
Ho Le Thi Kim Nhung, Ph.D.

Doctoral Thesis Summary

for System Engineering
Effective Parametric Model

Project Estimationysis

Doctoral Thesis Summary

Effective Parametric Model for System Engineering

Project Estimation

Efektivní parametrický model pro odhad projektu systémového

inženýrství

Author: Ho Le Thi Kim Nhung, Ph.D.

Degree programme: Engineering Informatics / P3902

Degree course: Engineering Informatics / 3902V023

Supervisor: Assoc. Prof. Ing. Zdenka Prokopová, CSc.

Consulting supervisor: Assoc. Prof. Ing. Radek Šilhavý, Ph. D.

External examiners: Prof. RNDr. Ing. Miloš Šeda, Ph.D.

 Assoc. Prof. Ing. Petr Čermák, Ph.D.

 Assoc. Prof. Ing. Zuzana Komínková Oplatková, Ph.D.

Zlín, November 2022

© Ho Le Thi Kim Nhung

Published by Tomas Bata University in Zlín in the Edition Doctoral Thesis

Summary.

The publication was issued in the year 2022.

Key words in Czech: Odhad úsilí vývoje softwaru, Body případů užití,

Optimalizace korekčních faktorů

Key words: Software development effort estimation, Use Case Points, Optimising

correction factors

Full text of the doctoral thesis is available in the Library of TBU in Zlín.

ISBN 978-80-7678-130-6

ABSTRAKT

V předkládané disertační práci jsou představeny návrhy nových způsobů

odhadů složitosti projektů založených na metodě Use Case Points, která se

používá v raných fázích vývoje softwaru. Navržené metody jsou vyvinuty tak,

aby zvládaly nepřesnosti při odhadování a zahrnovaly expertní posudky pro

vytvoření přesných a spolehlivých odhadů úsilí. Každý přístup má své výhody a

vzájemně se doplňují. Cílem je, aby jednotlivé metody vytvořily kompletní proces

a podporovaly efektivitu odhadu úsilí, tj. aby se ve všech situacích účinněji

minimalizovala chyba v odhadu. Výsledky ukazují, že navržené metody Software

Development Effort Estimation (SDEE) jsou konkurenceschopné ve srovnání s

jinými alternativami, na základě sedmi hodnotících kritérií a statistických

párových srovnání t-testů.

ABSTRACT

In the presented doctoral thesis, proposals for new methods of estimating the

complexity of projects based on the Use Case Points method, which is used in the

early stages of software development, are presented. The proposed methods are

developed to handle estimation inaccuracies and incorporate expert judgments to

produce accurate and reliable effort estimates. Each approach has its advantages,

and they complement each other. The goal is for them to create a complete process

and support the efficiency of effort estimation, i.e., to minimize estimation error

more effectively in all situations. The results show that the proposed Software

Development Effort Estimation (SDEE) methods are competitive compared to

other alternatives, based on seven evaluation criteria and statistical pairwise t-test

comparisons.

5

CONTENTS OF THE THESIS

1 CURRENT STATE OF THE ART .. 6

2 AIMS OF THE THESIS .. 9

3 THE PROPOSED METHODS .. 10

3.1 The proposed Optimization Correction Factors method 10

3.2 The proposed approach based on Optimization Correction Factors and

Multiple Linear Regression ... 12

3.3 The proposed Stacking ensemble model based on Optimizing Correction

Factors .. 14

3.4 The proposed software productivity model based on ensemble approach 15

4 RESEARCH METHODOLOGY ... 16

4.1 Experiment 1 (EX1) ... 16

4.2 Experiment 2 (EX2) ... 17

4.3 Experiment 3 (EX3) ... 18

4.4 Experiment 4 (EX4) ... 21

5 MAIN RESULTS ... 22

5.1 EX1 .. 22

5.2 EX2 .. 24

5.3 EX3 .. 26

4.4 EX4 .. 31

6 CONTRIBUTIONS OF THE THESIS TO SCIENCE AND PRACTICE .. 34

7 CONCLUSIONS .. 34

LITERATURE .. 359

LIST OF TABLES .. 39

LIST OF ABBREVIATIONS USED ... 40

LIST OF PUBLICATIONS OF THE AUTHOR ... 41

CURRICULUM VITAE AUTHOR ... 43

6

1 CURRENT STATE OF THE ART

Software Project Development has evolved into a dynamic and competitive

industry requiring high-level human resources. Software products are becoming

more complicated, unpredictable, and challenging to control. Many research

projects in the software field have been conducted in recent decades with the goal

of steering software development processes into more regulated, manageable, and

predictable paths. Project managers must estimate the cost of the software product

as well as the resources, effort, and time required to complete a project on time

and within budget [1]. Software measurement problems, such as project duration

prediction or defect density, receive special attention. These issues demonstrate

that the project management role has significantly increased.

Software Development Effort Estimation (SDEE) is critical to the overall

success of solution delivery. Early SDEE in the first phase of the software

development lifecycle is essential to avoiding project failures. The project

manager's role is to look at software products to help with budgeting, scheduling,

planning, project bidding, human resource allocation, and risk mitigation. The

SDEE is vital for some reasons [2]. First, it is beneficial to make informed

decisions about resource management before the project begins. The project plan

is then used to make informed decisions about managing and planning the project.

It is critical to allocate appropriate effort to the various activities in managing

project development. As a result, this has led many researchers to study software

estimation to obtain a more accurate SDEE [3], [4], [5]. However, based on the

requirement specifications, the SDEE cannot be expected to produce correct

results [6]. The issue of accurate effort estimation remains unresolved. An effort

estimation method is used to reduce the risk of surprises during the project to the

lowest possible value. It provides project managers with good control decisions

to ensure that reasonable effort is allocated to the various activities throughout the

project's development life cycle. When inaccurate models are used, such

estimation decisions can have disastrous consequences. The most visible example

of problems in managing complex, distributed software systems is the failure of

many software projects [7]. The results show that actual effort and schedule are

exceeded for most projects compared to estimates. If the software cost is

underestimated, the project will be inefficient, and the actual price will

undoubtedly be surpassed. Finally, even if completed on time, these

overestimated projects usually become more extensive and costly than planned.

In contrast, the functionality and quality of these underestimated projects are

reduced to meet the plan's requirements. This can result in losing the bid or

wasting time, money, personnel, and other resources, resulting in financial loss or

even bankruptcy.

Use Cases can be helpful to measure the estimated effort at an early stage of a

software project before the essential information is obtained during the

requirements phase of the software lifecycle [8]. Neil et al. [9] surveyed the

7

techniques used in the requirements elicitation, description, and modeling phases

and found that the use cases were used in the early stages by more than half of the

software projects. This has sparked the interest of numerous researchers in using

use cases-based SDEE approaches and their initial applicability for greater

accuracy. Karner [10] introduced the Use Case Points (UCP) method as a metric

for sizing object-oriented software projects based on a structured scenario and

actor analysis of the Use Case Model (UCM). Most studies focus on evaluating

UCP as a potential early SDEE method that could be used to estimate software

development effort and show its suitability for the software industry [11], [12],

[13], [14]. The UCP is a promising method for effort estimation in the early stages

of software development that offers numerous benefits to the software industry

[15], [16], [17]. Using machine learning to build SDEE models based on the

original UCP formula could be a solution to improve its accuracy. Some

approaches [18], [19], [20], [21], [22], [23] have also addressed variant models,

especially regression models, to improve estimation accuracy based on historical

data. The main drawback of the methods described above is that none of them is

comprehensive or provides better accuracy in estimating software effort in all

situations. There are still known problems in using UCP methods.

• The first problem is a particular uncertainty in evaluating technical complexity

factors (TCF) and environmental complexity factors (ECF), as it depends on

the experience of experts [24], [25], [26], [27], [28]. In particular, assigning an

appropriate value to an ECF is difficult due to the lack of relevant information.

This is because an ECF is associated with the level of information and

experience of a particular software development team. Similar problems exist

in assigning a value to a TCF. These correction factors affect the estimation

accuracy of UCP, so they need to be refined [29], [30]. Therefore, we will

examine the close relationship between technical and environmental factors

and prediction error to identify the best factors that significantly affect the

estimation accuracy of the UCP method. This issue will be discussed in

Chapter 3.1, as we have proposed a new formula for calculating the correction

factors in the UCP method.

• The second problem is that potentially unsuitable variables are not considered

in the UCP equation. In particular, use cases are written in natural language,

and there is no rigorous process for assessing the quality or fragmentation of

use cases. As a result, the number of steps in a use case may vary, affecting

the estimate's accuracy. In addition, the estimate's accuracy may suffer if a use

case contains multiple scenarios. Almost all previous methods for estimating

software effort based on UCP have focused on developing the method by

evaluating the complexity of the use case model and complexity weights [31],

[32], [33], [34], [35], [36], [37]. However, we believe the regression approach

based on UCP elements can solve this problem. Specifically, we will explore

the implementation of multiple linear regression (MLR) models to select new

formulas and regression coefficient values to reduce the impact of human error

8

in evaluating actors or use cases. As shown in Chapter 3.2, this new formula

outperforms the estimation accuracy of UCP.

• Moreover, given the complexity of today's software development projects,

effort estimation requires the support of statistics and machine learning (ML).

According to Kumar et al. [38], the overall estimation accuracies of SDEE

methods based on statistical and machine learning techniques are almost

acceptable as they are within 25% of the percent error (PRED (0.25)). The

techniques are used to model the relationship between effort and software

variables, which is particularly useful when the relationship is non-linear.

However, one question is how to select unbiased approaches and appropriate

algorithms. We note that single statistical and machine learning methods are

unreliable, and the accuracy of a single method depends on its parameter

configurations [39]. According to Thiago et al. [40], using a single model does

not lead to optimal SDEE results. Priya et al. [41] also found that combining

multiple models improves reliability. For all datasets, almost all ensemble

SDEE approaches use the same learning parameter settings. With the above

analysis, the thesis aims to reduce the bias and variability errors of the single

models. In Chapter 3.3, we present the ensemble approach, which integrates

seven well-known statistical and machine learning methods and fine-tunes the

parameters of all the single methods to create a new and more comprehensive

method in the early stages of software development.

• The fourth focus is the difficulty of converting software size into the

corresponding effort. Many researchers consider the software productivity

factor, or the amount of software produced per effort, critical to estimating

effort [42], [43], [44], [45]. This term also refers to the ratio of effort to size,

also known as the productivity factor (PF). Most accepted values for the

productivity factor have been suggested by project managers or use

predetermined values for software productivity [46], [47]. However, we

believe each software project takes place in a unique environment. Therefore,

the question of whether to impose a fixed PF on all software projects has not

been adequately addressed. This issue was discussed in Chapter 3.4 when we

developed the software productivity model using the ensemble approach with

historical correction factors. According to the findings, learning productivity

values for each project is more useful and efficient than using predetermined

values for all projects.

9

2 AIMS OF THE THESIS

The thesis focuses on developing SDEE methods for estimating software size

and effort from UCM. Our methods can be used during the requirements phase of

the software lifecycle. We aim to develop methods to handle imprecision and

incorporate expert opinions to produce accurate and reliable effort estimates. With

this objective, the thesis analyzes and proposes SDEE methods to reduce the

impact of human error in UCM analysis and simplify the original principles of

UCP. Each approach has its advantages, and they complement each other to form

a complete process and promote significant efficiency to minimize the estimation

error more efficiently in all situations.

With each problem statement presented in Chapter 1, we have made the

following objectives:

• Determining software complexity factors that significantly affect estimation

accuracy and proposing a new formula for the calculating of the correction

factors.

• Designing a comprehensive approach for determining software size in the

early stages of software development.

• Validation of the proposed methods and procedures using various evaluation

criteria and their comparison with the UCP reference method and other

approaches.

10

3 THE PROPOSED METHODS

First, a proposal for increasing the estimation accuracy of the existing UCP

method was called Optimization Correction Factors (OCF) [48]. We analyze

correction factors to identify the best technical and environmental complexity

factors that significantly affect the estimation accuracy of the UCP method in

regression analysis. To put this idea into practice, we propose a new formula to

calculate the correction factors in the UCP method. Then, to obtain more accurate

estimates, we aim to apply the MLR models to improve the ability of the OCF

method to estimate the software size and minimize the prediction error. This is

referred to as the Extension of Optimizing Correction Factors (ExOCF) [49]. The

OCF variables are used in this method to determine the software size. The MLR

formulation was created to estimate the software size values. Following the

proposed ExOCF is another alternative framework for effort prediction to

improve the overall performance of the regression. A novel Stacked SVR-MLR-

MLP-DT-RF-KNN-GB on the OCF (SOCF) model is proposed to improve the

overall performance of the regression. The model includes seven statistical and

ML techniques: MLR, KNN, SVR, MLP, RF, GB, and DT. Finally, the

calculations of the effective productivity factor (PFCFE) are proposed in

conjunction with the OCF as predictors of effort [50]. The summary of the four

proposed methods is shown in Figure 3-1.

Figure 3-1. The proposed methods

3.1 The proposed Optimization Correction Factors method

A detailed illustration of the OCF method is shown in Figure 3-2. The LASSO-

based Selection Phase (Phase I), applies the LASSO regression with the

determined regularisation parameter λ to extract a selected variable set; as shown

in Eq. (3.1).

Actor Use Case

UAW UUCW

UUCP

Complexity Weight

TCF

ECF

Complexity Factors

UCP

Size
Effort

PF = 20

OCF

Size

LaTF

LaEF

Correction Factors

Applying the feature selection (LASSO)

approach to determine the best technical

and environmental complexity factors

PFCFE
Proposing software productivity

model based on correction factors

through an ensemble construction

mechanism of three machine

learning models

Effort

PF = 20

ExOCF

Size

Proposing a parametric software

effort estimation model based on

the OCF method and MLR

PF = 20

SOCF

Size

Proposing a novel Stacked SVR-

MLR-MLP-DT-RF-KNN-GB

PF = 20

11

β̂(λ) = argmin

β
(

∥ Y − Xβ ∥2
2

n
+ λ ∥ β ∥1)

subject to ∑ |βj| < t
k

j=1

(3.1)

where

∥ Y − Xβ ∥2

2 = ∑ (Yi − (Xβ)i)
2

n

i=0

(3.2)

∥ β ∥1 = ∑ |βj|

k

j=1

(3.3)

where λ ≥ 0 is the lasso parameter that controls the strength of the penalty determined

by the Leave One Out Cross-Validation (LOOCV) method. The choice of the lasso

parameter is adjusted based on the lowest possible estimation error and a lack of bias

against the correction factors of the observations in the training set. The lasso

parameter relates directly to the number of correction factors selected via non-zero β.

LASSO regression is used to obtain the TCF and ECF correction coefficients -

as described in Eq. (3.4) and Eq. (3.5), respectively.

y_TCFi = α0 + ∑ αi × ti × fwi

13

i=1

(3.4)

y_ECFi = β0 + ∑ βi × ei × ewi

8

i=1

(3.5)

where, y_TCFi be (
Real_P20

(UAW+UUCW)× ECF
− 0.6) ×

1

0.01
 , y_ECFi be

(
Real_P20

(UAW+UUCW)× TCF
− 1.4) ×

−1

0.03
 , and α0, αi β0, βi are the regression coefficient

parameters obtained from the LASSO regression; Real_P20 is the real size of

software projects from historical datasets. The LASSO-based selected variables

in TCF and ECF are designated as LaTF and LaEF respectively.

Then, Least Squares Regression (LSR) is used to obtain the coefficients for

LaTF and LaEF in Eq. (3.6) and Eq. (3.7), respectively. LaTF and LaEF values

represent the final technical and environmental complexity factors - (correction

factors), in the OCF method.

y_LaTFi = α0 + ∑ αi × LaTi × WLti

n

i=1

(3.6)

y_LaEFi = β0 + ∑ βi × LaEi × WLei

m

i=1

(3.7)

where, let y_LaTFi and y_LaEFi be the TCF and ECF from the historical dataset;

n is the number of LaTF; m is the number of LaEF; and α0, αi β0, βi are regression

coefficient parameters obtained from LSR.

LaTF and LaEF are obtained according to Eq. (3.8) and Eq. (3.9).

12

LaTF = α0 + ∑ αi × LaTi × WLti

n

i=1

(3.8)

LaEF = β0 + ∑ βi × LaEi × WLei

m

i=1

(3.9)

The model fitting phase - (Phase II) is determined. The effort estimation final

result of the proposed OCF method is described by Eq. (3.10).

 UCPOCF = (UAW + UUCW) × LaTF × LaEF (3.10)

Figure 3-2. The proposed Optimizing Correction Factors method

3.2 The proposed approach based on Optimization

Correction Factors and Multiple Linear Regression

The OCF approach can help project managers reduce the risks associated with

evaluating correction factors. The results show that the method improves the

average SSE by more than 53.6% compared to the UCP method. The detailed

results are presented in Chapter 5.1. We further develop the OCF method and

propose an extension of OCF (ExOCF) that applies MLR models to the OCF

elements to reduce the estimation error and the influence of the unsystematic noise

of the OCF technique. A detailed illustration of the ExOCF method is shown in

Figure 3-3.

The proposed model is built using MLR as follows:

13

UCPExOCF = γ1(UAW × LaTF × LaEF)

+ γ2(UUCW × LaTF × LaEF)
(3.11)

where γ1, γ2 are obtained according to two steps. First, the historical data points

(P1, … , P2) are collected. The UAW, UUAW, LaTF, and LaEF elements for each

project are identified. The result of this step is the collection of values

(xi1, xi2, yi), i = 1 … n̅̅ ̅̅ ̅̅ ̅ , where yi is the actual size (Real_P20 values) of the

software project from a historical dataset.

 xi1 = (UAWi × LaTFi × ECFi) (3.12)

 xi2 = (UUCWi × LaEFi × ECFi) (3.13)

The LSR model is then used for obtaining the regression coefficients γ1, γ2 as

followings.

(

y1

⋮
yn

) = (
γ1

γ2
) × (

X11

⋮
Xn1

X12

⋮
Xn2

)
(3.14)

 (
γ1

γ2
) = (XTX)−1XTy (3.15)

Because yi is a real value from a historical dataset, the regression coefficient

values of γ1, γ2 can vary from each dataset. This means that when a historical

dataset changes, this phase needs to be performed again to obtain new regression

coefficient values. The second step of this phase will calculate the UAW, UUCW,

LaTF, and LaEF of the current project, and Eq. (3.11) is applied with values γ1, γ2

to estimate the UCPExOCF.

14

Figure 3-3. Detailed illustration of the proposed ExOCF method

3.3 The proposed Stacking ensemble model based on

Optimizing Correction Factors

Based on the literature review, we believe the ensemble approach can provide

an unbiased estimate of the effort required for a new software project. The

ensemble approach combines at least two different single models through a unique

aggregation mechanism and generates the final solution through weighted voting

on their solutions [51]. As a result, this section aims to investigate the effect of

the ensemble approach in predicting the software size early in the project

development using the OCF method. The SOCF model is proposed that

incorporating seven statistical and ML techniques MLR, KNN, SVR, MLP, RF,

GB, and DT.

The detailed SOCF architecture is shown in Figure 3-4, which consists of

cleaning the data, dividing it into training and test sets, and applying the stacking

model to estimate the OCF-based size.

The following methodology was used:

1. LASSO regression is used to determine the best correction factors.

2. The input and output vectors are determined.

3. The data is split into a training set S(−j) and a test set Sj. S
(−j) is used to

create the level 0 models (regressors) via seven ML techniques, SVM,

KNN, DT, MLP, MLR, GB, and RF.

15

4. The configuration parameters for the seven regression models (level 0

models) SVM, KNN, DT, MLP, MLR, GB, and RF are tuned on the

validation set (30% of the training set) to produce their optimal settings.

5. Create an ensemble model with the stacking approach. The estimator's

predictions are stacked and fed into a final estimator, which computes the

final estimation. More precisely, each of the level 0 models in the first stage

undergo five-fold cross-validation in S(−j) to output its prediction and

generate a prediction for Sj by taking the average of the seven estimation

results generated by the five CV models in the training phase. Then these

level 0 models create a vector of predictions to input into the level 1 model

(in the second stage). RF was selected as the meta-regressor to train a new

model for the final project size estimation.

Figure 3-4. The architecture of the proposed SOCF model

3.4 The proposed software productivity model based on

ensemble approach

Our primary goal is to research and confirm the role of software productivity

in generating early effort estimates from UCP. To address the fourth problem in

Chapter 1, we proposed effective productivity factor calculations in conjunction

with UCP as predictors for effort. The approach employs an ensemble

construction mechanism from ML techniques (OCF(PFCFE)) such as Support

Data cleaning
Feature selection on

Correction Factors

Historical data points (P1, …, Pn). Parameter received by UCP

For each project:

Real_P20, UAW, UUCW

TCF, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13,

ECF, ENV1, ENV2, ENV3, ENV4, ENV5, ENV6, ENV7, ENV8

Results of feature engineering

Real_P20, UAW, UUCW

LaTF, LaEF

Data splitProblem formulation

Inputs/ outputs

determination

Data

SVR MLR MLP DT GBRF KNN

Base

Regressor 1j

Base

Regressor 2j

Base

Regressor 3j

Base

Regressor 4j
Base

Regressor 5j

Base

Regressor 6j

Base

Regressor 7j

S(-j)S(-j) S(-j) S(-j) S(-j) S(-j) S(-j)

Sj Sj Sj Sj Sj Sj
Sj

p2jp1j p3j p4j p5j p6j
p7j

S(-j): training data

Sj: test data

p: level-0 regressors estimations over instances in Sj

J: number of folds in cross-validation

J times (j={1, …,J}First stage (Level-0)

RF

Second stage (Level-1)

Meta-Regressor

Final Project Size Estimation

S(-j) Sj

Grid Search (GS)

optimization

16

Vector Regression (SVR), Multiple Linear Regression (MLR), and Decision Tree

(DT). The voting ensemble is used as an ensemble model ML.

Figure 3-5 shows the proposed software productivity mode. The methodology

was used: (1) Correction factors from OCF are used as input. (2) Built the voting

regressor algorithm [52] consisting of three base estimators, such as Support

Vector Regression (sklearn.svm.SVR), Multiple Linear Regression

(sklearn.linear_model.LinearRegression), and Decision Tree Regression

(sklearn.tree.DecisionTreeRegressor).

Figure 3-5. The proposed software productivity model

Estimated effort is obtained by multiplying OCF by PFCFE, as follows Eq.

(3.21).

 EffortOCF(PFCFE)
= OCF × PFCFE (3.21)

4 RESEARCH METHODOLOGY

4.1 Experiment 1 (EX1)

EX1 is performed to evaluate the proposed OCF method with other related

methods, such as the baseline UCP [10] and OTF - a variant of the UCP model

that omits the technical factors [53]. These methods are summarized in Table 4-1.

Table 4-1. Methods implemented for EX1

No. SDEE methods Summary Notation

1 Use Case Points - Size is measured by UCP variables

(UAW, UUCW, TCF, and ECF).

UCP

2 UCP (omitting

technical factors)

- Size is measured from UCP

variables (UAW, UUAW, and ECF)

except for the technical factors.

OTF

17

3 Optimization

Correction Factors

(proposed in

Chapter 3.1)

- Correction factors are determined

in regression analysis by the LASSO

regression model.

- Size is measured in UCP variables

(UAW and UUCW) and correction

factors (LaTF and LaEF).

OCF

The statistical hypothesis was tested to determine whether the proposed OCF

approach provides a better estimate.

• H0: μthe proposed OCF method = μthe other tested methods. The estimation ability

of the proposed OCF method is not significantly different from the estimation

abilities of the other tested methods.

• H1: μthe proposed OCF method > μthe other tested methods. The estimation ability

of the proposed OCF method is significantly different from the estimation

abilities of the other tested methods.

4.2 Experiment 2 (EX2)

EX2 is performed to evaluate the proposed ExOCF method with the related

software size estimation models from the literature. The selected models are the

baseline UCP model [10], the OCF model, and the AOM model [23]. We also

developed two models that establish a linear relationship between software and

UCP factors (UAW, UUC, TCF, and EF). These models are SVR, and DT. All

methods are summarized in Table 4-2.

Table 4-2. Methods implemented for EX2

No. SDEE method Summary Notation

1 Use Case Points - Size is measured by UCP variables

(UAW, UUCW, TCF, and ECF).

UCP

2 Optimization

Correction Factors

(proposed in

Chapter 2.1)

- Correction factors are determined in

regression analysis by the LASSO

regression model.

- Size is measured in UCP size

variables (UAW and UUCW) and

correction factors (LaTF and LaEF).

OCF

18

3 Algorithmic

Optimization

Method

- Size is measured based on linear

regression on UCP variables (UAW,

UUC, TCF, and EF).

AOM

4 Use Case Points

using SVR

- SVR is used to estimate the software

size based on UCP variables (UAW,

UUCW, TCF, and ECF).

UCP&SVR

5 Use Case Points

using DT

- DT is used to estimate the software

size based on UCP variables (UAW,

UUCW, TCF, and ECF).

UCP&DT

6 Extension of

Optimization

Correction Factors

(proposed in

Chapter 3.2)

- Correction factors are determined in

regression analysis by the LASSO

regression model.

- Size is based on linear regression on

OCF variables (UAW, UUCW,

LaTF, and LaEF).

ExOCF

The statistical hypothesis was tested to determine whether the proposed ExOCF

approach provides a better estimate.

• H0: μthe proposed ExOCF method = μthe other tested methods. The estimation

ability of the proposed ExOCF method is not significantly different from the

estimation abilities of the other tested methods.

• H1: μthe proposed ExOCF method > μthe other tested methods. The estimation

ability of the proposed ExOCF method is significantly different from the

estimation abilities of the other tested methods.

4.3 Experiment 3 (EX3)

EX3 is conducted to compare the proposed SOCF method with the related

SDEE methods, such as UCP-based single methods (described in Table 4-3),

OCF-based single methods (described in Table 4-4), and ensemble methods

(described in Table 4-5). In addition, we experimented with baseline SDEE

methods (UCP and OCF).

19

Table 4-3. UCP-based single methods implemented for EX3

No. ML technique Summary Notation

1 SVR - SVR is used to estimate the software

size based on UCP variables (UAW,

UUCW, TCF, and ECF).

UCP&SVR

2 KNN - KNN is used to estimate the software

size based on UCP variables (UAW,

UUCW, TCF, and ECF).

UCP&KNN

3 DT - DT is used to estimate the software size

based on UCP variables (UAW, UUCW,

TCF, and ECF).

UCP&DT

4 GRNN - GRNN is used to estimate the software

size based on UCP variables (UAW,

UUCW, TCF, and ECF).

UCP&GRNN

5 MLP - MLP is used to estimate the software

size based on UCP variables (UAW,

UUCW, TCF, and ECF).

UCP&MLP

6 RF - RF is used to estimate the software size

based on UCP variables (UAW, UUCW,

TCF, and ECF).

UCP&RF

Table 4-4. OCF-based single methods implemented for EX3

No. ML technique Summary Notation

1 SVR - SVR is used to estimate the software size

based on OCF variables (UAW, UUCW,

LaTF, and LaEF).

OCF&SVR

2 MLP - MLP is used to estimate the software size

based on OCF variables (UAW, UUCW,

LaTF, and LaEF).

OCF&MLP

3 GB - GB is used to estimate the software size

based on OCF variables (UAW, UUCW,

LaTF, and LaEF).

OCF&GB

20

4 MLR - MLR is used to estimate the software size

based on OCF variables (UAW, UUCW,

LaTF, and LaEF).

OCF&MLR

5 KNN - KNN is used to estimate the software size

based on OCF variables (UAW, UUCW,

LaTF, and LaEF).

OCF&KNN

6 DT - DT is used to estimate the software size

based on OCF variables (UAW, UUCW,

LaTF, and LaEF).

OCF&DT

7 RF - RF is used to estimate the software size

based on OCF variables (UAW, UUCW,

LaTF, and LaEF).

OCF&RF

Table 4-5. Ensemble methods implemented for EX3

No. ML technique Summary Notation

1

Majority voting

ensemble

- Majority voting ensemble with

MLR, SVR, MLP models to

estimate the software size based on

UCP variables (UAW, UUCW,

TCF, and ECF).

VUCP

2 Stacked

Generalization

Ensemble

- Stacked generalization ensemble

with SVM, KNN, DT, MLP, MLR,

GB, RF models to estimate the

software size based on OCF

variables (UAW, UUCW, LaTF,

and LaEF).

SOCF

(proposed in

Chapter 3.3)

The statistical hypothesis was tested to determine whether the proposed SOCF

approach provides a better estimate.

• H0: μthe proposed SOCF method = μthe other tested methods. The estimation

ability of the proposed SOCF method is not significantly different from the

estimation abilities of the other tested methods.

• H1: μthe proposed SOCF method > μthe other tested methods. The estimation ability

of the proposed SOCF method is significantly different from the estimation

abilities of the other tested methods.

21

4.4 Experiment 4 (EX4)

EX4 is conducted to compare the proposed OCF(PFCFE) method with the

previous SDEE methods (UCP, SW [54], OCF), as summarized in Table 4-6.

Table 4-6. Methods implemented for EX4

No. SDEE method Summary Notation

1 Use Case Points - Size is measured by UCP variables

(UAW, UUCW, TCF, and ECF).

- 20 person-hours to develop each UCP

(PF=20).

- The effort is computed by multiplying

Size by the PF.

UCP

2 Schneider and

Winter (SW)

- Size is measured by UCP variables

(UAW, UUCW, TCF, and ECF).

- PF is computed from the UCP

environmental complexity factors.

- The effort is computed by multiplying

Size by the PF.

SW

3 Optimization

Correction

Factors

- Correction factors are determined in

regression analysis by the LASSO

regression model.

- Size is measured in UCP size variables

(UAW and UUCW) and correction

factors (LaTF and LaEF).

- 20 person-hours to develop each UCP

(PF=20).

- The effort is computed by multiplying

Size by the PF.

OCF

4 Software

Productivity

Model based on

Ensemble

Construction

Mechanism

(proposed in

Chapter 3.4)

- Size is measured in UCP size variables

(UAW and UUCW) and correction

factors (LaTF and LaEF).

- A proposed PFCFE model is constructed

based on correction factors through an

ensemble construction mechanism of

three ML models (SVR, MLR, and DT).

OCF(PFCFE)

22

- The effort is computed by multiplying

Size by the PFCFE.

The statistical hypothesis was tested to determine whether the proposed

OCF(PFCFE) approach provides a better estimate.

• H0: μthe proposed OCF(PFCFE) method = μthe other tested methods. The estimation

ability of the proposed SOCF method is not significantly different from the

estimation abilities of the other tested methods.

• H1: μthe proposed OCF(PFCFE) method > μthe other tested methods. The estimation

ability of the proposed SOCF method is significantly different from the

estimation abilities of the other tested methods.

5 MAIN RESULTS

This section presents the solutions to the four problem statements given above.

The purpose of the results is to minimize the SSE, MdMRE, MAE, MBRE,

MIBRE, and RMSE and maximize the PRED (0.25). Specifically, low values for

the SSE, MdMRE, MAE, MBRE, MIBRE, and RMSE show good results. In

contrast, high values for the PRED (0.25) show good results. Besides that, the

results of SSE, MAE, MdMRE, MBRE, MIBRE, and RMSE in the four

experimental datasets were used for the paired t-test statistical comparisons. After

five runs on different random training- testing had split, we obtained the average

p-value of the t-test.

5.1 EX1

In the EX1, we will compare the proposed OCF method as well as the UCP and

OTF methods based on the four experimental datasets. Figure 5-1 shows the

average estimation results of the proposed OCF and other methods.

The percentage improvements of the proposed OCF over the UCP and OTF

methods averaged on all datasets in Table 5-1. These results show that the

proposed OCF method outperformed the UCP and OTF methods when the SSE,

MAE, MBRE, MIBRE, MdMRE, and RMSE criteria were used. The OCF method

also gave good results when PRED (0.25) was used.

Table 5-1. The percentage improvements of the OCF over the UCP and OTF

methods averaged on all datasets

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE

OCF vs.UCP 53.6% 33.6% 35.4% 42.9% 36.7% 30.2% 34.1%

OCF vs.OTF 37.7% 21.1% 19.2% 36.4% 20.8% 17.8% 23.3%

23

Figure 5-1. The average estimation results of the proposed OCF

method and other methods on all datasets

Moreover, we use the SSE, MAE, and RMSE results for all the experimental

methods for statistical comparisons, i.e., to draw the most accurate conclusions

by comparing estimation methods. The t-test, a parametric statistical comparison

test, is used in this study. For a less than, the two statistical methods involved in

the comparison are significantly different. As shown in Table 5-2, our proposed

OCF method is statistically superior to the baseline UCP method and the OTF

method. A>> B means that A is statistically superior to B. Therefore, we accept

the alternative hypothesis H1.

Table 5-2. The t-test results for five different runs of the proposed OCF method in

comparison with the other methods.

Pairs of methods OCF vs. UCP OCF vs. OTF

SSE

Avg. SSE
24,086.736 vs.

51978.747

24,086.736 vs.

38660.720

Avg. p-value 0.00000 0.00000

Statistical conclusion >> >>

MAE Avg. MAE
68.432 vs.

106.009

68.432 vs.

84.790

24

Avg. p-value 0.00000 0.00001

Statistical conclusion >> >>

RMSE

Avg. RMSE
78.207 vs.

118.707

78.207 vs.

102.091

Avg. p-value 0.00000 0.00000

Statistical conclusion >> >>

5.2 EX2

In this section, we will evaluate the proposed ExOCF method and five other

methods across the four experiment datasets. The average estimation results of

methods are shown in Figure 5-2.

The first observation from these results is that the proposed ExOCF method

produces the best SSE, MdMRE, MAE, MBRE, MIBRE, RMSE, and PRED

(0.25) values, suggesting that it is possible to modify the OCF method to improve

its estimation accuracy. From the results obtained, we believe that applying the

MLR model to the OCF variables has proven its effectiveness.

The second observation from these results is that the proposed ExOCF method

improved accuracy over the baseline UCP method and other tested methods such

as AOM, UCP&DT, and UCP&SVR. Table 5-3 presents the percentage

improvement of the proposed ExOCF over the AOM, UCP&DT, and UCP&SVR

methods averaged on all datasets. Based on this comparison, we can confidently

confirm that the proposed method outperforms all other methods with superior

accuracy in the evaluation criteria.

Table 5-3. The percentage improvements of the ExOCF over the other methods

averaged on all datasets

Methods SSE MAE RMSE MdMRE MBRE MIBRE

ExOCF

vs. UCP&DT
46.16% 31.13% 32.17% 32.35% 30.08% 29.97%

ExOCF

vs. UCP&SVR
44.11% 31.35% 40.71% 32.28% 31.32% 23.17%

ExOCF

vs. AOM
16.73% 13.39% 18.10% 13.06% 12.89% 7.84%

25

Figure 5-2. The average estimation results of the proposed ExOCF

method and other methods on all datasets

Furthermore, the results confirm that the ExOCF method is statistically

significant at the 95% confidence level compared to the other five methods, as

shown in Table 5-4. As a result, we are inclined to accept the alternative

hypothesis (H1), which is also consistent with the results presented above. A>>B

means that A is statistically superior to B.

26

Table 5-4. The t-test results for five different runs of the proposed ExOCF method

in comparison with the other methods

Pairs of

methods

ExOCF

vs.

UCP

ExOCF

vs.

OCF

ExOCF

vs.

UCP&DT

ExOCF

vs.

UCP&SVR

ExOCF

vs.

AOM

SSE

Avg.

SSE

1902.4 vs.

51,978.7

1902.4 vs.

24,086.7

1902.4 vs.

3533.4

1902.4 vs.

3403.9

1902.4 vs.

2284.6

Avg. p-

value
0.00000 0.00001 0.00267 0.00316 0.00388

St. conc. >> >> >> >> >>

MAE

Avg.

MAE

10.058 vs.

106.009

10.058 vs.

68.432

10.058 vs.

14.605

10.058 vs.

14.651

10.058 vs.

11.613

Avg. p-

value
0.00000 0.00000 0.00001 0.00000 0.00005

St. conc. >> >> >> >> >>

RMSE

Avg.

RMSE

13.348 vs.

118.707

13.348 vs.

78.207

13.348 vs.

19.060

13.348 vs.

17.372

13.348 vs.

14.484

Avg. p-

value
0.00000 0.00000 0.00000 0.00001 0.00007

St. conc. >> >> >> >> >>

5.3 EX3

The comparison between the OCF-based and UCP-based single methods is

illustrated in Figure 5-3. The first finding from these results is that the

experimental results suggest that OCF-based methods reduce estimation errors

more effectively than UCP model-based methods. Table 5-5 show the percentage

improvements of OCF&SVR, OCF&MLP, OCF&KNN, OCF&DT, and

OCF&RF over UCP&SVR, UCP &MLP, UCP &KNN, UCP &DT, and UCP

&RF. Based on this finding, we can conclude that approaches that use OCF

variables outperform those that use UCP variables.

27

Table 5-5. The percentage improvements of the OCF-based single methods

averaged on all datasets

 Methods SSE MAE RMSE MdMRE MBRE MIBRE

OCF&SVR

vs. UCP&SVR
35.80% 19.43% 28.17% 20.23% 19.18% 15.82%

OCF&MLP

vs. UCP&MLP
39.25% 19.53% 18.50% 19.83% 18.21% 15.80%

OCF&KNN

vs. UCP&KNN
44.62% 33.65% 40.18% 34.06% 32.00% 27.47%

OCF&DT

vs. UCP&DT
6.63% 6.49% 9.28% 7.23% 6.52% 7.70%

OCF&RF

vs. UCP&RF
52.22% 26.56% 25.50% 27.71% 25.30% 24.08%

Figure 5-3. The average estimation results of the UCP-based and

OCF-based single methods

28

The comparison between between the ensemble methods and their single

approaches is shown in Figure 5-4 and Figure 5-5. Based on these results, we can

conclude that the ensemble methods outperform their single methods, and the

proposed SOCF approach surpasses the VUCP method. Moreover, the results

confirm that the SOCF method is statistically significant at the 95% confidence

level compared to the other methods, as shown in Table 5-6, Table 5-7, and Table

5-8. A>> B means that A is statistically superior to B. Therefore, we accept the

alternative hypothesis H1.

Figure 5-4. The comparison between the ensemble method VUCP and

its single approaches

29

Figure 5-5. The comparison between the ensemble method SOCF and

its single approaches

30

Table 5-6. The t-test results for five different runs of the proposed SOCF method

in comparison with the other methods

Pairs of

methods

SOCF

vs.

UCP

SOCF

vs.

OCF&MLP

SOCF

vs.

OCF&DT

SOCF

vs.

OCF&SVR

SOCF

vs.

OCF&MLR

SSE

Avg.

SSE

1217.7 vs.

54838.9

1217.71 vs.

2279.44

1217.71 vs.

3028.31

1217.71 vs.

2184.80

1217.71 vs.

2117.07

Avg. p-

value
0.00000 0.00076 0.00440 0.00190 0.00514

St. conc. >> >> >> >> >>

MAE

Avg.

MAE

6.980 vs.

95.615

6.980 vs.

11.762

6.980 vs.

12.373

6.980 vs.

11.200

6.980 vs.

10.874

Avg. p-

value

0.00000 0.00000 0.00005 0.00000 0.00001

St. conc. >> >> >> >> >>

RMSE

Avg.

RMSE

9.096 vs.

104.339

9.096 vs.

14.639

9.096 vs.

14.482

9.096 vs.

13.977

9.096 vs.

13.197

Avg. p-

value

0.00000 0.00002 0.00006 0.00005 0.00000

St. conc. >> >> >> >> >>

Table 5-7. The t-test results for five different runs of the proposed SOCF method

in comparison with the other methods

Pairs of

methods

SOCF

vs.

OCF&GB

SOCF

vs.

OCF&RF

SOCF

vs.

UCP&KNN

SOCF

vs.

UCP&SVR

SOCF

vs.

UCP&MLP

SSE

Avg.

SSE

1217.7 vs.

3069.7

1217.7 vs.

1847.0

1217.71 vs.

1899.03

1217.71 vs.

3402.95

1217.7 vs.

2117.07

Avg. p-

value
0.00460 0.00583 0.01199 0.00195

0.00514

St. conc. >> >> >> >> >>

MAE

Avg.

MAE

6.980 vs.

12.441

6.980 vs.

9.499

6.980 vs.

9.293

6.980 vs.

13.902

6.980 vs.

10.874

Avg. p-

value

0.00005 0.00000 0.00005 0.00005 0.00001

St. conc. >> >> >> >> >>

31

RMSE

Avg.

RMSE

9.096 vs.

14.530

9.096 vs.

12.032

9.096 vs.

11.993

9.096 vs.

16.604

9.096 vs.

Avg. p-

value

0.00006 0.00005 0.00010 0.00000 13.197

St. conc. >> >> >> >> >>

Table 5-8. The t-test results for five different runs of the proposed SOCF method

in comparison with the other methods

Pairs of

methods

SOCF

vs.

UCP&GB

SOCF

vs.

OCF&KNN

SOCF

vs.

UCP&DT

SOCF

vs.

UCP&RF

SOCF

vs.

VUCP

SSE

Avg.

SSE

1217.7 vs.

3069.7

1217.7 vs.

1847.0

1217.71 vs.

1899.03

1217.71 vs.

3402.95

1217.71 vs.

2397.77

Avg. p-

value
0.00460 0.00583 0.01199 0.00195

0.00764

St. conc. >> >> >> >> >>

MAE

Avg.

MAE

6.980 vs.

12.441

6.980 vs.

9.499

6.980 vs.

9.293

6.980 vs.

13.902

6.980 vs.

10.899

Avg. p-

value

0.00005 0.00000 0.00005 0.00005 0.00003

St. conc. >> >> >> >> >>

RMSE

Avg.

RMSE

9.096 vs.

14.530

9.096 vs.

12.032

9.096 vs.

11.993

9.096 vs.

16.604

9.096 vs.

13.169

Avg. p-

value

0.00006 0.00005 0.00010 0.00000 0.00007

St. conc. >> >> >> >> >>

5.4 EX4

In the EX4, we will compare the proposed OCF(PFCFE) method as well as the

previous related methods (UCP, SW, and OCF) based on the four experimental

datasets. The comparison between the OCF(PFCFE) method and three related

methods is illustrated in Figure 5-6. The obtained results allow us to confidently

conclude that the OCF(PFCFE) using the proposed software productivity approach

achieves better improvements than the previous related methods using fixed

productivity metrics, concerning all accuracy measures.

32

(3) The percentage improvements of the proposed OCF(PFCFE) over the other

methods are presented in Table 5-9. This conclusion is confirmed by

statistical t-test comparisons for each corresponding method (see

Table 5-10). A>>B refers to A statistical superiority to B. The OCF(PFCFE)

using the proposed software productivity approach is statistically better than other

methods, as the obtained p-values are all below 0.05.

Table 5-9. The percentage improvements of the proposed OCF(PFCFE) method

averaged on all datasets

 Methods SSE PRED MAE RMSE MdMRE MBRE MIBRE

OCF(PFCFE)

vs. UCP
58.6% 43.4% 43.7% 40.7% 51.7% 51.1% 41.6%

OCF(PFCFE)

vs. SW
62.2% 37.1% 45.2% 43.5% 54.8% 47.0% 39.4%

OCF(PFCFE)

vs. OCF
31.3% 30.1% 31.1% 23.2% 44.0% 41.9% 35.0%

OCF(PFCFE)

vs. AOM
58.6% 43.4% 43.7% 40.7% 51.7% 51.1% 41.6%

OCF(PFCFE)

vs. UCP
62.2% 37.1% 45.2% 43.5% 54.8% 47.0% 39.4%

Table 5-10 The t-test results of five different runs for statistical comparison of our

proposed OCF(PFCFE) methods with other tested methods

Pairs of methods
OCF(PFCFE)

vs. UCP

OCF(PFCFE)

vs. SW

OCF(PFCFE)

vs. OCF

OCF(PFCFE)

vs. AOM

SSE

Avg.

SSE

2.16E+07

vs.

5.21E+07

2.16E+07

vs.

5.72E+07

2.16E+07

vs.

3.15E+07

2.16E+07

vs.

3.75E+07

Avg.

p-value
0.00000 0.00000 0.00000 0.00011

St. conc. >> >> >> >>

MAE

Avg.

MAE

1194.141

vs.

2171.213

1194.141

vs.

2228.636

1194.141

vs.

1773.276

1194.141

vs.

1756.148

Avg.

p-value
0.00000 0.00000 0.00000 0.00000

33

St. conc. >> >> >> >>

RMSE

Avg.

RMSE

1554.136

vs.

2620.587

1554.136

vs.

2748.516

1554.136

vs.

2024.497

1554.136

vs.

2126.666

Avg.

p-value
0.00000 0.00000 0.00000 0.00000

St. conc. >> >> >> >>

Figure 5-6. The average estimation results of the proposed

OCF(PFCFE) method and other methods on all dataset

34

6 CONTRIBUTIONS OF THE THESIS TO SCIENCE

AND PRACTICE

The main benefit of this work is the introduction of a new approach to complex

algorithms based on engineering requirements research for a more accurate

estimation of software effort. The new algorithms are inspired by the possibilities

of using a standardized estimation procedure to address the impact of human error

in UCM analysis and to simplify the original UCP principles.

The main benefits of this work can be summarized as follows:

• Proposed procedures can help project managers reduce risks in evaluating

correction factors and obtain effort estimates.

• An algorithm for calculating productivity based on correction factors has been

proposed through a voting set approach consisting of three ML techniques.

• Proposed a comprehensive approach to improve estimation accuracy and

minimize project risks in the early stages of software development.

• Experiments have shown that the use of the proposed new algorithms

minimizes the estimation error compared to the selected methods.

In summary, the results obtained can be considered beneficial for industrial

applications, as they show that the proposed algorithms lead to more accurate

estimates of the size and complexity of the software.

7 CONCLUSIONS

The presented doctoral thesis is proposed UCP-based estimation methods in the

early stages of software development. Our methods can help project managers

estimate costs early and efficiently, avoiding project overestimation and late

delivery, among other issues. Each approach has its advantages, and they

complement each other to form a complete process and promote significant

efficiency to minimize estimation error more efficiently in all situations. The

results show that our proposed SDEE method outperforms other related methods.

One of our future works is to calibrate the weighting values of the correction

factors to reflect the latest trend in the software development industry and improve

the accuracy of the proposed methods. Therefore, an approach to calibrate the

weights of the correction factors using an artificial neural network will be

performed in the future. Another concern relates to a key aspect of the

heterogeneity of the historical data. This could lead to an increase in the

estimation error for SDEE. The use of clustering approaches is considered

a solution to improve the method's estimation accuracy in our future work.

35

LITERATURE

[1] B. W. Boehm, "Software Engineering Economics," IEEE Transactions on

Software Engineering, vol. SE-10, (1), 1984.

[2] B. Boehm et al, "Software Cost Estimation with COCOMO II. Prentice

Hall," Upper Saddle River, NJ, 2000.

[3] M. Jørgensen and M. Shepperd, "A systematic review of software

development cost estimation studies," IEEE Transactions on Software

Engineering, vol. 33, (1), 2007.

[4] A. Trendowicz, J. Münch and R. Jeffery, "State of the practice in software

effort estimation: A survey and literature review," in IFIP Central and East

European Conference on Software Engineering Techniques, 2008, pp. 232-245.

[5] Nhung, Ho Le Thi Kim, H. T. Hoc and V. V. Hai, "A review of use case-

based development effort estimation methods in the system development

context," Proceedings of the Computational Methods in Systems and Software,

pp. 484-499, 2019.

[6] B. Boehm, C. Abts and S. Chulani, "Software development cost estimation

approaches — A survey," Annals of Software Engineering, vol. 10, (1/4), pp. 177-

205, 2000.

[7] R. N. Charette, "Why Software Fails," IEEE Spectrum, vol. 42, (9), 2005.

[8] Arlene Minkiewicz, "Use Case Sizing," PRICE Systems, L.L.C, 2015.

[9] C. J. Neill and P. A. Laplante, "Requirements Engineering: The State of the

Practice," IEEE Software, vol. 20, (6), 2003.

[10] Gustav Karner, "Resource Estimation for Objector Projects." , 1993.

[11] M. Azzeh, A. Bou Nassif and I. B. Attili, "Predicting software effort from

use case points: A systematic review," Science of Computer Programming, vol.

204, 2021.

[12] V. Khatibi and D. N. a. Jawawi, "Software Cost Estimation Methods : A

Review," Journal of Emerging Trends in Computing and Information Sciences,

vol. 2, (1), 2010.

[13] B. Marapelli, A. Carie and S. M. Islam, "Software effort estimation with

use case points using ensemble machine learning models," in 2021 International

Conference on Electrical, Computer and Energy Technologies (ICECET), 2021.

[14] R. Silhavy, P. Silhavy and Z. Prokopova, "Using actors and use cases for

software size estimation," Electronics (Switzerland), vol. 10, (5), 2021.

[15] M. Manzoor and A. Wahid, "Revised Use Case Point (Re-UCP) Model for

Software Effort Estimation," International Journal of Advanced Computer

Science and Applications, vol. 6, (3), 2015.

[16] F. Wang et al, "Extended use case points method for software cost

estimation," in International Conference on Computational Intelligence and

Software Engineering, 2009.

36

[17] K. Periyasamy and A. Ghode, "Cost estimation using extended use case

point (e-UCP) model," in 2009 International Conference on Computational

Intelligence and Software Engineering, 2009.

[18] M. Jørgensen, "Regression models of software development effort

estimation accuracy and bias," Empirical Software Engineering, vol. 9, (4), 2004.

[19] S. Humpage, "An introduction to regression analysis," Sensors

(Peterborough, NH), vol. 17, (9), 2000.

[20] V. Khatibi Bardsiri et al, "A flexible method to estimate the software

development effort based on the classification of projects and localization of

comparisons," Empirical Software Engineering, vol. 19, (4), 2014.

[21] M. Shepperd and S. MacDonell, "Evaluating prediction systems in

software project estimation," Information and Software Technology, vol. 54, (8),

2012.

[22] M. Azzeh et al, "Pareto efficient multi-objective optimization for local

tuning of analogy-based estimation," Neural Computing and Applications, vol.

27, (8), 2016.

[23] R. Silhavy, P. Silhavy and Z. Prokopova, "Algorithmic optimisation

method for improving use case points estimation," PLoS ONE, vol. 10, (11), 2015.

[24] N. Nunes, L. Constantine and R. Kazman, "IUCP: Estimating interactive-

software project size with enhanced use-case points," IEEE Software, vol. 28, (4),

2011.

[25] A. R. Gray and S. G. MacDonell, "A comparison of techniques for

developing predictive models of software metrics," Information and Software

Technology, vol. 39, (6), 1997.

[26] R. Alves, P. Valente and N. J. Nunes, "Improving software effort

estimation with human-centric models: A comparison of UCP and iUCP

accuracy," in EICS 2013 - Proceedings of the ACM SIGCHI Symposium on

Engineering Interactive Computing Systems, 2013.

[27] P. Jovan et al, "Enhancing use case point estimation method using fuzzy

algorithms," in 2015 23rd Telecommunications Forum Telfor (TELFOR), 2015.

[28] M. Saroha and S. Sahu, "Software effort estimation using enhanced use

case point model," in Nternational Conference on Computing, Communication

and Automation, ICCCA 2015, 2015.

[29] L. M. Huanca and S. B. Oré, "Factors affecting the accuracy of use case

points," in International Conference on Software Process Improvement, 2016.

[30] A. B. Nassif, D. Ho and L. F. Capretz, "Towards an early software

estimation using log-linear regression and a multilayer perceptron model,"

Journal of Systems and Software, vol. 86, (1), 2013.

[31] Sholiq, R. S. Dewi and A. P. Subriadi, "A comparative study of software

development size estimation method: UCPabc vs function points," in Procedia

Computer Science, 2017.

37

[32] P. Mohagheghi, B. Anda and R. Conradi, "Effort estimation of use cases

for incremental large-scale software development," in Proceedings - 27th

International Conference on Software Engineering, ICSE05, 2005.

[33] M. R. Braz and S. R. Vergilio, "Software effort estimation based on use

cases," in Proceedings - International Computer Software and Applications

Conference, 2006.

[34] K. Qi et al, "Calibrating use case points using bayesian analysis," in

International Symposium on Empirical Software Engineering and Measurement,

2018.

[35] K. Rak, Ž Car and I. Lovrek, "Effort estimation model for software

development projects based on use case reuse," Journal of Software: Evolution

and Process, vol. 31, (2), 2019.

[36] G. Robiolo, C. Badano and R. Orosco, "Transactions and paths: Two use

case based metrics which improve the early effort estimation," in 3rd

International Symposium on Empirical Software Engineering and Measurement,

ESEM 2009, 2009.

[37] L. Lavazza and G. Robiolo, "The role of the measure of functional

complexity in effort estimation," in ACM International Conference Proceeding

Series, 2010.

[38] P. S. Kumar et al, "Advancement from neural networks to deep learning

in software effort estimation: Perspective of two decades," Computer Science

Review, vol. 38, 2020.

[39] T. M Kiran Kumar and M. A. Jayaram, "Comparison of hard limiting and

soft computing methods for predicting software effort estimation: In reference to

Small Scale Visualization Projects," International Journal of Engineering &

Technology, vol. 7, (4.6), 2018.

[40] Jose Thiago, Jose Thiago H. and A. L. I. Oliveira, "Ensemble Effort

Estimation using dynamic selection," Journal of Systems and Software, vol. 175,

2021.

[41] A. G. Priya Varshini, K. Anitha Kumari and V. Varadarajan, "Estimating

software development efforts using a random forest-based stacked ensemble

approach," Electronics (Switzerland), vol. 10, (10), 2021.

[42] M. Jørgensen, U. Indahl and D. Sjøberg, "Software effort estimation by

analogy and "regression toward the mean"," in Journal of Systems and Software,

2003.

[43] J. Heidrich, M. Oivo and A. Jedlitschka, "Software productivity and effort

estimation," Journal of Software: Evolution and Process, vol. 27, (7), 2015.

[44] D. Rodríguez et al, "Empirical findings on team size and productivity in

software development," Journal of Systems and Software, vol. 85, (3), 2012.

38

[45] K. Petersen, "Measuring and predicting software productivity: A

systematic map and review," Information and Software Technology, vol. 53, (4),

2011.

[46] B. Kitchenham and E. Mendes, "Software productivity measurement using

multiple size measures," IEEE Transactions on Software Engineering, vol. 30,

(12), 2004.

[47] L. M. Alves et al, "An empirical study on the estimation of software

development effort with use case points," in Proceedings - Frontiers in Education

Conference, FIE, 2013.

[48] Le Thi Kim Nhung, Ho, H. T. Hoc and V. Van Hai, "An evaluation of

technical and environmental complexity factors for improving use case points

estimation," in Advances in Intelligent Systems and Computing, 2020.

[49] Nhung, Ho Le Thi Kim et al, "Parametric Software Effort Estimation

Based on Optimizing Correction Factors and Multiple Linear Regression," IEEE

Access, vol. 10, 2022.

[50] Nhung, Ho Le Thi Kim, V. Van Hai and R. Jašek, "Towards a correction

factors-based software productivity using ensemble approach for early software

development effort estimation," in Computer Science on-Line Conference, 2022.

[51] A. Chandra and X. Yao, "Ensemble learning using multi-objective

evolutionary algorithms," Journal of Mathematical Modelling and Algorithms,

vol. 5, (4), 2006.

[52] K. An and J. Meng, "Voting-averaged combination method for regressor

ensemble," in International Conference on Intelligent Computing, 2010.

[53] B. Anda, E. Angelvik and K. Ribu, "Improving estimation practices by

applying use case models," in Lecture Notes in Computer Science (Including

Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 2002.

[54] W. J. Schneider. G, "Applied use cases," in A Practical Guide, Second

Edition, Addison‐Wesley, 2001.

39

LIST OF FIGURES

Figure 3-1. The proposed methods ... 10

Figure 3-2. The proposed Optimizing Correction Factors method..................... 12

Figure 3-3. Detailed illustration of the proposed ExOCF method 14

Figure 3-4. The architecture of the proposed SOCF model 15

Figure 3-5. The proposed software productivity model 16

Figure 5-1. The average estimation results of the proposed OCF method and other

methods on all datasets ... 23

Figure 5-2. The average estimation results of the proposed ExOCF method and

other methods on all datasets .. 25

Figure 5-3. The average estimation results of the UCP-based and OCF-based

single methods... 27

Figure 5-4. The comparison between the ensemble method VUCP and its single

approaches ... 28

Figure 5-5. The comparison between the ensemble method SOCF and its single

approaches ... 29

Figure 5-6. The average estimation results of the proposed OCF(PFCFE) method

and other methods on all dataset ... 33

LIST OF TABLES

Table 4-1. Methods implemented for EX1 ... 16

Table 4-2. Methods implemented for EX2 ... 17

Table 4-3. UCP-based single methods implemented for EX3 19

Table 4-4. OCF-based single methods implemented for EX3 19

Table 4-5. Ensemble methods implemented for EX3 ... 20

Table 4-6. Methods implemented for EX4 ... 21

Table 5-1. The percentage improvements of the OCF over the UCP and OTF

methods averaged on all datasets .. 22

Table 5-2. The t-test results for five different runs of the proposed OCF method

in comparison with the other methods. ... 23

Table 5-3. The percentage improvements of the ExOCF over the other methods

averaged on all datasets .. 24

Table 5-4. The t-test results for five different runs of the proposed ExOCF method

in comparison with the other methods .. 26

Table 5-5. The percentage improvements of the OCF-based single methods

averaged on all datasets .. 27

Table 5-6. The t-test results for five different runs of the proposed SOCF method

in comparison with the other methods .. 30

40

Table 5-7. The t-test results for five different runs of the proposed SOCF method

in comparison with the other methods .. 30

Table 5-8. The t-test results for five different runs of the proposed SOCF method

in comparison with the other methods .. 31

Table 5-9. The percentage improvements of the proposed OCF(PFCFE) method

averaged on all datasets ... 32

Table 5-10 The t-test results of five different runs for statistical comparison of

our proposed OCF(PFCFE) methods with other tested methods 32

LIST OF ABBREVIATIONS USED

Abbreviations Description

SDEE Software development effort estimation

UCP Use Case Points

UCM Use Case Model

TCF Technical complexity factors

ECF Environmental complexity factors

MLR Multiple linear regression

ML Machine learning

PF Productivity factor

LASSO Least Absolute Shrinkage and Selection Operator

OCF Optimization Correction Factors

LSR Least square regression

ExOCF Extension of Optimizing Correction Factors

KNN K-nearest neighbor

RF Random forest

SVR Support vector regression

MLP Multi-layer perceptron

GB Gradient Boosting

DT Decision tree

SOCF Stacked OCF

UAW Unadjusted actor weight

UUCW Unadjusted use case weight

GS Grid search

MAE Mean Absolute Error

MMRE Mean magnitude of relative error

MBRE Mean balance relative error

MIBRE Inverted balance relative error

MdMRE Median magnitude of relative error

RMSE Root mean square error

SSE Sum of squares errors

PRED(x) Percentage of prediction within x%

41

SA Standardized accuracy

SLOC Source lines of code

FPA Function points analysis

COCOMO Constructive cost model

SLIM Software life cycle management

AOM Algorithmic Optimisation Method

LOOCV Leave on out cross-validation

OCF(PFCFE) Effective productivity factor calculations

LIST OF PUBLICATIONS OF THE AUTHOR
Journal papers:

1. H.LT.K. Nhung, V.V. Hai, R. Silhavy, Z. Prokopova, and P. Silhavy,

"Parametric Software Effort Estimation Based on Optimizing Correction

Factors and Multiple Linear Regression, " IEEE Access, vol. 10, pp. 2963-

2986, DOI: 10.1109/ACCESS.2021.3139183, 2022.

2. V.V. Hai, H.L.T.K. Nhung, Z. Prokopova, R. Silhavy, and P. Silhavy, "A New

Approach to Calibrating Functional Complexity Weight in Software

Development Effort Estimation," Computers 11, no. 2: 15, DOI:

10.3390/computers11020015, 2022.

3. V.V. Hai, H.L.T.K. Nhung, Z. Prokopova, R. Silhavy, and P. Silhavy,

"Towards improving the efficiency of software development effort estimation

via clustering analysis," IEEE Access, vol. 10, pp. 83249-83264, DOI:

10.1109/ACCESS.2022.3185393, 2022.

Conference papers:

4. H.LT.K. Nhung, V.V. Hai, and R. Jasek, "Towards a Correction Factors-based

Software Productivity using Ensemble approach for Early Software

Development Effort Estimation," Lecture Notes in Networks ans Systems, vol.

501 LNNS, pp. 413-425, DOI: 10.1007/978-3-031-09070-7_35, 2022.

5. H.LT.K. Nhung, V.V. Hai, and H.T. Hoc, "Analyzing Correlation of the

relationship between Technical Complexity Factors and Environmental

Complexity Factors for Software Development Effort Estimation", Lecture

Notes in Networks and Systems, 232 LNNS, pp. 835-848, DOI: 10.1007/978-

3-030-90318-3_65, 2021.

6. H.LT.K. Nhung, V.V. Hai, and H.T. Hoc, "Evaluation of Technical and

Environmental Complexity Factors for Improving Use Case Points

Estimation," Advances in Intelligent Systems and Computing Springer, 1294,

pp. 757–768, DOI: 10.1007/978-3-030-63322-6_64, 2020.

7. H.L.T.K. Nhung, H.T. Hoc, and V.V. Hai, "A Review of Use Case-Based

Development Effort Estimation Methods in the System Development

Context," Advances in Intelligent Systems and Computing, 1046, pp. 484-499,

DOI: 10.1007/978-3-030-30329-7_44, 2019.

42

8. V.V. Hai, H.L.T.K. Nhung, and R. Jasek, "Toward appying agglomerative

hierarchical clustering in improving the software development effort

estimation," Lecture Notes in Networks and Systems, vol. 501 LNNS, pp. 353-

371, DOI: 10.1007/978-3-031-09070-7_30, 2022.

9. V.V. Hai, H.L.T.K. Nhung, Z. Prokopova, R. Silhavy, and P. Silhavy,

“Analyzing the effectiveness of the Gaussian Mixture Model clustering

algorithm in Software Enhancement Effort Estimation,” ACIIDS 2022.

10. V.V. Hai, H.L.T.K. Nhung, H.T. Hoc, "Calibrating Function Complexity in

Enhancement Project for Improving Function Points Analysis Estimation,"

Lecture Notes in Networks and Systems, 232 LNNS, pp. 857-869, DOI:

10.1007/978-3-030-90318-3_67, 2021.

11. V.V. Hai, H.L.T.K. Nhung, H.T. Hoc, "Empirical Evidence in Early Stage

Software Effort Estimation Using Data Flow Diagram," Lecture Notes in

Networks and Systems, 230, pp. 632-644, DOI: 10.1007/978-3-030-77442-

4_53, 2021.

12. V.V. Hai, H.L.T.K. Nhung, H.T. Hoc, "A Productivity Optimising Model for

Improving Software Effort Estimation," Advances in Intelligent Systems and

Computing, 1294, pp. 735-746, DOI: 10.1007/978-3-030-63322-6_62, 2020.

13. V.V. Hai, H.L.T.K. Nhung, H.T. Hoc, "A Review of Software Effort

Estimation by Using Functional Points Analysis," Advances in Intelligent

Systems and Computing, 1047, pp. 408-422, DOI: 10.1007/978-3-030-31362-

3_40, 2019.

14. H.T. Hoc, V.V. Hai, H.L.T.K. Nhung, "An Approach to Adjust Effort

Estimation of Function Point Analysis," Lecture Notes in Networks and

Systems, 230, pp. 522-537, DOI: 10.1007/978-3-030-77442-4_45, 2021.

15. H.T. Hoc, V.V. Hai, H.L.T.K. Nhung, "AdamOptimizer for the Optimisation

of Use Case Points Estimation," Advances in Intelligent Systems and

Computing, 1294, pp. 747-756, 2020.

16. H.T. Hoc, V.V. Hai, H.L.T.K. Nhung, " A Review of the Regression Models

Applicable to Software Project Effort Estimation," Advances in Intelligent

Systems and Computing, 1047, pp. 399-407, 10.1007/978-3-030-31362-3_39,

2019.

43

CURRICULUM VITAE AUTHOR
Name: Ho Le Thi Kim Nhung

Education and degrees: Tomas Bata University in Zlin, Czech Republic

 PhD student, Software Engineering

 12/2018-Now

 University of Science, Vietnam (HCMUS-VNU)

 Master of Information Systems

 2011-2014

 University of Science, Vietnam (HCMUS-VNU)

 Bachelor of Information Systems

 2007-2010

Related Work Experience: University of Science, Vietnam (HCMUS-VNU)

 Lecturer, Faculty of Information Technology

 2011-2018

 Institute of International Management (IIMBA),

National Cheng Kung University, Tainan, Taiwan

Visiting research scientist

 8/2016-8/2017

 National Institute of Informatics, Japan

 Visiting research scientist

 8/2016-1/2017

Honors and Awards: Outstanding Young Lecturer at University of Science

HCMUS-VNU (2015, 2017)

Top 10 graduate of Honors degree at University of

Science (HCMUS-VNU), Certificate of Merit on being

the best student of graduation (7/500 students) (2010)

Efektivní parametrický model pro odhad projektu systémového

inženýrství

Effective Parametric Model for System Engineering

Project Estimation

Doctoral Thesis Summary

Published by: Tomas Bata University in Zlín,

nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic

Edition: published electronically

Typesetting by: Ho Le Thi Kim Nhung, Ph.D.

This publication has not undergone any proofreading or editorial review.

First Edition

Publication year: 2022

ISBN 978-80-7678-130-6

	Obálky na elektronickou verzi A
	Stránka 1

	Ho_Le_Thi_Kim_Nhung_Doctoral_Thesi_Summary_2022
	Zadní strana obálky
	Stránka 1

