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ABSTRAKT 
V předkládané disertační práci jsou představeny návrhy nových způsobů 

odhadů složitosti projektů založených na metodě Use Case Points, která se 
používá v raných fázích vývoje softwaru. Navržené metody jsou vyvinuty tak, 
aby zvládaly nepřesnosti při odhadování a zahrnovaly expertní posudky pro 
vytvoření přesných a spolehlivých odhadů úsilí. Každý přístup má své výhody a 
vzájemně se doplňují. Cílem je, aby jednotlivé metody vytvořily kompletní proces 
a podporovaly efektivitu odhadu úsilí, tj. aby se ve všech situacích účinněji 
minimalizovala chyba v odhadu. Výsledky ukazují, že navržené metody Software 
Development Effort Estimation (SDEE) jsou konkurenceschopné ve srovnání s 
jinými alternativami, na základě sedmi hodnotících kritérií a statistických 
párových srovnání t-testů. 
Key words in Czech: odhad úsilí vývoje softwaru, body případů užití, 
optimalizace korekčních faktorů 
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ABSTRACT 
In the presented doctoral thesis, proposals for new methods of estimating the 

complexity of projects based on the Use Case Points method, which is used in the 
early stages of software development, are presented. The proposed methods are 
developed to handle estimation inaccuracies and incorporate expert judgments to 
produce accurate and reliable effort estimates. Each approach has its advantages, 
and they complement each other. The goal is for them to create a complete process 
and support the efficiency of effort estimation, i.e., to minimize estimation error 
more effectively in all situations. The results show that the proposed Software 
Development Effort Estimation (SDEE) methods are competitive compared to 
other alternatives, based on seven evaluation criteria and statistical pairwise t-test 
comparisons. 
Key words: software development effort estimation, use case points, optimising 
correction factors 
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1 INTRODUCTION 
1.1 Motivation 
Software Project Development has evolved into a dynamic and competitive 

industry requiring high-level human resources. Software products are becoming 
more complicated, unpredictable, and challenging to control. Many research 
projects in the software field have been conducted in recent decades with the goal 
of steering software development processes into more regulated, manageable, and 
predictable paths. Project managers must estimate the cost of the software product 
as well as the resources, effort, and time required to complete a project on time 
and within budget [1]. Software measurement problems, such as project duration 
prediction or defect density, receive special attention. These issues demonstrate 
that the project management role has significantly increased.  

Software Development Effort Estimation (SDEE) is critical to the overall 
success of solution delivery. Early SDEE in the first phase of the software 
development lifecycle is essential to avoiding project failures. The project 
manager's role is to look at software products to help with budgeting, scheduling, 
planning, project bidding, human resource allocation, and risk mitigation. The 
SDEE is vital for some reasons [2]. First, it is beneficial to make informed 
decisions about resource management before the project begins. The project plan 
is then used to make informed decisions about managing and planning the project. 
It is critical to allocate appropriate effort to the various activities in managing 
project development. As a result, this has led many researchers to study software 
estimation to obtain a more accurate SDEE [3], [4], [5]. However, based on the 
requirement specifications, the SDEE cannot be expected to produce correct 
results [6]. The issue of accurate effort estimation remains unresolved. An effort 
estimation method is used to reduce the risk of surprises during the project to the 
lowest possible value. It provides project managers with good control decisions 
to ensure that reasonable effort is allocated to the various activities throughout the 
project's development life cycle. When inaccurate models are used, such 
estimation decisions can have disastrous consequences. The most visible example 
of problems in managing complex, distributed software systems is the failure of 
many software projects [7]. The results show that actual effort and schedule are 
exceeded for most projects compared to estimates. If the software cost is 
underestimated, the project will be inefficient, and the actual price will 
undoubtedly be surpassed. Finally, even if completed on time, these 
overestimated projects usually become more extensive and costly than planned. 
In contrast, the functionality and quality of these underestimated projects are 
reduced to meet the plan's requirements. This can result in losing the bid or 
wasting time, money, personnel, and other resources, resulting in financial loss or 
even bankruptcy. 
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Use Cases can be helpful to measure the estimated effort at an early stage of a 
software project before the essential information is obtained during the 
requirements phase of the software lifecycle [8]. Neil et al. [9] surveyed the 
techniques used in the requirements elicitation, description, and modeling phases 
and found that the use cases were used in the early stages by more than half of the 
software projects. This has sparked the interest of numerous researchers in using 
use cases-based SDEE approaches and their initial applicability for greater 
accuracy. Karner [10] introduced the Use Case Points (UCP) method as a metric 
for sizing object-oriented software projects based on a structured scenario and 
actor analysis of the Use Case Model (UCM). Most studies focus on evaluating 
UCP as a potential early SDEE method that could be used to estimate software 
development effort and show its suitability for the software industry [11], [12], 
[13], [14]. 

Based on the literature reviewed above, this thesis focuses on developing SDEE 
methods for estimating software size and effort from UCM. Our methods can be 
used during the requirements phase of the software lifecycle. We aim to develop 
methods to handle imprecision and incorporate expert opinions to produce 
accurate and reliable effort estimates. With this objective, the thesis analyzes and 
proposes SDEE methods to reduce the impact of human error in UCM analysis 
and simplify the original principles of UCP. Each approach has its advantages, 
and they complement each other to form a complete process and promote 
significant efficiency to minimize the estimation error more efficiently in all 
situations. The results show that the proposed SDEE methods based on use cases 
are competitive with other alternatives. 

 

1.2 Problem statement 
UCP is a promising method for effort estimation in the early stages of software 

development that offers numerous benefits to the software industry [15], [16], 
[17]. Using machine learning to build SDEE models based on the original UCP 
formula could be a solution to improve its accuracy. Some approaches [18], [19], 
[20], [21], [22], [23] have also addressed variant models, especially regression 
models, to improve estimation accuracy based on historical data. The main 
drawback of the methods described above is that none of them is comprehensive 
or provides better accuracy in estimating software effort in all situations. There 
are still known problems in using UCP methods. 

• The first problem is a particular uncertainty in evaluating technical complexity 
factors (TCF) and environmental complexity factors (ECF), as it depends on 
the experience of experts [24], [25], [26], [27], [28]. In particular, assigning an 
appropriate value to an ECF is difficult due to the lack of relevant information. 
This is because an ECF is associated with the level of information and 
experience of a particular software development team. Similar problems exist 



 

3 
 

in assigning a value to a TCF. These correction factors affect the estimation 
accuracy of UCP, so they need to be refined [29], [30]. Therefore, we will 
examine the close relationship between technical and environmental factors 
and prediction error to identify the best factors that significantly affect the 
estimation accuracy of the UCP method. This issue will be discussed in 
Chapter 4.1, as we have proposed a new formula for calculating the correction 
factors in the UCP method. 

• The second problem is that potentially unsuitable variables are not considered 
in the UCP equation. In particular, use cases are written in natural language, 
and there is no rigorous process for assessing the quality or fragmentation of 
use cases. As a result, the number of steps in a use case may vary, affecting 
the estimate's accuracy. In addition, the estimate's accuracy may suffer if a use 
case contains multiple scenarios. Almost all previous methods for estimating 
software effort based on UCP have focused on developing the method by 
evaluating the complexity of the use case model and complexity weights [31], 
[32], [33], [34], [35], [36], [37]. However, we believe the regression approach 
based on UCP elements can solve this problem. Specifically, we will explore 
the implementation of multiple linear regression (MLR) models to select new 
formulas and regression coefficient values to reduce the impact of human error 
in evaluating actors or use cases. As shown in Chapter 4.2, this new formula 
outperforms the estimation accuracy of UCP.  

• Moreover, given the complexity of today's software development projects, 
effort estimation requires the support of statistics and machine learning (ML). 
According to Kumar et al. [38], the overall estimation accuracies of SDEE 
methods based on statistical and machine learning techniques are almost 
acceptable as they are within 25% of the percent error (PRED (0.25)). The 
techniques are used to model the relationship between effort and software 
variables, which is particularly useful when the relationship is non-linear. 
However, one question is how to select unbiased approaches and appropriate 
algorithms. We note that single statistical and machine learning methods are 
unreliable, and the accuracy of a single method depends on its parameter 
configurations [39]. According to Thiago et al. [40], using a single model does 
not lead to optimal SDEE results. Priya et al. [41] also found that combining 
multiple models improves reliability. For all datasets, almost all ensemble 
SDEE approaches use the same learning parameter settings. With the above 
analysis, the thesis aims to reduce the bias and variability errors of the single 
models. In Chapter 4.3, we present the ensemble approach, which integrates 
seven well-known statistical and machine learning methods and fine-tunes the 
parameters of all the single methods to create a new and more comprehensive 
method in the early stages of software development. 

• The fourth focus is the difficulty of converting software size into the 
corresponding effort. Many researchers consider the software productivity 
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factor, or the amount of software produced per effort, critical to estimating 
effort [42], [43], [44], [45]. This term also refers to the ratio of effort to size, 
also known as the productivity factor (PF). Most accepted values for the 
productivity factor have been suggested by project managers or use 
predetermined values for software productivity [46], [47]. However, we 
believe each software project takes place in a unique environment. Therefore, 
the question of whether to impose a fixed PF on all software projects has not 
been adequately addressed. This issue was discussed in Chapter 4.4 when we 
developed the software productivity model using the ensemble approach with 
historical correction factors. According to the findings, learning productivity 
values for each project is more useful and efficient than using predetermined 
values for all projects. 

 

1.3 Research contributions 
With each problem statement presented in section 1.2, we have made the 

following contributions: 

• Regarding the first issue, we conducted several experiments on four datasets 
to identify the best technical and environmental complexity factors that 
significantly affect the estimation accuracy of the UCP method in the 
regression analysis. Our goal is to improve the estimation accuracy of the UCP 
method. We demonstrated an approach based on Least Absolute Shrinkage and 
Selection Operator (LASSO) method. Different values of the variable 
controlling the strength of the penalty are tested during the factor selection 
process to achieve the lowest prediction error. Finally, we propose a new 
formula for calculating the correction factors in the UCP method. This method 
is called Optimization Correction Factors (OCF). 

• Continuing the development of the OCF method, we focused on modifying the 
OCF method to achieve more accurate estimates. Thus, we proposed an 
approach in which least square regression (LSR) or multiple linear regression 
(MLR) models are applied to the OCF-based elements to minimize estimation 
errors and the influence of unsystematic noise. An extended version of the 
OCF method called ExOCF (Extension of Optimizing Correction Factors) is 
proposed as a helpful method for project managers in the estimation phase. 

• Seven different single models were proposed for estimating software size 
using OCF-based elements in the third objective. These statistical and machine 
learning models include K-Nearest Neighbor, Random Forest, Support Vector 
Regression, Multilayer Perception Gradient Boosting, Multiple Linear 
Regression, and Decision Tree. We analyzed the optimal parameter values for 
each technique to give it high predictive capacity. Based on this, we propose 
the OCF-based stacked generalization ensemble method of seven single 
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models, named Stacked OCF (SOCF). The study is primarily concerned with 
reducing individual model biases and variability errors. The proposed 
ensemble-based approach is a comprehensive approach to improve estimation 
accuracy and minimize project risks in the early stages of software 
development. 

• Concerning the last objective presented in section 1.2, we conducted a project 
productivity model of the team developing a project. The overall productivity 
factor is based on correction factors in OCF method, which is built using an 
ensemble construction mechanism of three popular ML techniques, including 
Support Vector Regression, Multiple Linear Regression, and Decision Tree. 
We chose these techniques because they have fast learning time, good 
generalization ability, and a more straightforward design. A voting ensemble 
is an ensemble ML model to determine the relationship between project 
productivity and independent correction factor variables. In this way, our 
method can benefit from good research on correction factors in OCF and 
reduce the estimation error of the methods compared to using fixed 
productivity metrics. 

 

1.4 Organization of the thesis 
The remainder of the thesis is organized as follows: Chapter 2 defines the terms 

used in the thesis, such as the use case points method, statistical and ML 
techniques, and the measurement criteria to evaluate the estimation accuracy of 
the SDEE methods. Chapter 3 introduces a literature review of existing research 
related to SDEE, as well as some related work on UCP-based effort estimation 
and SDEE tools for the software industry. Chapter 4 presents four proposed 
approaches. The research methodology is presented in Chapter 5, which includes 
a description of the datasets for the experiment as well as the empirical procedure 
for evaluating the proposed methodologies. Chapter 6 presents the results and 
discussion of the proposed approaches. Threats of the validity of this study is 
presented in Chapter 7. The contribution of the thesis to science and practice is 
summarized in Chapter 8. Finally, Chapter 9 presents the conclusion and future 
works. 
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2 THEORETICAL FRAMEWORK 
This chapter defines the terms used in the thesis, such as the use case points 

method, statistical and machine learning techniques, and the evaluation criteria.  

2.1 Use Case Points method 
The UCP method was first presented by Karner [10] for estimating the software 

size of object-oriented software projects in the early phases of software 
development. The method measures software size based on use case diagrams. In 
particular, the method provides a process for converting use case diagram 
elements into quantitative information that can be applied to four simple size 
metrics. The metrics of UCP are shown in Figure 2-1.  

 

 
Figure 2-1. The process of the Use Case Points method 

 
First, the unadjusted actor weight (UAW) is calculated as shown in Eq. (2.1). 

According to their complexity, actors are classified into three levels (simple, 
average, and complex) as described in Table 2-1. Specifically, simple actors 
describe the system through an API. Average actors represent the system through 
a protocol. Complex actors represent the system through a graphical user 
interface. 

 UAW =	& a! 	× w!

"

!#$
 (2.1) 

where 𝑎% is the number of the actor in the actor type, 𝑤% is the complexity weight 
of actor type. 

Actor Use Case

UAW UUCW

UUCP

Complexity Weight

TCF

ECF

Correction Factors

Size 
(UCP) EffortPF = 20
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Second, the unadjusted use case weight (UUCW) is calculated as shown in Eq. 
(2.2). The use cases are classified into three levels (simple, average, and complex) 
based on the number of transactions in the use case description, as shown in Table 
2-2. A simple use case includes less than 4 transactions, an average use case 
includes between 4 and 7 transactions, and a complex use case includes more than 
7 transactions. 

 UUCW =	& u& 	× w&

"

&#$
 (2.2) 

where 𝑢' is the number of the use case in the use case type, 𝑤' is the complexity 
weight of use case type. 

Next, correction factors, i.e., Technical Complexity Factors (TCF) and 
Environmental Complexity Factors (ECF), are used to represent the experience 
level of the software development team. The Technical Complexity Factors in Eq. 
(2.3) are calculated from 13 factors. Each factor has a value between 0 and 5 with 
the corresponding weighting, as shown in Table 2-3. 

 TCF = 	0.6 + 0.01& T! ×Wt!
$"

!#$
 (2.3) 

where 𝑇% is the value of technical complexity factor, 𝑊𝑡% is the complexity weight 
of technical factor. 

The Environmental Complexity Factors in Eq. (2.4) are calculated from 8 
factors, each factor has a value between 0 and 5 with the corresponding weighting, 
as shown in Table 2-4. 

 
ECF = 	1.4 − 0.03& E! ×We!

(

!#$
 

(2.4) 

where 𝐸% is the value of the environmental complexity factor, and 𝑊𝑒% is the 
complexity weight of the environmental factor.  

The UCP is computed using Eq. (2.5) as follows: 
 UCP = (UAW + UUCW) × TCF × ECF (2.5) 
Finally, the obtained UCP are multiplied by the PF to give the final effort. This 

is shown in Eq. (2.6). 
 Effort = Size	 × 	PF (2.6) 

where Effort is measured in person-hours and Size is measured in UCP. For 
SDEE, Karner proposed 20 person-hours to develop each UCP. 
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Table 2-1. Actor classification and their complexity weights 

Actor classification Description Weight 
Simple The systems through an API 1 

Average The system through a protocol 2 
Complex The system through GUI 3 

 
 

Table 2-2. Use Case classification and their complexity weights 

Use case classification Number of transactions Weight 
Simple (0, 4) 1 

Average <4, 7> 2 

Complex (7, ¥) 3 

 
 

Table 2-3. Technical complexity factors (TCF) 

Factor Description Weight 
T1 Distributed System 2 
T2 Response Adjectives 2 
T3 End-Use Efficiency 1 
T4 Complex Processing 1 
T5 Reusable Code 1 
T6 Easy to install 0.5 
T7 Easy to Use 0.5 
T8 Portability 2 
T9 Easy to Change 1 
T10 Concurrency 1 
T11 Security Features 1 
T12 Access for Third Parties 1 
T13 Special Training Facilities 1 
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Table 2-4. Environment complexity factors (ECF) 

Factor Description Weight 
E1 Family with RUP 1.5 
E2 Application Experience 0.5 
E3 Object-oriented Experience 1 
E4 Lead Analyst Capability 0.5 
E5 Motivation 1 
E6 Stable Requirements 2 
E7 Part-time Workers -1 

E8 Difficult Programming 
Language 2 

 

2.2 Statistical and machine learning techniques 
Given the complexity of today's software development projects, we discovered 

that estimating effort without the assistance of statistical and machine learning 
models is impossible. We summarised several selected studies  [48], [49], [50], 
[51], [52], [53], [54], [55], [56], [57], [58], [59], [60], [61], [62], [63] on 
estimating software effort with statistical and machine learning models from 
2015. Based on the above review, in this section, we define the seven most 
commonly used statistical and ML algorithms for SDEE and their configuration 
parameters in this work. The accuracy of a given statistical or machine learning 
method is determined by the configuration parameters that describe the 
characteristics of a given dataset. Choosing the optimal parameter values for a 
technique gives it a high predictive capacity. Grid Search (GS) [64] is used to 
optimize the configuration parameters of each statistical and ML technique. 
Specifically, GS searches the parameter set of each empirical method in a 
predefined range of values for each dataset and then selects the configuration that 
leads to the "optimal" estimates. The parameter search ranges were derived from 
previous analyses  [54], [59]. We extended the search range in each case to include 
as many possible configurations.  

These models include Multilayer Perception, Support Vector Regression, 
Decision Tree, Random Forest, K-Nearest Neighbour, Gradient Boosting, and 
Linear Regression. These models are learned and trained using historical project 
data and can be applied in two scenarios. The models can stand alone by taking 
inputs such as software size and productivity and producing outputs such as 
software effort. The models can also calibrate some parameters or weights of 
algorithmic models. 
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2.2.1 Multilayer perceptron 
The multilayer perceptron (MLP) is a feedforward neural network typically 

trained to solve regression problems using a backpropagation algorithm. The 
simplest MLP model has three nodes: an input layer, a hidden layer, and an output 
layer [65]. The input layer has the same number of nodes as the independent 
variables identified in the input pattern. Each neuron in the hidden layer uses a 
nonlinear activation function to convert the values from the preceding layer using 
a weighted linear summation. The output layer's nodes are defined by the problem 
and the number of dependent variables. 

One of the most essential steps in the development of the MLP is the 
optimization of its configuration parameters, such as the number of neurons in the 
hidden layer and the three parameters of the learning algorithm (initial learning 
rate, momentum, and regularization term). Linoff et al. [66] recommend that the 
number of nodes in the hidden layer should be between the number of nodes in 
the input layer and twice this number. The critical parameters for constructing the 
MLP model and their values for preliminary execution are depicted in Table 2-5. 

 
Table 2-5. The parameters for constructing the MLP model. 

Model parameter Search range 
Initial learning rate L = {0.01, 0.02, 0.03, 0.04, 0.05} 
Number of hidden nodes H	 = 	 {5, 6, 7, 8} 
Momentum M	 = 	 {0.1, 0.2, 0.3, 0.4, 0.5} 
Regularization term α = {0.00001, 0.0001, 0.001, 0.01} 

 

2.2.2 Support vector regression 
Support Vector Machine (SVM) is a supervised learning method based on 

statistical learning theory [67]. SVR is a special form of SVM used to model the 
input-output functional relationship or regression. Assume that the training 
dataset D = {(x!, y!)}$) where x! ∈ ℝ* denotes the input values, y! ∈ ℝ denotes 
the corresponding output values, n is the number of samples in the training 
dataset, and m is the dimension of input dataset.  

The goal of SVR is to approximate the nonlinear relationship shown in Eq. 
(2.7) that f(x!) is as close as possible to the obtained target value (y!). 

 y! = f(x!) = 〈w,Φ(x!)〉 + b (2.7) 
where w ∈ ℝ*, b ∈ ℝ are respectively the weight vector and threshold, 〈. , . 〉 
denotes dot product, and Φ(x!) is the transformation function which maps the 
input values from ℝ* space to a feature space with higher dimension. The values 
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w and b are reduced to ensure that the approximated function satisfies the above 
objective. 

 min+,-,-∗	 	
1
2
‖w‖/ + C& ξ! + ξ!∗

)

!#$
 (2.8) 

 

subject to 
		y! − 〈w,Φ(x!)〉 − b ≤ ε + ξ, i = 1,… , n 
〈w,Φ(x!)〉 + b − y! ≤ ε + ξ∗, i = 1, … , n 

ξ ≥ 0, i = 1,… , n 
ξ∗ ≥ 0, i = 1,… , n 

(2.9) 

where ε is a deviation of a function f(x!), ξ and ξ∗ are slack variables used to 
measure ε. The regularization parameter C defines the error tolerance over ε.  
ε − SVR is used as a variant of SVR, and the Radial Basis Function (RBF) is 

usually used as a kernel function. The RBF kernel is calculated as 

 K(x!, x&) = exp j−γlx! − x&l
/m , γ > 0 (2.10) 

Three parameters that significantly affect the performance of the ε − SVR 
generalization, namely, the C, ε, and γ parameter, must be carefully selected. 
Table 2-6 shows the details of these configuration parameters and their search 
ranges for the SVR method. 
 

Table 2-6. The parameters for constructing the SVR model  

Model parameter Search range 
Regularization term C = {5, 10, 100, 150} 
Epsilon for	ε − SVR ε	 = 	 {1, 0.1, 0.01, 0.001, 0.0001} 

 

2.2.3 Decision tree 
Decision trees (DT) are supervised machine learning to solve regression and 

classification problems [68]. A decision tree creates a flowchart in an inverted 
tree-like structure where the internal nodes illustrate the test, the branches define 
the test result, and each leaf node denotes a class label [69]. The output of a given 
DT is partitioned into distinguished leaf nodes, following certain conditions such 
as an if/else loop. DTs have many variants of algorithms such as ID3, CART, 
CHAID, C4.5, M5P, and REPTrees [70]. The DTs used in this study are an 
optimized version of the CART algorithm. 

In the DT, four parameters need to consider: (1) The maximum depth 
(max_depth) - If it is not specified, the tree is expanded until the last leaf nodes 
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contain a single value, resulting in overfitting. (2) The minimum number of leaf 
nodes (min_samples_leaf) in a decision tree to control the complexity of the 
model. (3) The minimum weighted fraction of the sum total of weights 
(min_weight_fraction_leaf) required to be at a leaf node. (4) The number of leaf 
nodes (max_leaf_nodes) to control overfitting. Too high values may also lead to 
under-fitting. Table 2-7 provides details concerning the parameters for the DT 
model and their search ranges. 

 
Table 2-7. The parameters for constructing the DT model  

Model parameter Search range 
The maximum depth of the tree max	 _depth = {3, 5, 7, 9, 11, 12} 
The minimum weighted fraction  min_weight_fraction_leaf 

= {0.1, 0.2, 0.3, 0.4, 0.5} 
The number of leaf nodes  max_leaf_nodes	

= 	 {10, 20, 30, 40, 50, 60, 70, 80, 90} 
The minimum number of samples min_sample_nodes 

=	 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 

 

2.2.4 Random forest 
The random forest technique (RF) uses the supervised nonparametric approach 

for regression and classification [71],  [72]. It creates multiple DTs and combines 
them to obtain a more accurate and stable prediction. The result of RF is the 
maximum vote of a panel of independent judges, which makes the final prediction 
better than the best judge. The parameters for developing an RF model must be 
considered to increase predictive power and facilitate model training. These 
parameters determine whether the predictions are more robust and stable [63]. 
The parameters used in building an RF model are as in the DT model (see Table 
2-8). 
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Table 2-8. The parameters for constructing the RF model  

Model parameter Search range 
The number of trees n_estimators

= {100, 150, 200, 150, 300, 350, 400, 450} 
The minimum number of 
samples  

min_sample_nodes	 = 	 {1, 2, 4} 

The maximum depth of the tree max_depth	
= 	 {10, 20, 30, 40, 50, 60, 70, 80, 90, 100} 

 

2.2.5 K-Nearest neighbors 
K-nearest neighbors (KNN) is a non-parametric machine learning method used 

in classifications and regressions. KNN collects historical data, called the training 
dataset, and produces estimates for new test data. The k-nearest data from the 
training data set is determined. Based on the data attributes of the closest data sets, 
an estimate is made for the new data. In KNN, the selection of K (number of 
neighbors) is very crucial. The algorithm becomes sensitive to noise if the K value 
is too small. If the K value is too large, datasets of other classes can be counted as 
nearest neighbors [73].  

Table 2-9 shows the values of its search range. The default Euclidean distance 
in Scikit-learn to measure the distance between points in KNN.  

The Euclidean distance d(p!, q!) between one vector p = (p$, p/, … , p)) and 
another vector q= (q$, q/, … , q)) can be computed as follows: 

 d(p!, q!) = x&(p! − q!)/
)

!#$

y
$//

 (2.11) 

 
Table 2-9. The parameter for constructing the KNN model  

Model parameter Search range 
Number of neighbours K = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} 

 

2.2.6 Gradient boosting 
Gradient Boosting (GB) is a ML technique used in regression and classification 

tasks. GB is based on the idea of an ensemble method derived from a decision tree 
[74]. In GB, the choice of the number of decision trees (number of estimators) is 
a crucial parameter. The more the number of decision trees, the better the data 
learning. However, adding many trees can significantly slow down the training 
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process. Therefore, a parameter search is necessary. Three other parameters of 
interest in GB are the number of boosting stages (n_estimators), the minimum 
number of leaf nodes (min_samples_leaf), and the maximum depth of the single 
regression estimators (max_depth), which is used to control model overfitting. 
Table 2-10 shows the search ranges of the configuration parameters of the GB 
model. 

 
Table 2-10. The parameters for constructing the GB model  

Model parameter Search range 
Number of boosting stages  n_estimators = {20, 40, 60, 80, 100} 
Minimum number of leaf nodes  min_samples_leaf 

= {10, 20, 30, 40, 50, 60, 70} 
Maximum depth  max_depth

= {5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16} 

 

2.3 Evaluation criteria 
In the SDEE, several criteria are required to evaluate the estimation accuracy of 

the methods. Table 2-11 summarizes the accuracy measures used in estimation 
studies related to our work (2016 onward). The Mean Magnitude of Relative Error 
(MMRE) is the most commonly used standard for SDEE accuracy [1], [75]. 
However, this metric is prone to bias [21], [22]. For this reason, we use five 
alternative criteria to achieve a fair and symmetric distribution. These include 
Mean Absolute Error (MAE), Mean Balance Relative Error (MBRE), Mean 
Inverted Balance Relative Error (MIBRE), Median Magnitude of Relative Error 
(MdMRE), and Root Mean Square Error (RMSE). We also used two measures to 
assess the accuracy of the estimation models: the Sum of Squares Errors (SSE) 
and the Percentage of prediction within x% (PRED (x)). Two measures are critical 
for estimating the variation in modeling error [19]. They are chosen because of 
their ability to describe errors in specific datasets. PRED(x) is less biased to 
underestimation and generally determines the same best method as Standardized 
Accuracy (SA). An SDEE method with high estimation accuracy (when PRED 
(x) values are high) is also reasonable (when SA values are high) [76]. 
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Table 2-11. Summary of the accuracy measures used in SDEE methods  
Cited 
study 

M
M
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E 
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ED
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E  

M
A

E 

SA
 

M
A

PE
 

M
SE

 

R
M

SE
 

N
R

M
SE

 

SS
E  

R
2  

R
SS

 

 [77]   x x x x        
 [78]       x x x x x   
 [62]        x x   x x 
 [55]   x x x x        
 [79]   x x x x        
 [80]   x x x x        
 [81]   x x x x        
 [82] x             
 [63]   x x x         
 [83] x x            
 [84]     x    x     
 [85]        x x  x   
 [86] x             
 [87] x x            
 [14] x x         x x  
 [88] x x     x x   x x  
 [89]   x x x x        

 
 

• Mean Absolute Error (MAE) 

 MAE = 	
1
n
&|y! −	y{!|
)

!#$

 (2.12) 

• Mean Balance Relative Error (MBRE) 

 MBRE = 	
1
n
&

|(y! −	y{!)|
min(y! −	y{!)

)

!#$

 (2.13) 
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• Mean Inverted Balance Relative Error (MIBRE) 

 MIBRE = 	
1
n
&

|(y! −	y{!)|
max(y! −	y{!)

)

!#$

 (2.14) 

• Median of Magnitude of Relative Error (MdMRE) 

 MdMRE = 	median!(
|y! −	y{!|

y!
) (2.15) 

• Root Mean Square Error (RMSE) 

 RMSE = 	~
∑ (y! −	y{!)/)
!#$

n
 (2.16) 

• Sum of Squares Errors (SSE) 

 SSE =& (y! −	y{!)/
)

!#$
 (2.17) 

• Percentage of Prediction within x% (PRED(x))  

 PRED(x) = 	
1
n
& �1		if	

|y! −	y{!|
y!

	≤ x

0	otherwise

)

!#$
 (2.18) 

where n is the number of observations, y! is the real known value, y{! is the 
predicted value, and x = 0.25. 
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3 CURRENT STATE OF THE ISSUES DEALT WITH  
This chapter presents a literature review of existing research related to SDEE, 

some related work on UCP-based effort estimation, and SDEE tools for the 
software industry. 

 

3.1 Existing research related to SDEE 
Existing SDEE research can be divided into three categories [6], [90], [91]. 

These include algorithmic, non-algorithmic, and estimation by statistical and 
machine learning models. 

3.1.1 Algorithmic effort estimation models 
Algorithmic models include Source Lines of Code (SLOC) [1], Function Point 

Analysis (FPA) [92], [93], Constructive Cost Model (COCOMO) [1], Use Case 
Points (UCP) [10], and Software Life Cycle Management (SLIM) [94]. These 
models, which are still the most widely used in the literature [95], [96], use 
mathematical equations to estimate the cost of a software project. Table 3-1 below 
describes the algorithmic models. 

 
Table 3-1. Algorithmic models 

Estimation method Description 
Source Lines of Code 
(SLOC) 

The method uses the number of source lines 
developed to measure the software size. However, 
the size of a change request cannot be accurately 
estimated using the SLOC method until the coding 
process is completed. As a result, estimating the size 
of a change request in the early stages of software 
development is nearly impossible [97]. Because 
software size is a critical input to an effort model, an 
incorrect SLOC estimate will result in an inaccurate 
effort estimate. 

Function Point Analysis 
(FPA) 

Based on the functions provided to the end user, the 
method estimates the complexity and size of a 
software system. There are several methods for 
counting function points. Nevertheless, the method 
administered by Function Points Analysis (FPA), 
based on the International Function Point Users 
Group (IFPUG) [98], is the standard method. 
Internal Logical File (ILF), External Interface File 
(EIF), External Input (EI), External Output (EO), 
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and External Inquiry (EQ) are five parameters to 
measure the software size. 

Constructive Cost Model 
(COCOMO) 

COCOMO 81 is a software cost prediction method 
developed in 1981 [1] that uses a simple regression 
formula. The model's parameters are derived from 
historical projects and current project 
characteristics. The COCOMO II [2] model is an 
enhanced version of the COCOMO 81 better suited 
for project estimation in modern software 
development. Specifically, COCOMO II employs 
logical SLOC, whereas COCOMO 81 employs 
physical SLOC. Multiple physical SLOCs can be 
contained within a logical SLOC (if-then-else). 

Use Case Points (UCP) The method is based on the elements of the system 
use cases with technical and environmental aspects. 
The method is based on a calculation with four 
elements: Unadjusted Use Case Weight (UUCW), 
Unadjusted Actor Weight (UAW), Technical 
Complexity Factor (TCF), and Environmental 
Complexity Factor (ECF). 

Software Life Cycle 
Management (SLIM) 

The Putnam model is another name for this model. 
The SLIM describes the effort and time required to 
complete a project of a specific size using the 
Norden/Rayleigh function. The model can save 
analysis data from previous projects, which can then 
be used to calibrate and build the workforce in an 
existing dataset by answering a series of questions. 

 

3.1.2 Non-algorithmic effort estimation models 
Expert judgement [99], Analogue-based [100], Price-to-win [101], Top-down 

[101], Bottom-up [101], Wideband Delphi [1], and Planning Poker [102] are 
examples of non-algorithmic models. These models estimate software 
development costs by drawing on an expert's prior experience or historical 
projects. Table 3-2 contains descriptions of the non-algorithmic models. 
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Table 3-2. Non-algorithmic models 

Estimation method Description 
Expert judgement The method is based on the consultation of an 

expert's experience, knowledge, motivation, and 
field knowledge and the exchange of analysts and 
experts to propose an estimate for a specific project. 
Delphi technique is used to facilitate 
communication and collaboration among experts. 
The primary advantage is that it can be accurately 
compared with other models if the experts know 
exactly the problem area of the proposed project. 

Analogy-based An analogy-based method is a systematic form of 
expert judgment. It is an application of the Cased 
Based Reasoning method. The method compares 
similar historical projects, documenting all 
necessary information. 

Bottom-Up and Top-
down Approach, Price-
to-win 

The methods are entirely based on software project 
budgets, either broken down by project module (top-
down) or predicted as the sum of project module 
estimates (bottom-up). 

Wideband Delphi The method is a team-based method for estimating 
software costs based on team agreements. The work 
breakdown structure (WBS) is used to estimate 
costs. 

Planning Poker The method is also a consensus-based estimation 
method like Wideband Delphi. The method is used 
in agile software development for cost estimation 
and is consistent with agile software development's 
people-oriented approach. 

 

3.1.3 Estimation model by statistical and ML models 
Statistical and ML models allow estimation using information from previously 

completed projects. Utilizing this learning mechanism, experts spend less time on 
project estimation and more time on other software system functions that satisfy 
the customer. Over the past decade, researchers have focused on using statistical 
and machine learning techniques. According to their findings, the estimation 
accuracy obtained with ML techniques was significantly higher than that obtained 
with non ML-based estimation methods [103]. The overall estimation accuracy of 
SDEE methods based on statistical and machine learning techniques is almost 
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acceptable and within 25% of the percent error (PRED (0.25)) [38]. According to 
our findings [48], [49], [50], [51], [52], [53], [54], [55], [56], [57], [58], [59], [60], 
[61], [62], [63], seven statistical and ML techniques, namely MLP, SVR, DT, RF, 
MLR, KNN, and GB, were the most commonly used in SDEE (see Figure 3-1). 
 

 
Figure 3-1. Most commonly used statistical and ML algorithms in 

SDEE 
 

3.2 Related work for UCP-based effort estimation 
We discussed some problems with the UCP model. One approach is to focus 

on increasing the complexity levels for use case weighting, actor weighting, or 
both, discretizing the existing complexity levels, and calibrating the complexity 
weights. For example, in Re-UCP, Manzoor et al. [15] added actor weighting and 
use case weighting, and in the UCP sizing method, the authors added another level 
of evaluation to the use case weighting system. Nunes et al. [24] gave six new 
actor weights. Wang et al. [16] extended the complexity levels of use cases by 
incorporating fuzzy set theory and Bayesian belief networks into the UCP model. 
In the e-UCP method, Periyasamy et al. [17] changed the complexity levels of 
actors and reclassified the complexity of use cases. The UCPabc approach [31] 
applies an activity-based costing method to all variables in the UCP method, and 
the productivity factor was changed to 8.2 person-hours. For incremental 
development estimates in large projects, an adaptation approach to the UCP 
method known as Adapted UCP (AUCP) [32] is used. Braz et al. [33] have 
proposed two methods for calibrating the internal level of the use case: use case 
size points (USP) and fuzzy use case size points (FUSP). A USP model introduces 
new components into the structure of a use case, namely the number and weights 
of scenarios, actors, preconditions, and postconditions. A FUSP model is a more 
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complex version of a USP that uses fuzzy set theory to solve some use case 
classification problems. Qi et al. [34] improved the accuracy of UCP estimation 
by calibrating the case complexity weights using Bayesian analysis. Rak et al. 
[35] proposed the use case reusability (UCR) model for estimating effort by 
assigning a new classification to use cases. 

Regarding SDEE methods based on statistics and ML techniques, we divided 
them into three groups. The first group uses individual techniques to develop new 
methods based on the original method or to validate existing methods in industrial 
applications, focusing on improving accuracy. A UCP-based effort estimation 
model based on fuzzy logic and neural networks [30], a regression model and the 
Sugeno Fuzzy Inference System (SFIS) approach [104], or Cascade Correlation 
Neural Network (CCNN) model [105] are introduced to improve the estimation 
accuracy. The results show that these models improve the accuracy by 11%. The 
Adaptive Neuro-Fuzzy Use Case Size Point (ANFUSP) model is presented to 
estimate the effort required for object-oriented software projects [106]. Compared 
to the UCP method, the model's results are more accurate. A hybrid model based 
on Analogy-Based Estimation (ABE) and the Particle Swarm Optimization (PSO) 
algorithm is proposed to construct an attribute system with different weights 
depending on the cluster [20]. The results of the model revealed noticeably 
improved estimate accuracy. 

The second group applies regression models by analyzing the validity of UCP 
variables. For example, the regression model accounts for the nonlinear 
relationship between software size and effort in person-hours [107]. Jorgensen 
[18] reported all variables included in the models to illustrate the accuracy and 
bias variation of the SDEE methods using regression analysis. Ochodek et al. 
[108] simplified the UCP method by discarding the UAW, measuring the UCP 
based on steps, or calculating the total number of steps in use cases. The 
Algorithmic Optimisation Method (AOM) is proposed to increase the accuracy of 
the correction coefficients of the effort estimation process [23] by employing 
multiple least squares regression with all UCP elements. The authors then 
conducted several experiments on two different datasets to investigate the 
significance of the UCP variables [62]. 

The last group employs ensemble methods, which produce more accurate 
results than single statistical and machine learning methods [103]. These studies 
concentrated on aspects of effort estimation such as base model diversity, model 
ranking within the ensemble, aggregation techniques, and model selection. Many 
researchers concurred that ensemble models outperformed single methods. In 
particular, an AdaBoost ensemble approach based on two single methods (KNN 
and SVR)  [13], another ensemble of three single methods (SVR, MLP, and GLM) 
[109], an ensemble model of optimal trees (RF and RT) [110],  an ensemble model 
combining UCP, expert judgment, and Case-Based Reasoning (CBR) [111], an 
ensemble framework based on an extended RF algorithm [112] are proposed. The 
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findings demonstrate that these ensemble methods perform better than single 
models and produce more accurate estimates of error measurements. 

Although previous works have been remarkably well handled, selecting 
unbiased approaches and appropriate algorithms has proven difficult [113], [114]. 
It is well known that a method's accuracy depends on its parameters' settings [39]. 
However, most ensemble SDEE methods use the same learning parameter settings 
for all datasets. None of the above studies is exhaustive or guarantees higher 
accuracy in estimating software effort under all circumstances. Moreover, few 
studies have validated their results with statistical tests. In [115], it is argued that 
it is invalid to claim that one model is superior to another if adequate statistical 
tests are not performed. 

 

3.3 Software estimation tools in the software industry 
In this chapter, we aim to introduce the Use Case Estimation, a function in 

Enterprise Architect that gives a starting point for predicting project effort. It can 
be found at https://sparxsystems.com/products/ea/16.0/index.html. Figure 3-2 
illustrates the screen of the Use Case estimation tool. 

Use Case Estimation is a comprehensive project estimation tool that uses Use 
Case and Actor factors to determine effort. The tool can provide a reasonable 
estimate of the complexity of a system. The complexity of the work environment 
is determined by a set of weighted technical and environmental complexity 
factors, and use cases and actors are classified as Easy, medium, or complex. 
Based on Karner's UCP approach, the method produces a metrics report that 
includes the project estimation analysis and can be included in the project 
documentation. 
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Figure 3-2. Use Case Estimation tool 

 
An option that relies on manual transcripts or spreadsheets is Manuscript 

(https://manuscript.com), which is more of an issue tracker/project planner with 
built-in statistical modeling capabilities in the software. In addition, business.com 
has identified the top three software solutions for cost estimating in 2022. 
(updated August 26, 2022). CoConstruct (https://www.coconstruct.com/), 
MeasureSquare (https://www.measuresquare.com/) and STACK 
(https://www.stackct.com/) are three of these tools. These tools can estimate bid 
prices and other project parameters leading to a construction contract. However, 
depending on the particular company's needs, each option has advantages and 
disadvantages. The project manager is in charge of choosing the best estimating 
software. They must evaluate the strengths and limitations of project management 
to choose the best solution. Understanding the basics of estimating software 
solutions can help project managers narrow their options based on key features 
such as ease of use, pricing, stability, and customer support. 
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4 THE PROPOSED METHODS 
The proposed methods are presented in this chapter based on the discussion of 

the previous chapters. First, a proposal for increasing the estimation accuracy of 
the existing UCP method was called Optimization Correction Factors (OCF) 
[116]. We analyze correction factors to identify the best technical and 
environmental complexity factors that significantly affect the estimation accuracy 
of the UCP method in regression analysis. To put this idea into practice, we 
propose a new formula to calculate the correction factors in the UCP method. 
Then, to obtain more accurate estimates, we aim to apply the MLR models to 
improve the ability of the OCF method to estimate the software size and minimize 
the prediction error. This is referred to as the Extension of Optimizing Correction 
Factors (ExOCF) [117]. The OCF variables are used in this method to determine 
the software size. The MLR formulation was created to estimate the software size 
values. Following the proposed ExOCF is another alternative framework for 
effort prediction to improve the overall performance of the regression. A novel 
Stacked SVR-MLR-MLP-DT-RF-KNN-GB on the OCF (SOCF) model is 
proposed to improve the overall performance of the regression. The model 
includes seven statistical and ML techniques: MLR, KNN, SVR, MLP, RF, GB, 
and DT. Finally, the calculations of the effective productivity factor (PFCFE) are 
proposed in conjunction with the OCF as predictors of effort  [118]. The summary 
of the four proposed methods is shown in Figure 4-1. 

 

 
Figure 4-1. The proposed methods 
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4.1 The proposed Optimization Correction Factors method  

4.1.1 Least absolute shrinkage and selection operator 
The Least Absolute Shrinkage and Selection Operator (LASSO) is used to 

address variable selection in regression analysis [119]. LASSO regression is a 
method that performs two main tasks: L1 - regularisation and feature selection. It 
forms a constraint on the sum of the absolute values of the model variables, where 
the sum is required to be less than an upper bound (a fixed value). The method 
applies a shrinking - (regularisation) process, which penalizes regression variables 
- (correction value) coefficients by shrinking some of them to zero.  

During the feature selection process, the correction values that still have a non-
zero coefficient after the shrinking process are selected to form part of the model. 
This process aims to minimize prediction error - (the sum of squared errors - with 
an upper bound on the sum of the absolute values of the model parameters). The 
LASSO method is defined by the solution to the l$	optimisation problem - (the 
formulation used by Buhlmann et al. [120]: 

 minimize	 j∥4567∥"
"

)
m            subject to ∑ ∥ β ∥$< t8

&#$  (4.1) 

where, t is the upper bound for the sum of the coefficients. This optimisation 
problem is equivalent to the parameter estimation below: 

 β�(λ) = 	 argmin
7

�
∥ Y − Xβ ∥//

n
+	λ ∥ β ∥$� (4.2) 

where, ∥ Y − Xβ ∥//	= 	∑ (Y! −	(Xβ)!)/, ∥ β ∥$	= 	∑ �β&�		and	λ ≥ 08
&#$

)
!#9  is the 

variable that controls the strength of the penalty; the larger the value of λ, the 
greater the amount of shrinkage. The relation between λ value and fixed value t 
is a reverse relationship. It is certain that, as t becomes infinity, the problem 
becomes an ordinary least square; and λ will become 0. However, this is vice versa 
when t reaches 0, all coefficients will shrink to 0, and λ will go to infinity.  

In the OCF, we use LASSO regression for its variable selection properties 
(Figure 4-2). When we minimise the optimisation problem, some coefficients are 
shrunk to zero - i.e. β� !(λ) = 0; for some values of j - (depending on the value of 
parameter λ). In this way, features with coefficients equal to zero are excluded 
from the model. 
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Figure 4-2. The detailed illustration of the feature selection on 

correction factors 
 

4.1.2 Correction factors analysis 
The evaluation of the correction factors depends on the experience of experts, 

which has a certain degree of uncertainty [81]. It is difficult to assign an 
appropriate value to an ECF because of a lack of relevant information. The reason 
is that an ECF is linked to the level of information and experience of a particular 
software development team. Therefore, it is difficult to suggest that the team 
evaluate their work - especially when the project managers are estimators and 
have to assign values to the ECF [121]. There are similar problems with the value 
assigned for a TCF. For example, factor T10 (Concurrent) shows a certain 
difficulty level. This factor could include parallel processing, parallel 
programming - or whether the system is stand-alone or interfaces with several 
other applications. The assignment of values to this factor may not be accurate, as 
there are no guidelines in the UCP that explain this factor precisely. Huanca et al. 
[29] identified the main factors affecting the accuracy of the estimation of the 
UCP method - which is ECF and TCF. According to this review, these factors 
affect the estimation accuracy and require a re-evaluation. A slight variation in 
the weight value of the adjusting factors could dramatically affect the software 
size and then the estimating effort. Nassif et al. [30] also highlighted the need to 
refine the parameters as adjusting factors directly related to estimations calculated 
using the UCP method. 
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4.1.3 Optimizing Correction Factors method 
A detailed illustration of the OCF method is shown in Figure 4-3. The LASSO-

based Selection Phase (Phase I), applies the LASSO regression with the 
determined regularisation parameter λ to extract a selected variable set; as shown 
in Eq. (4.2).  

LASSO regression is used to obtain the TCF and ECF correction coefficients - 
as described in Eq. (4.3) and Eq. (4.4), respectively. 

 
y_TCF! =	α9 +	& α! 	× t! × fw!

$"

!#$
 

(4.3) 

 
y_ECF! =	β9 +	& β! 	× e! × ew!

(

!#$
 

(4.4) 

where, y_TCF! be j :;<=_?/9
(ABCDAAEC)×	GEH

− 0.6m ×	 $
9.9$

 , y_ECF! be 

j :;<=_?/9
(ABCDAAEC)×	JEH

− 1.4m ×	 5$
9.9"

 , and α9, α! β9, β! are the regression coefficient 
parameters obtained from the LASSO regression; Real_P20 is the real size of 
software projects from historical datasets. The LASSO-based selected variables 
in TCF and ECF are designated as LaTF and LaEF respectively. 

Then, Least Squares Regression (LSR) is used to obtain the coefficients for 
LaTF and LaEF in Eq. (4.5) and Eq. (4.6), respectively. LaTF and LaEF values 
represent the final technical and environmental complexity factors - (correction 
factors), in the OCF method. 

 y_LaTF! =	α9 +	& α! 	× LaT! ×WLt!
)

!#$
 (4.5) 

 y_LaEF! =	β9 +	& β! 	× LaE! ×WLe!
*

!#$
 (4.6) 

where, let y_LaTF! and y_LaEF! be the TCF and ECF from the historical dataset; 
n	is the number of LaTF; m is the number of LaEF; and α9, α! β9, β! are regression 
coefficient parameters obtained from LSR.  

LaTF and LaEF are obtained according to Eq. (4.7) and Eq. (4.8). 
 LaTF = 	α9 +	& α! 	× LaT! ×WLt!

)

!#$
 (4.7) 

 LaEF = 	β9 +	& β! 	× LaE! ×WLe!
*

!#$
 (4.8) 

The model fitting phase - (Phase II) is determined. The effort estimation final 
result of the proposed OCF method is described by Eq. (4.9). This is calculated as 
the aggregate of four UAW metrics - (viz Eq. (2.1), UUCW (viz Eq. (2.2), LaTF 
(viz Eq. (4.7), and LaEF (viz Eq. (4.8).  
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 UCPKEH = (UAW + UUCW) × 	LaTF	 × 	LaEF (4.9) 
 

 
Figure 4-3. The proposed Optimizing Correction Factors method 

 

4.2 The proposed approach based on Optimization Correction 
Factors and Multiple Linear Regression 

The OCF approach can help project managers reduce the risks associated with 
evaluating correction factors. The results show that the method improves the 
average SSE by more than 53.6% compared to the UCP method. The detailed 
results are presented in Chapter 6.1. We further develop the OCF method and 
propose an extension of OCF (ExOCF) that applies MLR models to the OCF 
elements to reduce the estimation error and the influence of the unsystematic noise 
of the OCF technique. 
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4.2.1 Multiple regression models 
Multiple regression models relate to estimating regression effort applications 

where there is more than one independent variable [103]. The purpose is to obtain 
the best-fit line that minimizes the regression model’s sum of squared residual 
[19]. The form of the regression model is presented as a linear equation between 
a dependent variable and a set of p independent variables X$, X/, … , XL as follows: 

 �

y$ = α9 + α$X$$ + α/X$/ +⋯+ αLX$L + ε$
y/ = α9 + α$X/$ + α/X// +⋯+ αLX/L + ε/...
y) = α9 + α$X)$ + α/X)/ +⋯+ αLX*L + ε)

 (4.10) 

i.e. 

 y! = α9 + α$X!$ + α/X!/ +⋯+ αLX!L + ε!	, i = 1…m�������� (4.11) 

where y! is the dependent variable, X!$, … , X!L are the independent variables, α9 
is the intercept parameter, and α$, … , αL are the regression coefficients. These 
variables are unknown constants that must be estimated from the dataset, and ε! 
are the error residuals. 

Eq. (4.10) can be rewritten as follows: 
 y = αX + ε (4.12) 

where vector y and vector ε are column vectors of length m, vector α is a column 
vector of length p + 1, and matrix X is an m by p + 1 matrix. Using LSR, vector 
α is calculated as follows: 

 α = (XJX)5$XJy (4.13) 
 

4.2.2  Extension of Optimizing Correction Factors 
The proposed method provides a straightforward approach based on historical 

project data to build regression models and reduce errors in the integration process 
or recursion. A detailed illustration of the ExOCF method is shown in Figure 4-4. 

The proposed model is built using MLR as follows: 

 UCPGMKEH = γ$(UAW	 × 	LaTF	 × 	LaEF)
+	γ/(UUCW	 × 	LaTF	 × 	LaEF) 

(4.14) 

where γ$, γ/ are obtained according to two steps. First, the historical data points 
(P$, … , P/) are collected. The UAW, UUAW, LaTF, and LaEF elements for each 
project are identified. The result of this step is the collection of values 
(x!$, x!/, y!), i = 1…n������� , where y! is the actual size (Real_P20 values) of the 
software project from a historical dataset.  

 x!$ = (UAW! × LaTF! × ECF!) (4.15) 
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 x!/ = (UUCW! × LaEF! × ECF!) (4.16) 
The LSR model is then used for obtaining the regression coefficients γ$, γ/ as 

followings. 
 

�
y$
⋮
y)
� = j

γ$
γ/m × �

X$$
⋮
X)$

X$/
⋮
X)/

� 
(4.17) 

 j
γ$
γ/m = (XJX)5$XJy (4.18) 

Because y! is a real value from a historical dataset, the regression coefficient 
values of γ$, γ/ can vary from each dataset. This means that when a historical 
dataset changes, this phase needs to be performed again to obtain new regression 
coefficient values. The second step of this phase will calculate the UAW, UUCW, 
LaTF, and LaEF of the current project, and Eq. (4.14) is applied with values γ$, γ/ 
to estimate the UCPGMKEH. 

 

 
Figure 4-4. Detailed illustration of the proposed ExOCF method 
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4.3 The proposed Stacking ensemble model based on Optimizing 
Correction Factors 

Based on the literature review in Chapter 3.2, we believe the ensemble 
approach can provide an unbiased estimate of the effort required for a new 
software project. The ensemble approach combines at least two different single 
models through a unique aggregation mechanism and generates the final solution 
through weighted voting on their solutions [122]. As a result, this section aims to 
investigate the effect of the ensemble approach in predicting the software size 
early in the project development using the OCF method. The SOCF model is 
proposed that incorporating seven statistical and ML techniques MLR, KNN, 
SVR, MLP, RF, GB, and DT. These techniques are presented according to their 
different architecture in Chapter 2.2.  

 

4.3.1 Staking generalization approach 
An ensemble of regressors is the incorporation of regressors whose individual 

decisions are combined to produce a system that theoretically outperforms all of 
its members [123]. In ensemble systems, the goal is to form a set of accurate and 
distinct regressors and combine their results such that the combination 
outperforms all individual regressors [124], [125]. Therefore, regressor ensembles 
are constructed in two stages: generation and combination. The individual 
members of the ensemble, called base regressors, are formed in the generation 
stage. In the combination stage, the results of the ensemble members are 
combined to produce a single result. 

Stacked generalization (stacking) [126] uses the concept of meta-regressors or 
meta-learners through a learning procedure similar to cross-validation to combine 
the individual predictions of ensemble members. The stacking procedure is shown 
in general form in Figure 4-5. The stacking mechanism generates temporal 
estimates at level 0, called the base regressor. At level 0, the generalized biases 
are collectively predicted. These estimates are sent to a meta-learner at level 1. 

 
Figure 4-5. The illustration of the stacking generalization approach 
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4.3.2 Stacked model based on Optimizing Correction Factors 
The detailed SOCF architecture is shown in Figure 4-6, which consists of 

cleaning the data, dividing it into training and test sets, and applying the stacking 
model to estimate the OCF-based size. 

The following methodology was used: 
1. LASSO regression is used to determine the best correction factors. Details 

are presented in Chapter 4.1.1.  
2. The input and output vectors are determined.  

3. The data is split into a training set S(5&) and a test set S&. S(5&) is used to 
create the level 0 models (regressors) via seven ML techniques, SVM, 
KNN, DT, MLP, MLR, GB, and RF.  

4. The configuration parameters for the seven regression models (level 0 
models) SVM, KNN, DT, MLP, MLR, GB, and RF are tuned on the 
validation set (30% of the training set) to produce their optimal settings (see 
Section 2.2). 

5. Create an ensemble model with the stacking approach. The estimator's 
predictions are stacked and fed into a final estimator, which computes the 
final estimation. More precisely, each of the level 0 models in the first stage 
undergo five-fold cross-validation in S(5&) to output its prediction and 
generate a prediction for S& by taking the average of the seven estimation 
results generated by the five CV models in the training phase. Then these 
level 0 models create a vector of predictions to input into the level 1 model 
(in the second stage). RF was selected as the meta-regressor to train a new 
model for the final project size estimation. 
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Figure 4-6. The architecture of the proposed SOCF model 

 

4.4 The proposed software productivity model based on 
ensemble approach 

4.4.1 Software productivity evaluation in early SDEE 
Since its inception, one of the core goals of software engineering research has 

been to analyze and improve productivity. However, software productivity is still 
an issue in SDEE today, with most studies focusing on the relationship between 
effort and other variables. An early overview of the state of the art in software 
development productivity was given [127]. Since then, many studies have 
contributed to the knowledge of productivity factors, such as measuring 
productivity using multiple measures of size [46] or previous projects using case-
based reasoning and regression toward the mean [42]. Multinomial logistic 
regression predicts productivity using independent software variables [55]. 

The prediction of software productivity in UCP estimation has not been 
comprehensively studied. Some researchers proposed to estimate effort based on 
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UCP using specific software productivity estimates. For example, Karner's 
method offered an effort by multiplying the calculated UCP size by PF, equivalent 
to 20 person-hours/UCP [10]. Alves et al. [47] discovered a difference between 
the original model (20 person-hours / UCP) and their proposed model (between 6 
and 13 person-hours / UCP). Urbanek et al. [128] used linear regression to derive 
software productivity factors. Experimental results show that the range of 
productivity factors is substantially narrow than the values of UCP, with a mean 
of 15. 

Based on a study of environmental complexity, Schneider and Winters (SW) 
proposed three degrees of software productivity (fair, low, and very low) [129]. 
More specifically, the fair level with 20 person-hours/UCP, the low level with 28 
person-hours/UCP, and the very low level with 36 person-hours/UCP. These 
levels are determined by the total number of environmental factors with values of 
three or fewer from E1 to E6 and greater than three from E7 to E8. When the total 
count is less than or equal to two, the level is fair; when the total count is between 
three and four (inclusive), the level is low; and when the total count is larger than 
four, the level is very low. The effort of this model is calculated by Eq. (4.19). It 
should be noted that environmental factors are not considered when calculating 
UCP. 

 Effort = �
Size × 	20, if	total	count ≤ 2

Size × 28, if	3 ≤ total	count ≤ 4
Size × 36, if	total	count > 4

 (4.19) 

Another approach also uses environmental factors, presenting four levels of 
productivity measures [30]. The overall productivity factor is calculated as 
follows:  

 PF_sum =&E! ×We!

(

!#$

 (4.20) 

This value is then converted into a productivity value using a fuzzy procedure 
based on the rules described in Table 4-1. 
 

Table 4-1. Conversion rules for productivity value 

No. Antecedent Consequent 
1 PF_sum ≤ 0 productivity=0.4 
2 0 < PF_sum ≤ 10 productivity=0.7 

3 10 < FP_sum ≤ 20 productivity=1 

4 PFNO* > 20 productivity=1.3 
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4.4.2 Effective productivity factor calculations 
Our primary goal is to research and confirm the role of software productivity 

in generating early effort estimates from UCP. To address the fourth problem in 
Section 1.2, we proposed effective productivity factor calculations in conjunction 
with UCP as predictors for effort. The approach employs an ensemble 
construction mechanism from ML techniques (OCF(PFCFE)) such as Support 
Vector Regression (SVR), Multiple Linear Regression (MLR), and Decision Tree 
(DT). The voting ensemble is used as an ensemble model ML. 

Figure 4-7 shows the proposed software productivity mode. The methodology 
was used: (1) Correction factors from OCF are used as input. (2) Built the voting 
regressor algorithm [130] consisting of three base estimators, such as Support 
Vector Regression (sklearn.svm.SVR), Multiple Linear Regression 
(sklearn.linear_model.LinearRegression), and Decision Tree Regression 
(sklearn.tree.DecisionTreeRegressor).  

 

 
Figure 4-7. The proposed software productivity model 

 
Estimated effort is obtained by multiplying OCF by PFEHG, as follows Eq. 

(4.21). 
 EffortKEH(?H#$%) = OCF	 ×	PFEHG (4.21) 
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5 RESEARCH METHODOLOGY  
This chapter describes the research methodology, which consists of a 

description of the datasets for the experiment and the empirical procedure for 
evaluating the proposed methods. 

5.1 Dataset description 
The experimental methods are evaluated using a dataset that the authors 

collected and used [62]. The dataset is based on three data donations (D1, D2, and 
D3). The projects from each data donor differ in size (measured by the UCP). All 
data donators work in different government, health, and business sectors. The 
projects were installed in Java and C# programming languages. After analyzing 
the dataset, we noticed that some projects had Real_P20 varied extensively. 
Figure 5-1 presents the boxplot of Real_P20 in each dataset. Real_P20 is a real 
effort in person-hours, divided by productivity (PF - person-hours per 1 UCP). 

 

 
Figure 5-1. Boxplot of Real_P20 in each dataset 

 
We discovered a significant difference in Real P20 between data donors. 

Depending on the data donor, the distribution of Real P20 is significantly 
different. In particular, data donor D1 had the largest projects, while data donor 
D3 had the lowest values. The dataset is heterogeneous due to the significant 
differences in real P20. Therefore, using the same model for all projects was 
ineffective. We sorted the projects by data donor to make the datasets more 
homogeneous. Data providers provided the datasets (D1, D2, and D3). The 
projects in each dataset can be interpreted as local data for each company. In 
addition, we evaluated the impact of combining projects with different data 
providers, and a fourth dataset (D4) was created to merge all three datasets. 
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Statistical characteristics of the Real_P20 of the four datasets are described in 
Table 5-1 and Figure 5-2. Median person-hours represent the workforce value of 
the project development period, which was applied from the project's start date to 
the acceptance date. The median Real_P20 shows the same value divided by 
PF=20. This transformation was made because data donors did not provide 
estimations using the UCP. The minimum Real_P20 and maximum Real_P20 
describe the smallest and largest project sizes, respectively. The Real_P20 range 
describes the difference between the minimum Real_P20 and maximum 
Real_P20. The “n” indicates the number of projects in the dataset. 

 

  

 
 

Figure 5-2. Statistical characteristics of the Real_P20 for each 
dataset 
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Table 5-1. Dataset statistical characteristics 

 
Median 
person-
hours 

Median 
Real_P20 

Range 
Real_P20 

Standard 
deviation 

Minimum 
Real_P20 

Maximum 
Real_P20 n 

D1 7252.0 362.600 60.300 18.820 338.200 398.500 27 
D2 6240.0 312.000 38.400 12.156 299.650 338.050 23 
D3 5878.0 293.900 10.500 3.287 288.750 299.250 20 
D4 6406.0 320.300 109.750 33.212 288.750 398.500 70 

 

5.2 Correction factors determination 
Based on the analysis described in section 4.1.2, we solved this problem using 

the LASSO to determine correction factors in the regression analysis. Figure 5-3 
shows a sequence of different R-squared values in proportion to different values 
of λ. The selected λ value is determined using the Leave One Out Cross-
Validation (LOOCV) technique [131], [132] at which the R-squared reaches its 
highest value. Figure 5-4 shows the selected technical and environmental factors 
corresponding to the determined λ values. 
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Figure 5-3. CV score on TCF and ECF in each dataset 
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Figure 5-4. Coefficient estimations on TCF and ECF from LASSO 

regression in each dataset 
 
The details of the technical and environmental factors selected in each dataset 

with the determined, as well as their coefficient estimates, are shown in Table 5-2 
and Table 5-3. Specifically, there are nine remaining technical correction factors 
in the D1 dataset at  T1, T3, T4, T5, T6, T7, T9, T10, and T11, and there are six 
remaining environmental factors, ENV3 to ENV8. In the D2 dataset, the eight 
selected technical factors are T1, T3, T4, T5, T6, T9, T10, and T11, and the 
selected environmental factors are ENV3 to ENV8. In the D3 dataset, the seven 
selected technical factors are T1, T3, T4, T5, T7, T9, and T10, and the selected 
environmental factors at 0.000247 are ENV3 to ENV8. In the D4 dataset, the nine 
selected technical factors are T1, T3, T4, T5, T6, T7, T9, T10, and T11, and the 
environmental factors are ENV3-ENV8. 
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Table 5-2. The estimated TCF coefficients in the LASSO regression 

 D1 D2 D3 D4 
 0.000231 0.000268 0.000227 0.000236 
intercept 0.690619 0.693400 0.720820 0.695850 
T1 0.009451 0.009725 0.009547 0.009505 
T2 - - - - 
T3 0.010897 0.010902 0.010311 0.010456 
T4 0.009330 0.008877 0.009888 0.009556 
T5 0.010430 0.011130 0.015199 0.010622 
T6 0.009576 0.010157 - 0.009202 
T7 0.008536 - 0.007298 0.008989 
T8 - - - - 
T9 0.010551 0.014018 0.013144 0.010334 
T10 0.010526 0.010893 0.009730 0.010902 
T11 0.007387 0.006516 - 0.005998 
T12 - - - - 
T13 - - - - 

 
 

Table 5-3. The estimated ECF coefficients in the LASSO regression 

 D1 D2 D3 D4 
 0.000177 0.000192 0.000247 0.000327 
intercept 1.373478 1.376197 1.404496 1.387716 
ENV1 - - - - 
ENV2 - - - - 
ENV3 -0.032072 -0.042706 -0.032954 -0.033555 
ENV4 -0.042291 -0.037886 -0.025558 -0.033001 
ENV5 -0.029170 -0.028453 -0.029931 -0.029393 
ENV6 -0.028133 -0.027549 -0.030139 -0.029072 
ENV7 -0.027981 -0.026382 -0.029221 -0.028660 
ENV8 -0.028193 -0.028713 -0.031169 -0.029333 
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5.3 Experiment setup 
A series of experimental setups are presented to evaluate the effectiveness of 

the proposed methods. In step 1, the proposed methods in this research direction 
are established for the following experiments: 

• OCF (proposed in Chapter 4.1) 

• ExOCF (proposed in Chapter 4.2) 

• SOCF (proposed in Chapter 4.3) 

• OCF(PFCFE) (proposed in Chapter 4.4) 
We experimented with five different runs (5-fold cross-validation) to evaluate 

the estimation accuracy. The comparison of each method's effort estimation 
accuracy is then based on the average results of these five runs. 

In step 2, the results were then evaluated using evaluation criteria, SSE, PRED 
(0.25), MAE, MBRE, MIBRE, MdMRE, and RMSE, as presented in Chapter 2.3. 
A statistical pairwise t-test comparison (at a 5% significance level) was also used 
to validate the accuracy of the proposed methods. These pairwise statistical 
comparisons include the average (µ) of the SSE, MAE, and RMSE results from 
the five-fold cross-validations of the four experimental datasets. 

 

5.3.1 Experiment 1 (EX1) 
EX1 is performed to evaluate the proposed OCF method with other related 

methods, such as the baseline UCP [10] and OTF - a variant of the UCP model 
that omits the technical factors [133]. These methods are summarized in Table 
5-4. 

 
Table 5-4. Methods implemented for EX1 

No. SDEE methods Summary Notation 

1 Use Case Points - Size is measured by UCP variables 
(UAW, UUCW, TCF, and ECF). 

UCP 

2 UCP (omitting 
technical factors) 

- Size is measured from UCP 
variables (UAW, UUAW, and ECF) 
except for the technical factors. 

OTF  
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3 Optimization 
Correction Factors 
(proposed in 
Chapter 4.1)  

- Correction factors are determined 
in regression analysis by the LASSO 
regression model. 
- Size is measured in UCP variables 
(UAW and UUCW) and correction 
factors (LaTF and LaEF). 

OCF  

 
The statistical hypothesis was tested to determine whether the proposed OCF 

approach provides a better estimate. 

• H9:	µPQ;	LRSLSN;T	KEH	*;PQST = µPQ;	SPQ;R	P;NP;T	*;PQSTN. The estimation ability 
of the proposed OCF method is not significantly different from the estimation 
abilities of the other tested methods. 

• H$:	µPQ;	LRSLSN;T	KEH	*;PQST > µPQ;	SPQ;R	P;NP;T	*;PQSTN. The estimation ability 
of the proposed OCF method is significantly different from the estimation 
abilities of the other tested methods. 

 

5.3.2 Experiment 2 (EX2) 
EX2 is performed to evaluate the proposed ExOCF method with the related 

software size estimation models from the literature. The selected models are the 
baseline UCP model [10], the OCF model, and the AOM model [23]. We also 
developed two models that establish a linear relationship between software and 
UCP factors (UAW, UUC, TCF, and EF). These models are SVR, and DT. The 
description of the construction of these models is mentioned in Chapter 2.2. 
However, in this experiment, we do not focus on finding the optimal configuration 
parameters but use the default configuration parameters of each model. All 
methods are summarized in Table 5-5. 

 
Table 5-5. Methods implemented for EX2 

No. SDEE method Summary Notation 

1 Use Case Points - Size is measured by UCP variables 
(UAW, UUCW, TCF, and ECF). 

UCP  
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2 Optimization 
Correction Factors 
(proposed in 
Chapter 4.1)  

- Correction factors are determined in 
regression analysis by the LASSO 
regression model. 
- Size is measured in UCP size 
variables (UAW and UUCW) and 
correction factors (LaTF and LaEF). 

OCF  

3 Algorithmic 
Optimization 
Method  

- Size is measured based on linear 
regression on UCP variables (UAW, 
UUC, TCF, and EF). 

AOM 

4 Use Case Points 
using SVR 

- SVR is used to estimate the software 
size based on UCP variables (UAW, 
UUCW, TCF, and ECF). 

UCP&SVR 

5 Use Case Points 
using DT 

- DT is used to estimate the software 
size based on UCP variables (UAW, 
UUCW, TCF, and ECF). 

UCP&DT 

6 Extension of 
Optimization 
Correction Factors 
(proposed in 
Chapter 4.2) 

- Correction factors are determined in 
regression analysis by the LASSO 
regression model. 
- Size is based on linear regression on 
OCF variables (UAW, UUCW, 
LaTF, and LaEF). 

ExOCF  

 
The statistical hypothesis was tested to determine whether the proposed ExOCF 

approach provides a better estimate. 

• H9:	µPQ;	LRSLSN;T	GMKEH	*;PQST = µPQ;	SPQ;R	P;NP;T	*;PQSTN. The estimation 
ability of the proposed ExOCF method is not significantly different from the 
estimation abilities of the other tested methods. 

• H$:	µPQ;	LRSLSN;T	GMKEH	*;PQST > µPQ;	SPQ;R	P;NP;T	*;PQSTN. The estimation 
ability of the proposed ExOCF method is significantly different from the 
estimation abilities of the other tested methods. 

 

5.3.3 Experiment 3 (EX3) 
EX3 is conducted to compare the proposed SOCF method with the related 

SDEE methods, such as UCP-based single methods (described in Table 5-6), 
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OCF-based single methods (described in Table 5-7), and ensemble methods 
(described in Table 5-8). In addition, we experimented with baseline SDEE 
methods (UCP and OCF). 

 
Table 5-6. UCP-based single methods implemented for EX3 

No. ML technique Summary Notation 

1 SVR - SVR is used to estimate the software 
size based on UCP variables (UAW, 
UUCW, TCF, and ECF). 

UCP&SVR 

2 KNN - KNN is used to estimate the software 
size based on UCP variables (UAW, 
UUCW, TCF, and ECF). 

UCP&KNN 

3 DT - DT is used to estimate the software size 
based on UCP variables (UAW, UUCW, 
TCF, and ECF). 

UCP&DT 

4 GRNN - GRNN is used to estimate the software 
size based on UCP variables (UAW, 
UUCW, TCF, and ECF). 

UCP&GRNN 

5 MLP - MLP is used to estimate the software 
size based on UCP variables (UAW, 
UUCW, TCF, and ECF). 

UCP&MLP 

6 RF - RF is used to estimate the software size 
based on UCP variables (UAW, UUCW, 
TCF, and ECF). 

UCP&RF 

 
 

Table 5-7. OCF-based single methods implemented for EX3 

No. ML technique Summary Notation 

1 SVR - SVR is used to estimate the software size 
based on OCF variables (UAW, UUCW, 
LaTF, and LaEF). 

OCF&SVR 
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2 MLP - MLP is used to estimate the software size 
based on OCF variables (UAW, UUCW, 
LaTF, and LaEF). 

OCF&MLP 

3 GB - GB is used to estimate the software size 
based on OCF variables (UAW, UUCW, 
LaTF, and LaEF). 

OCF&GB 

4 MLR - MLR is used to estimate the software size 
based on OCF variables (UAW, UUCW, 
LaTF, and LaEF). 

OCF&MLR 

5 KNN - KNN is used to estimate the software size 
based on OCF variables (UAW, UUCW, 
LaTF, and LaEF). 

OCF&KNN 

6 DT - DT is used to estimate the software size 
based on OCF variables (UAW, UUCW, 
LaTF, and LaEF). 

OCF&DT 

7 RF - RF is used to estimate the software size 
based on OCF variables (UAW, UUCW, 
LaTF, and LaEF). 

OCF&RF 

 
 

Table 5-8. Ensemble methods implemented for EX3 

No. ML technique Summary Notation 

1 
  

Majority voting 
ensemble 

- Majority voting ensemble with 
MLR, SVR, MLP models to 
estimate the software size based on 
UCP variables (UAW, UUCW, 
TCF, and ECF). 

VUCP 

2 Stacked 
Generalization 
Ensemble 

- Stacked generalization ensemble 
with SVM, KNN, DT, MLP, MLR, 
GB, RF models to estimate the 
software size based on OCF 
variables (UAW, UUCW, LaTF, 
and LaEF). 

SOCF 
(proposed in 
Chapter 4.3) 
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The accuracy of a given statistical or ML technique is determined by the 
configuration parameters that describe the characteristics of a specific dataset. 
Choosing the optimal parameter values for a technique gives it a higher predictive 
ability. In this EX3, we apply GS [134] to optimize the configuration settings of 
statistical and ML techniques. Specifically, for each dataset, GS thoroughly 
examines the parameter set of each empirical method in a given range of values 
and then selects the configuration that provides optimal estimates. The parameter 
search ranges are derived from previous analyses [54], [55], [59]. In each case, 
we extended the search range to include as many alternative configurations as 
possible. The convergence of each optimization approach is determined by the 
mean square error (MSE) reaching zero or the maximum number of iterations 
reaching 10,000 [135]. The settings are tuned to the validation set, which 
comprises 30% of the training set. Table 5-9, Table 5-10, Table 5-9, and Table 
5-10 list the optimal parameter values for each dataset's estimation method. 

 
Table 5-9. The results of parameter tunings in the D1 dataset 

Method Parameters settings 
OCF&MLP L = 0.05, H = 7,M = 0.2, α = 0.0001 
UCP&MLP L = 0.04, H = 7,M = 0.5, α = 0.001 
OCF&SVR C = 10, γ = 0.001, ε = 0.001 
UCP&SVR C = 10, γ = 1, ε = 1 
OCF&DT max	 _depth = 7,min	 _weight_fraction_leaf = 	0.4,	 

max_leaf_node = 40,min_sample_leaf = 10	 
UCP&DT max	 _depth = 5,min	 _weight_fraction_leaf = 	0.3,	 

max_leaf_node = 20,min_sample_leaf = 6 
OCF&RF n_estimators = 100,min	 _sample_leaf = 2, 

max	 _depth = 10	 
UCP&RF n_estimators = 150,min	 _sample_leaf = 2, 

max	 _depth = 20	 
OCF&GB n_estimators = 60,min	 _sample_leaf = 60, 

max	 _depth = 5	 
OCF&KNN neighbors = 5 
UCP&KNN neighbors = 10 
UCP&GRNN σ = 0.1 
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Table 5-10. The results of parameter tunings in the D2 dataset 

Method Parameters settings 
OCF&MLP L = 0.02, H = 8,M = 0.5, α = 0.001 
UCP&MLP L = 0.03, H = 6,M = 0.5, α = 0.0001 
OCF&SVR C = 100, γ = 0.1, ε = 0.001 
UCP&SVR C = 10, γ = 1, ε = 0.1 
OCF&DT max	 _depth = 5,min	 _weight_fraction_leaf = 	0.5,	 

max_leaf_node = 30,min_sample_leaf = 4	 
UCP&DT max	 _depth = 3,min	 _weight_fraction_leaf = 	0.3,	 

max_leaf_node = 40,min_sample_leaf = 2 
OCF&RF n_estimators = 200,min	 _sample_leaf = 1, 

max	 _depth = 50	 
UCP&RF n_estimators = 100,min	 _sample_leaf = 1, 

max	 _depth = 30	 
OCF&GB n_estimators = 20,min	 _sample_leaf = 40, 

max	 _depth = 6	 
OCF&KNN neighbors = 8 
UCP&KNN neighbors = 9 
UCP&GRNN σ = 0.3 

 
 

Table 5-11. The results of parameter tunings in the D3 dataset 

Method Parameters settings 
OCF&MLP L = 0.01, H = 6,M = 0.2, α = 0.01 
UCP&MLP L = 0.04, H = 6,M = 0.2, α = 0.01 
OCF&SVR C = 50, γ = 1, ε = 1 
UCP&SVR C = 10, γ = 0.01, ε = 0.01 
OCF&DT max	 _depth = 9,min	 _weight_fraction_leaf = 	0.3,	 

max_leaf_node = 10,min_sample_leaf = 5	 
UCP&DT max	 _depth = 5,min	 _weight_fraction_leaf = 	0.1, 

	max_leaf_node = 30,min_sample_leaf = 7 
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OCF&RF n_estimators = 300,min	 _sample_leaf = 4, 
max	 _depth = 80	 

UCP&RF n_estimator = 400,min	 _sample_leaf = 2, 
max	 _depth = 50 

OCF&GB n_estimators = 30,min	 _sample_leaf = 30, 
max	 _depth = 7 

OCF&KNN neighbors = 6 
UCP&KNN neighbors = 10 
UCP&GRNN σ = 0.6 

 
 

Table 5-12. The results of parameter tunings in the D4 dataset 

Method Parameters settings 
OCF&MLP L = 0.02, H = 6,M = 0.3, α = 0.01 
UCP&MLP L = 0.03, H = 6,M = 0.4, α = 0.001 
OCF&SVR C = 100, γ = 1, ε = 0.01 
UCP&SVR C = 10, γ = 0.01, ε = 0.01 
OCF&DT max	 _depth = 3,min	 _weight_fraction_leaf = 	0.1,	 

max_leaf_node = 50,min_sample_leaf = 2	 
UCP&DT max	 _depth = 5,min	 _weight_fraction_leaf = 	0.5, 

	max_leaf_node = 30,min_sample_leaf = 3 
OCF&RF n_estimators = 250,min	 _sample_leaf = 4, 

max	 _depth = 10	 
UCP&RF n_estimators = 300,min	 _sample_leaf = 4, 

max	 _depth = 20	 
OCF&GB n_estimators = 40,min	 _sample_leaf = 50, 

max	 _depth = 6	 
OCF&KNN neighbors = 7 
UCP&KNN neighbors = 9 
UCP&GRNN σ = 0.4 
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The statistical hypothesis was tested to determine whether the proposed SOCF 
approach provides a better estimate. 

• H9:	µPQ;	LRSLSN;T	UKEH	*;PQST = µPQ;	SPQ;R	P;NP;T	*;PQSTN. The estimation 
ability of the proposed SOCF method is not significantly different from the 
estimation abilities of the other tested methods. 

• H$:	µPQ;	LRSLSN;T	UKEH	*;PQST > µPQ;	SPQ;R	P;NP;T	*;PQSTN. The estimation ability 
of the proposed SOCF method is significantly different from the estimation 
abilities of the other tested methods. 

 

5.3.4 Experiment 4 (EX4) 
EX4 is conducted to compare the proposed OCF(PFCFE) method with the 

previous SDEE methods (UCP, SW [129], OCF), as summarized in Table 5-13. 
Table 5-14 presents the optimal configuration parameters in the experiments. 

 
Table 5-13. Methods implemented for EX4 

No. SDEE method Summary Notation 

1 Use Case Points - Size is measured by UCP variables 
(UAW, UUCW, TCF, and ECF). 
- 20 person-hours to develop each UCP 
(PF=20). 
- The effort is computed by multiplying 
Size by the PF. 

UCP 

2 Schneider and 
Winter (SW) 

- Size is measured by UCP variables 
(UAW, UUCW, TCF, and ECF). 
- PF is computed from the UCP 
environmental complexity factors. 
- The effort is computed by multiplying 
Size by the PF. 

SW 

3 Optimization 
Correction 
Factors  

- Correction factors are determined in 
regression analysis by the LASSO 
regression model. 
- Size is measured in UCP size variables 
(UAW and UUCW) and correction 
factors (LaTF and LaEF). 

OCF 



 

51 
 

- 20 person-hours to develop each UCP 
(PF=20). 
- The effort is computed by multiplying 
Size by the PF. 

4 Software 
Productivity 
Model based on 
Ensemble 
Construction 
Mechanism 
(proposed in 
Chapter 4.4) 

- Size is measured in UCP size variables 
(UAW and UUCW) and correction 
factors (LaTF and LaEF). 
- A proposed PFCFE model is constructed 
based on correction factors through an 
ensemble construction mechanism of 
three ML models (SVR, MLR, and DT). 
Details of the optimal configuration 
parameter sets after tuning are shown in 
Table 5-14. 
- The effort is computed by multiplying 
Size by the PFCFE. 

OCF(PFCFE)  

 
 

Table 5-14. The optimal values of method parameters in EX4 

Method Parameters setting 
 D1 dataset 
PFSVR C = 0.1, γ = 0.0001, ε =0.1 
PFDT max	 _depth = 7,min	 _weight_fraction_leaf = 0.4	,	 

max_leaf_node = 70,min_sample_leaf = 	7 
 D2 dataset 
PFSVR C = 0.01, γ = 0.0001, ε = 0.01 
PFDT max	 _depth = 9,min	 _weight_fraction_leaf = 0.1	,	 

max_leaf_node = 80,min_sample_leaf = 4	 
 D3 dataset 
PFSVR C = 1, γ = 0.01, ε =0.001 
PFDT max	 _depth = 4,min	 _weight_fraction_leaf = 0.3	,	 

max_leaf_node = 30,min_sample_leaf = 2 
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D4 dataset 
PFSVR C = 1, γ = 0.0001, ε = 0.1 
PFDT max	 _depth = 3,min	 _weight_fraction_leaf = 0.2	,	 

max_leaf_node = 50,min_sample_leaf = 7	 

 
The statistical hypothesis was tested to determine whether the proposed 

OCF(PFCFE) approach provides a better estimate. 

• H9:	µPQ;	LRSLSN;T	KEH(?HEHG)	*;PQST = µPQ;	SPQ;R	P;NP;T	*;PQSTN. The estimation 
ability of the proposed SOCF method is not significantly different from the 
estimation abilities of the other tested methods. 

• H$:	µPQ;	LRSLSN;T	KEH(?HEHG)	*;PQST > µPQ;	SPQ;R	P;NP;T	*;PQSTN. The estimation 
ability of the proposed SOCF method is significantly different from the 
estimation abilities of the other tested methods. 
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6 RESULTS AND DISCUSSION 
This section presents the solutions to the four problem statements given above. 

The purpose of the results is to minimize the SSE, MdMRE, MAE, MBRE, 
MIBRE, and RMSE and maximize the PRED (0.25). Specifically, low values for 
the SSE, MdMRE, MAE, MBRE, MIBRE, and RMSE show good results. In 
contrast, high values for the PRED (0.25) show good results. Besides that, the 
results of SSE, MAE, MdMRE, MBRE, MIBRE, and RMSE in the four 
experimental datasets were used for the paired t-test statistical comparisons. After 
five runs on different random training- testing had split, we obtained the average 
p-value of the t-test. 

 

6.1 EX1 
In the EX1, we will compare the proposed OCF method as well as the UCP and 

OTF methods based on the four experimental datasets. Table 6-1, Table 6-2, Table 
6-3, and Table 6-4 show that the proposed OCF method outperformed the UCP 
and OTF methods when the SSE, MAE, MBRE, MIBRE, MdMRE, and RMSE 
criteria were used. The OCF method also gave good results when PRED (0.25) 
was used. Figure 6-1 shows the average estimation results of the proposed OCF 
and other methods. 

Based on the estimation results in Table 6-1, Table 6-2, Table 6-3, and Table 
6-4, we present the percentage improvements of the proposed OCF over the UCP 
and OTF methods averaged on all datasets in Table 6-5.  

 
Table 6-1. Estimation results for the proposed OCF method and other methods on 

the D1 dataset 

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE 
UCP 54,838.961 0.40 95.615 0.281 0.366 0.252 104.339 
OTF 29,971.565 0.68 49.904 0.206 0.241 0.187 77.056 
OCF 14,215.263 0.92 44.784 0.112 0.146 0.120 52.964 
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Table 6-2. Estimation results for the proposed OCF method and other methods on 
the D2 dataset 

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE 
UCP 34,148.372 0.55 82.544 0.254 0.384 0.252 92.152 
OTF 23,153.238 0.60 64.267 0.223 0.268 0.202 75.232 
OCF 17,773.295 0.65 54.393 0.165 0.227 0.167 65.596 

 
 
Table 6-3. Estimation results for the proposed OCF method and other methods on 

the D3 dataset 

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE 
UCP 58,932.202 0.47 120.02 0.455 0.426 0.278 138.640 
OTF 49,847.551 0.47 111.72 0.422 0.389 0.260 127.000 
OCF 30,148.049 0.53 87.242 0.266 0.331 0.237 95.369 

 
 
Table 6-4. Estimation results for the proposed OCF method and other methods on 

the D4 dataset 

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE 
UCP 59,995.454 0.33 125.85 0.419 0.441 0.289 139.698 
OTF 51,670.526 0.33 113.27 0.414 0.395 0.262 129.075 
OCF 34,210.337 0.53 87.308 0.261 0.318 0.225 98.899 

 
 
Table 6-5. The percentage improvements of the OCF over the UCP and OTF 

methods averaged on all datasets 

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE 
OCF vs.UCP 53.6% 33.6% 35.4% 42.9% 36.7% 30.2% 34.1% 
OCF vs.OTF 37.7% 21.1% 19.2% 36.4% 20.8% 17.8% 23.3% 
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Figure 6-1. The average estimation results of the proposed OCF 

method and other methods on all datasets 
 
Moreover, we use the SSE, MAE, and RMSE results for all the experimental 

methods for statistical comparisons, i.e., to draw the most accurate conclusions 
by comparing estimation methods. The t-test, a parametric statistical comparison 
test, is used in this study. For a  less than, the two statistical methods involved in 
the comparison are significantly different. As shown in Table 6-6, our proposed 
OCF method is statistically superior to the baseline UCP method and the OTF 
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method. A>> B means that A is statistically superior to B. Therefore, we accept 
the alternative hypothesis H1. 

 
Table 6-6. The t-test results for five different runs of the proposed OCF method in 

comparison with the other methods.  

Pairs of methods OCF vs. UCP OCF vs. OTF 

SSE  
 

Avg. SSE 24,086.736 vs. 
51978.747 

24,086.736 vs. 
38660.720 

Avg. p-value 0.00000 0.00000 
Statistical conclusion >> >> 

MAE  
Avg. MAE 68.432 vs.           

106.009 
68.432 vs.             

84.790 
Avg. p-value 0.00000 0.00001 
Statistical conclusion >> >> 

RMSE  
Avg. RMSE 78.207 vs.           

118.707 
78.207 vs.           
102.091 

Avg. p-value 0.00000 0.00000 
Statistical conclusion >> >> 

 

6.2 EX2 
In this section, we will evaluate the proposed ExOCF method and five other 

methods. Table 6-7, Table 6-8, Table 6-9, and Table 6-10 show the estimation 
accuracy of the methods across the four experiment datasets. The average 
estimation results of methods are shown in Figure 6-2. 

The first observation from these results is that the proposed ExOCF method 
produces the best SSE, MdMRE, MAE, MBRE, MIBRE, RMSE, and PRED 
(0.25) values, suggesting that it is possible to modify the OCF method to improve 
its estimation accuracy. From the results obtained, we believe that applying the 
MLR model to the OCF variables has proven its effectiveness. 

The second observation from these results is that the proposed ExOCF method 
improved accuracy over the baseline UCP method and other tested methods such 
as AOM, UCP&DT, and UCP&SVR. Table 6-11 presents the percentage 
improvement of the proposed ExOCF over the AOM, UCP&DT, and UCP&SVR 
methods averaged on all datasets. Based on this comparison, we can confidently 
confirm that the proposed method outperforms all other methods with superior 
accuracy in the evaluation criteria.  
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Table 6-7. Estimation results for the proposed ExOCF method and other methods 
on the D1 dataset 

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE 
UCP 54838.9 0.40 95.61 0.281 0.366 0.252 104.339 
OCF 14215.2 0.92 44.78 0.112 0.146 0.120 52.964 
UCP&DT 2697.5 1.00 18.29 0.042 0.052 0.048 22.609 
UCP&SVR 2013.1 1.00 17.12 0.048 0.049 0.046 19.588 
AOM 1690.9 1.00 15.67 0.044 0.044 0.042 17.946 
ExOCF 1443.2 1.00 12.61 0.029 0.035 0.033 16.392 

 
 
Table 6-8. Estimation results for the proposed ExOCF method and other methods 

on the D2 dataset 

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE 
UCP 34148.37 0.55 82.544 0.254 0.384 0.252 92.152 
OCF 17773.29 0.65 54.393 0.165 0.227 0.167 65.596 
UCP&DT 1484.69 1.00 15.068 0.043 0.049 0.045 18.782 
UCP&SVR 921.93 1.00 13.213 0.035 0.043 0.041 15.137 
AOM 547.19 1.00 9.647 0.029 0.031 0.030 11.691 
ExOCF 501.78 1.00 8.822 0.024 0.028 0.027 11.195 
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Table 6-9. Estimation results for the proposed ExOCF method and other methods 
on the D3 dataset 

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE 
UCP 58932.2 0.47 120.02 0.455 0.426 0.278 138.640 
OCF 30148.0 0.53 87.242 0.266 0.331 0.237 95.369 
UCP&DT 83.7 1.00 3.690 0.008 0.013 0.012 5.211 
UCP&SVR 42.3 1.00 2.804 0.008 0.010 0.009 3.704 
AOM 37.5 1.00 2.650 0.008 0.009 0.009 3.472 
ExOCF 34.6 1.00 2.489 0.007 0.009 0.009 3.326 

 
 

Table 6-10. Estimation results for the proposed ExOCF method and other methods 
on the D4 datase 

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE 
UCP 59995.4 0.33 125.85 0.419 0.441 0.289 139.698 
OCF 34210.3 0.53 87.308 0.261 0.318 0.225 98.899 
UCP&DT 9867.7 1.00 21.369 0.045 0.069 0.060 29.642 
UCP&SVR 10638.2 1.00 25.466 0.066 0.082 0.073 31.062 
AOM 6862.6 1.00 18.481 0.034 0.058 0.053 24.829 
ExOCF 5630.0 1.00 16.311 0.033 0.052 0.047 22.480 

 
 
Table 6-11. The percentage improvements of the ExOCF over the other methods 

averaged on all datasets 

Methods SSE MAE RMSE MdMRE MBRE MIBRE 
ExOCF  
vs. UCP&DT 

46.16% 31.13% 32.17% 32.35% 30.08% 29.97% 

ExOCF  
vs. UCP&SVR 

44.11% 31.35% 40.71% 32.28% 31.32% 23.17% 

ExOCF  
vs. AOM 

16.73% 13.39% 18.10% 13.06% 12.89% 7.84% 
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Figure 6-2. The average estimation results of the proposed ExOCF 

method and other methods on all datasets 
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Furthermore, the results confirm that the ExOCF method is statistically 
significant at the 95% confidence level compared to the other five methods, as 
shown in Table 6-12. As a result, we are inclined to accept the alternative 
hypothesis (H1), which is also consistent with the results presented above. A>>B 
means that A is statistically superior to B. 

 
Table 6-12. The t-test results for five different runs of the proposed ExOCF 

method in comparison with the other methods 

Pairs of  
methods 

ExOCF  
vs.  
UCP 

ExOCF  
vs.  
OCF 

ExOCF  
vs.  
UCP&DT 

ExOCF  
vs.  
UCP&SVR 

ExOCF  
vs.  
AOM 

SSE  
 

Avg. 
SSE 

1902.4 vs. 
51,978.7 

1902.4 vs. 
24,086.7 

1902.4 vs. 
3533.4 

1902.4 vs. 
3403.9 

1902.4 vs. 
2284.6 

Avg. p-
value 0.00000 0.00001 0.00267 0.00316 0.00388 

St. conc. >> >> >> >> >> 

MAE  

Avg. 
MAE 

10.058 vs. 
106.009 

10.058 vs. 
68.432 

10.058 vs. 
14.605 

10.058 vs. 
14.651 

10.058 vs. 
11.613 

Avg. p-
value 0.00000 0.00000 0.00001 0.00000 0.00005 

St. conc. >> >> >> >> >> 

RMSE  

Avg. 
RMSE 

13.348 vs. 
118.707 

13.348 vs. 
78.207 

13.348 vs. 
19.060 

13.348 vs. 
17.372 

13.348 vs. 
14.484 

Avg. p-
value 0.00000 0.00000 0.00000 0.00001 0.00007 

St. conc. >> >> >> >> >> 

 

6.3 EX3 
Table 6-13, Table 6-14, Table 6-15, Table 6-16, Table 6-17, Table 6-18, Table 

6-19, and Table 6-20 present the estimation results of the UCP-based and OCF-
based single methods across the four datasets.  

The first finding from these results is that the estimation accuracies of the single 
methods differ throughout datasets. UCP&GRNN, for example, was the best 
model for the D1 dataset among the UCP-based single methods. According to the 
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SSE, UCP&KNN had the lowest accuracy, while UCP&SVR had the most 
insufficient accuracy according to the MAE, RMSE, MBRE, MIBRE, and 
MdMRE. Similarly, among the OCF-based single methods for the D1 dataset, 
OCF&RF performed best according to the SSE and RMSE, while OCF&KNN 
performed best according to the MAE, MBRE, MIBRE, and MdMRE. The worst 
model was OCF&SVR. 

 
Table 6-13. Estimation results for the UCP-based single methods on the D1 

dataset 

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE 
UCP&SVR 1866.17 0.33 16.73 0.045 0.048 0.045 18.711 
UCP&MLP 1515.52 0.53 14.08 0.036 0.040 0.038 16.768 
UCP&GRNN 1493.42 1.00 12.77 0.035 0.039 0.036 15.553 
UCP&KNN 1942.10 1.00 16.56 0.048 0.047 0.044 18.532 
UCP&DT 1520.84 1.00 13.53 0.030 0.038 0.036 16.619 
UCP&RF 1526.65 1.00 14.04 0.029 0.040 0.037 16.440 

 
 

Table 6-14. Estimation results for the UCP-based single methods on the D2 
dataset 

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE 
UCP&SVR 768.53 1.00 10.18 0.026 0.034 0.032 13.168 
UCP&MLP 1546.82 1.00 14.85 0.040 0.050 0.046 17.333 
UCP&GRNN 392.45 1.00 8.38 0.023 0.028 0.026 9.736 
UCP&KNN 651.11 1.00 11.12 0.032 0.036 0.035 12.459 
UCP&DT 528.28 1.00 9.497 0.027 0.031 0.030 11.151 
UCP&RF 405.55 1.00 8.054 0.021 0.026 0.025 9.640 
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Table 6-15. Estimation results for the UCP-based single methods on the D3 
dataset 

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE 
UCP&SVR 41.978 1.00 3.066 0.014 0.011 0.010 3.573 
UCP&MLP 56.090 1.00 3.629 0.015 0.012 0.012 4.050 
UCP&GRNN 51.268 1.00 3.517 0.015 0.012 0.012 4.020 
UCP&KNN 54.621 1.00 3.780 0.016 0.013 0.013 4.210 
UCP&DT 46.617 1.00 3.305 0.013 0.011 0.011 3.767 
UCP&RF 60.420 1.00 3.066 0.014 0.011 0.010 3.573 

 
 

Table 6-16. Estimation results for the UCP-based single methods on the D4 
dataset  

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE 
UCP&SVR 10935.1 1.00 25.62 0.073 0.082 0.074 30.96 
UCP&MLP 11890.2 0.98 25.89 0.062 0.081 0.072 31.39 
UCP&GRNN 11105.5 1.00 23.82 0.056 0.076 0.067 29.95 
UCP&KNN 11074.0 0.98 24.55 0.060 0.077 0.068 30.94 
UCP&DT 10878.2 1.00 26.58 0.085 0.086 0.077 31.22 
UCP&RF 13470.0 0.98 25.68 0.073 0.083 0.072 32.90 

 
 

Table 6-17. Estimation results for the OCF-based single methods on the D1 
dataset 

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE 
OCF&SVR 1410.33 1.00 13.900 0.029 0.039 0.037 16.350 
OCF&MLP 1197.73 1.00 12.887 0.031 0.036 0.035 15.362 
OCF&DT 1343.01 1.00 13.470 0.030 0.038 0.036 16.021 
OCF&MLR 1018.04 1.00 11.545 0.025 0.032 0.031 13.719 
OCF&GB 1314.08 1.00 13.434 0.030 0.038 0.036 15.903 
OCF&RF 747.09 1.00 9.520 0.022 0.027 0.026 11.700 
OCF&KNN 832.11 1.00 9.245 0.017 0.026 0.024 12.356 
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Table 6-18. Estimation results for the OCF-based single methods on the D2 
dataset 

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE 
OCF&SVR 649.039 1.00 9.434 0.025 0.032 0.030 12.399 
OCF&MLP 994.084 1.00 12.096 0.033 0.040 0.038 15.033 
OCF&DT 278.476 1.00 7.203 0.022 0.023 0.023 7.949 
OCF&MLR 493.827 1.00 9.479 0.026 0.031 0.029 11.017 
OCF&GB 279.682 1.00 7.203 0.022 0.023 0.023 7.972 
OCF&RF 360.796 1.00 7.371 0.019 0.024 0.023 9.340 
OCF&KNN 244.127 1.00 6.405 0.018 0.020 0.022 7.673 

 
 

Table 6-19. Estimation results for the OCF-based single methods on the D3 
dataset 

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE 
OCF&SVR 36.965 1.00 2.891 0.013 0.010 0.010 3.387 
OCF&MLP 51.081 1.00 3.634 0.014 0.012 0.012 3.968 
OCF&DT 37.345 1.00 2.887 0.013 0.010 0.010 3.408 
OCF&MLR 46.500 1.00 3.417 0.013 0.012 0.012 3.806 
OCF&GB 37.893 1.00 2.899 0.012 0.010 0.010 3.437 
OCF&RF 44.123 1.00 3.132 0.013 0.011 0.011 3.700 
OCF&KNN 47.462 1.00 3.312 0.014 0.011 0.011 3.830 
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Table 6-20. Estimation results for the OCF-based single methods on the D4 
dataset 

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE 
OCF&SVR 6642.85 1.00 18.57 0.047 0.059 0.054 23.772 
OCF&MLP 6874.87 1.00 18.42 0.047 0.058 0.053 24.192 
OCF&DT 10454.39 1.00 25.93 0.077 0.083 0.075 30.547 
OCF&MLR 6909.89 1.00 19.05 0.054 0.060 0.054 24.246 
OCF&GB 10647.20 1.00 26.23 0.084 0.085 0.076 30.810 
OCF&RF 6236.12 1.00 17.97 0.050 0.056 0.051 23.387 
OCF&KNN 6475.19 1.00 18.20 0.044 0.057 0.052 24.113 

 
Furthermore, the experimental results suggest that OCF-based methods reduce 

estimation errors more effectively than UCP model-based methods. Table 6-21 
show the percentage improvements of OCF&SVR, OCF&MLP, OCF&KNN, 
OCF&DT, and OCF&RF over UCP&SVR, UCP &MLP, UCP &KNN, UCP 
&DT, and UCP &RF. The comparison between the OCF-based and UCP-based 
single methods is illustrated in Figure 6-3. Based on this finding, we can conclude 
that approaches that use OCF variables outperform those that use UCP variables. 

 
Table 6-21. The percentage improvements of the OCF-based single methods 

averaged on all datasets 

 Methods SSE MAE RMSE MdMRE MBRE MIBRE 
OCF&SVR  
vs. UCP&SVR 

35.80% 19.43% 28.17% 20.23% 19.18% 15.82% 

OCF&MLP  
vs. UCP&MLP 

39.25% 19.53% 18.50% 19.83% 18.21% 15.80% 

OCF&KNN  
vs. UCP&KNN 

44.62% 33.65% 40.18% 34.06% 32.00% 27.47% 

OCF&DT  
vs. UCP&DT 

6.63% 6.49% 9.28% 7.23% 6.52% 7.70% 

OCF&RF  
vs. UCP&RF 

52.22% 26.56% 25.50% 27.71% 25.30% 24.08% 
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Table 6-22 and Table 6-23 present the ranking the UCP-based and OCF-based 
single methods across the datasets using the SSE criterion. The "1" represents the 
best method and "6" or "7" indicates the worst method. Based on these results, we 
can conclude that there is no best method, indicating that a single model can 
outperform in one dataset while underperforming in another. 

 
Table 6-22. Rank the UCP-based single approaches from 1 to 6 based on the SSE 

metric 

Methods D1 D2 D3 D4 
UCP&SVR 5 5 1 2 
UCP&MLP 2 6 5 5 
UCP&GRNN 1 1 3 4 
UCP&KNN 6 4 4 3 
UCP&DT 3 3 2 1 
UCP&RF 4 2 6 6 

 
 

Table 6-23. Rank the UCP-based single approaches from 1 to 7 based on the SSE 
metric 

Methods D1 D2 D3 D4 
OCF&SVR 7 6 1 3 
OCF&MLP 4 7 7 4 
OCF&DT 6 2 2 6 
OCF&MLR 3 5 5 5 
OCF&GB 5 3 3 7 
OCF&RF 1 4 4 1 
OCF&KNN 2 1 6 2 
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Figure 6-3. The average estimation results of the UCP-based and 

OCF-based single methods on all datasets 
 
The experimental results for the two ensemble methods (VUCP and SOCF) and 

their single approaches are shown in Table 6-24, Table 6-25, Table 6-26, and 
Table 6-27. The comparison between between the ensemble methods and their 
single approaches is shown in Figure 6-4 and Figure 6-5.  

 
Table 6-24. Estimation results for the ensemble methods on the D1 dataset 

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE 
VUCP 1173.227 1.00 11.575 0.027 0.033 0.031 13.970 
SOCF 491.627 1.00 7.168 0.016 0.020 0.023 9.186 
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Table 6-25. Estimation results for the ensemble methods on the D2 dataset 

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE 
VUCP 335.898 1.00 7.618 0.023 0.025 0.024 8.937 
SOCF 125.236 1.00 4.322 0.013 0.014 0.022 5.386 

 
 
Table 6-26. Estimation results for the ensemble methods on the D3 dataset 

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE 
VUCP 38.537 1.00 2.865 0.013 0.010 0.010 3.431 
SOCF 31.496 1.00 2.486 0.008 0.009 0.010 3.106 

 
 
Table 6-27. Estimation results for the ensemble methods on the D4 dataset 

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE 
VUCP 8043.400 1.00 21.536 0.059 0.069 0.062 26.338 
SOCF 4222.464 1.00 13.944 0.030 0.043 0.049 21.706 
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Figure 6-4. The comparison between the ensemble method VUCP and 

its single approaches 
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Figure 6-5. The comparison between the ensemble method SOCF and 

its single approaches 
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Based on these results, we can conclude that the ensemble methods outperform 
their single methods, and the proposed SOCF approach surpasses the VUCP 
method. Moreover, the results confirm that the SOCF method is statistically 
significant at the 95% confidence level compared to the other methods, as shown 
Table 6-28, Table 6-29, and Table 6-30. A>> B means that A is statistically 
superior to B. Therefore, we accept the alternative hypothesis H1. 

 
Table 6-28. The t-test results for five different runs of the proposed SOCF method 

in comparison with the other methods 

Pairs of  
methods 

SOCF  
vs.  
UCP 

SOCF  
vs.  
OCF&MLP 

SOCF  
vs.  
OCF&DT 

SOCF  
vs.  
OCF&SVR 

SOCF  
vs.  
OCF&MLR 

SSE  
 

Avg.  
SSE 

1217.7 vs. 
54838.9 

1217.71 vs. 
2279.44 

1217.71 vs. 
3028.31 

1217.71 vs. 
2184.80 

1217.71 vs. 
2117.07 

Avg. p-
value 0.00000 0.00076 0.00440 0.00190 0.00514 

St. conc. >> >> >> >> >> 

MAE  

Avg.  
MAE 

6.980 vs.  
95.615 

6.980 vs.  
11.762 

6.980 vs.  
12.373 

6.980 vs.  
11.200 

6.980 vs. 
10.874 

Avg. p-
value 

0.00000 0.00000 0.00005 0.00000 0.00001 

St. conc. >> >> >> >> >> 

RMSE  

Avg.  
RMSE 

9.096 vs.  
104.339 

9.096 vs. 
14.639 

9.096 vs.  
14.482 

9.096 vs. 
13.977  

9.096 vs. 
13.197 

Avg. p-
value 

0.00000 0.00002 0.00006 0.00005 0.00000 

St. conc. >> >> >> >> >> 
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Table 6-29. The t-test results for five different runs of the proposed SOCF method 
in comparison with the other methods 

Pairs of  
methods 

SOCF  
vs.  
OCF&GB 

SOCF  
vs.  
OCF&RF 

SOCF  
vs.  
UCP&KNN 

SOCF  
vs.  
UCP&SVR 

SOCF  
vs.  
UCP&MLP 

SSE  
 

Avg.  
SSE 

1217.7 vs. 
3069.7 

1217.7 vs. 
1847.0 

1217.71 vs. 
1899.03 

1217.71 vs. 
3402.95 

1217.7 vs. 
2117.07 

Avg. p-
value 0.00460 0.00583 0.01199 0.00195 0.00514 

St. conc. >> >> >> >> >> 

MAE  

Avg.  
MAE 

6.980 vs.  
12.441 

6.980 vs.  
9.499 

6.980 vs.  
9.293 

6.980 vs. 
13.902  

6.980 vs.  
10.874 

Avg. p-
value 

0.00005 0.00000 0.00005 0.00005 0.00001 

St. conc. >> >> >> >> >> 

RMSE  

Avg.  
RMSE 

9.096 vs. 
14.530 

9.096 vs.  
12.032 

9.096 vs. 
11.993  

9.096 vs. 
16.604 

9.096 vs.  

Avg. p-
value 

0.00006 0.00005 0.00010 0.00000 13.197 

St. conc. >> >> >> >> >> 
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Table 6-30. The t-test results for five different runs of the proposed SOCF method 
in comparison with the other methods 

Pairs of  
methods 

SOCF vs.  
UCP&GB 

SOCF vs.  
OCF&KNN 

SOCF vs.  
UCP&DT 

SOCF vs.  
UCP&RF 

SOCF vs. 
VUCP 

SSE  
 

Avg.  
SSE 

1217.7 vs. 
3069.7 

1217.7 vs. 
1847.0 

1217.71 vs. 
1899.03 

1217.71 vs. 
3402.95 

1217.71 vs. 
2397.77 

Avg. p-
value 0.00460 0.00583 0.01199 0.00195 0.00764 

St. conc. >> >> >> >> >> 

MAE  

Avg.  
MAE 

6.980 vs.  
12.441 

6.980 vs.  
9.499 

6.980 vs.  
9.293 

6.980 vs. 
13.902  

6.980 vs. 
10.899 

Avg. p-
value 

0.00005 0.00000 0.00005 0.00005 0.00003 

St. conc. >> >> >> >> >> 

RMSE  

Avg.  
RMSE 

9.096 vs. 
14.530 

9.096 vs.  
12.032 

9.096 vs. 
11.993  

9.096 vs. 
16.604 

9.096 vs. 
13.169 

Avg. p-
value 

0.00006 0.00005 0.00010 0.00000 0.00007 

St. conc. >> >> >> >> >> 

 
Besides that, we also performed ablation analyses to evaluate the effectiveness 

of each of SOCF's three core components. Table 6-31 and Table 6-32 show that 
the average SSE, MAE, and RMSE results for SOCF increased when the three 
components were replaced from the model, implying a decrease in estimation 
accuracy in each case. The ↑ sign denotes an increase in SSE, MAE, RMSE, 
MBRE, MIBRE, or MdMRE results, implying a decrease in estimation accuracy 
compared to the SOCF (in Full) model. The term "<< Full SOCF model" refers to 
the full SOCF model's statistical superiority over models that exclude one of the 
three core components. 

• SOCF-Case1: Removing the first component (optimizing model parameters 
using the GS technique) and using the default parameters for SOCF's single 
methods.  

• SOCF-Case2: Removing the second component (reducing generalization error 
using the stacking ensemble) and using the voting ensemble.  
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• SOCF-Case3: Removing the third component (the selection of seven single 
methods) and using three methods: MLR, SVR, and MLP. 

 
Table 6-31. The results for SOCF-Case1, SOCF-Case2, and SOCF-Case3 

Methods SSE MAE RMSE 
SOCF (in Full) 1217.7 6.98 9.10 

SOCF-Case1 ↑1412.80 ↑8.10 ↑10.31 

SOCF-Case2 ↑1643.75 ↑8.91 ↑11.16 
SOCF-Case3 ↑2146.13 ↑11.00 ↑14.03 

 
 

Table 6-32. The ablation analyses for SOCF-Case1, SOCF-Case2, and SOCF-
Case3 

Models for ablation analyses p-value of t-test 

SOCF-Case1 

SSE increase 195.096 
0.01166 

<< Full SOCF model 

MAE increase 1.119 
0.00000 

<< Full SOCF model 

RMSE increase 1.215 
0.00008 

<< Full SOCF model 

SOCF-Case2 

SSE increase 426.047 
0.01914 

<< Full SOCF model 

MAE increase 1.932 
0.00035 

<< Full SOCF model 

RMSE increase 2.061 
0.00011 

<< Full SOCF model 

SOCF-Case3 

SSE increase 928.428 
0.00070 

<< Full SOCF model 

MAE increase 4.029 
0.00001 

<< Full SOCF model 

RMSE increase 4.930 
0.00001 

<< Full SOCF model 
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6.4 EX4 
In the EX4, we will compare the proposed OCF(PFCFE) method as well as the 

previous related methods (UCP, SW, and OCF) based on the four experimental 
datasets. The obtained results from Table 6-33, Table 6-34, Table 6-35, and Table 
6-36 allow us to confidently conclude that the OCF(PFCFE) using the proposed 
software productivity approach achieves better improvements than the previous 
related methods using fixed productivity metrics, concerning all accuracy 
measures. The comparison between the OCF(PFCFE) method and three related 
methods is illustrated in Figure 6-6. 

The percentage improvements of the proposed OCF(PFCFE) over the other 
methods are presented in Table 6-37. This conclusion is confirmed by statistical 
t-test comparisons for each corresponding method (see Table 6-38). A>>B refers 
to A statistical superiority to B. The OCF(PFCFE) using the proposed software 
productivity approach is statistically better than other methods, as the obtained p-
values are all below 0.05.  

 
Table 6-33. Estimation results for the proposed OCF(PFCFE) method and other 

methods on the D1 dataset 

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE 
UCP 2.77E+07 0.4 1,884.6 0.280 0.418 0.258 2,129.9 
SW 2.20E+07 0.5 1,642.9 0.239 0.328 0.222 1,909.8 
OCF 1.73E+07 0.7 1,607.9 0.226 0.302 0.223 1,691.8 
OCF 
(PFCFE) 

6.05E+06 0.8 804.0 0.079 0.113 0.097 979.9 

 
 

Table 6-34. Estimation results for the proposed OCF(PFCFE) method and other 
methods on the D2 dataset 

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE 
UCP 6.95E+07 0.32 2,920.5 0.364 0.655 0.345 3,721.7 
SW 6.70E+07 0.32 2,847.4 0.364 0.593 0.334 3,656.4 
OCF 2.61E+07 0.36 1,986.6 0.304 0.559 0.302 2,264.1 
OCF 

(PFCFE) 
2.14E+07 0.64 1,591.8 0.190 0.302 0.202 2,056.2 
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Table 6-35. Estimation results for the proposed OCF(PFCFE) method and other 
methods on the D3 dataset 

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE 
UCP 3.09E+07 0.37 1,939.0 0.313 0.383 0.250 2,262.8 
SW 5.43E+07 0.37 2,551.3 0.450 0.446 0.283 3,004.1 
OCF 2.97E+07 0.33 1,931.5 0.300 0.363 0.247 2,219.3 
OCF 

(PFCFE) 
1.13E+07 0.73 1,061.4 0.130 0.244 0.164 1,352.6 

 
 

Table 6-36. Estimation results for the proposed OCF(PFCFE) method and other 
methods on the D4 dataset 

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE 
UCP 8.05E+07 0.53 1,940.6 0.255 0.413 0.252 2,367.7 
SW 8.54E+07 0.61 1,872.8 0.242 0.356 0.226 2,423.6 
OCF 5.27E+07 0.61 1,566.9 0.215 0.350 0.220 1,922.7 
OCF 

(PFCFE) 
4.78E+07 0.69 1,430.1 0.186 0.255 0.182 1,827.7 

 
 

Table 6-37. The percentage improvements of the proposed OCF(PFCFE) method 
averaged on all datasets 

 Methods SSE PRED MAE RMSE MdMRE MBRE MIBRE 
OCF(PFCFE)  
vs. UCP 

58.6% 43.4% 43.7% 40.7% 51.7% 51.1% 41.6% 

OCF(PFCFE)  
vs. SW 

62.2% 37.1% 45.2% 43.5% 54.8% 47.0% 39.4% 

OCF(PFCFE)  
vs. OCF 

31.3% 30.1% 31.1% 23.2% 44.0% 41.9% 35.0% 

OCF(PFCFE)  
vs. AOM 

58.6% 43.4% 43.7% 40.7% 51.7% 51.1% 41.6% 

OCF(PFCFE)  
vs. UCP 

62.2% 37.1% 45.2% 43.5% 54.8% 47.0% 39.4% 
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Figure 6-6. The average estimation results of the proposed 

OCF(PFCFE) method and other methods on all dataset 
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Table 6-38  The t-test results of five different runs for statistical comparison of our 
proposed OCF(PFCFE) methods with other tested methods 

Pairs of methods OCF(PFCFE) 
vs. UCP 

OCF(PFCFE) 
vs. SW 

OCF(PFCFE) 
vs. OCF 

OCF(PFCFE) 
vs. AOM 

SSE 
 

Avg.  
SSE 

2.16E+07 
vs. 

5.21E+07 

2.16E+07 
vs. 

5.72E+07 

2.16E+07 
vs. 

3.15E+07 

2.16E+07 
vs. 

3.75E+07 
Avg.  
p-value 

0.00000 0.00000 0.00000 0.00011 

St. conc. >> >> >> >> 

MAE 
 

Avg.  
MAE 

1194.141 
vs. 

2171.213 

1194.141 
vs. 

2228.636 

1194.141 
vs. 

1773.276 

1194.141 
vs. 

1756.148 
Avg.  
p-value 

0.00000 0.00000 0.00000 0.00000 

St. conc. >> >> >> >> 

RMSE 
 

Avg.  
RMSE 

1554.136 
vs. 

2620.587 

1554.136 
vs. 

2748.516 

1554.136 
vs. 

2024.497 

1554.136 
vs. 

2126.666 
Avg.  
p-value 

0.00000 0.00000 0.00000 0.00000 

St. conc. >> >> >> >> 
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7 THREAT OF VALIDITY 
Threats to the validity of this study, namely to internal, construct, and external 

validity, are summarized as follows: 
Internal validity: In EX1, there is no better way to choose the regularization 

parameter 𝜆 to extract a specific set of variables when using LASSO regression, 
as shown in equation (4.2). Controlling for the strength of the penalty (tuning 𝜆) 
has a significant impact. For example, if 𝜆 is sufficiently large, the coefficients 
must be precisely zero, reducing dimensionality. The larger the parameter 𝜆, the 
larger the number of coefficients reduced to zero. Therefore, we determined the 
𝜆-value using the LOOCV method, where the R-squared reaches its highest value. 
In addition, the LOOCV method was used to determine the optimal configuration 
parameters for the statistical and ML algorithms in EX4. The unbiased 
performance evaluation methodology of each statistical and ML algorithm should 
correct any overfitting of the proposed methods [78], [79]. The LOOCV approach 
is a better evaluation method than cross-validation because it provides lower bias, 
greater variance estimation, and adaptability for small datasets. Each ML 
technique uses the GS technique to optimize configuration parameters. Adding a 
tuning phase would significantly increase the cost of the experiments, and most 
approaches in our study worked well with optimally configured parameter values. 
However, these settings may not work well on larger datasets. Besides that, the 
dataset was collected over a long period by three donors. The data providers 
provided some independent variables. The process of using case point calculation, 
particularly for factor weights, is unknown. This may affect data quality and 
comparability across data providers. Previous articles used preprocessed datasets, 
which may have affected reliability. 

Construct validity is related to the generalizability of the results. The goal of 
this study was to reduce estimation error. The process is based on a standard 
procedure for tuning an estimation model. Performing a 5-fold cross-validation 
and processing four datasets allow us to generalize the results. To eliminate 
monomethod bias, unbiased evaluation criteria such as SSE, PRED (0.25), MAE, 
MdMRE, MBRE, MIBRE, and RMSE, as well as statistical pairwise t-tests, were 
used to determine the validity of the results. Therefore, we can conclude that the 
experimental results of this work are highly generalizable. 

External validity: The first one is the experimental dataset. Since our studies 
are based on publicly available datasets, the results should be convincing. These 
datasets contain a small fraction of all datasets in the real world. Consequently, 
conclusions from these datasets may not be comparable to other datasets. The 
second point concerns the use of the GS technique to fine-tune the configuration 
settings of each statistical and ML approach. It is recommended that numerous 
optimization approaches be explored to generalize the results of this study. 
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8 CONTRIBUTIONS OF THE THESIS TO SCIENCE 
AND PRACTICE 

The main benefit of this work is the introduction of a new approach to complex 
algorithms based on engineering requirements research for a more accurate 
estimation of software effort. The new algorithms are inspired by the possibilities 
of using a standardized estimation procedure to address the impact of human error 
in UCM analysis and to simplify the original UCP principles. 

The main benefits of this work can be summarized as follows: 

• Proposed procedures can help project managers reduce risks in evaluating 
correction factors and obtain effort estimates. 

• An algorithm for calculating productivity based on correction factors has been 
proposed through a voting set approach consisting of three ML techniques. 

• Proposed a comprehensive approach to improve estimation accuracy and 
minimize project risks in the early stages of software development. 

• Experiments have shown that the use of the proposed new algorithms 
minimizes the estimation error compared to the selected methods. 

In summary, the results obtained can be considered beneficial for industrial 
applications, as they show that the proposed algorithms lead to more accurate 
estimates of the size and complexity of the software. 
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9 CONCLUSIONS 
The presented doctoral thesis is proposed UCP-based estimation methods in the 

early stages of software development. Our methods can help project managers 
estimate costs early and efficiently, avoiding project overestimation and late 
delivery, among other issues. Each approach has its advantages, and they 
complement each other to form a complete process and promote significant 
efficiency to minimize estimation error more efficiently in all situations. The 
results show that our proposed SDEE method outperforms other related methods. 

One of our future works is to calibrate the weighting values of the correction 
factors to reflect the latest trend in the software development industry and improve 
the accuracy of the proposed methods. Therefore, an approach to calibrate the 
weights of the correction factors using an artificial neural network will be 
performed in the future. Another concern relates to a key aspect of the 
heterogeneity of the historical data. This could lead to an increase in the 
estimation error for SDEE. The use of clustering approaches is considered 
a solution to improve the method's estimation accuracy in our future work.  
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