

Doctoral Thesis

Effective Parametric Model for System Engineering
Project Estimation

Efektivní parametrický model pro odhad projektu systémového
inženýrství

Author: Ho Le Thi Kim Nhung

Degree programme: Engineering Informatics

Degree course: Software Engineering

Supervisor: Assoc. Prof. Ing. Zdenka Prokopová, CSc.

Consulting supervisor: Assoc. Prof. Ing. Radek Šilhavý, Ph. D.

Zlín, October 2022

i

ACKNOWLEDGEMENT
I am grateful to my supervisor, Assoc. Prof. Ing. Zdenka Prokopová, CSc., as

well as my consulting supervisors, Assoc. Prof. Ing. Radek Šilhavý, Ph. D. and
Assoc. Prof. Ing. Petr Šilhavý, Ph. D., for their motivation, direction, and help
throughout my Ph.D. program. Their constructive comments pushed me to do my
research more efficiently and to publish our works in respected conferences and
journals.

I would also like to thank my colleagues, friends, and family for their moral
support during my studies.

ii

ABSTRAKT
V předkládané disertační práci jsou představeny návrhy nových způsobů

odhadů složitosti projektů založených na metodě Use Case Points, která se
používá v raných fázích vývoje softwaru. Navržené metody jsou vyvinuty tak,
aby zvládaly nepřesnosti při odhadování a zahrnovaly expertní posudky pro
vytvoření přesných a spolehlivých odhadů úsilí. Každý přístup má své výhody a
vzájemně se doplňují. Cílem je, aby jednotlivé metody vytvořily kompletní proces
a podporovaly efektivitu odhadu úsilí, tj. aby se ve všech situacích účinněji
minimalizovala chyba v odhadu. Výsledky ukazují, že navržené metody Software
Development Effort Estimation (SDEE) jsou konkurenceschopné ve srovnání s
jinými alternativami, na základě sedmi hodnotících kritérií a statistických
párových srovnání t-testů.
Key words in Czech: odhad úsilí vývoje softwaru, body případů užití,
optimalizace korekčních faktorů

iii

ABSTRACT
In the presented doctoral thesis, proposals for new methods of estimating the

complexity of projects based on the Use Case Points method, which is used in the
early stages of software development, are presented. The proposed methods are
developed to handle estimation inaccuracies and incorporate expert judgments to
produce accurate and reliable effort estimates. Each approach has its advantages,
and they complement each other. The goal is for them to create a complete process
and support the efficiency of effort estimation, i.e., to minimize estimation error
more effectively in all situations. The results show that the proposed Software
Development Effort Estimation (SDEE) methods are competitive compared to
other alternatives, based on seven evaluation criteria and statistical pairwise t-test
comparisons.
Key words: software development effort estimation, use case points, optimising
correction factors

iv

CONTENTS OF THE THESIS

ACKNOWLEDGEMENT ... i
ABSTRAKT .. i
ABSTRACT .. iii
CONTENTS OF THE THESIS ... iv
LIST OF FIGURES ... vi
LIST OF TABLES ... vii
LIST OF ABBREVIATIONS .. x
1 INTRODUCTION ... 1

1.1 Motivation ... 1
1.2 Problem statement .. 2
1.3 Research contributions .. 4
1.4 Organization of the thesis ... 5

2 THEORETICAL FRAMEWORK ... 6
2.1 Use Case Points method ... 6
2.2 Statistical and machine learning techniques ... 9

2.2.1 Multilayer perceptron .. 10
2.2.2 Support vector regression .. 10
2.2.3 Decision tree .. 11
2.2.4 Random forest ... 12
2.2.5 K-Nearest neighbors .. 13
2.2.6 Gradient boosting .. 13

2.3 Evaluation criteria ... 14
3 CURRENT STATE OF THE ISSUES DEALT WITH 17

3.1 Existing research related to SDEE .. 17
3.1.1 Algorithmic effort estimation models ... 17
3.1.2 Non-algorithmic effort estimation models .. 18
3.1.3 Estimation model by statistical and ML models 19

3.2 Related work for UCP-based effort estimation 20
3.3 Software estimation tools in the software industry 22

4 THE PROPOSED METHODS .. 24
4.1 The proposed Optimization Correction Factors method 25

4.1.1 Least absolute shrinkage and selection operator 25
4.1.2 Correction factors analysis .. 26
4.1.3 Optimizing Correction Factors method ... 27

v

4.2 The proposed approach based on Optimization Correction Factors and
Multiple Linear Regression ... 28

4.2.1 Multiple regression models .. 29
4.2.2 Extension of Optimizing Correction Factors 29

4.3 The proposed Stacking ensemble model based on Optimizing
Correction Factors ... 31

4.3.1 Staking generalization approach .. 31
4.3.2 Stacked model based on Optimizing Correction Factors 32

4.4 The proposed software productivity model based on ensemble approach
 33

4.4.1 Software productivity evaluation in early SDEE 33
4.4.2 Effective productivity factor calculations .. 35

5 RESEARCH METHODOLOGY ... 36
5.1 Dataset description .. 36
5.2 Correction factors determination ... 38
5.3 Experiment setup ... 42

5.3.1 Experiment 1 (EX1) ... 42
5.3.2 Experiment 2 (EX2) ... 43
5.3.3 Experiment 3 (EX3) ... 44
5.3.4 Experiment 4 (EX4) ... 50

6 RESULTS AND DISCUSSION .. 53
6.1 EX1 .. 53
6.2 EX2 .. 56
6.3 EX3 .. 60
6.4 EX4 .. 74

7 THREAT OF VALIDITY .. 78
8 CONTRIBUTIONS OF THE THESIS TO SCIENCE AND PRACTICE .. 79
9 CONCLUSIONS .. 80
10 LITERATURE .. 81
LIST OF PUBLICATIONS OF THE AUTHOR .. 93
CURRICULUM VITAE AUTHOR ... 95

vi

LIST OF FIGURES
Figure 2-1. The process of the Use Case Points method 6

Figure 3-1. Most commonly used statistical and ML algorithms in SDEE 20

Figure 3-2. Use Case Estimation tool ... 23

Figure 4-1. The proposed methods ... 24

Figure 4-2. The detailed illustration of the feature selection on correction factors
 .. 26

Figure 4-3. The proposed Optimizing Correction Factors method 28

Figure 4-4. Detailed illustration of the proposed ExOCF method 30

Figure 4-5. The illustration of the stacking generalization approach 31

Figure 4-6. The architecture of the proposed SOCF model 33

Figure 4-7. The proposed software productivity model 35

Figure 5-1. Boxplot of Real_P20 in each dataset ... 36

Figure 5-2. Statistical characteristics of the Real_P20 for each dataset 37

Figure 5-3. CV score on TCF and ECF in each dataset 39

Figure 5-4. Coefficient estimations on TCF and ECF from LASSO regression in
each dataset ... 40

Figure 6-1. The average estimation results of the proposed OCF method and other
methods on all datasets ... 55

Figure 6-2. The estimation results for the proposed ExOCF method and other
methods ... 59

Figure 6-3. The estimation results of the UCP-based and OCF-based single
methods ... 66

Figure 6-4. The comparison between the ensemble method VUCP and its single
approaches .. 68

Figure 6-5. The comparison between the ensemble method SOCF and its single
approaches .. 69

Figure 6-6. The average estimation results of the proposed OCF(PFCFE) method
and other methods on all dataset .. 76

vii

LIST OF TABLES
Table 2-1. Actor classification and their complexity weights 8
Table 2-2. Use Case classification and their complexity weights 8
Table 2-3. Technical complexity factors (TCF) ... 8
Table 2-4. Environment complexity factors (ECF) .. 9
Table 2-5. The parameters for constructing the MLP model. 10
Table 2-6. The parameters for constructing the SVR model 11
Table 2-7. The parameters for constructing the DT model 12
Table 2-8. The parameters for constructing the RF model 12
Table 2-9. The parameter for constructing the KNN model 13
Table 2-10. The parameters for constructing the GB model 14
Table 2-11. Summary of the accuracy measures used in SDEE methods 15
Table 3-1. Algorithmic models ... 17
Table 3-2. Non-algorithmic models .. 19
Table 4-1. Conversion rules for productivity value .. 34
Table 5-1. Dataset statistical characteristics ... 38
Table 5-2. The estimated TCF coefficients in the LASSO regression 41
Table 5-3. The estimated ECF coefficients in the LASSO regression 41
Table 5-4. Methods implemented for EX1 ... 42
Table 5-5. Methods implemented for EX2 ... 43
Table 5-6. UCP-based single methods implemented for EX3 45
Table 5-7. OCF-based single methods implemented for EX3 45
Table 5-8. Ensemble methods implemented for EX3 ... 46
Table 5-9. The results of parameter tunings in the D1 dataset 47
Table 5-10. The results of parameter tunings in the D2 dataset 48
Table 5-11. The results of parameter tunings in the D3 dataset 48
Table 5-12. The results of parameter tunings in the D4 dataset 49
Table 5-13. Methods implemented for EX4 ... 50
Table 5-14. The optimal values of method parameters in EX4 51
Table 6-1. Estimation results for the proposed OCF method and other methods on
the D1 dataset .. 53

viii

Table 6-2. Estimation results for the proposed OCF method and other methods on
the D2 dataset ... 54
Table 6-3. Estimation results for the proposed OCF method and other methods on
the D3 dataset ... 54
Table 6-4. Estimation results for the proposed OCF method and other methods on
the D4 dataset ... 54
Table 6-5. The percentage improvements of the OCF over the UCP and OTF
methods averaged on all datasets ... 54
Table 6-6. The t-test results for five different runs of the proposed OCF method
in comparison with the other methods. ... 56
Table 6-7. Estimation results for the proposed ExOCF method and other methods
on the D1 dataset .. 57
Table 6-8. Estimation results for the proposed ExOCF method and other methods
on the D2 dataset .. 57
Table 6-9. Estimation results for the proposed ExOCF method and other methods
on the D3 dataset .. 58
Table 6-10. Estimation results for the proposed ExOCF method and other methods
on the D4 datase ... 58
Table 6-11. The percentage improvements of the ExOCF over the other methods
averaged on all datasets .. 58
Table 6-12. The t-test results for five different runs of the proposed ExOCF
method in comparison with the other methods ... 60
Table 6-13. Estimation results for the UCP-based single methods on the D1
dataset ... 61
Table 6-14. Estimation results for the UCP-based single methods on the D2
dataset ... 61
Table 6-15. Estimation results for the UCP-based single methods on the D3
dataset ... 62
Table 6-16. Estimation results for the UCP-based single methods on the D4
dataset ... 62
Table 6-17. Estimation results for the OCF-based single methods on the D1
dataset ... 62
Table 6-18. Estimation results for the OCF-based single methods on the D2
dataset ... 63
Table 6-19. Estimation results for the OCF-based single methods on the D3
dataset ... 63

ix

Table 6-20. Estimation results for the OCF-based single methods on the D4
dataset ... 64
Table 6-21. The percentage improvements of the OCF-based single methods
averaged on all datasets .. 64
Table 6-22. Rank the UCP-based single approaches from 1 to 6 based on the SSE
metric .. 65
Table 6-23. Rank the UCP-based single approaches from 1 to 7 based on the SSE
metric .. 65
Table 6-24. Estimation results for the ensemble methods on the D1 dataset 66
Table 6-25. Estimation results for the ensemble methods on the D2 dataset 67
Table 6-26. Estimation results for the ensemble methods on the D3 dataset 67
Table 6-27. Estimation results for the ensemble methods on the D4 dataset 67
Table 6-28. The t-test results for five different runs of the proposed SOCF method
in comparison with the other methods .. 70
Table 6-29. The t-test results for five different runs of the proposed SOCF method
in comparison with the other methods .. 71
Table 6-30. The t-test results for five different runs of the proposed SOCF method
in comparison with the other methods .. 72
Table 6-31. The results for SOCF-Case1, SOCF-Case2, and SOCF-Case3 73
Table 6-32. The ablation analyses for SOCF-Case1, SOCF-Case2, and SOCF-
Case3 ... 73
Table 6-33. Estimation results for the proposed OCF(PFCFE) method and other
methods on the D1 dataset .. 74
Table 6-34. Estimation results for the proposed OCF(PFCFE) method and other
methods on the D2 dataset .. 74
Table 6-35. Estimation results for the proposed OCF(PFCFE) method and other
methods on the D3 dataset .. 75
Table 6-36. Estimation results for the proposed OCF(PFCFE) method and other
methods on the D4 dataset .. 75
Table 6-37. The percentage improvements of the proposed OCF(PFCFE) method
averaged on all datasets .. 76
Table 6-38 The t-test results of five different runs for statistical comparison of
our proposed OCF(PFCFE) methods with other tested methods 77

x

 LIST OF ABBREVIATIONS

Abbreviations Description
SDEE Software development effort estimation
UCP Use Case Points
UCM Use Case Model
TCF Technical complexity factors
ECF Environmental complexity factors
MLR Multiple linear regression
ML Machine learning
PF Productivity factor
LASSO Least Absolute Shrinkage and Selection Operator
OCF Optimization Correction Factors
LSR Least square regression
ExOCF Extension of Optimizing Correction Factors
KNN K-nearest neighbor
RF Random forest
SVR Support vector regression
MLP Multi-layer perceptron
GB Gradient Boosting
DT Decision tree
SOCF Stacked OCF
UAW Unadjusted actor weight
UUCW Unadjusted use case weight
GS Grid search
MAE Mean Absolute Error
MMRE Mean magnitude of relative error
MBRE Mean balance relative error
MIBRE Inverted balance relative error
MdMRE Median magnitude of relative error
RMSE Root mean square error

xi

SSE Sum of squares errors
PRED(x) Percentage of prediction within x%
SA Standardized accuracy
SLOC Source lines of code
FPA Function points analysis
COCOMO Constructive cost model
SLIM Software life cycle management
AOM Algorithmic Optimisation Method
LOOCV Leave on out cross-validation
OCF(PFCFE) Effective productivity factor calculations

1

1 INTRODUCTION
1.1 Motivation
Software Project Development has evolved into a dynamic and competitive

industry requiring high-level human resources. Software products are becoming
more complicated, unpredictable, and challenging to control. Many research
projects in the software field have been conducted in recent decades with the goal
of steering software development processes into more regulated, manageable, and
predictable paths. Project managers must estimate the cost of the software product
as well as the resources, effort, and time required to complete a project on time
and within budget [1]. Software measurement problems, such as project duration
prediction or defect density, receive special attention. These issues demonstrate
that the project management role has significantly increased.

Software Development Effort Estimation (SDEE) is critical to the overall
success of solution delivery. Early SDEE in the first phase of the software
development lifecycle is essential to avoiding project failures. The project
manager's role is to look at software products to help with budgeting, scheduling,
planning, project bidding, human resource allocation, and risk mitigation. The
SDEE is vital for some reasons [2]. First, it is beneficial to make informed
decisions about resource management before the project begins. The project plan
is then used to make informed decisions about managing and planning the project.
It is critical to allocate appropriate effort to the various activities in managing
project development. As a result, this has led many researchers to study software
estimation to obtain a more accurate SDEE [3], [4], [5]. However, based on the
requirement specifications, the SDEE cannot be expected to produce correct
results [6]. The issue of accurate effort estimation remains unresolved. An effort
estimation method is used to reduce the risk of surprises during the project to the
lowest possible value. It provides project managers with good control decisions
to ensure that reasonable effort is allocated to the various activities throughout the
project's development life cycle. When inaccurate models are used, such
estimation decisions can have disastrous consequences. The most visible example
of problems in managing complex, distributed software systems is the failure of
many software projects [7]. The results show that actual effort and schedule are
exceeded for most projects compared to estimates. If the software cost is
underestimated, the project will be inefficient, and the actual price will
undoubtedly be surpassed. Finally, even if completed on time, these
overestimated projects usually become more extensive and costly than planned.
In contrast, the functionality and quality of these underestimated projects are
reduced to meet the plan's requirements. This can result in losing the bid or
wasting time, money, personnel, and other resources, resulting in financial loss or
even bankruptcy.

2

Use Cases can be helpful to measure the estimated effort at an early stage of a
software project before the essential information is obtained during the
requirements phase of the software lifecycle [8]. Neil et al. [9] surveyed the
techniques used in the requirements elicitation, description, and modeling phases
and found that the use cases were used in the early stages by more than half of the
software projects. This has sparked the interest of numerous researchers in using
use cases-based SDEE approaches and their initial applicability for greater
accuracy. Karner [10] introduced the Use Case Points (UCP) method as a metric
for sizing object-oriented software projects based on a structured scenario and
actor analysis of the Use Case Model (UCM). Most studies focus on evaluating
UCP as a potential early SDEE method that could be used to estimate software
development effort and show its suitability for the software industry [11], [12],
[13], [14].

Based on the literature reviewed above, this thesis focuses on developing SDEE
methods for estimating software size and effort from UCM. Our methods can be
used during the requirements phase of the software lifecycle. We aim to develop
methods to handle imprecision and incorporate expert opinions to produce
accurate and reliable effort estimates. With this objective, the thesis analyzes and
proposes SDEE methods to reduce the impact of human error in UCM analysis
and simplify the original principles of UCP. Each approach has its advantages,
and they complement each other to form a complete process and promote
significant efficiency to minimize the estimation error more efficiently in all
situations. The results show that the proposed SDEE methods based on use cases
are competitive with other alternatives.

1.2 Problem statement
UCP is a promising method for effort estimation in the early stages of software

development that offers numerous benefits to the software industry [15], [16],
[17]. Using machine learning to build SDEE models based on the original UCP
formula could be a solution to improve its accuracy. Some approaches [18], [19],
[20], [21], [22], [23] have also addressed variant models, especially regression
models, to improve estimation accuracy based on historical data. The main
drawback of the methods described above is that none of them is comprehensive
or provides better accuracy in estimating software effort in all situations. There
are still known problems in using UCP methods.

• The first problem is a particular uncertainty in evaluating technical complexity
factors (TCF) and environmental complexity factors (ECF), as it depends on
the experience of experts [24], [25], [26], [27], [28]. In particular, assigning an
appropriate value to an ECF is difficult due to the lack of relevant information.
This is because an ECF is associated with the level of information and
experience of a particular software development team. Similar problems exist

3

in assigning a value to a TCF. These correction factors affect the estimation
accuracy of UCP, so they need to be refined [29], [30]. Therefore, we will
examine the close relationship between technical and environmental factors
and prediction error to identify the best factors that significantly affect the
estimation accuracy of the UCP method. This issue will be discussed in
Chapter 4.1, as we have proposed a new formula for calculating the correction
factors in the UCP method.

• The second problem is that potentially unsuitable variables are not considered
in the UCP equation. In particular, use cases are written in natural language,
and there is no rigorous process for assessing the quality or fragmentation of
use cases. As a result, the number of steps in a use case may vary, affecting
the estimate's accuracy. In addition, the estimate's accuracy may suffer if a use
case contains multiple scenarios. Almost all previous methods for estimating
software effort based on UCP have focused on developing the method by
evaluating the complexity of the use case model and complexity weights [31],
[32], [33], [34], [35], [36], [37]. However, we believe the regression approach
based on UCP elements can solve this problem. Specifically, we will explore
the implementation of multiple linear regression (MLR) models to select new
formulas and regression coefficient values to reduce the impact of human error
in evaluating actors or use cases. As shown in Chapter 4.2, this new formula
outperforms the estimation accuracy of UCP.

• Moreover, given the complexity of today's software development projects,
effort estimation requires the support of statistics and machine learning (ML).
According to Kumar et al. [38], the overall estimation accuracies of SDEE
methods based on statistical and machine learning techniques are almost
acceptable as they are within 25% of the percent error (PRED (0.25)). The
techniques are used to model the relationship between effort and software
variables, which is particularly useful when the relationship is non-linear.
However, one question is how to select unbiased approaches and appropriate
algorithms. We note that single statistical and machine learning methods are
unreliable, and the accuracy of a single method depends on its parameter
configurations [39]. According to Thiago et al. [40], using a single model does
not lead to optimal SDEE results. Priya et al. [41] also found that combining
multiple models improves reliability. For all datasets, almost all ensemble
SDEE approaches use the same learning parameter settings. With the above
analysis, the thesis aims to reduce the bias and variability errors of the single
models. In Chapter 4.3, we present the ensemble approach, which integrates
seven well-known statistical and machine learning methods and fine-tunes the
parameters of all the single methods to create a new and more comprehensive
method in the early stages of software development.

• The fourth focus is the difficulty of converting software size into the
corresponding effort. Many researchers consider the software productivity

4

factor, or the amount of software produced per effort, critical to estimating
effort [42], [43], [44], [45]. This term also refers to the ratio of effort to size,
also known as the productivity factor (PF). Most accepted values for the
productivity factor have been suggested by project managers or use
predetermined values for software productivity [46], [47]. However, we
believe each software project takes place in a unique environment. Therefore,
the question of whether to impose a fixed PF on all software projects has not
been adequately addressed. This issue was discussed in Chapter 4.4 when we
developed the software productivity model using the ensemble approach with
historical correction factors. According to the findings, learning productivity
values for each project is more useful and efficient than using predetermined
values for all projects.

1.3 Research contributions
With each problem statement presented in section 1.2, we have made the

following contributions:

• Regarding the first issue, we conducted several experiments on four datasets
to identify the best technical and environmental complexity factors that
significantly affect the estimation accuracy of the UCP method in the
regression analysis. Our goal is to improve the estimation accuracy of the UCP
method. We demonstrated an approach based on Least Absolute Shrinkage and
Selection Operator (LASSO) method. Different values of the variable
controlling the strength of the penalty are tested during the factor selection
process to achieve the lowest prediction error. Finally, we propose a new
formula for calculating the correction factors in the UCP method. This method
is called Optimization Correction Factors (OCF).

• Continuing the development of the OCF method, we focused on modifying the
OCF method to achieve more accurate estimates. Thus, we proposed an
approach in which least square regression (LSR) or multiple linear regression
(MLR) models are applied to the OCF-based elements to minimize estimation
errors and the influence of unsystematic noise. An extended version of the
OCF method called ExOCF (Extension of Optimizing Correction Factors) is
proposed as a helpful method for project managers in the estimation phase.

• Seven different single models were proposed for estimating software size
using OCF-based elements in the third objective. These statistical and machine
learning models include K-Nearest Neighbor, Random Forest, Support Vector
Regression, Multilayer Perception Gradient Boosting, Multiple Linear
Regression, and Decision Tree. We analyzed the optimal parameter values for
each technique to give it high predictive capacity. Based on this, we propose
the OCF-based stacked generalization ensemble method of seven single

5

models, named Stacked OCF (SOCF). The study is primarily concerned with
reducing individual model biases and variability errors. The proposed
ensemble-based approach is a comprehensive approach to improve estimation
accuracy and minimize project risks in the early stages of software
development.

• Concerning the last objective presented in section 1.2, we conducted a project
productivity model of the team developing a project. The overall productivity
factor is based on correction factors in OCF method, which is built using an
ensemble construction mechanism of three popular ML techniques, including
Support Vector Regression, Multiple Linear Regression, and Decision Tree.
We chose these techniques because they have fast learning time, good
generalization ability, and a more straightforward design. A voting ensemble
is an ensemble ML model to determine the relationship between project
productivity and independent correction factor variables. In this way, our
method can benefit from good research on correction factors in OCF and
reduce the estimation error of the methods compared to using fixed
productivity metrics.

1.4 Organization of the thesis
The remainder of the thesis is organized as follows: Chapter 2 defines the terms

used in the thesis, such as the use case points method, statistical and ML
techniques, and the measurement criteria to evaluate the estimation accuracy of
the SDEE methods. Chapter 3 introduces a literature review of existing research
related to SDEE, as well as some related work on UCP-based effort estimation
and SDEE tools for the software industry. Chapter 4 presents four proposed
approaches. The research methodology is presented in Chapter 5, which includes
a description of the datasets for the experiment as well as the empirical procedure
for evaluating the proposed methodologies. Chapter 6 presents the results and
discussion of the proposed approaches. Threats of the validity of this study is
presented in Chapter 7. The contribution of the thesis to science and practice is
summarized in Chapter 8. Finally, Chapter 9 presents the conclusion and future
works.

6

2 THEORETICAL FRAMEWORK
This chapter defines the terms used in the thesis, such as the use case points

method, statistical and machine learning techniques, and the evaluation criteria.

2.1 Use Case Points method
The UCP method was first presented by Karner [10] for estimating the software

size of object-oriented software projects in the early phases of software
development. The method measures software size based on use case diagrams. In
particular, the method provides a process for converting use case diagram
elements into quantitative information that can be applied to four simple size
metrics. The metrics of UCP are shown in Figure 2-1.

Figure 2-1. The process of the Use Case Points method

First, the unadjusted actor weight (UAW) is calculated as shown in Eq. (2.1).

According to their complexity, actors are classified into three levels (simple,
average, and complex) as described in Table 2-1. Specifically, simple actors
describe the system through an API. Average actors represent the system through
a protocol. Complex actors represent the system through a graphical user
interface.

 UAW =	& a! 	× w!

"

!#$
 (2.1)

where 𝑎% is the number of the actor in the actor type, 𝑤% is the complexity weight
of actor type.

Actor Use Case

UAW UUCW

UUCP

Complexity Weight

TCF

ECF

Correction Factors

Size
(UCP) EffortPF = 20

7

Second, the unadjusted use case weight (UUCW) is calculated as shown in Eq.
(2.2). The use cases are classified into three levels (simple, average, and complex)
based on the number of transactions in the use case description, as shown in Table
2-2. A simple use case includes less than 4 transactions, an average use case
includes between 4 and 7 transactions, and a complex use case includes more than
7 transactions.

 UUCW =	& u& 	× w&

"

&#$
 (2.2)

where 𝑢' is the number of the use case in the use case type, 𝑤' is the complexity
weight of use case type.

Next, correction factors, i.e., Technical Complexity Factors (TCF) and
Environmental Complexity Factors (ECF), are used to represent the experience
level of the software development team. The Technical Complexity Factors in Eq.
(2.3) are calculated from 13 factors. Each factor has a value between 0 and 5 with
the corresponding weighting, as shown in Table 2-3.

 TCF = 	0.6 + 0.01& T! ×Wt!
$"

!#$
 (2.3)

where 𝑇% is the value of technical complexity factor, 𝑊𝑡% is the complexity weight
of technical factor.

The Environmental Complexity Factors in Eq. (2.4) are calculated from 8
factors, each factor has a value between 0 and 5 with the corresponding weighting,
as shown in Table 2-4.

ECF = 	1.4 − 0.03& E! ×We!

(

!#$

(2.4)

where 𝐸% is the value of the environmental complexity factor, and 𝑊𝑒% is the
complexity weight of the environmental factor.

The UCP is computed using Eq. (2.5) as follows:
 UCP = (UAW + UUCW) × TCF × ECF (2.5)
Finally, the obtained UCP are multiplied by the PF to give the final effort. This

is shown in Eq. (2.6).
 Effort = Size	 × 	PF (2.6)

where Effort is measured in person-hours and Size is measured in UCP. For
SDEE, Karner proposed 20 person-hours to develop each UCP.

8

Table 2-1. Actor classification and their complexity weights

Actor classification Description Weight
Simple The systems through an API 1

Average The system through a protocol 2
Complex The system through GUI 3

Table 2-2. Use Case classification and their complexity weights

Use case classification Number of transactions Weight
Simple (0, 4) 1

Average <4, 7> 2

Complex (7, ¥) 3

Table 2-3. Technical complexity factors (TCF)

Factor Description Weight
T1 Distributed System 2
T2 Response Adjectives 2
T3 End-Use Efficiency 1
T4 Complex Processing 1
T5 Reusable Code 1
T6 Easy to install 0.5
T7 Easy to Use 0.5
T8 Portability 2
T9 Easy to Change 1
T10 Concurrency 1
T11 Security Features 1
T12 Access for Third Parties 1
T13 Special Training Facilities 1

9

Table 2-4. Environment complexity factors (ECF)

Factor Description Weight
E1 Family with RUP 1.5
E2 Application Experience 0.5
E3 Object-oriented Experience 1
E4 Lead Analyst Capability 0.5
E5 Motivation 1
E6 Stable Requirements 2
E7 Part-time Workers -1

E8 Difficult Programming
Language 2

2.2 Statistical and machine learning techniques
Given the complexity of today's software development projects, we discovered

that estimating effort without the assistance of statistical and machine learning
models is impossible. We summarised several selected studies [48], [49], [50],
[51], [52], [53], [54], [55], [56], [57], [58], [59], [60], [61], [62], [63] on
estimating software effort with statistical and machine learning models from
2015. Based on the above review, in this section, we define the seven most
commonly used statistical and ML algorithms for SDEE and their configuration
parameters in this work. The accuracy of a given statistical or machine learning
method is determined by the configuration parameters that describe the
characteristics of a given dataset. Choosing the optimal parameter values for a
technique gives it a high predictive capacity. Grid Search (GS) [64] is used to
optimize the configuration parameters of each statistical and ML technique.
Specifically, GS searches the parameter set of each empirical method in a
predefined range of values for each dataset and then selects the configuration that
leads to the "optimal" estimates. The parameter search ranges were derived from
previous analyses [54], [59]. We extended the search range in each case to include
as many possible configurations.

These models include Multilayer Perception, Support Vector Regression,
Decision Tree, Random Forest, K-Nearest Neighbour, Gradient Boosting, and
Linear Regression. These models are learned and trained using historical project
data and can be applied in two scenarios. The models can stand alone by taking
inputs such as software size and productivity and producing outputs such as
software effort. The models can also calibrate some parameters or weights of
algorithmic models.

10

2.2.1 Multilayer perceptron
The multilayer perceptron (MLP) is a feedforward neural network typically

trained to solve regression problems using a backpropagation algorithm. The
simplest MLP model has three nodes: an input layer, a hidden layer, and an output
layer [65]. The input layer has the same number of nodes as the independent
variables identified in the input pattern. Each neuron in the hidden layer uses a
nonlinear activation function to convert the values from the preceding layer using
a weighted linear summation. The output layer's nodes are defined by the problem
and the number of dependent variables.

One of the most essential steps in the development of the MLP is the
optimization of its configuration parameters, such as the number of neurons in the
hidden layer and the three parameters of the learning algorithm (initial learning
rate, momentum, and regularization term). Linoff et al. [66] recommend that the
number of nodes in the hidden layer should be between the number of nodes in
the input layer and twice this number. The critical parameters for constructing the
MLP model and their values for preliminary execution are depicted in Table 2-5.

Table 2-5. The parameters for constructing the MLP model.

Model parameter Search range
Initial learning rate L = {0.01, 0.02, 0.03, 0.04, 0.05}
Number of hidden nodes H	 = 	 {5, 6, 7, 8}
Momentum M	 = 	 {0.1, 0.2, 0.3, 0.4, 0.5}
Regularization term α = {0.00001, 0.0001, 0.001, 0.01}

2.2.2 Support vector regression
Support Vector Machine (SVM) is a supervised learning method based on

statistical learning theory [67]. SVR is a special form of SVM used to model the
input-output functional relationship or regression. Assume that the training
dataset D = {(x!, y!)}$) where x! ∈ ℝ* denotes the input values, y! ∈ ℝ denotes
the corresponding output values, n is the number of samples in the training
dataset, and m is the dimension of input dataset.

The goal of SVR is to approximate the nonlinear relationship shown in Eq.
(2.7) that f(x!) is as close as possible to the obtained target value (y!).

 y! = f(x!) = 〈w,Φ(x!)〉 + b (2.7)
where w ∈ ℝ*, b ∈ ℝ are respectively the weight vector and threshold, 〈. , . 〉
denotes dot product, and Φ(x!) is the transformation function which maps the
input values from ℝ* space to a feature space with higher dimension. The values

11

w and b are reduced to ensure that the approximated function satisfies the above
objective.

 min+,-,-∗	 	
1
2
‖w‖/ + C& ξ! + ξ!∗

)

!#$
 (2.8)

subject to
		y! − 〈w,Φ(x!)〉 − b ≤ ε + ξ, i = 1,… , n
〈w,Φ(x!)〉 + b − y! ≤ ε + ξ∗, i = 1, … , n

ξ ≥ 0, i = 1,… , n
ξ∗ ≥ 0, i = 1,… , n

(2.9)

where ε is a deviation of a function f(x!), ξ and ξ∗ are slack variables used to
measure ε. The regularization parameter C defines the error tolerance over ε.
ε − SVR is used as a variant of SVR, and the Radial Basis Function (RBF) is

usually used as a kernel function. The RBF kernel is calculated as

 K(x!, x&) = exp j−γlx! − x&l
/m , γ > 0 (2.10)

Three parameters that significantly affect the performance of the ε − SVR
generalization, namely, the C, ε, and γ parameter, must be carefully selected.
Table 2-6 shows the details of these configuration parameters and their search
ranges for the SVR method.

Table 2-6. The parameters for constructing the SVR model

Model parameter Search range
Regularization term C = {5, 10, 100, 150}
Epsilon for	ε − SVR ε	 = 	 {1, 0.1, 0.01, 0.001, 0.0001}

2.2.3 Decision tree
Decision trees (DT) are supervised machine learning to solve regression and

classification problems [68]. A decision tree creates a flowchart in an inverted
tree-like structure where the internal nodes illustrate the test, the branches define
the test result, and each leaf node denotes a class label [69]. The output of a given
DT is partitioned into distinguished leaf nodes, following certain conditions such
as an if/else loop. DTs have many variants of algorithms such as ID3, CART,
CHAID, C4.5, M5P, and REPTrees [70]. The DTs used in this study are an
optimized version of the CART algorithm.

In the DT, four parameters need to consider: (1) The maximum depth
(max_depth) - If it is not specified, the tree is expanded until the last leaf nodes

12

contain a single value, resulting in overfitting. (2) The minimum number of leaf
nodes (min_samples_leaf) in a decision tree to control the complexity of the
model. (3) The minimum weighted fraction of the sum total of weights
(min_weight_fraction_leaf) required to be at a leaf node. (4) The number of leaf
nodes (max_leaf_nodes) to control overfitting. Too high values may also lead to
under-fitting. Table 2-7 provides details concerning the parameters for the DT
model and their search ranges.

Table 2-7. The parameters for constructing the DT model

Model parameter Search range
The maximum depth of the tree max	 _depth = {3, 5, 7, 9, 11, 12}
The minimum weighted fraction min_weight_fraction_leaf

= {0.1, 0.2, 0.3, 0.4, 0.5}
The number of leaf nodes max_leaf_nodes	

= 	 {10, 20, 30, 40, 50, 60, 70, 80, 90}
The minimum number of samples min_sample_nodes

=	 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

2.2.4 Random forest
The random forest technique (RF) uses the supervised nonparametric approach

for regression and classification [71], [72]. It creates multiple DTs and combines
them to obtain a more accurate and stable prediction. The result of RF is the
maximum vote of a panel of independent judges, which makes the final prediction
better than the best judge. The parameters for developing an RF model must be
considered to increase predictive power and facilitate model training. These
parameters determine whether the predictions are more robust and stable [63].
The parameters used in building an RF model are as in the DT model (see Table
2-8).

13

Table 2-8. The parameters for constructing the RF model

Model parameter Search range
The number of trees n_estimators

= {100, 150, 200, 150, 300, 350, 400, 450}
The minimum number of
samples

min_sample_nodes	 = 	 {1, 2, 4}

The maximum depth of the tree max_depth	
= 	 {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}

2.2.5 K-Nearest neighbors
K-nearest neighbors (KNN) is a non-parametric machine learning method used

in classifications and regressions. KNN collects historical data, called the training
dataset, and produces estimates for new test data. The k-nearest data from the
training data set is determined. Based on the data attributes of the closest data sets,
an estimate is made for the new data. In KNN, the selection of K (number of
neighbors) is very crucial. The algorithm becomes sensitive to noise if the K value
is too small. If the K value is too large, datasets of other classes can be counted as
nearest neighbors [73].

Table 2-9 shows the values of its search range. The default Euclidean distance
in Scikit-learn to measure the distance between points in KNN.

The Euclidean distance d(p!, q!) between one vector p = (p$, p/, … , p)) and
another vector q= (q$, q/, … , q)) can be computed as follows:

 d(p!, q!) = x&(p! − q!)/
)

!#$

y
$//

 (2.11)

Table 2-9. The parameter for constructing the KNN model

Model parameter Search range
Number of neighbours K = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}

2.2.6 Gradient boosting
Gradient Boosting (GB) is a ML technique used in regression and classification

tasks. GB is based on the idea of an ensemble method derived from a decision tree
[74]. In GB, the choice of the number of decision trees (number of estimators) is
a crucial parameter. The more the number of decision trees, the better the data
learning. However, adding many trees can significantly slow down the training

14

process. Therefore, a parameter search is necessary. Three other parameters of
interest in GB are the number of boosting stages (n_estimators), the minimum
number of leaf nodes (min_samples_leaf), and the maximum depth of the single
regression estimators (max_depth), which is used to control model overfitting.
Table 2-10 shows the search ranges of the configuration parameters of the GB
model.

Table 2-10. The parameters for constructing the GB model

Model parameter Search range
Number of boosting stages n_estimators = {20, 40, 60, 80, 100}
Minimum number of leaf nodes min_samples_leaf

= {10, 20, 30, 40, 50, 60, 70}
Maximum depth max_depth

= {5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}

2.3 Evaluation criteria
In the SDEE, several criteria are required to evaluate the estimation accuracy of

the methods. Table 2-11 summarizes the accuracy measures used in estimation
studies related to our work (2016 onward). The Mean Magnitude of Relative Error
(MMRE) is the most commonly used standard for SDEE accuracy [1], [75].
However, this metric is prone to bias [21], [22]. For this reason, we use five
alternative criteria to achieve a fair and symmetric distribution. These include
Mean Absolute Error (MAE), Mean Balance Relative Error (MBRE), Mean
Inverted Balance Relative Error (MIBRE), Median Magnitude of Relative Error
(MdMRE), and Root Mean Square Error (RMSE). We also used two measures to
assess the accuracy of the estimation models: the Sum of Squares Errors (SSE)
and the Percentage of prediction within x% (PRED (x)). Two measures are critical
for estimating the variation in modeling error [19]. They are chosen because of
their ability to describe errors in specific datasets. PRED(x) is less biased to
underestimation and generally determines the same best method as Standardized
Accuracy (SA). An SDEE method with high estimation accuracy (when PRED
(x) values are high) is also reasonable (when SA values are high) [76].

15

Table 2-11. Summary of the accuracy measures used in SDEE methods
Cited
study

M
M

R
E

PR
ED

M
B

R
E

M
IB

R
E

M
A

E

SA

M
A

PE

M
SE

R
M

SE

N
R

M
SE

SS
E

R
2

R
SS

 [77] x x x x
 [78] x x x x x
 [62] x x x x
 [55] x x x x
 [79] x x x x
 [80] x x x x
 [81] x x x x
 [82] x
 [63] x x x
 [83] x x
 [84] x x
 [85] x x x
 [86] x
 [87] x x
 [14] x x x x
 [88] x x x x x x
 [89] x x x x

• Mean Absolute Error (MAE)

 MAE = 	
1
n
&|y! −	y{!|
)

!#$

 (2.12)

• Mean Balance Relative Error (MBRE)

 MBRE = 	
1
n
&

|(y! −	y{!)|
min(y! −	y{!)

)

!#$

 (2.13)

16

• Mean Inverted Balance Relative Error (MIBRE)

 MIBRE = 	
1
n
&

|(y! −	y{!)|
max(y! −	y{!)

)

!#$

 (2.14)

• Median of Magnitude of Relative Error (MdMRE)

 MdMRE = 	median!(
|y! −	y{!|

y!
) (2.15)

• Root Mean Square Error (RMSE)

 RMSE = 	~
∑ (y! −	y{!)/)
!#$

n
 (2.16)

• Sum of Squares Errors (SSE)

 SSE =& (y! −	y{!)/
)

!#$
 (2.17)

• Percentage of Prediction within x% (PRED(x))

 PRED(x) = 	
1
n
& �1		if	

|y! −	y{!|
y!

	≤ x

0	otherwise

)

!#$
 (2.18)

where n is the number of observations, y! is the real known value, y{! is the
predicted value, and x = 0.25.

17

3 CURRENT STATE OF THE ISSUES DEALT WITH
This chapter presents a literature review of existing research related to SDEE,

some related work on UCP-based effort estimation, and SDEE tools for the
software industry.

3.1 Existing research related to SDEE
Existing SDEE research can be divided into three categories [6], [90], [91].

These include algorithmic, non-algorithmic, and estimation by statistical and
machine learning models.

3.1.1 Algorithmic effort estimation models
Algorithmic models include Source Lines of Code (SLOC) [1], Function Point

Analysis (FPA) [92], [93], Constructive Cost Model (COCOMO) [1], Use Case
Points (UCP) [10], and Software Life Cycle Management (SLIM) [94]. These
models, which are still the most widely used in the literature [95], [96], use
mathematical equations to estimate the cost of a software project. Table 3-1 below
describes the algorithmic models.

Table 3-1. Algorithmic models

Estimation method Description
Source Lines of Code
(SLOC)

The method uses the number of source lines
developed to measure the software size. However,
the size of a change request cannot be accurately
estimated using the SLOC method until the coding
process is completed. As a result, estimating the size
of a change request in the early stages of software
development is nearly impossible [97]. Because
software size is a critical input to an effort model, an
incorrect SLOC estimate will result in an inaccurate
effort estimate.

Function Point Analysis
(FPA)

Based on the functions provided to the end user, the
method estimates the complexity and size of a
software system. There are several methods for
counting function points. Nevertheless, the method
administered by Function Points Analysis (FPA),
based on the International Function Point Users
Group (IFPUG) [98], is the standard method.
Internal Logical File (ILF), External Interface File
(EIF), External Input (EI), External Output (EO),

18

and External Inquiry (EQ) are five parameters to
measure the software size.

Constructive Cost Model
(COCOMO)

COCOMO 81 is a software cost prediction method
developed in 1981 [1] that uses a simple regression
formula. The model's parameters are derived from
historical projects and current project
characteristics. The COCOMO II [2] model is an
enhanced version of the COCOMO 81 better suited
for project estimation in modern software
development. Specifically, COCOMO II employs
logical SLOC, whereas COCOMO 81 employs
physical SLOC. Multiple physical SLOCs can be
contained within a logical SLOC (if-then-else).

Use Case Points (UCP) The method is based on the elements of the system
use cases with technical and environmental aspects.
The method is based on a calculation with four
elements: Unadjusted Use Case Weight (UUCW),
Unadjusted Actor Weight (UAW), Technical
Complexity Factor (TCF), and Environmental
Complexity Factor (ECF).

Software Life Cycle
Management (SLIM)

The Putnam model is another name for this model.
The SLIM describes the effort and time required to
complete a project of a specific size using the
Norden/Rayleigh function. The model can save
analysis data from previous projects, which can then
be used to calibrate and build the workforce in an
existing dataset by answering a series of questions.

3.1.2 Non-algorithmic effort estimation models
Expert judgement [99], Analogue-based [100], Price-to-win [101], Top-down

[101], Bottom-up [101], Wideband Delphi [1], and Planning Poker [102] are
examples of non-algorithmic models. These models estimate software
development costs by drawing on an expert's prior experience or historical
projects. Table 3-2 contains descriptions of the non-algorithmic models.

19

Table 3-2. Non-algorithmic models

Estimation method Description
Expert judgement The method is based on the consultation of an

expert's experience, knowledge, motivation, and
field knowledge and the exchange of analysts and
experts to propose an estimate for a specific project.
Delphi technique is used to facilitate
communication and collaboration among experts.
The primary advantage is that it can be accurately
compared with other models if the experts know
exactly the problem area of the proposed project.

Analogy-based An analogy-based method is a systematic form of
expert judgment. It is an application of the Cased
Based Reasoning method. The method compares
similar historical projects, documenting all
necessary information.

Bottom-Up and Top-
down Approach, Price-
to-win

The methods are entirely based on software project
budgets, either broken down by project module (top-
down) or predicted as the sum of project module
estimates (bottom-up).

Wideband Delphi The method is a team-based method for estimating
software costs based on team agreements. The work
breakdown structure (WBS) is used to estimate
costs.

Planning Poker The method is also a consensus-based estimation
method like Wideband Delphi. The method is used
in agile software development for cost estimation
and is consistent with agile software development's
people-oriented approach.

3.1.3 Estimation model by statistical and ML models
Statistical and ML models allow estimation using information from previously

completed projects. Utilizing this learning mechanism, experts spend less time on
project estimation and more time on other software system functions that satisfy
the customer. Over the past decade, researchers have focused on using statistical
and machine learning techniques. According to their findings, the estimation
accuracy obtained with ML techniques was significantly higher than that obtained
with non ML-based estimation methods [103]. The overall estimation accuracy of
SDEE methods based on statistical and machine learning techniques is almost

20

acceptable and within 25% of the percent error (PRED (0.25)) [38]. According to
our findings [48], [49], [50], [51], [52], [53], [54], [55], [56], [57], [58], [59], [60],
[61], [62], [63], seven statistical and ML techniques, namely MLP, SVR, DT, RF,
MLR, KNN, and GB, were the most commonly used in SDEE (see Figure 3-1).

Figure 3-1. Most commonly used statistical and ML algorithms in

SDEE

3.2 Related work for UCP-based effort estimation
We discussed some problems with the UCP model. One approach is to focus

on increasing the complexity levels for use case weighting, actor weighting, or
both, discretizing the existing complexity levels, and calibrating the complexity
weights. For example, in Re-UCP, Manzoor et al. [15] added actor weighting and
use case weighting, and in the UCP sizing method, the authors added another level
of evaluation to the use case weighting system. Nunes et al. [24] gave six new
actor weights. Wang et al. [16] extended the complexity levels of use cases by
incorporating fuzzy set theory and Bayesian belief networks into the UCP model.
In the e-UCP method, Periyasamy et al. [17] changed the complexity levels of
actors and reclassified the complexity of use cases. The UCPabc approach [31]
applies an activity-based costing method to all variables in the UCP method, and
the productivity factor was changed to 8.2 person-hours. For incremental
development estimates in large projects, an adaptation approach to the UCP
method known as Adapted UCP (AUCP) [32] is used. Braz et al. [33] have
proposed two methods for calibrating the internal level of the use case: use case
size points (USP) and fuzzy use case size points (FUSP). A USP model introduces
new components into the structure of a use case, namely the number and weights
of scenarios, actors, preconditions, and postconditions. A FUSP model is a more

16%

13%

13%

11%9%

7%

4%

Most commonly used soft computing algorithms in SDEE

SVR

MLP

RF

DT

MLR

KNN

GB

RBFNN

GRNN

CNN

ENN

ELM

RR

LR

ENR

21

complex version of a USP that uses fuzzy set theory to solve some use case
classification problems. Qi et al. [34] improved the accuracy of UCP estimation
by calibrating the case complexity weights using Bayesian analysis. Rak et al.
[35] proposed the use case reusability (UCR) model for estimating effort by
assigning a new classification to use cases.

Regarding SDEE methods based on statistics and ML techniques, we divided
them into three groups. The first group uses individual techniques to develop new
methods based on the original method or to validate existing methods in industrial
applications, focusing on improving accuracy. A UCP-based effort estimation
model based on fuzzy logic and neural networks [30], a regression model and the
Sugeno Fuzzy Inference System (SFIS) approach [104], or Cascade Correlation
Neural Network (CCNN) model [105] are introduced to improve the estimation
accuracy. The results show that these models improve the accuracy by 11%. The
Adaptive Neuro-Fuzzy Use Case Size Point (ANFUSP) model is presented to
estimate the effort required for object-oriented software projects [106]. Compared
to the UCP method, the model's results are more accurate. A hybrid model based
on Analogy-Based Estimation (ABE) and the Particle Swarm Optimization (PSO)
algorithm is proposed to construct an attribute system with different weights
depending on the cluster [20]. The results of the model revealed noticeably
improved estimate accuracy.

The second group applies regression models by analyzing the validity of UCP
variables. For example, the regression model accounts for the nonlinear
relationship between software size and effort in person-hours [107]. Jorgensen
[18] reported all variables included in the models to illustrate the accuracy and
bias variation of the SDEE methods using regression analysis. Ochodek et al.
[108] simplified the UCP method by discarding the UAW, measuring the UCP
based on steps, or calculating the total number of steps in use cases. The
Algorithmic Optimisation Method (AOM) is proposed to increase the accuracy of
the correction coefficients of the effort estimation process [23] by employing
multiple least squares regression with all UCP elements. The authors then
conducted several experiments on two different datasets to investigate the
significance of the UCP variables [62].

The last group employs ensemble methods, which produce more accurate
results than single statistical and machine learning methods [103]. These studies
concentrated on aspects of effort estimation such as base model diversity, model
ranking within the ensemble, aggregation techniques, and model selection. Many
researchers concurred that ensemble models outperformed single methods. In
particular, an AdaBoost ensemble approach based on two single methods (KNN
and SVR) [13], another ensemble of three single methods (SVR, MLP, and GLM)
[109], an ensemble model of optimal trees (RF and RT) [110], an ensemble model
combining UCP, expert judgment, and Case-Based Reasoning (CBR) [111], an
ensemble framework based on an extended RF algorithm [112] are proposed. The

22

findings demonstrate that these ensemble methods perform better than single
models and produce more accurate estimates of error measurements.

Although previous works have been remarkably well handled, selecting
unbiased approaches and appropriate algorithms has proven difficult [113], [114].
It is well known that a method's accuracy depends on its parameters' settings [39].
However, most ensemble SDEE methods use the same learning parameter settings
for all datasets. None of the above studies is exhaustive or guarantees higher
accuracy in estimating software effort under all circumstances. Moreover, few
studies have validated their results with statistical tests. In [115], it is argued that
it is invalid to claim that one model is superior to another if adequate statistical
tests are not performed.

3.3 Software estimation tools in the software industry
In this chapter, we aim to introduce the Use Case Estimation, a function in

Enterprise Architect that gives a starting point for predicting project effort. It can
be found at https://sparxsystems.com/products/ea/16.0/index.html. Figure 3-2
illustrates the screen of the Use Case estimation tool.

Use Case Estimation is a comprehensive project estimation tool that uses Use
Case and Actor factors to determine effort. The tool can provide a reasonable
estimate of the complexity of a system. The complexity of the work environment
is determined by a set of weighted technical and environmental complexity
factors, and use cases and actors are classified as Easy, medium, or complex.
Based on Karner's UCP approach, the method produces a metrics report that
includes the project estimation analysis and can be included in the project
documentation.

23

Figure 3-2. Use Case Estimation tool

An option that relies on manual transcripts or spreadsheets is Manuscript

(https://manuscript.com), which is more of an issue tracker/project planner with
built-in statistical modeling capabilities in the software. In addition, business.com
has identified the top three software solutions for cost estimating in 2022.
(updated August 26, 2022). CoConstruct (https://www.coconstruct.com/),
MeasureSquare (https://www.measuresquare.com/) and STACK
(https://www.stackct.com/) are three of these tools. These tools can estimate bid
prices and other project parameters leading to a construction contract. However,
depending on the particular company's needs, each option has advantages and
disadvantages. The project manager is in charge of choosing the best estimating
software. They must evaluate the strengths and limitations of project management
to choose the best solution. Understanding the basics of estimating software
solutions can help project managers narrow their options based on key features
such as ease of use, pricing, stability, and customer support.

24

4 THE PROPOSED METHODS
The proposed methods are presented in this chapter based on the discussion of

the previous chapters. First, a proposal for increasing the estimation accuracy of
the existing UCP method was called Optimization Correction Factors (OCF)
[116]. We analyze correction factors to identify the best technical and
environmental complexity factors that significantly affect the estimation accuracy
of the UCP method in regression analysis. To put this idea into practice, we
propose a new formula to calculate the correction factors in the UCP method.
Then, to obtain more accurate estimates, we aim to apply the MLR models to
improve the ability of the OCF method to estimate the software size and minimize
the prediction error. This is referred to as the Extension of Optimizing Correction
Factors (ExOCF) [117]. The OCF variables are used in this method to determine
the software size. The MLR formulation was created to estimate the software size
values. Following the proposed ExOCF is another alternative framework for
effort prediction to improve the overall performance of the regression. A novel
Stacked SVR-MLR-MLP-DT-RF-KNN-GB on the OCF (SOCF) model is
proposed to improve the overall performance of the regression. The model
includes seven statistical and ML techniques: MLR, KNN, SVR, MLP, RF, GB,
and DT. Finally, the calculations of the effective productivity factor (PFCFE) are
proposed in conjunction with the OCF as predictors of effort [118]. The summary
of the four proposed methods is shown in Figure 4-1.

Figure 4-1. The proposed methods

Actor Use Case

UAW UUCW

UUCP

Complexity Weight

TCF

ECF

Complexity Factors

UCP
Size EffortPF = 20

OCF
Size

LaTF

LaEF

Correction Factors

Applying the feature selection (LASSO)
approach to determine the best technical

and environmental complexity factors

PFCFEProposing software productivity
model based on correction factors
through an ensemble construction

mechanism of three machine
learning models

Effort

PF = 20

ExOCF
Size

Proposing a parametric software
effort estimation model based on

the OCF method and MLR

PF = 20

SOCF
Size

Proposing a novel Stacked SVR-
MLR-MLP-DT-RF-KNN-GB

PF = 20

25

4.1 The proposed Optimization Correction Factors method

4.1.1 Least absolute shrinkage and selection operator
The Least Absolute Shrinkage and Selection Operator (LASSO) is used to

address variable selection in regression analysis [119]. LASSO regression is a
method that performs two main tasks: L1 - regularisation and feature selection. It
forms a constraint on the sum of the absolute values of the model variables, where
the sum is required to be less than an upper bound (a fixed value). The method
applies a shrinking - (regularisation) process, which penalizes regression variables
- (correction value) coefficients by shrinking some of them to zero.

During the feature selection process, the correction values that still have a non-
zero coefficient after the shrinking process are selected to form part of the model.
This process aims to minimize prediction error - (the sum of squared errors - with
an upper bound on the sum of the absolute values of the model parameters). The
LASSO method is defined by the solution to the l$	optimisation problem - (the
formulation used by Buhlmann et al. [120]:

 minimize	 j∥4567∥"
"

)
m subject to ∑ ∥ β ∥$< t8

&#$ (4.1)

where, t is the upper bound for the sum of the coefficients. This optimisation
problem is equivalent to the parameter estimation below:

 β�(λ) = 	 argmin
7

�
∥ Y − Xβ ∥//

n
+	λ ∥ β ∥$� (4.2)

where, ∥ Y − Xβ ∥//	= 	∑ (Y! −	(Xβ)!)/, ∥ β ∥$	= 	∑ �β&�		and	λ ≥ 08
&#$

)
!#9 is the

variable that controls the strength of the penalty; the larger the value of λ, the
greater the amount of shrinkage. The relation between λ value and fixed value t
is a reverse relationship. It is certain that, as t becomes infinity, the problem
becomes an ordinary least square; and λ will become 0. However, this is vice versa
when t reaches 0, all coefficients will shrink to 0, and λ will go to infinity.

In the OCF, we use LASSO regression for its variable selection properties
(Figure 4-2). When we minimise the optimisation problem, some coefficients are
shrunk to zero - i.e. β� !(λ) = 0; for some values of j - (depending on the value of
parameter λ). In this way, features with coefficients equal to zero are excluded
from the model.

26

Figure 4-2. The detailed illustration of the feature selection on

correction factors

4.1.2 Correction factors analysis
The evaluation of the correction factors depends on the experience of experts,

which has a certain degree of uncertainty [81]. It is difficult to assign an
appropriate value to an ECF because of a lack of relevant information. The reason
is that an ECF is linked to the level of information and experience of a particular
software development team. Therefore, it is difficult to suggest that the team
evaluate their work - especially when the project managers are estimators and
have to assign values to the ECF [121]. There are similar problems with the value
assigned for a TCF. For example, factor T10 (Concurrent) shows a certain
difficulty level. This factor could include parallel processing, parallel
programming - or whether the system is stand-alone or interfaces with several
other applications. The assignment of values to this factor may not be accurate, as
there are no guidelines in the UCP that explain this factor precisely. Huanca et al.
[29] identified the main factors affecting the accuracy of the estimation of the
UCP method - which is ECF and TCF. According to this review, these factors
affect the estimation accuracy and require a re-evaluation. A slight variation in
the weight value of the adjusting factors could dramatically affect the software
size and then the estimating effort. Nassif et al. [30] also highlighted the need to
refine the parameters as adjusting factors directly related to estimations calculated
using the UCP method.

27

4.1.3 Optimizing Correction Factors method
A detailed illustration of the OCF method is shown in Figure 4-3. The LASSO-

based Selection Phase (Phase I), applies the LASSO regression with the
determined regularisation parameter λ to extract a selected variable set; as shown
in Eq. (4.2).

LASSO regression is used to obtain the TCF and ECF correction coefficients -
as described in Eq. (4.3) and Eq. (4.4), respectively.

y_TCF! =	α9 +	& α! 	× t! × fw!

$"

!#$

(4.3)

y_ECF! =	β9 +	& β! 	× e! × ew!

(

!#$

(4.4)

where, y_TCF! be j :;<=_?/9
(ABCDAAEC)×	GEH

− 0.6m ×	 $
9.9$

 , y_ECF! be

j :;<=_?/9
(ABCDAAEC)×	JEH

− 1.4m ×	 5$
9.9"

 , and α9, α! β9, β! are the regression coefficient
parameters obtained from the LASSO regression; Real_P20 is the real size of
software projects from historical datasets. The LASSO-based selected variables
in TCF and ECF are designated as LaTF and LaEF respectively.

Then, Least Squares Regression (LSR) is used to obtain the coefficients for
LaTF and LaEF in Eq. (4.5) and Eq. (4.6), respectively. LaTF and LaEF values
represent the final technical and environmental complexity factors - (correction
factors), in the OCF method.

 y_LaTF! =	α9 +	& α! 	× LaT! ×WLt!
)

!#$
 (4.5)

 y_LaEF! =	β9 +	& β! 	× LaE! ×WLe!
*

!#$
 (4.6)

where, let y_LaTF! and y_LaEF! be the TCF and ECF from the historical dataset;
n	is the number of LaTF; m is the number of LaEF; and α9, α! β9, β! are regression
coefficient parameters obtained from LSR.

LaTF and LaEF are obtained according to Eq. (4.7) and Eq. (4.8).
 LaTF = 	α9 +	& α! 	× LaT! ×WLt!

)

!#$
 (4.7)

 LaEF = 	β9 +	& β! 	× LaE! ×WLe!
*

!#$
 (4.8)

The model fitting phase - (Phase II) is determined. The effort estimation final
result of the proposed OCF method is described by Eq. (4.9). This is calculated as
the aggregate of four UAW metrics - (viz Eq. (2.1), UUCW (viz Eq. (2.2), LaTF
(viz Eq. (4.7), and LaEF (viz Eq. (4.8).

28

 UCPKEH = (UAW + UUCW) × 	LaTF	 × 	LaEF (4.9)

Figure 4-3. The proposed Optimizing Correction Factors method

4.2 The proposed approach based on Optimization Correction
Factors and Multiple Linear Regression

The OCF approach can help project managers reduce the risks associated with
evaluating correction factors. The results show that the method improves the
average SSE by more than 53.6% compared to the UCP method. The detailed
results are presented in Chapter 6.1. We further develop the OCF method and
propose an extension of OCF (ExOCF) that applies MLR models to the OCF
elements to reduce the estimation error and the influence of the unsystematic noise
of the OCF technique.

29

4.2.1 Multiple regression models
Multiple regression models relate to estimating regression effort applications

where there is more than one independent variable [103]. The purpose is to obtain
the best-fit line that minimizes the regression model’s sum of squared residual
[19]. The form of the regression model is presented as a linear equation between
a dependent variable and a set of p independent variables X$, X/, … , XL as follows:

 �

y$ = α9 + α$X$$ + α/X$/ +⋯+ αLX$L + ε$
y/ = α9 + α$X/$ + α/X// +⋯+ αLX/L + ε/...
y) = α9 + α$X)$ + α/X)/ +⋯+ αLX*L + ε)

 (4.10)

i.e.

 y! = α9 + α$X!$ + α/X!/ +⋯+ αLX!L + ε!	, i = 1…m�������� (4.11)

where y! is the dependent variable, X!$, … , X!L are the independent variables, α9
is the intercept parameter, and α$, … , αL are the regression coefficients. These
variables are unknown constants that must be estimated from the dataset, and ε!
are the error residuals.

Eq. (4.10) can be rewritten as follows:
 y = αX + ε (4.12)

where vector y and vector ε are column vectors of length m, vector α is a column
vector of length p + 1, and matrix X is an m by p + 1 matrix. Using LSR, vector
α is calculated as follows:

 α = (XJX)5$XJy (4.13)

4.2.2 Extension of Optimizing Correction Factors
The proposed method provides a straightforward approach based on historical

project data to build regression models and reduce errors in the integration process
or recursion. A detailed illustration of the ExOCF method is shown in Figure 4-4.

The proposed model is built using MLR as follows:

 UCPGMKEH = γ$(UAW	 × 	LaTF	 × 	LaEF)
+	γ/(UUCW	 × 	LaTF	 × 	LaEF)

(4.14)

where γ$, γ/ are obtained according to two steps. First, the historical data points
(P$, … , P/) are collected. The UAW, UUAW, LaTF, and LaEF elements for each
project are identified. The result of this step is the collection of values
(x!$, x!/, y!), i = 1…n������� , where y! is the actual size (Real_P20 values) of the
software project from a historical dataset.

 x!$ = (UAW! × LaTF! × ECF!) (4.15)

30

 x!/ = (UUCW! × LaEF! × ECF!) (4.16)
The LSR model is then used for obtaining the regression coefficients γ$, γ/ as

followings.

�
y$
⋮
y)
� = j

γ$
γ/m × �

X$$
⋮
X)$

X$/
⋮
X)/

�
(4.17)

 j
γ$
γ/m = (XJX)5$XJy (4.18)

Because y! is a real value from a historical dataset, the regression coefficient
values of γ$, γ/ can vary from each dataset. This means that when a historical
dataset changes, this phase needs to be performed again to obtain new regression
coefficient values. The second step of this phase will calculate the UAW, UUCW,
LaTF, and LaEF of the current project, and Eq. (4.14) is applied with values γ$, γ/
to estimate the UCPGMKEH.

Figure 4-4. Detailed illustration of the proposed ExOCF method

31

4.3 The proposed Stacking ensemble model based on Optimizing
Correction Factors

Based on the literature review in Chapter 3.2, we believe the ensemble
approach can provide an unbiased estimate of the effort required for a new
software project. The ensemble approach combines at least two different single
models through a unique aggregation mechanism and generates the final solution
through weighted voting on their solutions [122]. As a result, this section aims to
investigate the effect of the ensemble approach in predicting the software size
early in the project development using the OCF method. The SOCF model is
proposed that incorporating seven statistical and ML techniques MLR, KNN,
SVR, MLP, RF, GB, and DT. These techniques are presented according to their
different architecture in Chapter 2.2.

4.3.1 Staking generalization approach
An ensemble of regressors is the incorporation of regressors whose individual

decisions are combined to produce a system that theoretically outperforms all of
its members [123]. In ensemble systems, the goal is to form a set of accurate and
distinct regressors and combine their results such that the combination
outperforms all individual regressors [124], [125]. Therefore, regressor ensembles
are constructed in two stages: generation and combination. The individual
members of the ensemble, called base regressors, are formed in the generation
stage. In the combination stage, the results of the ensemble members are
combined to produce a single result.

Stacked generalization (stacking) [126] uses the concept of meta-regressors or
meta-learners through a learning procedure similar to cross-validation to combine
the individual predictions of ensemble members. The stacking procedure is shown
in general form in Figure 4-5. The stacking mechanism generates temporal
estimates at level 0, called the base regressor. At level 0, the generalized biases
are collectively predicted. These estimates are sent to a meta-learner at level 1.

Figure 4-5. The illustration of the stacking generalization approach

32

4.3.2 Stacked model based on Optimizing Correction Factors
The detailed SOCF architecture is shown in Figure 4-6, which consists of

cleaning the data, dividing it into training and test sets, and applying the stacking
model to estimate the OCF-based size.

The following methodology was used:
1. LASSO regression is used to determine the best correction factors. Details

are presented in Chapter 4.1.1.
2. The input and output vectors are determined.

3. The data is split into a training set S(5&) and a test set S&. S(5&) is used to
create the level 0 models (regressors) via seven ML techniques, SVM,
KNN, DT, MLP, MLR, GB, and RF.

4. The configuration parameters for the seven regression models (level 0
models) SVM, KNN, DT, MLP, MLR, GB, and RF are tuned on the
validation set (30% of the training set) to produce their optimal settings (see
Section 2.2).

5. Create an ensemble model with the stacking approach. The estimator's
predictions are stacked and fed into a final estimator, which computes the
final estimation. More precisely, each of the level 0 models in the first stage
undergo five-fold cross-validation in S(5&) to output its prediction and
generate a prediction for S& by taking the average of the seven estimation
results generated by the five CV models in the training phase. Then these
level 0 models create a vector of predictions to input into the level 1 model
(in the second stage). RF was selected as the meta-regressor to train a new
model for the final project size estimation.

33

Figure 4-6. The architecture of the proposed SOCF model

4.4 The proposed software productivity model based on
ensemble approach

4.4.1 Software productivity evaluation in early SDEE
Since its inception, one of the core goals of software engineering research has

been to analyze and improve productivity. However, software productivity is still
an issue in SDEE today, with most studies focusing on the relationship between
effort and other variables. An early overview of the state of the art in software
development productivity was given [127]. Since then, many studies have
contributed to the knowledge of productivity factors, such as measuring
productivity using multiple measures of size [46] or previous projects using case-
based reasoning and regression toward the mean [42]. Multinomial logistic
regression predicts productivity using independent software variables [55].

The prediction of software productivity in UCP estimation has not been
comprehensively studied. Some researchers proposed to estimate effort based on

Data cleaning Feature selection on
Correction Factors

Historical data points (P1, …, Pn). Parameter received by UCP
For each project:
Real_P20, UAW, UUCW
TCF, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13,
ECF, ENV1, ENV2, ENV3, ENV4, ENV5, ENV6, ENV7, ENV8

Results of feature engineering
Real_P20, UAW, UUCW
LaTF, LaEF

Data splitProblem formulation

Inputs/ outputs
determination

Data

SVR MLR MLP DT GBRF KNN

Base
Regressor 1j

Base
Regressor 2j

Base
Regressor 3j

Base
Regressor 4j

Base
Regressor 5j

Base
Regressor 6j

Base
Regressor 7j

S(-j)S(-j) S(-j) S(-j) S(-j) S(-j) S(-j)

Sj Sj Sj Sj Sj Sj Sj

p2jp1j p3j p4j p5j p6j p7j

S(-j): training data
Sj: test data
p: level-0 regressors estimations over instances in Sj
J: number of folds in cross-validation

J times (j={1, …,J}First stage (Level-0)

RF

Second stage (Level-1)

Meta-Regressor

Final Project Size Estimation

S(-j) Sj

Grid Search (GS)
optimization

34

UCP using specific software productivity estimates. For example, Karner's
method offered an effort by multiplying the calculated UCP size by PF, equivalent
to 20 person-hours/UCP [10]. Alves et al. [47] discovered a difference between
the original model (20 person-hours / UCP) and their proposed model (between 6
and 13 person-hours / UCP). Urbanek et al. [128] used linear regression to derive
software productivity factors. Experimental results show that the range of
productivity factors is substantially narrow than the values of UCP, with a mean
of 15.

Based on a study of environmental complexity, Schneider and Winters (SW)
proposed three degrees of software productivity (fair, low, and very low) [129].
More specifically, the fair level with 20 person-hours/UCP, the low level with 28
person-hours/UCP, and the very low level with 36 person-hours/UCP. These
levels are determined by the total number of environmental factors with values of
three or fewer from E1 to E6 and greater than three from E7 to E8. When the total
count is less than or equal to two, the level is fair; when the total count is between
three and four (inclusive), the level is low; and when the total count is larger than
four, the level is very low. The effort of this model is calculated by Eq. (4.19). It
should be noted that environmental factors are not considered when calculating
UCP.

 Effort = �
Size × 	20, if	total	count ≤ 2

Size × 28, if	3 ≤ total	count ≤ 4
Size × 36, if	total	count > 4

 (4.19)

Another approach also uses environmental factors, presenting four levels of
productivity measures [30]. The overall productivity factor is calculated as
follows:

 PF_sum =&E! ×We!

(

!#$

 (4.20)

This value is then converted into a productivity value using a fuzzy procedure
based on the rules described in Table 4-1.

Table 4-1. Conversion rules for productivity value

No. Antecedent Consequent
1 PF_sum ≤ 0 productivity=0.4
2 0 < PF_sum ≤ 10 productivity=0.7

3 10 < FP_sum ≤ 20 productivity=1

4 PFNO* > 20 productivity=1.3

35

4.4.2 Effective productivity factor calculations
Our primary goal is to research and confirm the role of software productivity

in generating early effort estimates from UCP. To address the fourth problem in
Section 1.2, we proposed effective productivity factor calculations in conjunction
with UCP as predictors for effort. The approach employs an ensemble
construction mechanism from ML techniques (OCF(PFCFE)) such as Support
Vector Regression (SVR), Multiple Linear Regression (MLR), and Decision Tree
(DT). The voting ensemble is used as an ensemble model ML.

Figure 4-7 shows the proposed software productivity mode. The methodology
was used: (1) Correction factors from OCF are used as input. (2) Built the voting
regressor algorithm [130] consisting of three base estimators, such as Support
Vector Regression (sklearn.svm.SVR), Multiple Linear Regression
(sklearn.linear_model.LinearRegression), and Decision Tree Regression
(sklearn.tree.DecisionTreeRegressor).

Figure 4-7. The proposed software productivity model

Estimated effort is obtained by multiplying OCF by PFEHG, as follows Eq.

(4.21).
 EffortKEH(?H#$%) = OCF	 ×	PFEHG (4.21)

PFCFE

SVR

MLR

DT

Voting
ensembleLaTF

LaEF

!""#$%!"#(%#!"#)OCF

The software productivity model

SDEE
method

36

5 RESEARCH METHODOLOGY
This chapter describes the research methodology, which consists of a

description of the datasets for the experiment and the empirical procedure for
evaluating the proposed methods.

5.1 Dataset description
The experimental methods are evaluated using a dataset that the authors

collected and used [62]. The dataset is based on three data donations (D1, D2, and
D3). The projects from each data donor differ in size (measured by the UCP). All
data donators work in different government, health, and business sectors. The
projects were installed in Java and C# programming languages. After analyzing
the dataset, we noticed that some projects had Real_P20 varied extensively.
Figure 5-1 presents the boxplot of Real_P20 in each dataset. Real_P20 is a real
effort in person-hours, divided by productivity (PF - person-hours per 1 UCP).

Figure 5-1. Boxplot of Real_P20 in each dataset

We discovered a significant difference in Real P20 between data donors.

Depending on the data donor, the distribution of Real P20 is significantly
different. In particular, data donor D1 had the largest projects, while data donor
D3 had the lowest values. The dataset is heterogeneous due to the significant
differences in real P20. Therefore, using the same model for all projects was
ineffective. We sorted the projects by data donor to make the datasets more
homogeneous. Data providers provided the datasets (D1, D2, and D3). The
projects in each dataset can be interpreted as local data for each company. In
addition, we evaluated the impact of combining projects with different data
providers, and a fourth dataset (D4) was created to merge all three datasets.

37

Statistical characteristics of the Real_P20 of the four datasets are described in
Table 5-1 and Figure 5-2. Median person-hours represent the workforce value of
the project development period, which was applied from the project's start date to
the acceptance date. The median Real_P20 shows the same value divided by
PF=20. This transformation was made because data donors did not provide
estimations using the UCP. The minimum Real_P20 and maximum Real_P20
describe the smallest and largest project sizes, respectively. The Real_P20 range
describes the difference between the minimum Real_P20 and maximum
Real_P20. The “n” indicates the number of projects in the dataset.

Figure 5-2. Statistical characteristics of the Real_P20 for each
dataset

38

Table 5-1. Dataset statistical characteristics

Median
person-
hours

Median
Real_P20

Range
Real_P20

Standard
deviation

Minimum
Real_P20

Maximum
Real_P20 n

D1 7252.0 362.600 60.300 18.820 338.200 398.500 27
D2 6240.0 312.000 38.400 12.156 299.650 338.050 23
D3 5878.0 293.900 10.500 3.287 288.750 299.250 20
D4 6406.0 320.300 109.750 33.212 288.750 398.500 70

5.2 Correction factors determination
Based on the analysis described in section 4.1.2, we solved this problem using

the LASSO to determine correction factors in the regression analysis. Figure 5-3
shows a sequence of different R-squared values in proportion to different values
of λ. The selected λ value is determined using the Leave One Out Cross-
Validation (LOOCV) technique [131], [132] at which the R-squared reaches its
highest value. Figure 5-4 shows the selected technical and environmental factors
corresponding to the determined λ values.

39

Figure 5-3. CV score on TCF and ECF in each dataset

40

Figure 5-4. Coefficient estimations on TCF and ECF from LASSO

regression in each dataset

The details of the technical and environmental factors selected in each dataset

with the determined, as well as their coefficient estimates, are shown in Table 5-2
and Table 5-3. Specifically, there are nine remaining technical correction factors
in the D1 dataset at T1, T3, T4, T5, T6, T7, T9, T10, and T11, and there are six
remaining environmental factors, ENV3 to ENV8. In the D2 dataset, the eight
selected technical factors are T1, T3, T4, T5, T6, T9, T10, and T11, and the
selected environmental factors are ENV3 to ENV8. In the D3 dataset, the seven
selected technical factors are T1, T3, T4, T5, T7, T9, and T10, and the selected
environmental factors at 0.000247 are ENV3 to ENV8. In the D4 dataset, the nine
selected technical factors are T1, T3, T4, T5, T6, T7, T9, T10, and T11, and the
environmental factors are ENV3-ENV8.

41

Table 5-2. The estimated TCF coefficients in the LASSO regression

 D1 D2 D3 D4
 0.000231 0.000268 0.000227 0.000236
intercept 0.690619 0.693400 0.720820 0.695850
T1 0.009451 0.009725 0.009547 0.009505
T2 - - - -
T3 0.010897 0.010902 0.010311 0.010456
T4 0.009330 0.008877 0.009888 0.009556
T5 0.010430 0.011130 0.015199 0.010622
T6 0.009576 0.010157 - 0.009202
T7 0.008536 - 0.007298 0.008989
T8 - - - -
T9 0.010551 0.014018 0.013144 0.010334
T10 0.010526 0.010893 0.009730 0.010902
T11 0.007387 0.006516 - 0.005998
T12 - - - -
T13 - - - -

Table 5-3. The estimated ECF coefficients in the LASSO regression

 D1 D2 D3 D4
 0.000177 0.000192 0.000247 0.000327
intercept 1.373478 1.376197 1.404496 1.387716
ENV1 - - - -
ENV2 - - - -
ENV3 -0.032072 -0.042706 -0.032954 -0.033555
ENV4 -0.042291 -0.037886 -0.025558 -0.033001
ENV5 -0.029170 -0.028453 -0.029931 -0.029393
ENV6 -0.028133 -0.027549 -0.030139 -0.029072
ENV7 -0.027981 -0.026382 -0.029221 -0.028660
ENV8 -0.028193 -0.028713 -0.031169 -0.029333

42

5.3 Experiment setup
A series of experimental setups are presented to evaluate the effectiveness of

the proposed methods. In step 1, the proposed methods in this research direction
are established for the following experiments:

• OCF (proposed in Chapter 4.1)

• ExOCF (proposed in Chapter 4.2)

• SOCF (proposed in Chapter 4.3)

• OCF(PFCFE) (proposed in Chapter 4.4)
We experimented with five different runs (5-fold cross-validation) to evaluate

the estimation accuracy. The comparison of each method's effort estimation
accuracy is then based on the average results of these five runs.

In step 2, the results were then evaluated using evaluation criteria, SSE, PRED
(0.25), MAE, MBRE, MIBRE, MdMRE, and RMSE, as presented in Chapter 2.3.
A statistical pairwise t-test comparison (at a 5% significance level) was also used
to validate the accuracy of the proposed methods. These pairwise statistical
comparisons include the average (µ) of the SSE, MAE, and RMSE results from
the five-fold cross-validations of the four experimental datasets.

5.3.1 Experiment 1 (EX1)
EX1 is performed to evaluate the proposed OCF method with other related

methods, such as the baseline UCP [10] and OTF - a variant of the UCP model
that omits the technical factors [133]. These methods are summarized in Table
5-4.

Table 5-4. Methods implemented for EX1

No. SDEE methods Summary Notation

1 Use Case Points - Size is measured by UCP variables
(UAW, UUCW, TCF, and ECF).

UCP

2 UCP (omitting
technical factors)

- Size is measured from UCP
variables (UAW, UUAW, and ECF)
except for the technical factors.

OTF

43

3 Optimization
Correction Factors
(proposed in
Chapter 4.1)

- Correction factors are determined
in regression analysis by the LASSO
regression model.
- Size is measured in UCP variables
(UAW and UUCW) and correction
factors (LaTF and LaEF).

OCF

The statistical hypothesis was tested to determine whether the proposed OCF

approach provides a better estimate.

• H9:	µPQ;	LRSLSN;T	KEH	*;PQST = µPQ;	SPQ;R	P;NP;T	*;PQSTN. The estimation ability
of the proposed OCF method is not significantly different from the estimation
abilities of the other tested methods.

• H$:	µPQ;	LRSLSN;T	KEH	*;PQST > µPQ;	SPQ;R	P;NP;T	*;PQSTN. The estimation ability
of the proposed OCF method is significantly different from the estimation
abilities of the other tested methods.

5.3.2 Experiment 2 (EX2)
EX2 is performed to evaluate the proposed ExOCF method with the related

software size estimation models from the literature. The selected models are the
baseline UCP model [10], the OCF model, and the AOM model [23]. We also
developed two models that establish a linear relationship between software and
UCP factors (UAW, UUC, TCF, and EF). These models are SVR, and DT. The
description of the construction of these models is mentioned in Chapter 2.2.
However, in this experiment, we do not focus on finding the optimal configuration
parameters but use the default configuration parameters of each model. All
methods are summarized in Table 5-5.

Table 5-5. Methods implemented for EX2

No. SDEE method Summary Notation

1 Use Case Points - Size is measured by UCP variables
(UAW, UUCW, TCF, and ECF).

UCP

44

2 Optimization
Correction Factors
(proposed in
Chapter 4.1)

- Correction factors are determined in
regression analysis by the LASSO
regression model.
- Size is measured in UCP size
variables (UAW and UUCW) and
correction factors (LaTF and LaEF).

OCF

3 Algorithmic
Optimization
Method

- Size is measured based on linear
regression on UCP variables (UAW,
UUC, TCF, and EF).

AOM

4 Use Case Points
using SVR

- SVR is used to estimate the software
size based on UCP variables (UAW,
UUCW, TCF, and ECF).

UCP&SVR

5 Use Case Points
using DT

- DT is used to estimate the software
size based on UCP variables (UAW,
UUCW, TCF, and ECF).

UCP&DT

6 Extension of
Optimization
Correction Factors
(proposed in
Chapter 4.2)

- Correction factors are determined in
regression analysis by the LASSO
regression model.
- Size is based on linear regression on
OCF variables (UAW, UUCW,
LaTF, and LaEF).

ExOCF

The statistical hypothesis was tested to determine whether the proposed ExOCF

approach provides a better estimate.

• H9:	µPQ;	LRSLSN;T	GMKEH	*;PQST = µPQ;	SPQ;R	P;NP;T	*;PQSTN. The estimation
ability of the proposed ExOCF method is not significantly different from the
estimation abilities of the other tested methods.

• H$:	µPQ;	LRSLSN;T	GMKEH	*;PQST > µPQ;	SPQ;R	P;NP;T	*;PQSTN. The estimation
ability of the proposed ExOCF method is significantly different from the
estimation abilities of the other tested methods.

5.3.3 Experiment 3 (EX3)
EX3 is conducted to compare the proposed SOCF method with the related

SDEE methods, such as UCP-based single methods (described in Table 5-6),

45

OCF-based single methods (described in Table 5-7), and ensemble methods
(described in Table 5-8). In addition, we experimented with baseline SDEE
methods (UCP and OCF).

Table 5-6. UCP-based single methods implemented for EX3

No. ML technique Summary Notation

1 SVR - SVR is used to estimate the software
size based on UCP variables (UAW,
UUCW, TCF, and ECF).

UCP&SVR

2 KNN - KNN is used to estimate the software
size based on UCP variables (UAW,
UUCW, TCF, and ECF).

UCP&KNN

3 DT - DT is used to estimate the software size
based on UCP variables (UAW, UUCW,
TCF, and ECF).

UCP&DT

4 GRNN - GRNN is used to estimate the software
size based on UCP variables (UAW,
UUCW, TCF, and ECF).

UCP&GRNN

5 MLP - MLP is used to estimate the software
size based on UCP variables (UAW,
UUCW, TCF, and ECF).

UCP&MLP

6 RF - RF is used to estimate the software size
based on UCP variables (UAW, UUCW,
TCF, and ECF).

UCP&RF

Table 5-7. OCF-based single methods implemented for EX3

No. ML technique Summary Notation

1 SVR - SVR is used to estimate the software size
based on OCF variables (UAW, UUCW,
LaTF, and LaEF).

OCF&SVR

46

2 MLP - MLP is used to estimate the software size
based on OCF variables (UAW, UUCW,
LaTF, and LaEF).

OCF&MLP

3 GB - GB is used to estimate the software size
based on OCF variables (UAW, UUCW,
LaTF, and LaEF).

OCF&GB

4 MLR - MLR is used to estimate the software size
based on OCF variables (UAW, UUCW,
LaTF, and LaEF).

OCF&MLR

5 KNN - KNN is used to estimate the software size
based on OCF variables (UAW, UUCW,
LaTF, and LaEF).

OCF&KNN

6 DT - DT is used to estimate the software size
based on OCF variables (UAW, UUCW,
LaTF, and LaEF).

OCF&DT

7 RF - RF is used to estimate the software size
based on OCF variables (UAW, UUCW,
LaTF, and LaEF).

OCF&RF

Table 5-8. Ensemble methods implemented for EX3

No. ML technique Summary Notation

1

Majority voting
ensemble

- Majority voting ensemble with
MLR, SVR, MLP models to
estimate the software size based on
UCP variables (UAW, UUCW,
TCF, and ECF).

VUCP

2 Stacked
Generalization
Ensemble

- Stacked generalization ensemble
with SVM, KNN, DT, MLP, MLR,
GB, RF models to estimate the
software size based on OCF
variables (UAW, UUCW, LaTF,
and LaEF).

SOCF
(proposed in
Chapter 4.3)

47

The accuracy of a given statistical or ML technique is determined by the
configuration parameters that describe the characteristics of a specific dataset.
Choosing the optimal parameter values for a technique gives it a higher predictive
ability. In this EX3, we apply GS [134] to optimize the configuration settings of
statistical and ML techniques. Specifically, for each dataset, GS thoroughly
examines the parameter set of each empirical method in a given range of values
and then selects the configuration that provides optimal estimates. The parameter
search ranges are derived from previous analyses [54], [55], [59]. In each case,
we extended the search range to include as many alternative configurations as
possible. The convergence of each optimization approach is determined by the
mean square error (MSE) reaching zero or the maximum number of iterations
reaching 10,000 [135]. The settings are tuned to the validation set, which
comprises 30% of the training set. Table 5-9, Table 5-10, Table 5-9, and Table
5-10 list the optimal parameter values for each dataset's estimation method.

Table 5-9. The results of parameter tunings in the D1 dataset

Method Parameters settings
OCF&MLP L = 0.05, H = 7,M = 0.2, α = 0.0001
UCP&MLP L = 0.04, H = 7,M = 0.5, α = 0.001
OCF&SVR C = 10, γ = 0.001, ε = 0.001
UCP&SVR C = 10, γ = 1, ε = 1
OCF&DT max	 _depth = 7,min	 _weight_fraction_leaf = 	0.4,	

max_leaf_node = 40,min_sample_leaf = 10	
UCP&DT max	 _depth = 5,min	 _weight_fraction_leaf = 	0.3,	

max_leaf_node = 20,min_sample_leaf = 6
OCF&RF n_estimators = 100,min	 _sample_leaf = 2,

max	 _depth = 10	
UCP&RF n_estimators = 150,min	 _sample_leaf = 2,

max	 _depth = 20	
OCF&GB n_estimators = 60,min	 _sample_leaf = 60,

max	 _depth = 5	
OCF&KNN neighbors = 5
UCP&KNN neighbors = 10
UCP&GRNN σ = 0.1

48

Table 5-10. The results of parameter tunings in the D2 dataset

Method Parameters settings
OCF&MLP L = 0.02, H = 8,M = 0.5, α = 0.001
UCP&MLP L = 0.03, H = 6,M = 0.5, α = 0.0001
OCF&SVR C = 100, γ = 0.1, ε = 0.001
UCP&SVR C = 10, γ = 1, ε = 0.1
OCF&DT max	 _depth = 5,min	 _weight_fraction_leaf = 	0.5,	

max_leaf_node = 30,min_sample_leaf = 4	
UCP&DT max	 _depth = 3,min	 _weight_fraction_leaf = 	0.3,	

max_leaf_node = 40,min_sample_leaf = 2
OCF&RF n_estimators = 200,min	 _sample_leaf = 1,

max	 _depth = 50	
UCP&RF n_estimators = 100,min	 _sample_leaf = 1,

max	 _depth = 30	
OCF&GB n_estimators = 20,min	 _sample_leaf = 40,

max	 _depth = 6	
OCF&KNN neighbors = 8
UCP&KNN neighbors = 9
UCP&GRNN σ = 0.3

Table 5-11. The results of parameter tunings in the D3 dataset

Method Parameters settings
OCF&MLP L = 0.01, H = 6,M = 0.2, α = 0.01
UCP&MLP L = 0.04, H = 6,M = 0.2, α = 0.01
OCF&SVR C = 50, γ = 1, ε = 1
UCP&SVR C = 10, γ = 0.01, ε = 0.01
OCF&DT max	 _depth = 9,min	 _weight_fraction_leaf = 	0.3,	

max_leaf_node = 10,min_sample_leaf = 5	
UCP&DT max	 _depth = 5,min	 _weight_fraction_leaf = 	0.1,

	max_leaf_node = 30,min_sample_leaf = 7

49

OCF&RF n_estimators = 300,min	 _sample_leaf = 4,
max	 _depth = 80	

UCP&RF n_estimator = 400,min	 _sample_leaf = 2,
max	 _depth = 50

OCF&GB n_estimators = 30,min	 _sample_leaf = 30,
max	 _depth = 7

OCF&KNN neighbors = 6
UCP&KNN neighbors = 10
UCP&GRNN σ = 0.6

Table 5-12. The results of parameter tunings in the D4 dataset

Method Parameters settings
OCF&MLP L = 0.02, H = 6,M = 0.3, α = 0.01
UCP&MLP L = 0.03, H = 6,M = 0.4, α = 0.001
OCF&SVR C = 100, γ = 1, ε = 0.01
UCP&SVR C = 10, γ = 0.01, ε = 0.01
OCF&DT max	 _depth = 3,min	 _weight_fraction_leaf = 	0.1,	

max_leaf_node = 50,min_sample_leaf = 2	
UCP&DT max	 _depth = 5,min	 _weight_fraction_leaf = 	0.5,

	max_leaf_node = 30,min_sample_leaf = 3
OCF&RF n_estimators = 250,min	 _sample_leaf = 4,

max	 _depth = 10	
UCP&RF n_estimators = 300,min	 _sample_leaf = 4,

max	 _depth = 20	
OCF&GB n_estimators = 40,min	 _sample_leaf = 50,

max	 _depth = 6	
OCF&KNN neighbors = 7
UCP&KNN neighbors = 9
UCP&GRNN σ = 0.4

50

The statistical hypothesis was tested to determine whether the proposed SOCF
approach provides a better estimate.

• H9:	µPQ;	LRSLSN;T	UKEH	*;PQST = µPQ;	SPQ;R	P;NP;T	*;PQSTN. The estimation
ability of the proposed SOCF method is not significantly different from the
estimation abilities of the other tested methods.

• H$:	µPQ;	LRSLSN;T	UKEH	*;PQST > µPQ;	SPQ;R	P;NP;T	*;PQSTN. The estimation ability
of the proposed SOCF method is significantly different from the estimation
abilities of the other tested methods.

5.3.4 Experiment 4 (EX4)
EX4 is conducted to compare the proposed OCF(PFCFE) method with the

previous SDEE methods (UCP, SW [129], OCF), as summarized in Table 5-13.
Table 5-14 presents the optimal configuration parameters in the experiments.

Table 5-13. Methods implemented for EX4

No. SDEE method Summary Notation

1 Use Case Points - Size is measured by UCP variables
(UAW, UUCW, TCF, and ECF).
- 20 person-hours to develop each UCP
(PF=20).
- The effort is computed by multiplying
Size by the PF.

UCP

2 Schneider and
Winter (SW)

- Size is measured by UCP variables
(UAW, UUCW, TCF, and ECF).
- PF is computed from the UCP
environmental complexity factors.
- The effort is computed by multiplying
Size by the PF.

SW

3 Optimization
Correction
Factors

- Correction factors are determined in
regression analysis by the LASSO
regression model.
- Size is measured in UCP size variables
(UAW and UUCW) and correction
factors (LaTF and LaEF).

OCF

51

- 20 person-hours to develop each UCP
(PF=20).
- The effort is computed by multiplying
Size by the PF.

4 Software
Productivity
Model based on
Ensemble
Construction
Mechanism
(proposed in
Chapter 4.4)

- Size is measured in UCP size variables
(UAW and UUCW) and correction
factors (LaTF and LaEF).
- A proposed PFCFE model is constructed
based on correction factors through an
ensemble construction mechanism of
three ML models (SVR, MLR, and DT).
Details of the optimal configuration
parameter sets after tuning are shown in
Table 5-14.
- The effort is computed by multiplying
Size by the PFCFE.

OCF(PFCFE)

Table 5-14. The optimal values of method parameters in EX4

Method Parameters setting
 D1 dataset
PFSVR C = 0.1, γ = 0.0001, ε =0.1
PFDT max	 _depth = 7,min	 _weight_fraction_leaf = 0.4	,	

max_leaf_node = 70,min_sample_leaf = 	7
 D2 dataset
PFSVR C = 0.01, γ = 0.0001, ε = 0.01
PFDT max	 _depth = 9,min	 _weight_fraction_leaf = 0.1	,	

max_leaf_node = 80,min_sample_leaf = 4	
 D3 dataset
PFSVR C = 1, γ = 0.01, ε =0.001
PFDT max	 _depth = 4,min	 _weight_fraction_leaf = 0.3	,	

max_leaf_node = 30,min_sample_leaf = 2

52

D4 dataset
PFSVR C = 1, γ = 0.0001, ε = 0.1
PFDT max	 _depth = 3,min	 _weight_fraction_leaf = 0.2	,	

max_leaf_node = 50,min_sample_leaf = 7	

The statistical hypothesis was tested to determine whether the proposed

OCF(PFCFE) approach provides a better estimate.

• H9:	µPQ;	LRSLSN;T	KEH(?HEHG)	*;PQST = µPQ;	SPQ;R	P;NP;T	*;PQSTN. The estimation
ability of the proposed SOCF method is not significantly different from the
estimation abilities of the other tested methods.

• H$:	µPQ;	LRSLSN;T	KEH(?HEHG)	*;PQST > µPQ;	SPQ;R	P;NP;T	*;PQSTN. The estimation
ability of the proposed SOCF method is significantly different from the
estimation abilities of the other tested methods.

53

6 RESULTS AND DISCUSSION
This section presents the solutions to the four problem statements given above.

The purpose of the results is to minimize the SSE, MdMRE, MAE, MBRE,
MIBRE, and RMSE and maximize the PRED (0.25). Specifically, low values for
the SSE, MdMRE, MAE, MBRE, MIBRE, and RMSE show good results. In
contrast, high values for the PRED (0.25) show good results. Besides that, the
results of SSE, MAE, MdMRE, MBRE, MIBRE, and RMSE in the four
experimental datasets were used for the paired t-test statistical comparisons. After
five runs on different random training- testing had split, we obtained the average
p-value of the t-test.

6.1 EX1
In the EX1, we will compare the proposed OCF method as well as the UCP and

OTF methods based on the four experimental datasets. Table 6-1, Table 6-2, Table
6-3, and Table 6-4 show that the proposed OCF method outperformed the UCP
and OTF methods when the SSE, MAE, MBRE, MIBRE, MdMRE, and RMSE
criteria were used. The OCF method also gave good results when PRED (0.25)
was used. Figure 6-1 shows the average estimation results of the proposed OCF
and other methods.

Based on the estimation results in Table 6-1, Table 6-2, Table 6-3, and Table
6-4, we present the percentage improvements of the proposed OCF over the UCP
and OTF methods averaged on all datasets in Table 6-5.

Table 6-1. Estimation results for the proposed OCF method and other methods on

the D1 dataset

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE
UCP 54,838.961 0.40 95.615 0.281 0.366 0.252 104.339
OTF 29,971.565 0.68 49.904 0.206 0.241 0.187 77.056
OCF 14,215.263 0.92 44.784 0.112 0.146 0.120 52.964

54

Table 6-2. Estimation results for the proposed OCF method and other methods on
the D2 dataset

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE
UCP 34,148.372 0.55 82.544 0.254 0.384 0.252 92.152
OTF 23,153.238 0.60 64.267 0.223 0.268 0.202 75.232
OCF 17,773.295 0.65 54.393 0.165 0.227 0.167 65.596

Table 6-3. Estimation results for the proposed OCF method and other methods on

the D3 dataset

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE
UCP 58,932.202 0.47 120.02 0.455 0.426 0.278 138.640
OTF 49,847.551 0.47 111.72 0.422 0.389 0.260 127.000
OCF 30,148.049 0.53 87.242 0.266 0.331 0.237 95.369

Table 6-4. Estimation results for the proposed OCF method and other methods on

the D4 dataset

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE
UCP 59,995.454 0.33 125.85 0.419 0.441 0.289 139.698
OTF 51,670.526 0.33 113.27 0.414 0.395 0.262 129.075
OCF 34,210.337 0.53 87.308 0.261 0.318 0.225 98.899

Table 6-5. The percentage improvements of the OCF over the UCP and OTF

methods averaged on all datasets

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE
OCF vs.UCP 53.6% 33.6% 35.4% 42.9% 36.7% 30.2% 34.1%
OCF vs.OTF 37.7% 21.1% 19.2% 36.4% 20.8% 17.8% 23.3%

55

Figure 6-1. The average estimation results of the proposed OCF

method and other methods on all datasets

Moreover, we use the SSE, MAE, and RMSE results for all the experimental

methods for statistical comparisons, i.e., to draw the most accurate conclusions
by comparing estimation methods. The t-test, a parametric statistical comparison
test, is used in this study. For a less than, the two statistical methods involved in
the comparison are significantly different. As shown in Table 6-6, our proposed
OCF method is statistically superior to the baseline UCP method and the OTF

56

method. A>> B means that A is statistically superior to B. Therefore, we accept
the alternative hypothesis H1.

Table 6-6. The t-test results for five different runs of the proposed OCF method in

comparison with the other methods.

Pairs of methods OCF vs. UCP OCF vs. OTF

SSE

Avg. SSE 24,086.736 vs.
51978.747

24,086.736 vs.
38660.720

Avg. p-value 0.00000 0.00000
Statistical conclusion >> >>

MAE
Avg. MAE 68.432 vs.

106.009
68.432 vs.

84.790
Avg. p-value 0.00000 0.00001
Statistical conclusion >> >>

RMSE
Avg. RMSE 78.207 vs.

118.707
78.207 vs.
102.091

Avg. p-value 0.00000 0.00000
Statistical conclusion >> >>

6.2 EX2
In this section, we will evaluate the proposed ExOCF method and five other

methods. Table 6-7, Table 6-8, Table 6-9, and Table 6-10 show the estimation
accuracy of the methods across the four experiment datasets. The average
estimation results of methods are shown in Figure 6-2.

The first observation from these results is that the proposed ExOCF method
produces the best SSE, MdMRE, MAE, MBRE, MIBRE, RMSE, and PRED
(0.25) values, suggesting that it is possible to modify the OCF method to improve
its estimation accuracy. From the results obtained, we believe that applying the
MLR model to the OCF variables has proven its effectiveness.

The second observation from these results is that the proposed ExOCF method
improved accuracy over the baseline UCP method and other tested methods such
as AOM, UCP&DT, and UCP&SVR. Table 6-11 presents the percentage
improvement of the proposed ExOCF over the AOM, UCP&DT, and UCP&SVR
methods averaged on all datasets. Based on this comparison, we can confidently
confirm that the proposed method outperforms all other methods with superior
accuracy in the evaluation criteria.

57

Table 6-7. Estimation results for the proposed ExOCF method and other methods
on the D1 dataset

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE
UCP 54838.9 0.40 95.61 0.281 0.366 0.252 104.339
OCF 14215.2 0.92 44.78 0.112 0.146 0.120 52.964
UCP&DT 2697.5 1.00 18.29 0.042 0.052 0.048 22.609
UCP&SVR 2013.1 1.00 17.12 0.048 0.049 0.046 19.588
AOM 1690.9 1.00 15.67 0.044 0.044 0.042 17.946
ExOCF 1443.2 1.00 12.61 0.029 0.035 0.033 16.392

Table 6-8. Estimation results for the proposed ExOCF method and other methods

on the D2 dataset

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE
UCP 34148.37 0.55 82.544 0.254 0.384 0.252 92.152
OCF 17773.29 0.65 54.393 0.165 0.227 0.167 65.596
UCP&DT 1484.69 1.00 15.068 0.043 0.049 0.045 18.782
UCP&SVR 921.93 1.00 13.213 0.035 0.043 0.041 15.137
AOM 547.19 1.00 9.647 0.029 0.031 0.030 11.691
ExOCF 501.78 1.00 8.822 0.024 0.028 0.027 11.195

58

Table 6-9. Estimation results for the proposed ExOCF method and other methods
on the D3 dataset

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE
UCP 58932.2 0.47 120.02 0.455 0.426 0.278 138.640
OCF 30148.0 0.53 87.242 0.266 0.331 0.237 95.369
UCP&DT 83.7 1.00 3.690 0.008 0.013 0.012 5.211
UCP&SVR 42.3 1.00 2.804 0.008 0.010 0.009 3.704
AOM 37.5 1.00 2.650 0.008 0.009 0.009 3.472
ExOCF 34.6 1.00 2.489 0.007 0.009 0.009 3.326

Table 6-10. Estimation results for the proposed ExOCF method and other methods
on the D4 datase

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE
UCP 59995.4 0.33 125.85 0.419 0.441 0.289 139.698
OCF 34210.3 0.53 87.308 0.261 0.318 0.225 98.899
UCP&DT 9867.7 1.00 21.369 0.045 0.069 0.060 29.642
UCP&SVR 10638.2 1.00 25.466 0.066 0.082 0.073 31.062
AOM 6862.6 1.00 18.481 0.034 0.058 0.053 24.829
ExOCF 5630.0 1.00 16.311 0.033 0.052 0.047 22.480

Table 6-11. The percentage improvements of the ExOCF over the other methods

averaged on all datasets

Methods SSE MAE RMSE MdMRE MBRE MIBRE
ExOCF
vs. UCP&DT

46.16% 31.13% 32.17% 32.35% 30.08% 29.97%

ExOCF
vs. UCP&SVR

44.11% 31.35% 40.71% 32.28% 31.32% 23.17%

ExOCF
vs. AOM

16.73% 13.39% 18.10% 13.06% 12.89% 7.84%

59

Figure 6-2. The average estimation results of the proposed ExOCF

method and other methods on all datasets

60

Furthermore, the results confirm that the ExOCF method is statistically
significant at the 95% confidence level compared to the other five methods, as
shown in Table 6-12. As a result, we are inclined to accept the alternative
hypothesis (H1), which is also consistent with the results presented above. A>>B
means that A is statistically superior to B.

Table 6-12. The t-test results for five different runs of the proposed ExOCF

method in comparison with the other methods

Pairs of
methods

ExOCF
vs.
UCP

ExOCF
vs.
OCF

ExOCF
vs.
UCP&DT

ExOCF
vs.
UCP&SVR

ExOCF
vs.
AOM

SSE

Avg.
SSE

1902.4 vs.
51,978.7

1902.4 vs.
24,086.7

1902.4 vs.
3533.4

1902.4 vs.
3403.9

1902.4 vs.
2284.6

Avg. p-
value 0.00000 0.00001 0.00267 0.00316 0.00388

St. conc. >> >> >> >> >>

MAE

Avg.
MAE

10.058 vs.
106.009

10.058 vs.
68.432

10.058 vs.
14.605

10.058 vs.
14.651

10.058 vs.
11.613

Avg. p-
value 0.00000 0.00000 0.00001 0.00000 0.00005

St. conc. >> >> >> >> >>

RMSE

Avg.
RMSE

13.348 vs.
118.707

13.348 vs.
78.207

13.348 vs.
19.060

13.348 vs.
17.372

13.348 vs.
14.484

Avg. p-
value 0.00000 0.00000 0.00000 0.00001 0.00007

St. conc. >> >> >> >> >>

6.3 EX3
Table 6-13, Table 6-14, Table 6-15, Table 6-16, Table 6-17, Table 6-18, Table

6-19, and Table 6-20 present the estimation results of the UCP-based and OCF-
based single methods across the four datasets.

The first finding from these results is that the estimation accuracies of the single
methods differ throughout datasets. UCP&GRNN, for example, was the best
model for the D1 dataset among the UCP-based single methods. According to the

61

SSE, UCP&KNN had the lowest accuracy, while UCP&SVR had the most
insufficient accuracy according to the MAE, RMSE, MBRE, MIBRE, and
MdMRE. Similarly, among the OCF-based single methods for the D1 dataset,
OCF&RF performed best according to the SSE and RMSE, while OCF&KNN
performed best according to the MAE, MBRE, MIBRE, and MdMRE. The worst
model was OCF&SVR.

Table 6-13. Estimation results for the UCP-based single methods on the D1

dataset

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE
UCP&SVR 1866.17 0.33 16.73 0.045 0.048 0.045 18.711
UCP&MLP 1515.52 0.53 14.08 0.036 0.040 0.038 16.768
UCP&GRNN 1493.42 1.00 12.77 0.035 0.039 0.036 15.553
UCP&KNN 1942.10 1.00 16.56 0.048 0.047 0.044 18.532
UCP&DT 1520.84 1.00 13.53 0.030 0.038 0.036 16.619
UCP&RF 1526.65 1.00 14.04 0.029 0.040 0.037 16.440

Table 6-14. Estimation results for the UCP-based single methods on the D2
dataset

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE
UCP&SVR 768.53 1.00 10.18 0.026 0.034 0.032 13.168
UCP&MLP 1546.82 1.00 14.85 0.040 0.050 0.046 17.333
UCP&GRNN 392.45 1.00 8.38 0.023 0.028 0.026 9.736
UCP&KNN 651.11 1.00 11.12 0.032 0.036 0.035 12.459
UCP&DT 528.28 1.00 9.497 0.027 0.031 0.030 11.151
UCP&RF 405.55 1.00 8.054 0.021 0.026 0.025 9.640

62

Table 6-15. Estimation results for the UCP-based single methods on the D3
dataset

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE
UCP&SVR 41.978 1.00 3.066 0.014 0.011 0.010 3.573
UCP&MLP 56.090 1.00 3.629 0.015 0.012 0.012 4.050
UCP&GRNN 51.268 1.00 3.517 0.015 0.012 0.012 4.020
UCP&KNN 54.621 1.00 3.780 0.016 0.013 0.013 4.210
UCP&DT 46.617 1.00 3.305 0.013 0.011 0.011 3.767
UCP&RF 60.420 1.00 3.066 0.014 0.011 0.010 3.573

Table 6-16. Estimation results for the UCP-based single methods on the D4
dataset

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE
UCP&SVR 10935.1 1.00 25.62 0.073 0.082 0.074 30.96
UCP&MLP 11890.2 0.98 25.89 0.062 0.081 0.072 31.39
UCP&GRNN 11105.5 1.00 23.82 0.056 0.076 0.067 29.95
UCP&KNN 11074.0 0.98 24.55 0.060 0.077 0.068 30.94
UCP&DT 10878.2 1.00 26.58 0.085 0.086 0.077 31.22
UCP&RF 13470.0 0.98 25.68 0.073 0.083 0.072 32.90

Table 6-17. Estimation results for the OCF-based single methods on the D1
dataset

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE
OCF&SVR 1410.33 1.00 13.900 0.029 0.039 0.037 16.350
OCF&MLP 1197.73 1.00 12.887 0.031 0.036 0.035 15.362
OCF&DT 1343.01 1.00 13.470 0.030 0.038 0.036 16.021
OCF&MLR 1018.04 1.00 11.545 0.025 0.032 0.031 13.719
OCF&GB 1314.08 1.00 13.434 0.030 0.038 0.036 15.903
OCF&RF 747.09 1.00 9.520 0.022 0.027 0.026 11.700
OCF&KNN 832.11 1.00 9.245 0.017 0.026 0.024 12.356

63

Table 6-18. Estimation results for the OCF-based single methods on the D2
dataset

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE
OCF&SVR 649.039 1.00 9.434 0.025 0.032 0.030 12.399
OCF&MLP 994.084 1.00 12.096 0.033 0.040 0.038 15.033
OCF&DT 278.476 1.00 7.203 0.022 0.023 0.023 7.949
OCF&MLR 493.827 1.00 9.479 0.026 0.031 0.029 11.017
OCF&GB 279.682 1.00 7.203 0.022 0.023 0.023 7.972
OCF&RF 360.796 1.00 7.371 0.019 0.024 0.023 9.340
OCF&KNN 244.127 1.00 6.405 0.018 0.020 0.022 7.673

Table 6-19. Estimation results for the OCF-based single methods on the D3
dataset

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE
OCF&SVR 36.965 1.00 2.891 0.013 0.010 0.010 3.387
OCF&MLP 51.081 1.00 3.634 0.014 0.012 0.012 3.968
OCF&DT 37.345 1.00 2.887 0.013 0.010 0.010 3.408
OCF&MLR 46.500 1.00 3.417 0.013 0.012 0.012 3.806
OCF&GB 37.893 1.00 2.899 0.012 0.010 0.010 3.437
OCF&RF 44.123 1.00 3.132 0.013 0.011 0.011 3.700
OCF&KNN 47.462 1.00 3.312 0.014 0.011 0.011 3.830

64

Table 6-20. Estimation results for the OCF-based single methods on the D4
dataset

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE
OCF&SVR 6642.85 1.00 18.57 0.047 0.059 0.054 23.772
OCF&MLP 6874.87 1.00 18.42 0.047 0.058 0.053 24.192
OCF&DT 10454.39 1.00 25.93 0.077 0.083 0.075 30.547
OCF&MLR 6909.89 1.00 19.05 0.054 0.060 0.054 24.246
OCF&GB 10647.20 1.00 26.23 0.084 0.085 0.076 30.810
OCF&RF 6236.12 1.00 17.97 0.050 0.056 0.051 23.387
OCF&KNN 6475.19 1.00 18.20 0.044 0.057 0.052 24.113

Furthermore, the experimental results suggest that OCF-based methods reduce

estimation errors more effectively than UCP model-based methods. Table 6-21
show the percentage improvements of OCF&SVR, OCF&MLP, OCF&KNN,
OCF&DT, and OCF&RF over UCP&SVR, UCP &MLP, UCP &KNN, UCP
&DT, and UCP &RF. The comparison between the OCF-based and UCP-based
single methods is illustrated in Figure 6-3. Based on this finding, we can conclude
that approaches that use OCF variables outperform those that use UCP variables.

Table 6-21. The percentage improvements of the OCF-based single methods

averaged on all datasets

 Methods SSE MAE RMSE MdMRE MBRE MIBRE
OCF&SVR
vs. UCP&SVR

35.80% 19.43% 28.17% 20.23% 19.18% 15.82%

OCF&MLP
vs. UCP&MLP

39.25% 19.53% 18.50% 19.83% 18.21% 15.80%

OCF&KNN
vs. UCP&KNN

44.62% 33.65% 40.18% 34.06% 32.00% 27.47%

OCF&DT
vs. UCP&DT

6.63% 6.49% 9.28% 7.23% 6.52% 7.70%

OCF&RF
vs. UCP&RF

52.22% 26.56% 25.50% 27.71% 25.30% 24.08%

65

Table 6-22 and Table 6-23 present the ranking the UCP-based and OCF-based
single methods across the datasets using the SSE criterion. The "1" represents the
best method and "6" or "7" indicates the worst method. Based on these results, we
can conclude that there is no best method, indicating that a single model can
outperform in one dataset while underperforming in another.

Table 6-22. Rank the UCP-based single approaches from 1 to 6 based on the SSE

metric

Methods D1 D2 D3 D4
UCP&SVR 5 5 1 2
UCP&MLP 2 6 5 5
UCP&GRNN 1 1 3 4
UCP&KNN 6 4 4 3
UCP&DT 3 3 2 1
UCP&RF 4 2 6 6

Table 6-23. Rank the UCP-based single approaches from 1 to 7 based on the SSE
metric

Methods D1 D2 D3 D4
OCF&SVR 7 6 1 3
OCF&MLP 4 7 7 4
OCF&DT 6 2 2 6
OCF&MLR 3 5 5 5
OCF&GB 5 3 3 7
OCF&RF 1 4 4 1
OCF&KNN 2 1 6 2

66

Figure 6-3. The average estimation results of the UCP-based and

OCF-based single methods on all datasets

The experimental results for the two ensemble methods (VUCP and SOCF) and

their single approaches are shown in Table 6-24, Table 6-25, Table 6-26, and
Table 6-27. The comparison between between the ensemble methods and their
single approaches is shown in Figure 6-4 and Figure 6-5.

Table 6-24. Estimation results for the ensemble methods on the D1 dataset

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE
VUCP 1173.227 1.00 11.575 0.027 0.033 0.031 13.970
SOCF 491.627 1.00 7.168 0.016 0.020 0.023 9.186

67

Table 6-25. Estimation results for the ensemble methods on the D2 dataset

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE
VUCP 335.898 1.00 7.618 0.023 0.025 0.024 8.937
SOCF 125.236 1.00 4.322 0.013 0.014 0.022 5.386

Table 6-26. Estimation results for the ensemble methods on the D3 dataset

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE
VUCP 38.537 1.00 2.865 0.013 0.010 0.010 3.431
SOCF 31.496 1.00 2.486 0.008 0.009 0.010 3.106

Table 6-27. Estimation results for the ensemble methods on the D4 dataset

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE
VUCP 8043.400 1.00 21.536 0.059 0.069 0.062 26.338
SOCF 4222.464 1.00 13.944 0.030 0.043 0.049 21.706

68

Figure 6-4. The comparison between the ensemble method VUCP and

its single approaches

69

Figure 6-5. The comparison between the ensemble method SOCF and

its single approaches

70

Based on these results, we can conclude that the ensemble methods outperform
their single methods, and the proposed SOCF approach surpasses the VUCP
method. Moreover, the results confirm that the SOCF method is statistically
significant at the 95% confidence level compared to the other methods, as shown
Table 6-28, Table 6-29, and Table 6-30. A>> B means that A is statistically
superior to B. Therefore, we accept the alternative hypothesis H1.

Table 6-28. The t-test results for five different runs of the proposed SOCF method

in comparison with the other methods

Pairs of
methods

SOCF
vs.
UCP

SOCF
vs.
OCF&MLP

SOCF
vs.
OCF&DT

SOCF
vs.
OCF&SVR

SOCF
vs.
OCF&MLR

SSE

Avg.
SSE

1217.7 vs.
54838.9

1217.71 vs.
2279.44

1217.71 vs.
3028.31

1217.71 vs.
2184.80

1217.71 vs.
2117.07

Avg. p-
value 0.00000 0.00076 0.00440 0.00190 0.00514

St. conc. >> >> >> >> >>

MAE

Avg.
MAE

6.980 vs.
95.615

6.980 vs.
11.762

6.980 vs.
12.373

6.980 vs.
11.200

6.980 vs.
10.874

Avg. p-
value

0.00000 0.00000 0.00005 0.00000 0.00001

St. conc. >> >> >> >> >>

RMSE

Avg.
RMSE

9.096 vs.
104.339

9.096 vs.
14.639

9.096 vs.
14.482

9.096 vs.
13.977

9.096 vs.
13.197

Avg. p-
value

0.00000 0.00002 0.00006 0.00005 0.00000

St. conc. >> >> >> >> >>

71

Table 6-29. The t-test results for five different runs of the proposed SOCF method
in comparison with the other methods

Pairs of
methods

SOCF
vs.
OCF&GB

SOCF
vs.
OCF&RF

SOCF
vs.
UCP&KNN

SOCF
vs.
UCP&SVR

SOCF
vs.
UCP&MLP

SSE

Avg.
SSE

1217.7 vs.
3069.7

1217.7 vs.
1847.0

1217.71 vs.
1899.03

1217.71 vs.
3402.95

1217.7 vs.
2117.07

Avg. p-
value 0.00460 0.00583 0.01199 0.00195 0.00514

St. conc. >> >> >> >> >>

MAE

Avg.
MAE

6.980 vs.
12.441

6.980 vs.
9.499

6.980 vs.
9.293

6.980 vs.
13.902

6.980 vs.
10.874

Avg. p-
value

0.00005 0.00000 0.00005 0.00005 0.00001

St. conc. >> >> >> >> >>

RMSE

Avg.
RMSE

9.096 vs.
14.530

9.096 vs.
12.032

9.096 vs.
11.993

9.096 vs.
16.604

9.096 vs.

Avg. p-
value

0.00006 0.00005 0.00010 0.00000 13.197

St. conc. >> >> >> >> >>

72

Table 6-30. The t-test results for five different runs of the proposed SOCF method
in comparison with the other methods

Pairs of
methods

SOCF vs.
UCP&GB

SOCF vs.
OCF&KNN

SOCF vs.
UCP&DT

SOCF vs.
UCP&RF

SOCF vs.
VUCP

SSE

Avg.
SSE

1217.7 vs.
3069.7

1217.7 vs.
1847.0

1217.71 vs.
1899.03

1217.71 vs.
3402.95

1217.71 vs.
2397.77

Avg. p-
value 0.00460 0.00583 0.01199 0.00195 0.00764

St. conc. >> >> >> >> >>

MAE

Avg.
MAE

6.980 vs.
12.441

6.980 vs.
9.499

6.980 vs.
9.293

6.980 vs.
13.902

6.980 vs.
10.899

Avg. p-
value

0.00005 0.00000 0.00005 0.00005 0.00003

St. conc. >> >> >> >> >>

RMSE

Avg.
RMSE

9.096 vs.
14.530

9.096 vs.
12.032

9.096 vs.
11.993

9.096 vs.
16.604

9.096 vs.
13.169

Avg. p-
value

0.00006 0.00005 0.00010 0.00000 0.00007

St. conc. >> >> >> >> >>

Besides that, we also performed ablation analyses to evaluate the effectiveness

of each of SOCF's three core components. Table 6-31 and Table 6-32 show that
the average SSE, MAE, and RMSE results for SOCF increased when the three
components were replaced from the model, implying a decrease in estimation
accuracy in each case. The ↑ sign denotes an increase in SSE, MAE, RMSE,
MBRE, MIBRE, or MdMRE results, implying a decrease in estimation accuracy
compared to the SOCF (in Full) model. The term "<< Full SOCF model" refers to
the full SOCF model's statistical superiority over models that exclude one of the
three core components.

• SOCF-Case1: Removing the first component (optimizing model parameters
using the GS technique) and using the default parameters for SOCF's single
methods.

• SOCF-Case2: Removing the second component (reducing generalization error
using the stacking ensemble) and using the voting ensemble.

73

• SOCF-Case3: Removing the third component (the selection of seven single
methods) and using three methods: MLR, SVR, and MLP.

Table 6-31. The results for SOCF-Case1, SOCF-Case2, and SOCF-Case3

Methods SSE MAE RMSE
SOCF (in Full) 1217.7 6.98 9.10

SOCF-Case1 ↑1412.80 ↑8.10 ↑10.31

SOCF-Case2 ↑1643.75 ↑8.91 ↑11.16
SOCF-Case3 ↑2146.13 ↑11.00 ↑14.03

Table 6-32. The ablation analyses for SOCF-Case1, SOCF-Case2, and SOCF-
Case3

Models for ablation analyses p-value of t-test

SOCF-Case1

SSE increase 195.096
0.01166

<< Full SOCF model

MAE increase 1.119
0.00000

<< Full SOCF model

RMSE increase 1.215
0.00008

<< Full SOCF model

SOCF-Case2

SSE increase 426.047
0.01914

<< Full SOCF model

MAE increase 1.932
0.00035

<< Full SOCF model

RMSE increase 2.061
0.00011

<< Full SOCF model

SOCF-Case3

SSE increase 928.428
0.00070

<< Full SOCF model

MAE increase 4.029
0.00001

<< Full SOCF model

RMSE increase 4.930
0.00001

<< Full SOCF model

74

6.4 EX4
In the EX4, we will compare the proposed OCF(PFCFE) method as well as the

previous related methods (UCP, SW, and OCF) based on the four experimental
datasets. The obtained results from Table 6-33, Table 6-34, Table 6-35, and Table
6-36 allow us to confidently conclude that the OCF(PFCFE) using the proposed
software productivity approach achieves better improvements than the previous
related methods using fixed productivity metrics, concerning all accuracy
measures. The comparison between the OCF(PFCFE) method and three related
methods is illustrated in Figure 6-6.

The percentage improvements of the proposed OCF(PFCFE) over the other
methods are presented in Table 6-37. This conclusion is confirmed by statistical
t-test comparisons for each corresponding method (see Table 6-38). A>>B refers
to A statistical superiority to B. The OCF(PFCFE) using the proposed software
productivity approach is statistically better than other methods, as the obtained p-
values are all below 0.05.

Table 6-33. Estimation results for the proposed OCF(PFCFE) method and other

methods on the D1 dataset

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE
UCP 2.77E+07 0.4 1,884.6 0.280 0.418 0.258 2,129.9
SW 2.20E+07 0.5 1,642.9 0.239 0.328 0.222 1,909.8
OCF 1.73E+07 0.7 1,607.9 0.226 0.302 0.223 1,691.8
OCF
(PFCFE)

6.05E+06 0.8 804.0 0.079 0.113 0.097 979.9

Table 6-34. Estimation results for the proposed OCF(PFCFE) method and other
methods on the D2 dataset

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE
UCP 6.95E+07 0.32 2,920.5 0.364 0.655 0.345 3,721.7
SW 6.70E+07 0.32 2,847.4 0.364 0.593 0.334 3,656.4
OCF 2.61E+07 0.36 1,986.6 0.304 0.559 0.302 2,264.1
OCF

(PFCFE)
2.14E+07 0.64 1,591.8 0.190 0.302 0.202 2,056.2

75

Table 6-35. Estimation results for the proposed OCF(PFCFE) method and other
methods on the D3 dataset

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE
UCP 3.09E+07 0.37 1,939.0 0.313 0.383 0.250 2,262.8
SW 5.43E+07 0.37 2,551.3 0.450 0.446 0.283 3,004.1
OCF 2.97E+07 0.33 1,931.5 0.300 0.363 0.247 2,219.3
OCF

(PFCFE)
1.13E+07 0.73 1,061.4 0.130 0.244 0.164 1,352.6

Table 6-36. Estimation results for the proposed OCF(PFCFE) method and other
methods on the D4 dataset

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE
UCP 8.05E+07 0.53 1,940.6 0.255 0.413 0.252 2,367.7
SW 8.54E+07 0.61 1,872.8 0.242 0.356 0.226 2,423.6
OCF 5.27E+07 0.61 1,566.9 0.215 0.350 0.220 1,922.7
OCF

(PFCFE)
4.78E+07 0.69 1,430.1 0.186 0.255 0.182 1,827.7

Table 6-37. The percentage improvements of the proposed OCF(PFCFE) method
averaged on all datasets

 Methods SSE PRED MAE RMSE MdMRE MBRE MIBRE
OCF(PFCFE)
vs. UCP

58.6% 43.4% 43.7% 40.7% 51.7% 51.1% 41.6%

OCF(PFCFE)
vs. SW

62.2% 37.1% 45.2% 43.5% 54.8% 47.0% 39.4%

OCF(PFCFE)
vs. OCF

31.3% 30.1% 31.1% 23.2% 44.0% 41.9% 35.0%

OCF(PFCFE)
vs. AOM

58.6% 43.4% 43.7% 40.7% 51.7% 51.1% 41.6%

OCF(PFCFE)
vs. UCP

62.2% 37.1% 45.2% 43.5% 54.8% 47.0% 39.4%

76

Figure 6-6. The average estimation results of the proposed

OCF(PFCFE) method and other methods on all dataset

77

Table 6-38 The t-test results of five different runs for statistical comparison of our
proposed OCF(PFCFE) methods with other tested methods

Pairs of methods OCF(PFCFE)
vs. UCP

OCF(PFCFE)
vs. SW

OCF(PFCFE)
vs. OCF

OCF(PFCFE)
vs. AOM

SSE

Avg.
SSE

2.16E+07
vs.

5.21E+07

2.16E+07
vs.

5.72E+07

2.16E+07
vs.

3.15E+07

2.16E+07
vs.

3.75E+07
Avg.
p-value

0.00000 0.00000 0.00000 0.00011

St. conc. >> >> >> >>

MAE

Avg.
MAE

1194.141
vs.

2171.213

1194.141
vs.

2228.636

1194.141
vs.

1773.276

1194.141
vs.

1756.148
Avg.
p-value

0.00000 0.00000 0.00000 0.00000

St. conc. >> >> >> >>

RMSE

Avg.
RMSE

1554.136
vs.

2620.587

1554.136
vs.

2748.516

1554.136
vs.

2024.497

1554.136
vs.

2126.666
Avg.
p-value

0.00000 0.00000 0.00000 0.00000

St. conc. >> >> >> >>

78

7 THREAT OF VALIDITY
Threats to the validity of this study, namely to internal, construct, and external

validity, are summarized as follows:
Internal validity: In EX1, there is no better way to choose the regularization

parameter 𝜆 to extract a specific set of variables when using LASSO regression,
as shown in equation (4.2). Controlling for the strength of the penalty (tuning 𝜆)
has a significant impact. For example, if 𝜆 is sufficiently large, the coefficients
must be precisely zero, reducing dimensionality. The larger the parameter 𝜆, the
larger the number of coefficients reduced to zero. Therefore, we determined the
𝜆-value using the LOOCV method, where the R-squared reaches its highest value.
In addition, the LOOCV method was used to determine the optimal configuration
parameters for the statistical and ML algorithms in EX4. The unbiased
performance evaluation methodology of each statistical and ML algorithm should
correct any overfitting of the proposed methods [78], [79]. The LOOCV approach
is a better evaluation method than cross-validation because it provides lower bias,
greater variance estimation, and adaptability for small datasets. Each ML
technique uses the GS technique to optimize configuration parameters. Adding a
tuning phase would significantly increase the cost of the experiments, and most
approaches in our study worked well with optimally configured parameter values.
However, these settings may not work well on larger datasets. Besides that, the
dataset was collected over a long period by three donors. The data providers
provided some independent variables. The process of using case point calculation,
particularly for factor weights, is unknown. This may affect data quality and
comparability across data providers. Previous articles used preprocessed datasets,
which may have affected reliability.

Construct validity is related to the generalizability of the results. The goal of
this study was to reduce estimation error. The process is based on a standard
procedure for tuning an estimation model. Performing a 5-fold cross-validation
and processing four datasets allow us to generalize the results. To eliminate
monomethod bias, unbiased evaluation criteria such as SSE, PRED (0.25), MAE,
MdMRE, MBRE, MIBRE, and RMSE, as well as statistical pairwise t-tests, were
used to determine the validity of the results. Therefore, we can conclude that the
experimental results of this work are highly generalizable.

External validity: The first one is the experimental dataset. Since our studies
are based on publicly available datasets, the results should be convincing. These
datasets contain a small fraction of all datasets in the real world. Consequently,
conclusions from these datasets may not be comparable to other datasets. The
second point concerns the use of the GS technique to fine-tune the configuration
settings of each statistical and ML approach. It is recommended that numerous
optimization approaches be explored to generalize the results of this study.

79

8 CONTRIBUTIONS OF THE THESIS TO SCIENCE
AND PRACTICE

The main benefit of this work is the introduction of a new approach to complex
algorithms based on engineering requirements research for a more accurate
estimation of software effort. The new algorithms are inspired by the possibilities
of using a standardized estimation procedure to address the impact of human error
in UCM analysis and to simplify the original UCP principles.

The main benefits of this work can be summarized as follows:

• Proposed procedures can help project managers reduce risks in evaluating
correction factors and obtain effort estimates.

• An algorithm for calculating productivity based on correction factors has been
proposed through a voting set approach consisting of three ML techniques.

• Proposed a comprehensive approach to improve estimation accuracy and
minimize project risks in the early stages of software development.

• Experiments have shown that the use of the proposed new algorithms
minimizes the estimation error compared to the selected methods.

In summary, the results obtained can be considered beneficial for industrial
applications, as they show that the proposed algorithms lead to more accurate
estimates of the size and complexity of the software.

80

9 CONCLUSIONS
The presented doctoral thesis is proposed UCP-based estimation methods in the

early stages of software development. Our methods can help project managers
estimate costs early and efficiently, avoiding project overestimation and late
delivery, among other issues. Each approach has its advantages, and they
complement each other to form a complete process and promote significant
efficiency to minimize estimation error more efficiently in all situations. The
results show that our proposed SDEE method outperforms other related methods.

One of our future works is to calibrate the weighting values of the correction
factors to reflect the latest trend in the software development industry and improve
the accuracy of the proposed methods. Therefore, an approach to calibrate the
weights of the correction factors using an artificial neural network will be
performed in the future. Another concern relates to a key aspect of the
heterogeneity of the historical data. This could lead to an increase in the
estimation error for SDEE. The use of clustering approaches is considered
a solution to improve the method's estimation accuracy in our future work.

81

10 LITERATURE

 [1] B. W. Boehm, "Software Engineering Economics," IEEE Transactions on
Software Engineering, vol. SE-10, (1), 1984.

[2] B. Boehm et al, "Software Cost Estimation with COCOMO II. Prentice
Hall," Upper Saddle River, NJ, 2000.

[3] M. Jørgensen and M. Shepperd, "A systematic review of software
development cost estimation studies," IEEE Transactions on Software
Engineering, vol. 33, (1), 2007.

[4] A. Trendowicz, J. Münch and R. Jeffery, "State of the practice in software
effort estimation: A survey and literature review," in IFIP Central and East
European Conference on Software Engineering Techniques, pp. 232-245, 2008.

[5] Nhung, Ho Le Thi Kim, H. T. Hoc and V. V. Hai, "A review of use case-
based development effort estimation methods in the system development
context," Proceedings of the Computational Methods in Systems and Software,
pp. 484-499, 2019.

[6] B. Boehm, C. Abts and S. Chulani, "Software development cost estimation
approaches — A survey," Annals of Software Engineering, vol. 10, (1/4), pp. 177-
205, 2000.

[7] R. N. Charette, "Why Software Fails," IEEE Spectrum, vol. 42, (9), 2005.

[8] Arlene Minkiewicz, "Use Case Sizing," PRICE Systems, L.L.C, 2015.

[9] C. J. Neill and P. A. Laplante, "Requirements Engineering: The State of the
Practice," IEEE Software, vol. 20, (6), 2003.

[10] Gustav Karner, "Resource Estimation for Objector Projects," 1993.

[11] M. Azzeh, A. Bou Nassif and I. B. Attili, "Predicting software effort from
use case points: A systematic review," Science of Computer Programming, vol.
204, 2021.

[12] V. Khatibi and D. N. a. Jawawi, "Software Cost Estimation Methods : A
Review," Journal of Emerging Trends in Computing and Information Sciences,
vol. 2, (1), 2010.

[13] B. Marapelli, A. Carie and S. M. Islam, "Software effort estimation with
use case points using ensemble machine learning models," in International
Conference on Electrical, Computer and Energy Technologies (ICECET), 2021.

82

[14] R. Silhavy, P. Silhavy and Z. Prokopova, "Using actors and use cases for
software size estimation," Electronics (Switzerland), vol. 10, (5), 2021.

[15] M. Manzoor and A. Wahid, "Revised Use Case Point (Re-UCP) Model for
Software Effort Estimation," International Journal of Advanced Computer
Science and Applications, vol. 6, (3), 2015.

[16] F. Wang et al, "Extended use case points method for software cost
estimation," in International Conference on Computational Intelligence and
Software Engineering, 2009.

[17] K. Periyasamy and A. Ghode, "Cost estimation using extended use case
point (e-UCP) model," in 2009 International Conference on Computational
Intelligence and Software Engineering, 2009.

[18] M. Jørgensen, "Regression models of software development effort
estimation accuracy and bias," Empirical Software Engineering, vol. 9, (4), 2004.

[19] S. Humpage, "An introduction to regression analysis," Sensors
(Peterborough, NH), vol. 17, (9), 2000.

[20] V. Khatibi Bardsiri et al, "A flexible method to estimate the software
development effort based on the classification of projects and localization of
comparisons," Empirical Software Engineering, vol. 19, (4), 2014.

[21] M. Shepperd and S. MacDonell, "Evaluating prediction systems in
software project estimation," Information and Software Technology, vol. 54, (8),
2012.

[22] M. Azzeh et al, "Pareto efficient multi-objective optimization for local
tuning of analogy-based estimation," Neural Computing and Applications, vol.
27, (8), 2016.

[23] R. Silhavy, P. Silhavy and Z. Prokopova, "Algorithmic optimisation
method for improving use case points estimation," PLoS ONE, vol. 10, (11), 2015.

[24] N. Nunes, L. Constantine and R. Kazman, "IUCP: Estimating interactive-
software project size with enhanced use-case points," IEEE Software, vol. 28, (4),
2011.

[25] A. R. Gray and S. G. MacDonell, "A comparison of techniques for
developing predictive models of software metrics," Information and Software
Technology, vol. 39, (6), 1997.

83

[26] R. Alves, P. Valente and N. J. Nunes, "Improving software effort
estimation with human-centric models: A comparison of UCP and iUCP
accuracy," in EICS 2013 - Proceedings of the ACM SIGCHI Symposium on
Engineering Interactive Computing Systems, 2013.

[27] P. Jovan et al, "Enhancing use case point estimation method using fuzzy
algorithms," in 2015 23rd Telecommunications Forum Telfor (TELFOR), 2015.

[28] M. Saroha and S. Sahu, "Software effort estimation using enhanced use
case point model," in Nternational Conference on Computing, Communication
and Automation, ICCCA 2015, 2015.

[29] L. M. Huanca and S. B. Oré, "Factors affecting the accuracy of use case
points," in International Conference on Software Process Improvement, 2016.

[30] A. B. Nassif, D. Ho and L. F. Capretz, "Towards an early software
estimation using log-linear regression and a multilayer perceptron model,"
Journal of Systems and Software, vol. 86, (1), 2013.

[31] Sholiq, R. S. Dewi and A. P. Subriadi, "A comparative study of software
development size estimation method: UCPabc vs function points," in Procedia
Computer Science, 2017.

[32] P. Mohagheghi, B. Anda and R. Conradi, "Effort estimation of use cases
for incremental large-scale software development," in Proceedings - 27th
International Conference on Software Engineering, ICSE05, 2005.

[33] M. R. Braz and S. R. Vergilio, "Software effort estimation based on use
cases," in Proceedings - International Computer Software and Applications
Conference, 2006.

[34] K. Qi et al, "Calibrating use case points using bayesian analysis," in
International Symposium on Empirical Software Engineering and Measurement,
2018.

[35] K. Rak, Ž Car and I. Lovrek, "Effort estimation model for software
development projects based on use case reuse," Journal of Software: Evolution
and Process, vol. 31, (2), 2019.

[36] G. Robiolo, C. Badano and R. Orosco, "Transactions and paths: Two use
case based metrics which improve the early effort estimation," in 3rd
International Symposium on Empirical Software Engineering and Measurement,
ESEM 2009, 2009.

84

[37] L. Lavazza and G. Robiolo, "The role of the measure of functional
complexity in effort estimation," in ACM International Conference Proceeding
Series, 2010.

[38] P. S. Kumar et al, "Advancement from neural networks to deep learning
in software effort estimation: Perspective of two decades," Computer Science
Review, vol. 38, 2020.

[39] T. M Kiran Kumar and M. A. Jayaram, "Comparison of hard limiting and
soft computing methods for predicting software effort estimation: In reference to
Small Scale Visualization Projects," International Journal of Engineering &
Technology, vol. 7, (4.6), 2018.

[40] Jose Thiago, Jose Thiago H. and A. L. I. Oliveira, "Ensemble Effort
Estimation using dynamic selection," Journal of Systems and Software, vol. 175,
2021.

[41] A. G. Priya Varshini, K. Anitha Kumari and V. Varadarajan, "Estimating
software development efforts using a random forest-based stacked ensemble
approach," Electronics (Switzerland), vol. 10, (10), 2021.

[42] M. Jørgensen, U. Indahl and D. Sjøberg, "Software effort estimation by
analogy and "regression toward the mean"," in Journal of Systems and Software,
2003.

[43] J. Heidrich, M. Oivo and A. Jedlitschka, "Software productivity and effort
estimation," Journal of Software: Evolution and Process, vol. 27, (7), 2015.

[44] D. Rodríguez et al, "Empirical findings on team size and productivity in
software development," Journal of Systems and Software, vol. 85, (3), 2012.

[45] K. Petersen, "Measuring and predicting software productivity: A
systematic map and review," Information and Software Technology, vol. 53, (4),
2011.

[46] B. Kitchenham and E. Mendes, "Software productivity measurement using
multiple size measures," IEEE Transactions on Software Engineering, vol. 30,
(12), 2004.

[47] L. M. Alves et al, "An empirical study on the estimation of software
development effort with use case points," in Proceedings - Frontiers in Education
Conference, FIE, 2013.

85

[48] M. Azzeh, A. B. Nassif and L. L. Minku, "An empirical evaluation of
ensemble adjustment methods for analogy-based effort estimation," in Journal of
Systems and Software, 2015.

[49] N. A. Zakaria et al, "Software Project Estimation with Machine Learning,"
International Journal of Advanced Computer Science and Applications, vol. 12,
(6), 2021.

[50] A. A. Abdulmajeed, M. A. Al-Jawaherry and T. M. Tawfeeq, "Predict the
required cost to develop software engineering projects by using machine
learning," in Journal of Physics: Conference Series, 2021.

[51] S. Shukla and S. Kumar, "An extreme learning machine based approach
for software effort estimation." in ENASE 2021 - 16th International Conference
on Evaluation of Novel Approaches to Software Engineering, 2021.

[52] A. J. Singh and M. Kumar, "Comparative Analysis on Prediction of
Software Effort Estimation Using Machine Learning Techniques," SSRN
Electronic Journal, 2020.

[53] B. Marapelli and P. Peddi, "Software Development Effort Duration and
Cost Estimation using Linear Regression and K-Nearest Neighbors Machine
Learning Algorithms," International Journal of Innovative Technology and
Exploring Engineering, vol. 9, (2), pp. 1043-1047, 2019.

[54] S. Shukla and S. Kumar, "Applicability of neural network based models
for software effort estimation," in 2019 IEEE World Congress on Services
(SERVICES), 2019.

[55] M. Azzeh, A. B. Nassif and S. Banitaan, "Comparative analysis of soft
computing techniques for predicting software effort based use case points," IET
Software, vol. 12, (1), 2018.

[56] H. Mustapha and N. Abdelwahed, "Investigating the use of random forest
in software effort estimation," Procedia Computer Science, vol. 148, pp. 343-352,
2019.

[57] A. García-Floriano et al, "Support vector regression for predicting
software enhancement effort," Information and Software Technology, vol. 97,
2018.

[58] A. Banimustafa, "Predicting software effort estimation using machine
learning techniques," in 8th International Conference on Computer Science and
Information Technology, CSIT 2018, 2018.

86

[59] P. Sharma and J. Singh, "Machine learning based effort estimation using
standardization," in 2018 International Conference on Computing, Power and
Communication Technologies (GUCON), 2018.

[60] O. Hidmi and B. E. Sakar, "Software Development Effort Estimation
Using Ensemble Machine Learning," International Journal of Computing,
Communication and Instrumentation Engineering, vol. 4, (1), 2017.

[61] S. M. Satapathy and S. K. Rath, "Empirical assessment of machine
learning models for agile software development effort estimation using story
points," Innovations in Systems and Software Engineering, vol. 13, (2-3), 2017.

[62] R. Silhavy, P. Silhavy and Z. Prokopova, "Analysis and selection of a
regression model for the Use Case Points method using a stepwise approach,"
Journal of Systems and Software, vol. 125, 2017.

[63] S. M. Satapathy, B. P. Acharya and S. K. Rath, "Early stage software effort
estimation using random forest technique based on use case points," IET Software,
vol. 10, (1), 2016.

[64] Z. Tao et al, "GA-SVM based feature selection and parameter optimization
in hospitalization expense modeling," Applied Soft Computing Journal, vol. 75,
2019.

[65] R. Tadeusiewicz, "Neural networks: A comprehensive foundation,"
Control Engineering Practice, vol. 3, (5), 1995.

[66] M. J. a. Berry and G. S. Linoff, Data Mining Techniques: For Marketing,
Sales, and Customer Relationship Management. 2004.

[67] C. Cortes and V. Vapnik, "Support-Vector Networks," Machine Learning,
vol. 20, (3), 1995.

[68] A. Najm, A. Zakrani and A. Marzak, "Decision trees based software
development effort estimation: A systematic mapping study," in Proceedings of
2019 International Conference of Computer Science and Renewable Energies,
ICCSRE 2019, 2019.

[69] S. L. Salzberg, "C4.5: Programs for Machine Learning by J. Ross Quinlan.
Morgan Kaufmann Publishers, Inc., 1993," Machine Learning, vol. 16, (3), 1994.

[70] E. R. Ziegel, "The Elements of Statistical Learning," Technometrics, vol.
45, (3), 2003.

[71] L. Breiman, "Random forests," Machine Learning, vol. 45, (1), 2001.

87

[72] M. Schonlau and R. Y. Zou, "The random forest algorithm for statistical
learning," Stata Journal, vol. 20, (1), 2020.

[73] T. Bailey and A. K. Jain, "Note On Distance-Weighted k-Nearest
Neighbor Rules." IEEE Transactions on Systems, Man and Cybernetics, vol.
SMC-8, (4), 1978. . DOI: 10.1109/tsmc.1978.4309958.

[74] T. M. Khoshgoftaar, S. Zhong and V. Joshi, "Enhancing software quality
estimation using ensemble-classifier based noise filtering," Intelligent Data
Analysis, vol. 9, (1), 2005.

[75] L. C. Briand et al, "Assessment and comparison of common software cost
estimation modeling techniques," Proceedings - International Conference on
Software Engineering, 1999.

[76] A. Idri, I. Abnane and A. Abran, "Evaluating Pred(p) and standardized
accuracy criteria in software development effort estimation," Journal of Software:
Evolution and Process, vol. 30, (4), 2018.

[77] M. Azzeh and A. B. Nassif, "A hybrid model for estimating software
project effort from Use Case Points," Applied Soft Computing Journal, vol. 49,
2016.

[78] R. Silhavy, P. Silhavy and Z. Prokopova, "Evaluating subset selection
methods for use case points estimation," Information and Software Technology,
vol. 97, 2018.

[79] M. Azzeh and A. B. Nassif, "Analyzing the relationship between project
productivity and environment factors in the use case points method," Journal of
Software: Evolution and Process, vol. 29, (9), 2017.

[80] M. Azzeh and A. B. Nassif, "Project productivity evaluation in early
software effort estimation," Journal of Software: Evolution and Process, vol. 30,
(12), 2018.

[81] Sarwosri et al, "The development of method of the enhancement of
technical factor (TF) and environmental factor (EF) to the use case point (UCP)
to calculate the estimation of software's effort," in Proceedings of 2016
International Conference on Information and Communication Technology and
Systems, ICTS 2016, 2017.

[82] M. Azzeh et al, "Ensemble of learning project productivity in software
effort based on use case points," in Proceedings - 17th IEEE International
Conference on Machine Learning and Applications, ICMLA 2018, 2019.

88

[83] M. Badri et al, "Source code size prediction using use case metrics: an
empirical comparison with use case points," Innovations in Systems and Software
Engineering, vol. 13, (2-3), 2017.

[84] Z. Prokopova, R. Silhavy and P. Silhavy, "The effects of clustering to
software size estimation for the use case points methods," in Advances in
Intelligent Systems and Computing, 2017.

[85] S. Bagheri and A. Shameli-Sendi, "Software project estimation using
improved use case point," in Proceedings - 2018 IEEE/ACIS 16th International
Conference on Software Engineering Research, Management and Application,
SERA 2018, 2018.

[86] K. Qi and B. W. Boehm, "Detailed use case points (DUCPs): A size metric
automatically countable from sequence and class diagrams," in Proceedings -
International Conference on Software Engineering, 2018.

[87] H. T. Hoc, V. Van Hai and Le Thi Kim Nhung, Ho, "AdamOptimizer for
the optimisation of use case points estimation," in Advances in Intelligent Systems
and Computing, 2020.

[88] R. Silhavy, P. Silhavy and Z. Prokopova, "Improving algorithmic
optimisation method by spectral clustering," in Advances in Intelligent Systems
and Computing, 2017.

[89] A. B. Nassif et al, "Software development effort estimation using
regression fuzzy models," Computational Intelligence and Neuroscience, vol.
2019, 2019.

[90] T. Vera, S. Ochoa and D. Perovich, "Survey of Software Development
Effort Estimation Taxonomies," Paper Knowledge Toward a Media History of
Documents, 2017.

[91] S. M. R. Chirra and H. Reza, "A Survey on Software Cost Estimation
Techniques," Journal of Software Engineering and Applications, vol. 12, (06),
2019.

[92] A. J. Albrecht, "Measuring application development productivity," in Joint
SHARE/GUIDE/IBM Application Development Symposium, 1979.

[93] A. J. Albrecht and J. E. Gaffney, "Software Function, Source Lines of
Code, and Development Effort Prediction: A Software Science Validation," IEEE
Transactions on Software Engineering, vol. SE-9, (6), 1983.

89

[94] L. H. Putnam, "A General Empirical Solution to the Macro Software
Sizing and Estimating Problem," IEEE Transactions on Software Engineering,
vol. SE-4, (4), 1978.

[95] A. Saeed et al, "Survey of software development effort estimation
techniques," in ACM International Conference Proceeding Series, 2018.

[96] C. E. Carbonera, K. Farias and V. Bischoff, "Software development effort
estimation: A systematic mapping study," IET Software, vol. 14, (4), 2020.

[97] P. Agrawal and S. Kumar, "Early phase software effort estimation model,"
in Symposium on Colossal Data Analysis and Networking, CDAN 2016, 2016.

[98] Available: www.ifpug.org, "Ifpug," in IFPUG Couting Practices Manual,
1986.

[99] C. Rush and R. Roy, "Expert judgement in cost estimating: Modelling the
reasoning process," Concurrent Engineering Research and Applications, vol. 9,
(4), 2001.

[100] M. Shepperd and C. Schofield, "Estimating software project effort using
analogies," IEEE Transactions on Software Engineering, vol. 23, (11), 1997.

[101] M. Jørgensen, "Top-down and bottom-up expert estimation of software
development effort," Information and Software Technology, vol. 46, (1), 2004.

[102] M. Cohn, "Agile estimating and planning," in VTT Symposium (Valtion
Teknillinen Tutkimuskeskus), 2006.

[103] A. Ali and C. Gravino, "A systematic literature review of software effort
prediction using machine learning methods," Journal of Software: Evolution and
Process, vol. 31, (10), 2019.

[104] A. B. Nassif, L. F. Capretz and D. Ho, "Estimating software effort based
on use case point model using sugeno fuzzy inference system," in Proceedings -
International Conference on Tools with Artificial Intelligence, ICTAI, 2011.

[105] A. B. Nassif, L. F. Capretz and D. Ho, "Software effort estimation in the
early stages of the software life cycle using a cascade correlation neural network
model," in Proceedings - 13th ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking, and Parallel/Distributed
Computing, SNPD 2012, 2012.

90

[106] M. S. Iraji and H. Motameni, "Object Oriented Software Effort Estimate
with Adaptive Neuro Fuzzy use Case Size Point (ANFUSP)," International
Journal of Intelligent Systems and Applications, vol. 4, (6), 2012.

[107] Ali Bou Nassif, Danny Ho, Luiz Fernando Capretz, "Regression model
for software effort estimation based on the use case point method," 2011
International Conference on Computer and Software Modeling, 2011.

[108] M. Ochodek, J. Nawrocki and K. Kwarciak, "Simplifying effort
estimation based on Use Case Points," Information and Software Technology, vol.
53, (3), 2011.

[109] P. Pospieszny, B. Czarnacka-Chrobot and A. Kobylinski, "An effective
approach for software project effort and duration estimation with machine
learning algorithms," Journal of Systems and Software, vol. 137, 2018.

[110] Z. Abdelali, M. Hicham and N. Abdelwahed, "An ensemble of optimal
trees for software development effort estimation," in Lecture Notes in Networks
and SystemsAnonymous 2019.

[111] Y. Mahmood et al, "Improving estimation accuracy prediction of
software development effort: A proposed ensemble model," in 2nd International
Conference on Electrical, Communication and Computer Engineering, ICECCE
2020, 2020.

[112] A. Hussain et al, "Enhanced framework for ensemble effort estimation
by using recursive‐based classification," IET Software, vol. 15, (3), 2021.

[113] O. Malgonde and K. Chari, "An ensemble-based model for predicting
agile software development effort," Empirical Software Engineering, vol. 24, (2),
2019.

[114] S. Shukla, S. Kumar and P. R. Bal, "Analyzing effect of ensemble models
on multi-layer perceptron network for software effort estimation," in Proceedings
- 2019 IEEE World Congress on Services, SERVICES 2019, 2019.

[115] I. Myrtveit and E. Stensrud, "Validity and reliability of evaluation
procedures in comparative studies of effort prediction models," Empirical
Software Engineering, vol. 17, (1-2), 2012.

[116] Le Thi Kim Nhung, Ho, H. T. Hoc and V. Van Hai, "An evaluation of
technical and environmental complexity factors for improving use case points
estimation," in Advances in Intelligent Systems and Computing, 2020.

91

[117] Nhung, Ho Le Thi Kim et al, "Parametric Software Effort Estimation
Based on Optimizing Correction Factors and Multiple Linear Regression," IEEE
Access, vol. 10, 2022.

[118] Nhung, Ho Le Thi Kim, V. Van Hai and R. Jašek, "Towards a correction
factors-based software productivity using ensemble approach for early software
development effort estimation," in Computer Science on-Line Conference, 2022.

[119] Tibshirari R., "Regression Shrinkage and Selection via the Lasso,"
Journal of the Royal Statistical Society, Series B, vol. 58, (1), 2013.

[120] P. Bühlmann and S. v. d. Geer, Statistics for High-Dimensional Data:
Methods, Theory and Applications. 2011.

[121] B. Anda et al, "Estimating software development effort based on use
cases – experiences from industry," in Lecture Notes in Computer Science
(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 2001.

[122] A. Chandra and X. Yao, "Ensemble learning using multi-objective
evolutionary algorithms," Journal of Mathematical Modelling and Algorithms,
vol. 5, (4), 2006.

[123] T. G. Dietterich, "Ensemble methods in machine learning," in Lecture
Notes in Computer Science (Including Subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 2000.

[124] Z. Ma and Q. Dai, "Selected an Stacking ELMs for Time Series
Prediction," Neural Processing Letters, vol. 44, (3), 2016.

[125] X. Luo et al, "Short-term wind speed forecasting via stacked extreme
learning machine with generalized correntropy," IEEE Transactions on Industrial
Informatics, vol. 14, (11), 2018.

[126] A. I. Naimi and L. B. Balzer, "Stacked generalization: an introduction to
super learning," European Journal of Epidemiology, vol. 33, (5), 2018.

[127] D. R. Jeffery and M. J. Lawrence, "Some issues in the measurement and
control of programming productivity," Information and Management, vol. 4, (4),
1981.

[128] T. Urbanek, A. Kolcavova and A. Kuncar, "Inferring productivity factor
for use case point method," in Annals of DAAAM and Proceedings of the
International DAAAM Symposium, 2017.

92

[129] W. J. Schneider. G, "Applied use cases," in A Practical Guide, Second
Edition, Addison‐Wesley, 2001.

[130] K. An and J. Meng, "Voting-averaged combination method for regressor
ensemble," in International Conference on Intelligent Computing, 2010.

[131] Van der laan, M J and S. Dudoit, "Unified cross-validation methodology
for selection among estimators and a general cross-validated adaptive epsilon-net
estimator: Finite sample oracle inequalities and examples," U.C. Berkeley
Division of Biostatistics Working Paper, vol. Working Pa, 2003.

[132] Vaart, Aad W. van der, S. Dudoit and Laan, Mark J. van der, "Oracle
inequalities for multi-fold cross validation," Statistics & Decisions, vol. 24, (3),
2006.

[133] B. Anda, E. Angelvik and K. Ribu, "Improving estimation practices by
applying use case models," in Lecture Notes in Computer Science (Including
Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 2002.

[134] C. L. Huang and C. J. Wang, "A GA-based feature selection and
parameters optimizationfor support vector machines," Expert Systems with
Applications, vol. 31, (2), 2006.

[135] I. H. Witten et al, Data Mining: Practical Machine Learning Tools and
Techniques. 2016.

93

LIST OF PUBLICATIONS OF THE AUTHOR
Journal papers:
1. H.LT.K. Nhung, V.V. Hai, R. Silhavy, Z. Prokopova, and P. Silhavy,

"Parametric Software Effort Estimation Based on Optimizing Correction
Factors and Multiple Linear Regression, " IEEE Access, vol. 10, pp. 2963-
2986, DOI: 10.1109/ACCESS.2021.3139183, 2022.

2. V.V. Hai, H.L.T.K. Nhung, Z. Prokopova, R. Silhavy, and P. Silhavy, "A New
Approach to Calibrating Functional Complexity Weight in Software
Development Effort Estimation," Computers 11, no. 2: 15, DOI:
10.3390/computers11020015, 2022.

3. V.V. Hai, H.L.T.K. Nhung, Z. Prokopova, R. Silhavy, and P. Silhavy,
"Towards improving the efficiency of software development effort estimation
via clustering analysis," IEEE Access, vol. 10, pp. 83249-83264, DOI:
10.1109/ACCESS.2022.3185393, 2022.

Conference papers:
4. H.LT.K. Nhung, V.V. Hai, and R. Jasek, "Towards a Correction Factors-based

Software Productivity using Ensemble approach for Early Software
Development Effort Estimation," Lecture Notes in Networks ans Systems, vol.
501 LNNS, pp. 413-425, DOI: 10.1007/978-3-031-09070-7_35, 2022.

5. H.LT.K. Nhung, V.V. Hai, and H.T. Hoc, "Analyzing Correlation of the
relationship between Technical Complexity Factors and Environmental
Complexity Factors for Software Development Effort Estimation", Lecture
Notes in Networks and Systems, 232 LNNS, pp. 835-848, DOI: 10.1007/978-
3-030-90318-3_65, 2021.

6. H.LT.K. Nhung, V.V. Hai, and H.T. Hoc, "Evaluation of Technical and
Environmental Complexity Factors for Improving Use Case Points
Estimation," Advances in Intelligent Systems and Computing Springer, 1294,
pp. 757–768, DOI: 10.1007/978-3-030-63322-6_64, 2020.

7. H.L.T.K. Nhung, H.T. Hoc, and V.V. Hai, "A Review of Use Case-Based
Development Effort Estimation Methods in the System Development
Context," Advances in Intelligent Systems and Computing, 1046, pp. 484-499,
DOI: 10.1007/978-3-030-30329-7_44, 2019.

8. V.V. Hai, H.L.T.K. Nhung, and R. Jasek, "Toward appying agglomerative
hierarchical clustering in improving the software development effort
estimation," Lecture Notes in Networks and Systems, vol. 501 LNNS, pp. 353-
371, DOI: 10.1007/978-3-031-09070-7_30, 2022.

9. V.V. Hai, H.L.T.K. Nhung, Z. Prokopova, R. Silhavy, and P. Silhavy,
“Analyzing the effectiveness of the Gaussian Mixture Model clustering
algorithm in Software Enhancement Effort Estimation,” ACIIDS 2022.

94

10. V.V. Hai, H.L.T.K. Nhung, H.T. Hoc, "Calibrating Function Complexity in
Enhancement Project for Improving Function Points Analysis Estimation,"
Lecture Notes in Networks and Systems, 232 LNNS, pp. 857-869, DOI:
10.1007/978-3-030-90318-3_67, 2021.

11. V.V. Hai, H.L.T.K. Nhung, H.T. Hoc, "Empirical Evidence in Early Stage
Software Effort Estimation Using Data Flow Diagram," Lecture Notes in
Networks and Systems, 230, pp. 632-644, DOI: 10.1007/978-3-030-77442-
4_53, 2021.

12. V.V. Hai, H.L.T.K. Nhung, H.T. Hoc, "A Productivity Optimising Model for
Improving Software Effort Estimation," Advances in Intelligent Systems and
Computing, 1294, pp. 735-746, DOI: 10.1007/978-3-030-63322-6_62, 2020.

13. V.V. Hai, H.L.T.K. Nhung, H.T. Hoc, "A Review of Software Effort
Estimation by Using Functional Points Analysis," Advances in Intelligent
Systems and Computing, 1047, pp. 408-422, DOI: 10.1007/978-3-030-31362-
3_40, 2019.

14. H.T. Hoc, V.V. Hai, H.L.T.K. Nhung, "An Approach to Adjust Effort
Estimation of Function Point Analysis," Lecture Notes in Networks and
Systems, 230, pp. 522-537, DOI: 10.1007/978-3-030-77442-4_45, 2021.

15. H.T. Hoc, V.V. Hai, H.L.T.K. Nhung, "AdamOptimizer for the Optimisation
of Use Case Points Estimation," Advances in Intelligent Systems and
Computing, 1294, pp. 747-756, 2020.

16. H.T. Hoc, V.V. Hai, H.L.T.K. Nhung, " A Review of the Regression Models
Applicable to Software Project Effort Estimation," Advances in Intelligent
Systems and Computing, 1047, pp. 399-407, 10.1007/978-3-030-31362-3_39,
2019.

95

CURRICULUM VITAE AUTHOR
Name: Ho Le Thi Kim Nhung
Education and degrees: Tomas Bata University in Zlin, Czech Republic
 PhD student, Software Engineering
 12/2018-Now
 University of Science, Vietnam (HCMUS-VNU)
 Master of Information Systems
 2011-2014
 University of Science, Vietnam (HCMUS-VNU)
 Bachelor of Information Systems
 2007-2010
Related Work Experience: University of Science, Vietnam (HCMUS-VNU)
 Lecturer, Faculty of Information Technology
 2011-2018
 Institute of International Management (IIMBA),

National Cheng Kung University, Tainan, Taiwan
Visiting research scientist

 8/2016-8/2017
 National Institute of Informatics, Japan
 Visiting research scientist
 8/2016-1/2017
Honors and Awards: Outstanding Young Lecturer at University of Science

HCMUS-VNU (2015, 2017)
Top 10 graduate of Honors degree at University of
Science (HCMUS-VNU), Certificate of Merit on being
the best student of graduation (7/500 students) (2010)

