is optimal for complex queries across multiple
joined entities. A QueryBuilder provides an API that is designed for conditionally
constructing a DQL query in several steps. [26] The DQL is then interpreted into SQL
and sent to the database layer, executing the resulting query. With fluent syntax, it is
easy to assemble the desired query dynamically. Furthermore, order does not matter,
so a GROUP BY can be called before a WHERE expression – something that would cause
an error in pure SQL.

7.2.3 Symfony Console

The command line is a very important interface for this application, since it allows
code to run without the constraints of usual browser timeouts and memory limits.
Symfony Framework has a very efficient and convenient console component, which can
be easily used with Nette via the contributte/console package. An added bonus is that
the commands can be fluently tested, asserting the console output or the command’s
return value.

As expected with CLI commands, arguments and options can be specified, changing
the control flow of the command. A good example is the SendMailingsCommand class
in this application – when started with the option --test, the command does not send
any actual e-mails but goes through a dry-run, outputting all e-mail addresses that
would get the e-mail in production mode.

7.2.4 Redis

Redis is an open-source (BSD licensed), in-memory data structure store, used as a
database, cache, and message broker. Redis provides data structures such as strings,

TBU in Zlín, Faculty of Applied Informatics 66

hashes, lists, sets, sorted sets with range queries, bitmaps, geospatial indexes, and
streams. [27] This application uses a Redis client called Predis13) in its Nette-friendly
implementation by Contributte14). There is a cache connector for Redis in Nettrine
which handles the right configuration of saving temporary files and accessing them
promptly.

7.3 Nette

With PHP, it is good practice to use a framework. Frameworks allow fast development
and provide well structured, maintainable code base, which makes progressive devel-
opment much easier, as the application’s core is scalable by default. PHP frameworks
usually take charge of low-level security, fixing vulnerabilities and security flaws that
arise in web development time and again (as explained in detail in Chapter 3). Frame-
works also enforce using design patterns, such as factory and MVC (more in Chapters
7.3.3 and 7.3.4), or even the OOP paradigm.

This thesis uses Nette Framework (developed in Czechia), which is essentially a set of
decoupled packages working together. In terms of popularity, Nette is certainly not the
most used framework on the planet – it is not even included in mainstream surveys, as
seen on the graph in Figure 7.1.

Figure 7.1 Jetbrains Survey of PHP Framework Use

Global polls are steadily dominated by Laravel, closely followed by Symfony. In the
local optic, however, Nette Framework is overall more popular than Laravel, as seen in
the Czech Google Trends chart in Figure 7.2. Next chapters are going to summarize
some interesting features of Nette Framework.

13)Predis https://github.com/predis/predis
14)Contributte Redis https://github.com/contributte/redis

https://github.com/predis/predis
https://github.com/contributte/redis

TBU in Zlín, Faculty of Applied Informatics 67

Figure 7.2 Google Trends Chart Comparing Laravel and Nette Popularity in Czechia

7.3.1 Signals

A signal is similar to a normal link in Nette Framework with a small difference – it
extends to all classes extending UI\Control, offering a more universal way of creating
links. A signal is always executed in the context of the current presenter, so it is
frequently used in components. A good example could be a ProductList component
which creates a pagination subcomponent. When a user clicks the next page button,
a signal has to be sent to the subcomponent (ideally via an asynchronous call using
AJAX), which would be impossible with normal Nette links.

7.3.2 Snippets

Nette provides an interesting interface to deal with asynchronous changes of parts of
the web page. Using a pair macro, the developer defines so-called snippets, which
represent parts of code that can be redrawn upon request. This could be the counter
of products placed in the cart in an e-commerce environment, which needs to change
asynchronously once the amount of items in the cart changes. This application uses
snippets to open modal windows (which are part of Bootstrap Framework, detailed
in Chapter 7.1.5) and provide the right data via back-end. This is achieved with the
combination of a snippet and a signal, as presented in Figure 7.3.

7.3.3 MVC Design Pattern

MVC architecture is a modern design pattern of developing applications. It separates
the application into three main layers: Model, View and Controller. The Model con-
tains the Business Logic Layer (BLL) that processes the application data and also
stores or retrieves data to or from the database. The View (Presentation Layer) dis-
plays information to the user. The Controller (Controlling Logic Layer) handles user

TBU in Zlín, Faculty of Applied Informatics 68

Figure 7.3 Snippet and Signal Use for Modal Window

interactions and input. [28] A diagram of the MVC pattern is shown in Figure 7.4.

Figure 7.4 MVC Diagram [28]

7.3.4 Factory Design Pattern

Factory is a creational design pattern used to transfer the logic of creating an object
into a separate class. This makes sense when creating forms, for example – each factory
has a create() method and can implement different event handlers, like onSuccess,
onError or onValidation. This helps to keep the form logic in one place, making all
forms reusable across multiple presenters. When a form is supplied using a factory, the
presenter only needs to inject the factory and then use the createComponent<Name>()
method to call the create() method of the injected factory object.

TBU in Zlín, Faculty of Applied Informatics 69

7.4 VCS

Since this application is meant to be open-source and shared with other developers,
it is absolutely necessary to use a VCS to enable concurrent work, feature branch
development, release tagging and issue tracking. With these mechanisms in place, it is
possible to effectively service the package.

7.4.1 Git

In this thesis, the VCS of choice is the industry-standard Git hosted on Github15). Git
is a reliable technology used by the majority of developers, offering helpful tools like
GitFlow16), which enforce good principles of version control workflow. The comparison
of usage of different VCS platforms is shown in Figure 7.5.

Figure 7.5 OpenHub VCS Use Comparison Pie
Chart

15)https://github.com/jvitasek/nwsltr
16)https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow

TBU in Zlín, Faculty of Applied Informatics 70

8 EXTENSIONS

The power of a web application framework lies in its extensibility. It is fairly simple
to extend the functions of Nette Framework, since it provides an extensions section
in its configuration files. This section is used to register classes extending the class
CompilerExtension. When registered, these classes are made available in Nette’s DI
container and can be injected into the application.

8.1 Application Structure

Nette Framework only comes with a hint of how the application should be structured,
laying out basic rules on where public files should be stored, which directory serves for
application code, or where logs and temporary files will be stored. Apart from that
and the default structure for Presenter + Template (Controller + View), there are no
best practice instructions put forth. This is why this application follows the structure
rules and principles of Webapp Skeleton.

Webapp Skeleton1) is one of the libraries developed by Contributte. It essentially shows
how to structure a Nette application with focus on PSR-4 compliance, how to separate
configuration (Neon2)) files and how to change the autowiring of presenters / templates
to work in a more concise way.

The important feature of Webapp Skeleton is a trait called StructuredTemplates,
which overrides the formatLayoutTemplateFiles and formatTemplateFiles meth-
ods of the Presenter class. This allows the presenter and template files to be structured
like this: %presenterDir%/templates/%view%.latte. This is shown in Figure 8.1,
where Front is the module, Editor is the presenter and there are 2 views – default.latte
and preview.latte.

Figure 8.1 Custom
Application Structure

1)Webapp Skeleton https://github.com/contributte/webapp-skeleton
2)Neon https://doc.nette.org/en/3.1/neon

https://github.com/contributte/webapp-skeleton
https://doc.nette.org/en/3.1/neon

TBU in Zlín, Faculty of Applied Informatics 71

This trait comes from the package Contributte/Application3) which is implemented
in Webapp Skeleton by default, along with some custom presenter response classes
and adapters. This structuring would be impossible with the native Nette settings,
where the structure for templates is %moduleDir%/templates/%presenterName% and
%moduleDir%/presenters/%presenterName% for presenters.

8.2 Third-party Libraries

nettrine/orm This package4) integrates Doctrine 2 (more in Chapter 7.2.2) into Nette
Framework, allowing easy registration into the Dependency Injection container
and effective use across a Nette application.

contributte/console This package5) integrates Symfony Console (more in Chapter
7.2.3) into Nette Framework, since it is used to execute commands.

ublaboo/api-router As mentioned in Chapter 5.3, this application uses this pack-
age6) to route API requests from front-end (Vue.js) to back-end (Nette Frame-
work).

contributte/forms-bootstrap Since Nette offers automatic rendering of forms and
the front-end uses Bootstrap 5, it is important to render the form according to
Bootstrap standards. This package7) achieves that.

phpoffice/phpspreadsheet This package8) is used when a user imports recipients
from an Excel file (mentioned in Chapter 11.1). It parses the file so PHP can use
the data.

nettrine/extensions-beberlei This package9) integrates beberlei/DoctrineExtensions10)

– a library extending Doctrine 2 with MySQL functions like EXP, FLOOR, YEAR
etc.

jvitasek/DumpAndDie This package11) integrates a Laravel dumping function into
Tracy (the native debugger in Nette Framework), which is helpful both in devel-
opment and production environment.

3)Contributte/Application https://github.com/contributte/application
4)nettrine/orm https://github.com/nettrine/orm
5)contributte/console https://github.com/contributte/console
6)ublaboo/api-router https://github.com/contributte/api-router
7)contributte/forms-bootstrap https://github.com/contributte/forms-bootstrap
8)phpoffice/phpspreadsheet https://github.com/PHPOffice/PhpSpreadsheet
9)nettrine/extensions-beberlei https://github.com/nettrine/extensions-beberlei

10)beberlei/DoctrineExtensions https://github.com/beberlei/DoctrineExtensions
11)jvitasek/dumpanddie https://github.com/jvitasek/DumpAndDie

https://github.com/contributte/application
https://github.com/nettrine/orm
https://github.com/contributte/console
https://github.com/contributte/api-router
https://github.com/contributte/forms-bootstrap
https://github.com/PHPOffice/PhpSpreadsheet
https://github.com/nettrine/extensions-beberlei
https://github.com/beberlei/DoctrineExtensions
https://github.com/jvitasek/DumpAndDie

TBU in Zlín, Faculty of Applied Informatics 72

9 STATIC ANALYSIS

While static analysis itself is a sizable topic out of the scope of this thesis, it is impor-
tant to understand why it is beneficial to use it in PHP applications. Static analysis can
detect problems in the code without executing it, which is paramount in interpreted
languages like PHP. Compiled languages check each line of code for errors before ac-
tually compiling and allowing the developer to run the binary. Static analysis brings
PHP closer to this work flow, where the developer can be sure there are no hidden
problems that will arise during runtime. This thesis uses 2 static analysis libraries
described in Chapters 9.1 and 9.2.

9.1 PHPStan

A very well maintained and popular Czech library, PHPStan1) (and its Nette exten-
sion2)), is a great tool for static analysis in PHP applications. It allows the developer
to configure the analysis’ scope, level and even exclude some checks. All is set up via
a NEON configuration file, native to Nette Framework.

9.2 PHP_CodeSniffer

PHP_CodeSniffer3) is a set of two PHP scripts; the main phpcs script that tokenizes
PHP, JavaScript and CSS files to detect violations of a defined coding standard, and
a second phpcbf script to automatically correct coding standard violations. [29] How-
ever, CodeSniffer is only a tool and requires coding standard (called sniffs) to be pro-
vided. This application uses a library called Slevomat Coding Standard4) which offers
a substantial amount of various sniffs sorted into categories:

• Functional: improving the safety and behaviour of code [30]

• Cleaning: detecting dead code [30]

• Formatting: making the code look consistent [30]

1)PHPStan https://github.com/phpstan/phpstan
2)PHPStan Nette https://github.com/phpstan/phpstan-nette
3)PHP_CodeSniffer
4)Slevomat Coding Standard https://github.com/slevomat/coding-standard

https://github.com/phpstan/phpstan
https://github.com/phpstan/phpstan-nette
https://github.com/slevomat/coding-standard

TBU in Zlín, Faculty of Applied Informatics 73

10 AUTOMATED TESTS

To avoid the need to test all the application’s functionality after every change or new
feature, it is essential to set up and create automated tests. In this thesis, there are
two types of automated tests – acceptance tests and unit tests. Each of them serves a
different purpose and works in a unique way, providing important information about
the system’s functionality.

10.1 Acceptance Tests

The first type of automated tests in this application are acceptance tests. They basi-
cally simulate a non-technical person testing the application, abstracting actions like
clicking a button or filling a form into a high-level domain language. As Dave Far-
ley stated in his interview with InfoQ, acceptance tests are an unalienable part of
automated testing:

I see automated acceptance tests as an essential component of a Continuous
Delivery style testing strategy. Combined with low-level unit tests, best
created as the fruits of Test Driven Development, acceptance tests give us
an important and different insight into the behaviour of our systems. [31]

In this thesis, the technology behind automated acceptance tests is Codeception1).
Tests are represented as a set of user’s actions, covering scenarios from a user’s per-
spective. With acceptance tests, the developer can be confident that users, following
all the defined scenarios, will not get errors. [32] Codeception provides an ideal plat-
form to create object-oriented acceptance tests with intuitive syntax. It’s action API
allows to check for elements in the page’s body or to compare the current URL against
a regular expression, as shown in Figure 10.1.

10.2 Integration Tests

Unlike acceptance tests, integration tests focus on verifying that the application’s mod-
ules work together as expected. For this test section, there is no more browser simula-
tion, so the tests need an actual database configuration and the right PHP .ini settings

1)Codeception https://codeception.com/

https://codeception.com/

TBU in Zlín, Faculty of Applied Informatics 74

Figure 10.1 Codeception Acceptance Test of the Mailing Editor

to be able to execute the actions inside the test cases. In this application, both integra-
tion and unit tests are run in Nette Tester2). This allows tests to seamlessly integrate
into Nette Framework without any setup difficulties.

10.2.1 Database

For this mailing system, the integration tests entail two parts – Database and Latte.
For the system to function, the right database configuration is essential, and since the
database is handled through Doctrine ORM (Chapter 7.2.2), the tests can validate
entity mappings. Once Doctrine returns any failed mapping, the test case prints out
the problem so it can be fixed. If no problems are found, the test succeeds. Another
important thing to test in regards to the database is the TRepository trait – since it
offers an easy way to access repositories (Chapter 4.4), it should define getter methods
for all defined repositories. If it does not, the test fails.

10.2.2 Latte

Since all HTML templates in this application are compiled from Latte templates, it is
important to check if all templates can actually be compiled. For example, Latte files
could contain syntax errors like an opened macro without closing tags, which would
cause the template to throw an exception instead of compiling properly. In the Latte
integration test, the script finds all Latte files and tries to compile each of them. If

2)Nette Tester https://tester.nette.org/en/

https://tester.nette.org/en/

TBU in Zlín, Faculty of Applied Informatics 75

any exception is caught, the test will fail, showing the path to the last tested Latte
template.

10.3 Unit Tests

One of the benefits of following the OOP paradigm is that code is decoupled and
easy to test with unit tests, since all functionality is exploded into separate logical
units. In this application, unit tests are implemented with the help of Nette Tester (as
mentioned in Chapter 10.2) and are used to verify that crucial parts of the system work
as expected. One of these cases could be the test checking if the Element Repository
method fromButton(<array>) (detailed in Chapter 4.4.1) correctly creates an Element
object and returns it. This test is shown in Figure 10.2 in an abridged form.

Figure 10.2 Unit Test to Check fromButton(<array>) Functionality

TBU in Zlín, Faculty of Applied Informatics 76

11 USER TESTS

It is fairly obvious that no number of automated tests can replace a real person using
the application and providing relevant feedback. That is why the beta version of this
application was sent to multiple users with different levels of technical skills. This is
the set of test users:

• User A: a PHP developer with years of experience

• User B: a frequent web application user

• User C: a typical inexperienced internet user

Their task was the same – go through the whole system, get familiar with it, create a
mailing template and plan a sendout, all the while making notes of things that could
be done better or parts of the system that were unclear to them. The next chapter
lists the most important feedback received from user testing.

11.1 Add Import File Sample

The Recipient Group datagrid offers an import function which allows users to upload
recipient data in an Excel2007 file, create recipients and add them into a selected group.
User A correctly raised a question asking about the format of the .xlsx file: how should
it be structured and in which column should the e-mails reside? For these purposes, a
sample file was created and linked to in the import modal window. This way, the user
can download the sample file and add their own data according to the ready-to-use
structure.

11.2 Add Test Sendout Function

An interesting feature was suggested by test user B, who is a frequent user of Mailchimp,
professionally designing mailings and managing sendouts for multiple companies. He
mentioned the absence of the test sendout feature that mainstream platforms offer
for quickly checking if the template displays correctly in their MUA. In light of this
feedback, this application adopted the responsive preview functionality (more in Chap-
ter 2.1.9) and now offers it as well.

TBU in Zlín, Faculty of Applied Informatics 77

11.3 Save Mailing When Clicking on Preview

Test user C provided a valuable feedback regarding the application’s mailing editor. As
an inexperienced user, they clicked on preview, expecting the editor to automatically
save the data, and consequently lost all their progress. The editor was updated so that
if a user decides to preview the built template during the creation process, it saves all
progress automatically.

TBU in Zlín, Faculty of Applied Informatics 78

12 PUBLISHING

As mentioned in the assignment of this thesis and throughout its content, the final
application is to be made public as open-source software. Even though this posed some
security challenges dealt with in Chapter 3, it is important to give to the community
and share knowledge with others, especially in a relatively small society surrounding
Nette Framework.

12.1 Git / Github

This application was developed using Git and is hosted on Github since the start, so
it makes sense to use Github as a publishing tool. Also, Github is undoubtedly the
most used open-source code hosting platform, flaunting more than 56 million registered
developers and 60 million repositories added last year. [33] In the future, a developer
can create a new feature or a bug-fix in a forked repository, create a pull request to
the main repository and then have his changes merged into the production branch of
the package.

12.2 Composer / Packagist

Composer is a dependency management tool for PHP projects and is one of the most
important parts of this application, since it is used to fetch all necessary third-party
software in the correct version decided by the server configuration. Apart from easily
fetching libraries to different applications, Composer can also be used to fetch whole
projects – this can be achieved in the composer.json file via the type attribute. These
are the supported types:

• library: This is the default. It will copy the files to the vendor directory. [34]

• project: This denotes a project rather larger than a library. For example ap-
plication shells like the Symfony standard edition or full fledged applications
distributed as packages. [34]

• metapackage: An empty package that contains requirements and will trigger their
installation, but contains no files and will not write anything to the filesystem.
[34]

TBU in Zlín, Faculty of Applied Informatics 79

• composer-plugin: A package of this type may provide an installer for other
packages that have a custom type. [34]

As can be derived from the list above, the appropriate type for this application is
project. When published in a Composer repository like Packagist1), Composer will
allow users to download the whole project with this command shown in Figure 12.1.

Figure 12.1 Composer Command to Fetch the Application

1)Packagist https://packagist.org/

https://packagist.org/

TBU in Zlín, Faculty of Applied Informatics 80

CONCLUSION

This thesis has tried to show and compare the key parameters of mainstream commer-
cial mailing platforms, while emphasizing best practices of both various user interfaces
and functionality features. This entailed carrying out a detailed analysis of existing
solutions to find the optimal ways to solve typical mailing system problems – function-
ality like e-mail opening detection, sendout algorithm, mailing template editor and so
on. An important part of this analysis was also selecting the right technology to achieve
the intuitiveness and fluency of the user interface, like the combination of Vue.js and
Bootstrap.

The findings of this study have been largely implemented into the resulting open-source
web application, which has been published on the aforementioned platforms Github and
Packagist. The application meets all the important requirements arrived upon in the
theoretical part of this thesis, allowing the system to be used by inexperienced users
without the need of extensive support. Overall, by using Nette Framework and focusing
on the security of the application, it could also prove useful to many developers in need
of a ready-made extensible self-hosted mailing solution.

There are many highlights that should be mentioned in closing. At the time of writ-
ing this, PHP 8 is still a fairly new release and there are not many open-source
applications adopting its new features so early. Using this bleeding edge PHP ver-
sion during development, it is going to be easier to support and maintain the li-
brary for the years to come. Furthermore, the whole code is strictly typed (using
the declare(strict_types=1) directive) and focused on following principles of OOP,
which makes the system’s code modern and ideal for debugging, extending and test-
ing. On a related note, the application comes with prepared acceptance tests, feature
tests, unit tests and static analysis scaffolding, which can be built upon in the future
to increase code coverage.

Future research and development could examine more features detailed in this thesis –
e.g. bounce management, predesigned templates, various layouts and so on. The future
possibility of discovering a new method of e-mail opening detection warrants further
investigation, which could lead to much more effective ways of handling statistics col-
lection and developing new components. In the meantime, this application can serve
as a great open-source alternative of Mailchimp and other commercial platforms.

TBU in Zlín, Faculty of Applied Informatics 81

REFERENCES

[1] Datanyze [online]. [visited 2021-03-20]. Retrieved from: https://www.datanyze.
com/market-share/email-marketing--13

[2] The Best Email Marketing Software for 2021 [online]. [vis-
ited 2021-02-26]. Retrieved from: https://www.pcmag.com/picks/

the-best-email-marketing-software

[3] About Mailchimp [online]. [visited 2021-03-20]. Retrieved from: https://

mailchimp.com/about/

[4] TechCrunch [online]. [visited 2021-03-21]. Retrieved from: https://tcrn.ch/

3jeuyeR

[5] Ecomail [online]. [visited 2021-03-22]. Retrieved from: https://www.ecomail.

cz/about

[6] listmonk [online]. [visited 2021-03-23]. Retrieved from: https://listmonk.app

[7] Merriam-Webster Dictionary [online]. [visited 2021-03-23]. Retrieved from:
https://www.merriam-webster.com/dictionary/best%20practice

[8] Merriam-Webster Dictionary [online]. [visited 2021-03-27]. Retrieved from:
https://www.merriam-webster.com/dictionary/user%20interface

[9] CampaignMonitor [online]. [visited 2021-03-18]. Retrieved from:
https://www.campaignmonitor.com/blog/email-marketing/

7-stats-that-will-make-you-rethink-mobile-email/

[10] Mailchimp Knowledge Base [online]. [visited 2021-03-18]. Retrieved from: https:
//mailchimp.com/help/about-bounces/

[11] SNYDER, Chris, Thomas MYER a Michael SOUTHWELL. Pro PHP Security:
From Application Security Principles to the Implementation of XSS Defenses.
2010. ?: Springer-Verlag, 2010. ISBN 1430233184.

[12] Doctrine 2 Documentation - Security [online]. [visited 2021-03-27]. Re-
trieved from: https://www.doctrine-project.org/projects/doctrine-orm/

en/latest/reference/security.html

[13] How Secure is BCRYPT? [online]. [visited 2021-03-28]. Retrieved from: https:

//synkre.com/how-secure-is-bcrypt/

https://www.datanyze.com/market-share/email-marketing--13
https://www.datanyze.com/market-share/email-marketing--13
https://www.pcmag.com/picks/the-best-email-marketing-software
https://www.pcmag.com/picks/the-best-email-marketing-software
https://mailchimp.com/about/
https://mailchimp.com/about/
https://tcrn.ch/3jeuyeR
https://tcrn.ch/3jeuyeR
https://www.ecomail.cz/about
https://www.ecomail.cz/about
https://listmonk.app
https://www.merriam-webster.com/dictionary/best%20practice
https://www.merriam-webster.com/dictionary/user%20interface
https://www.campaignmonitor.com/blog/email-marketing/7-stats-that-will-make-you-rethink-mobile-email/
https://www.campaignmonitor.com/blog/email-marketing/7-stats-that-will-make-you-rethink-mobile-email/
https://mailchimp.com/help/about-bounces/
https://mailchimp.com/help/about-bounces/
https://www.doctrine-project.org/projects/doctrine-orm/en/latest/reference/security.html
https://www.doctrine-project.org/projects/doctrine-orm/en/latest/reference/security.html
https://synkre.com/how-secure-is-bcrypt/
https://synkre.com/how-secure-is-bcrypt/

TBU in Zlín, Faculty of Applied Informatics 82

[14] What is GDPR? [online]. [visited 2021-04-18]. Retrieved from: https://gdpr.

eu/what-is-gdpr/

[15] Techterms [online]. [visited 2021-03-24]. Retrieved from: https://techterms.

com/definition/mvc

[16] Nette Documentation - Presenters [online]. [visited 2021-04-03]. Retrieved from:
https://doc.nette.org/en/3.1/presenters

[17] HTML Tables in Email: What could possibly go wrong? [online].
[visited 2021-03-26]. Retrieved from: https://www.litmus.com/blog/

html-tables-in-email-what-could-possibly-go-wrong/

[18] Nette Documentation - Forms [online]. [visited 2021-03-27]. Retrieved from:
https://doc.nette.org/en/3.1/forms

[19] Latte Documentation [online]. [visited 2021-01-05]. Retrieved from: https://

latte.nette.org/en/guide

[20] 15 Best CSS Preprocessors [online]. [visited 2021-04-05]. Retrieved from: https:
//www.slant.co/topics/217/~best-css-preprocessors-postprocessors

[21] The Principle of Least Power [online]. [visited 2021-01-22]. Retrieved from:
https://blog.codinghorror.com/the-principle-of-least-power/

[22] Vue.js Website [online]. [visited 2021-02-03]. Retrieved from: https://vuejs.

org/v2/guide/events.html

[23] Vuex 3 Documentation [online]. [visited 2021-02-03]. Retrieved from: https://

vuex.vuejs.org/

[24] Bootstrap Grid Documentation [online]. [visited 2021-03-27]. Retrieved from:
https://getbootstrap.com/docs/5.0/layout/grid/

[25] Usage statistics of PHP for websites [online]. [visited 2021-03-05]. Retrieved from:
https://w3techs.com/technologies/details/pl-php

[26] Doctrine 2 Documentation [online]. [visited 2021-03-12]. Retrieved from: https:

//www.doctrine-project.org/projects/doctrine-orm

[27] Nette Documentation - Presenters [online]. [visited 2021-04-03]. Retrieved from:
https://redis.io/

https://gdpr.eu/what-is-gdpr/
https://gdpr.eu/what-is-gdpr/
https://techterms.com/definition/mvc
https://techterms.com/definition/mvc
https://doc.nette.org/en/3.1/presenters
https://www.litmus.com/blog/html-tables-in-email-what-could-possibly-go-wrong/
https://www.litmus.com/blog/html-tables-in-email-what-could-possibly-go-wrong/
https://doc.nette.org/en/3.1/forms
https://latte.nette.org/en/guide
https://latte.nette.org/en/guide
https://www.slant.co/topics/217/~best-css-preprocessors-postprocessors
https://www.slant.co/topics/217/~best-css-preprocessors-postprocessors
https://blog.codinghorror.com/the-principle-of-least-power/
https://vuejs.org/v2/guide/events.html
https://vuejs.org/v2/guide/events.html
https://vuex.vuejs.org/
https://vuex.vuejs.org/
https://getbootstrap.com/docs/5.0/layout/grid/
https://w3techs.com/technologies/details/pl-php
https://www.doctrine-project.org/projects/doctrine-orm
https://www.doctrine-project.org/projects/doctrine-orm
https://redis.io/

TBU in Zlín, Faculty of Applied Informatics 83

[28] NARESH THAKUR, Ram a Dr. U.S. PANDEY. A Study Focused on Web Appli-
cation Development using MVC Design Pattern. International Research Journal
of Engineering and Technology. 2019, 2019(06/08), 7. ISSN 2395-0056.

[29] PHP Codesnifer [online]. [visited 2021-04-04]. Retrieved from: https://github.
com/squizlabs/PHP_CodeSniffer

[30] Slevomat Coding Standard [online]. [visited 2021-04-04]. Retrieved from: https:

//github.com/slevomat/coding-standard

[31] Dave Farley [online]. [visited 2021-03-29]. Retrieved from: https://www.infoq.

com/news/2017/04/acceptance-testing-delivery/

[32] Codeception – PHP Testing Framework [online]. [visited 2021-03-28]. Retrieved
from: https://codeception.com/

[33] Github – The State of the Octoverse [online]. [visited 2021-04-01]. Retrieved from:
https://octoverse.github.com/

[34] The composer.json Scheme [online]. [visited 2021-04-01]. Retrieved from: https:
//getcomposer.org/doc/04-schema.md#type

[35] Nette Documentation - Vulnerability Protection [online]. [visited 2021-03-27]. Re-
trieved from: https://doc.nette.org/en/3.1/vulnerability-protection

https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/slevomat/coding-standard
https://github.com/slevomat/coding-standard
https://www.infoq.com/news/2017/04/acceptance-testing-delivery/
https://www.infoq.com/news/2017/04/acceptance-testing-delivery/
https://codeception.com/
https://octoverse.github.com/
https://getcomposer.org/doc/04-schema.md##type
https://getcomposer.org/doc/04-schema.md##type
https://doc.nette.org/en/3.1/vulnerability-protection

TBU in Zlín, Faculty of Applied Informatics 84

LIST OF ABBREVIATIONS

VCS Version Control System
ORM Object-relational Mapper
UML Unified Modeling Language
SMTP Simple Mail Transfer Protocol
CLI Command Line Interface
CI Continuous Integration
CD Continuous Development
CC Constant Contact
ORM Object-relational Mapping
DQL Doctrine Query Language
DAL Data Access Layer
DAO Data Access Objects
MDN Message Disposition Notification
MUA Mail User Agent
ISP Internet Service Provider
SMB Small and Midsize Business
CRM Customer Relationship Management
CSE Comparison Shopping Engines
WYSIWYG What You See Is What You Get
ERD Entity-Relationship Diagram
DRY Don’t Repeat Yourself
DI Dependency Injection
BREAD Browse Read Edit Add Delete
DAVE Delete Add View Edit
CRAP Create Replicate Append Process
AI Artificial Intelligence
UX User Experience
MIME Multipurpose Internet Mail Extensions
PHP Hypertext Preprocessor
OOP Object-oriented Programming
AJAX Asynchronous JavaScript and XML
BLL Business Logic Layer
MVC Model-View-Controller
DOM Document Object Model
GDPR General Data Protection Regulation
EU European Union

TBU in Zlín, Faculty of Applied Informatics 85

LIST OF FIGURES

Fig. 1.1. Google Trends Statistics for Selected Platforms 14
Fig. 1.2. Mailing Editor in phpList .. 18
Fig. 1.3. Mailing Editor in Mailtrain .. 19
Fig. 1.4. Mailing Editor in Listmonk [6] ... 20
Fig. 2.1. Layouts in Ecomail ... 22
Fig. 2.2. Text Formatting In Mailchimp ... 24
Fig. 2.3. Font Change Option in Constant Contact’s Text Component 24
Fig. 2.4. Campaign Statistics In SendInBlue ... 25
Fig. 2.5. Calendar View in ConstantContact ... 25
Fig. 2.6. Predesigned Templates Selection in Mailchimp 26
Fig. 2.7. Predesigned Templates Selection in SendInBlue 27
Fig. 2.8. Advanced Image Layering in SendInBlue Template 28
Fig. 2.9. Responsive Preview Switcher.. 28
Fig. 2.10. Reporting Section in Constant Contact ... 29
Fig. 2.11. Tracking Pixel in Ecomail .. 29
Fig. 2.12. User Segmentation in Mailchimp .. 31
Fig. 3.1. XSS in URL ... 33
Fig. 3.2. Disallowing Dangerous Files in .htaccess .. 35
Fig. 4.1. One-to-Many Relationship ... 38
Fig. 4.2. Many-to-Many Relationship ... 39
Fig. 4.3. Use Case Diagram... 40
Fig. 4.4. The method deciding if a mailing should be sent 41
Fig. 4.5. Crontab Entry for Mailing Sendout ... 45
Fig. 4.6. Algorithm Fetching Mailings Ready for Sendout 46
Fig. 5.1. Nette Presenter Life Cycle ... 48
Fig. 5.2. API Router Implementation ... 51
Fig. 5.3. The Pixel Method Implementation.. 53
Fig. 5.4. User Form Default Values .. 55
Fig. 6.1. Latte Template of the Paragraph Component................................... 57
Fig. 7.1. Jetbrains Survey of PHP Framework Use ... 66
Fig. 7.2. Google Trends Chart Comparing Laravel and Nette Popularity in

Czechia.. 67
Fig. 7.3. Snippet and Signal Use for Modal Window 68
Fig. 7.4. MVC Diagram [28].. 68
Fig. 7.5. OpenHub VCS Use Comparison Pie Chart....................................... 69
Fig. 8.1. Custom Application Structure .. 70

TBU in Zlín, Faculty of Applied Informatics 86

Fig. 10.1. Codeception Acceptance Test of the Mailing Editor 74
Fig. 10.2. Unit Test to Check fromButton(<array>) Functionality.................... 75
Fig. 12.1. Composer Command to Fetch the Application 79

TBU in Zlín, Faculty of Applied Informatics 87

LIST OF TABLES

Tab. 1.1. Existing Platforms Feature Comparison... 13
Tab. 1.2. Market Share of Global Mailing Platforms [1]................................... 14
Tab. 1.3. Pros and Cons of Mailchimp .. 15
Tab. 1.4. Pros and Cons of SendInBlue ... 15
Tab. 1.5. Pros and Cons of Constant Contact .. 16
Tab. 2.1. Components In Commercial Platforms .. 22
Tab. 7.1. Bootstrap Breakpoints... 61

TBU in Zlín, Faculty of Applied Informatics 88

LIST OF APPENDICES

A I. ER Diagram

APPENDIX A I. ER DIAGRAM

Account

PK id int Auto Increment

created_at datetime NOT NULL

updated_at datetime NULL

title varchar(255) NOT NULL

email_from varchar(255) NOT NULL

email_from_title varchar(255) NULL

email_reply_to varchar(255) NULL

website_url varchar(255) NULL

unsubscribe_redirect_url varchar(255) NULL

primary_color_hex char(6) NULL
secondary_color_hex char(6) NULL

logo varchar(255) NULL

smtp_host varchar(255) NULL

smtp_username varchar(255) NULL

smtp_password varchar(255) NULL

smtp_secure varchar(255) NULL

smtp_port varchar(255) NULL

show_unsubscribe_feedback tinyint(1) [1]

active tinyint(1) [1]

show_resubscribe_button tinyint(1) [1]

Conversion

PK id int Auto Increment

created_at datetime NOT NULL

FK queue_id int NULL

FK element_id int NULL

Element

PK id int Auto Increment

created_at datetime NOT NULL

updated_at datetime NULL

title varchar(255) NOT NULL

redirect_to_url varchar(255) NOT NULL

FK mailing_id int NULL

composer_id int NOT NULL

Mailing

PK id int Auto Increment

created_at datetime NOT NULL

updated_at datetime NULL

title varchar(255) NOT NULL

subject varchar(255) NULL

send_date datetime NULL

json_data longtext NULL

api_code varchar(255) NULL

status smallint NOT NULL [1]

FK account_id int NULL

FK user_id int NULL

Queue

PK id int Auto Increment

created_at datetime NOT NULL

updated_at datetime NULL

email varchar(255) NOT NULL

time_sent datetime NULL

sent tinyint(1) [0]

opened tinyint(1) [0]

hash varchar(255) NOT NULL

FK mailing_id int NULL

FK sendout_id int NULL

Recipient

PK id int Auto Increment

created_at datetime NOT NULL

updated_at datetime NULL

email varchar(255) NOT NULL

first_name varchar(255) NULL

last_name varchar(255) NULL

subscribed tinyint(1) [1]

FK account_id int NULL

RecipientGroup

PK id int Auto Increment

created_at datetime NOT NULL

updated_at datetime NULL

title varchar(255) NOT NULL

FK account_id int NULL

Sendout

PK id int Auto Increment

created_at datetime NOT NULL

finished_sending_at datetime NULL

FK mailing_id int NULL

Unsubscribe

PK id int Auto Increment

created_at datetime NOT NULL

email varchar(255) NOT NULL

note longtext NULL

resubscribed tinyint(1) [0]

FK mailing_id int NULL

User

PK id int Auto Increment

created_at datetime NOT NULL

updated_at datetime NULL

first_name varchar(255) NOT NULL

last_name varchar(255) NOT NULL

email varchar(255) NOT NULL

password varchar(255) NOT NULL

role varchar(255) NOT NULL

last_logged_at datetime NULL

state int NOT NULL

MailingRecipientGroup

PK mailing_id int Auto Increment

PK recipient_group_id int Auto Increment

RecipientGroupRecipient

PK recipient_group_id int Auto Increment

PK recipient_id int Auto Increment

	Introduction
	I Theoretical Part
	Market Research
	Global Commercial Platforms
	Mailchimp
	SendInBlue
	Constant Contact

	Czech Commercial Platforms
	Ecomail

	Open-source platforms
	phpList
	Mailtrain
	Listmonk

	Best Practices
	User Interface
	Mailing Editor
	Layouts
	Background Styling
	Text Formatting
	Fonts
	Statistics
	Calendar View
	Templates
	Responsive Preview

	Functionality
	Conversion Tracking
	Bounce Management
	Recipient Rating
	Concurrent Sendouts
	User Segmentation
	Sendout Planning

	Security
	PHP Vulnerabilities
	SQL Injection
	Cross Site Scripting (XSS)
	Cross-site Request Forgery (CSRF)
	File Upload
	Session Hijacking

	Password Hashing
	GDPR

	II Practical Part
	Models
	ER Diagram
	Use Case Diagram
	Entities
	Account
	User
	Recipient
	Recipient Group
	Mailing
	Element
	Conversion
	Queue
	Sendout
	Unsubscribe

	Repositories
	Element Repository
	Mailing Repository
	Recipient Repository
	User Repository

	Commands
	SendMailingsCommand

	Modules
	Introduction to Presenters
	Front Module
	Secured Presenter
	Sign Presenter
	Home Presenter
	Datagrid Presenter
	Mailing Presenter
	Recipient / RecipientGroup Presenter
	Sendout Presenter
	Editor Presenter
	Unsubscribe Presenter

	API Module
	Editor Endpoint
	Conversion Endpoint
	Element Endpoint
	Image Endpoint
	Queue Endpoint
	RecipientGroup / SelectedRecipientGroup Endpoints
	Unsubscribe Endpoint

	Admin Module
	BaseAdmin Presenter
	Account Presenter
	User Presenter

	UI
	Latte Components
	Forms
	Vulnerability Protection

	Technologies
	Front-end
	Latte
	Sass
	Vue.js
	Vuex
	Bootstrap 5

	Back-end
	PHP 8
	Doctrine 2
	Symfony Console
	Redis

	Nette
	Signals
	Snippets
	MVC Design Pattern
	Factory Design Pattern

	VCS
	Git

	Extensions
	Application Structure
	Third-party Libraries

	Static Analysis
	PHPStan
	PHP_CodeSniffer

	Automated Tests
	Acceptance Tests
	Integration Tests
	Database
	Latte

	Unit Tests

	User Tests
	Add Import File Sample
	Add Test Sendout Function
	Save Mailing When Clicking on Preview

	Publishing
	Git / Github
	Composer / Packagist

	Conclusion
	References
	List of Abbreviations
	List of Figures
	List of Tables
	List of Appendices

