
Protecting Internet Networks Against
DoS Attacks

Adam Mirre

Bachelor’s thesis
2021

I hereby declare that:

• I understand that by submitting my Bachelor’s thesis, I agree to the publica-
tion of my work according to Law No. 111/1998, Coll., On Universities and on
changes and amendments to other acts (e.g. the Universities Act), as amended by
subsequent legislation, without regard to the results of the defence of the thesis.

• I understand that my Bachelor’s Thesis will be stored electronically in the uni-
versity information system and be made available for on-site inspection, and that
a copy of the Bachelor’s Thesis will be stored in the Reference Library of the
Faculty of Applied Informatics, Tomas Bata University in Zlín.

• I am aware of the fact that my Bachelor’s Thesis is fully covered by Act No.
121/2000 Coll. On Copyright, and Rights Related to Copyright, as amended by
some other laws (e.g. the Copyright Act), as amended by subsequent legislation;
and especially, by §35, Para. 3.

• I understand that, according to §60, Para. 1 of the Copyright Act, Tomas Bata
University in Zlín has the right to conclude licensing agreements relating to the
use of scholastic work within the full extent of §12, Para. 4, of the Copyright
Act.

• I understand that, according to §60, Para. 2, and Para. 3, of the Copyright Act,
I may use my work – Bachelor’s Thesis, or grant a license for its use, only if
permitted by the licensing agreement concluded between myself and Tomas Bata
University in Zlín with a view to the fact that Tomas Bata University in Zlín must
be compensated for any reasonable contribution to covering such expenses/costs
as invested by them in the creation of the thesis (up until the full actual amount)
shall also be a subject of this licensing agreement.

• I understand that, should the elaboration of the Bachelor’s Thesis include the
use of software provided by Tomas Bata University in Zlín or other such entities
strictly for study and research purposes (i.e. only for non-commercial use), the
results of my Bachelor’s Thesis cannot be used for commercial purposes.

• I understand that, if the output of my Bachelor’s Thesis is any software prod-
uct(s), this/these shall equally be considered as part of the thesis, as well as any
source codes, or files from which the project is composed. Not submitting any
part of this/these component(s) may be a reason for the non-defence of my thesis.

I herewith declare that:

• I have worked on my thesis alone and duly cited any literature I have used. In the
case of the publication of the results of my thesis, I shall be listed as co-author.

• The submitted version of the thesis and its electronic version uploaded to IS/STAG
are both identical.

In Zlín; dated: .

Student’s Signature

ABSTRAKT

V tejto práci sme analyzovali bežné spôsoby prevádzkovania Denial of Service útokov,
ako aj niektoré zo známych nástrojov, ktorými sa útoky vykonávajú. Na druhej
strane sme sa pojednávali o regulérne používaných spôsoboch ochrany a to tak z po-
hľadu sieťových operátorov, ako aj koncových užívateľov. Pokúsili sme sa zautoma-
tizovať vytváranie testovacieho laboratória a vyskúšali sme si sprevádzkovať útok na
jednoduchej topológii s cieľom precvičit si black hole techniku.

Klíčová slova: DoS, Sítě, BGP, Black-holing

ABSTRACT

In the thesis it is explored how Denial of Service attacks are usually performed, what
techniques are used and some of the popular tools used to conduct attacks. On the
other side we looked at the commonly used mitigation methods with both network
operators and end users. We attempted to automate creating a testing lab and tried
out performing an attack in a simple topology with the aim to exercise the black hole
technique.

Keywords: DoS, Networks, BGP, Black-holing

TABLE OF CONTENTS

INTRODUCTION .. 8

I THEORETICAL PART... 9

1 DEFINITION ... 11

2 CONTEXT ... 12

3 ATTACK METHODS ... 13

3.1 IP fragmentation ... 14

3.2 SYN flood... 14

3.3 Amplified Reflection Attack.. 16

3.4 Slowloris .. 17

3.5 BGP hijacking .. 17

3.6 Low-rate DoS on BGP ... 18

4 ATTACK TOOLS.. 19

4.1 HOIC.. 19

4.2 slowloris.py .. 19

4.3 Metasploit Framework ... 19

4.4 Web browser .. 20

5 MITIGATION METHODS.. 21

5.1 Blackhole routing (black-holing, null routing) 21

5.2 Sinkholing ... 23

5.3 Scrubbing .. 23

5.4 IP masking ... 24

5.5 WAF... 25

5.6 Rate-limiting .. 25

5.7 Decreased-TIME_WAIT connection closing 26

6 MITIGATION TOOLS .. 27

6.1 Firewall .. 27
6.1.1 Software firewall .. 27
6.1.2 Netfilter ... 28

6.2 FastNetMon DDoS Mitigation toolkit.................................... 29

II PRACTICAL PART.. 29

7 INFRASTRUCTURE SET-UP DESCRIPTION 31

7.1 VM specifications... 31

7.2 Terraform and Cloud-Init .. 34

7.3 Ansible .. 34

8 MITIGATION TOOLS SET-UP .. 35

8.1 FastNetMon .. 35

8.2 GoBGPd .. 36

8.3 Netflow .. 36

9 ATTACK TOOLS SET-UP .. 37

9.1 slowlorispy ... 37

9.2 iperf3 ... 37

10 PERFORMING AN ATTACK .. 38

CONCLUSION ... 39

REFERENCES .. 40

LIST OF ABBREVIATIONS .. 44

LIST OF FIGURES .. 45

LIST OF TABLES .. 46

LIST OF APPENDICES ... 47

TBU in Zlín, Faculty of Applied Informatics 8

INTRODUCTION

In this day and age, there has probably been nothing else considered as inevitable and
impactful on one’s personal or professional life, media, politics, culture or science as
reliable Internet connection, allowing seemless interaction and access to information.
Networking infrastructure powering the Internet has been the target of various attacks
almost since day one. While the early network interconnections had been based on
mutual trust and strong sharing spirit for advancement of humanity, with increasing
amount of participants from different backgrounds (essentially democratization) and
proliferating deeds of mischief, trust could no longer be taken for granted. Although
trolling has always been an integral part of the Internet culture, it had not taken
long until criminals found their way into the online world with the intention of taking
advantage of lacking legislation and collecting easy (though huge) economic profit.
Furthermore, another popular activity has become causing real harm to anybody on
the way with the sense of lawlessness.

It is this willful damage in its many shapes and forms brought upon the Internet service
providers and users that our thesis deals with. What we have commonly observed as
being used in the wild in recent years may be called attack ’professionalizing’, by which
we mean that the tools typically available 10 years ago cannot match to practically
anything you can get ready in minutes to cause real harm today. Since the networks
compose the medium of communication, it is essential they remained secured and
protected, which in fact poses a challenging task for us of coming up with new solutions
to rapidly evolving problem.

On the side of the user, unavailability of the service often means inability to proceed
with fulfilling their tasks. For the provider, an attack that cripples the network or its
resources means inability to provide the promised service.

We would like to take a look on some of the conventional methods and tools which
attackers resort to as well as methods and tools both users and network operators may
(and should) utilise to protect the network. The main objectives of our thesis aim at
researching key ways of DoS attack mitigations and performing a DoS attack and a
BGP blackhole reaction simulation.

Our thesis comprises two main parts - theoretical and practical. The theoretical part
discusses relevant context, different types of attack methods and tools, mitigation at-
tack methods and tools. The practical part describes a simulated simple topology and

TBU in Zlín, Faculty of Applied Informatics 9

an attack in lab conditions. In the first two sections of the theoretical part, we were
focused on attack definitions and providing context. Section 3 attempts to categorise
attack methods based on several metrics and explain some of the mentioned. The
fourth section presents a list of some of the popular DoS tools that are available. Next
on, the section 5 traces various ways to mitigate attacks, both on the user and provider
level and the final section of the theoretical part, section 6, marks out some of the tools
that can be used to mitigate an attack. First of the practical part, section 7 gives an
overview of the tools used to construct the lab infrastructure and configure the systems,
as well as specifics of the configuration. It also focuses on setting up the infrastructure
and the tools and processes to achieve a reproducible outcome. In section 8, we set up
mitigation tools in preparation of an attack. In section 9 we go through the process of
preparing attack tools. The final section 10 describes performing the attack itself.

TBU in Zlín, Faculty of Applied Informatics 10

I. THEORETICAL PART

TBU in Zlín, Faculty of Applied Informatics 11

1 DEFINITION

While denial of service can be caused in a multitude of different ways and impact any
part of the stack, we are predominantly going to look at the ones pertaining Internet
networks. First, we shall define what a denial of service (DoS) attack in fact is and we
can achieve it by understanding what it does.

A DoS attack is an action that harms a service in such a way that it can no longer
serve legitimate requests as a result of being occupied by bogus or excessive requests
from the attacker.

A DDoS is a DoS that is distributed among many participant devices (and operators).

DoS

DDoS

Figure 1.1 Illustration of relationship between DoS and DDoS attacks.

The devices participating are generally also victims in this, most of the attacks are
performed with open DNS resolvers, home routers left to rot by vendors, misconfigured
web services or IoT devices as involuntary participants. All one has to do is open
Shodan and look for specific ports open (ports of protocols with good reflection ratio
such as DNS, CLDAP, or SSDP), start probing and then reap the easy harvest. A
quick search for devices running with port 123 (NTP) open is certain to return a
mind-blowing number [1].

TBU in Zlín, Faculty of Applied Informatics 12

2 CONTEXT

In the last decade only we have witnessed many large DoS/DDoS attacks, some of them
against critical infrastructure services like cloud hosting, DNS, git hosting services
or even CCTV cameras. All of the attacks weaponized poorly managed endpoints,
unpatched IoT devices or malware-infected-hosts-turned-botnet-zombies. The intensity
and frequency have also been sharply increasing with the latest of attacks passing over
the Tbps threshold (Akamai mitigated a 1.44Tbps DDoS in 2020 [2]), with data from
Cisco Annual Internet Report showing that overall there was a 776% growth in attacks
between 100 Gbps and 400 Gbps from 2018 to 2019, and with predictions for the total
number of DDoS attacks to double from 7.9 million in 2018 to 15.4 million by 2023 [3].
The question is: why?

The motifs will probably more often than not stay a mystery; however, a proliferation
of DDoS-for-hire websites [4], even on clearnet1), points us to a plausible answer.

Somebody is making money selling abusive services that are being used for putting
competitors out of business or just plain extortion. According to Akamai, extortion
attacks have seen a widespread return, with a new wave launching in mid-August 2020
[5].

Akamai went on to note that DDoS attackers are expanding their reach across geogra-
phies and industries, with the number of targeted entities now being 57% higher than
the year before that.

1)the surface web; i.e. not even attempting to hide

TBU in Zlín, Faculty of Applied Informatics 13

3 ATTACK METHODS

There are generally several different ways to categorise a method of attack:

By layers, in which the attacks are performed:

• Link layer

• Internet layer

• Transport layer

• Application layer

By the nature of their distribution:

distributed the effort is collectively advanced by a group of devices

1. deliberate
(a) remotely coordinated devices (IRC C&C) - so called voluntary bot-

nets
(b) each operating their own computer, performing a premeditated op-

eration in a synchronized manner
2. involuntary - hijacked devices

not distributed there is a single source of badness

By the kind of remoteness necessary to successfully execute the attack:

close-proximity (physical engagement, i.e. sabotage) requires physical pres-
ence in/near e.g. a datacenter, networking equipment (cutting cables, play-
ing a pyro)

local network access such as over a WiFi access point or on LAN

remote such as over the Internet

By specific features:

• IP fragmentation

• SYN flood - a rapid sequence of TCP protocol SYN messages

• volumetric DDoS attack

TBU in Zlín, Faculty of Applied Informatics 14

• amplification attack (also called ’reflection attack’)

– memcached (up to 1:51200)
– DNS with a formula [6]

R = answersize/querysize (3.1)

– SNMP (theoretically 1:650)
– NTP

• exploits

– 0days
– simply running unpatched versions of software

• physical network destruction/crippling

3.1 IP fragmentation

This is the type of attack whereby an attacker attempts to send a fragmented payload
(TCP, UDP or even ICMP) that the client is supposed to reassemble at the destination,
by doing of which their system resources (CPU and mainly memory) would quickly get
depleted, ultimately crashing the host.

It is usually necessary for IP datagrams (packets) to get fragmented in order to be
transmitted over the network. If a packet being sent is larger than the maximum
transmission unit (MTU) of the receiving side (e.g. a server), it has to be fragmented
to be transmitted completely.

ICMP and UDP fragmentation usually involves packets larger than the MTU, a simple
attempt to overwhelm the receiver that is unable to reassemble such packets, ideally
even accompanied by a buffer overflow that the attacker can exploit further. Fragment-
ing TCP segments, on the other hand, targets the TCP mechanism for reassembly.
Reasonably recent Linux kernel implements protection against this [7]. In either case,
this is a network layer attack, since it targets the way the Internet Protocol requires
data to be transmitted and processed.

3.2 SYN flood

To establish a TCP connection, a three way handshake must be performed.
That is the opening sequence of a TCP connection that any two machines - let’s call

TBU in Zlín, Faculty of Applied Informatics 15

them TCP A and TCP B - perform, whereby TCP A wanting to talk sends a segment
with a SYN control flag, TCP B (assuming also willing to communicate) responds with
a segment with SYN and ACK control flags set and finally, TCP A answers with a
final ACK [8].

Using tcpdump we can capture an outgoing SYN packet on interface enp0s31f6.

tcpdump -Q out -n -N -c 1 -v -i enp0s31f6 "tcp[tcpflags] == tcp-syn"

A malicious actor is able to misuse the handshake mechanism by posing as a legitimate
client (or rather many legitimate clients) and sending large number of SYN segments
to a server willing to establish a connection (LISTEN state). The server replies with
a [SYN, ACK], which is a combined acknowledgement of the client’s request and a
synchronization request of its own. The client responds back with an ACK and then
the connection reaches the ESTABLISHED state.

There is a state in which a handshake is in the process but connection has not yet
been ESTABLISHED. These connections are referred to as embryonic (half-formed)
sessions. That is precisely what happens when an attacker sends many SYNs but stops
there and leaves the connection hanging.

One particularly sly method aimed at causing as much network congestion near/at
the victim as possible is setting a private IP address (these are unroutable, or rather,
should not be routed over public Internet) or an address from deallocated space as
the source IP address. For the sake of the argument suppose it is an address from
deallocated space, what then ends up happening is the server responds with a [SYN,
ACK] and since no response comes from an address that’s not currently allocated to a
customer (no response can come because nobody is using it), TCP just assumes that
the packets lost on the way and attempts packet retransmission [9]. Obviously, this
cannot yield a successful result so in the end the server just added onto the already
congesting network.

Current recommended practice as per RFC 3704 is to enable strict mode when possible
to prevent IP spoofing from DDoS attacks. If asymmetric routing or other kind of
complicated routing is used, then loose mode is recommended [10].

That way the spoofed traffic never leaves the source network (responsibility of the
transit provider/ISP) and does not aggregate on a single host’s interface. For this to
be a reality the adoption rate of the subject RFC recommendations would need to see

TBU in Zlín, Faculty of Applied Informatics 16

a proper increase.

As is true for anything, if countermeasures are set up improperly, legitimate traffic
could end up being blocked as a result.

3.3 Amplified Reflection Attack

The name suggests this type of attack is based on two concepts: amplification and
reflection. The amplification part pertains the fact that certain protocols answer even
a relatively small query with a sizable response. The reflection part is usually taking
advantage of session-less protocols. One such protocol is UDP with session-less meaning
that hosts are not required to first establish a session to communicate, a response is
simply sent back to the address that the packet arrives from (source address). Except
for the fact that if a malicious player is not interested in communication but only wants
to cause harm, a packet’s source address does not necessarily have to, in fact cannot
(from an attacker’s point of view) correspond to the source address of their machine.

Since overwriting fields of the packet header (where the information important to rout-
ing reside) is trivial and there’s nothing easier than supplying a UDP request with
(either a bogus but more commonly) a victim IP address as the source address instead
of our own that’s present there by default. The response is then returned back - not to
the actual sender, but simply according to the source address.
Since UDP has no concept of a connection or any verification mechanism, the response
arrives at the door of the victim that has never asked for it - in the worst case an
unsolicited pile of them.

This is why the three-way handshake is used with TCP, which was developed later
than UDP, as it reduces the possibility of false connections.

The goal of the attacker is then clear: get the largest possible response and have it
delivered to the victim (in good faith of the server even).

Spoofing the source address is done with the purpose of evading detection as a blocking
or rate-limiting mechanism at the destination would likely identify any above-threshold-
number requests coming from a single IP and ban them, thus decreasing the impact of
the attack when the intent was to achieve congestion at the designated destination -
the victim.

A perfect example for how bad this can get is unpatched or misconfigured memcached

TBU in Zlín, Faculty of Applied Informatics 17

software, that is very commonly being used as e.g. a database caching system and has
an option to listen on UDP port. Cloudflare say they have witnessed amplification
factors up to 51200 times [11].

As has already been mentioned in 3.2, this entire suite of issues could be if not
entirely prevented then largely mitigated if the very sound recommendations of RFC
3704 gained greater adoption among ISPs.

Until then, brace yourselves for the next assault.

3.4 Slowloris

The principle of this attack is to first open as many connections as possible, aiming
to fill the capacity of the server, and then keep them open for as long as possible by
sending periodic keep-alive packets.
This attack works at the application layer but the principle can easily be reapplied
elsewhere.

3.5 BGP hijacking

BGP is an inter-Autonomous System routing protocol, whose primary function is to
exchange network reachability information with other BGP systems. Furthermore,
this network reachability information "includes information on the list of Autonomous
Systems (ASes) that reachability information traverses. This information is sufficient
for constructing a graph of AS connectivity for this reachability, from which routing
loops may be pruned and, at the AS level, some policy decisions may be enforced. This
information is sufficient for constructing a graph of AS connectivity for this reachability,
from which routing loops may be pruned and, at the AS level, some policy decisions
may be enforced." [12].

BGP hijacking, in some places spoken of as prefix hijacking, route hijacking or IP
hijacking is a result of a intentional or unintentional misbehavior in which a malicious
or misconfigured BGP router originates a route to an IP prefix it does not own and
Zhang et al. find it is becoming an increasingly serious security problem in the Internet
[13].

TBU in Zlín, Faculty of Applied Informatics 18

3.6 Low-rate DoS on BGP

As shown by Zhang et al. in their "Low-Rate TCP-Targeted DoS Attack Disrupts
Internet Routing" paper, BGP itself is prone to a variation of slowloris due to the fact
that it runs over TCP for reliability. Importantly, this is a low-bandwidth attack and a
more difficult one to detect because of that. Beyond the attack’s ability to further slow
down the already slow BGP convergence process during route changes, it can cause a
BGP session reset. For the BGP session to be reset, the induced congestion by attack
traffic needs to last sufficiently long to cause the BGP Hold Timer to expire [14]. On
top of all that, this attack is especially hideous in that it can be launched remotely
from end hosts without access to routers or the ability to send traffic directly to them.

TBU in Zlín, Faculty of Applied Informatics 19

4 ATTACK TOOLS

Believe it or not there actually exists a DDoS attack tools topic on GitHub https:
//github.com/topics/ddos-attack-tools?o=desc&s=stars.

4.1 HOIC

LOIC successor HTTP flooding High Orbit Ion Cannon, affectionately referred to as
’HOIC’ is a free software1)tool which enables one to stress-test the robustness of their
infrastructure by applying enormous pressure on the designated target in form of high
number of requests. It operates with HTTP and users are able to send ’GET’ or ’POST’
requests to as many as 256 sites simultaneously. While it is relatively easily defeated
by a WAF (see 5.5), the possibility to target many sites at once makes it possible for
users to coordinate the attack, consequently making detection and mitigation efforts
more difficult.

4.2 slowloris.py

slowloris.py is a python script available from github.com/gkbrk/slowloris that
is able to perform a slowloris attack. It seeks to extinguish file descriptors needed for
opening new connections on the server and then keeping the connections for as long as
it can.
Legitimate requests cannot be served as a result, since there is no way for the server to
facilitate them until resources bound by bogus requests are freed, i.e. the attack ceases
to be.

4.3 Metasploit Framework

Metasploit is a penetration testing framework with an open source community ver-
sion and a commercial version (Metasploit Unleashed) available. It enables security
researchers to automate workflows of probing vulnerable services or devices via use
of so called modules - smaller programs with definable inputs that perform prefined
actions. Modules are often community-contributed and one can even write a module
ourselves.a The SYN-flooding funtionality has been implemented - aux/synflood an
auxiliary module. Auxiliary modules do not execute payloads and perform arbitrary

1)free as both in freedom and free beer

https://github.com/topics/ddos-attack-tools?o=desc&s=stars
https://github.com/topics/ddos-attack-tools?o=desc&s=stars
github.com/gkbrk/slowloris

TBU in Zlín, Faculty of Applied Informatics 20

actions that may not be related to exploitation, such as scanning, fuzzing and denial
of service attacks [15].

4.4 Web browser

Depending on our point of view (more fittingly, our scaling capabilities), sometimes all
that is needed to cause a denial of service is tons of people behind a web browser.
Numerous requests quickly overload a small server, eventually causing it respond so
slowly that the impact is indistinguishable from a DoS attack.

That is because in principle a DoS attack is practically the same thing as discussed
above, the only difference is the malicious intent, imperceivable to a machine.

TBU in Zlín, Faculty of Applied Informatics 21

5 MITIGATION METHODS

Drastic times require drastic measures and since a DDoS attacks coming at us practi-
cally every other month classify as drastic quite easily, we’re forced to act accordingly
[5].

Still, it is more reasonable to prepare than to improvise, therefore the following write-
up mentions of commonly used mitigation methods at different levels, from a hobbyist
server to an e-commerce service to an ISP. The list is inconclusive and of course if
reading this at a later date, always cross-check with the current best practices at the
time.

5.1 Blackhole routing (black-holing, null routing)

Black-holing is a technique that instructs routers that traffic for a specific prefix is to
be routed to the null interface, i.e. be dropped and is used to cut attack traffic before
it reaches the destination AS.
Assuming the router is properly configured to direct RFC 1918 destined traffic to a null
interface, traffic destined to the attacked network gets dropped, making the attacked
network unreachable to the attacker and everyone else. Matter of factly, we actually
conclude the DoS for the attacker ourselves.[16][17]

In case of a DDoS, the traffic is likely to come from all over the world [2]. The idea
here is to announce to our upstream (ingress provider) that supports RTBH (remotely-
triggered black hole) signalling (critical) that we do not need any traffic for the victim
IP anymore. They would then propagate the announcement further and in no time we’d
stop seeing malicious traffic coming to a victim IP in our network. In fact, we would
not see any traffic coming to the victim anymore, because we just broadcast a message
that we do not wish to receive traffic for it. For the entire time we’re announcing it,
the victim host stays unreachable.

We should make sure to announce the smallest possible prefix to minimise the collateral
damage. Generally, a /21 or /22 prefix is assigned to an AS (the average prefix per AS
being 22.7866 as of 11 May 2021 [18]) announcing a black hole for such a large space
would likely cause more damage than the attack itself.

To reduce BGP overhead, prefixes are usually announced aggregated, with the excep-
tion of "a situation", such as when we wish to only stop receiving traffic for one IP

TBU in Zlín, Faculty of Applied Informatics 22

address. Smallest possible accepted prefix size tends to be /24 (which is still a lot)
with average prefix size updated being 23.11 [19], however, some upstream providers
might even support a /32 in case of emergency, effectively dropping traffic only for the
victim.

When an attack hits, all we have to do is:

1. deaggregate prefixes

2. withdraw hit prefixes.

In case our upstream provider did not support RTBH and we could not lose them (e.g.
the only one around), we could still make use of Team Cymru’s new BGP-based solution
that distributes routes to participating networks using only vetted information about
current and ongoing unwanted traffic - the Unwanted Traffic Removal Service
(UTRS). It is a free community service, currently only available to operators who have
an existing ASN assigned and publicly announce one or more netblocks with their own
originating ASN into the public Internet BGP routing tables.

If only there was a way to just shut down the bad traffic but keep the good one flowing1)!

Behold, this is what selective black-holing actually is. Some upstream providers define
multiple different blackhole communities each followed by a predefined action on the
upstream. One is able to announce to these communities as needed. Assume we would
announce to a community that would in response announce the blackhole to Internet
exchanges in, say, North America and Asia and but allow traffic coming from Europe,
would be a perfect example of selective black-holing. This causes two things to happen.
First, our customer’s IP is still reachable from our local area (e.g. Europe) and since
our fictitious customer mostly serves European customers that’s fine. Second, outside
of the prefedined radius (Europe in this exercise) any traffic destined for our network
(of which the victim IP is a part of) is immediately dropped at the remote IXPs, long
before it ever comes anywhere near our geographical area, let alone our network.

I believe this approach is superior to indiscriminate black-holing and, given it is reason-
ably automated and quick to respond, in combination with other mitigation methods
it can provide a viable protection for the network.

1)other than scrubbing

TBU in Zlín, Faculty of Applied Informatics 23

5.2 Sinkholing

Moving on, this method works by diverting only malicious traffic away from its target,
usually using a predefined list of IP addresses known to be part of malicious activities
to identify DDoS traffic. False positives can occur more rarely and collateral damage
is lesser than with black-holing but since botnet IPs can be also used by legitimate
users this is still prone to false positives. Additionally, sinkholing as such is ineffective
against IP spoofing, which is a common feature in network layer attacks.

5.3 Scrubbing

An improvement on arbitrary full-blown sinkholing, during the scrubbing process all
ingress traffic is routed through a security service, which can be performed in-house
or can even be outsourced. Malicious network packets are identified based on their
header content, size, type, point of origin, etc. using heuristics or just simple rules.
The challenge is to perform scrubbing at an inline rate without impacting legitimate
users.

If outsourced, the scrubber service has the bandwidth capacity (either on-demand or
permanently) to take the hit that we do not have. There are at least two ways to
go about this - the BGP and the DNS way, we will cover the BGP one. Once an
attack is identified, we stop announcing the prefix that is currently being hit, contact
our scrubbing provider (usually automatically/programatically) to start announcing
the subject prefix, receiving all its traffic (including the attack traffic), the scrubbing
service does the cleaning and sends us back the clean traffic [20].

When performing the scrubbing in-house, we have to clean the traffic on our own
appliance that has to have sufficient bandwidth (usually on par with upstream).

A poor man’s scrubber:

• utilizing hardware accelerated ACLs on switches,

• switches can do simple filtering at inline rate (ASICs)

• this can be effective when attack protocol is easily distinguishable from real traffic

• hit by NTP/DNS/SNMP/SSDP amplification attack

TBU in Zlín, Faculty of Applied Informatics 24

We should be performing network analysis and once higher rates of packets with source
ports of protocols known to be misused for DoS/DDoS start arriving to our network
(such as 123 or 53), we start signalling to our upstream providers, since they can
probably handle it better than us and have as much interest in doing so as us (or
should).

Volumetric attacks sending traffic in smaller packet sizes will, however, still result in
higher CPU utilization, especially on non-dedicated networking equipment.

One thing we should do no matter whether we are currently suffering an attack (and
scrubbing it ourselves) is to rule out and drop and never receive traffic appearing to
come from our own network, since such traffic could not exist naturally and is obviously
spoofed.

Team Cymru has got now a long tradition of maintaining bogons lists called the Bo-
gon Reference. Bogon prefixes are routes that should never appear in the Internet
routing table. A packet with an address from a bogon range should not be routed
over the public Internet. These ranges are commonly found as the source addresses in
DoS/DDoS attacks.
Bogons are netblocks that have not been allocated to a regional Internet registry (RIR)
by the Internet Assigned Numbers Authority (IANA) and Martian packets (private and
reserved addresses defined by RFC 1918, RFC 5735, and RFC 6598 [16], [21], [22]).

To get help with bogon ingress and egress filtering, we should set up automated obtain-
ing of updated and curated bogon lists via HTTP, BGP, RIRs and DNS from Team
Cymru [23].

In case we have our own ASN, are connected directly at an IXP, have no RTBH support
upstream and basically have no other choice, we just need to find out who is sending
the malicious traffic and, if possible, drop the session and receive traffic from other
peers.

5.4 IP masking

This is technique is widely used (e.g. CloudFlare flagship service), relying solely on not
divulging sensitive information - in this case server IP - to attackers and the capacity
of the fronting service to withstand the attack due to having access to more badwidth
than the attacker can produce. All traffic - including potentially harmful traffic - flows
through what is basically a giant proxy. However, before declaring it a net win for us,

TBU in Zlín, Faculty of Applied Informatics 25

it is important to acknowledge that it also comes with heavy privacy implications, as
now some other service performs TLS termination in our behalf and sees everything
(that was encrypted only in transit and is not additionally encrypted) that anyone
sends us, before finally forwarding it back.

5.5 WAF

WAF - Web Application Firewall - is an appliance used to protect (as name suggests)
web applications. In this day and age, this is especially necessary and enables system
administrators to craft protection logic in one place and shield potentially vulnerable
applications. This method works on the application layer of the OSI model and is
commonly deployed as part of a web proxy or a module of a web proxy, which means
network layer attacks cannot be handled in this way. While not negligible, as always,
it is crucial to not have any assumptions and know exactly what layer of protection
using of WAF brings.

Generally or at least as per CBP (current best practices), applications are not deployed
with ports exposed directly to the Internet. A sane approach of having access to re-
sources proxied yields multiple possibilities in terms of authentication/authorization
and protection scenarios and also several ways to more effectively use resources avail-
able. For one, where any web content caching is required, it is easily achieved with a
caching proxy server. It commonly also enables specifying custom access policies.

There are also hosted (cloud) WAF offerings, however, they come with exactly the
same privacy implications as IP masking solutions (see 5.4).

5.6 Rate-limiting

As a general precaution, it is sane to limit number of connections a client is able to
make in a predefined amount of time (based on the requirements of the service). The
same applies to a limit on how many connections a client can have open simultaneously,
which can even prevent Slowloris (see 3.4). Rate-limiting is usually set either on a proxy
or a WAF, but some form of rate-limiting can even be built into an app.

A well known rate-limiting pluggable solution that can be used with SSHd, HTTP or
multitude of other endpoints is Fail2Ban.

TBU in Zlín, Faculty of Applied Informatics 26

5.7 Decreased-TIME_WAIT connection closing

This can help withstand a situation when conntrack table fills up and the server refuses
to accept any new connections. There is absolutely no reason to keep connections in the
conntrack table long after they become inactive. The Linux kernel’s NetFilter actually
has a scrubbing mechanism, that is supposed to be getting the conntrack table rid
of the timed-out entries. Except practice shows they can linger for much longer than
necessary.

When dealing with massive amounts of traffic it is very reasonable not only to increase
the size of the conntrack table (memory trade-off), which is the generally recommended
solution, but also to decrease the TIME_WAIT timeout to force-evict connections that
have stopped sending data. It is also an easy way to mitigate slowloris (see 3.4). More
on the workings of conntrack in 6.1.2

Nginx is a widely used proxy. It uses two FDs (file descriptors) for each connection.
The limit of max open FDs can indeed be increased easily, howerever, we might still just
be delaying the inevitable (FD exhaustion) and inefficiently wasting precious compute
resources needed when an attack comes. If Nginx is unable to allocate FDs necessary
to track a connection, the connection attempt will fail. By resetting connections that
timed out we prevent such a situation from occurring easily. In Nginx this is set with
a single line: reset_timedout_connection on;

TBU in Zlín, Faculty of Applied Informatics 27

6 MITIGATION TOOLS

No tools are going to remedy for a bad design decision and that applies equally to
physical and Internet engineering.

6.1 Firewall

No matter the specific implementation, it is presumably safe to say that any firewall is
better than no firewall.

There are two main types of firewalls:

• software,

• appliance (hardware-accelerated).

A software firewall is just another program running on the operating system, apart
from the fact that it is typically running with system-level privileges. It can be run
on a general-purpose computer. In fact most of the consumer-grade operating systems
nowadays incorporate or by default enable a firewall solution.

In contrast, an appliance firewall is a dedicated piece of hardware purpose-build specif-
ically for the sole role of behaving as a firewall and is typically running a custom and
very minimal operating system and no userspace programs. Usually the system does
not have a userspace, since it is vendored to run as an appliance.

6.1.1 Software firewall

Solutions available as software firewalls are typically specific to a given operating sys-
tem.

Usually, there exist several tools that enable communication with the core implementing
the logic, commonly by a way of embedding deeply in the networking stack of the OS
or utilizing kernel APIs. In Linux distributions, the Linux kernel is the one that sees
all. Each packet arriving at the network interface is inspected by the kernel and a
decision is made regarding it.

TBU in Zlín, Faculty of Applied Informatics 28

Historically, ipset and later iptables used to be the de-facto standard, however,
a more recent successor emerged quite some time ago and is replacing (in modern
distributions has replaced, although backward compatibility has been preserved) the
former two - the nftables tool.

6.1.2 Netfilter

The Linux kernel subsystem named Netfilter is part of the Internet protocol stack
of the kernel and is responsible for packet manipulation and filtering [24]. The packet
filtering and classification rules framework frontend tools iptables as well as the newer
nftables can be interacted with via a shell utility and since they also expose APIs of
their own, it is common that they have graphical frontends as additional convenience
as well, most notably firewalld, which can be used in conjunction with both of them.

Although newer versions of the Linux kernel support both iptables and nftables
just the same, only one of them can be used at a time. This can be arbitrarily changed
at runtime, a reboot is not necessary since they are userspace tools) and interact with
the kernel using loadable kernel modules.

Part of the Netfilter framework responsible for connection tracking is fittingly named
Conntrack. Connection, or a flow is a tuple defined by a unique combination of source
address, destination address, source port, destination port a and the transport protocol
used. Conntrack keeps track of the flows in a special fixed-size (tunable1)) in-kernel
hash table structure with a fixed upper limit.

On Linux devices functioning as router devices (especially when you add NAT to
the mix) a common issue is the depletion of space in the conntrack table. Once
the maximum number of connection is reached, Linux simply logs an error message
nf_conntrack: table full, dropping packet to the kernel log and "all further
new connection requests are dropped until the table is below the maximum limit again."
[25]. That, as Westphal further notes, is indeed very unfortunate, especially in DoS
scenarios.

Unless the router also functions as a NAT, this can be remedied in two ways: decreasing
the timeout until an established connection is closed and decreasing the timeout until
an inactive connection in the TIME_WAIT state is evicted from the conntrack table.
By default, the TIME_WAIT timeout is several hours long and leaves the router

1)via net.netfilter.nf_conntrack_buckets

TBU in Zlín, Faculty of Applied Informatics 29

vulnerable to packet floods or Slowloris.

Netfilter is here to help again with conntrack treating entries that have not (yet) seen
two-way communication specially – they can be evicted early if the connection tracking
table is full. In case insertion of a new entry fails because the table is full, "...the kernel
searches the next 8 adjacent buckets of the hash slot where the new connection was
supposed to be inserted at for an entry that has not seen a reply. If one is found, it is
discarded and the new connection entry is allocated."[25]. Randomised source address
in TCP SYN floods becomes a non-issue because now most entries can be early-evicted
because the TCP connection tracker sets the "assured" flag only once the three-way
handshake has completed.

In case of UDP, the assured flag is set once a packet arrives after the connection has
already seen at least one packet in the reply direction, that is the request/response
traffic does not have the assured bit set and can therefore be early-dropped at any
time.

6.2 FastNetMon DDoS Mitigation toolkit

Originally created by Pavel Odintsov, this program can serve as a helper on top of
analysis and metric collection tools, evaluate data and trigger configurable mitigation
reactions [26], [27], [28].

FastNetMon can run on most popular architectures an several different general-purpose
and specialised platforms such as Linux distributions, VyOS, FreeBSD or Mikrotik
devices. Most of the program is written in C++ but it uses many C libraries for
additional functionality and also Perl install scripts. It has got a command line client
and an API and analysis server. Its detection engine is able to identify many types of
flood attacks, fragmentation and amplification attacks. The metrics can be exported
into an InfluxDB engine for visualization. It is capable of interacting directly with
BGP-enabled equipment and even supports Flow Spec.

TBU in Zlín, Faculty of Applied Informatics 30

II. PRACTICAL PART

TBU in Zlín, Faculty of Applied Informatics 31

7 INFRASTRUCTURE SET-UP DESCRIPTION

The testing was performed in a virtual lab comprised of five virtual machines (VMs)
running on a KVM-enabled Fedora 34. Since the expectation was to frequently tweak
various system settings of the guests (VMs) as part of the verification process, we
decided to take the infrastructure as code approach. Every piece of infrastructure -
down to the details of how many virtual CPUs are allocated to a host, what is the
disk size and the filesystem, etc. - is declared as code, can be versioned and used to
provision resources.

The industry standard tool Terraform was chosen due to a broad support of infras-
tructure and providers, great documentation, large user base and the tool being open
source.

For bootstrapping, cloud-init has been used mainly because of the fact that it can
integrate with terraform quite smoothly, works on many Linux distributions and allows
us to pre-setup things like copy over SSH pubkeys so that a secure connection can be
established right after first boot, set VM hostname, locale, timezone, add users/groups,
install packages, run commands and even create arbitrary files, such as program con-
figurations.

The disk sizes of the VMs were determined by the size of their base image. The VM
naming convention is specified as follows: a prefix r_ for routers and h_ for other hosts,
in our case the attacker, victim and defender machines.

7.1 VM specifications

Table 7.1 VM specifications
VM name vCPU(s) RAM disk space net ifaces operating system
r_upstream 1 768MB 4.3GB outer,DMZ Fedora 33

r_edge 1 768MB 4.3GB DMZ,inner Fedora 33
h_victim 1 768MB 11GB inner CentOS 8
h_attacker 1 1GB 5.37GB outer Fedora 34
h_defender 1 1GB 5.37GB DMZ Fedora 34

The inner (our edge) and the upstream (our transit provider) routers are each part
of different AS. They are directly connected and communicate using BGP. The outer
router and the inner router are BGP peers.

TBU in Zlín, Faculty of Applied Informatics 32

We assume our upstream provider supports RTBH signalling. In this scenario the
attacker is directly connected to our UPSTREAM router, and while in reality there
would probably be a greater distance between us and them, this is fine for our simula-
tion purposes, since malicious traffic will be cut before it reaches us.

If our upstream provider did not support RTBH signalling, in case we were attacked
we could still use a scrubbing service but it is preferred that such a provider is picked
that has the RTBH capabilities.

The cunning plan is to watch for traffic anomalies, when the attack comes detect it
as soon as possible, trigger a reaction (announce a black hole), wait for some time,
withdraw the black hole if the attack is gone and reintroduce it if it is still going on.
Automatically, of course.

attack
detection black

hol
e

wa
it

&
wi
th
dr

aw
black

holeanalysis

Figure 7.1 The Cunning Plan

Initially, two approaches for setting up infrastructure were considered. While both pro-
posed to use KVM and Terraform with libvirt provider [29], the first one planned
to continue configuring the VMs with cloud-init, which is compatible with any
GNU/Linux distribution. The finishing touches would be done using ansible. The
second one, on the other hand, considered a newer technology - Fedora CoreOS, which
uses a different paradigm where hosts are only customised on initial boot via ignition
(although he configuration format used is called Butane, which uses YAML and is then
transpiled to Ignition’s JSON) and ran as configured, by default without a separate
install disk. This provides the much needed system immutability during runtime but
also makes it more difficult to configure. Configuration changes can be done during
runtime, however, the CoreOS provisioning philosophy teaches that there is no need
to deploy once and endlessly configure (by hand or e.g. with ansible) when boot
times are short (Ignition runs before the userspace begins to boot) and the system is
as minimal as possible (container-like).

TBU in Zlín, Faculty of Applied Informatics 33

approach 0:

• KVM

• terraform with libvirt provider

• cloud-init

• ansible

approach 1:

• KVM

• terraform

• ignition

• Fedora CoreOS

We decided to go with the approach 0 as we felt it was more appropriate for our use
case, which involves relatively lot of configuration.

VMs required:

• victim

• router - inner

• router - edge

• attacker

• defence machine

See tab. 7.1 for details.

To reiterate, simulating multiple physical devices performing different roles (routing,
attacking, playing victim) in our attack-defence/mitigation scenario has been achieved
by creating a test-lab virtual infrastructure.
The tried-and-true way, state-of-the-art Linux kernel-native virtualization solution has
been chosen to tackle the hypervisor task - the KVM technology.

Testing has been performed on our personal laptop - Dell Latitude 5480 machine
equipped with a ULV dual-core Intel i5 Core 6300U processor with mitigations=off,
24GB (8+16) of RAM and a 512GB SATA SSD (TLC).

TBU in Zlín, Faculty of Applied Informatics 34

The host operating system from the perspective of VMs was Fedora 34. Both updates
and updates-testing repositories have been enabled, which allowed us to use latest
(at the time) stable Linux kernel Fedora had to offer directly without too much of a
hassle, as of the time of writing in version 5.11.20.

File system in use on the host was Btrfs on top of LVM (LUKS+LVM to be precise) and
a Btrfs subvolume has been created specifically for the libvirt storage pool for better
logical isolation (subvolumes are omited during snapshotting etc.; that way the lab
does not end up in system snapshots. Since all of the system images for our VMs have
been downloaded in a QCOW2 format, the CoW (Copy-on-Write) feature of Btrfs has
been turned off for the subject subvolume, just as recommended in the Brfs Sysadmin
Guide [30] for improved storage performance (and decreased flash wear).

Notably, the system has also been using the nftables backend of firewalld, for
which, luckily, libvirt was already prepared and played nice together.

The whole infrastructure code resides in a git repository available at https://git.
dotya.ml/mirre-bt/tf-libvirt.

7.2 Terraform and Cloud-Init

Thanks to the libvirt provider for Terraform, VMs could easily be brought up and
torn down. Terraform works by tracking state of the resources that together create
the infrastructure, which can be described in numerous ways. Every resource that is
absent needs to be created. Terraform uses a plan of the infrastructure as it wants to
apply changes to the current state. Every VM or a network, every backing storage is a
resource that is managed for us, which is very convenient especially for testing.

The initial boot configuration has been performed by Cloud-Init [31]. It enabled us
to configure users with SSH public keys to secure further connections, install packages
and create arbitrary files. Scenario-role-specific configuration was made really easy
thanks to this tool.

7.3 Ansible

What has not been prepared by either Terraform or Cloud-Init was left to Ansible. It
was used to deploy configurations of GoBGPd and FastNetMon, as well as to install
and enable services.

https://git.dotya.ml/mirre-bt/tf-libvirt
https://git.dotya.ml/mirre-bt/tf-libvirt

TBU in Zlín, Faculty of Applied Informatics 35

8 MITIGATION TOOLS SET-UP

8.1 FastNetMon

An open-source DDOS mitigation toolkit named fastnetmon was picked to serve as
an attack detection tool. It supports analysing traffic from multiple different exporter
types, including Netflow (v5 and v9), sFlow and port mirrors. We tried the installer
from projects website, however, the installation did not appear to succeed. There-
fore, we decided to build it from sources. That is when we uncovered some curious
information.

The project’s master branch on GitHub, where it is hosted, appears to have been
modified on 22 June 2016 [32] [26]. Since we knew about some propagation activities
[33] and we found the repo as "updated" on 17 Feb 2021 (that is what GitHub shows
when e.g. a description is updated) [34] at the same time as we saw the last commit
pushed with a 2016 date, we went digging over the project’s forks to find out what
happened to the project. They perfectly preserve it, from a point in time when the
"fork" (essentially a clone) was created, up until the latest updates that have either
been integrated from upstream or changed by the owner of the fork. While some forks
have been abandoned a long time ago, several more showed the same tree with the
exact same commits, referring to a common history. Furthermore, the one thing giving
away what apparently happened (not why) with almost certainty is the Pull Requests
tab. It showed some 164 Closed PRs, some of them merged as late as 23 Dec 2020
[35]. That is, the history has indeed been overwritten and we have no information as
to why, but that was also a reason why we chose to use one of the latest updated forks
[36] [27] as a base for our work [28] instead of the original upstream. The claim that
the history has been overwritten is also supported by an earlier grab (snapshot) of the
project by the Internet Archive’s awesome Wayback Machine [37], the rest have been
triggered by us to help support the arguments in case anything changed.

Ad setup itself, several changes had to be made to the project to make it even compile
on recent hosts (Fedora 33/34, Arch Linux). A Drone CI build job has been set up
to help make sure nothing breaks with our changes. Fastnetmon needs quite a lot
of dependencies for its full functionality and the way to go about it in the project
was using custom versions of the third party libraries to link against, all downloaded
using the Perl install script mentioned earlier. While that might seem like a sound
idea, we feel in the long run it is always better to use a reasonably recent distribution
with sizable repositories and active community that, combined, are able to provide for

TBU in Zlín, Faculty of Applied Informatics 36

most developer needs. The only major overhaul that had to be done was patching
the CMakeLists.txt file to instruct CMake/Make to use system locations to look for
headers and (dynamic) libraries (.so files) instead of download location from the install
script. Further, to accomodate using newer version of nDPI (Open Source Deep Packet
Inspection Software Toolkit) that aids FastNetMon with traffic sorting (if enabled), an
interface and fast_dpi.h header had to be updated. The history of all changes can
be found in the repository at https://git.dotya.ml/wanderer/fastnetmon-ng.

For building and deployment to the defender host, an Ansible role has been created.
It makes sure that FastNetMon is built correctly, installed and its systemd service is
enabled (at boot time) and started.

8.2 GoBGPd

We attempted to peer the two router VMs, however, we were not able to pin down the
proper configuration that would allow us to define a community tied to a black-holing
action.

8.3 Netflow

FastNetMon supports collecting Netflow metrics, therefore the edge router has been
configured to listen on the upstream interface and to send traffic information to this
FastNetMon’s collector. The ansible role github.com/juju4/ansible-fprobe has
been edited and used to deploy the configuration to the edge router.

https://git.dotya.ml/wanderer/fastnetmon-ng
github.com/juju4/ansible-fprobe

TBU in Zlín, Faculty of Applied Informatics 37

9 ATTACK TOOLS SET-UP

When considering the way to simulate an attack locally, we weren’t primarily looking
for a tool, which would enable a decentralised (the first "D" of DDOS) attack, instead
the objective was mainly to congest the weakest link, which would happen to live inside
our network (that’s why we’re concerned in the first place).

9.1 slowlorispy

With this python script there are a couple of flags to tweak the intended behaviour.
Flag -p sets the port we want to target, –sleeptime allows us to rate-limit the tool
so that we open as many connections as possible without getting banned. The -s flag
specifies the number of sockets we want to open.

9.2 iperf3

This tool works in server-client mode. To receive traffic, it runs in server mode
and listens on port 5201 by default, although both the traffic direction and port and
multitude of other parameters can be configured. To listen on the victim server, we
simply ran iperf3 -s -P 8 to receive 8 parallel streams. Then on the client - the
attacker - we entered iperf3 -c {server ip} -P 8 to send 8 parallel streams to
the victim. This filled the available link bandwidth but, unfortunately, we haven not
observed FastNetMon ban action even though the threshold has been crossed.

TBU in Zlín, Faculty of Applied Informatics 38

10 PERFORMING AN ATTACK

As mentioned previously, the attack was planned to be performed in the controlled
environment of a virtual lab with practically no natural traffic occuring, that would
generally be present on a reasonably large ISP network and thus with essentially no
load on the network equipment/virtual devices. However, it should not have had any
major impact on the results of the subject attack and our chosen way to mitigate.

As is the case when using e.g. a selective blackhole technique, the suspect traffic
first has to be identified as highly abnormal/malicious, either by analysing network
metrics over a period of time collected by sFlow or Netflow protocols, or by direct
packet capture and inspection aided by tools such as nDPI. The analysis and detection
mechanism in our scenario is left to FastNetMon and so is the reaction (mitigation)
logic.

With the first attack we performed, we basically attempted to naively overflow the con-
ntrack table of our server host. We were not able to extinguish connections on the server
using slowloris.py, presumably because the inactive connections were quickly being
closed. While the number of used sockets steadily grew, after about 5000 this tool was
not able to open any new connections and the server worked fine. The key was to set the
net.netfilter.nf_conntrack_tcp_timeout_time_wait parameter to a lower value,
such as 10 or 5 and the net.netfilter.nf_conntrack_tcp_timeout_established
parameter to somewhere between 300 and 1200 (we chose 600). Both values are sec-
onds and they are set either in the global sysctl file (/etc/sysctl.conf) or they can
be placed in an arbitrary complementary file inside the sysctl include directory at
/etc/sysctl.d/. The TIME_WAIT timeout value affects for how long the connec-
tions in the TIME_WAIT (see 5.7) TCP state are kept before they are completely
cleared and stop consuming resources. The ESTABLISHED timeout merely sets for
how long the established connections are kept in the ESTABLISHED state before pro-
cessing them further.

As per running FastNetMon attack traffic detection, we have experienced unexpected
issues in the form of FastNetMon incorrectly reporting 0pps for both outbound and
inbound traffic. We were not able to uncover the root cause of the issue, which might
very well even be attributed to a configuration error. Due to this and the fact that we
could not establish BGP peering in our virtual lab, neither the other attack nor the
mitigation could be properly performed.

TBU in Zlín, Faculty of Applied Informatics 39

CONCLUSION

Recent past has seen an immense increase in the number of DoS attacks of all kinds.
A large part of these attacks flood service resources and ultimately end up blocking
or delaying responses for legitimate user requests. As we touched on in the beginning,
the motivations for these attacks can range all from a business model with extortion
plans to hacktivism to simply somebody choosing a wrong place to have fun.

The goal of our work was to describe some of the popular types of DoS attacks, in-
cluding DDoS, casually used attack methods, techniques and tools most popular and
most widely used among attackers to annoy Internet users, harm businesses and worry
Internet service providers with small to medium capacities. We have dived a little into
the workings of several potential attack vectors, but have not stayed there.

Further in the theoretical part, we also outlined various mitigation methods read-
ily available to network operators and end users alike, along with their scope and
reach. Several pros and cons of black-holing, selective black-holing, scrubbing and
rate-limiting were considered in section 5 - Mitigation methods. Next, we looked at
some of the concrete tools that aid mitigating DoS attacks.

In the practical part, we set out to build a virtual lab using tools like Libvirt, Terraform,
Cloud-Init and Ansible on top of KVM in an automated manner by applying the
infrastructure as code principles. The virtual lab was running on a Fedora 34 host, each
virtual machine has been provisioned using Terraform, pre-configured using Cloud-Init
and further configured with Ansible after the initial configuration has finished. We
explored setting up both the mitigation tools used to protect Internet networks and
tools used by adversaries.

Finally, we have attempted to perform several attacks in our controlled virtual envi-
ronment, which has been described in the practical part of this work. The attempts
were partially successful in that our proposed mitigation methods showed that a cer-
tain kind of attack can easily be mitigated and the unhappy consequences averted.
Sadly, in the next part of attack simulation we have arrived at unexpected results,
where we were not able to fully simulate the black hole propagation among ASes due
to configuration inconsistencies, presumably on multiple levels.

This, as well as improving and potentially reworking the virtual lab stays as a challenge
for us for the future, and I believe performing these attack simulations could aid us in
better understanding the threats and preparing for what we surely are going to face.

TBU in Zlín, Faculty of Applied Informatics 40

REFERENCES

[1] Shodan: NTPd devices. https://www.shodan.io/search?query=ntpd, March
2021, [online] Accessed: 2021-03-06.

[2] Emmons, T.: PART I: RETROSPECTIVE 2020: DDOS WAS BACK – BIGGER
AND BADDER THAN EVER BEFORE. https://blogs.akamai.com/2021/01/
part-i-retrospective-2020-ddos-was-back-bigger-and-badder-than-ever-before.
html, January 2021, [online] Accessed: 2021-05-03.

[3] Cisco: Cisco Annual Internet Report (2018–2023) White Paper. https://
www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/
annual-internet-report/white-paper-c11-741490.html, March 2020,
[online] Accessed: 2021-05-02.

[4] Santanna, J. J.; Vries, J. D.; Schmidt, R.; et al.: Booter list generation: The basis
for investigating DDoS-for-hire websites. Int. J. Netw. Manag., volume 28, 2017,
doi:10.1002/nem.2008.

[5] Emmons, T.: 2021: VOLUMETRIC DDOS ATTACKS RISING FAST. https://
blogs.akamai.com/2021/03/in-our-2020-ddos-retrospective, March 2021,
[online] Accessed: 2021-05-03.

[6] Akamai: DNS Amplification Attacks and Trun-
cated Responses. https://blogs.akamai.com/2015/06/
dns-amplification-attacks-and-truncated-responses.html, June 2015,
[online] Accessed: 2021-04-03.

[7] The kernel development community: Linux Networking Documentation
» SNMP Counter. https://www.kernel.org/doc/html/latest/networking/
snmp_counter.html#tcp-retransmission-and-congestion-control, [online]
Accessed: 2021-05-10.

[8] Transmission Control Protocol. Technical report 793, Internet Engineering Task
Force, September 1981, doi:10.17487/RFC0793, Also available as https://
datatracker.ietf.org/doc/html/rfc793.

[9] Sargent, M.; Chu, J.; Paxson, D. V.; et al.: Computing TCP’s Retransmission
Timer. Technical report 6298, Internet Engineering Task Force, June 2011, doi:10.
17487/RFC6298, Also available as https://datatracker.ietf.org/doc/html/
rfc6298.

https://www.shodan.io/search?query=ntpd
https://blogs.akamai.com/2021/01/part-i-retrospective-2020-ddos-was-back-bigger-and-badder-than-ever-before.html
https://blogs.akamai.com/2021/01/part-i-retrospective-2020-ddos-was-back-bigger-and-badder-than-ever-before.html
https://blogs.akamai.com/2021/01/part-i-retrospective-2020-ddos-was-back-bigger-and-badder-than-ever-before.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://blogs.akamai.com/2021/03/in-our-2020-ddos-retrospective
https://blogs.akamai.com/2021/03/in-our-2020-ddos-retrospective
https://blogs.akamai.com/2015/06/dns-amplification-attacks-and-truncated-responses.html
https://blogs.akamai.com/2015/06/dns-amplification-attacks-and-truncated-responses.html
https://www.kernel.org/doc/html/latest/networking/snmp_counter.html#tcp-retransmission-and-congestion-control
https://www.kernel.org/doc/html/latest/networking/snmp_counter.html#tcp-retransmission-and-congestion-control
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc6298

TBU in Zlín, Faculty of Applied Informatics 41

[10] Baker, F.; Savola, P.: Ingress Filtering for Multihomed Networks. Technical report
3704, Internet Engineering Task Force, March 2004, doi:10.17487/RFC3704, Also
available as https://datatracker.ietf.org/doc/html/rfc4271.

[11] Cloudflare: Memcached DDoS Attack. https://www.cloudflare.com/en-gb/
learning/ddos/memcached-ddos-attack/, [online] Accessed: 2021-05-03.

[12] Rekhter, Y.; Hares, S.; Li, T.: A Border Gateway Protocol 4 (BGP-4). Tech-
nical report 4271, Internet Engineering Task Force, January 2006, p. 4, doi:10.
17487/RFC4271, Also available as https://datatracker.ietf.org/doc/html/
rfc4271.

[13] Zhang, Z.; Zhang, Y.; Hu, Y.; et al.: Practical defenses against BGP prefix hi-
jacking. In CoNEXT ’07, 2007, doi:10.1145/1364654.1364658.

[14] Zhang, Y.; Mao, Z. M.; Wang, J.: Low-Rate TCP-Targeted DoS Attack Disrupts
Internet Routing. In NDSS, 2007, doi:10.1.1.137.5004.

[15] rapid7: Metasploit Framework. https://github.com/rapid7/
metasploit-framework, 2021, [online] Accessed: 2021-04-03.

[16] Moskowitz, R.; Karrenberg, D.; Rekhter, Y.; et al.: Address Allocation for Private
Internets. Technical report 1918, Internet Engineering Task Force, February 1996,
doi:10.17487/RFC1918, Also available as https://datatracker.ietf.org/doc/
html/rfc1918.

[17] Turk, D.: Configuring BGP to Block Denial-of-Service Attacks. Technical report
3882, Internet Engineering Task Force, October 2004, doi:10.17487/RFC3882,
Also available as https://datatracker.ietf.org/doc/html/rfc3882.

[18] Huston, G.: Average prefix length. https://bgp.potaroo.net/cgi-bin/plota?
file=%2fvar%2fdata%2fbgp%2fas2%2e0%2fbgp%2daverage%2dprefix%2etxt&
descr=Average%20prefix%20length&ylabel=Average%20prefix%20length&
with=step, [online] Accessed: 2021-05-11.

[19] Huston, G.: Average prefix size updated. https://bgp.potaroo.net/cgi-bin/
plota?file=%2fvar%2fdata%2fbgp%2fas2%2e0%2fbgp%2dupd%2davgprefsize%
2etxt&descr=Average%20prefix%20size%20updated&ylabel=Average%
20prefix%20size%20updated&with=step, [online] Accessed: 2021-05-11.

[20] Akamai: DDoS Defense in a Hybrid Cloud World. https:
//www.akamai.com/us/en/multimedia/documents/ebooks/

https://datatracker.ietf.org/doc/html/rfc4271
https://www.cloudflare.com/en-gb/learning/ddos/memcached-ddos-attack/
https://www.cloudflare.com/en-gb/learning/ddos/memcached-ddos-attack/
https://datatracker.ietf.org/doc/html/rfc4271
https://datatracker.ietf.org/doc/html/rfc4271
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://datatracker.ietf.org/doc/html/rfc1918
https://datatracker.ietf.org/doc/html/rfc1918
https://datatracker.ietf.org/doc/html/rfc3882
https://bgp.potaroo.net/cgi-bin/plota?file=%2fvar%2fdata%2fbgp%2fas2%2e0%2fbgp%2daverage%2dprefix%2etxt&descr=Average%20prefix%20length&ylabel=Average%20prefix%20length&with=step
https://bgp.potaroo.net/cgi-bin/plota?file=%2fvar%2fdata%2fbgp%2fas2%2e0%2fbgp%2daverage%2dprefix%2etxt&descr=Average%20prefix%20length&ylabel=Average%20prefix%20length&with=step
https://bgp.potaroo.net/cgi-bin/plota?file=%2fvar%2fdata%2fbgp%2fas2%2e0%2fbgp%2daverage%2dprefix%2etxt&descr=Average%20prefix%20length&ylabel=Average%20prefix%20length&with=step
https://bgp.potaroo.net/cgi-bin/plota?file=%2fvar%2fdata%2fbgp%2fas2%2e0%2fbgp%2daverage%2dprefix%2etxt&descr=Average%20prefix%20length&ylabel=Average%20prefix%20length&with=step
https://bgp.potaroo.net/cgi-bin/plota?file=%2fvar%2fdata%2fbgp%2fas2%2e0%2fbgp%2dupd%2davgprefsize%2etxt&descr=Average%20prefix%20size%20updated&ylabel=Average%20prefix%20size%20updated&with=step
https://bgp.potaroo.net/cgi-bin/plota?file=%2fvar%2fdata%2fbgp%2fas2%2e0%2fbgp%2dupd%2davgprefsize%2etxt&descr=Average%20prefix%20size%20updated&ylabel=Average%20prefix%20size%20updated&with=step
https://bgp.potaroo.net/cgi-bin/plota?file=%2fvar%2fdata%2fbgp%2fas2%2e0%2fbgp%2dupd%2davgprefsize%2etxt&descr=Average%20prefix%20size%20updated&ylabel=Average%20prefix%20size%20updated&with=step
https://bgp.potaroo.net/cgi-bin/plota?file=%2fvar%2fdata%2fbgp%2fas2%2e0%2fbgp%2dupd%2davgprefsize%2etxt&descr=Average%20prefix%20size%20updated&ylabel=Average%20prefix%20size%20updated&with=step
https://www.akamai.com/us/en/multimedia/documents/ebooks/ddos-defense-in-a-hybrid-cloud-world.pdf
https://www.akamai.com/us/en/multimedia/documents/ebooks/ddos-defense-in-a-hybrid-cloud-world.pdf
https://www.akamai.com/us/en/multimedia/documents/ebooks/ddos-defense-in-a-hybrid-cloud-world.pdf
https://www.akamai.com/us/en/multimedia/documents/ebooks/ddos-defense-in-a-hybrid-cloud-world.pdf

TBU in Zlín, Faculty of Applied Informatics 42

ddos-defense-in-a-hybrid-cloud-world.pdf, 2021, [online] Accessed:
2021-05-03.

[21] Cotton, M.; Vegoda, L.: Special Use IPv4 Addresses. Technical report 5735, Inter-
net Engineering Task Force, January 2010, doi:10.17487/RFC5735, Also available
as https://datatracker.ietf.org/doc/html/rfc5735.

[22] Weil, J.; Kuarsingh, V.; Donley, C.; et al.: IANA-Reserved IPv4 Prefix for Shared
Address Space. Technical report 6598, Internet Engineering Task Force, April 2012,
doi:10.17487/RFC6598, Also available as https://datatracker.ietf.org/doc/
html/rfc6598.

[23] Team Cymru: The Bogon Reference. https://team-cymru.com/
community-services/bogon-reference/, [online] Accessed: 2021-05-02.

[24] Boye, M.: Netfilter Connection Tracking and NAT Implementation. https:
//wiki.aalto.fi/download/attachments/69901948/netfilter-paper.pdf,
2012, [online] Accessed: 2021-05-05.

[25] Westphal, F.: improvements to conntrack table overflow handling. https://
netdevconf.info/2.1/papers/conntrack.pdf, April 2017, [online] Accessed:
2021-05-06.

[26] Odintsov, P.: FasNetMon - very fast DDoS sensor with
sFlow/Netflow/IPFIX/SPAN support. https://github.com/pavel-odintsov/
fastnetmon, 2021, [online] Accessed: 2021-04-13.

[27] Odintsov, P.: FastNetMon fork with preserved history. https://github.com/
Wofbit/fastnetmon, 2021, [online] Accessed: 2021-04-13.

[28] Odintsov, P.; Mirre, A.: FastNetMon NG. https://git.dotya.ml/wanderer/
fastnetmon-ng, 2021, [online] Accessed: 2021-05-04.

[29] Duncan Mac-Vicar P.: Terraform provider to provision infrastruc-
ture with Linux’s KVM using libvirt. https://github.com/dmacvicar/
terraform-provider-libvirt, 2021, [online] Accessed: 2021-04-08.

[30] The kernel development community: Linux Btrfs Sysadmin Guide.
https://btrfs.wiki.kernel.org/index.php/SysadminGuide#Copy_on_
Write_.28CoW.29, [online] Accessed: 2021-03-12.

[31] Canonical: The standard for customising cloud instances. https://github.com/
canonical/cloud-init, 2021, [online] Accessed: 2021-04-09.

https://www.akamai.com/us/en/multimedia/documents/ebooks/ddos-defense-in-a-hybrid-cloud-world.pdf
https://www.akamai.com/us/en/multimedia/documents/ebooks/ddos-defense-in-a-hybrid-cloud-world.pdf
https://www.akamai.com/us/en/multimedia/documents/ebooks/ddos-defense-in-a-hybrid-cloud-world.pdf
https://datatracker.ietf.org/doc/html/rfc5735
https://datatracker.ietf.org/doc/html/rfc6598
https://datatracker.ietf.org/doc/html/rfc6598
https://team-cymru.com/community-services/bogon-reference/
https://team-cymru.com/community-services/bogon-reference/
https://wiki.aalto.fi/download/attachments/69901948/netfilter-paper.pdf
https://wiki.aalto.fi/download/attachments/69901948/netfilter-paper.pdf
https://netdevconf.info/2.1/papers/conntrack.pdf
https://netdevconf.info/2.1/papers/conntrack.pdf
https://github.com/pavel-odintsov/fastnetmon
https://github.com/pavel-odintsov/fastnetmon
https://github.com/Wofbit/fastnetmon
https://github.com/Wofbit/fastnetmon
https://git.dotya.ml/wanderer/fastnetmon-ng
https://git.dotya.ml/wanderer/fastnetmon-ng
https://github.com/dmacvicar/terraform-provider-libvirt
https://github.com/dmacvicar/terraform-provider-libvirt
https://btrfs.wiki.kernel.org/index.php/SysadminGuide#Copy_on_Write_.28CoW.29
https://btrfs.wiki.kernel.org/index.php/SysadminGuide#Copy_on_Write_.28CoW.29
https://github.com/canonical/cloud-init
https://github.com/canonical/cloud-init

TBU in Zlín, Faculty of Applied Informatics 43

[32] The Internet Archive: Archived view of FastNetMon - very fast DDoS sensor
with sFlow/Netflow/IPFIX/SPAN support. https://web.archive.org/web/
20210330122630/https://github.com/pavel-odintsov/fastnetmon/tree/
master, 2021, [online] Accessed: 2021-04-01.

[33] The Internet Archive: Archived view of FreeBSD forum thread on FastNetMon.
https://web.archive.org/web/20210407104407/https://forums.freebsd.
org/threads/fastnetmon-open-source-tool-to-detect-ddos-ddos.62032/,
2017, [online] Accessed: 2021-04-07.

[34] The Internet Archive: Archived view of GitHub search for FastNet-
Mon. https://web.archive.org/web/20210330135951/https://github.com/
search?utf8=%E2%9C%93&q=fastnetmon, 2021, [online] Accessed: 2021-04-02.

[35] The Internet Archive: Archived view of FastNetMon’s closed Pull Requests.
https://web.archive.org/web/20210329183006/https://github.com/
pavel-odintsov/fastnetmon/pulls?q=is%3Apr+is%3Aclosed, 2021, [online]
Accessed: 2021-03-29.

[36] The Internet Archive: FastNetMon - Archived view of Wofbit’s fork with
preserved history. https://web.archive.org/web/20210516225746/https://
github.com/Wofbit/fastnetmon, 2021, [online] Accessed: 2021-05-16.

[37] The Internet Archive: Archived view of FastNetMon from January
2021. https://web.archive.org/web/20210111231449/https://github.com/
pavel-odintsov/fastnetmon/, 2021, [online] Accessed: 2021-04-02.

https://web.archive.org/web/20210330122630/https://github.com/pavel-odintsov/fastnetmon/tree/master
https://web.archive.org/web/20210330122630/https://github.com/pavel-odintsov/fastnetmon/tree/master
https://web.archive.org/web/20210330122630/https://github.com/pavel-odintsov/fastnetmon/tree/master
https://web.archive.org/web/20210407104407/https://forums.freebsd.org/threads/fastnetmon-open-source-tool-to-detect-ddos-ddos.62032/
https://web.archive.org/web/20210407104407/https://forums.freebsd.org/threads/fastnetmon-open-source-tool-to-detect-ddos-ddos.62032/
https://web.archive.org/web/20210330135951/https://github.com/search?utf8=%E2%9C%93&q=fastnetmon
https://web.archive.org/web/20210330135951/https://github.com/search?utf8=%E2%9C%93&q=fastnetmon
https://web.archive.org/web/20210329183006/https://github.com/pavel-odintsov/fastnetmon/pulls?q=is%3Apr+is%3Aclosed
https://web.archive.org/web/20210329183006/https://github.com/pavel-odintsov/fastnetmon/pulls?q=is%3Apr+is%3Aclosed
https://web.archive.org/web/20210516225746/https://github.com/Wofbit/fastnetmon
https://web.archive.org/web/20210516225746/https://github.com/Wofbit/fastnetmon
https://web.archive.org/web/20210111231449/https://github.com/pavel-odintsov/fastnetmon/
https://web.archive.org/web/20210111231449/https://github.com/pavel-odintsov/fastnetmon/

TBU in Zlín, Faculty of Applied Informatics 44

LIST OF ABBREVIATIONS

Mpps/MPPS millions of packets per second
pps/PPS packets per second
ACL access-control list
AS Autonomous System
ASN Autonomous System Number
DoS Denial of Service
DDoS Distributed Denial of Service
HTTP Hyper Text Transfer Protocol
ICMP Internet Control Message Protocol
IoT Internet of Things
IP Internet Protocol
ISP Internet Service Provider
IXP Internet Exchange Point
LVM Logical Volume Management
RFC Request For Comment
SSH Secure Shell
TCP Transmission Control Protocol
UDP User Datagram Protocol
ULV Ultra Low Voltage
VM Virtual Machine

TBU in Zlín, Faculty of Applied Informatics 45

LIST OF FIGURES

Fig. 1.1. Illustration of relationship between DoS and DDoS attacks. 11
Fig. 7.1. The Cunning Plan .. 32

TBU in Zlín, Faculty of Applied Informatics 46

LIST OF TABLES

Tab. 7.1. VM specifications.. 31

TBU in Zlín, Faculty of Applied Informatics 47

LIST OF APPENDICES

1. ansible-gobgp-master.tar.gz

2. fastnetmon-ng-development.tar.gz

3. ansible-fprobe-master.tar.gz

4. tf-libvirt-main.tar.gz

	Introduction
	I Theoretical part
	Definition
	Context
	Attack methods
	IP fragmentation
	SYN flood
	Amplified Reflection Attack
	Slowloris
	BGP hijacking
	Low-rate DoS on BGP

	Attack tools
	HOIC
	slowloris.py
	Metasploit Framework
	Web browser

	Mitigation methods
	Blackhole routing (black-holing, null routing)
	Sinkholing
	Scrubbing
	IP masking
	WAF
	Rate-limiting
	Decreased-TIME_WAIT connection closing

	Mitigation tools
	Firewall
	Software firewall
	Netfilter

	FastNetMon DDoS Mitigation toolkit

	II Practical part
	Infrastructure Set-Up Description
	VM specifications
	Terraform and Cloud-Init
	Ansible

	Mitigation tools set-up
	FastNetMon
	GoBGPd
	Netflow

	Attack tools set-up
	slowlorispy
	iperf3

	Performing an attack
	Conclusion
	References
	List of Abbreviations
	List of Figures
	List of Tables
	List of Appendices

