Analýza zvrásnění tenké polymerní vrstvy

Petra Vyhlídalová

Bakalářská práce 2008

🝯 Univerzita Tomáše Bati ve Zlíně Fakulta technologická

ABSTRAKT

V této bakalářské práci je prezentován odhad velikosti pórů v otevřených pórovitých pěnách. Naleznete zde náš detailní popis snímku před zpracováním. Středy pórů se nachází v lokálních maximech euklidovské vzdálenosti. Použili jsme přiblížení pěnové struktury podle Voronoiovy teselace a docílili jsme rozdělení rovinných pórových oblastí. V práci jsou navrženy procesy zobecnění rovinných metod na prostorové. Doporučená metoda nemusí sloužit jen pro odhad velikosti pórovitých pěn, ale také pro počítačové analýzy obrázků základních rovinných buňkových systémů (například převod rovinných Rayleigh-Benardových buněk).

Klíčová slova: obrazová analýza, stereologie, teselace

ABSTRACT

A method of pore size estimation based on planar section of open pore foams is presented. In the paper is our detailed description of image pre-processing. The pore centers are found as local maxima of Euclidean distance map. The approximation of foam structure by Voronoi tessellation is applied and distribution of areas of pore planar sections is obtained. There are suggested processes for generalization of planar methods to spatial ones. Recommended method can not be served only for foam pore sice estimation, but for computer image analysis of general planar cell systems (for example planar Rayleigh-Benard convection cells) too.

Keywords: image analysis, stereology, tessellations

Ráda bych poděkovala vedoucímu bakalářské práce panu doc. RNDr. Petru Ponížilovi, Ph.D. za odborné vedení, jak při teoretické tak i při experimentální části, rady, konzultace a připomínky, které mi pomohli při zpracování mé bakalářské práce. Dále bych ráda poděkovala oponentovi panu ing Antonínu Minaříkovi, Ph.D za poskytnutí vorků a konzultace.

Prohlašuji, že jsem na bakalářské/diplomové práci pracoval(a) samostatně a použitou literaturu jsem citoval(a). V případě publikace výsledků, je-li to uvedeno na základě licenční smlouvy, budu uveden(a) jako spoluautor(ka).

Ve Zlíně 20. srpna 2008

.....

Podpis diplomanta

OBSAH

OBS	SAH	6
ÚV	OD	7
I. T	EORETICKÁ ČÁST	8
1	BENARDOVY BUŇKY	9
2	RAYLEICH- BENARDOVA KONVEKCE	10
3	BENARD MARANGONIHO KONVEKCE	12
II. F	PRAKTICKÁ ČÁST	14
4	RUČNÍ ZPRACOVÁNÍ BENARDOVÝCH BUNĚK	15
4.1	ZAPLNĚNÍ BENARDOVÝCH BUNĚK RUČNÍM OKLIKÁNÍM	17
4.2	ZPRACOVÁNÍ BENARDOVÝCH DAT	19
4.3	PŘÍKLADY OKLIKANÝCH BENARDOVÝCH BUNĚK	23
5	AUTOMATICKÉ VYHODNOCENÍ	26
5.1	POROVNÁNÍ RUČNÍHO A AUTOMATICKÉHO ZAPLNĚNÍ BUNĚK	30
6	RUČNÍ ZPRACOVÁNÍ SNÍMKU POLYURETANU	31
6.1	SNÍMKY RUČNÍHO VYPRACOVÁNÍ POLYURETANU	34
6.2	POROVNÁNÍ RUČNÍHO A AUTOMATICKÉHO ZPRACOVÁNÍ	36
ZÁV	VĚR	43
SEZ	ZNAM POUŽITÉ LITERATURY	44
SEZ	ZNAM POUŽITÝCH SYMBOLŮ A ZKRATEK	46
SEZ	ZNAM OBRÁZKŮ	47
SEZ	ZNAM TABULEK	49

ÚVOD

V Bakalářské práci se budeme zabývat geometrickou analýzou polygonálních struktur jako jsou Benardovi buňky polyuretanové pěny. Obrázky rovinného řezu z počítačové tomografie se zpracují pomocí ručního programu Image Viewer 0.3 a pro porovnání také pomocí automatického programu Tessellation. Hlavním cílem práce je analýza morfologie Benardových buněk a teké stovnání výsledků různých metod analýzy polygoniálních struktur.

I. Teoretická část

1. Benardovy buňky

Tento jednoduchý nelineární jev hydrodynamické nestability vyvolané teplotním gradientem popsal již v roce 1900 Henri Benard. Vrstvu kapaliny situovanou v homogenním tíhovém poli rovnoměrně zahříval. Od určitého rozdílu teplot mezi dolní částí vrstvy kapaliny a vrstvy horní, pozoroval tepelný tok zespodu nahoru, přičemž kapalina zůstávala v klidu. Po překročení určitého teplotního rozdílu mezi dolní a vrchní vrstvou kapaliny (kritický rozdíl teplot) docházelo ke konvekci kapaliny a tento laminární tok vedl ke vzniku rotačních buňkových útvarů se strukturou podobnou včelímu plástu (Obr.1)

Obr. 1. Rotační hexagonální struktury Benardova typu vznikající v roztocích polysacharidů

2. Rayleigh - Benardova konvekce

Benardův objev buněčných útvarů tvaru hexagonálních buněk vysvětlil v roce 1916 Rayleigh na základě nestability tekutiny řízené konvektivním tokem. V kapalině mezi dokonale teplovodivými vodorovnými deskami, s dostatečně velkou teplotní odchylkou mezi nimi, se indukuje hustotní gradient, který vybudí konvektivní tok.

Konvektivní tok se iniciuje ve vrstvě kapaliny blízko spodní plochy, která má vyšší teplotu než plocha vrchní. Klesne-li hustota kapaliny ve vrstvě pod určitou mez, uvolní se z ní malý element kapaliny, který překoná brzdící viskózní síly a je hnán Archimédovou silou k vrchní chladnější ploše. Zde je element ochlazován, čímž jeho hustota znovu vzroste a element klesá směrem dovnitř kapaliny. Tímto vzniká nestabilní systém, v kterém jsou jednotlivé posuny kapaliny organizovány v periodických proti sobě rotujících válcích. Vznik nestability kapaliny je dán hodnotou Rayleighova čísla

$$Ra = \frac{\gamma g \, \Delta T \, d^3}{a \, \nu} \,,$$

kde g je gravitační zrychlení, d tloušťka vrstvy, γ koeficient objemové teplotní roztažnosti, ΔT teplotní rozdíl mezi dnem a volnou hladinou, v kinematická viskozita a a koeficient teplotní vodivosti. Z definice Ra vyplývá, že jeho hodnota při konstantní tloušťce vrstvy významně závisí na generovaném teplotním rozdílu a převrácené hodnotě součinu v a a. Entalpické pole v závislosti na hodnotě Ra je uvedeno na Obr.2

Obr. 2 Iniciace toku proti klesající hustotě a) Ra = 1468, b) Ra = 4405

Nestabilita nastane při experimentálně určeném kritickém Rayleighově čísle Ra = 1708. Pro tuto kritickou hodnotu můžeme uvnitř kapaliny pozorovat dvě nesouvislé válcovité struktury. Jsou-li počáteční podmínky dobře zvoleny a Rayleighovo číslo vzrůstá, množství vznikajících samoorganizovaných válcovitých útvarů se rovněž zvyšuje (Obr.3)

Obr.3 Konvektivní toky v závislosti na Ra

Iniciace, vznik i vývoj konvektivního proudění kapaliny v důsledku teplotního gradientu je názorně zobrazen pomocí obrázků.

Pro kapaliny s volným povrchem (Bernardův experiment) bylo objeveno, že vznikající konvektivní struktury uvnitř kapaliny jsou navíc od Rayleighových válcovitých útvarů důsledkem teplotní nestability závislé na silách povrchového napětí. Konvekce vyvolaná povrchovým napětím je označována jako Marangoniho konvekce (Obr. 4b) [7, 20].

Obr.4 Nestability tepelného proudění vyvolané teplotním gradientem:

- a) Rayleigh-Benardova konvekce mezi dvěmi deskami s různými teplotami
- b) Benard-Marangoniho konvekce u silikonového oleje s volným povrchem

3. Benard - Marangoniho konvekce

Benard-Marangoniho nestabilita je tedy variantou Rayleigh-Benardovy nestability s volným povrchem vrstvy kapaliny. Pro tento případ byla nalezena kritická hodnota Rayleighova čísla Ra = 1101.

Je zřejmé, že teplotní rozdíl mezi volnou hladinou a temperovaným dnem je zvyšován o hodnotu odpovídající výparnému teplu, jehož význam není zanedbatelný v celkové energetické bilanci soustavy. Navíc v důsledku vzniku neizotermického pole povrchové vrstvy roztoku, se začne projevovat další nestabilita vyvolaná gradientem povrchové energie, která vyhání paprskovitě tekutinu z ohřívané oblasti k povrchu, kde je teplota chladnější. V důsledku vyrovnávání proudící hmoty pak vzniká systém buněk, uvnitř kterých kapalina stoupá nahoru středem buňky a klesá dolů po okrajích buňky (Obr.12). Organizované útvary vznikající takto na volném povrchu vrstvy kapaliny se vyznačují hexagonální symetrií.

Obr.5. Schéma Benard- Marangoniho hexagonálních buněk

Benard- Marangoniho efekt nestability závisí od hodnoty Marangoniho čísla Ma

$$Ma = \frac{\sigma' \Delta T \, d}{\eta \, a}$$

kde $\sigma' = \frac{d\sigma}{dT}$ je změna hodnoty povrchového napětí s teplotou, ΔT je rozdíl teplot mezi spodní vrstvou a volným povrchem, *d* je hloubka vrstvy kapaliny, η dynamická viskozita a *a* teplotní difuzivita. Kritická hodnota pro vyvolání nestabilit je *Ma* = 80 [7, 20].

II.Praktická část

4. Ruční zpracování Benardových buněk

Úkolem bakalářské práce byla analýza Benardových buněk připravovaných. Ing.Minaříkem.Protože obrázky byly málo zřetelné pro automatickou grafickou analýzu, obrázky byly většinou zpracovávány ručně. Ruční vyhodnocení Benardových buněk bylo prováděno programem TK Viewer ver 0.3, který je určen v ruční obrazové analýze polygonálních struktur a jehož autorem je Hiromasa Takatsuka.

Obr.6 TK Viewer ver a Banardova buňka

Ruční oklikání bylo prováděno tak, že byla rozkliknuta nabídku File, v nabídce bylo otevřeno okénko a bylo vybráno Open Image, byl otevřen obrázek s Benardovou buňkou určenou k zpracování, jak je vidět na Obr.6. Program umožňuje buď vyhledávání bodů (ploch částic) nebo polygonů (např. Benardových buněk v obrázku), protože byly vyhledávány Benardovi buňky, bylo přepnuto v části "Mode,, do režimu "Polygon".

Ruční zpracování:

Samotné oklikávání bylo prováděno kurzorem myší, kde levým tlačítkem byly definovány body (Obr.7). Po oklikání celé buňky bylo potvrzeno Entrem a buňka byla zabarvena (Obr.8). Protože každý vrchol patřil k několika buňkám, je možné pravým tlačítkem kliknout do blízkosti nějakého již existujícího vrcholu a vrchol nového polygonu byl pak umístěn přesně u vedlejšího polygonu.

Pokud bylo označení Benardovy buňky špatné, bylo možno ji před konečným uzavřením hranic buněk "Entrem, odstranit klávesou "Esc". Existující buňku bylo možné odstranit

v režimu "Remove mode, (Obr.10). Po kliknutí na špatně uzavřenou buňku kurzorem myší, byla buňka označena a kliknutín na "delete, byla vymazána. (Obr.11)

4.1 Zaplnění Benardových buněk, které byly prováděny ručním oklikáním:

Buňky byly buď celé zaplněné (Obr.12) nebo byly voleny jen s vnějším ohraničením (Obr.13)

Po vyznačení všech buněk byly uložené jako Polygon. Charakteristiky oklikaných polygonů bylo možné uložit do souboru v "Menu, "Fill- Save, (Obr.14) Polygon a Polygon Data.

Obr.14 (data za	plněnýc	h buněk

182.24299941417692	179.09256004686583	205.80344017294794	2845.0
153.6666666666666	197.6666666666666	127.40504624225576	589.0
135.23469387755102	189.22278911564626	147.6264776742281	1176.0
146.8305260288907	132.9761242845462	228.8596180766998	3057.5
236.49247822644497	107.09817893903406	170.674827653413	1684.0
191.52113872955175	108.8000849798173	175.78651973187243	1569.0
165, 50682000534903	89,99705803690827	178,94645826893526	1869.5
134.33790750018153	57.61010673055979	196,66646230179228	2295.5
107.96768707482993	124,21995464852608	181.75296607903442	1764.0
75,1392834807469	125, 72295184490306	188,17821181151626	1865.5
87, 78560646421596	51,759278991298174	257,7121165063893	3754.0
0.0 0.0 94.33	981132056604 0.0	257.77222205050555	51 54.0
109.8015247776366	223.70512494705633	183.68054234919646	1967.5
84.1288614298323	248.7846425419241	175.8408846427514	1699.5
159.44164736164737	244.2921492921493	220.322128368505	3237.5
127.71098696461824	277.0268156424581	176.43531203410234	1342.5
84.88533522861881	288.2976387901761	187.00790596584454	2110.5
153.42196344816432	315.94840692220606	219.63726873251434	3091.5
197.95668549905838	316.06403013182677	196.52604581814796	2124.0
208.45737246680642	273.9552760307477	217.5267484340651	2862.0
271.4212121212121214	264.57272727272726	162,13975612111358	1485.0
219.25358255451712	227.95950155763242	229.46448965922784	2942.5
261.45135638431725	310.3820021138457	229.40648310393095	3311.5
233.35495004541326	346.4584922797457	177.3653401794711	1835.0
194.88085709521425	366.8296648324162	177.31806899929217	1999.0
154.57029177718832	374.49018567639257	172.92644489748795	1885.0
117.83274021352314	329, 5800711743772	166.87910129072597	1405.0
98.333333333333333333	347.0 170.320708429	9974 1344.0	
65.13391136801542	339.45953757225436	185.3360321876498	2076.0
26.0815581253804	339.2420369243254	156.81507529318714	1643.0
46.096444626072746	385.0151205557826	201.4942228234333	2447.0

Soubor obsahoval informace z daného snímku Benardovi buňky, které sloužily k dalšímu zpracování. Jsou zde čtyři sloupce (Obr.14) z nichž první dva sloupce jsou x a y souřadnice těžiště buňky, třetí a čtvrtý souřadnice jednoho vrcholu buňky.

4.2 Zpracování Benardových dat

Filmy byly připravovány z 1% roztoku 2-HEC (2-hydroxyethylcelolózy) v Petriho miskách ve speciální sušícím zařízením MCDS. HEC byla od firmy SIGMA ALDRIČ.

Popis Mikrokondenzačního sušícího zařízení MCDS

Pro analýzu vzorků na površích fyzikálně upraveného skla bylo použito Mikrokondenzační sušící zařízení (MCDS) vyvinuté na Ústavu fyziky a materiálového inženýrství, Fakulty technologické, Univerzity Tomáše Bati ve Zlíně, A. Minaříkem, M. Peruťkou a P. Urbanem. Zařízení umožňuje přesnou regulaci teploty, teplotních gradientů, rychlosti sušení v bezprašném a bezotřesném prostředí. Skládá se z osmi subjednotek řízených pomocí počítače. Každá jednotka může být nastavena na jiný průběh teplotního režimu a rychlosti sušení, tímto způsobem lze v jeden den připravit celou řadu experimentů z jednoho roztoku a tím dosáhnout maximální reprodukovatelnosti (zvláště u nestabilních systémů).

Popis tabulky:

- Výška v mm např.5,3 je výška vrstvy kapaliny v mm
- c teplota solifikace. Pokud není uvedená teplota jako např.u 40c je teplota silicifikována při 55 stupňů Celsia.
- v ooo rychlost solifikace v = k
- v o 50 rychlost solifikace v = 1,5 k
- v 100 rychlost solifikace v = 1,3k
- zno značí plnění oxidem zinku $10 m^2 / g$, $70 m^2 / g$
- zno 1, 5, 1 značí množství přidaného zinku v gramech
- např. zno 10-1-sel-sample-3-<u>3</u>-11-07b-cir –druhé zvýrazněné číslo značí číslo sušárny, jak vidíme v tabulce může to být 2, 3, 5, 6.
- smodch směrodatná odchylka nám říká s jakou přesností známe ten průměr

vzorek	vyska v mm	teplota	rychlost	plocha	
				prumer	smodch
5,3cm-c-sample-5-11-10-07	5,3	55	1,15	1644,74	0,46354
5,3cm-sel-sample-5-12-10-07b	5,3	55	1,15	1712,33	0,49636
40c-sel-sample-3-10-10-07	7,1	40	1,15	1282,05	0,75049
45c-sel-sample-4-10-10-07	7,1	45	1,15	2173,91	0,51211
50c-sel-sample-5-10-10-07	7,1	50	1,15	1760,56	0,60846
55c-sel-sample-6-10-10-07	7,1	55	1,15	1700,68	0,4633
60c-sel-sample-7-10-10-07	7,1	60	1,15	1798,56	0,45397
65c-sel-sample-8-10-10-07	7,1	65	1,15	1308,9	0,48331
7,1cm-c-sample-6-11-10-07	7,1	55	1,15	1644,74	0,47861
7,1cm-sel-sample-4-12-10-07	7,1	55	1,15	1893,94	0,44775
7,1cm-sel-sample-8-12-10-07	7,1	55	1,15	1838,24	0,48848
v000-1-sel-sample-2-5-28-11-07-cir	7,1	- 55	1	1677,85	0,6389
v000-1-sel-sample-2-6-28-11-07b-cir	7,1	- 55	1	1250	0,71009
v000-2-sel-sample-2-2-26-11-07b-cir	7,1	- 55	1	1479,29	0,68424
v000-2-sel-sample-2-5-26-11-07-cir	7,1	- 55	1	1470,59	0,61143
v000-2-sel-sample-2-6-26-11-07-cir	7,1	55	1	1243,78	0,69613
v000-6-sel-sample-2-2-29-11-07b-cir	7,1	55	1	1269,04	0,74414
v000-6-sel-sample-2-5-29-11-07b-cir	7,1	55	1	1288,66	0,72316
v000-6-sel-sample-2-6-29-11-07-cir	7,1	55	1	1295,34	0,63133
v050-1-sel-sample-2-2-22-11-07b-cir	7,1	55	1,15	1851,85	0,49417
v050-1-sel-sample-2-5-22-11-07-cir	7,1	55	1,15	1497,01	0,64189
v050-1-sel-sample-2-6-22-11-07-cir	7,1	55	1,15	1351,35	0,57114
v100-0-sel-sample-2-2-21-11-07b-cir	7,1	55	1,3	1677,85	0,55937
v100-0-sel-sample-2-5-21-11-07b-cir	7,1	55	1,3	1811,59	0,62216
v100-0-sel-sample-2-6-21-11-07-cir	7,1	55	1,3	1582,28	0,53315
zno10-1-sel-sample-3-3-22-11-07b-cir	7,1	55	1,15	1288,66	0,65346
zno10-5-sel-sample-3-3-29-11-07b-cir	7,1	55	1,15	1275,51	0,66683
zno70-1-sel-sample-3-7-22-11-07b-cir	7,1	55	1,15	1760,56	0,71029
8,9cm-c-sample-7-11-10-07	8,9	- 55	1,15	2049,18	0,50864
10,6cm-c-sample-8-11-10-07	10,6	55	1,15	1968,5	0,54998
10,6cm-sel-sample-2-12-10-07	10,6	55	1,15	2049,18	0,4898

Do grafu byly použity hodnoty vzorků a výpočtů Benardových buněk.

Graf č.1

U grafu č.2 byla zaznamenána změna teploty průměrné plochy.

Graf č.3

U grafu č.3 byla zaznamenána rostoucí rychlost sušení na průměrné ploše buněk.

4.3 Další příklady Benardových buněk - vypracovaných ručně

Obr.15. 8,9C

Obr.16. 8,9C

Obr.18 60C-1.8.07

Obr. 23 8,9-sel-07

5. Automatické vyhodnocení

Při automatickém vyhodnocování buněk byly nejdříve převedeny na černobílé, pomocí Binarize Treshold. Poté byl odstraněn šum (přebytečné částečky kolem buněk), pomocí Noise Reduction, byl definován okraj buněk (Obr.28),bylo voleno bílé ohraničení - White Boundary.

s.	
Menu	
	Binarization: Binarize Threshold: Noise Reduction: Minimum Pixel: Noise Reduction Noise Reduction
	Extract Boundary Pixels: White Boundary Black Boundary Extract Boundary Pixels Minimum Distance: Minimum Radius: 5 Maximum Radius: 30 U
	Divide: Gray Scale Image C EDM Image Maximum Area: 10 000 C Frase Border Cells
	Divide
	Export:

Obr.27 Program Tessellation

Obr.28 Ohraničené buňky

Grafické znázornění EDM. Světlejší šedá označuje větší hodnotu vzdálenosti.

Poté byla provedena fitrace buněk:

Lokální maximum EDM může být považováno jako střed póru a hodnota euklidovské vzdálenosti je nízký odhad poloměru póru. Filtrování malých nebo úzkých lokálních maxim je důležité. Výsledek je ukázán na Obr.29.

Obr.29

Filtrace byla provedena tak, aby jádra buněk měly minimální překryv. Pomocí Divide bylo provedeno rozdělení obrázku na jednotlivé polygony (Obr.30)

Po automatickém vyhodnocení byly buňky uloženy jako Export image. Dále i data – Export Data (Obr.31).

Obr.31 Uložený soubor dat z automatické analýzy

400 7060314242271	405 5886974151039	397 0	408.0	19 05526351928711	3946
282.76826029216465	457.44322709163345	282.0	455.0	17.545063018798828	3012
288.7440476190476	350.4281462585034	286.0	349.0	16.883773803710938	2352
144.71782178217822	68.47562833206398	147.0	67.0	16.483898162841797	2626
73.30366748166259	483,22933985330076	68.0	488.0	16.45133399963379	2045
389, 7606084867894	225, 58566853482787	392.0	227.0	16,405067443847656	2498
335,9663157894737	172,4205263157895	340.0	169.0	15.769987106323242	1900
196.96030356100408	484.1611208406305	195.0	490.0	15.636585235595703	1713
129,78820033955859	319,25169779286927	129.0	321.0	15.60057544708252	2356
226.2190938511327	234.06181229773463	228.0	233.0	15.52249526977539	3090
335, 3527185134205	228.60495526496902	336.0	228.0	15.361650466918945	2906
193.30863614912695	32,24398301085418	194.0	35.0	15.2559814453125	2119
370, 7975687103594	168.0639534883721	368.0	168.0	15.070060729980469	1892
89.56128353498158	49.5744345081536	86.0	47.0	14.768415451049805	1901
148,19143054595716	28.504492052522462	149.0	24.0	14.577259063720703	1447
129.70927936821323	165.27640671273446	129.0	163.0	14.465067863464355	2026
238.3394449950446	351.4132804757185	238.0	353.0	14.277544021606445	2018
367.06323447118075	118.60156687185227	357.0	115.0	14.261871337890625	1787
299.3877887788779	127.2964796479648	300.0	126.0	14.237618446350098	1818
303.9436127744511	273.99750499001993	303.0	276.0	14.069297790527344	2004
372.5369757174393	481.4370860927152	369.0	481.0	13.99052619934082	1812
426.05710155402966	133.25659559089266	429.0	135.0	13.849376678466797	2767
91.85090909090908	445.5355844155844	90.0	445.0	13.792136192321777	1925
164.39737742303308	137.12998859749146	164.0	138.0	13.753440856933594	1754
429.05329593267885	473.4539504441328	431.0	471.0	13.723701477050781	2139
173.27293318233296	433.7882219705549	174.0	431.0	13.440339088439941	1766
15.755274261603375	118.24753867791843	10.0	120.0	13.325179100036621	1422
27.523578669017187	332.6245041868665	36.0	330.0	13.19832992553711	2269
121.56672345258376	111.76149914821124	122.0	111.0	13.063340187072754	1761
243.14831804281346	133.74260958205912	240.0	132.0	12.866108894348145	1962
288.1575471698113	198.8311320754717	286.0	199.0	12.71202564239502	1060
69.24421467257508	15.649926144756277	81.0	22.0	12.630305290222168	2031
70.14469650521153	309.2691600245248	69.0	310.0	12.493500709533691	1631
22.021505376344088	289.9724170172978	25.0	291.0	12.490982055664062	2139
400.87142857142857	265.99378881987576	404.0	262.0	12.472783088684082	1610
130.16326530612244	468.8690166975881	131.0	463.0	12.401485443115234	2695
66.6255868544601	245.79929577464787	64.0	251.0	12.195682525634766	1704
368.0691056910569	91.08130081300813	363.0	89.0	12.1802339553833	1230
79.17960088691795	402.64966740576494	79.0	403.0	12.11998176574707	1804
116.6918869644485	14.718322698268004	119.0	9.0	12.082230567932129	1097
139.15815691158156	265.7173100871731	137.0	263.0	12.068365097045898	1606
17.91044776119403	79.01865671641791	18.0	76.0	11.96938705444336	1340
92.43310082435003	86.50729232720356	91.0	87.0	11.954660415649414	1577

Uložený soubor dat z automatické analýzy obsahoval informace z daného snímku Benardovy buňky, které sloužily k dalšímu zpracování. Je zde šest sloupců (Obr. 31) z nichž první dva sloupce jsou x a y souřadnice těžiště buňky, třetí a čtvrtý souřadnice jednoho vrcholu buňky, pátý sloupec je obvod buňky a šestý je její plocha, který je pro nás důležitý a se kterým bylo dále pracováno.

5.1 Porovnání ručního a automatického zaplnění Benardových buněk

V mém případě byly Benardovy buňky vyhodnoceny ručním oklikáním, programem TK Viewer ver 0.3. U automatického vyhodnocování Tessellation bylo nepřesné ohraničení buněk a výsledky byly zkreslené. Obvod a plocha polygonu byly jak v ruční tak v automatické analýze měřené v pixelech.

Obr.34 ruční vyhodnocení

Obr.35 automatické vyhodnocení

6. Ruční zpracování snímku polyuretanu

Obr.36 Snímek před zpracováním

Na Obr.36 byl viděn rovinný řez otevřeného póru pěny polyuretanu, černá značí hranice polyuretanu a bílá barva je jádro polyuretanu.

Ruční zpracování polyuretanu bylo prováděno pomocí programu TK Viewer ver 0.3. (Obr.37)

Obr.37 snímek PUR v Image Viewer 0.3

Po otevření snímku polyuretanu (Obr.37) v programu TK Viewer ver 0.3 byl snímek ručně zpracováván. Byla zde možnosti výběru, zda zvolit vrstvu "Layer,, vyplněnou "Fill, nebo pouze vnější ohraničení "Bordur, buňky a také jejich barvu. Způsob vrstvy se kterou bylo pracováno byl volen mezi možnosti v bodu "Point, a mnohoúhelníku "Polygon, Bylo pracováno s vrstvou "Polygon, jako u Benardových buněk.

Obr.38 ručně zpracovaný snímek PUR

Po zaplnění celého snímku vrstvami buněk (Obr.39) byl soubor uložen jako Polygon a data jako Polygon Data (Obr.40).

Obr.40 Uložená data PUR

429.72984356197355 422.4715969989282	281.88517849979945 246.7491961414791	151.2328846003133 116.69472652149312	1662.0 933.0
446.79090226370556	211.06458534492006	146.6468591326353	1553.5
409.9738339021616	221.47155858930603	116.1334064720443	879.0
387.58239700374537	212.0805243445693	73.58325948183536	356.0
412.6610285323765	183.0497180932855	164.5350666208578	1951.0
448.95250357653794	178.03805436337626	104.56829025282553	582.5
476.2430806257521	185.46811070998797	113.7077038139806	831.0
4/3.93411450303216	154.08551/52492548	163.0/133/08969016	1621.5
387.8613476766771	150.58628417749887	126.85602901338348	1115.5
370.8888111888112	187.06177156177154	143.6306132386367	1430.0
386.163/032/33299	243.004913294/9//	121.0//432245544/8	1038.0
397.0424294208000	268.4374108925007	93.29734871839644	1226 A
387.1429040718303	293.748302994012	138.20132123939304	1330.0
260 66542520172806	207.93404032287384	99.4233372800133 67.40269090109032	769.5
255 71066210060276	244.30010800744878	140 62067801525774	1246 0
222 7277211977057	104 44207472112770	106 74171046940719	744.0
304 7964649169791	215 60810569541152	171 28512477077284	933 5
322 7841841106623	239 242991 798261 7	144 4008716909505	1361 5
340.2896026129559	262.3950281255671	120, 53869163150985	918.5
344 0492352249072	300.06670286903795	160.2320265958087	1841.5
371.1479229989868	329,00472813238775	118,54888969307224	987.0
342.40051679586566	333.82428940568474	81.5798459080347	387.0
306.52819061099314	315.1641896673744	145.35177500932696	1413.0
297.948046417545	281.89715745768126	169.0754019330535	1565.5
283.9307804068078	251.91739310917393	156.2380229852788	1606.0
264.1177658142665	223.9181247196052	107.18909992925086	743.0
252.55192665807192	261.8089098982954	137.84305107950797	1163.5
230.7249219359875	222.03883684621388	153.7511845205188	1708.0
227.65308568004792	185.31016576792493	111.19985551597823	834.5
254.67522621667888	193.0652971386647	102.98923238429757	681.5
280.8888888888888	196.2944444444445	131.72726176764607	1080.0
312.0007645259939	176.03516819571865	139.97235554779184	1308.0
371.4056238237573	119.72567253404185	148.28341611597332	1505.5
345.66102302248504	153.0512407059034	159.88351556193697	1860.5
332.56024547223467	111.57431522227212	130.01083555031732	1113.5
283.839621749409	155.66449172576833	171.83378460088858	1762.5

Soubor obsahoval informace z daného snímku polyuretanu, které sloužily k dalšímu zpracování. Jsou zde čtyři sloupce (Obr.40) z nichž první dva sloupce jsou x a y souřadnice těžiště buňky, třetí a čtvrtý souřadnice jednoho vrcholu buňky.

6.1 Další snímky ručního vypracování polyuretanu

Obr.41 Green 0503 PUR

Obr.43 Green 0540 PUR

Obr.44 Green 0563 PUR

Obr.42 Green 0517 PUR

Obr.45 Green 0586 PUR

6.2 Porovnání ručního a automatického zpracování

V další části práce jsme se pokusili srovnat výsledky automatické obrazové analýzy provedením programem "Tessellation,, a určení obrazové analýzy. Bylo prováděno dvěma lidmi mnou a Markem Galetkou. K analýze sloužil obrázek řezu polyuretanovou pěnou , získanou počítačovou tomografií, které jsme měli s Markem Galetkou stejné.

Zde viditelná podobnost obou zpracování. U ručně zpracovaného snímku byly buňky vytvořeny do úplných krajů, což se u automatického zpracování nestalo. To ovšem není důležité. Pro viditelnější porovnání byly vloženy obě metody do jednoho snímku. Viz obr. 46.

Obr. 46 Porovnání ručního a automatického zpracování

Modré hranice buněk byly zpracovány ručně a zelené automaticky. Na první pohled je výsledek zpracování velmi podobný. Jsou zde zajisté neshody způsobené hlavně v místech u kterých lze těžko předpovědět jakým směrem se bude buňka vyvíjet či zda-li tam vůbec nějaká je. Což je zobrazeno například u obr. 46, kde byla v mém případě modrou barvou ručně vytvořena jedna buňka a automaticky u Marka Galetky zelenou, kde byly vytvořeny buňky dvě. Nelze ale říci, která metoda vyjádřila tuto část snímku lépe, jelikož je zde více možností spojení buněk. Mohla být vytvořena buňka jedna i dvě, ale klidně i tři. U ručního zpracování záleželo hodně na úhlu pohledu a také na předvídavosti jak se hranice buněk budou dále vyvíjet.

Obr. 47 Zvětšení části Obr. 46

V místech, kde byly jasně viditelné body hranice buňky byla podobnost velmi vysoká což je zobrazeno na obr. 48.

Obr. 48 Část Obr. 46

Ručně bylo zpracováno dalších pět snímků, které byly porovnány s automaticky zpracovanými snímky PUR. Všechny snímky se na pohled shodovali podobně jako již uvedený. Pro lepší porovnání zpracovávala stejných šest snímků i Marka Galetky. Moje, jeho a hodnoty vzniklé pomocí automatického programu se pro porovnání zpracovaly numericky. Na ukázku byla vytvořena tabulka hodnot velikosti ploch. Zde je prvních 30 hodnot seřazených podle velikosti z celkových 1050 (Tab.2). Jelikož z každého zpracování vznikl různý počet ploch, pro lépe viditelný rozdíl, byl zpracován stejný počet.

	Marek	Petra	Automat		Marek	Petra	Automat
1	91,5	180	76	16	184,5	318	132
2	103	183,5	80	17	185,5	319	135
3	104	197,5	88	18	190	321	137
4	110	200	92	19	191,5	324	150
5	119,5	252	107	20	204	330,5	153
6	124,5	254	108	21	212	333	154
7	124,5	255	111	22	218	338	160
8	129	256	112	23	218	340	161
9	136	268,5	113	24	219	340,5	162
10	149,5	273,5	120	25	220	356	165
11	160	285	122	26	225	361,5	174
12	170,5	293,5	125	27	227	374,5	177
13	177	300,5	126	28	230,5	375,5	180
14	179,5	301	126	29	232	377,5	181
15	184,5	302	127	30	232	381	181

Tab.2 Velikost plochy buněk

Ze všech hodnot byla vypočtena průměrná hodnota velikosti řezu plochy buňky. Průměrná hodnota zpracovaná automaticky vyšla 1061 se směrodatnou odchylkou 18, která se velmi slušně shoduje s Markovou Galetkovou průměrnou hodnotou 1038 a směrodatnou odchyl-

kou 17. Moje [10] vyšla průměrná hodnota velikosti plochy 1258 se směrodatnou odchylkou 17. Všechny hodnoty byly vyneseny do grafu 4.

Graf 4 Porovnaná velikost plochy buněk

Je zde vidět, že Marka Galetky automatem vytvořené velikosti ploch jsou si velmi blízké. Můj výsledek se o něco liší. Je to způsobeno zřejmě tím, že jsem vytvářela větší buňky a ignorovala jsem buňky příliš malé. Pro ještě lepší přehled byl vytvořen obrázek na kterém je zpracování jednoho snímku Marka Galetky, což jsou modré hranice buněk, automaticky – zelené hranice a moje červené hranice (Obr. 49).

Obr. 49 Porovnání stejného snímku Marka Galetky, mnou a automatem

Jsou zde viditelné rozdíly jako např. v Obr. 49, kde Marek Galetka i automat vyhodnotil na stejném místě tři buňky a já jsem zvolila jednu velkou buňku. Proto bych mohla mít větší hodnoty velikosti plochy řezu buňky a tedy i celkovou průměrnou hodnotu.

Obr. 50 Zvětšení části Obr. 49

Lze ovšem říci, že automatické zpracování snímku dává přesné a velmi podobné výsledky jako ruční zpracování. V mém případě byly výsledky příliš zkreslené, proto bylo v mém případě voleno ruční oklikání.

ZÁVĚR

V práci bylo provedeno otestování programů pro automatickou obrazovou analýzu a program pro ruční oklikání buněk. Zjistili jsme, že výsledky automatického vyhodnocení se neshodují s výsledky ručního oklikání. Výsledky automatického vyhodnocení byly značně zkreslené. Proto byl použit program pro ruční oklikání. Program proto může být v budoucnosti bez obav používán pro analýzu rovinných řezů struktur.

SEZNAM POUŽITÉ LITERATURY

[1] Zmeškal O., Komendová B., Bžatek T., Julínek M.: Hodnocení kvality tiskových bodů metodami obrazové (waveletové) analýzy. Dostupný z WWW:

http://www.fch.vutbr.cz/lectures/imagesci/download/cz05_brat04.pdf

[2] Militký J.: Obrazová analýza a Matlab. Dostupný z WWW:

http://centrum.tul.cz/centrum/centrum/1Projektovani/1.2_publikace/%5B1.2.12%5 D.pdf

[3] Macháček J.: Analýza obrazu. Dostupný z WWW:

http://www.vscht.cz/sil/sem/mikroskopie/Prednaska-OA.pdf

- [4] Beneš V.: Stereologie a výběr. Dostupný z WWW: www.statspol.cz/robust/1998_benes_98.pdf
- [5] Hlubinka D.: Dvourozměrná rozdělení charakteristik sférolitů; extrémy a stereologie. Dostupný z WWW:

www.statspol.cz/robust/robust2004/hlubinka.pdf

- [6] Živcová Z.: Nové metody přípravy porézní keramiky a její charakterizace. Dostupný z WWW: <u>www.vscht.cz/sil/seminar/2007/prezentace/zivcova.ppt</u>
- [7] Ponížil P : Prostorové teselace, teze k rigorózní zkoušce. Dostupný z WWW:
 <u>http://fyzika.ft.utb.cz/voronoi/voronoi.pdf</u>
- [8] Bayer T.: Voronoiova teselace. Dostupný z WWW:
 <u>http://www.natur.cuni.cz/~bayertom/Sw/Applets/Voronoi/appletvoronoi.html</u>
- [9] Ponížil P: Pore size estimation in open pores foams. Macro 2008, manuskript

 [10] Galetka M.:: Bakalářská práce 2008 – Strukturní analýza 3D pěny z rovinných řezů, FT UTB

SEZNAM POUŽITÝCH SYMBOLŮ A ZKRATEK

- MCDS Mikrokondenzační sušící zařízení
- Ra Rayleighovo číslo
- EDM Mapa Euklidovských vzdáleností (Euclidean Distance Map)
- Ma Marangoniho číslo
- PUR Polyuretan

SEZNAM OBRÁZKŮ

Obr. 1 Rotační hexagonální struktury Benardova typu vznikající v roztocích
polysacharidů9
Obr. 2 Iniciace toku proti klesající hustotě
Obr. 3 Konvektivní toky v závislosti na Ra11
Obr. 4 Nestability tepelného proudění vyvolané teplotním gradientem11
Obr. 5 Schéma Benard- Marangoniho hexagonálních buněk 12
Obr. 6 TK Viewer ver a Banardova buňka15
Obr. 7 Oklikávání buněk16
Obr. 8 Okliávání buněk16
Obr. 9 Oklikávání buněk16
Obr. 10 Odstranění buňky17
Obr. 11 Odstranní buňky17
Obr. 12 Celkové zaplnění Benardových buněk 18
Obr. 13 Vnější ohraničení Benardových buněk 18
Obr. 14 Data zaplněných buněk19
Obr. 15 Ručně vyplněné Benardovy buňky23
Obr. 16 Ručně vyplněné Benardovy buňky23
Obr. 17 Ručně vyplněné Benardovy buňky23
Obr. 18 Ručně vyplněné Benardovy buňky23
Obr. 19 Ručně vyplněné Benardovy buňky24
Obr. 20 Ručně vyplněné Benardovy buňky24
Obr. 21 Ručně vyplněné Benardovy buňky24
Obr. 22 Ručně vyplněné Benardovy buňky24
Obr. 23 Ručně vyplnšné Benardovy buňky25
Obr. 24 Ručně vyplněné Benardovy buňky25
Obr. 25 Ručně vyplněné Benardovy buňky25
Obr. 26 Ručně vyplněné Benardovy buňky25
Obr. 27 Program Tessellation
Obr. 28 Ohraničené buňky

Obr. 29 Filtrování lokálních maxim	28
Obr. 30 Rozdělení obrázku na jednotlivé polygony	28
Obr. 31 Uložený soubor dat z automatické analýzy	29
Obr. 32 Ruční vyhodnocení Benardových buněk	30
Obr. 33 Automatickévyhodnocení Benardových buněk	30
Obr. 34 Ruční vyhodnocení Benardových buněk	30
Obr. 35 Automatické vyhodnocení Benardových buněk	30
Obr. 36 Snímek polyuretanu před zpracováním	31
Obr.37 Snímek PUR v Image Viewer 0.3	32
Obr.38Ručně zpracovaný snímek PUR	33
Obr. 39 Ručně zpracovaný snímek PUR	33
Obr.40 Uložená data PUR	34
Obr.41Green 0503 PUR	35
Obr.42 Green 0517 PUR	35
Obr.43 Green 0540 PUR	35
Obr.44 Green 0563 PUR	35
Obr.45 Green 0586 PUR	. 36
Obr.46Porovnání ručního a automatického zpracování	37
Obr. 47 Zvětšení části Obr. 46	38
Obr.48 Část Obr.46	38
Obr.49 Porovnání stejného snímku Marka Galetky, mnou a automatem	41
Obr. 50 Zvětšení části Obr. 49	41

SEZNAM TABULEK

Tab. 1 Benardovy výsledky vložených dat	
Tab. 2 Velikost plochy buněk	