

Blockchain in social networks

Bc. Ahmed Al-Doori

Bachelor’s Thesis
2023

I hereby declare that:

• I understand that by submitting my Diploma thesis, I agree to the publication of my
work according to Law No. 111/1998, Coll., On Universities and on changes and
amendments to other acts (e.g. the Universities Act), as amended by subsequent
legislation, without regard to the results of the defence of the thesis.

• I understand that my Diploma Thesis will be stored electronically in the university
information system and be made available for on-site inspection, and that a copy of the
Diploma/Thesis will be stored in the Reference Library of the Faculty of Applied
Informatics, Tomas Bata University in Zlin, and that a copy shall be deposited with my
Supervisor.

• I am aware of the fact that my Diploma Thesis is fully covered by Act No. 121/2000
Coll. On Copyright, and Rights Related to Copyright, as amended by some other laws
(e.g. the Copyright Act), as amended by subsequent legislation; and especially, by §35,
Para. 3.

• I understand that, according to §60, Para. 1 of the Copyright Act, TBU in Zlin has the
right to conclude licensing agreements relating to the use of scholastic work within the
full extent of §12, Para. 4, of the Copyright Act.

• I understand that, according to §60, Para. 2, and Para. 3, of the Copyright Act, I may use
my work - Diploma Thesis, or grant a license for its use, only if permitted by the
licensing agreement concluded between myself and Tomas Bata University in Zlin with
a view to the fact that Tomas Bata University in Zlín must be compensated for any
reasonable contribution to covering such expenses/costs as invested by them in the
creation of the thesis (up until the full actual amount) shall also be a subject of this
licensing agreement.

• I understand that, should the elaboration of the Diploma Thesis include the use of
software provided by Tomas Bata University in Zlin or other such entities strictly for
study and research purposes (i.e. only for non-commercial use), the results of my
Diploma Thesis cannot be used for commercial purposes.

• I understand that, if the output of my Diploma Thesis is any software product(s),
this/these shall equally be considered as part of the thesis, as well as any source codes,
or files from which the project is composed. Not submitting any part of this/these
component(s) may be a reason for the non-defence of my thesis.

I herewith declare that:

• I have worked on my thesis alone and duly cited any literature I have used. In the case
of the publication of the results of my thesis, I shall be listed as co-author.

• That the submitted version of the thesis and its electronic version uploaded to IS/STAG
are both identical.

In Zlin; dated: 23/05/2023 Ahmed Al-Doori m.p
Student´s Signature

ABSTRAKT

Bakalářská práce se věnuje využití blockchain technologií, specificky smart kontraktům, za

účelem implementace koncepce decentralizovaných aplikací v oblasti sociálních sítí. Cílem

této práce je ověření vlastností, využitelnosti a bezpečnosti blockchain technologií v doméně

sociálních sítí a decentralizovaných aplikací (DApps). Navržený a preferovaný přístup

zahrnuje Web3.0 technologie. Bakalářská práce je rozdělena do dvou hlavních částí.

Nejdříve jsou v teoretické části popsány obecně blockchain technologie, smart kontrakty,

decentralizované aplikace, sociální sítě, dále moderní technologie pro budování DApps, a

architektura samotných DApps. Následující praktická část je pak zaměřena na samotný

vývoj, implementaci a demonstraci web DApp v oblasti sociálních sítí pomocí moderních

Web3.0 technologií jako smart kontraktů, ReactJS, NextJS (JavaScript), Solidity, a dalších.

Klíčová slova: Blockchain, smart kontrakty, web3.0, solidity, NextJs, decentralizovaná

aplikace, DApp, sociální sítě, JavaScript, ReactJS.

ABSTRACT

This bachelor thesis will deal with the utilization of blockchain technologies, specifically

smart contracts, to implement the concept of decentralized applications in the field of Social

Networks. The goal of the thesis is to verify how blockchain technologies can be helpful and

safe in the domain of Social Networks and decentralized applications (DApps). The

preferred approach will include Web3.0 technologies. The thesis will be divided into two

main parts. Firstly, the theoretical part will contain a description of blockchain technology

in general, smart contracts, decentralized apps, social networks, modern technologies for

building DApps, and architectures of DApps. Secondly, the practical part will focus on

building a demonstration social network web DApp using modern Web3.0 technologies and

smart contracts, such as ReactJS, NextJS (JavaScript), Solidity smart contracts, etc.

Keywords: Blockchain, smart contracts, web3.0, Etheres.js, solidity, NextJS, Decentralized

application, DApp, social networks, JavaScript, ReactJS.

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my supervisor, Ing. Roman Šenkeřík, Ph.D.,

for his invaluable guidance, support, and expertise throughout the entire process of

completing my final thesis. His insightful feedback, patience, and dedication have been

instrumental in shaping my research and academic growth. I am truly grateful for the

knowledge and skills I have gained under his supervision.

I would also like to extend my heartfelt thanks to my family, especially my mom and dad,

for their unwavering love, encouragement, and support. Despite being thousands of

kilometers away from them, their constant belief in me and their willingness to go the extra

mile have been a tremendous source of strength and motivation.

I would like to acknowledge the contribution of Ing. Zuzana Virglerová, Ph.D., for her

support and encouragement. Her mentorship and guidance have played a significant role in

pushing me to exceed my own expectations and become a better student.

Lastly, I would like to express my gratitude to all the individuals who have provided

assistance, encouragement, and inspiration throughout my academic journey. Your support

has been invaluable, and I am deeply grateful for the opportunities and experiences I have

had as a result.

Thank you all for being a part of my journey and for contributing to my personal and

academic development.

 I hereby declare that the print version of my Bachelor's/master’s thesis and the electronic

version of my thesis deposited in the IS/STAG system are identical.

Contents

INTRODUCTION ... 12

I. THEORY ... 14

1 BLOCKCHAIN .. 15

1.1 BLOCKCHAIN BLOCKS ... 15

1.2 TYPES OF BLOCKCHAIN .. 18

1.2.1 PUBLIC BLOCKCHAIN .. 19

1.2.2 PRIVATE BLOCKCHAIN ... 19

1.2.3 HYBRID BLOCKCHAIN ... 19

1.2.4 CONSORTIUM BLOCKCHAIN ... 19

1.3 WHY DO WE USE BLOCKCHAIN ... 20

1.4 BLOCKCHAIN AND DISTRIBUTED LEDGER TECHNOLOGY 21

1.5 BLOCKCHAIN USE CASES. ... 21

1.5.1 MONEY TRANSFER USING DISTRUSTED LEDGER TECHNOLOGY. 21

1.5.2 DECENTRALIZED APPLICATIONS ... 22

1.5.3 DIGITAL IDENTITY .. 23

1.5.4 SUPPLY CHAINS .. 24

1.5.5 BLOCKCHAIN IN GOVERNMENT .. 24

1.5.6 SMART CONTRACTS .. 25

1.5.7 DIGITAL WALLETS .. 26

1.6 HOW BLOCKS ARE ADDED TO THE BLOCKCHAIN 27

1.6.1 MINERS .. 28

1.6.2 PROOF-OF-WORK .. 28

1.6.3 PROOF-OF-STAKE ... 29

1.7 CRYPTOCURRENCIES ... 30

1.7.1 HOW DOES CRYPTOCURRENCY WORK? ... 30

1.8 BLOCKCHAIN LIMITATIONS IN GENERAL .. 31

1.8.1 LACK OF FLEXIBILITY ... 31

1.8.2 HUGE ENERGY CONSUMPTION .. 31

1.8.3 ILLEGAL BEHAVIORS AND BAD ACTIVITIES ... 32

1.8.4 SMART CONTRACT AS A LIMITATION .. 32

2 POPULAR BLOCKCHAINS AND CRYPTOCURRENCIES 34

2.1 BITCOIN .. 34

2.2 ETHEREUM .. 35

2.2.1 CONNECTING TO THE ETHEREUM BLOCKCHAIN .. 35

2.2.2 ETHEREUM SMART CONTRACTS .. 36

2.2.3 ETHEREUM VIRTUAL MACHINE (EVM) ... 38

2.2.4 ETHEREUM STATE... 39

2.2.5 EVM STORAGE ... 40

2.2.6 EVM GAS FEES AND EXECUTION PROCESS .. 40

2.2.7 ETHEREUM NODE VARIATIONS ... 42

2.2.8 ACCOUNTS ON THE ETHEREUM BLOCKCHAIN ... 43

2.2.9 TYPES OF ACCOUNTS IN THE ETHEREUM BLOCKCHAIN ... 44

2.2.10 ETHEREUM DRAWBACKS AND LIMITATIONS ... 45

3 SIDE CHAINS .. 46

3.1 SIDE CHAINS ... 46

3.2 POTENTIAL OF SIDE CHAINS .. 46

3.2.1 ADAPTABILITY TO CHANGE. ... 47

3.2.2 UPDATES AND EXPERIMENTATIONS .. 47

3.3 EXAMPLES OF SIDECHAINS .. 47

3.3.1 POLYGON ... 48

3.4 DOWNSIDES OF SIDECHAINS .. 49

4 BLOCCHAIN AND WEB ... 50

4.1 WEB 3.0 VS WEB 2.0 ... 50

4.1.1 WEB 2.0 ... 50

4.1.2 WEB 3.0 ... 57

4.2 HOW DOES WEB 3.0 OPERATE? .. 57

4.3 REQUIREMENTS TO CREATE WEB 3.0 APPLICATION. 57

4.4 SOCIAL NETWORKS .. 58

4.4.1 PROBLEMS WITH CENTRALIZED SOCIAL NETWORKS ... 59

4.5 DECENTRALIZED SOCIAL NETWORKS .. 60

4.5.1 APPLICABILITY OF DECENTRALIZED SOCIAL NETWORKS 61

4.5.2 GENERAL ARCHITECTURE OF A DECENTRALIZED SOCIAL NETWORK 61

4.6 REAL LIFE EXAMPLES OF DECENTRALIZED SOCIAL NETWORKS 63

4.6.1 STEEMIT ... 64

4.6.2 MINDS .. 66

4.6.3 LENSTER AND LENS PROTOCOL .. 67

4.6.4 COMPARISON BETWEEN THE DIFFERENT PLATFORMS ... 70

4.7 DRAWBACKS OF DECENTRALIZED SOCIAL NETWORKS 72

II. PRACTICAL .. 74

5 APPLICATION ANALYSIS AND TECHNOLOGIES USED 75

5.1 APPLICATION/PROJECT DESCRIPTION ... 75

5.2 APPLICATION OVERVIEW AND REQUIREMENTS .. 75

5.2.1 APPLICATION FUNCTIONAL REQUIREMENTS ... 75

5.2.2 APPLICATION NON-FUNCTIONAL REQUIREMENTS ... 76

5.2.3 USE CASES AND ACTORS. .. 77

5.2.4 CLASS MODEL .. 78

5.3 FRONT-END TECHNOLOGIES AND UI INSPIRATION 81

5.3.1 NEXTJS .. 82

5.3.2 TAILWIND CSS ... 85

5.3.3 OTHER FRAMEWORKS TO IMPROVE USER EXPERIENCE.. 86

5.3.4 USER INTERFACE DESIGN AND TAKEN APPROACH. ... 87

5.4 BACK-END TECHNOLOGIES .. 90

5.4.1 SERVER-SIDE FRAMEWORKS AND LIBRARIES.. 90

5.4.2 APIS AND DATABASES .. 91

5.5 WEB3 TECHNOLOGIES .. 91

5.5.1 DEVELOPMENT ENVIRONMENT ... 91

5.5.2 DECENTRALIZED DATA STORAGE - IPFS .. 92

5.5.3 DEVELOPING SMART CONTRACTS ... 93

5.5.4 INTERACTION WITH THE SMART CONTRACT AND BLOCKCHAIN 96

6 APPLICATION’S SECURITY ARCHITECTURE ... 98

6.1 SECURITY ARCHITECTURE ... 98

6.1.1 JSON WEB TOKEN .. 98

6.1.2 SECURING THE APP ... 101

7 APPLICATION’S ARCHITECTURE AND SETTING UP

DEVELOPMENT ENVIRONMENT .. 102

7.1 HIGH LEVEL OVERVIEW OF THE APPLICATION ARCHITECTURE 103

7.2 LAYERS COMMUNICATION ... 105

7.3 SETTING UP THE PROJECT’S DEVELOPMENT ENVIRONMENT 105

7.3.1 LOCAL BLOCKCHAIN .. 105

7.3.2 DIGITAL WALLET .. 107

7.3.3 MS SQL DATABASE AND ASP.NET CORE API ... 108

7.3.4 HARDHAT CONFIGURATIONS (CONTRACT’S DEPLOYMENT ENVIRONMENT) 112

8 IMPLEMENTATION AND EVALUATION .. 115

8.1 APPLICATION’S SMART CONTRACT ... 115

8.1.1 CONTRACT’S STATES AND VARIABLES .. 115

8.1.2 CONTRACT’S MAPPINGS ... 116

8.1.3 CONTRACT’S EVENTS ... 117

8.1.4 CONTRACT’S FUNCTIONS .. 118

8.1.5 CONTRACT’S MODIFIERS .. 126

8.2 DEMONSTRATION OF THE MAIN FUNCTIONALITIES 128

8.2.1 REGISTERING OF NEW USERS TO THE PLATFORM .. 128

8.2.2 LOGIN OF EXISTING USER TO THE PLATFORM .. 133

8.2.3 CREATION OF NEW POST ... 136

8.2.4 COMMENTING ON A POST .. 137

8.2.5 LIKING A POST .. 139

8.2.6 COMMENTS PAGINATION AND POST MODAL ... 141

9 TESTING OF THE SMART CONTRACT ... 143

9.1 AUTOMATED TESTING ... 143

9.1.1 USER TEST SUITES .. 143

9.1.2 POST TEST SUITES ... 147

9.1.3 COMMENT TEST SUITES .. 154

9.1.4 AUTOMATED TESTING TOTAL TESTING RESULT .. 156

10 FUTURE ENHACMENT AND IMPORVEMENTS .. 158

10.1 SMART CONTRACT IMPROVEMENTS ... 158

10.2 GAS FEES IMPROVEMENTS AND CHOOSING OF THE SUITABLE

BLOCKCHAIN NETWORK. .. 159

10.2.1 USAGE OF SO-CALLED META-TRANSACTIONS ... 159

10.3 FRONT-END AND CLIENT-SIDE IMPROVEMENTS .. 160

CONCLUSION .. 161

BIBLIOGRAPHY .. 162

LIST OF ABBREVIATIONS ... 171

LIST OF FIGURES ... 173

LIST OF TABLES ... 177

APPENDICES .. 178

TBU in Zlín, Faculty of Applied Informatics 12

INTRODUCTION

The rapid advancement of technology and the growing influence of the internet have

revolutionized the way we communicate and interact with others. Social networks have

become an integral part of our lives, connecting people from all around the world and

providing a platform for sharing information, ideas, and experiences. However, these social

networks are fully centralized, controlled by a few strong entities that have access to and

control over user data. Centralization brings with it a set of concerns and limitations,

including issues of privacy, data security, and censorship. As a response to these challenges,

decentralized social networks have emerged as a promising alternative that leverages the

power of blockchain technology to create a more transparent, secure, and user-centric online

social environment.

This thesis aims to explore the concept of decentralized social networks and the role of

blockchain in enabling their operation. It provides an in-depth analysis of blockchain

technology, its types, and various use cases. Furthermore, it delves into popular blockchains

and cryptocurrencies such as Bitcoin and Ethereum, highlighting their strengths and

limitations. The thesis also examines the potential of side chains and their impact on

scalability and adaptability in the context of decentralized social networks. The study

recognizes the evolution of the web from Web 2.0 to Web 3.0 and discusses how Web 3.0

operates, focusing on its decentralized nature and the requirements to create web applications

in this new paradigm. It critically examines the problems associated with centralized social

networks and emphasizes the need for decentralized alternatives. The general architecture of

decentralized social networks is explored, along with real-life examples such as Steemit,

Minds, and Lenster and Lens Protocol.

Furthermore, the thesis delves into the analysis and evaluation of an application that

embodies the principles of a decentralized social network. It outlines the technologies used

in the front-end, back-end, and web3 layers, along with the security architecture of the

application. The implementation and demonstration of the main functionalities are also

presented, showcasing the registration of new users, login procedures, post creation,

commenting, and liking features. Finally, the thesis concludes with a discussion on future

enhancements and improvements for decentralized social networks, including smart contract

TBU in Zlín, Faculty of Applied Informatics 13

improvements, gas fee optimizations, and client-side enhancements. It emphasizes the

potential of decentralized social networks in reshaping online interactions and promoting a

more democratic and user-controlled online ecosystem. By exploring the theory, analyzing

popular blockchains and cryptocurrencies, discussing the potential of side chains, examining

the intersection of blockchain and the web, and evaluating an implemented application, this

thesis contributes to the existing body of knowledge surrounding decentralized social

networks. It provides insights into the advantages, challenges, and prospects of decentralized

social networks, paving the way for a more decentralized and user-centric online social

landscape.

TBU in Zlín, Faculty of Applied Informatics 14

I. THEORY

TBU in Zlín, Faculty of Applied Informatics 15

1 BLOCKCHAIN

First, let’s talk about the naming and what does the word BLOCCHAIN means and from

where the name is obtained. The name of this technology refers to the description of how it

does work and how it stores data differently than other technologies. The data is stored into

blocks, and each block of data is linked to the other block, and they all form a chain, in this

way no one can alter one block of data without making the other block knowing about this

change and that the data of this block is altered, basically it is not possible to alter or delete

a block, it is only possible to add a new block to the chain. Blockchain technology is not a

name for a company or for an application, but it is a completely new strategy to store data

on the internet. This technology uses hashing algorithms to safely secure the data and to

create a safe link between the blocks of data. The most beneficial advantage of this

technology is that people feel safe and free when they send or store their data because their

data will not be stored in the hand of someone or somewhere, the data will be stored in the

blockchain in a decentralized way, where there is no one controlling this data or as we said

altering this data. We can describe this technique of storing data like a family, each

member of the family trusts the other one and protect the other one, this family does not let

any guests enter their house without letting all the family members knows that there are

guests coming and they should all be satisfied that someone is visiting them. The same

goes for all their secrets, they don’t tell their secrets to anyone outside this family. [1]

1.1 Blockchain blocks

It is important to know how blocks of the blockchain are constructed and what do they look

like from the inside. First it is better to know that a block should have some data in it

otherwise it is not possible to insert or connect the block into the blockchain. In the Figure

1 this is what a blockchain structure looks like in general.

TBU in Zlín, Faculty of Applied Informatics 16

Figure 1. Blocks of blockchain [2]

Figure 2. Block structure [2]

As shown in the Figure 2, a block is divided into two main parts. First is the block head,

second is the block body. The block head is divided into six different parts those are:

• Version number.

• Previous block hash.

• Merkle tree root hash.

• Nbits.

• Nonce.

• Timestamp.

TBU in Zlín, Faculty of Applied Informatics 17

The Block version or version number tells which set of validation standards this block should

follow, this is useful for people who want to insert a new block to the blockchain network,

in other word mining. If someone wants to insert a new block to the blockchain network, he

needs to check the rules and regulations by checking the version block or number. The

Merkle tree root hash as shown in the Figure 3 is a kind of data structure that is used in

bitcoin and other cryptocurrencies this data structure is used to encode data inside the

blockchain in a sufficient and efficient secure way, it is also called “Binary hash trees”, It

works in way that it collects all transactions in a block and generates a digital fingerprint of

the entire set of the transactions. The data or the transactions is hashed first then hashes that

used to encrypt the data are hashed again and merged to only single hash that is finally called

the root hash.

Figure 3. Markle tree [2]

Each block except the first block in the blockchain, contains the previous block hash and

because that each new block has the hash of the previous block that’s why it called

blockchain and that’s why all the blocks are connected. This sequence of linking goes back

to the first block in the blockchain which is called the genesis block. On the other hand.

The n Bits part. Is also called the difficulty target, it specifies the complexity and the

computation power that is necessary to mine the network if the n bits part is too big it means

we need a stronger expensive computational machine to mine it, different kind of hashes

algorithms are used to make it more stronger to mine it, we should remember that when

using hashing function it is not possible to get the input from the output and that’s why

hashing process is also called digestion process which is lead to a really powerful encryption

algorithm.

The nonce stands for “number used once” the nonce is used to validate the information

within a block. A nonce is a four-byte number that the miners who’s trying to insert a new

TBU in Zlín, Faculty of Applied Informatics 18

block to the blockchain should find. In orders for the miners to create or insert new block to

the blockchain they must do these following procedures:

1. A collection of transactions will be gathered by the miners that they want to include in the

new block.

2. This collection of transactions will be combined with other data such as the timestamp, and

the hash of the previous block, to form the block data.

3. A nonce will be generated by the miner’s software and which usually an integer number.

4. The miners will combine the block’s data with the nonce to create a new hash.

5. The hash should be checked with the target difficulty level, which is a numerical value

that specifies the level of difficulty that the miners must overcome to create a new block in

the blockchain, it is not a standard or a hash value it is rather a value that is agreed upon by

the blockchain network. The target difficulty level is set by the number of leading zeros

required in the block’s hash, the more leading zeros required, the more difficult is to find a

hash that meets the target. The target difficulty level is modified in proper way by the

blockchain network to make sure that the rate of inserting new blocks to the network

remains consistent. And this modification is based on the how strong is the computing

power in the network and the rate of block creating.

6. The miner successfully created a block and can insert a new block only if the hash meets

the target difficulty level.

7. If the generated hash does not meet the target difficulty level, the miner will try to change

the nonce and repeat the process until a hash met the requirement of the difficulty level.

Nonce has a huge role in the process of mining the blockchain, as it ensures that only

new blocks are added if they meet the required level of difficulty. The timestamp part is

data that is stored in each block. The main purpose of this timestamp is to determine the

exact moment of each block when it was mined and validated by the network, this piece

of data shows us how blocks in the blockchain are linked in a chronological order way,

also the timestamp is the amount time that was required to create this block. The

transaction counter is basically a place where all the transactions are performed, here

will be stored the reference for each transaction that happened in the block. [3] [4]

1.2 Types of blockchain

To understand how the blockchain works, it is necessary to describe the difference and know

the various types of blockchain, there are four different types of blockchain. Public, private,

and permissioned or constructed by a group of people called consortium.

TBU in Zlín, Faculty of Applied Informatics 19

1.2.1 Public blockchain

This is the first type of blockchain and the most famous and used nowadays. A public

blockchain is a non-restrictive network, anyone with internet access can sign on to a

blockchain platform to become an authorized node. The advantage of such network is that it

is independence basically it is decentralized means no one is responsible for these blocks but

the users themself are and can be trusted but it has less performance and scalability than the

other types of blockchain due to the number of the blocks or nodes that grows day by day.

Public blockchain most use case is the mining and exchanging the cryptocurrencies like

Ethereum or bitcoin. [5][6]

1.2.2 Private blockchain

This type of blockchain is more secure and much faster due to the concept that it is

centralized network because it is managed by an administrator, due to that only people with

invitations can join this type of network. This kind of network is used by special businesses

and organizations such as healthcare, financial services, government organizations because

it provides these organizations with database services that are fully secure and scalable and

more fault tolerance.

1.2.3 Hybrid blockchain

A hybrid blockchain is a unique type of blockchain that tries to get the benefits of both public

and private one, the transactions in hybrid blockchain are made private. The hybrid

blockchain members can decide who can participate in the blockchain or which transactions

are made public. This brings the best of both worlds and ensures that a company can work

with its stakeholders in the best possible way. [7]

1.2.4 Consortium Blockchain

This type of network is best for organizations where there is a need for both types of

blockchain, public and private. It is almost like hybrid one the only difference is that hybrid

controlled by one entity only. For consortium blockchain there is more than one central in-

charge, or more than one organization involved who provides access to pre-selected nodes

for reading, writing, and altering the blockchain. [8]

The Table 1 shows a summary of differences between different types of blockchains.

TBU in Zlín, Faculty of Applied Informatics 20

Table 1. Types of blockchain overview

Features Public Private Hybrid Consortium

Accessibility Anyone Single Person/

Central In charge

Single

organization

controlling the

nodes

More than

one

organization

act as center

of the data

Participate Anyone Permissioned and

known identities

Permissioned

and known

identities

Permissioned

and known

identities

Transaction

speed

Slower Faster Faster Faster

Decentralization Complete

decentralization

Less

Decentralized

Less

Decentralized

Less

Decentralized

1.3 Why do we use blockchain

It is essential to highlight the benefits of blockchain technology and the reasons for its

utilization and significance. When considering the advantages of this technology, the

primary and most significant benefit is its decentralization concept. Consequently,

blockchain can be regarded as an immutable public digital ledger, where recorded

transactions cannot be altered. Additionally, the implementation of encryption algorithms

and hashing functions ensures the constant security of the blockchain. Each transaction is

made or each inserting of a block should be proven by all the participants in the network. It

is also possible to talk about why changing one block in the chain would be impossible,

because each block has a hash value, and this hash value can be obtained by

encrypting/hashing all the data inside the block and the next block will be linked to the

previous block by using it is own hash value as link between the two. [9]

TBU in Zlín, Faculty of Applied Informatics 21

1.4 Blockchain and distributed ledger technology

The phrase "Distributed Ledger Technology" (DLT)1 refers to the technological architecture

and protocols that allow for concurrent access, record validation, and immutable record

updating via a network that is spread over several businesses or locations. The DLT

technology was introduced by bitcoin, this technology is all about the idea of a decentralized

network against centralized network. DLT is all about the idea of distributed network,

distributed network gets rid of the need for a central authority to keep a check against data

manipulation. The way DLT stores data is in a secure and accurate way by using

cryptography. The same that can be accessed using “keys” and cryptographic signatures. If

the information is stored it becomes an immutable database meaning no one can alter or

delete anything, and the information is governed by the rules of the network. The idea of a

DTL is not completely new, many organizations keep their data at different locations, but

still each location is connected to a central system, which keep an eye for them periodically,

this approach makes the central database much stronger and vulnerable to cyber-attacks, this

approach also decreases the delays.

1.5 Blockchain use cases.

Blockchain is not only about Bitcoin and cryptocurrencies, but it is also much more than that

it is a really great way of storing data in a decentralized way. Most important use cases for

us as technicians’ people or software engineers is that it used in Gaming, Healthcare, NFT2

marketplaces, IoT (internet of things), government voting, smart contracts, DApp

(Decentralized applications), original content creation.

1.5.1 Money transfer using distrusted ledger technology.

Blockchain can save the largest banks in the world a lot of money and time. Let’s take an

example, let’s say John he lives in France, and he want to send money to his friend Daniel

in Czech Republic the process for sending/receiving the money using banks will usually

takes more than 1 day across different countries because a bank will be connected to other

bank that will process the money and connect with the main bank in that country to connect

1 (DLT) Distributed ledger technology [10]

2 NFT (non-fungible token): https://www.forbes.com/advisor/investing/cryptocurrency/nft-non-fungible-

token/

TBU in Zlín, Faculty of Applied Informatics 22

with the branch bank and makes sure everything is valid, with the help of blockchain and

DTL this whole process can be done in seconds. With the blockchain each user or participant

will be connected to the blockchain network and will be able to connect to every other user.

Let’s talk about how the payment can be done using DLT by taking real life example as

shown in the Figure 4. Jenny and Alex are part of the safe secured blockchain network, and

both hold a distributed ledger, and now it is just the matter of adding new transaction to the

chain. And as Alex request the bank for the transfer, the bank creates a record for the

transaction and that has details as, timestamp, debit account credit account, sending bank,

amount, currency, receiving bank, the bank put this record on the chain with the required

encryption hash. When the record is added to the chain its validated by all the nodes on the

network with their key for integrity and the block is finalized. The block now contains all

the information that is accessible by all participants and denotes that Alex want to send

money to Jenny who has account with the specified account address, and now the receiving

bank start the accounting process at their side thus the payment is done within seconds. [11]

Figure 4. Money transfer blockchain [12]

1.5.2 Decentralized applications

Decentralized applications are apps that are running on the blockchain which is as we said a

network of nodes or computers, instead of running on single computer or server. The good

thing about DApps is that the users inside the apps own their data. There is no center

authority between the user and the data that can control the user data. DApps which are often

TBU in Zlín, Faculty of Applied Informatics 23

built on the Ethereum blockchain can be coded for different purposes including social media,

gaming, finance and more. Decentralized applications can be hosted on a public blockchain

so that all people can access it around the world easily.

1.5.3 Digital identity

When talking about digital identity in the world of the internet, the first thing that comes to

the mind is that what we share in this big world that we call the internet, digital identity is

not only about our social media profiles or email addresses. Our digital identity is made up

of everything we have on the web including images, shopping preferences, website usage

behavior, bank account information. To know more about what we mean by digital identity,

one of the examples of the good usage of digital identity is the National Digital Identity or

NDI system in the Smart Nation initiative in Singapore3. The NDI system would help

citizens secure access to e-governance services. Most of us are worried about our personal

information and if it is leaked into this huge world or it has been sold by specific

organizations or it has been used by someone else. Blockchain can be a great solution for

decentralized identity, since we know that blockchain addresses are extremely unique, and

we can use these addresses to make digital identity. Decentralized digital identities will be a

huge player in the case of banking, e-commerce, gaming, healthcare, Insurance, loan, and

most importantly social media, payments, travel. When talking about decentralized digital

identity in the world of the blockchain we mean by that SSI (Self-sovereign identity), if a

user has SSI, he/she can control who can access their information, maintain their identities

themselves, use it for verifying their identity online, and many more. When it comes to SSI

a platform should have at least the following principles, so it is considered as a decentralized

digital identity provider. These principles are first, all users need to have independent

existence in the platform. Second, users should have full control over their identity. Third,

is the protection, no matter what happens the platform should maintain and secure user

personal information. Fourth, is the agreement, if for any reason a third party wants to access

a specific user identity then the user should give permission for that, without permission no

third party is able to access their personal information. After all, that’s why blockchain

technology is a good example of such a platform. [13]

3 Smart Nation initiative in Singapore: https://www.smartnation.gov.sg/about-smart-nation/transforming-

singapore/

TBU in Zlín, Faculty of Applied Informatics 24

1.5.4 Supply chains

Using blockchain technology in the field of supply chains can provide so many benefits.

First, the immutability, since the data cannot be altered in the blockchain, and it is almost

impossible to change or manipulate a specific transaction, this makes the use of blockchain

technology in supply chains highly resistant to fraud. Second, the traceability, Due to its

extensive and integrated linking of operations, blockchain makes it simple to map and

visualize the processes in a supply chain. This implies that every stage of the process, from

the source of raw materials through the delivery of the finished product to the client, can be

tracked. By lowering the possibility of fraud, mistakes, and counterfeiting, as well as

increasing openness and accountability, the supply chain is made more effective overall.

Third, lowering the cost, since blockchain allows cross-border transactions. Due to that the

need for central authority or middleman to make a money transaction will not be necessary

any more business that will use the blockchain in the supply chains will not only save money

but will also save time. [14]

1.5.5 Blockchain in government

Blockchain technology can be useful in the e-government field from the side of data

protection to the side of tracking the data. The government can benefit from this technology

in many aspects. First, it increases the efficiency and transparency and reduction of costs,

blockchain can help reduce the paperwork and the manual data entry by creating secure and

immutable records of transactions and data, this leads to more efficiency and transparency

in majors such as taxation, land registry and public services, no one will be able to change

any contracts or paper data, thanks to the blockchain technology and the immutable feature.

Second, digital identity management, government organizations can provide the citizens

with a secure and convenient way to access services and ensure that only authorized people

can access sensitive information. This way it can prevent fraud and minimize the cost of

idenetity verification as much as possible. Third, validation of qualifications, the steps of

validating qualifications are usually time consuming and costs a lot. This is since there is no

single repository of qualifications, and every authority has its own steps for the validation

process. Creating a shared, immutable proof of record of all qualifications using blockchain

technology can help to ease this process. The UAE (United Arab Emirates) government

already has launched several initiatives for encouragement to the use of blockchain

technology in the country, one of the most was the “The UAE Blockchain Strategy 2021”,

TBU in Zlín, Faculty of Applied Informatics 25

which is aimed to make Dubai the first city that is fully powered by blockchain, the strategy

was focusing on government efficiency, industry creation, and international leadership. As

they are saying that they want to make Dubai a paperless city. [15]

1.5.6 Smart contracts

Smart contracts are no more than a programming code that is executed on the blockchain

network. They are innovated for the purpose of reducing the paperwork and reducing the

need for third party between two sides, also for exchanging the money and goods and

services even real estates. In 1996 Nick Szabo was the first person who described the

principle of smart contracts. From Szabo’s view, smart contracts are digital information

transfer protocols that use mathematical algorithms to automatically execute a transaction

only and if the established conditions are met. Even to this day, since 1996, this definition is

still valid and accurate. Smart contracts are immutable, verifiable, and autonomous pieces

of code. Since the blockchain technology has the feature of immutability, a deployed smart

contract or a verified transaction cannot be altered or deleted. smart contracts are:

• Fast enough: writing and processing contracts by hand can be really time consuming, it

also requires both sides to be present, while smart contracts from the other hand do not

require personal involvement, it is an automated process.

• Independence: the need for a third party between two sides is eliminated with the usage of

smart contracts.

• Reliable: once the data inserted into the blockchain, it cannot be deleted or altered in the

future

• Less expensive: while real contracts require operational costs, and attendance of two

parties and middleman, smart contracts do not require all of this.

It is also worth it to mention the disadvantages of smart contracts in real world, these can be:

• Reliability: reliability can also be considered as a disadvantage, if some conditions

provided to a smart contract and the smart contract is deployed to the blockchain, there is

no way the conditions can be modified, that’s why governments still thinking about

jumping to make real contracts implemented using the blockchain technology.

• Implementation challenges: implementing smart contracts in the real world often takes

too much time and effort.

• The lack of knowledge: while smart contracts are good to use and have many advantages.

People and organizations and even the governments still don’t know a lot about smart

contracts and the world of blockchain.

TBU in Zlín, Faculty of Applied Informatics 26

Talking about the development of smart contracts, it is worth to mention not all types of

blockchains support the concept of smart contracts. Bitcoin itself does not support the

concept of smart contracts. Ethereum on the other hand is considered as the most popular

blockchain for smart contracts, Ethereum has it is own programming language that is used

for the development of smart contracts, it’s called Solidity, Solidity is an object-oriented

programming language, it is a statically typed programming language. Also, Hyperledger

Fabric blockchain, Corda blockchain, Stellar blockchain, all these blockchains4 support

developing of smart contracts. [16]

1.5.7 Digital wallets

Blockchain digital wallet is the container for different types of accounts on different types

of blockchain networks. They allow the users to manage different types of cryptocurrencies

such as Bitcoin or Ethereum. A blockchain wallet is almost the same as the normal wallet,

it helps the users or the owners to exchange currencies and make transactions easily.

Blockchain wallets are accessible from web or mobile, Transactions in digital wallets are

highly secured they are hashed with cryptographic functions. The process of receiving and

sending currencies in blockchain wallets is very similar to once in bank accounts or payable

accounts. An example of Blockchain digital wallets can be MetaMask, Coinbase Wallet and

more. Talking about how do blockchain wallets operate, it is important first to talk about

private and public keys to explain the operation process of wallets. Whenever a blockchain

wallet is created by a user, a user will be provided with a private key that is important to

access the wallet any time. And provided by a public key at the same time as shown in the

Figure 5. To explain more how these keys are important a real-life example will be taken. If

someone gave me his phone number it does not mean I can use the phone number to make

calls from it, instead the ability to send that user a message and make a call. For me to be

able to use the user phone number for making calls or sending messages I must get the SIM

card. Same goes with the blockchain wallet the public key is used for receiving/sending

transactions, while the private key acts as the SIM card or as my password for my email.

4 Blockchains that’s supports smart contracts: https://cointelegraph.com/learn/smart-contract-development-

platforms

TBU in Zlín, Faculty of Applied Informatics 27

Figure 5. Blockchain wallet [17]

Advantageous of blockchain wallets can be:

• A highly secured way of storing digital currency, the only thing that the user must secure

and not share with anyone is the private key. Because this is how anyone/he can access the

wallet and make transactions.

• Allowing transactions using different types of cryptocurrencies.

• Allowing transactions across different countries throughout the world.

There are currently only two types of blockchain wallets, hot wallets, and cold wallets. Hot

wallets are online wallets which are usually used to transfer cryptocurrencies in a fast way.

MetaMask and Coinbase wallets are an example of a hot wallet. Private keys in hot wallets

are stored in the cloud for faster transfer. On the other hand, cold wallets are digital offline

wallets, the transaction in these wallets is made offline and then confirmed and applied

online, these types of wallets are maintained offline to have high security. The private key

in these types of wallets is either stored on a paper document or on a hardware device. Such

wallets are Trezor and Ledger. [17]

1.6 How blocks are added to the blockchain

As mentioned before, a block of blockchain is no more than a container for data that is

strongly protected and encrypted and linked to the other blocks. There are different ways

and mechanisms used to verify transactions and adding new blocks to the blockchain, talking

TBU in Zlín, Faculty of Applied Informatics 28

about the cryptocurrency world which is the most common use cases currently in the world

of blockchain technology, there are two commons methods, and these are proof-of-work and

proof-of-stake.

1.6.1 Miners

Miners are the people who add new blocks into the chain, this process called mining. Special

software is used by the miners to solve complex math puzzles, for example they must find a

nonce that generates an accepted hash. A nonce stand for number used once. This number

is a random number that can be used only once. It is a 32-bit string that is subjected to

modifications by miners for making sure that is valid to use in hashing block’s value. This

number when combined with the information provided in the block and passed to a hashing

function must result in a value that satisfies given conditions. When the conditions are met

the other nodes in the network will verify the validity of the outcome results. Therefore, the

miner is rewarded with some crypto coins because we were able to append a block into the

network. Therefore, it is impossible to add a new block into the head chain without finding

a valid nonce which is responsible for generating the solution for a specific block. Each

validated block contains a block hash that represents the work done by the mine and from

this concept this why the mechanism proof-of-work called proof-of-work.

1.6.2 Proof-of-work

Proof of work was originally dated back to 1993, the proof of work concept was created or

developed to prevent service attack, in 2009 Bitcoin introduced a good way of using proof-

of-work as consensus algorithm, it is like an agreement between people to prove that

something is correct, it is like witnesses in the court. This algorithm has been widely used

by many cryptocurrencies mainly by Bitcoin and Ethereum, Litecoin and much more. The

concept is that miners on the network will try to compete in solving complex computational

problems by using their computers as shown in the Figure 6. Basically, it is cracking of the

code, all the miners on the network will have to verify that the solution found by a miner is

correct, so that a miner is able to add a block to the blockchain. Talking about bitcoin, bitcoin

is a blockchain-based system that is maintained by a group of distributed decentralized

nodes. Some of these nodes are known as miners and they are responsible for adding new

blocks into the blockchain, to the miners to be able to add block to the blockchain they need

to guess the nonce. [18]

TBU in Zlín, Faculty of Applied Informatics 29

Figure 6. Proof of work Process [19]

1.6.3 Proof-of-stake

Proof-of-stake is the successor of proof-of-work since proof-of-work mechanism requires

powerful computing devices that can solve very big complex mathematical problems, proof-

of-work causing the miners to use massive amounts of energy. Because of this, people are

making large mining houses or farms in general form. These farms contain a huge number

of GPUs that are responsible for the solving the complex mathematical puzzles, bitcoin

miners use about 54 TWh of electricity that is enough to provide five million houses in the

US or even power the entire country of New Zealand. Because of all these disadvantages a

new consensus algorithm that is as effective as proof-of-work or even better is introduced.

The basic idea is letting all the nodes or the users on the chain compete against each other

but without using the concept of mining, instead an election process is done in which 1 user

or node is randomly chosen. So, they are no longer called miners, instead they are Validators.

The basic idea here is that each validator will pay specific amount of money to the network,

the higher the validator pays the higher chance he gets to be selected by the network as

validator to add his block to the blockchain but the validator will not get a reward for making

a block but so the block creator will take a transaction fee. [20]

TBU in Zlín, Faculty of Applied Informatics 30

1.7 Cryptocurrencies

A cryptocurrency is a digital form of currency. That is highly secured by cryptography.

Cryptocurrencies are not owned by anyone they are distributed among a network of

computers or as we referred to it as a collection of nodes. Cryptocurrencies does not rely on

any authority to verify transactions. It’s a peer-to-peer system that can enable anyone

anywhere to transfer and receive payments anytime. When talking about the terminology

and where it came from cryptocurrency received its name because “Crypto” refers to the

various encryption algorithms and cryptographic techniques that protect these entries such

as elliptical curve encryption, public-private key pairs, and hashing functions.

Cryptocurrencies are nothing else other than encrypted string of data or a hash, encoded to

signify one unit of currency. They have no physical form and exist only in the network. The

first known cryptocurrency was Bitcoin, which was founded in 2009 and remains the best

known today. People are more interested in cryptocurrencies for the purpose of trading for

profit. [21]

1.7.1 How does cryptocurrency work?

Cryptocurrencies or digital cash was discovered or found as a side product of another

invention. The inventor/inventors of Bitcoin or the inventor of the first blockchain Satoshi

Nakamoto (it is the name used by the person or people who developed bitcoin as a

Nickname), in one of his announcements of Bitcoin, Satoshi said he created or developed

“A peer-to-peer Electronic cash system”. In his speech he said the following “Announcing

the first release of Bitcoin, a new electronic cash system that uses a peer-to-peer network

to prevent double-spending. It’s completely decentralized with no server or central

authority” – (Satoshi Nakamoto, 09 January 2009, announcing Bitcoin on

SourceForge5). The most important thing of the Satoshi’s invention was that he found a

way to build a decentralized digital cash system, as described before means there is no third

party between two people that is communicating for the purpose of money transaction or

contract creation. Before Bitcoin there were many tries to invent a digital cash system that

is in somehow decentralized, DigiCash was a digital money company that wanted to make

a system where digital payments are anonymous but unfortunately their plan did not go well

because they got bankrupt according to Wikipedia the company was founded in 1989 and

5 SourceForge bitcoin’s activities history: https://shorturl.at/cirtE

https://en.wikipedia.org/wiki/DigiCash

TBU in Zlín, Faculty of Applied Informatics 31

defunct in 1998. After that Satoshi realized that there were many failed attempts to build a

digital cash system without a central entity. Like a peer-to-peer network for file sharing. This

decision became the birth of cryptocurrency. There were just little pieces that were missing

that Satoshi was able to find to invent such a decentralized system. To get or observe digital

cash we need a payment network, with accounts, balances, and transaction. In a decentralized

network, every peer in the network needs to maintain a list with all transactions to examine

if future transactions are valid or an attempt to double spend. If one peer in the network

disagrees about a single minor balance, everything then will be broken. It is necessary to get

an absolute consensus. [22][23]

1.8 Blockchain limitations in general

With all the progress and the trend of blockchain technology that was made, blockchain

technology is still missing a lot of features and has huge limitations for different type of

solutions. Blockchain technology has a long way to go before it can reach its full potential.

As mentioned, the best feature of the blockchain technology is decentralization, however the

openness and the lack of centralized controller may have unintended effects that restrict the

system’s usage.

1.8.1 Lack of flexibility

Blockchain is a complex huge data structure system. That consists of a variety of concepts

and protocols that are optimized and adopted to one another. Such a huge environment or

system can be very difficult to change or alter. Till now there have been no established

procedures for how to change or upgrade the blockchain components. For example, talking

about the cryptographic techniques that is been used by a specific blockchain, these

techniques must be valid for the lifetime of the blockchain. There is also a huge problem for

enterprises and people that are developing on the top of a specific blockchain caused by the

immutability of the system and the idea of data cannot be altered or deleted, even for

developers it will be difficult to fix bugs or adjust the blockchain protocol. These problems

make blockchain technology more difficult to deal with than other technologies.

1.8.2 Huge energy consumption

Blockchain technology implementation requires a lot of energy, specifically if we talk about

the Bitcoin blockchain, since Bitcoin works with the POW concept, means miners needs

TBU in Zlín, Faculty of Applied Informatics 32

more energy and more computational resources to mine a Bitcoin, as mentioned in 1.6.2

and 1.6.3.

1.8.3 Illegal behaviors and bad activities

Cryptocurrencies and blockchain technologies can also be used as a means of exchange for

a variety of unlawful and dishonest activities. Such activities include examples of

cybercrimes. The following activities are the main threat for the blockchain technology:

• Darknet markets and illegal trade: since privacy is number one feature in the blockchain

technology this make it easier for thieves and drug dealers to do their operations easily, in

other word no one owns the data in the blockchain and there is no third party that can

reveal their secrets.

• Crypto jacking: A lot of people and even gamers fell into the trap of free games, free

movies, free books and so on. Crypto jacking is also known as computer hijacking, it is the

practice of using a user computer’ resources to mine cryptocurrencies against their will.

• Illegal content posting and blogs: In case of we talk about decentralized social networks

and decentralized blog platforms the problem with that is any user can post illegal and

violet content and unwanted content and the main problem here is that the user is unknown,

and no one can track. But in case of not showing the unwanted content, some AI modeling

with the mix of front-end technologies this content can be hidden from other users and user

that was responsible for posting this content can be banned from such a platform.

1.8.4 Smart contract as a limitation

While smart contracts are a good feature of the blockchain technology, they are still a big

threat for large numbers of enterprises and companies, since once a smart contract is

deployed on the blockchain it can’t be altered or the code cannot be changed anymore, that’s

why smart contracts that are about to get deployed on the blockchain (main nets) should be

tested well and deployed first to private/local blockchain and make sure that there is no

vulnerability to hack them or no bugs. We can take an example of DAO (decentralized

autonomous organization) hack. This organization was launched in 2016 by one of the

Ethereum protocols engineers on top of the Ethereum blockchain. The organization was

launched after they raised $150 million USD worth of ether (ETH) through a token sale. As

a result of the weak programming foundation of the smart contract codes that were deployed,

the DAO was attacked and hacked. At that time to recover the stolen funds, the Ethereum

blockchain finally underwent a hard fork. However not everyone in the network agreed with

TBU in Zlín, Faculty of Applied Informatics 33

this choice. For the DAO attack even before the DAO started to sale the tokens, computer

programmers and scientists were afraid that there was a bug in the DAO’s smart contracts

that would allow them to be drained. While developers attempted to fix the bug, a hacker

took advantage of the bug and started the attack. [24]

TBU in Zlín, Faculty of Applied Informatics 34

2 POPULAR BLOCKCHAINS AND CRYPTOCURRENCIES

It is necessary to talk about different types of public blockchains since they are free to join

and because everyone on the network can read and write ongoing activities on it. Public

blockchains can be extremely useful because they can be used as the backbone for almost

every decentralized solution. When mentioning public blockchains, a developer or someone

that knows about blockchain technology, the first thing that will come to his mind is the

following blockchains (Bitcoin, Ethereum). These can also be referred to as cryptocurrencies

because these technologies/cryptocurrencies have their own blockchain that’s why they are

also referred to as blockchain. in this section the focus on these blockchains will lie and

mostly focusing on Ethereum since the application in the practical part will be built on that

blockchain.

2.1 Bitcoin

When talking about Bitcoin, it also refers to it as a cryptocurrency. Bitcoin has its own public

blockchain, that is working under the concept of proof-of-work. Bitcoin was introduced to

the public in 2009, and from that time it became the most famous cryptocurrency. At that

time the first Bitcoin block was mined, and it is called Block 0. It is also commonly famous

as the “genesis block”. Bitcoin is easy to understand as a digital currency, if someone owns

a Bitcoin, he/she can use the cryptocurrency wallet to send specific amount or small portion

of it for the purpose of getting goods or services. Bitcoin as a blockchain technology uses

the SHA-256 hashing algorithm to encrypt the data that is stored on the chain. The

mechanism of blocks linking in the Bitcoin blockchain technology is that whenever a

transaction happens on the blockchain, the information from the previous block is copied to

the new block with the new data that is encrypted using the SHA-256 algorithm. The new

block can be added to the blockchain only if the transaction is verified by all the miners in

the network. When that block is added to the blockchain a Bitcoin is created and given as a

reward to the miner(s) who was/were responsible for validating the transaction. About the

transactions in the blockchain, all the transactions in the blockchain are placed into a queue

to be verified by the validators or the miners on the network, all the miners in the network

trying to validate the same transaction at the same time. Those miners use special hardware’s

and software’s to solve the nonce, which is a 32 bits number that is included in the block

header, the generated nonce is then compared to the target difficulty, if it meets the

requirements then the block is added. The target is used in mining, it is just a number that a

TBU in Zlín, Faculty of Applied Informatics 35

block hash must be below the target number otherwise the block will not be added to the

blockchain. The target in the Blockchain network manipulates the speed at which new blocks

are added to the blockchain, the target is adjusted automatically by the network to maintain

a constant block production rate. [25]

2.2 Ethereum

Ethereum is an open source blockchain, it is mostly known for it is smart contracts and the

usage of smart contracts, it is founded by Vitalik Buterin, and it was established in 2015. It

is also famous because it is digital/crypto currency ether or as known ETH. The Ethereum

platform was created to be fast, scalable, secure, decentralized, and programmable. From

huge enterprises to small ones, the Ethereum blockchain was the choice for building

solutions and decentralized applications on top of it because of its features. Bitcoin and

Ethereum have a huge similarity, but the main difference is the ability to use smart contracts

in the Ethereum blockchain and how the cryptocurrency is rewarded to the miners or the

validators. Ethereum firstly was operating on the proof-of-work concept as Bitcoin, but in

September 2022 the platform started to operate on the proof-of-stake concept. Proof-of-stake

mechanism is known that is more secure and more energy efficient compared to the proof-

of-work mechanism. Since the launch of Ethereum blockchain, ether as the digital

cryptocurrency now standing as the second largest cryptocurrency in terms of market value,

surpassed only by Bitcoin. In Ethereum blockchain there is a single computer embedded in

it, and it is called the Ethereum virtual machine (EVM). [26]

2.2.1 Connecting to the Ethereum blockchain

All nodes’ computers in the Ethereum blockchain relate to each other, and for this connection

to happen all of them must run software. Or as commonly known a client, there are different

types of clients/software’s that’s connect the nodes to the real Ethereum blockchain for

example:

• Through web3 providers, that allow us to interact with the Ethereum blockchain and

send/receive transactions and query the blockchain data without the need for running our

own full node. These providers provide the user with an API that he can use to interact

with the blockchain, an example of these providers is Infura, Alchemy and QuickNode

• Through running our own node, this process involves directly to communicate with the

Ethereum blockchain without the need for third party services, this operation includes

TBU in Zlín, Faculty of Applied Informatics 36

downloading and syncing the entire Ethereum blockchain on the computer, to run our own

full node it requires to use software’s/clients such as Geth, Parity.

• Through digital wallets, such as MetaMask, Brave Wallet, Web3Auth, Coinbase.

Usually, these wallets let the nodes connect to the Ethereum blockchain through a web3

provider.

• Through a blockchain explorer, such way will not let us send/receives transactions, but

rather only viewing transaction details and querying the blockchain data.

 Running our own node of the Ethereum blockchain have huge benefits, such as:

• Allows us to directly communicate with the Ethereum blockchain.

• Decreasing the reliance on a third-party service and this means direct communication with

the chain.

• Sending and receiving transactions to/from other accounts and nodes on the chain.

• Interacting with smart contracts and querying blockchain data.

staying connected and active with the other blockchain nodes, requires an online connection.

Each client that the node runs has its own implementation of the EVM. [26]

2.2.2 Ethereum smart contracts

As mentioned in 1.5.6, smart contracts are just a piece of code that is executed by the

Ethereum blockchain engine or virtual machine. For the code/contract to be able to get

deployed and run on the blockchain the process has several steps such:

1. Writing code using a programming language supported by the Ethereum blockchain such

as Solidity.

2. Code compilation: The solidity code should be compiled into an EVM bytecode that can

be used by the Ethereum virtual machine. The byte code represents the smart contracts

with its functions, states, mapping and more. A bytecode is a collection of machine-

readable instructions that can be executed by the Ethereum virtual machine. An example

of Ethereum virtual machine byte code can be:

A bytecode is not a human readable code, but it is readable for the machine. A bytecode is

in the form of hexadecimal. Each opcode (operation code) in the byte code corresponds to

a specific operation that the EVM can perform, such as adding two numbers and memory

TBU in Zlín, Faculty of Applied Informatics 37

access and control flow. Each opcode is represented by a single byte (8 bits) and has a

corresponding hexadecimal value, some opcodes may also have associated data, which is

used as input for the operation. The length of the EVM bytecode vary depends on the

complexity of the smart contracts. The byte code of smart contract is really the smart

contract but in other form that will be deployed on the blockchain, so the owner that is

responsible for deploying the smart contracts needs to make sure that there are no bugs,

vulnerabilities in the code because it might seriously affect the smart contract's integrity

and security as well as the security of the entire Ethereum network.

3. Execution of the byte code by the EVM: The owner of the contract will send a

transaction object to the specified Ethereum net (main or test or local one) that contains the

bytecode (in other word the smart contract) and gas limit and other data that is required for

the deployment of the contract. The transaction object is signed by the contract owner

using his private key. The transaction is subsequently broadcast to the network, where the

nodes in the network process it. The nodes verify the transaction's validity by examining its

bytecode, gas limit, and other metadata. The transaction is added to the pool of pending

transactions if it is valid, and miners then compete to process it by adding it in the

following block. Once the transaction is included in a block and the block is added to the

blockchain, the contract is deployed to the network and becomes available for use. We can

take an example of how the EVM reads and execute the smart contract’s bytecodes. Let’s

say we have the following contract as shown in Figure 7.

Figure 7. Solidity smart contract example

TBU in Zlín, Faculty of Applied Informatics 38

When this contract compiled using the Solidity compiler, the bytecode of the contract will

be obtained, which is a long hexadecimal number, and it will look something like the

following:

The EVM when it receives the byte code it starts to read them, one instruction at a time,

each instruction in turn has a specific code that tells the EVM what operation to perform.

For example, the first opcode in the bytecode 0x60 or 60, tells the EVM to push a 32-byte

value onto the stack. Followed by 0x80 that tells the EVM to duplicate the top stack Item.

The EVM continues to execute each opcode in turn until it reaches the end of the bytecode.

Once the bytecode has been fully executed, the contract is deployed and is ready to be

used. Each opcode or instruction in the Ethereum engine has a specific amount of fee to be

executed, so the owner of the contract needs to have an enough amount of ETH to be able

to deploy the contract.

4. Deployment of the contract: For the deployment of the contract, after the smart contract

gets compiled, two types of bytes code are obtained. First is the full byte code which

contains the whole contract. Second is the deployed byte code, the deployed byte code is

the one that will be deployed to the network, it has only the necessary information about

the contract for the purpose of execution.

2.2.3 Ethereum virtual machine (EVM)

The Ethereum virtual machine is the heart or the engine of the Ethereum blockchain, it is

considered as the run time environment for the smart contracts and decentralized

applications on the blockchain, it is a decentralized virtual machine that compiles and runs

codes written in the Solidity programming language or any other languages that’s support it.

The Ethereum virtual machines act as a software platform or as a virtual computer that is

used by the developers for creating decentralized applications, smart contracts. The

Ethereum virtual machine also works as a huge database for keeping the state of all the

accounts and balances on the Ethereum blockchain. The reason behind the word “machine”

is because this “Virtual computer” has the ability for executing machine code. The EVM has

its own instruction for executing machine codes called “opcodes”. All smart contracts codes

get compiled into instructions called bytecode which can be executed by the EVM. The

EVM is also known as a “state machine” which is not a real machine but rather it is a huge

data structure of wallets, balances and even sets of rules, like how to make/add new blocks,

TBU in Zlín, Faculty of Applied Informatics 39

and how much gas fee for the execution of each operation. Each blockchain provider such

as web3 provider or clients such as Geth or parity has it is own implementation of the EVM,

which is used to run codes on the Ethereum network. [27]

2.2.4 Ethereum state

Ethereum state is a large data structure, that holds all the information in the blockchain such

as accounts information and balances. Each account has its own address that is a reference

to it. When a computer runs a blockchain provider/client it will be responsible for adding

this computer as a node to the network. When a computer becomes a node in the network as

shown in the Figure 8, this node will begin to download the whole blockchain network data

and start verifying the validity of each block in the network. This data or entire blockchain

data is known as the “Ethereum world state.” As mentioned before, this Ethereum world

state contains all the information about accounts, balances, and smart contracts. If a new

block is added to the Ethereum network the client will be responsible for updating the local

copy of the Ethereum world state. This will ensure that the node is always up to date with

the Ethereum blockchain. Each web3 provider or client has its own implementation of

storing the world state. [27]

Figure 8. The Ethereum world state and nodes

TBU in Zlín, Faculty of Applied Informatics 40

2.2.5 EVM storage

Generally, there are three types of storage in the Ethereum virtual machine:

1. Normal storage (Account storage): This type of storage is used for persistent data, such

as transaction data, or even personal information. Account storage can be accessed and

modified only by the account owner and smart contracts authorized by the owner.

2. Contract storage: The data and the information of contract storage can be accessed only

by the smart contract owner that owns it; this type of storage is different from

normal/account storage.

3. Memory: Memory storage is like the RAM in the computer, data stored is used for run-

time execution so after the contract finishes the execution this data will be whipped out.

So, the data in the memory is used for computational purposes only.

4. Stack: Is the type of storage that is responsible to store data from the bytecode (the

instructions), the stack has the LIFO data structure (Last in first out), for example from the

long byte code we can take this example „0x30“ this is an instruction that will be stored in

the stack to be executed by the EVM, each instruction will be pushed to the stack and then

start executing from the last inputted one (LIFO). The stack can hold 1024 elements,

comprised of words of 256 bits (32 bytes). [27][28]

2.2.6 EVM gas fees and execution process

So, the discussion before has covered the types of storage in the EVM and the concept of

bytecode. It is necessary now to examine how the instructions from bytecode are read and

executed by the EVM and the associated costs. The Ethereum blockchain has its own set of

opcodes instructions and what each instruction and byte code mean and how much gas fee

each cost. Looking at a specific part of smart contract’s byte code such as

“0x6080604052348015600f57600080fd5b50604580601d6000396000f3fe”

The EVM executes byte by byte the bytecode, such as the first 60 byte. According to the

Ethereum yellow paper 60 stands for “PUSH1” and means place 1 byte item on the stack so

the following byte 80 will be placed on the stack. So, it is like “PUSH 0x08”. The part

0x6080604052 is almost exists on every smart contract byte code, this bytecode is a

hexadecimal representation of the Ethereum Contract Application Binary Interface (ABI)

encoded constructor. Almost every contract has a constructor. And for “0x34” when it gets

executed will results or will output how much Ethers we are sending with the transaction.

Talking about the gas in the Ethereum, gas indicate it name, it is the fuel of the Ethereum

blockchain, whenever a contract or a transaction is being executed on the blockchain a

https://ethereum.github.io/yellowpaper/paper.pdf

TBU in Zlín, Faculty of Applied Informatics 41

specific amount of fee/gas should be paid to the network, so that the network keeps

operating. Gas in formal terminology is the unit of measurement for the computational effort

required to execute an operation or smart contract on the Ethereum blockchain. For example,

the execution of a contract required 3 gas units. And each unit price is paid with the small

Ethereum currency unit which is gwei (1 Gwei = 0.000000001 ether), the calculated amount

of gas for an operation varies depending on how complex is the operation and, and the gwei

required for each gas unit vary on the market and the Ethereum blockchain network

activities, in general the more crowded the network the higher the gas price will be. If we

look for how much does the "PUSH1 0x80" operation costs, according to the yellow paper

and Ethereum blockchain official documentation website as shown in Figure 10, the PUSH1

opcode has 3 gas units and an additional gas cost for each byte of data being pushed, so for

a single byte of data pushed using the PUSH1 opcode, the total would be 3 gas units. And

as date of today “Friday, April 7, 2023 11:15 PM” the cost for 1 gas is as shown in the

Figure 9.

Figure 9. Ethereum gas price6

6 Ethereum gas price tracker: https://etherscan.io/gastracker

TBU in Zlín, Faculty of Applied Informatics 42

As we can see in the Figure 9, there is low, average, and high. Low and high gas prices

represent the minimum and maximum gas prices paid for transactions included in the last

few blocks. The average gas price is the median of the gas prices that have been paid for

these transactions. Users may choose to select a higher gas price if they want their

transactions to be confirmed right away, while users who are patient may choose to set a

lower gas price. [28][29]

Figure 10. Ethereum yellow paper [29]

2.2.7 Ethereum node variations

There are different types of Ethereum blockchain nodes, and the most commonly knows

ones are full nodes, light nodes, and Archive nodes. Full nodes from their names indicate

that’s they store the full blockchain data and participate in the network by validating

transactions and blocks. Once the full nodes fully synced with the Ethereum network, can

query all the Ethereum blockchain data. Light nodes from the other hand are much smaller

than the full nodes, and the main difference from the full nodes that they do not contribute

to the process of validating the blocks, these nodes can only query data from the blockchain,

TBU in Zlín, Faculty of Applied Informatics 43

they don’t store the state. Archive nodes are nodes that maintain storage of historical

blockchain states, these nodes are already have the information stored in a local storage and

more efficient from the side of performance when dealing with this type of requests. [30]

2.2.8 Accounts on the Ethereum blockchain

Accounts on the Ethereum blockchain are like the accounts that we have from the banks.

But for ethers cryptocurrencies, where the digital currency can be transferred or held to other

accounts, the main difference is that these accounts can be used to execute smart contracts

in the Ethereum blockchain. Accounts in the Ethereum blockchain are simply objects or

entities that are stored in the Ethereum world state as shown in the Figure 11. Each account

on the Ethereum blockchain has the following properties, Address, address is a specific

number that references the account in the Ethereum blockchain network, each address in the

Ethereum network is unique and immutable. An address is a number that consists of 20 bytes

(40 digit each two numbers represent one byte) and it is in form of hexadecimal, this address

is stored in Ethereum state. “0xb794f5ea0ba39494ce839613fffba74279579268.” Is an

example of an account address. Where “0x” represents the hexadecimal format. Balance,

balance simply indicates how much eth the account has such as 10eth. Nonce number, nonce

number describes how many transactions are made from the specific account.

Figure 11.Contract based account in the Ethereum world state

TBU in Zlín, Faculty of Applied Informatics 44

2.2.9 Types of accounts in the Ethereum blockchain

There are two types of accounts in the Ethereum network, Externally owned account and

contract account. Externally owned accounts as shown in the Figure 12 are the most basic

accounts in the Ethereum network, it functions similarly to a Bitcoin account. The address

of the externally owned account is created using private key and public key and then both

keys are hashed. Creating such account costs nothing and can initiate transactions. These

accounts are also controlled by the users, this control usually happens through software such

as a wallet application. Externally owned accounts are simple accounts without any

associated code or data storage. A normal person can have as many as accounts he wishes.

An account is created whenever a wallet is created, and it is made with a private key this key

can be used to:

• Check balances.

• Send and receive transactions.

• Establish and create smart contracts.

Transactions that are made from an external account to a contract account can trigger codes

that can execute many different actions, such as creating new contracts or different types of

functionalities.

Figure 12. Ethereum externally owned account [30]

From the other hand contract accounts as illustrated in the Figure 13 is controlled by contract

code and surely a contract account can do all the functionalities that an externally owned

account can do, contract accounts unlike an externally owned accounts they are created when

a contract code is deployed, while externally owned accounts are formed when a digital

TBU in Zlín, Faculty of Applied Informatics 45

wallet is created. Contract accounts are governed by the contract codes. The good thing about

contract accounts is they can have some storage data (storage hash) to store some data.

Creating a contract account has some disadvantages such as the gas fee for each a contract

account it is required to pay some gas fees to the network. These fees are used for storage

resources and valuable computation power. Contract accounts can’t trigger a transaction on

their own, instead they can only trigger them responding to other transactions. [30]

Figure 13. Contract account on the Ethereum network [30]

2.2.10 Ethereum drawbacks and limitations

Ethereum still has some downsides and some disadvantages such as:

1. Slow transaction speed and speed in general: The Ethereum network has an average

speed of 15 TPS (Transactions Per Second), compared to Bitcoin it is not that difference,

Bitcoin has an average of 7 TPS, that’s why sidechains where invented to improve such

limitations if we look at Polygon, it has an average of 65000 transaction per second. Slow

transaction speed happens mostly because the network is too congested and because of the

mechanism that the networking is operating on (POS, POW). In the case of Ethereum and

because it uses POS the more crowded the more a node must pay gas fee to make his

transaction accepted faster.

2. Expensive fees: Ethereum is also known for the high gas fees that are requested for the

transactions and for the deployment of contracts, a simple transaction on the network can

cost up to 5$. while a complex transaction including smart contract could cost between $50

or $100 to execute. Simple transactions between Alice and Bob can be reasonably priced.

For most of Ethereum's existence, it was approximately $0.10. A complicated smart

contract with numerous phases will cost more because it needs more processing power.

[31]

TBU in Zlín, Faculty of Applied Informatics 46

3 SIDE CHAINS

A side chain and layer 2 chain are a sperate blockchains that run independently of the main

blockchain. They are both methods for scaling blockchain networks and improving their

efficiency, transactions speed and more. But both differ from how they implement these

improvements.

3.1 Side chains

Sidechains and Layer 2 chains are both methods for scaling blockchain networks and

improving their efficiency. However, they differ in their implementation and purpose.

Sidechains are designed to provide an alternative platform for transactions, allowing users

to transfer assets and data between the main chain and the sidechain as shown in the Figure

14. They can be used for experimentation and innovation and offer benefits such as improved

scalability and faster transaction processing. On the other hand, Layer 2 scaling solutions are

designed to build additional layers on top of the main chain, enabling faster and cheaper

transactions, while maintaining the security and decentralization of the main chain. [33]

Figure 14. Side chains architecture [33]

3.2 Potential of side chains

The main benefits of side chains are adaptability to change, experimentation, and

diversification.

TBU in Zlín, Faculty of Applied Informatics 47

3.2.1 Adaptability to change.

Through various optimizations, such as shifting a certain type of transaction to another chain

using a protocol designed just for that sort of transaction, a sidechain can provide faster and

less expensive transactions. As a result, the first chain should become less clogged and

speedier as well as more affordable. Sidechains can also make use of newer, more rapid, and

effective methodologies.

3.2.2 Updates and experimentations

Sidechains allows new ideas and features to be tested and deployed without requiring a broad

consensus from all stakeholders. This means that the developers can test and experiment

with new ideas and features on the sidechain before implementing them on the main chain.

Sidechains can be used to offload certain types of transactions from the main chain, freeing

up space for more important transactions. [32][33]

3.3 Examples of sidechains

There are many examples of sidechains currently, but the most interesting ones are

Drivechain, SmartBCH and Polygon. Talking about Drivechain, it is an example of a

second type of sidechain with relation of “parent-child”. Bitcoin is the parent and Drivechain

is the child. Drivechain does not have its own native token, instead it fully relies on BTC

transferred from the Bitcoin network. Drivechain solves the problem that sidechains must

have their own miners, by implementing the so-called blind merged mining (BMM). BMM

gives the ability to the miner on the Bitcoin blockchain (the main network) to mine on

Drivechain (child) without the need to run a full Drivechain node, and the miner is rewarded

in BTC. The aim of Drivechain is to give the people that have BTC on the main network the

ability to transfer bitcoins from the Bitcoin network to sidechains and back and this give the

bitcoin holders access to variety range of blockchains.

SmartBCH on the other hand is independent from the main chain. SmartBCH is an Ethereum

virtual machine (EVM) and Web3-compatiable sidechain for Bitcoin cash (it is bitcoin by

with new improvements), SmartBCH does not have its own native token. The main aim of

such a chain is to support smart contracts and the building of decentralized applications,

improving transaction times. Providing a scalable and developer-friendly platform for

building DApps. SmartBCH is designed to have low fees on execution of transactions and

smart contracts. [32] [33]

TBU in Zlín, Faculty of Applied Informatics 48

3.3.1 Polygon

Polygon was created by a group of Ethereum experienced developers in 2017. Polygon was

formerly known as the MATIC network (it is currency name). The MATIC network went

live in 2020 and was then re announced to become Polygon in Feb 2021. Polygon runs on

and alongside the Ethereum blockchain (Polygon is not independent from the Ethereum it is

fully dependent on the Ethereum blockchain). Polygon is also considered as layer2 solution

(A layer 2 is a different blockchain that extends Ethereum and takes on Ethereum's security

assurances.). Polygon uses Ethereum framework called Plasma, which allows the creation

of child chains that can process transactions before being finalized on the Ethereum

blockchain. Polygon has its own cryptocurrency, called MATIC, MATIC is used to govern

and secure the polygon network and to pay network transaction fees. The Polygon network,

as a secondary scaling solution, is the goal to address the limitations of the Ethereum

network, such as high transaction fees and slow transaction processing speeds. Talking about

the Polygon architecture, Polygon is made up of four layers as shown in the Figure 15:

1. The Ethereum layer: this layer is not mandatory for Polygon to use, but Polygon can use

this layer as a base layer for the chain, to take advantages of its decentralized nature and

high security, this layer can be used for finality, checkpointing, staking, dispute settlement,

relaying messaging between Ethereum and Polygon chains, and more. It is constructed as a

collection of smart contracts on Ethereum.

2. Security layer: this layer provides the polygon network with a function that acts as

validator. It allows Polygon to use sets of validators that can check the validity of the

Polygon chain like transactions and blocks for a fee. This layer runs in parallel with

Ethereum and can be used for the management of validators.

3. Polygon networks layer: this layer consists of multiple networks/chains or sidechains as

the name indicates, these chains are running in parallel with the main network. Each chain

can have its own functionality such as transaction collation.

4. Execution layer: This layer is the most important layer on the Polygon network, it is

responsible for the execution of smart contracts and transactions, this layer includes the

Ethereum virtual machine and different execution environments that support different

programming languages. [34]

TBU in Zlín, Faculty of Applied Informatics 49

Figure 15. Polygon architecture [35]

3.4 Downsides of sidechains

Sidechains also have their cons; it is right they exist to improve the main chain’s performance

and functionalities, without affecting the main blockchain. But since sidechains are

responsible for their own security; a sidechain’s security is not inherited from the blockchain

it connects with. This can be counted as a positive and a negative feature at the same time

since poor security in one blockchain does not affect the security of the connected

blockchain. On the other side this means popular blockchains like Bitcoin or Ethereum,

cannot lead any security strength to smaller or less popular blockchains. It also applies to

sidechains that they need their own miners, sidechains do not inherit the miners from the

main chain, and since miners play huge factor in securing the blockchain, this can be a huge

downside for sidechains, so a new side chain must do their best to grow the mining

ecosystem. If the parent/main network is down or experiencing issues, it can potentially

impact the child network, as the child relies on the parent as its base layer. [35]

TBU in Zlín, Faculty of Applied Informatics 50

4 BLOCCHAIN AND WEB

In the realm of web development and blockchain, the discussion revolves around

decentralized applications, where the data of the users will not be controlled by anyone,

meaning no one owns their data or no one can alter or remove their data. Standard social

networks such as Facebook or Twitter are centralized applications, in other words means the

user data is stored in a normal database or server basically, and this server or database is

controlled by some people, it means our data is not fully secured, and is in the hand of

someone. So, talking about a decentralized social network meaning that all users on the

network can read the information available on the web, and all users are able to add

information as far as they comply with the set of protocols, and the transfer of files or any

data between any users are done without any third party and it is all done using the

blockchain technology.

4.1 Web 3.0 vs Web 2.0

In the context of web development, it is important to consider different versions of the web.

Specifically, we refer to web development in general, starting from the early days of the web

known as web 1.0. During this era, users had limited capabilities and could only read

information on the web. Web 1.0 represented the earliest version of the internet, where

webpages primarily consisted of static content. These pages were hosted on web servers

managed by Internet service providers or free hosting services. Users primarily utilized the

web for accessing information and conducting research. It was not possible for users to store

data or input any form of information. Essentially, webpages during this time were limited

to text and images, offering read-only functionality.

4.1.1 Web 2.0

Web 2.0 is basically the evolution of Web 1.0. The evolutions represent the shift from read

only internet to read/write and store internet and moving from no styled pages to styled

animated pages using CSS, in this period the social media networks started to appear, video

casting, live streaming and much more as shown in the Figure 16.

TBU in Zlín, Faculty of Applied Informatics 51

Figure 16. Web 2.0 features [36]

4.1.1.1 How web 2.0 operates

Web 2.0 works in a way where users communicate with a web server where the website is

stored in it. But direct communication is not established as in web 1.0, here the web server

will process a user request using some kind of back-end language or any server scripts like

shown in the Figure 17, after that the web server will connect to the database and send the

right request and after that the response is send back to the user. [37]

4.1.1.2 Requirements to create web 2.0 Application.

Nowadays the use of web 2.0 is still getting popular even though web 3.0 was introduced

because web 3.0 website cannot be built without using web 2.0 technologies. To create a

fully compatible web 2.0 application it is necessary to think about front-end technologies

and back-end technologies and databases to store the website information and users’

information. For the front-end technologies, it is mandatory to use HTML this language build

the skeleton of the page this markup language was already introduced in the Web 1.0, then

it is important to use the CSS to give some styling to the page the CSS was introduced in

Web 2.0 it gives the ability to animate and colorize the website in many different ways,

finally to make the website active and feels a life, the job of JavaScript language takes a

place here, this language make the website interactive with what the user do, for example

when a user clicks on button a dialog say hello should appear. Finally, talking about the

TBU in Zlín, Faculty of Applied Informatics 52

back-end side where the deal with the storing/retrieving of the data happen, the database is

basically a place where a user saves his files, messages, pictures and retrieve them later,

there are many different types of databases but to communicate with the database a scripting

language such PHP, C# ASP.NET Core framework, Express.js framework should be used.

These scripting languages or frameworks provide a way to communicate with the databases

by retrieving requests from the users.

Figure 17. General Communication Architecture[38]

HTML is not really a programming functional language, but it is markup language means it

works with tags, HTML has many different tags to represent content on the website such as

image, heading title, video, paragraph, tables, links and much more. HTML is the standard

language for creating web pages, it describes the skeleton of the page. Without HTML there

is no website. The simplest code to build a web page is as shown in the Figure 18.

Figure 18. HTML simple page

TBU in Zlín, Faculty of Applied Informatics 53

This code will generate a simple web page that gives the result as shown in the Figure 19.

Figure 19. HTML code result

CSS, stands for cascading style sheets, it is a style sheet language means does not provide

any functionality instead it describes how the HTML elements should appear on the screen,

it is possible to write CSS code inside the HTML tag and this way of coding called inline

styling or it is also possible to write inside the body of the head tag and in this case this way

of writing style is called internal styling, or by creating an external CSS file with the

extension .css as external cascading style sheet file, CSS provide us with many styling

choices and animations not only this but also it provides the so called media queries which

can decides how the web page should appear on different screen sizes or different devices.

In the Figure 20 is a demonstration of CSS inline styling, that results the web page showing

in the Figure 21.

TBU in Zlín, Faculty of Applied Informatics 54

Figure 20. HTML with inline CSS

Figure 21. CSS code result

JavaScript, every website that has interactive elements and 2D/3D interactive animation or

data manipulation, it can be confirmed that JavaScript was included in that website,

according to the w3 organization JavaScript is used as client-side programming language by

98.0% of all the websites, this is a huge percentage. With JavaScript the possibility to write

code to select an element that exists in the HTML page and decide what can be done with

that element, for example change it is inner content or delete it from the HTML DOM.

Talking about JavaScript as a language, JavaScript is an object-oriented programming

language, but it is not a class-based object-oriented language such as Java, C++, C# but since

JavaScript follows the ECMAScript standard in ES6 JavaScript introduced the uses of

classes. JavaScript is also Weakly typed language means that there is no need to declare a

variable as integer or string or any other data type kind, but simply creating a variable

without datatype and JavaScript will automatically detect the assigned value that is given to

TBU in Zlín, Faculty of Applied Informatics 55

that variable, or declare variable using var, let, const each one of these has their own

advantages7. To write JavaScript that works on HTML web page, there are two ways either

writing internal script inside the head tag body or at the end of the body tag or as external

file with the extension .js, the code showing in the Figure 22. Demonstrates the internal

JavaScript code that will select a button from HTML elements and when clicking on it will

show alert, that the button is clicked as shown in the Figure 23. So, HTML, CSS, and

JavaScript are essential components required to construct a fully functional website. [39]

Figure 22. HTML with JavaScript

7 Differences between var, let, const: https://www.freecodecamp.org/news/var-let-and-const-whats-the-

difference/

TBU in Zlín, Faculty of Applied Informatics 56

Figure 23. JavaScript Result Code

4.1.1.3 Web 2.0 use cases and applications

Web 2.0 have helped us a lot with different services websites, such as social networks, and

Blogs whether it is personal or professional or organizations blogs, Bloggers can simply

create web pages and share up-to-date information and users visa-versa can like and share

this news or even comment on them. Social media networks provide communication

between different kinds of users from different places around the whole world, users can

easily share their details with other people. Users can communicate and can also make

communities or groups with different types of categories such a group for fitness or for

studying or for coding and so on. Videos and image websites were also a huge move from

web 1.0 where a user can upload videos on different kinds of platforms with different types

of content.

4.1.1.4 Web 2.0 in real life

Talking about social media networks, the popular ones for 2022 include Facebook, Twitter,

TikTok, and Instagram. As for websites serving as information guides and sources,

Wikipedia stands as a noteworthy example. However, it is worth noting that Wikipedia

represents one of the potential risks associated with web 2.0 due to its open-editing nature,

allowing anyone to modify its content. In terms of search engines, Google ranks among the

most renowned.

TBU in Zlín, Faculty of Applied Informatics 57

4.1.2 Web 3.0

Web 3.0 is the third generation of web technologies. Web 3.0 was introduced to solve the

fact that the data is centralized, which means the data is in the hand of someone or it is

controlled by someone, but Web 3.0 is not only about the decentralization of the data, Web

3.0 will also make the use of machine learning and artificial intelligence to help building

more intelligent and adaptive applications. Web 1.0 was a generation where static

information was provided to different kinds of users for read only or rarely for write. Web

2.0 was a generation where enabled the user to collaborate between each other and give them

the full ability to read and write information. Web 3.0 can be assumed that it will change

both how websites are made and how the users interact with these websites. Web 3.0 is

considered to be the successor for two older generations.

4.1.3 How does web 3.0 operate?

Web 3.0 introduces a paradigm where applications and services leverage blockchain

technology while concurrently incorporating the foundational technologies and protocols of

Web 1.0 and Web 2.0. The utilization of blockchain technology within Web 3.0

fundamentally challenges the notion of a centralized authority, emphasizing instead a

distributed consensus framework. A noteworthy aspect of Web 3.0 is its inherent integration

with cryptocurrency, enabling decentralized payment methods for goods and services. These

cryptocurrencies are constructed and enabled through the utilization of blockchain

technology. In contrast, Web 1.0 and Web 2.0 primarily relied on IPv4 addresses, a protocol

that has become inadequate due to the exponential growth in internet users. In the context of

Web 3.0, the adoption of IPv6 addresses predominates, facilitating scalability and

accommodating the evolving demands of the digital landscape. [40]

4.2 Requirements to create web 3.0 Application.

Given the context of decentralized databases, there is no need to concern ourselves with

creating a personal database. However, certain situations may necessitate its creation, such

as when implementing authentication and authorization using JWT. In most cases,

blockchain serves as the underlying foundation. Nevertheless, we still need to address the

implementation of front-end and back-end technologies that support interactions with digital

wallets and smart contracts. Solidity, for instance, is a programming language commonly

used for smart contract development. For digital wallet functionality, options like MetaMask

TBU in Zlín, Faculty of Applied Informatics 58

or other compatible wallets supporting specific network/blockchain types can be utilized. A

normal software or application architecture of a DApp should have:

• Front-end: Any type of front-end technology that supports the interaction with a web3

provider.

• Web3 provider: Any type of web3 provider/wallet that interacts with the blockchain we

want to, but the provider should support that blockchain.

• A smart contract programming language: To be able to build smart contracts on the

blockchain a smart contract programming language should be used. Such as Solidity or

Rust or even Vyper, it is also possible to use JavaScript for building smart contracts.

• IPFS (InterPlanetary File System): For storing users’ files, images, videos in

decentralized way IPFS can be used. IPFS is a protocol, hypermedia, and file sharing peer-

to-peer network for storing and sharing data in a distributed file system.

• Back-end (optional) and central database: Any type of back-end and database

technology, the need for them will be in cases of adding additional features to the DApp

such as:

o Managing user accounts and authentication, authorization, the back end can store

non-sensitive user information such as usernames, public keys, passwords, JWT

tokens (access and refresh token), to ensure that only authorized users can access

the DApp.

o Analytics and monitoring, back-end can be used to track user activity and gather

data on how different types of users interact with the DApp, such data can be used

to improve the DApp’s performance and usability over time.

4.3 Social networks

Social network/media is a place where billions of people share their information and daily

activities. Such platform has many advantages for the people, including the ability to contact

and exchange information with others, to share daily videos and share informative posts and

videos with others, keep in touch with our long-distance families and friends. One of the first

known social media platforms was introduced in 1997. It was called “SixDegrees”, and it is

still available8. A user on the platform could create a list of friends and send messages. Now

as 2023. Social media has evolved a lot and now different platforms are competing between

each other’s to add more and more features, so as a result it gains more users and more

8 One of the first known social networks: http://sixdegrees.com

TBU in Zlín, Faculty of Applied Informatics 59

market value. Some social media platforms currently support the idea of a so-called

marketplace where people on the platform can sell their products or secondhand products.

This idea helped many people to start growing their own business or find used products. An

intriguing aspect of certain platforms like Facebook is their support for real-time gaming

experiences within social media. This feature allowed users to engage in multiplayer games,

compete with each other, and share their achievements. But all of this amazing feature and

sharing of personal data and daily activities and live location, does a normal user knows

behind the scenes what is happening and where his data is stored, mostly the answer will be

no. A normal user will be interested to have a safe password that no one should know and

start dive into the network and share all his personal information and personal pictures

without knowing how his data are stored or processed. Currently all popular and famous

social media are centralized, means there is central authority that owns all the users’ data.

[41]

4.3.1 Problems with centralized social networks

The main problem with centralized social networks is that all user’s data are stored in a

central way as shown in the Figure 24 , means the data is stored somewhere that someone

has control over it or in other words stored in a big database server. If we look at a general

overview of a centralized social network architecture, we can see we have users and all their

interactions, data, activities are sent to a central server or provider in the end.

Figure 24. Centralized Social Network [42]

TBU in Zlín, Faculty of Applied Informatics 60

Centralized social media platforms try to capture valuable users’ data such as interests,

preferences, and activities. Then these platforms try to sell the captured data to markets for

the purpose of advertisements, advertisers are the clients of centralized social media

platforms like Facebook, Instagram, LinkedIn, Twitter, and YouTube, while user data is their

main output. Another huge limitation of centralized social media is the fact that if the central

server goes down, all users on the platform will notice this problem, all users will not be able

to access their data at that moment. Centralized social media or any central system is exposed

to 3rd party attacks, since they have a single point of entry that can be targeted by hackers

looking to exploit any weaknesses. Most important topic to mention while talking about

centralized social networks is the freedom of speech and expression, freedom of speech is

the idea that everyone has the natural right to express themselves freely through any medium

and without restriction from outside sources (such as censorship) or concern about retaliation

(such as threats and persecutions). By barring users or restricting their access to the site for

a certain period, most social networks in use today limit users' freedom of expression over

certain and sensitive issues. The right to free speech and expression is nuanced. This is since

freedom of speech is not absolute and carries with it some duties and responsibilities,

therefore it could be subject to certain legal restrictions. However Certain types of speech

that certain platforms deem hurtful, or offensive have been made illegal. While in certain

circumstances this could be advantageous, it can also raise questions about censorship and

the suppression of free speech. Instead of outright banning speech on social media platforms,

I believe it would be better if there were government guidelines in place to impose

restrictions. Given that, a balance between the right to free expression and the responsibility

to protect others from harmful remarks must be found. To make sure that their programs are

successful and do not unduly violate people's rights, the government should collaborate

closely with social media sites. [43]

4.4 Decentralized social networks

To solve the problems of centralized social networks, it is necessary to solve the main

problem of it, which is the idea of someone controlling the data, or the data is stored in a

place under authority of someone. Since blockchain is a decentralized storage system, it can

be used to solve this problem where data is shared across the network nodes instead of one

central server.

TBU in Zlín, Faculty of Applied Informatics 61

4.4.1 Applicability of decentralized social networks

In the context of switching from centralized social networks to decentralized ones, it is

essential to mention the problems that such an evolution can solve. Decentralized social

networks have the potential to address the following issues:

• Own the data: Decentralized social platforms increase privacy, because they enable users

to control and own their data, making it more difficult for large corporations or

governments to access or misappropriate their information.

• Security: In addition, decentralized social networks are less susceptible to data intrusions

because user data is distributed across a network of nodes rather than a central server.

Users can create accounts without associating them with identifiers from the actual world,

such as email addresses or phone numbers. Rather than relying on a single organization to

safeguard user data, these networks frequently utilize public key cryptography for account

security.

• Censorship and freedom of speech: Decentralized social media provides resistance to

censorship and supports free speech. As no centralized authority can control or censor

content, these platforms are ideal for free speech and expression. Since decentralized social

media are largely unmoderated, their dark side can include political misinformation,

cyberbullying, and criminal activity.

• Rewarding users: A decentralized social media platform can create a reward system. For

instance, the platform could implement a system that compensates users with tokens when

their posts receive a certain number of likes, remarks, or shares. The platform can create its

own native cryptocurrency that can be used to reward the users for their activities.

 [44]

4.4.2 General architecture of a decentralized social network

Four or three layers are necessary for a decentralized social network to operate correctly. To

explain this in a more detailed way, an example of creating a post on social media as shown

in the Figure 25. Can be used to discuss the necessary layers for a decentralized social

network architecture.

1. Client-side: A client side can be an API or a normal web UI application that consumes

data. This side acts as the starting point of communication. For example, creating a post on

social media will be triggered first from the client side.

2. Web3 library/provider: A web3 provider will give the client-side the ability to

communicate with the blockchain, provide operation such as sending/receiving transactions

TBU in Zlín, Faculty of Applied Informatics 62

or scanning the content of the blockchain, or verifying if a contract exists and more. For

our example the library will be used to communicate with a contract on the Ethereum

blockchain to send a transaction that contains details about the post we want to create, the

library then in turn will return the result of the transaction and acknowledge whether the

transaction is successful or not.

3. IPFS provider: Since the visual content of the social media should also be stored in a

decentralized way, IPFS will be used to store user content on that platform, IPFS as

explained in 5.5.2, it is a distributed file storage platform. Instead of running a node on

IPFS network, there are providers that provide services and run their own node in the

network. And provides functionalities such as publishing or retrieving content from or to

the IPFS nodes. When talking about creating a post, the image or the visual content should

be uploaded to the IPFS network, and in turn retrieve the CID and store it in the contract

storage on the blockchain. Prior to uploading content to the blockchain, it is important to

follow a specific process. This process involves initially waiting for the operation to upload

visual content to IPFS (InterPlanetary File System), a decentralized file storage protocol.

Subsequently, all the data, including the visual content, is sent together to the blockchain

network.

4. Additional back end: An additional back end and central database can be added to the

architecture of a decentralized social network, for the purpose of improving the website

user experience and improving the website security overall. An example of that can be

using JWT token to protect the website routes and protect user contents and avoiding any

middleman attack from taking over user actions, also the back end can be used to monitor

number of users in the platform. Or handling the errors that occurred from the blockchain,

like for example in case of blockchain goes down, it will not affect the overall platform

experience.

TBU in Zlín, Faculty of Applied Informatics 63

Figure 25. Decentralized social media architecture9

4.5 Real life examples of decentralized social networks

There are already some published decentralized social networks that are operating and have

good amounts of users and have their own rewarding systems. It is anticipated that more

decentralized social networks will emerge, each with unique features and expanding

functionalities. Such most famous and used platforms will be explained in detail for better

overview and which to choose and how they are compared to our current solution. When

talking about different decentralized social media platforms we must focus on the following

topics mainly:

1. Open source or not.

2. The used blockchain technology and the network.

3. The token or the cryptocurrency used in the platform.

4. When it was published.

5. The user interface of platform and ease of use.

6. If the platform provides a reward system for interaction with the platform’s community.

7. Cost of transactions and interaction on the platform

8. Ease of registration

9 Decentralized social media architecture: https://ijarsct.co.in/Paper4979.pdf

TBU in Zlín, Faculty of Applied Informatics 64

4.5.1 Steemit

Steemit is a full open source Web3 social networking site Steemit was created on the STEEM

blockchain. Steemit was considered one of the best decentralized social media platforms

according to “Sourceforge”, also overall ratings/reviews that is done by users is 4.8/5. The

STEEM token, is the native cryptocurrency of the STEEM blockchain, is used by the

platform to compensate users for posting, sharing, and interacting with content. Daniel

Larimer and Ned Scott started Steemit in 2016. The project's goal is to raise the standard of

our online interactions by providing rewards for participation and community control.

Talking about the UI of Steemit. Steemit has a comparable UI to Facebook's as shown in the

Figure 26. It has a user-customizable automatic content stream that users may customize to

their preferences. STEEM prizes are available for those that watch and read material.

Engagement on the Steemit site determines how STEEM tokens are distributed. The most

well-liked or up-voted content's creators get greater STEEM distributions. Users who

interact with the platform's content and provide the greatest value also have the possibility

to earn more tokens. The best thing about Steemit is that it uses a zero-fee structure so that

the platform is accessible for all. One of the primary justifications for charging for Steemit

social media interactions is that the Steemit blockchain has a "bandwidth-limiting

mechanism" to reduce spam assaults. However, network users may increase their SP token

holdings to get greater bandwidth. To Register to the platform a guest must provide the

(username, phone number, email address) after writing the verification codes sent to email

and phone number, the platform will automatically generate a password that will be used for

login and generate a public key that is used for transferring and receiving tokens. Other keys

are also generated for the purpose of account recovery and social actions and more as shown

in Figure 27. All the keys that the platform will provide, will be served as a PDF file that

will be asking the user to download it. [45][46][47]

TBU in Zlín, Faculty of Applied Informatics 65

Figure 26. Steemit user interface

Figure 27. Steemit platform's keys

TBU in Zlín, Faculty of Applied Informatics 66

4.5.2 Minds

Minds is a free open source decentralized social media platform, that was founded by Bill

Ottman in 2011. Minds built on top of the Ethereum blockchain. Minds creates its own

tokens, known as Minds tokens. Its foundation is the Ethereum ERC2010 tokens. The Minds’

user interface is very user friendly, and it is so easy to navigate between different sections.

The UI has a very similar architecture to Instagram as shown in the Figure 28. Minds also

has its own reward system for creating, upvoting, sharing, and viewing content on the

platform. On Minds social media platform, a user can earn rewards in the form of tokens for

the contributions. This means that a user will be rewarded for the effort putted on, whether

that involves creating exceptional content, being active on the platform, or assisting in the

development of the code. Like YouTube, the social media platform Minds features channels.

Users may design and administer their own channels on Minds, where they can post material

and interact with their audience. Users may subscribe to channels that interest them to get

alerts when new material is added, and channels on Minds can be personalized with

distinctive branding and design. Minds also give the ability to exchange the tokens that a

user owns to promote the content all over the network, or on a specific channel’s audience.

Figure 28. Minds' user interface

Talking about the data that a user must provide to register to the network. (Username, Email,

Password) and the user can freely use the platform after the users verifies the code sent to

the provided email. Actions on Mind’s platform are free of charge, means there are no gas

fees for actions like (Posting, liking, or commenting) that a user must pay directly. What

10 ERC-20 Tokens: https://www.investopedia.com/news/what-erc20-and-what-does-it-mean-ethereum/

TBU in Zlín, Faculty of Applied Informatics 67

Minds do is that when user participate in the platform, they are earning tokens, and these

tokens are then used to pay for the transaction fees, every change to the platform requires a

transaction, which incurs a small fee in the form of cryptocurrency. Tokens in the platform

are rewarded to user at 2:00 every day to Offchain wallet. Offchain wallets are just wallets

that store cryptocurrency off the blockchain, instead of storing and recording balances and

transaction on the real blockchain, all of this is made on the platform’s wallet (that is

considered as a server or database). Off-chain wallets may have several benefits over on-

chain wallets, including quicker transaction times, fewer transaction fees, and more

convenience. They do not offer the same level of protection and privacy as on-chain wallets,

and they do carry some dangers including the potential for theft or hacks. [48][49][50]

4.5.3 Lenster and Lens protocol

Lens protocol is a decentralized social media protocol, or social media graph on Web3, built

on top of the Polygon blockchain (Layer 2 scaling solution), “Stani Kulechov” founder and

CEO of Aave, invented Lens Protocol based on discussions regarding the significance of

digital identity control. On February 7, 2022, Lens Protocol was made accessible on

Polygon's Mumbai test net. On May 18, 2022, Lens Protocol moved to Polygon's main net.

Lens can be considered as a platform for blockchain developers to launch their social DApps

on the top of it. The project seeks to enable Web3-based social media networks and profiles

to be launched by developers. Lens protocol can also be considered as a set of smart contracts

that are deployed on the Polygon network. Lens protocol does not offer a native token,

instead it uses ERC-72111 token standard for non-fungible tokens on Ethereum. Each

user or profile created on the lens protocol is presented as a non-fungible token, that can

even be sold or traded with. And this is what makes each user on the Lens network unique.

Lens protocol acts as an umbrella of all the applications created on top of it. When a user

has an account or a lens profile on the lens protocol, this account will be the same in all the

applications created using the Lens protocol. This is what makes such a platform powerful.

In other words, if they are two different social media websites for different purposes one for

sharing videos and one for sharing posts, a lens profile will not need to register twice, a user

can login simply with the same account on the two different platforms that are built on top

of the lens protocol. Regards the ease of getting a profile on the lens protocol, it is a hard to

11 ERC-721 Ethereum’s tokens: https://ethereum.org/en/developers/docs/standards/tokens/erc-721/

TBU in Zlín, Faculty of Applied Informatics 68

get an account specially in 2023, A user must claim handle from the lens protocol to be a

valid registered user, that can deploy applications on the lens protocol and can login to all

different apps created on it. There are currently several ways to claim a handle from the lens

protocol:

• Get invited from other DAO (decentralized autonomous organization).

• Buy a Lens profile from OpenSea12 platform.

• Join different web3 discord servers that may give up lens profiles.

• Waiting for the lens protocol to open the access for the community to claim handles.

What makes Lens protocol different is that it makes it so much easier for blockchain

developers to build decentralized social media platforms on top of it, like the applications

shown in the Figure 29, by using their API, instead of writing whole application with smart

contract and taking care of security and functionality. The API provides a good collection of

end points, such as:

• Authentication using JWT.

• Gasless transactions – some conditions must be met.

• Follow – to follow other users on the platform.

• Create profile end point (only for the test net).

• Get profiles end point.

12 OpenSea platform, lens profiles: https://opensea.io/collection/lens-protocol-profiles

https://opensea.io/collection/lens-protocol-profiles

TBU in Zlín, Faculty of Applied Informatics 69

Figure 29. DApps on Lens protocol

Transactions and actions on the lens protocol tend to be free of gas from the user side. The

protocol also makes use of a cutting-edge "Gasless transaction" mechanism, which enables

users to communicate with the network without having to pay any gas prices. The Gasless

transaction method works by having a network of owners who, in return for a nominal

charge, pay the gas expenses on behalf of the consumers. people no longer need to have

Ether to pay for gas, which lowers the barrier to entry for people interacting with the network.

Talking about Lenster social media platform, it is one of the DApp deployed on the Lens

protocol. It is a decentralized social media platform; it inherits all the features from the Lens

protocol, also provides posting of different type of contents such (Text, videos, audio,

images), it has an easy user interface like Instagram and twitter as shown in the Figure 30,

however Lenster, does not support chatting between different users. [51][52][53]

TBU in Zlín, Faculty of Applied Informatics 70

Figure 30. Lenster user interface

4.5.4 Comparison between the different platforms

From the clarification made about each platform in chapters 4.6.1 - 4.6.2 - 4.6.3 above, one

can summarize key points and create a comparison table as shown in Table 2 and in Table 3

where focusing on functionality and client-side perspective of each platform to gain a clear

understanding of them.

TBU in Zlín, Faculty of Applied Informatics 71

Table 2. Decentralized social network comparison (functionality)

Platform

Blockchain or

decentralization

technology

Blockchain

technique

Required registration

data

Gas fee

Steemit Steem blockchain Delegated-

Proof-of-

Stake

(DPoS)

• Username
• Phone number
• Email address

Gas-less transaction

technique is used

Minds Ethereum blockchain Proof-of-

Stake (PoS)

• Username
• Password
• Email address

Gas-less transaction

technique is used

Lens

Protocol

Polygon layer 2 scaling

Ethereum blockchain

Proof-of-

Stake (PoS)

• Claiming of
handle or token
(NFT) from the
platform

Gas-less transaction

technique is used

TBU in Zlín, Faculty of Applied Informatics 72

Table 3. Decentralized social network comparison (client-side perspective)

Platform Ease of Registration User-Friendly

Reward System and is

transferable to Ethereum

coin

Steemit Easy, require understanding

of tokens and keys

Kind of, like Facebook

but with different

structure.

Support reward system, tokens

can be transferred to ETH or

can be used to buy ETH

Minds Very easy like other social

media platforms

Very, like Twitter and

Instagram.

Support reward system, token

can be transferred to ETH

since already built on

Ethereum

Lens

Protcol

Difficult, obtaining a token

from the platform is

challenging and require a

good knowledge in web3

Depends on the

deployed app.

Support reward system, tokens

or profiles can be sold to

others. And traded with ETH

4.6 Drawbacks of decentralized social networks

As much as decentralized social media platforms provide benefits and solutions for

centralized social media platforms problems, it still has some drawbacks, but these

drawbacks can be addressed and solved in the future. Theses drawbacks can be:

1. Complexity: Decentralized social networks are more difficult to use and comprehend than

conventional ones, which acts as a barrier to adoption. Non-technical users are still

intimidated by complex user interfaces and the need to delve into the realm of

cryptography. For example, dealing with a digital wallet is something completely new for

non-technical people or old people in general.

2. Lack of knowledge: A lot of people still do not know about blockchain technology and

what benefits it has over another technology.

3. People attraction: Most people are acclimated to using major social networks such as

Facebook, Twitter, and Instagram and may be reluctant to transfer.

4. Scalability challenges for decentralized social networks: Centralized or conventional

social media platforms typically necessitate high throughputs to support constant, rapid

social interactions and proper operation. For decentralized social networks, scalability is a

TBU in Zlín, Faculty of Applied Informatics 73

problem because their decentralized nature limits their capacity to manage significant

volumes of traffic and data. The speed and performance of the platform can be affected by

the network that the platform has been deployed to. If Ethereum was the chosen one then

transaction speeds are slow, that’s why there is layer 2 blockchains that have much higher

transaction speed per second.

5. Crypto volatility in decentralized social networks: Blockchain-based decentralized

social networks with native crypto economies may be susceptible to cryptocurrency market

volatility and may be affected by unanticipated occurrences. The market situation can

rapidly affect the value of rewards earned by content creators and the stability of the social

network.

6. Lack of funds: Moreover, a dearth of funds may result in the social network being shut

down. In turn, this will cause consumers to lose their social connections. Platforms with

sustainable economic structures are the solution. Using decentralized storage systems such

as the InterPlanetary File System (IPFS), social networks can safeguard user data against

exploitation and malevolent use.

[44]

TBU in Zlín, Faculty of Applied Informatics 74

II. PRACTICAL

TBU in Zlín, Faculty of Applied Informatics 75

5 APPLICATION ANALYSIS AND TECHNOLOGIES USED

To showcase the practical application and advantages of decentralized social media, we will

undertake the development of a customized platform with enhanced security features and

unique characteristics.

5.1 Application/project description

First, it is important to provide a brief description of the application and the naming of it.

The application is a decentralized social media, and it is purpose to eliminate the idea of

letting someone own the data of the users in such a platform, by saving users data on the

blockchain. The application will have the name “Social chain”

5.2 Application overview and requirements

Whenever a software is created or an application, before the step where the coding part take

a place or the UI takes a place, it is important to step back and setup the requirement of the

application that must be fulfilled and create an outline that the developer will work on, or

we can say in other word the goals that must be fulfilled. There are special softwares to do

that and special methodologies such using UML (Unified modeling language) diagram with

the software “Enterprise architecture” this software gives the ability to model the

architecture of an application and address what is needed and must be accomplished in the

application before taking an immediate action. This step must take a lot of time and must be

taken in the correct way and must be reviewed from time to time, since it is the basis of the

application.

5.2.1 Application functional requirements

When talking about the functional requirements, we refer to what is the application

functionality and what such an application can do, it is more about actions.

System access

• The application must provide signup/login/logout functionality.

• The application must support interaction with the MetaMask digital wallet.

• The application must prevent unregistered users from accessing the website’s feed page or

home page.

TBU in Zlín, Faculty of Applied Informatics 76

• The application must provide a remember me feature for the user so when next time he

logs in he does not have to provide credentials (only in case of JWT refresh token is not

expired).

Post management

A registered user:

• Can create/delete/edit a post on the platform.

• Can report a post.

Comment management

A registered user:

• Can create/delete/edit comment on the platform.

• Can report a comment.

Account management

A registered user:

• Can view his account settings.

• Can modify his account details.

• Can change his username for a limited number of times.

5.2.2 Application non-functional requirements

Nonfunctional requirements encompass elements that are non-interactive or not explicitly

defined as actionable operations. They can be considered as the aesthetic enhancements and

refinements of the application.

Security

• The website must use JWT approach of authentication and authorization with the support

of both access token and refresh token.

• The website routes must be protected from unauthorized users, by generating a JWT token

for the registered user and only if they have valid JWT they can access the website

protected routes.

• Logging out user automatically if the JWT is expired and ask him to login again in case

user did not provide „remember me” feature.

TBU in Zlín, Faculty of Applied Informatics 77

Performance

• The website should provide a pagination approach to retrieve the data from the blockchain,

so that preventing huge load of data, such as loading of feed posts or loading of post’s

comments.

• The website should use client-side rendering to keep the website more user-friendly,

dynamic, and fast.

Availability

• The website is available only for users who have a website that’s support digital wallets

and they must have it as an installed extension.

• In the future the website should target specific blockchain networks since the contract will

be deployed on a specific one.

Usability

• The website is accessible through internet access by any different kind of users throughout

the world.

• The website is almost responsive on all different kinds of screens.

• The website must provide simple UI friendly design, in terms of social media, it must be

common, so user does not feel uncomfortable.

5.2.3 Use cases and actors.

For now, mainly the main actors of the application are the unregistered user and registered

user as shown in Figure 31 and in Figure 32 means there is no admin for checking or

manipulating the platform data or user’s data. But an admin can be added in the future for

website modifications such as layouts or blogs or different sections that can be used and

integrated with a CMS13 (content management system).

13 Content management system: https://kinsta.com/knowledgebase/content-management-system/

TBU in Zlín, Faculty of Applied Informatics 78

Figure 31. Registered user use cases

Figure 32. Unregistered user use cases

5.2.4 Class model

Since the application uses Solidity as the programming language for the back end of the

blockchain but also C#, classes in Solidity are represented as structs and the app will have

separated functions inside the contract that are outside the structs, that’s why the classes do

not have methods inside them in the diagram. In the back-end side of C# there is also some

classes that does not have to be mentioned in the UML diagram because they do not represent

the main core of the application, instead these are class used for example in handling

TBU in Zlín, Faculty of Applied Informatics 79

response and requests from to client-side, and also there are classes for handling errors they

have properties such as (error message, error code). The aim is to focus on the classes that

are most relevant and important to the application's domain and functionality as shown in

the Figure 33.

So particularly in the application the class models will be divided into two sides:

1. The C# side: Mainly this side is used to generate JWT tokens and store user’s address with

the corresponding tokens, to authenticate the user to the front-end application and different

protected routes and the C# side has mainly one important domain class.

a. User:

i. AccountAddress: It is a string and represents the Ethereum user’s public

key account address.

ii. RefreshToken: It is a string and represents the generated JWT refresh

token that is used to request new access token.

iii. TokenCreated: It is a datetime data type that is used to know when the

refresh token is generated for the user.

iv. TokenExpires: It is a datetime data type and used to know when the

refresh token is expiring, so when it expires and user login with remember

me feature, he has to login again to get new tokens.

2. The Solidity side: In this side all the data manipulation and user functionality are done

here, this acts as the real back end of the application, classes in Solidity are represented as

structs most of the time. And we will have the following structs and Enums:

a. User (struct):

i. Id: Id of the user represented as unsigned integer.

ii. Name: Name of the user represented as string.

iii. userName: Nick name of the user represented as string.

iv. userBio: Bio of the user small description about him represented as string.

v. status: Status is type of account status to represent if user is (banned,

active, not present).

vi. showUserName: Used for each user to check if he wants to show his

username publicly.

vii. birthDate: Is an unsigned integer, the reason it is an integer because

Solidity does not provide built-in date time data type instead, we store date

as Unix timestamp.

viii. ethAddress: The Ethereum public account address of the user, it is the

type of address that is provided by Solidity.

TBU in Zlín, Faculty of Applied Informatics 80

ix. profileImageHash: String that represents the hash of the image that is

uploaded to IPFS platform.

x. profileCoverHash: String that represents the hash of the image that is

uploaded to IPFS platform.

b. Post (struct):

i. postId: Id of the post represented as unsigned integer.

ii. postDescription: Content of the post represented as string.

iii. status: Status is type of post status to represent if post is (banned, active,

not present).

iv. author: The Ethereum public account address of the user that posted the

post, it is of type address that is provided by Solidity.

v. imgHash: String that represents the hash of the image that is uploaded to

IPFS platform.

vi. likeCount: Number of likes on the post, represented as unsigned integer.

vii. reportCount: Number of reports on the post, this can be used in the future

to hide and mark posts as deleted if specific number of reports is exceeded.

viii. timeStamp: It is an unsigned integer to remember when the post is

created, Unix timestamp is used here since solidity does not provide built-

in datetime data type.

c. Comment (struct):

i. commentId: Id of the comment represented as unsigned integer.

ii. author: The Ethereum public account address of the user that posted the

post, it is of type address that is provided by Solidity.

iii. postId: Id of the post to attach comment to it. Represented as unsigned

integer.

iv. content: Content of the comment represented as string.

v. likeCount: Number of likes on the post, represented as unsigned integer.

vi. reportCount: Number of reports on the post, this can be used in the future

to hide and mark posts as deleted if specific number of reports is exceeded.

vii. timeStamp: It is an unsigned integer to remember when the comment is

created, Unix timestamp is used here since solidity does not provide built-

in data time data type.

viii. status: Status is type of commentStatus to represent if comment is

(banned, active, not present).

TBU in Zlín, Faculty of Applied Informatics 81

d. postStatus, commentStatus, userStatus (enums):

The reason for now all Enums have same properties but still we have separated

Enums is that, in the future we might add different properties for each Enum, such

as privacy of a post, or hiding of account and so on.

i. NP: Not present.

ii. Active: Active, refer that the object (post, comment, user) is a live.

iii. Banned: Due to number of reports.

iv. Deactived: When deleting this status is used.

Figure 33. UML Class model

5.3 Front-end Technologies and UI inspiration

When building an app, it is necessary to choose appropriate front-end technologies. It is also

important to consider the latest technologies used in the fields of blockchain and web

development in general. When selecting technologies, a consideration should be taken to

ensure that documentation, tutorials, and support are readily available, as well as a

community to support the technology when encountering errors or bugs. It is necessary to

choose the correct front-end technologies that support the interaction with smart contracts or

with the blockchain in general. JavaScript is the main player from this side. Frameworks

such as ReactJS, NextJS, VueJS that are built with JavaScript support the interaction with

the blockchain through different type of wallets. The application that will be developed the

NextJS framework will be used, so for the purpose of showing the data and the interaction

with the blockchain NextJS will be used.

TBU in Zlín, Faculty of Applied Informatics 82

5.3.1 NextJS

NextJS as described by their official documentation14 is “The React Framework for

production” by that they mean developers will be still writing ReactJS code and still build

ReactJS components and use ReactJS features. NextJS is a JavaScript framework, that is

built on top of the framework ReactJS, the main purpose of this framework is to address the

limitations of ReactJS and add a lot of improvements of how web applications can be created,

and it make it so much easier. NextJS and ReactJS are frameworks to create SPA (single

page application), meaning there is one HTML page and inside it there is the data, and the

data is represented as components as shown in the Figure 34. The data is automatically

changed on the client-side. SPA makes the web app more user friendly and does not refresh

the website on client side on every request of new view or new section or new data.

Figure 34. SPA vs multi page app [54]

NextJS has one of the best features for developers which make it so much easier to build

websites, it is the navigation between the different page routes and routes. NextJS pages are

associated with a route based on their file name and this feature is named “File-based

routing”. For example, in development:

• pages/index.js is associated with the / route.

• pages/posts/first-post.js is associated with the /posts/first-post route.

14 NextJS official website: https://nextjs.org

https://nextjs.org/

TBU in Zlín, Faculty of Applied Informatics 83

Means the name of the folder inside the pages folder in a NextJS defined the parent route for

child’s routes inside it. One of the amazing features that NextJS provides is the different

ways of rendering the data, with just simple lines of codes, NextJS provide different way of

rendering such as:

1. Server-side rendering (SSR): NextJS provides server-side rendering as a built-in feature.

Server-side rendering is the ability to convert HTML files on the server into a fully

rendered HTML page for the client. This eliminates the idea of single page application

because server-side rendering requires the client-side to be refreshed to be able to see the

new data. Still NextJS provides this feature for developers who want to load the data fully

on the client-side, server-side rendering is useful in cases where we want to display a static

data that does not require updates frequently, such as blogs websites, wallpapers websites.

Server-side rendering has huge positive affect on the SEO (Search Engine Optimization) of

a website because the content can be rendered before the page is loaded, which is ideal for

SEO, while client side rendering the HTML code is empty which in result does not help

with SEO at all. Rendering server-side may be ideal for static site generation, but frequent

server requests and full page reloads can result in overall slower page rendering in more

complex applications. To implement this feature in NextJS it really requires a little bit of

code. In the Figure 35. The component is loaded only After the data is fully populated into

the html code then the full code is sent to the client side.

Figure 35. NextJS server-side rendering example.

TBU in Zlín, Faculty of Applied Informatics 84

2. Client-side rendering (CSR): By default, without specifying the way of rendering NextJS

is a client-side rendering framework, which means the fetching of the data is done on the

client side only. This way of rendering is useful when updates of the data frequently are

required or when there are changes by different users on the data and other users want to

see the changes frequently. Client-side rendering will be used in our application to render

data, since social media requires frequent updates and dynamic refresh of data.

NextJS has also a really nice built-in feature, it is the “middleware”, middleware in general

is something running between two sides, Taking an example where two people

communicating between each other, and there is a man in the middle that is both sides knows

about, this man is responsible to enhance the communication between the two sides he do

some modifications before the message is transmitted between the two side. Middleware, as

NextJS describes in their official documentation, is that before a request is processed,

middleware enables you to run code. Then, depending on the incoming request, a response

can be changed by rewriting, redirecting, changing the request or response headers, or by

directly responding. Middleware can be useful in the following cases:

• Handling authentication and authorization, if user is not authenticated and he tries to access

a protected route we can response or redirect the user to page where to show him he is not

authorized.

• Handling errors and bad responses.

To run a middleware in a NextJS application, it is necessary to create a middleware.js

file at the root of the NextJS application and write the necessary code in it as shown in

the Figure 36 below.

TBU in Zlín, Faculty of Applied Informatics 85

Figure 36. NextJS middleware

5.3.2 Tailwind CSS

Tailwind CSS is a CSS framework, as the official website15 describes it, it is a “utility-first

CSS framework”. In other words, styling an HTML element or tag using classes names

provided by the framework itself. Some of the most used styling and usually used in almost

any websites the “flex box” CSS property to align items in the web application. To

implement that in normal CSS the following can be done as shown in the Figure 37 and

Figure 38.

Figure 37. HTML flex box

15 Tailwind CSS official website: https://tailwindcss.com

TBU in Zlín, Faculty of Applied Informatics 86

Figure 38. CSS flex box

While in tailwind all of this can be done without the need for a CSS file, as shown in the

Figure 39.

Figure 39. Tailwind CSS example

Both will result will be as shown in the Figure 40.

Figure 40. Tailwind CSS and normal styling result

5.3.3 Other frameworks to improve user experience.

In the application some front-end frameworks will be installed and used that will improve

user experience and make the website more attractive and user friendly, such as:

• Framer motion: Framer motion is a simple and powerful motion library for ReactJS.

• phosphor-icons: Light weight library for a useful collection of icons.

TBU in Zlín, Faculty of Applied Informatics 87

• lottie-web: Light weight library for running JSON file animations.

• antd: As described by their website16 it is an enterprise-class UI design language and React

UI library with a set of high-quality React components, one of best React UI library for

enterprises.

5.3.4 User Interface Design and taken approach.

To design the UI of the application, a distinct approach was adopted. Instead of creating the

UI from scratch using specialized software or platforms like Adobe Illustrator or Figma, the

process involved seeking inspiration from UI images on Google and blending various ideas

derived from search results. Subsequently, the following results were achieved for the index

page, or landing page with the route "{websiteUrl}/" (index root), as illustrated in Figure

41.

Figure 41. Social chain index page

For the login/register page that has the route “{websiteUrl}/login” has the UI as shown in

the Figure 42.

16 Ant design official website: https://ant.designs

https://ant.design/

TBU in Zlín, Faculty of Applied Informatics 88

Figure 42. Social chain login page

For the register modal that when user want to register this has no special route it is just a

pop-up modal that has an HTML form as shown in the Figure 43.

Figure 43. Social chain register modal

For the home page, or the feed page where users’ posts will be shown the route

“{websiteUrl}/home” is set and has the following UI as shown in the Figure 44.

TBU in Zlín, Faculty of Applied Informatics 89

Figure 44. Social chain feed/home page

User’s profile page, it has the route “{websiteUrl}/home/profile” and has the UI as shown

in the Figure 45.

Figure 45. Social chain user profile page

Regarding the post modal, it is just pop-up modal that has no route it pops when a user click

on “show more comment” or by clicking on the post’s image, the purpose of this modal is

TBU in Zlín, Faculty of Applied Informatics 90

to load more comments and to implement the idea of pagination and to have a better

overview of the post, as shown in the Figure 46.

Figure 46. Social chain post modal

5.4 Back-end technologies

For the back-end technologies C# will be used as the main programming language, and .NET

Core API will be used to build the website API, the database will be MS SQL Server

database. The main purpose of the back end is to make the website more secure and protect

the different type of routes. Using JWT tokens.

5.4.1 Server-Side frameworks and libraries

Some frameworks and libraries will be used in the application to make the work easier and

cleaner. The most important library that is worth mentioning is the “Nethereum.Web3” this

library is used for smart contract management and interaction with the Ethereum nodes using

C#, whether they are public nodes or private nodes or even local nodes. And for handling

the errors and exceptions that are returned to client-side “ErrorOr” library will be used and

a smart way of handling errors using an endpoint that will handle all the throwed exceptions

and errors throughout the application, the idea is that formatting exceptions thrown in the

back-end application and return them to the client-side (NextJS) .

TBU in Zlín, Faculty of Applied Informatics 91

5.4.2 APIs and databases

The API will be created using APS.NET core, Using .NET Core API framework is a great

way to create APIs in a simple and fast way, Microsoft already has template for such a

project. For the database MS SQL Server (Microsoft Structure Query Language Server) will

be used, it is a relational database means data represented in tables of rows and columns.

5.5 Web3 Technologies

Bringing the decentralization feature of the blockchain to the world of web, requires special

technologies used that helps us interact with smart contracts deployed on the blockchain, or

with the blockchain itself.

5.5.1 Development environment

There are many developments environment for setting up a project on the blockchain and

start to develop smart contract on the blockchain whether it is local blockchain or public

blockchain. “Truffle”17 and “hardhat”18, these are development environments that provide

a lot of tools and scripts to interact with live blockchain and build and compile and deploy

smart contracts locally or live. Choosing which environment to use was a little bit

challenging but looking at the advantages of each environment helped to choose the perfect

framework. The main reason to choose hardhat over Truffle was that hardhat provides a built

in local blockchain simulation, without the need for external software such as Ganache that

is being used by Truffle most of the time. Talking about hardhat, Hardhat is not only about

deploying and running smart contracts, but also provides a lot of features that make it more

powerful. Such features are:

1. Hardhat built-in network: As mentioned before hardhat provides a local Ethereum

network node that is designed for development purposes, making it easier and faster to

make transactions on the network.

2. Extensions: Hardhat provides many extensions and plugins that improve its functionality.

Such extension is „nomiclabs/hardhat-ethers” that allows developers to run the library

ethers.js into the runtime of the environment. Or „hardhat-gas-reporter” this extension

17 Truffle official website: https://trufflesuite.com/

18 Hardhat official website: https://hardhat.org/

TBU in Zlín, Faculty of Applied Informatics 92

can be helpful because it can estimate how gas will be used for specific method in the

contract.

3. Debugging inside the smart contracts: Solidity as a smart contract programming

language is hard to debug, to discover the errors it is necessary to execute the smart

contract or deploy it and throw an exception. But hardhat provides one of its extensions

that make it possible to run the (console.log()) function inside the contracts to investigate

the changes and errors. [55]

5.5.2 Decentralized data storage - IPFS

There is no social network platform nowadays that has no photos or videos, every social

media platform includes the usage of photos, videos, documents and sometimes even

streaming. And since the plan it to make the application as decentralized as possible, all

users’ files including (videos, photos, documents) should be stored in a decentralized way.

At the same time, a user should not be forced to pay fees to upload visual content, a user

should only pay for the gas fee on that is required by the contract. IPFS (InterPlanetary File

System), IPFS is a set of protocols for transferring data, it can be described as a decentralized

network composed of peer-to-peer nodes that is open and participatory as shown in the

Figure 47. It can also be described as a distributed file system, IPFS and blockchain share

some similarities, such as both are decentralized, distributed and the use the power of

cryptography for hashing the content and secure it. IPFS tries to solve the problem of

accessing something by IP address, for example requesting a website using the location it is

hosted on, IPFS instead tries to deliver for us the website by refereeing to it is content instead

of the location and the content is collected from the nodes in the distributed system. Content

in IPFS is immutable any updates to the content create new hash of the content, means it is

not possible to update a file that is uploaded to the IPFS network. It is necessary to talk about

life cycle of files in the IPFS and how they are stored and retrieved from such a system:

1. Uploading the file: When first the file is uploaded to IPFS it is divided into blocks or

chunks. Each of these blocks is hashed using a cryptography hashing function such SHA-

256, for the purpose of creating a unique identifier called a CID (Content identifier) this

step is called „Content-addressable representation” as IPFS describes.

2. Remembering where the hashes of chunks are stored: The IPFS system has a collection

of tables called Distributed Hash Tables (DHT) where it maps each CID to the per

addresses that has the content, each peer or node in the network, has the same copy of DHT

in case retrieving the CID from a node failed other nodes can provide it. But some nodes

might be offline or are not updated, in that case in IPFS there is a step called Pinning.

TBU in Zlín, Faculty of Applied Informatics 93

3. Pinning: Saving the CID on the node does not mean the CID is retrievable, pinning allows

the node/peer to advertise that it has the CID and provide it to the network.

4. Retrieving the content: when a node/peer or someone wants to access the file, the chunks

of the requested file are retrieved to make up the requested file.

For the application that will be created to demonstrate the practical part. We will not be

running our node in the IPFS network, instead the app will use web 3 services that runs

node and provide limited data storage to upload files, such services provide an API to

upload files to the IPFS network. In the application “Infura” will be used which is a

development suite that provides instant, scalable API access to the Ethereum and IPFS

networks.[56] [57]

Figure 47. IPFS overview[57]

5.5.3 Developing smart contracts

When talking about the development of smart contracts, there are several programming

languages that support writing smart contracts on the Ethereum blockchain. Such languages

are Solidity, Vyper, Rust, these are the most famous and used programming languages but

not the only one. In the application Solidity will be used as the language to write smart

contracts. Solidity is a high-level typed object-oriented programming language; it has similar

syntax as TypeScript or C++. Solidity is designed specifically for writing smart contracts

that runs on the Ethereum blockchain. Solidity came alive in 2014. A smart contract file has

the extension “filename.sol” and is wrapped always with a contract keyword, inside the

TBU in Zlín, Faculty of Applied Informatics 94

curly braces is the code of the contract, and inside the contract there can be different syntaxes

and data representation such as:

• Functions: These are a collection of executable code that can be reused and re-called

throughout the contract, functions in solidity can have the view keyword means they don’t

make any changes in the contract storage or code, instead they just return value (query

function) otherwise a function that is considered as a command function that make changes

is not marked with view keyword and such function require a gas fee and a transaction to

be executed from outside.

• Variables and data types: Variables in Solidity are typed means the data stored in

memory, should be specified, Solidity provides the following data types:

o Boolean.

o Integer.

o Address: Used to represent an Ethereum address. It is a 20-byte value that is

unique to each account or contract.

o String.

o Bytes.

o Array.

o Mapping: Used to represent a collection of key-value pairs, where the keys are of

one data type and the values are of another data type.

o Enum.

o Struct.

• Modifiers: Modifiers in solidity are like any modifiers in other programming languages,

they decide whether a variable or function or struct can be accessible from outside or

inside, however solidity provide more built-in modifiers than others programming

languages, and these are:

o Public, private, internal

o View and pure: Are functions modifiers.

 View: Indicates that the function does not change the state of the contract

it is used only for reading.

 Pure: Indicates that the function does not read/write anything from/to

smart contract states.

o Payable: Indicates that the function or the specified state, can receive specific

amount of Ether as a transaction value.

Custom modifier: These are modifiers that can have a custom name, they acts like

a conditional function they have logic inside them, and the logic is usually

conditional, for example we can have a modifier that checks if user is exists in a

TBU in Zlín, Faculty of Applied Informatics 95

specific mapping as shown in the Figure 48, and if so the function should continue

the execution otherwise the modifier should throw an error message and stops the

execution of the function a custom modifier can be written next to the function

name, same as (public, internal, private). The sign „_;“ in the modifier scope at the

end indicates that if the required condition passed successfully, continue the

execution of the „createPost“ function otherwise throw the error message with

string „Not a Registered user“.

Figure 48. Solidity modifier and function

• Events: Events in Solidity are built in feature, mainly exists for the purpose of logging of

an action occurred within the smart contract. Events in solidity have the „event” keyword

as shown in the Figure 49. And to be able to call or emit an event the keyword „emit” is

used before the name of the event, providing the required parameters that the event is

looking for. The data that is emitted from an event is logged to the transaction log, which is

then stored in the blockchain. All transaction logs in the blockchain are immutable even the

ones that are emitted from smart contracts, means they will not be deleted, and they can’t

be altered. [58][59]

TBU in Zlín, Faculty of Applied Informatics 96

Figure 49. Solidity event and emit.

5.5.4 Interaction with the smart contract and blockchain

For the interaction with the blockchain there are few web3 libraries that making the process

of the interaction with the blockchain much easier and more user friendly for developers

than direct communication, these libraries provide functions such as:

• Reading from the blockchain network.

• Sending/receiving transactions to/from the blockchain.

• Interaction with the network’s smart contracts.

There are few common and most used libraries for that purpose:

• Etheres.js: Is a JavaScript library, that aims to be a good solution for Ethereum

development, this library was released or published a year after Web3.js and still has

managed to become the most popular library for interaction with the Ethereum blockchain.

Even though it is a JavaScript library, Etheres.js fully supports TypeScript. Etheres.js

makes it possible to create A JavaScript object from any contract ABI, means a contract

can be presented as JavaScript object and access the contract function easily. The library

keeps the private keys in the client-side, so it is more secure and safer. The statement

"Keep the private keys in the client-side " is to store the private keys on the users’ client-

TBU in Zlín, Faculty of Applied Informatics 97

side devices, such as their personal computers or hardware wallets, rather than on a third-

party server or service. This is because storing the private keys on a third-party service or

server increases the risk of the private key being stolen or accessed by unauthorized

parties, potentially resulting in the loss of the assets. By keeping the private keys on the

client’s side, we have greater control over the security of the assets.

• Web3.js: The Ethereum Foundation developed the open-source JavaScript (JS) library

known as Web3.js. Web3.js' primary goal is to make it easier to connect with the Ethereum

chain in a seamless manner. This interaction is made feasible by using the JSON-RPC19

protocol to communicate with Ethereum nodes.

• Web3.py: If someone knows the programming language Python and likes to code in

Python, this library can be a good option for them. This Python package web3.py allows

users to communicate with Ethereum. The original API was based on the Web3.js

JavaScript API, but it has since changed to better suit the requirements and conveniences

of Python developers.

For the developed application the “ethers.js” library will be used, since it has all the

functionality that is needed for the application and it uses JavaScript mainly, but also because

the library has huge base of documentation and huge community support. [60]

19 JSON-RPC protocol: https://nonamesecurity.com/learn-what-is-json-rpc

TBU in Zlín, Faculty of Applied Informatics 98

6 APPLICATION’S SECURITY ARCHITECTURE

It is important to make the application as secure as possible, since we are dealing with

sensitive information or in other words we are dealing with real money, and since every

request in the application or change in the contract storage require a transaction or real

money, it is important to make the website as secure as possible. And prevent any

unauthorized person from accessing it. Due to that I was thinking of a way to combine JWT

authorization with the web3 without giving up the feature of decentralization. Using the

strength of digital wallet authorization combined with the strength of .NET Core API. The

only thing that will be stored in the database to prevent losing the feature of decentralization

is the user’s public account address and his (refresh token) also the expiration and creation

of the token dates.

6.1 Security architecture

JWT authorization scheme and the use of the digital wallet will be the protector of every

user and will be the protector of the website routes (website pages and users’ content).

6.1.1 JSON web token

JWT stands for JSON web token, it is an open standard used to share security information

between two sides, mostly it is a client side and a server side. A JWT is no more than a three

parts long string separated by dots [.] and each part encoded using base64. A JWT string

contains important data about the user, this data called claims, these claims can be (name of

user, Ethereum account address, expiration time of the token, when the token is issued to the

user) and even custom claims can be added, such as phone number, address and more. But

mostly a standard default claim contains:

• „iss“ (Issure): This identify who issued the token, in most of the cases it will be the

company name, or the owner of the software, in our case it is „social chain“

• „sub“(Subject): This indicates unique data about the user who owns this token such as

user identifier.

• „iat“: (issued at): This claim indicates when the token was created or issued it is mostly

UNIX20 time stamp.

20 UNIX time: https://kb.narrative.io/what-is-unix-time

TBU in Zlín, Faculty of Applied Informatics 99

• „exp“:(expiration): This claim indicates when the token will be expired and it is not

authorized any more, this must be set by the issuer, for example in the back end side.

An example of JWT can be:

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI

6IkpvaG4gRG9lIiwiaWF0IjoxNTE2MjM5MDIyfQ.SflKxwRJSMeKKF2QT4fwpMeJf36

POk6yJV_adQssw5c

Here the first part called “HEADER” this part contains information about the algorithm used

to encode the whole token and type of token before encoding this part using base64 this will

result in:

{

 "alg": "HS256",

 "typ": "JWT"

}

The second part is called “PAYLOD” this part contains the claims and the necessary data.

And the result before the encoding process is:

{

 "sub": "1234567890",

 "name": "John Doe",

 "iat": 1516239022

}

The third part is mostly called “THE SIGNTURE”. This part is formed by hashing the header

and the payload and the secret all together using the hashing algorithm provided in the

header, they are all putted together in a function such as the one shown in the Figure 50.

Figure 50. JWT hashing

TBU in Zlín, Faculty of Applied Informatics 100

Figure 51. JWT encoder and decoder [61]

 (header.payload.signture[result of hashing the payload and header and secret using the

provided hashing algorithm in header]). Is the format resulted from the encoding process.

For the verification of the JWT in the server side:

1. The server receives the JWT from the client.

2. The server Tries to decode the payload and the header using base64.

3. The server creates back the JWT using its own secret key that was used to issue the

token.

4. The server makes sure the created JWT signature is equal to the one sent by the client,

if so, the user is authorized and the JWT is valid, otherwise the client is not authorized.

TBU in Zlín, Faculty of Applied Informatics 101

So, this is how JWT is powerful and used for the authorization process, that’s why it was

decided to use it with the combination of the digital wallet in the application. The JWT token

when storing it on the client side, it is important that it should be stored in a place where

only server side can access it, rather than store it on local storage of the browser or session

cookies, it is better to store it in an HTTP Only cookie21, to prevent any attacks that happens

on the client side and the attacker will be able to take the JWT and act as the original user.

[61][62]

6.1.2 Securing the app

There are three elements that controls the security of the application:

• From the client side.

• From the back-end side.

• From the blockchain side.

In the client-side there is a middleware that sit between every request and response made in

the client application, the middleware is implemented using the middleware feature provided

by NextJS. In the back-end side validating and registering the user to obtain the JWT token

and refresh token that are generated using our own secret key, and in the client-side using

our own secret key to validate that the JWT is not expired, and it is contains the right claims,

if all of this are valid, user will be authenticated to access the website and website’s routes.

Talking about the blockchain side, specifically the smart contract of the application. The

smart contract will be protected using conditions and modifiers, so every step must be

checked to restrict unauthorized users from making any changes to the contract.

21 HTTP only cookie: https://www.cookiepro.com/knowledge/httponly-cookie/

TBU in Zlín, Faculty of Applied Informatics 102

7 APPLICATION’S ARCHITECTURE AND SETTING UP

DEVELOPMENT ENVIRONMENT

All software projects, whether personal or public, require a well-structured architecture to

facilitate development and construction. Application architecture is the backbone of the

software, especially when working on a software that more than one developer contributes

to it. When choosing a specific software architecture pattern, it is necessary to keep in mind

to choose the one that will result in a scalable, maintainable, testable, fault tolerant software,

that can adapt to changes in the future. There are many software architectures that has

different purposes, an example of them can be:

• Layered pattern: As the name indicates means the software will be divided into layers

that are on top of each other, and each layer is responsible to handle specific operations and

data, this type of architecture also has the name „N-tier architecture” an example of

layered pattern can be clean architecture that will be used to create the demonstrated

application. Such a design has typically four layers:

1. Layer of presentation: Here is where the UI of the application sits.

2. Commercial or business logic layer: This layer is responsible for the logic of the

application, such as implementing and processing the request from the client-side.

3. The application layer: This layer is responsible for exchanging the data between the

data layer and the presentation layer.

4. Domain or data layer: Layer where the data models are located.

Such a layer can be useful for E-shop web applications development.

• Client-server pattern: The client-server architecture has two primary parts. Multiple

clients and a central server make up this system. Here, a client requests a specific file or

other resource stored on the server. After receiving a request, the server generates a

response.

There are also more layers to talk about but currently it is not the focus, the focus will be

mainly on clean architecture since the application will be built using this type of architecture.

[63]

TBU in Zlín, Faculty of Applied Informatics 103

7.1 High level overview of the application architecture

In the application the used architecture will be the “clean architecture” or “the onion

architecture” where the application is divided into different layers and each layer is

responsible for specific tasks and data manipulation. This layer as mentioned is a type of

“layered pattern”. Clean architecture was introduced by Robert C. Martin (Uncle Bob) and

promoted on his own blog22. The whole purpose of such a pattern is that producing a

system that is:

• Testable: The business logic of the application can be tested easily without the UI,

database, or any external source.

• Decoupled of the user interface: The front-end of the application can be changed

easily without changing or affecting the rest of the system. A Web UI for example

can be easily replaced with a console application.

• Independent of Database: Changing or migrating to any database should not

affect the application or business layer at all. For example, in the business layer we

have a mapper such as entity framework that interacts with the database no matter

what type of database it is by just changing some line of codes. [64]

Clean architecture contains 4 layers usually, and these are:

• Domain layer: In this layer sits most of the system entities such as User.

• Business or application layer: This layer is responsible for handling request from

the presentation layer and how to process them individually, and handling response

from the infrastructure layer and how to handle them, most of the error handling

will be in this layer.

• Presentation layer: This layer refers to the part of the system that is responsible

for handling user input and displaying output to the user, regardless of whether the

user interface is a user interface (UI) such as a normal web application or an API.

• Infrastructure layer: Here in this layer all the interaction with the database will

happen, reading, writing, migrations, and data contexts.

22 The clean code blog (clean architecture): https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-

architecture.html

TBU in Zlín, Faculty of Applied Informatics 104

Since the application have the name “socialchain” it is a good practice to name the layers of

the application with the name of the application as shown in the Figure 52 and such as

“socialchain.layername” The project will be in a folder called “socialchain” and have the

following layers:

• socialchain.api

• socialchain.client

• socialchain.contracts

• socialchain.application

• socialchain.domain

• socialchain.infrastructure

• socialchain.web3

Where the presentation layer will be composed or represented of (socialchain.api,

socialchain.client, socialchain.contracts) and the application layer will be the

“socialchain.application”, the domain layer is the “socialchain.domain” and for the

infrastructure layer it will be the “socialchain.infrastructure”, for the web3 project it

will be a standalone project that the presentation layer will interact with, but it can joined

with the clean architecture in the future. The web3 layer where smart contract is and

where the blockchain development environment is sits in the folder “socialchain.web3”

Figure 52. Application's architecture

TBU in Zlín, Faculty of Applied Informatics 105

7.2 Layers communication

Since clean architecture is the used architecture, the communication between the layers will

be from outside to inside, in other words the domain layer has no dependency on any of the

layers above it instead the layers depending on it. In a clean architecture pattern the

presentation layer and infrastructure layer are dependent on the application layer and the

application layer in turn depends on the domain layer, but it is also important to mention that

in some cases the presentation and infrastructure layer communicate between each other.

7.3 Setting up the project’s development environment

It is important to mention how the development environment is settled, and how the layers

are structured. Basically, for the development environment the following is needed:

• Local blockchain. to run the application on it and deploy the smart contract on it.

• ASP.NET Core API and MS SQL Database.

• Digital wallet.

• Deployment of the smart contract.

7.3.1 Local blockchain

For the purpose of testing the smart contract and avoid any mistakes when deploying to a

public or test net network, it is important first to try deploying the contract on a local

blockchain and try it is functionalities and even in the future it is important to try to attack

the contract on a local blockchain to check if there are any loopholes that could stop the

program from working in other word (penetration testing). It is right the application uses

“hardhat” for the development and deployment of smart contracts and that “hardhat”

provides it is own local blockchain. But ganache is used here as local blockchain, and the

only reason for that is because ganache can remember the state of the blockchain (changes

made), every time it runs, while hardhat local network blockchain, every rerun causes the

loss of the old/previous state. So, creating a local blockchain in ganache is as sample as two

clicks, creating a workspace and then we will have our own blockchain as shown in the

Figure 53. So, a workspace called “SOCIAL CHAIN” is created for the application.

TBU in Zlín, Faculty of Applied Informatics 106

Figure 53. Ganache user interface and workspace

Figure 54. Ganache blockchain

The local blockchain provided by Ganache already has ten Ethereum accounts filled and

prepared with 100 ETH each as presented in the Figure 54, and the ability to access their

private/public keys also provided as a feature of Ganache. Then using the private keys to

add the accounts to the MetaMask digital wallet in the browser.

TBU in Zlín, Faculty of Applied Informatics 107

7.3.2 Digital wallet

For the website to interact with the blockchain, a digital wallet must be used to act as a

container for the accounts on the blockchain. For this purpose, digital wallets can be installed

as extensions on the browsers or as applications in the system. Since the decentralized social

network will be built as a web application, The extension must be installed and used in the

browser as shown in the Figure 55. MetaMask will be used as the main digital wallet for the

development environment. It is an Ethereum wallet that runs in the browser. MetaMask as

extension for browsers is available in (Google Chrome, Firefox, Brave, and Microsoft Edge).

It is also available as a mobile app for both iOS and Android devices.

Figure 55. MetaMask Digital wallet

For the digital wallet to communicate with specific blockchain network, it must be

configured with a specific configuration such as RPC Server URL and port where the IP is

listening to as shown in the Figure 56. This can be done by going to the settings of the digital

wallet and to the network’s settings, by adding our ganache local network configurations.

TBU in Zlín, Faculty of Applied Informatics 108

Figure 56. MetaMask network configs

And to add accounts that are created in the local network to the digital wallet that is

connected to the same network, can be done by simply clicking on “import account” and add

the private key from the ganache user interface application by clicking on the key icon next

to the account we want to add as shown in the Figure 57.

Figure 57. Adding Ethereum account to digital wallet

7.3.3 MS SQL Database and ASP.NET Core API

In order to implement the JWT authorization, the refresh token of all users must be stored,

so every time the user request new access token using the refresh token, for purpose of

accessing the website and to get new access token, the need to compare the user refresh token

is equal to the one in the database, if so the user will be granted new access token that will

be stored in the HTTP only cookie (server-side cookie). So, for that purpose an API with all

the necessary end points to do all the job will be created, and that API communicates with

TBU in Zlín, Faculty of Applied Informatics 109

the MS SQL Database. The approach used in the application to generate/create the database

is called “code first migration” where the domain classes’ a should be already created as

shown in Figure 58 and migration should be done and from that entity/class, the database is

then created (if not already created), then the table is created in the database, all by providing

the connection string of our database to the ASP.NET Core API application.

Figure 58. C# User entity/class

In the Figure 58 this entity will represent the table in the database, and “AccountAddress”

here act the primary key of the table, that’s why it is annotated with the “[Key]” attribute

(mainly because code first migration requires informing the database and Entity Framework

about the primary key of the table). In the back-end User is the only and main entity of the

application, to make the first migration from the code to database, there are several steps

should be taken:

1. Object relational mapper package: Object-Relational Mapping (ORM) is a technique

used to map the objects in the code to the tables and columns in a database. It allows to

interact with the database using objects rather than composing SQL statements directly.

Entity Framework is a prominent Object-Relational Mapping (ORM) framework for.NET

applications. It provides a set of tools and libraries that enable us to define the mapping

between the objects and the database, and it manages communication with the database on

our behalf. Entity Framework will be used as the object relational mapper in the

application, it provides us with functionality such as migrations from code to database, or

updating database tables according to our entities, or writing C# methods to get data from

database instead of writing SQL Statements.

TBU in Zlín, Faculty of Applied Informatics 110

2. Writing the DB Context code that is recognized by the Entity framework: The

DbSet<User> in the Figure 59 represent the table in the database. And as shown also

ensuring that the database should be created if not already created.

Figure 59. Application's database context

3. Notifying the application about the DB Context: While the run time process of the

application the application should know about the database context and that it is related to

our database (by providing the connection string from the “appsetting.json” file).

4. Running the migration command: Migration is the step where the code automatically

turned to SQL Statements that is then executed by the back end to populate the database

in order to do that, it can be done by the „package manger console“ provided by the Visual

Studio IDE or using normal command line .

Using the package manger, we can run the following command:

PM> Add-migration "First-SocialChainMigration"

Using the command line:

dotnet ef migrations add |“First-SocialChainMigration“

However, it is important to keep in mind that necessary packages are required to run the

commands such as:

o Microsoft.EntityFrameworkCore.Tools

o Microsoft.EntityFrameworkCore.Desig

 The result of the migration will be as shown in the Figure 60.

TBU in Zlín, Faculty of Applied Informatics 111

Figure 60. EF migration result

5. Updating the database from the migration: In this step the database will be populated

and the DB Context will run and try to run the necessary configurations, the following

command must be used for „console package manager“:
PM> Update-Database

And from the terminal:

dotnet ef database update

And the command will affect the database as shown in the Figure 61.

Figure 61. Updating database from migration result

TBU in Zlín, Faculty of Applied Informatics 112

7.3.4 Hardhat configurations (contract’s deployment environment)

Hardhat is the main player here, without it, a test of the smart contract cannot be done, a

deployment of the contract to the specified network cannot be done, without it debugging

the smart contract is almost impossible. For the contract to be deployed to the specific

network, there are few steps must be taken, and these are:

1. Edit hardhat configs to connect to the local blockchain: To make hardhat connect to the

local Ganache blockchain, the hardhat configuration file must be modified and it is called

„hardhat.config.js“, inside the module object there should be an object called networks,

and this object can have as many objects as networks we want to connect to. Even with this

file, deploying the contract to a real blockchain is possible. As shown in Figure 62 below

the "localGanche" object within the "networks" object, the RPC URL of the blockchain

and the account for deploying the desired contract are available.

 Figure 62. Hardhat network configs

2. Compiling of the contract: This step is crucial and mandatory prior to contract

deployment. Compiling the contract results in two outputs. First, transferring it to a format

that is accepted by the EVM. When the contract is compiled, the byte code is obtained

which is a format considered as a low-level machine code that can be understood by the

EVM. Second, the so-called ABI (Application binary interface) is obtained, this is a JSON

file that let the client side interact with the smart contract and gets the functions,

parameters, variables available in the smart contract, without the need for dealing with

low-level machine code. To compile the smart contract using hardhat, there are several

steps that must be taken:

TBU in Zlín, Faculty of Applied Informatics 113

a. Specifying the output location: It is necessary to specify the location of the ABI

and contract compilation results folder in the “hardhat.config.js” file as illustrated

in the Figure 63. Instructing hardhat to place the compilation result in the

"sociachain.client" layer, specifically in the "contract-artifacts" folder, is an

important step. If the folder doesn't exist, it will be created, and if it already exists,

any existing folders and files will be overwritten.

 Figure 63. Hardhat compilation configs

b. Running the compilation command: Now the provided command by hardhat can

be executed, which is:

npx hardhat compile

The result will be as shown in the Figure 64.

 Figure 64. Hardhat compilation result

3. Deployment of the contract to specific network: To deploy a specific contract to the

network there are also some several steps to take care of:

a. Creating of JavaScript script file for deployment purpose: a JavaScript script

using the hardhat library must be created to be able to deploy the contract to the

Ethereum blockchain, since already hardhat includes etheres.js as built-in library

inside their library there is no need to import or install ethers.js library in the web3

layer (socialchain.web3), as shown in the Figure 65. The contract name, specified

in the web3 layer, needs to be provided for deployment. Additionally, the

TBU in Zlín, Faculty of Applied Informatics 114

deployment of the contract is logged along with its specific address. This log is

displayed when running the hardhat node, as logging in hardhat occurs during

runtime. In Ganache UI, the latest deployed contract and its address are also

visible.

 Figure 65. Hardhat deploying script

b. Deployment of the contract: The following command must be used to deploy the

contract to the blockchain, but the network must be provided in which the contract

will be deployed on:

npx hardhat run --network localGanache scripts/deploy.js

In Ganache the UI will be updated automatically and the following will be shown

as in the Figure 66.

 Figure 66. Contract deployment result

TBU in Zlín, Faculty of Applied Informatics 115

8 IMPLEMENTATION AND EVALUATION

Now it is important to describe how the application internally operates, from the side of

blockchain most important and from client and back-end sides. Mainly trying to look at the

flow of the application functionality, like how data flows between the layers for specific

functionality.

8.1 Application’s smart contract

The application’s smart contract is the heart or the core of the application, it must be

explained in detail since the focus is building a DApp on the Ethereum blockchain or related

networks. The smart contract will have the name “SocialChain” same as the whole

application name.

8.1.1 Contract’s states and variables

States and variables are used to remember something important in the contract, they are

persistent data and are stored in the contract storage, that will help with contract’s

functionalities. In the current application the contract has the following variables or states as

shown in the Figure 67.

Figure 67. Contract's states and variables

1. owner: Will be used to identify the owner of the contract, the value of it will be populated

when the contract is first deployed but assign it to the one who deployed the contract (we)

in the contract’s constructor.

2. totalUsers: This variable will be used to get info about how many users are currently

registered on the platform, when user is registered to the platform successfully this variable

will be increased by one. But also, this variable will be used as an ID generator, after the

TBU in Zlín, Faculty of Applied Informatics 116

user successfully registered to the platform his ID will be obtained from the totalUsers after

the increment.

3. totalPosts and totalComments: The total posts variable and totalComments have the same

idea as the totalUsers has.

4. postIds: This is an array that’s contain all the Ids of the posts, it will be used to retrieve

posts in the front-end and then call a function to retrieve a post by its id. Every time a post

is created, a postid will be pushed to this array.

8.1.2 Contract’s mappings

Mappings are a data structure of (key, value) where a key points to a value. These will be

acted as the database of the application where users, posts, comments data and more will be

stored using these mappings. These mappings will be populated with the values mostly when

the functions are called. The current implementation of the contract has the mappings as

shown in the Figure 68.

Figure 68. Contract's mapping

1. users: This mapping will be used to store a user object that instantiated from user struct

with the specific corresponding address, the mapping will be also used to retrieve a user

object from the corresponding key (address).

2. userAddressFromUserName: The mapping will be used to store a user address by his

username, so to retrieve user address by username.

3. usernames: The purpose of this mapping is to indicate which username is reserved and

can’t be taken, so it will be a list of all usernames in the platform with a Boolean value.

TBU in Zlín, Faculty of Applied Informatics 117

4. posts: Used to store/retrieve a post by postId.

5. userPosts: This mapping has all the postsIds that user owns, each user’s address has an

array of integers that’s represents the postids that the user owns. When a registered user

creates a post, the postid will be appended to the array of posts that correspond to the

author of the post (his account address).

6. postLikers: This mapping has a kind of a complex structure, the key to this mapping is the

postid and the value will be another mapping of address to Boolean, in other words each

post will have a list of likers (users who liked the posts).

7. comments: Have the same concept as users mapping.

8. userComments: Have the same concepts as userPosts mapping.

9. postComments: This mapping basically indicated all the comments ids on a specific id.

8.1.3 Contract’s events

Event as explained in 5.5.3 can be used to log data after a successful execution of an

operation in the contract. Events can also be useful to return data to the client-side as in

normal APIs there are responses and requests data objects. The current implementation of

the application has the events as shown in the Figure 69.

Figure 69. Contract's events

1. logRegisterUser: This event will be emitted when a user successfully register to the

contract storage or the platform, the user address and userId will be emitted from the event.

2. logPostCreated: Same as logRegisterUser the event will be emitted after successful

creation of post, but more parameters will be emitted and most importantly is the _author.

3. logCommentCreated: Also, the same applies to this event, with the difference of the

emitted parameters.

The parameters that are emitted from the events can be modified according to the need of

the owner or the need of the client-side application (web app/API).

TBU in Zlín, Faculty of Applied Informatics 118

8.1.4 Contract’s functions

Functions are the most important code in the contract, they determine how data will be

changed and how the contract operates, functions should be handled and coded carefully,

they can be the main danger of the contract, or the gates to bugs. They can be used by hackers

to steal ETH of the owner, or even stop the whole contract from operating. In the current

implementation we have the following functions:

1. userNameAvailable: Since the main thing that makes a user unique from other users is the

username and public address. This function will check that a chosen Username is available

before successful registration of the new user.

The function will return a Boolean value that will indicate if a username is available or not

by checking the mapping that contains a Boolean value for each username as shown in the

Figure 70 That shows whether a username is already registered or not.

Figure 70. Username availability smart contract’s function

TBU in Zlín, Faculty of Applied Informatics 119

2. registerUser: As the function’s name indicates, the purpose of this function is to register

the user to the contract storage (to the platform) as shown in the Figure 71, the user can

register with username, name, profile image hash (IPFS CID), cover image hash (IPFS

CID), with a bio and birth date, also he can choose if he wants to show his username on the

platform or no (all of this done on the client-side). The function has two custom modifiers,

and these are “checkUserNameTaken” and second is the

“checkUserNotRegisteredByAddress” both are explained in the section 8.1.5.

Figure 71. Register user smart contract's function

TBU in Zlín, Faculty of Applied Informatics 120

3. getUser: The function is used to retrieve a user object from the mapping users by

providing the Ethereum public address of the user as shown in the Figure 72 below.

Figure 72. Get user contract's function

4. createPost: This function is used to create a post in the contract (store new post by a user),

this function is called by the user. The function has the custom modifier called

“onlyAllowedUser” as shown in the Figure 73. Mseans only users with the Enum status

active will be able to create a new post, a new post request should have (the author address,

the post content in text, the profile image hash if exists), also instead of sending

“_accountAddress” with the function’s parameters we can simply use “msg.sender”

which is the user that called the function. The function will also emit the event

“logPostCreated” to log the created post and the owner of it.

TBU in Zlín, Faculty of Applied Informatics 121

Figure 73. Create post contract's function

5. getPostById: The function is used to retrieve a post object that is initiated from the post

structure by its id. The function has two custom modifiers that indicates the post should be

active nor deleted, nor banned, also a modifier that indicates only registered and active

users in the contract are allowed to call this function as shown in the Figure 74 below.

Figure 74. Get post by id contract’s function

6. getUserPosts: The function accepts a parameter of type address which is the user address

and returns the list of all his posts’ objects that are initiated from the post struct. The

function is also restricted by the modifier “onlyAllowedUser” as shown in the Figure 75

below.

TBU in Zlín, Faculty of Applied Informatics 122

Figure 75. Get user posts contract's function

7. getPostIds: This function is one of the most important functions in the contract, it is

responsible for retrieving the posts of the platform that are showing in the feed page of the

users. When trying to create this function, retrieving all the posts in one request is a bad

idea, if we imagine we have ten thousand posts in the platform and user login and we

forward him to feed, and feed page tries to make a request to load all posts, this operation

is expensive from side of user experience because he has to wait for a really long time

specially when interacting with a blockchain and not a normal server, and also it is an

expensive operation from the side of memory consumption on client-side. The function

uses the idea of pagination as shown in the Figure 76. Which is a way to retrieve data by

chunks, for example the feed page will be divided into pages and each page will have a

specific number of posts loaded. For instance, on page one we load 20 posts by calling the

function and sending (_page = 1, _perPage = 20) and so on. The algorithm is quietly used

in such platforms or any blogging platforms. The function also has custom modifiers to

make sure it is called only by allowed/registered users. To make the function lighter and

have faster response the function returns an array of posts ids instead of a whole array of

objects, and then for each post id on the client side the getPostById function is called.

TBU in Zlín, Faculty of Applied Informatics 123

Figure 76. Get platform posts - pagination

8. likePost: This function can be called only if the post is active and if the user calling the

function is a valid registered user, the function as the name indicates and as shown in the

Figure 77. Is used to like a post in the platform and it receives the post id as a parameter,

the user that likes the post is the one who call the function and it is represented as

“msg.sender”.

Figure 77. Likes post contract's function

9. unLikePost: Un liking a post works same as liking a post, but instead of increasing

number of likes for the post we decrease it by one as illustrated in the Figure 78.

TBU in Zlín, Faculty of Applied Informatics 124

Figure 78. Unlike post contract's function

10. isLikedByAddress: The function is used to check if a post is already liked by a user, and

of course the modifiers are used as shown in the Figure 79, to make sure the post already

exists, and the function is called by registered/valid user. The purpose of this function is

when a user in the client-side try to like a post that he already liked, we call this function

and upon the Boolean result we call the function “unLikePost” otherwise we call

“likePost”.

Figure 79. is liked by address contract's function

11. createComment: Create comment function has the same behavior as the “createPost”

function as illustrated in the Figure 80.

TBU in Zlín, Faculty of Applied Informatics 125

Figure 80. Create comment contract's function

12. getCommentById: This function also has the same behavior as the “getPostById”

function.

Figure 81. Get comment by Id contract's function.

TBU in Zlín, Faculty of Applied Informatics 126

13. getPostComments: Same goes for this function the idea of pagination is implemented. In

the front-end side or client-side there will be something like “show more comments” and

every time user clicks on it, more comments will be loaded, each click is represented as

call of this function with different list number request as shown in the parameters of the

function in the Figure 82.

Figure 82. Get post's comments contract's function

8.1.5 Contract’s modifiers

Modifiers, as explained before, are a way to restrict a code from execution before it gets

executed. It acts as an if condition before a function continues, it is execution. Modifiers are

a useful way to protect the contract from getting attacked or letting anyone find potential

vulnerabilities. Modifiers are a good feature because they can utilize the “require” keyword,

this keyword can throw an error with a message of type string that can be specified by the

developer. In the current implementation the following modifiers are used as shown in the

Figure 83. However, more could be added in the future, to make the flow of execution more

precises and more secure.

TBU in Zlín, Faculty of Applied Informatics 127

1. checkUserNotRegisteredByAddress: To prevent an already registered user from

registering again.

2. checkUserNameTaken: Each user must have a unique username and this modifier is used

for the purpose of that limitation.

3. onlyAllowedUser: This is the most important modifier for the contract, almost all the

functions should have this modifier applied to them, the modifier restrict that only

registered users can interact with the smart contract functionality, the modifier acts as the

authorization of the smart contract.

4. onlyActivePost: Only not deleted, and not banned post can be interacted with.

5. onlyActiveComment: Only not deleted, and not banned comment can be interacted with.

Figure 83. Contract's modifiers

TBU in Zlín, Faculty of Applied Informatics 128

8.2 Demonstration of the main functionalities

The main and the most important part of the research is the real demonstration of it and

showing it in real how it operates. In this part the focus will be mostly on how the user is

registered to the platform and how his data and routes of the website are protected. The good

thing about the current implementation is adding the feature of combining the Digital wallet

and the JWT authorization pattern.

8.2.1 Registering of new users to the platform

It is better to write the algorithm first before the real code or the implementation is written.

Since the idea of combining the JWT with the web3 is kind of a complicated process. The

flow of data when the user tries to register to the platform will be in order as below:

1. Client-side: User enters his details and the info provided should pass the form validation

as shown in the Figure 87.

2. Digital wallet: As illustrated in Figure 87.User should connect his wallet and confirm the

transaction to register him and store him in the contract storage.

3. Blockchain contract: registering the user to the contract storage, only if the provided

username is not taken.

4. Back-end: Generating JWT tokens for the user by sending a message from back-end to

front-end that he has to sign it through his digital wallets as presented in Figure 89, only if

he signed the message and if the message is verified that has been signed by the same

public address after decryption of the message, user will obtain access and refresh tokens

that they will be appended as HTTP Only cookies, and then user will be able to access the

website’s protected routes.

5. Response back to client-side: After successful generation of the JWT token from the

client-side the user will be forwarded to the /home route as in the Figure 90, this process

for routing or redirecting will be handled by the middleware.js of the Next.js application.

It is better to demonstrate the data flow as a flow chart other than text however the algorithm

that shown in Figure 84 is also available as PDF23 for higher quality. And available as a text

file24 for full demonstration of the algorithm.

23 User registration workflow PDF file: https://shorturl.at/euyXZ

24 User registration workflow text file: https://shorturl.at/dvzCF

TBU in Zlín, Faculty of Applied Informatics 129

Figure 84. User registration flowchart

TBU in Zlín, Faculty of Applied Informatics 130

Figure 85. User enters the website.

Figure 86. User Request sign page

TBU in Zlín, Faculty of Applied Informatics 131

Figure 87. User registration details

Figure 88. User sign the transaction to register

TBU in Zlín, Faculty of Applied Informatics 132

Figure 89. User sign the message to get JWT token

Figure 90. Successful registration

TBU in Zlín, Faculty of Applied Informatics 133

8.2.2 Login of existing user to the platform

The login process is almost the same algorithm as the register process it only differs in two

cases:

1. Users will not be asked to provide anything other than signing a message as shown in the

Figure 93.

2. Since the user is already registered to the platform the login process will update his access

token and refresh token of the JWT, only if he is a registered user, otherwise we will notify

the client-side that a user with the public address is not a valid registered user.

For the login process, one of the nice features that implemented in the login, is that user has

ability to choose (remember me) when he registers. all of us have seen this feature on almost

every website that provides login or in other word authentication process. Basically, what

this function or process does is that user chooses that he wants to stay logged in when he

refreshes the page or closes the page and visits the website again another time with no need

to login. The process is done by storing the user preference in the browser’s local storage

that user choose this option, and whenever the page is refreshed or any page’s routes are

requested, in the “middleware.js” we check the local storage to find his preference about the

‘remember me” if it is true we check that his JWT token is valid and if it is no expired we

forward him to requested route, if his JWT is expired we try to use his refresh token, to

update access token, if refresh token does not match the one in the database then he is not a

valid user. For better full view of the algorithm a flow char can be used to describe the

algorithm better as shown in the Figure 91. The flow chart is also available in the form of

PDF25 for higher quality and as full text26 description for better understanding.

25 User login workflow PDF file: https://shorturl.at/buEKY

26 User login workflow text file: https://shorturl.at/vCHN9

TBU in Zlín, Faculty of Applied Informatics 134

Figure 91. User login flowchart.

TBU in Zlín, Faculty of Applied Informatics 135

Figure 92. User login

Figure 93. User sign message to obtain JWT

Figure 94. Forward to profile after successful login

TBU in Zlín, Faculty of Applied Informatics 136

8.2.3 Creation of new post

Creation of a new post on the platform requires uploading an Image to the IPFS platform (If

user added image to his post). Creating a post in the platform includes these steps:

1. Validation that provided post’s data are not empty.

2. Users must sign the transaction through MetaMask and pay for gas fees as shown in the

Figure 96.

3. Image should be uploaded to IPFS and retrieve the hash of the image back from the IPFS.

4. The new post should be added dynamically to the front-end with no need for the user to

refresh the page as illustrated in the Figure 97.

Figure 95. Filling new post data

Figure 96. Submission of new post

TBU in Zlín, Faculty of Applied Informatics 137

Figure 97. Post creation result

8.2.4 Commenting on a post

Commenting on a post in the platform does not require any back end, or any web3 storage

provider, since the content of the comment is only text as illustrated in Figure 98. Creating

a comment on a post requires only data to be sent to the contract’s function. In the front-end.

The creation of an empty comment is not possible because we are validating the submitted

data, so if user tries to create an empty comment he will be warned. For even more data

validation, the smart contract’s function has also a require keyword to check whether the

content of the comment sent to the contract is empty or not, if so the execution of the function

will be stopped as showed in the Figure 80. A user needs to sign and confirm a transaction

that has a specific amount of gas fee to be able to create a new comment on a post as shown

in the Figure 99.

TBU in Zlín, Faculty of Applied Informatics 138

Figure 98. Filling in new comment data

Figure 99. Submission of new comment

TBU in Zlín, Faculty of Applied Informatics 139

And of course, after successful submission of new comment, the new comment should be

added dynamically to the front-end without the need to refresh the page, and as mentioned

before here comes the strength of client-side rendering, client-side rendering gives better

user experience and more user-friendly experience.

Figure 100. Comment creation result

8.2.5 Liking a post

Liking a post is also an operation that requires a gas fee and transaction confirmation as

shown in the Figure 101, or blockchain in general because changing in data in the contract

or blockchain requires a gas fee to be paid. Liking a post has two cases:

1. Post is already liked: If the post is already liked means the user want to unlike the post,

for that purpose in the front-end there is a function for handling (like, unlike), and in the

smart contract also there is a function called „isLikedByAddress“ as mentioned

previously it is main purpose to check if a post is already liked by the one who calls to

TBU in Zlín, Faculty of Applied Informatics 140

like/unlike post. If the post is already liked, it is necessary to decrease number of likes to

that post with the specific post id.

2. Post is not liked: The function „likePost“ in the smart contract is called to like the specific

post that was clicked by user. When user clicks like post, the post id should be sent to the

smart contract’s function and the function should be responsible to increase the number of

likes to that specific post.

Figure 101. Like a post

Figure 102. Like's result.

TBU in Zlín, Faculty of Applied Informatics 141

8.2.6 Comments pagination and post modal

As describe in 8.1.4 in the part where the concept of pagination was mentioned, the function

“getPostComments” is used mainly here, the concept in the front-end is that each post has

a link button called “show more comments” as shown in the Figure 103. When clicking on

it, it will open a post modal that will contains all details about the requested post’s comments,

and an option for user to load more options on each click three more comments are loaded

by calling the function in the smart contract.

Figure 103. Post's comments link

In the Figure 103 as shown there is only 3 comments that are loaded per post and when

clicking on show more comments, a post modal should open like in the Figure 104. Post

modal. And when scrolling down in the post modal by clicking on show more comments

another three comments is fetched from the smart contract’s storage dynamically to the front-

end as illustrated in the Figure 105.

TBU in Zlín, Faculty of Applied Informatics 142

Figure 104. Post modal

Figure 105. Comment's pagination result

TBU in Zlín, Faculty of Applied Informatics 143

9 TESTING OF THE SMART CONTRACT

Testing of the smart contract is a crucial part of the application. Since once a smart contract

is deployed on the blockchain, it is no longer can be altered or deleted. To ensure a safe,

error less smart contract and free of security threats, writing of automated tests and using of

special analyzer frameworks must be used.

9.1 Automated testing

Automated testing is a way to run test cases easily without the need to call and run each one

separately/manually. Since the applications uses hardhat as the development environment

for the web3 layer, hardhat already comes with installed libraries for running automated

tests, such as chai and Mocha, chai is a popular assertion library used with the combination

of testing frameworks such as Mocha, for testing JavaScript codes, including smart contracts

on blockchain such as Ethereum or other networks. Mocha will be used to run the test cases

in a serial automated way. Mocha maps uncaught exceptions to the correct test cases. Mocha

is running on Node.js and in the browser. Several types of testing can be done, mainly the

unit testing will be done in the current implementation, since the testing is done on the

functions individually. [66][67][68]

9.1.1 User test suites

In this subheading point the demonstration of all test suites and test cases that are related to

the User will be shown, such as (registration, reading of user data, checking of username

availability). First (“registerUser”), it is important to start with the registration of new user

to the platform as illustrated in the Figure 106. Whenever a user register to the platform it is

necessary to make sure that the user is registered successfully, means the user’s data is stored

as expected, so for that case, the try to register new user to the contract, will be done by

calling the function “registerUser” then by making sure that the user data are actually stored

by retrieve it after registration using the function “getUser” that accepts a user address, we

compare the retrieved results with the sent one, after that the need to make sure also that the

user name is now reserved and no other user can register with it.

TBU in Zlín, Faculty of Applied Informatics 144

Figure 106. Register user test suite

Two test cases should pass the test as expected and as shown in the Figure 107, the test cases

passed successfully.

TBU in Zlín, Faculty of Applied Informatics 145

Figure 107. Register user test suite result

Second (“getUser”), this test suite has one test case as shown in the code in the Figure 108,

and its purpose is to validate that the retrieved user information using the function “getUser”

from the contract received as expected, after running the test the following result as shown

in Figure 109 is retrieved.

Figure 108. Get user test suite

TBU in Zlín, Faculty of Applied Informatics 146

Figure 109. Get user test suite result

Third (“userNameAvailable”), the purpose of this test suite is to check that when an

already registered user has a username, this username should not be used by any other user

in the platform, as it makes each user unique from the other one. The test suite has two test

cases, one to check for availability, that function should return true if the username is

available, second test case is that the function should return false if the username is not

available by trying to register a new user to the contract and then check availability of the

username after the registration as illustrated in the Figure 110 and in the Figure 111.

Figure 110. Username availability test suite

TBU in Zlín, Faculty of Applied Informatics 147

Figure 111. Username availability test suite result

9.1.2 Post test suites

Since social networking is all about sharing activities and blogs, it is important to make sure

that creating a post, retrieving a post, showing post to other users on the feed all working as

expected. First (“createPost”) test suite, the purpose of this test suite as name indicates is

to make sure that the post created successfully, and the contract storage is populated with no

problems. The test suite will try to create a new post as shown in Figure 112. And then by

calling the mapping and sending the post id, the same post should be retrieved, that was sent

for creation, in other words the test suite should pass the test as show in the Figure 113.

Figure 112. Create post test suite

TBU in Zlín, Faculty of Applied Informatics 148

Figure 113. Create post test suite result

Second (“getPostById”) test suite. Tries to validate the correct retrieved post’s data, by

creating new post and then retrieve it and compare both results as illustrated in the Figure

114. It also has another test case that tells when trying to retrieve an unactive post or none

exists post, should throws an revert error from the contract with the specified error message

that was provided in the contract.

Figure 114. Get post by id test suite

TBU in Zlín, Faculty of Applied Informatics 149

Figure 115. Get post by id test suite result

Third (“getUserPosts”), the test suite has two test cases that are used to verify that the posts

that are created by a user are the same as the retrieved one. And has the same values and that

they belong to the user by checking the author of the post to the caller of the function as

shown in the Figure 116 below with the test result in the Figure 117.

Figure 116. Get user's posts test suite

TBU in Zlín, Faculty of Applied Informatics 150

Figure 117. Get user's post test suite result

Fourth (“getPostIds”), this test suite needs to be handled carefully since the idea of

pagination is implemented here, and it must be tested well, the function “getPostIds” can

affect the user experience in the client-side if it is not handled and tested well. The test suit

should pass the test as shown in Figure 119. Where an attempt to create three new post and

retrieve them using the function “getPostIds” is done. The comparison is mainly done by

comparing the length of items retrieved from the post “getPostIds” should be equal to the

request list of items, but also by Id as shown in the Figure 118.

Figure 118. Get posts' ids test suite

TBU in Zlín, Faculty of Applied Informatics 151

Figure 119. Get posts' ids test suite result

Fifth (“likePost”), the test suite has three test cases as illustrated in the Figure 120, one

checks that a post is liked successfully by checking the total number of likes on the post and

by checking the user is become a liker of the post. Second test case making sure if post

already is liked by the user, if so, it should throw an error with the message “Post already

liked by the user”. Third test case is about an unactive post cannot be liked, and an error

message with the string “Not an active post” must be thrown.

TBU in Zlín, Faculty of Applied Informatics 152

Figure 120. Like post test suite

Figure 121. Like post test suite result

Sixth (“unLikePost”), this test suite is the inverse of the “likePost” test suite, covering the

functionality of un liking a post instead of liking it, as shown in the Figure 122.

TBU in Zlín, Faculty of Applied Informatics 153

Figure 122. Un like post test suite

Figure 123. Un like post test suite result

Seventh (“isLikedByAddress”), the test suite has two test cases, checking that in both cases

if post is not liked should return false, otherwise true, as shown in the Figure 124.

TBU in Zlín, Faculty of Applied Informatics 154

Figure 124. Is liked by address test suite

Figure 125. Is liked by address test suite result

9.1.3 Comment test suites

Comments represent the core of the post, comments add more interactivity and user

experience to the platform, and they should be handled carefully.

TBU in Zlín, Faculty of Applied Informatics 155

First (“createComment and getCommentById”), the test suite has the same concept and

flow as “createPost” and “getPostById” test suites. The test suite has two main test cases

one for the creation and retrieving of a post and one for checking that a post cannot be

retrieved if it is not an active post as shown in the Figure 126.

Figure 126. Create comment and get comment by id test suite

Figure 127. Create comment and get comment by id test suite result

Second(“getPostComments”), focuses on validating the functionality of the pagination

algorithm. Its purpose is to ensure the proper retrieval of post comments based on pagination

criteria. Additionally, the test suite verifies the expected behavior of displaying an error

message when attempting to retrieve comments from a non-existent post. As shown in the

Figure 128, containing two distinct test cases.

TBU in Zlín, Faculty of Applied Informatics 156

Figure 128. Get post's comments test suite

Figure 129. Get post's comments test suite result

9.1.4 Automated testing total testing result

The primary objective of automated testing is to execute a comprehensive run of all test

suites and assess the results. The Figure 130, demonstrates the execution of all tests, which

have resulted in success.

TBU in Zlín, Faculty of Applied Informatics 157

Figure 130. Total test suites results.

TBU in Zlín, Faculty of Applied Informatics 158

10 FUTURE ENHACMENT AND IMPROVEMENTS

The application, as it stands now, demonstrates a commendable level of functionality.

However, it presents an opportunity for numerous enhancements and additions that can

elevate it to new heights in terms of security, reliability, user-friendliness, performance, and

overall user experience. By incorporating these improvements, we can ensure a more robust

and efficient application that exceeds user expectations and delivers a seamless and

satisfying experience.

10.1 Smart contract improvements

The smart contract is the core of the application, and it should be the most accurate

component in the application, because once a smart contract is deployed to a main or test net

network it is no more editable, because of the blockchain nature (immutability). And if there

was any security vulnerabilities or bugs, the hackers will try to take the opportunity and take

down the contract, and make a huge damage to the platform, owner of contract and the

platform’s funds. Hence the following should be considered to improve the smart contract

code:

1. More restrictions: It is important to use Solidity modifiers, require keywords/behaviors to

ensure that no unwanted behavior is executed. Almost every store operation of the data in

the contract should be checked before the real execution of the commands.

2. Writing an effective code: Writing an effective code that is clean and short, can lead to

less gas fees, because every operation on the blockchain (specifically Ethereum

blockchain) is translated to low-level machine code (memory instruction), and every

memory instruction in the Ethereum virtual machine require specific gas fee. More clean

and effective code means less gas fees. Writing an effective code is an endless goal, and

from my point of view I feel there is always a space to improve the code.

3. Usage of analyzers frameworks: When building smart contract, security is the most

curtail topic to talk about, there are some frameworks that runs a suite of vulnerability

detectors, prints visual information about contract details, such as “Slither”27 , such tool

can help to make the contract more secure and fault tolerance.

4. Possibility to add a friend: Almost every social media platform provides this

functionality, having and connecting with friends in social media platforms make the social

media attracts more users.

27 Slither framework, smart contract analyzer: https://github.com/crytic/slither

TBU in Zlín, Faculty of Applied Informatics 159

5. Possibility to edit/delete content: Users should be able to modify their personal

information and modify/delete their comments and posts, with the help of the Enums we

have in the contract, such that when user chooses to delete a post for example the post can

be hidden from the front-end by checking it is status on the blockchain.

10.2 Gas fees improvements and choosing of the suitable blockchain

network.

Since user satisfaction is hugely related to gas fees when interacting with a DApp. When a

platform does not let users feels that they are interacting with a new technology specially

when talking about decentralized social medias, a user will feel so much comfortable, in

other word when the platform does not ask users for a transaction fee to be accepted by a

user on every specific operation, is much better than asking the user for the agreement of

every action/transaction the user does. Even though if the platform asks for a direct fee

transaction that should be paid by user, the transaction fee should be reduced as much as

possible using specific approaches, there are several approaches a contract/platform owner

can takes to reduce or eliminate gas fees from the user side:

1. Deployment on a suitable blockchain network: Layer 2 scaling blockchain was created

for the purpose of fulfilling the requirement to make a DApp better to deal with, and more

user friendly. Layer 2 and side chains blockchains were created for the purpose to address

the limitation of layer 1 blockchain specially in the world of Web3.0. Most of the layer 2

blockchains have a low gas fee and faster transaction per second. Such blockchain is

Polygon that is built on top of Ethereum. Or even the usage and deployment on a better

standalone blockchain network such as “Avalanche”28 when comparing Avalanche to

Ethereum or Polygon, also faster transaction speed per second.

2. Usage of so-called meta-transactions.

10.2.1 Usage of so-called meta-transactions

Meta transactions is the process where users do not pay for transaction fees. This technique

allows users the choice to sign a transaction for free and have a third party securely execute

it, with the third party paying the gas to do so. Expecting the typical user to purchase

cryptocurrency and pay for gas to use a DApp is impractical. To solve this problem, it is

possible to separate the sender of a transaction from the role of the payer, opening the

28 Avalanche blockchain: https://www.investopedia.com/avalanche-avax-definition-5217374

TBU in Zlín, Faculty of Applied Informatics 160

possibility of scaling transaction execution and starting a seamless transacting experience.

Meta transactions allow anyone to interact with the blockchain. They do not require users to

have tokens to pay for the network’s services through transaction fees. This is done by

decoupling the sender of a transaction and the payer of gas. Usually, meta transactions occur

with the help of third party relayers that are responsible for this process. In conclusion, meta

transactions are a structure or specific design pattern where:

1. A user (sender) transmits a request to a relayer after signing it with their private key.

2. The relayer will be responsible for wrapping the request into a transaction and sending it to

a contract.

3. The contract unwraps the transaction and executes it.

They are some exists relayers that can help to implement the idea of meta transactions, such

as Infura29, Biconomy30. [65]

10.3 Front-end and client-side improvements

The front end is the gate of the application to the users, it should give a smooth experience

to the users, and an easy way to navigate between components and platform’s functionalities.

Also, color consistency is an important topic when talking about taking care of the UI. For

now, several possible improvements can be added to the platform such as:

1. Switching between dark and light theme.

2. Apply pagination to the feed page.

3. Ability to use different networks accounts on the platform: User should be able to

register for example with his account from different network that the platform is deployed

on.

4. Support of different types of wallets.

29 Infura ITX meta-transactions: https://docs.infura.io/infura/features/itx-transactions/itx-meta-transactions

30 Biconomy gasless transaction: https://docs.biconomy.io/build-with-biconomy-sdk/gasless-transactions

TBU in Zlín, Faculty of Applied Informatics 161

CONCLUSION

The comprehensive exploration of blockchain technology, its various types, and its

applications have provided valuable insights into its potential. We have examined popular

blockchains such as Bitcoin and Ethereum, focusing mainly on Ethereum blockchain,

delving into their functionalities and limitations. Side chains have also been discussed,

highlighting their benefits and drawbacks. Additionally, the advent of Web 3.0 has ushered

in a new era of decentralized social networks, addressing the shortcomings of centralized

platforms.

Furthermore, this exploration delved into real-life examples of decentralized social

networks, providing a deeper understanding of their unique characteristics and advantages.

Platforms like Steemit, Minds, and Lens Protocol showcased different approaches to

decentralization, content monetization, and user governance. These examples shed light on

the diverse possibilities that decentralized social networks offer, including rewarding users

for their contributions, ensuring censorship-resistant content, and fostering community-

driven decision-making.

In the practical realm, we have analyzed an application's architecture, utilizing front-end and

back-end technologies to meet functional and non-functional requirements. The integration

of Web3 technologies has facilitated interaction with smart contracts and the blockchain.

Emphasis has been placed on security architecture, incorporating measures such as JSON

Web Tokens for enhanced protection.

Setting up the development environment and implementing the application's features,

including user registration, post creation, and commenting, has demonstrated the potential

of blockchain-based platforms. Automated testing has been conducted to ensure the

robustness of the smart contract.

Looking to the future, there are opportunities for further enhancements, particularly in smart

contract optimization and gas fee reduction. Improving the user interface and client-side

experience will contribute to a more seamless and enjoyable application.

In conclusion, this exploration of blockchain technology, its practical applications, and the

development of a blockchain-based decentralized social network has provided valuable

insights into the transformative potential of this innovative approach. The ability to create a

secure, transparent, and user-centric social networking experience has been demonstrated.

TBU in Zlín, Faculty of Applied Informatics 162

BIBLIOGRAPHY

[1] What is a blockchain? Lisk [online]. [Accessed 13 August 2022]. Available from:

https://lisk.com/learn/about-web3/what-is-a-blockchain

[2] PANDEY, Rudramani. What is a block in blockchain? SAP Blogs [online]. 14 January

2019. [Accessed 11March 2023]. Available from:

https://blogs.sap.com/2019/01/14/what-is-a-block-in-blockchain/

[3] TECH, Blockchain. Structure of the block inside a Blockchain Network. Medium

[online]. 22 March 2022. [Accessed 11March 2023]. Available from:

https://medium.com/coinmonks/structure-of-the-block-inside-a-blockchain-network-

7ad66ea5bea

[4] FRANKENFIELD, Jake. Nonce: What it means and how it's used in Blockchain.

Investopedia [online]. 24 October 2022. [Accessed 15 March 2023]. Available from:

https://www.investopedia.com/terms/n/nonce.asp

[5] COINTELEGRAPH. A beginner's guide to the different types of blockchain networks.

Cointelegraph [online]. 27 July 2022. [Accessed 14 August 2022]. Available from:

https://cointelegraph.com/blockchain-for-beginners/a-beginners-guide-to-the-different-

types-of-blockchain-networks

[6] PARIZO, Christine. What are the 4 different types of blockchain technology?

SearchCIO [online]. 28 May 2021. [Accessed 14 August 2022]. Available from:

https://www.techtarget.com/searchcio/feature/What-are-the-4-different-types-of-

blockchain-technology

[7] GERONI, Diego. Hybrid blockchain: The best of both worlds. 101 Blockchains

[online]. 10 November 2021. [Accessed 14 August 2022]. Available from:

https://101blockchains.com/hybrid-blockchain/

[8] SHARMA, Toshendra Kumar. Types of blockchains explained- public vs. private VS.

consortium. Web3 & Blockchain Certifications [online]. 10 August 2020. [Accessed 14

https://cointelegraph.com/blockchain-for-beginners/a-beginners-guide-to-the-different-types-of-blockchain-networks
https://cointelegraph.com/blockchain-for-beginners/a-beginners-guide-to-the-different-types-of-blockchain-networks
https://www.techtarget.com/searchcio/feature/What-are-the-4-different-types-of-blockchain-technology
https://www.techtarget.com/searchcio/feature/What-are-the-4-different-types-of-blockchain-technology
https://101blockchains.com/hybrid-blockchain/

TBU in Zlín, Faculty of Applied Informatics 163

August 2022]. Available from: https://www.blockchain-council.org/blockchain/types-

of-blockchains-explained-public-vs-private-vs-consortium/

[9] AFREEN, Sana. Why is blockchain important and why does it matters? [2022]:

Simplilearn. Simplilearn.com [online]. 12 August 2022. [Accessed 14 August 2022].

[10] FRANKENFIELD, Jake. Distributed Ledger Technology. Investopedia [online]. 8

February 2022. [Accessed 17 August 2022]. Available from:

https://www.investopedia.com/terms/d/distributed-ledger-technology-dlt.asp

[11] 19 blockchain application use cases that will surprise you. The Entire Supply Chain.

Reimagined [online]. [Accessed 15 August 2022]. Available from:

https://supplain.io/news/blockchain-applications-use-cases

[12] Blockchain explained and its application to payments. Paiementor [online]. 1 March

2020. [Accessed 17 August 2022]. Available from:

https://www.paiementor.com/blockchain-explained-application-payments/

[13] ANWAR, Hasib. Blockchain for Digital Identity: The decentralized and self-sovereign

identity (SSI). 101 Blockchains [online]. 15 August 2022. [Accessed 29 January 2023].

Available from: https://101blockchains.com/digital-identity/

[14] Blockchain in Supply Chain: Benefits top use cases in 2023. AIMultiple [online].

[Accessed 2 March 2023]. Available from: https://research.aimultiple.com/blockchain-

supply-chain/

[15] What are the benefits of Blockchain for government services? Appinventiv [online]. 4

July 2022. [Accessed 21 February 2023]. Available from:

https://appinventiv.com/blog/role-of-blockchain-in-government/

[16] What are smart contracts? CryptoNinjas [online]. 17 March 2021. [Accessed 16

March 2023]. Available from: https://www.cryptoninjas.net/what-are-smart-contracts/

[17] SIMPLILEARN. What is blockchain wallet and how does it work? [updated].

Simplilearn.com [online]. 20 February 2023. [Accessed 17 March 2023]. Available

from: https://www.simplilearn.com/tutorials/blockchain-tutorial/blockchain-wallet

https://www.blockchain-council.org/blockchain/types-of-blockchains-explained-public-vs-private-vs-consortium/
https://www.blockchain-council.org/blockchain/types-of-blockchains-explained-public-vs-private-vs-consortium/
https://supplain.io/news/blockchain-applications-use-cases
https://www.paiementor.com/blockchain-explained-application-payments/

TBU in Zlín, Faculty of Applied Informatics 164

[18] What is proof of work (POW)｜explained for Beginners. YouTube [online]. 22

October 2018. [Accessed 18 August 2022]. Available from:

https://www.youtube.com/watch?v=3EUAcxhuoU4

[19] COMIDOR LOW-CODE AUTOMATION PLATFORM. Blockchain technology

definition and Fundamentas: Comidor. Comidor Low-code Automation Platform

[online]. 8 July 2022. [Accessed 11 March 2023]. Available from:

https://www.comidor.com/knowledge-base/blockchain-technology-knowledge-

base/blockchain-fundamentals/

[20] Proof-of-stake (vs proof-of-work). YouTube [online]. 21 March 2018. [Accessed 18

August 2022]. Available from: https://www.youtube.com/watch?v=M3EFi_POhps

[21] KASPERSKY. What is cryptocurrency and how does it work? www.kaspersky.com

[online]. 9 February 2022. [Accessed 13 November 2022]. Available from:

https://www.kaspersky.com/resource-center/definitions/what-is-cryptocurrency

[22] ROSIC, Ameer, BLOCKGEEKS, ZAPOTOCHNY, Andrew and BAGGETTA,

Matthew. What is cryptocurrency? [everything you need to know!]. Blockgeeks

https://www.youtube.com/watch?v=3EUAcxhuoU4
https://www.youtube.com/watch?v=M3EFi_POhps
https://www.kaspersky.com/resource-center/definitions/what-is-cryptocurrency

TBU in Zlín, Faculty of Applied Informatics 165

[online]. 19 October 2022. [Accessed 13 November 2022]. Available from:

https://blockgeeks.com/guides/what-is-cryptocurrency/

[23] HUSSEY, Matt. What was Digicash?: The beginner's guide. Decrypt [online]. 10 July

2019. [Accessed 13 November 2022]. Available from:

https://decrypt.co/resources/digicash-what-is-cryptocurrency-explainer

[24] The dao: What was the dao hack? Gemini [online]. [Accessed 22 March 2023].

Available from: https://www.gemini.com/cryptopedia/the-dao-hack-makerdao

[25] FRANKENFIELD, Jake. What is bitcoin? how to mine, buy, and use it. Investopedia

[online]. 23 November 2022. [Accessed 8 March 2023]. Available from:

https://www.investopedia.com/terms/b/bitcoin.asp

[26] FRANKENFIELD, Jake. What is ethereum and how does it work? Investopedia

[online]. 20 January 2023. [Accessed 8 March 2023]. Available from:

https://www.investopedia.com/terms/e/ethereum.asp

[27] JERGA, Eincode by Filip and JERGA, Filip. Solidity & Ethereum in react

(NEXT JS): The Complete Guide. Udemy [online]. [Accessed 11 March 2023]. Availa-

ble from: https://www.udemy.com/course/solidity-ethereum-in-react-next-js-the-

complete-guide/

[28] HORVAT, Matija. Matija Horvat. Be on the Right Side of Change [online]. [Accessed

7 April 2023]. Available from: https://blog.finxter.com/ethereum-virtual-machine-

memory-and-instruction-set-solidity-smart-contracts/

[29] Yellow paper - github pages. [online]. [Accessed 7April 2023]. Available from:

https://ethereum.github.io/yellowpaper/paper.pdf

[30] Introduction to Ethereum | Mastering Blockchain Programming with Solidity. Packt

subscription [online]. [Accessed 15 March 2023]. Available from:

https://subscription.packtpub.com/book/data/9781839218262/2/ch02lvl1sec04/introduc

tion-to-ethereum

[31] KLEMENS, Sam. Ethereum Review: Ethereum use cases, Advantages &

Disadvantages. Exodus Crypto News & Insights [online]. 5 March 2021.

https://www.investopedia.com/terms/b/bitcoin.asp

TBU in Zlín, Faculty of Applied Informatics 166

[Accessed 13 April 2023]. Available from: https://www.exodus.com/news/ethereum-

review/#head3

[32] What are sidechains? How do bitcoin and crypto work?: Get started with Bitcoin.com.

Buy Bitcoin & cryptocurrency [online]. [Accessed 10 April 2023]. Available

from: https://www.bitcoin.com/get-started/what-are-sidechains/#2/

[33] ROTH, Stephan. An introduction to sidechains. CoinDesk Latest Headlines RSS

[online]. 7 March 2022. [Accessed 10 April 2023]. Available from:

https://www.coindesk.com/learn/an-introduction-to-sidechains/

[34] APIS, Team Crypto. Get to know polygon: Ethereum's layer 2 scaling solution.

Crypto APIs blockchain infrastructure suite [online]. 7 October 2022. [Accessed 10

April 2023]. Available from: https://cryptoapis.io/blog/111-get-to-know-polygon-

ethereums-layer-2-scaling-solution

[35] KHITROV, Sergei. Pros and cons of development on Polygon. HackerNoon [online].

3 August 2022. [Accessed 11 April 2023]. Available from:

https://hackernoon.com/pros-and-cons-of-development-on-polygon

[36] DEMERS, Vincent. The added value of web 2.0 and social networking sites.

Entrepreneur Web [online]. [Accessed 25 March 2023]. Available from:

https://www.entrepreneurweb.com/added-value-web-20-and-social-networking-sites

[37] STAFF, History Computer. Web 2.0 explained: Everything you need to know. History

[online]. 1 May 2022. [Accessed 15 August 2022]. Available from: https://history-

computer.com/web-2-0/

[38] ARPIT, KHATIWARA, Bibek, CHHAPERIA, Vishal, VIJAYD, VENUGOPAL,

Vimal, KSHITIJA, BEENA, SRINATH, R., MAHESH, JOEL, SAMEER, SUBHAS,

QASTATION, CHANDRU, MAHENDRA, VINOTH, TIGER2K, SAMEERA,

ANILKUMAR, APARNA, SHYAM, KARIM, SAMEERA, SAM, R, DHINESH.N,

TAMIL, SELVAM, RUKMAL, VIPIN, JAYARAJ, karthik, SANJUKTA, CHINNI,

SANJUKTA, SAM, SHRINVIAS, SUDARSHAN, AUTHOR, ragu STH, ANGEL,

PRASAD, Hari, RANI, GURMEET, HEMANG and MAHESH. Client server testing,

web testing & desktop testing guide. Software Testing Help [online]. 24 February

https://history-computer.com/web-2-0/
https://history-computer.com/web-2-0/

TBU in Zlín, Faculty of Applied Informatics 167

2023. [Accessed 25 March 2023]. Available from:

https://www.softwaretestinghelp.com/what-is-client-server-and-web-based-testing-and-

how-to-test-these-applications/comment-page-1/

[39] Usage statistics of JavaScript as client-side programming language on websites.

W3Techs [online]. [Accessed 17 August 2022]. Available from:

https://w3techs.com/technologies/details/cp-javascript

[40] KERNER, Sean Michael and GILLIS, Alexander S. What is web 3.0? - definition

from techtarget.com. WhatIs.com [online]. 10 June 2022. [Accessed 17 August 2022].

Available from: https://www.techtarget.com/whatis/definition/Web-

30#:~:text=Web%203.0%20(Web3)%20is%20the,providing%20website%20and%20a

pplication%20services.

[41] SAMUR, Alexandra. The history of social media in 33 key moments. Social Media

Marketing & Management Dashboard [online]. 6 April 2023. [Accessed 17 April

2023]. Available from: https://blog.hootsuite.com/history-social-

media/#:~:text=The%20first%20social%20media%20site,only%20to%20shutter%20in

%202000.

[42] R, Rahul A. Decentralized Social Network: Breaking the boundaries of Social Media.

Accubits Blog [online]. 11 March 2022. [Accessed 20 April 2023]. Available from:

https://blog.accubits.com/decentralized-social-network-breaking-the-boundaries-of-

social-media/

[43] Social Media and freedom of speech and expression. Legal Service India - Law,

Lawyers and Legal Resources [online]. [Accessed 18 April 2023]. Available from:

https://w3techs.com/technologies/details/cp-javascript

TBU in Zlín, Faculty of Applied Informatics 168

https://www.legalserviceindia.com/legal/article-426-social-media-and-freedom-of-

speech-and-expression.html

[44] What are decentralized social networks? - cointelegraph.com. [online]. [Accessed 20

April 2023]. Available from: https://cointelegraph.com/explained/what-are-

decentralized-social-networks

[45] BEAVERS, Jack. What is Steemit and the smart media token (SMT)? Moralis

Academy [online]. 23 December 2022. [Accessed 25 April 2023]. Available from:

https://academy.moralis.io/blog/what-is-steemit-and-the-smart-media-token-smt

[46] STEEMIT. Steemit. SourceForge [online]. 15 April 2023. [Accessed 25 April 2023].

Available from: https://sourceforge.net/software/product/Steemit/

[47] Steemit [online]. 31 December 1969. [Accessed 25 April 2023]. Available from:

https://steemit.com/

[48] ADMIN. What is minds? blockchain social network (minds token) pays users. Oh I

Will [online]. 7 October 2020. [Accessed 25 April 2023]. Available from:

https://ohiwill.com/what-is-minds-blockchain-social-network-minds-token-pays-users/

[49] What is minds? – minds. [online]. [Accessed 24 April 2023]. Available from:

https://support.minds.com/hc/en-us/articles/4402687840916-What-is-Minds-

[50] PRODUCTS, CryptoSlate. Minds. CryptoSlate [online]. 4 February 2020. [Accessed

25 April 2023]. Available from: https://cryptoslate.com/products/minds/

[51] Lenster.xyz [online]. [Accessed 25 April 2023]. Available from: https://lenster.xyz/

[52] Lens protocol. Lens Protocol [online]. [Accessed 25 April 2023]. Available from:

https://www.lens.xyz/apps

[53] ZAINAB. Lens Protocol - Dapps. IQ.Wiki [online]. 18 April 2023. [Accessed 25

April 2023]. Available from: https://iq.wiki/wiki/lens-protocol

[54] SAGAR, Paresh. What is a single-page application? meaning, pitfalls & benefits.

Excellent Webworld [online]. 11 April 2023. [Accessed 14 April 2023]. Available

from: https://www.excellentwebworld.com/what-is-a-single-page-application/

T B U i n Zlí n, F a c ult y of A p pli e d I nf o r m ati cs 1 6 9

[5 5] T O M A R, P ari. H ar d h at or tr uffl e ? as a b e gi n n er bl o c k c h ai n d e v el o p er, w hi c h o n e d o I

pi c k. M e di u m [o nli n e]. 3 1 M a y 2 0 2 2. [A c c ess e d 1 9 A pril 2 0 2 3]. A v ail a bl e fr o m:

htt ps:// m e di u m. c o m/ b uil d b e ar/ h ar d h at- or- tr uffl e-as - a- b e gi n n er- bl o c k c h ai n- d e v el o p er-

w hi c h - o n e-d o -i-pi c k - 3 4 a 6 9 2 4 a 6 9 8 3

[5 6] c o n c e pts. I P F S D o cs [o nli n e]. [A c c ess e d 2 0 A pril 2 0 2 3]. A v ail a bl e fr o m:

htt ps:// d o cs.i pfs.t e c h/ c o n c e pts/

[5 7] T h e I P F S pr ot o c ol e x pl ai n e d wit h e x a m pl es - w el c o m e t o t h e d e c e ntr ali z e d w e b.

Y o u T u b e [o nli n e]. 3 1 J a n u ar y 2 0 2 1. [A c c ess e d 2 0 A pril 2 0 2 3]. A v ail a bl e fr o m:

htt ps:// w w w. y o ut u b e. c o m/ w at c h ? v = Pl v M G p Q n q O M

[5 8] S oli dit y t ut ori al. T ut ori als P oi nt [o nli n e]. [A c c ess e d 2 0 A pril 2 0 2 3]. A v ail a bl e fr o m:

htt ps:// w w w.t ut ori als p oi nt. c o m/s oli dit y/i n d e x. ht m

[5 9] S oli dit y . S oli dit y [o nli n e]. [A c c ess e d 2 0 A pril 2 0 2 3]. A v ail a bl e fr o m:

htt ps:// d o cs.s oli dit yl a n g. or g/ e n/ v 0. 8. 1 9/

[6 0] A X E N, D o u gl as. W E B 3 li br ari es - list of W E B 3 li br ari es f or D E V S i n 2 0 2 3. M or alis

W e b 3 | E nt er pris e -Gr a d e W e b 3 A PIs [o nli n e]. 2 5 J a n u ar y 2 0 2 3. [A c c ess e d 2 1 A pril

TBU in Zlín, Faculty of Applied Informatics 170

2023]. Available from: https://moralis.io/web3-libraries-list-of-web3-libraries-for-

devs-in-2023/

[61] AUTH0.COM. JSON web tokens introduction. JSON Web Token Introduction

[online]. [Accessed 19 April 2023]. Available from: https://jwt.io/introduction

[62] What is JWT?: Akana by perforce. Akana [online]. [Accessed April 2023]. Available

from: https://www.akana.com/blog/what-is-jwt

[63] SAHU, Ankit. 5 types of software architecture patterns. Turing Blog [online]. 8

February 2023. [Accessed 18 April 2023]. Available from:

https://www.turing.com/blog/software-architecture-patterns-types/

[64] The Clean Code Blog. Clean Coder Blog [online]. [Accessed 18 April 2023].

Available from: https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-

architecture.html

[65] Meta transactions. Polygon Wiki [online]. [Accessed 28 April 2023]. Available from:

https://wiki.polygon.technology/docs/develop/meta-transactions/meta-transactions/

[66] The fun, simple, flexible JavaScript test framework. Mocha [online]. [Accessed 18

May 2023]. Available from: https://mochajs.org/

[67] Chai assertion library. Chai [online]. [Accessed 18 May 2023]. Available from:

https://www.chaijs.com/

[68] Testing contracts: Ethereum development environment for professionals by Nomic

Foundation. 5. Testing contracts | Ethereum development environment for

professionals by Nomic Foundation [online]. [Accessed 18 May 2023]. Available from:

https://hardhat.org/tutorial/testing-contracts

https://wiki.polygon.technology/docs/develop/meta-transactions/meta-transactions/

TBU in Zlín, Faculty of Applied Informatics 171

LIST OF ABBREVIATIONS

DApp

SSI

EVM

 Decentralized application

Self-sovereign identity

Ethereum virtual machine

CSS Cascading style sheet

HTML

PHP

DOM

 Hypertext markup language

Hypertext preprocessor

Document object model

ECMA

DLT

 European computer manufacturers association

Distributed ledger technology

NONCE Number used once

GPU Graphic processing unit

POW Proof-of-work

POS Proof-of-stake

DPOS Delegated Proof-of-stake

JWT JSON web token

LIFO Last in first out

BMM Blind merged mining

SSR Server side rendering

CSR Client side rendering

SEO Search engine optimization

UML Unified modeling language

API Application programming interface

IPFS Interplanetary file system

ORM Object relational mapper

EF Entity framework

TBU in Zlín, Faculty of Applied Informatics 172

JSON JavaScript object notation

ABI Application binary interface

UI User interface

NFT Non-fungible token

CID Content identifier

TBU in Zlín, Faculty of Applied Informatics 173

LIST OF FIGURES

Figure 1. Blocks of blockchain [2] .. 16

Figure 2. Block structure [2] ... 16

Figure 3. Markle tree [2] .. 17

Figure 4. Money transfer blockchain [12] ... 22

Figure 5. Blockchain wallet [17] .. 27

Figure 6. Proof of work Process [19] ... 29

Figure 7. Solidity smart contract example. ... 37

Figure 8. The Ethereum world state and nodes .. 39

Figure 9. Ethereum gas price ... 41

Figure 10. Ethereum yellow paper [29] ... 42

Figure 11.Contract based account in the Ethereum world state. 43

Figure 12. Ethereum externally owned account [30] ... 44

Figure 13. Contract account on the Ethereum network [30] 45

Figure 14. Side chains architecture [33] .. 46

Figure 15. Polygon architecture [35] ... 49

Figure 16. Web 2.0 features [36] ... 51

Figure 17. General Communication Architecture[38] ... 52

Figure 18. HTML simple page. ... 52

Figure 19. HTML code result ... 53

Figure 20. HTML with inline CSS .. 54

Figure 21. CSS code result ... 54

Figure 22. HTML with JavaScript .. 55

Figure 23. JavaScript Result Code ... 56

Figure 24. Centralized Social Network [42] .. 59

Figure 25. Decentralized social media architecture. ... 63

Figure 26. Steemit user interface .. 65

Figure 27. Steemit platform's keys .. 65

Figure 28. Minds' user interface ... 66

Figure 29. DApps on Lens protocol .. 69

Figure 30. Lenster user interface ... 70

Figure 31. Registered user use cases .. 78

Figure 32. Unregistered user use cases .. 78

TBU in Zlín, Faculty of Applied Informatics 174

Figure 33. UML Class model ... 81

Figure 34. SPA vs multi page app [54] .. 82

Figure 35. NextJS server-side rendering example. ... 83

Figure 36. NextJS middleware .. 85

Figure 37. HTML flex box .. 85

Figure 38. CSS flex box .. 86

Figure 39. Tailwind CSS example .. 86

Figure 40. Tailwind CSS and normal styling result ... 86

Figure 41. Social chain index page .. 87

Figure 42. Social chain login page ... 88

Figure 43. Social chain register modal .. 88

Figure 44. Social chain feed/home page .. 89

Figure 45. Social chain user profile page .. 89

Figure 46. Social chain post modal .. 90

Figure 47. IPFS overview[57] .. 93

Figure 48. Solidity modifier and function ... 95

Figure 49. Solidity event and emit. ... 96

Figure 50. JWT hashing. ... 99

Figure 51. JWT encoder and decoder [61] .. 100

Figure 52. Application's architecture ... 104

Figure 53. Ganache user interface and workspace .. 106

Figure 54. Ganache blockchain .. 106

Figure 55. MetaMask Digital wallet ... 107

Figure 56. MetaMask network configs ... 108

Figure 57. Adding Ethereum account to digital wallet .. 108

Figure 58. C# User entity/class .. 109

Figure 59. Application's database context ... 110

Figure 60. EF migration result ... 111

Figure 61. Updating database from migration result ... 111

Figure 62. Hardhat network configs ... 112

Figure 63. Hardhat compilation configs .. 113

Figure 64. Hardhat compilation result ... 113

Figure 65. Hardhat deploying script. ... 114

TBU in Zlín, Faculty of Applied Informatics 175

Figure 66. Contract deployment result ... 114

Figure 67. Contract's states and variables ... 115

Figure 68. Contract's mapping ... 116

Figure 69. Contract's events ... 117

Figure 70. Username availability smart contract’s function 118

Figure 71. Register user smart contract's function .. 119

Figure 72. Get user contract's function. ... 120

Figure 73. Create post contract's function. .. 121

Figure 74. Get post by id contract’s function. .. 121

Figure 75. Get user posts contract's function. .. 122

Figure 76. Get platform posts - pagination. ... 123

Figure 77. Likes post contract's function. ... 123

Figure 78. Unlike post contract's function. .. 124

Figure 79. is liked by address contract's function. ... 124

Figure 80. Create comment contract's function. .. 125

Figure 81. Get comment by Id contract's function. .. 125

Figure 82. Get post's comments contract's function. .. 126

Figure 83. Contract's modifiers. ... 127

Figure 84. User registration flowchart. .. 129

Figure 85. User enters the website. .. 130

Figure 86. User Request sign page ... 130

Figure 87. User registration details. .. 131

Figure 88. User sign the transaction to register. ... 131

Figure 89. User sign the message to get JWT token. .. 132

Figure 90. Successful registration. ... 132

Figure 91. User login flowchart. .. 134

Figure 92. User login .. 135

Figure 93. User sign message to obtain JWT ... 135

Figure 94. Forward to profile after successful login .. 135

Figure 95. Filling new post data. ... 136

Figure 96. Submission of new post. .. 136

Figure 97. Post creation result. .. 137

Figure 98. Filling in new comment data. .. 138

TBU in Zlín, Faculty of Applied Informatics 176

Figure 99. Submission of new comment. .. 138

Figure 100. Comment creation result. .. 139

Figure 101. Like a post. .. 140

Figure 102. Like's result. .. 140

Figure 103. Post's comments link. .. 141

Figure 104. Post modal. ... 142

Figure 105. Comment's pagination result. ... 142

Figure 106. Register user test suite. ... 144

Figure 107. Register user test suite result. ... 145

Figure 108. Get user test suite. ... 145

Figure 109. Get user test suite result. ... 146

Figure 110. Username availability test suite .. 146

Figure 111. Username availability test suite result. ... 147

Figure 112. Create post test suite. .. 147

Figure 113. Create post test suite result. .. 148

Figure 114. Get post by id test suite. .. 148

Figure 115. Get post by id test suite result. .. 149

Figure 116. Get user's posts test suite. ... 149

Figure 117. Get user's post test suite result. ... 150

Figure 118. Get posts' ids test suite. ... 150

Figure 119. Get posts' ids test suite result. ... 151

Figure 120. Like post test suite. .. 152

Figure 121. Like post test suite result. .. 152

Figure 122. Un like post test suite. ... 153

Figure 123. Un like post test suite result. ... 153

Figure 124. Is liked by address test suite. ... 154

Figure 125. Is liked by address test suite result. .. 154

Figure 126. Create comment and get comment by id test suite. 155

Figure 127. Create comment and get comment by id test suite result. 155

Figure 128. Get post's comments test suite. .. 156

Figure 129. Get post's comments test suite result. ... 156

Figure 130. Total test suites results. ... 157

TBU in Zlín, Faculty of Applied Informatics 177

LIST OF TABLES

Table 1. Types of blockchain overview ... 20

Table 2. Decentralized social network comparison (functionality) 71

Table 3. Decentralized social network comparison (client-side perspective) 72

TBU in Zlín, Faculty of Applied Informatics 178

APPENDICES

APPENDIX P I: APPENDIX TITLE

	INTRODUCTION
	THEORY
	1 BLOCKCHAIN
	1.1 Blockchain blocks
	1.2 Types of blockchain
	1.2.1 Public blockchain
	1.2.2 Private blockchain
	1.2.3 Hybrid blockchain
	1.2.4 Consortium Blockchain

	1.3 Why do we use blockchain
	1.4 Blockchain and distributed ledger technology
	1.5 Blockchain use cases.
	1.5.1 Money transfer using distrusted ledger technology.
	1.5.2 Decentralized applications
	1.5.3 Digital identity
	1.5.4 Supply chains
	1.5.5 Blockchain in government
	1.5.6 Smart contracts
	1.5.7 Digital wallets

	1.6 How blocks are added to the blockchain
	1.6.1 Miners
	1.6.2 Proof-of-work
	1.6.3 Proof-of-stake

	1.7 Cryptocurrencies
	1.7.1 How does cryptocurrency work?

	1.8 Blockchain limitations in general
	1.8.1 Lack of flexibility
	1.8.2 Huge energy consumption
	1.8.3 Illegal behaviors and bad activities
	1.8.4 Smart contract as a limitation

	2 POPULAR BLOCKCHAINS AND CRYPTOCURRENCIES
	2.1 Bitcoin
	2.2 Ethereum
	2.2.1 Connecting to the Ethereum blockchain
	2.2.2 Ethereum smart contracts
	2.2.3 Ethereum virtual machine (EVM)
	2.2.4 Ethereum state
	2.2.5 EVM storage
	2.2.6 EVM gas fees and execution process
	2.2.7 Ethereum node variations
	2.2.8 Accounts on the Ethereum blockchain
	2.2.9 Types of accounts in the Ethereum blockchain
	2.2.10 Ethereum drawbacks and limitations

	3 SIDE CHAINS
	3.1 Side chains
	3.2 Potential of side chains
	3.2.1 Adaptability to change.
	3.2.2 Updates and experimentations

	3.3 Examples of sidechains
	3.3.1 Polygon

	3.4 Downsides of sidechains

	4 BLOCCHAIN AND WEB
	4.1 Web 3.0 vs Web 2.0
	4.1.1 Web 2.0
	4.1.1.1 How web 2.0 operates
	4.1.1.2 Requirements to create web 2.0 Application.
	4.1.1.3 Web 2.0 use cases and applications
	4.1.1.4 Web 2.0 in real life

	4.1.2 Web 3.0
	4.1.3 How does web 3.0 operate?

	4.2 Requirements to create web 3.0 Application.
	4.3 Social networks
	4.3.1 Problems with centralized social networks

	4.4 Decentralized social networks
	4.4.1 Applicability of decentralized social networks
	4.4.2 General architecture of a decentralized social network

	4.5 Real life examples of decentralized social networks
	4.5.1 Steemit
	4.5.2 Minds
	4.5.3 Lenster and Lens protocol
	4.5.4 Comparison between the different platforms

	4.6 Drawbacks of decentralized social networks

	PRACTICAL
	5 APPLICATION ANALYSIS AND TECHNOLOGIES USED
	5.1 Application/project description
	5.2 Application overview and requirements
	5.2.1 Application functional requirements
	System access
	Post management
	Comment management
	Account management

	5.2.2 Application non-functional requirements
	Security
	Performance
	Availability
	Usability

	5.2.3 Use cases and actors.
	5.2.4 Class model

	5.3 Front-end Technologies and UI inspiration
	5.3.1 NextJS
	5.3.2 Tailwind CSS
	5.3.3 Other frameworks to improve user experience.
	5.3.4 User Interface Design and taken approach.

	5.4 Back-end technologies
	5.4.1 Server-Side frameworks and libraries
	5.4.2 APIs and databases

	5.5 Web3 Technologies
	5.5.1 Development environment
	5.5.2 Decentralized data storage - IPFS
	5.5.3 Developing smart contracts
	5.5.4 Interaction with the smart contract and blockchain

	6 APPLICATION’S SECURITY ARCHITECTURE
	6.1 Security architecture
	6.1.1 JSON web token
	6.1.2 Securing the app

	7 APPLICATION’S ARCHITECTURE AND SETTING UP DEVELOPMENT ENVIRONMENT
	7.1 High level overview of the application architecture
	7.2 Layers communication
	7.3 Setting up the project’s development environment
	7.3.1 Local blockchain
	7.3.2 Digital wallet
	7.3.3 MS SQL Database and ASP.NET Core API
	7.3.4 Hardhat configurations (contract’s deployment environment)

	8 IMPLEMENTATION AND EVALUATION
	8.1 Application’s smart contract
	8.1.1 Contract’s states and variables
	8.1.2 Contract’s mappings
	8.1.3 Contract’s events
	8.1.4 Contract’s functions
	8.1.5 Contract’s modifiers

	8.2 Demonstration of the main functionalities
	8.2.1 Registering of new users to the platform
	8.2.2 Login of existing user to the platform
	8.2.3 Creation of new post
	8.2.4 Commenting on a post
	8.2.5 Liking a post
	8.2.6 Comments pagination and post modal

	9 TESTING OF THE SMART CONTRACT
	9.1 Automated testing
	9.1.1 User test suites
	9.1.2 Post test suites
	9.1.3 Comment test suites
	9.1.4 Automated testing total testing result

	10 FUTURE ENHACMENT AND IMPROVEMENTS
	10.1 Smart contract improvements
	10.2 Gas fees improvements and choosing of the suitable blockchain network.
	10.2.1 Usage of so-called meta-transactions

	10.3 Front-end and client-side improvements

	CONCLUSION
	BIBLIOGRAPHY
	LIST OF ABBREVIATIONS
	LIST OF FIGURES
	LIST OF TABLES
	APPENDICES

