

Comparison of Modern JavaScript Web
Frameworks

Sara Arghwan Jameel

Bachelor's thesis
2023

I hereby declare that:

• I understand that by submitting my Bachelor´s Thesis, I agree to the publication of my

work according to Law No. 111/1998, Coll., On Universities and on changes and

amendments to other acts (e.g. the Universities Act), as amended by subsequent legislation,

without regard to the results of the defence of the thesis.

• I understand that my Bachelor´s Thesis will be stored electronically in the university

information system and be made available for on-site inspection, and that a copy of the

Bachelor´s Thesis will be stored in the Reference Library of the Faculty of Applied

Informatics, Tomas Bata University in Zlín, and that a copy shall be deposited with my

Supervisor.

• I am aware of the fact that my Bachelor´s Thesis is fully covered by Act No. 121/2000

Coll. On Copyright, and Rights Related to Copyright, as amended by some other laws (e.g.

the Copyright Act), as amended by subsequent legislation; and especially, by §35, Para. 3.

• I understand that, according to §60, Para. 1 of the Copyright Act, TBU in Zlín has the right

to conclude licensing agreements relating to the use of scholastic work within the full extent

of §12, Para. 4, of the Copyright Act.

• I understand that, according to §60, Para. 2, and Para. 3, of the Copyright Act, I may use

my work - Bachelor´s Thesis, or grant a license for its use, only if permitted by the licensing

agreement concluded between myself and Tomas Bata University in Zlín with a view to the

fact that Tomas Bata University in Zlín must be compensated for any reasonable contribution

to covering such expenses/costs as invested by them in the creation of the thesis (up until the

full actual amount) shall also be a subject of this licensing agreement.

• I understand that, should the elaboration of the Bachelor´s Thesis include the use of

software provided by Tomas Bata University in Zlín or other such entities strictly for study

and research purposes (i.e. only for non-commercial use), the results of my Bachelor´s

Thesis cannot be used for commercial purposes.

• I understand that, if the output of my Bachelor´s Thesis is any software product(s),

this/these shall equally be considered as part of the thesis, as well as any source codes, or

files from which the project is composed. Not submitting any part of this/these component(s)

may be a reason for the non-defence of my thesis.

I herewith declare that:

• I have worked on my thesis alone and duly cited any literature I have used. In the case of

the publication of the results of my thesis, I shall be listed as co-author.

• That the submitted version of the thesis and its electronic version uploaded to IS/STAG are

both identical.

In Zlín; dated:

 Student´s Signature

26/5/2023
Sara Arghwan Jameel m.p.

ABSTRAKT

Tato práce porovnává frameworky React a Svelte z hlediska front-end vývoje. React používá

virtuální DOM pro efektivní vykreslování, zatímco Svelte kompiluje komponenty do

optimalizovaného JavaScript kódu. Práce zkoumá jejich architekturu, syntaxi a výkon.

Svelte je považován za srozumitelnější, vyžaduje méně kódu a má lepší využití paměti a

dobu načítání. React vyniká v rychlosti vykreslování. Průzkumy a komunity naznačují

rostoucí popularitu Svelte. Na základě těchto zjištění je Svelte považován za framework se

slibnou budoucností v oblasti vývoje front-endu. Cílem práce je pomoci vývojářům při

výběru frameworku, který nejlépe vyhovuje požadavkům a preferencím jejich projektu

Klíčová slova: Svelte, React, frameworky, front-end, výkon

ABSTRACT

This thesis compares the React and Svelte frameworks for front-end development. React

uses a virtual DOM for efficient rendering, while Svelte compiles components to optimized

JavaScript code. The research examines their architecture, syntax, and performance

optimizations. Svelte is considered easier to understand, requires less code, and has better

memory usage and load times. React excels in rendering speed. Surveys and communities

indicate Svelte's growing popularity. Based on the findings, Svelte can be a framework with

a promising future in front-end development. The research aids developers in selecting the

framework that best suits their project requirements and preferences.

Keywords: Svelte, React, frameworks, front-end, performance

ACKNOWLEDGMENTS

I would like to take this opportunity to express my deepest appreciation and gratitude to my

esteemed supervisor, Dr. Radek Vala, for his unwavering support and invaluable guidance

throughout every step of my thesis writing journey. His profound expertise, insightful

feedback, and continuous encouragement have played an integral role in shaping the quality

and direction of my research. I am truly thankful for the countless hours he dedicated to

mentoring me and for his unwavering belief in my capabilities.

Furthermore, I would like to extend my sincere thanks to Dr. Tomas Vogeltanz for his

ongoing support and guidance. His valuable input and constructive suggestions have been

instrumental in refining my research approach and broadening my understanding of the

subject matter. I am truly grateful for his mentorship and the depth of knowledge he shared

with me.

I am also deeply indebted to my family for their unwavering love, encouragement, and belief

in my abilities. Their constant support has been a pillar of strength throughout my academic

journey. Their sacrifices and understanding have provided me with the freedom to pursue

my educational goals wholeheartedly.

Moreover, I would like to acknowledge and express my gratitude to the university for

providing me with the opportunity to pursue my studies. The exceptional learning

environment, resources, and academic community have nurtured my growth and provided

me with an enriching platform to expand my knowledge and skills.

In summary, I extend my heartfelt appreciation to Mr. Radek Vala, Mr. Tomas Vogeltanz,

my family, and the university for their unwavering support, invaluable contributions, and

belief in my academic and personal growth. Their collective guidance and encouragement

have shaped me into the researcher and individual I am today, and I am truly grateful for

their presence in my academic journey.

INTRODUCTION ... 10

THEORY .. 11

1 JAVASCRIPT WEB FRAMEWORKS ... 12

1.1 REACT .. 12

1.2 SVELTE .. 13

1.3 DOM .. 13

1.4 JAVASCRIPT FRAMEWORKS .. 15

1.5 TAILWIND CSS ... 16

1.6 PERFORMANCE API ... 17

2 MAIN CONCEPTS OF FRAMEWORKS .. 18

2.1 REACT .. 18

2.1.1 KEY FEATURES... 18

2.1.2 COMPONENTS ... 18

2.1.3 RENDERING .. 19

2.1.4 COMMUNITY AND SUPPORTING LIBRARIES .. 19

2.1.5 JSX .. 19

2.1.6 LIFECYCLE ... 20

2.2 SVELTE .. 20

2.2.1 UNIQUE PERFORMANCE OPTIMIZATION APPROACH ... 20

2.2.2 UNUSED CSS STYLE CHECKING ... 21

2.2.3 EASE OF USE .. 21

2.2.4 EFFICIENCY FOR LARGE-SCALE APPLICATIONS .. 21

2.2.5 LIFECYCLE ... 21

ANALYSIS ... 23

3 DESIGN OF APPLICATIONS .. 24

3.1 REQUIREMENTS ... 24

3.1.1 FUNCTIONAL REQUIREMENTS .. 24

3.1.2 NON-FUNCTIONAL REQUIREMENTS .. 25

3.2 USE CASE DIAGRAM .. 26

3.3 WIREFRAMES .. 27

3.3.1 HOME WIREFRAME .. 28

3.3.2 BOOKLIST WIREFRAME .. 28

3.3.3 BOOKDEATIL WIREFRAME ... 29

3.3.4 FAVORITE WIREFRAME .. 30

4 APPLICATION IMPLEMENTIONS .. 31

4.1 REACT INSTALLATION .. 31

4.2 SVELTE INSTALLATION... 32

4.3 FOLDER STRUCTURE .. 32

4.3.1 REACT FOLDERS ... 33

4.3.2 SVELTE FOLDERS .. 33

4.4 CODE STRUCTURE ... 34

4.4.1 REACT CODE STRUCTURE ... 35

4.4.2 SVELTE CODE STRUCTURE .. 35

4.5 ROUTING ... 36

4.5.1 ROUTING IN REACT .. 36

4.5.2 ROUTING IN SVELTE ... 37

4.6 FUNCTIONALITIES .. 37

4.6.1 API FETCHING .. 37

4.6.2 FAVORITE ... 38

4.6.3 FAVORITE CHECKER ... 40

4.6.4 SEARCH .. 41

4.6.5 NAVIGATION TO BOOK DETAILS ... 41

4.6.6 BOOKDETAILS FETCH .. 42

4.6.7 ADDING COMMENTS AND RATING.. 43

4.6.8 ADDITIONAL INFORMATION ... 44

4.7 HTML TEMPLATES CREATION .. 45

4.7.1 CONDITIONAL STATEMENTS IN HTML .. 45

4.8 LOOPING AND ARRAY ITERATION IN HTML ... 46

4.9 USER INTERFACE ... 47

4.9.1 HOME PAGE USER INTERFACE .. 47

4.9.2 BOOKLIST PAGE USER INTERFACE ... 49

4.9.3 FAVORITE USER INTERFACE ... 51

4.9.4 BOOKDETAILS USER INTERFACE .. 53

5 PERFORMACE ... 55

5.1 NAVIGATION TIMING ... 55

5.1.1 NAVIGATION TIMING OF REACT ... 56

5.1.2 NAVIGATION TIMING OF SVELTE .. 57

5.1.3 OVERALL OF NAVIGATION TIMING .. 58

5.2 USER TIMING ... 59

5.2.1 REACT USER TIMING .. 60

5.2.2 SVELTE USER TIMING.. 61

5.2.3 OVERALL OF USER TIMING .. 62

5.3 PERFORMACE MEMORY ... 62

5.3.1 PERFORMANCE MEMORY OF REACT ... 63

5.3.2 PERFORMANCE MEMORY OF SVELTE ... 64

5.3.3 OVERALL OF MEMORY PERFORMACE .. 65

5.4 SIZE OF THE APPLICATION .. 66

5.5 FRAMEWORK USAGES ... 66

5.5.1 RETENTION ... 67

5.5.2 INTERESTED ... 68

5.5.3 AWARENESS ... 68

5.6 SURVEY .. 69

5.7 GIT COMMUNITY ... 70

5.7.1 REACT GITHUB COMMUNITY ... 70

5.7.2 SVELTE GITHUB COMMUNITY ... 71

5.8 PERSONAL EXPERIENCE AND BACKGROUND ... 71

5.9 RESEARCH COMPARISON ... 72

CONCLUSION .. 75

BIBLIOGRAPHY .. 76

LIST OF ABBREVIATIONS ... 81

APPENDICES .. 85

APPENDIX P I: APPENDIX TITLE ... 86

TBU in Zlín, Faculty of Applied Informatics 10

INTRODUCTION

Front-end development has become a fundamental aspect of creating interactive user

interfaces on the web. As the demand for dynamic web applications continues to rise,

developers are constantly seeking efficient frameworks, technologies, and languages to

streamline their development process. Among the plethora of options available, React and

Svelte have emerged as popular frameworks worth considering. React, developed by

Facebook, has gained widespread adoption as a JavaScript library for building user

interfaces. With its virtual DOM approach, React efficiently manages component state and

handles rendering updates. Its mature ecosystem provides a wide array of libraries, tools,

and community support, making it a robust choice for developers. In contrast, Svelte is a

relatively new framework that takes a unique approach to web application development. By

compiling components to highly optimized JavaScript code during the build process, Svelte

eliminates the need for a virtual DOM at runtime. This compilation step results in enhanced

performance and reduced bundle sizes compared to frameworks like React. Moreover,

Svelte's simpler and concise syntax facilitates easier code writing and learning.

The aim of this thesis is to provide valuable insights for individuals interested in

understanding these prominent frameworks, React and Svelte. Through an in-depth analysis

and comparison, we will explore their key features, advantages, and performance

optimizations. By delving into their architectural differences, syntax characteristics, and

development efficiencies, readers will gain a comprehensive understanding of these

frameworks. This research seeks to empower developers to make informed decisions when

selecting a framework for their projects. By examining the strengths, weaknesses, and unique

features of React and Svelte, readers will have the necessary information to align their

framework choice with project requirements, development preferences, and performance

goals. With a thorough review of the frameworks' documentation, practical use in real-world

scenarios, and the underlying theory behind them, this thesis aims to present an objective

analysis and comparison of React and Svelte. By considering factors such as performance,

development efficiency, community support, and learning curve, developers can make well-

informed decisions that lead to successful and efficient front-end development.

In the following chapters, we will delve into the detailed analysis of React and Svelte,

exploring their capabilities, use cases, and practical implications. Through this exploration,

we aim to shed light on the strengths and advantages of these frameworks, helping

developers navigate the ever-evolving front-end development landscape.

TBU in Zlín, Faculty of Applied Informatics 11

 THEORY

TBU in Zlín, Faculty of Applied Informatics 12

1 JAVASCRIPT WEB FRAMEWORKS

JavaScript is a widely used programming language in web development, known for its

versatility and compatibility. Svelte, a relatively new JavaScript framework, has gained

popularity among web developers due to its ability to reduce code verbosity. [6] On the other

hand, React is a widely adopted JavaScript library that focuses on building user interfaces.

The Document Object Model (DOM) serves as a programming interface for web browsers,

allowing developers to access and manipulate web page elements. [10] React utilizes the

DOM to efficiently manage and update components,[1] while Svelte takes a different

approach to optimize performance. The objective of this research is to provide valuable

insights and recommendations on effectively utilizing the Svelte and React frameworks in

various development scenarios. The research will highlight the unique features, strengths,

and weaknesses of each framework, aiming to assist developers in making informed

decisions when choosing between the two. By exploring their capabilities, practical use

cases, and performance optimizations, developers will gain a comprehensive understanding

of Svelte and React. This knowledge will enable them to select the most suitable framework

based on project requirements, development preferences, and performance objectives.In the

following chapters, this research will delve into a detailed analysis of Svelte and React,

shedding light on their distinct characteristics. By presenting objective comparisons and

recommendations, developers will be equipped with the necessary information to leverage

these frameworks effectively in their web development endeavors.

1.1 React

React is a widely popular JavaScript library utilized for building user interface pages with a

range of features that make it a preferred choice among developers. One of its most

noteworthy features is the React component, which allows for the use of the same user

interface for multiple pages. [1] Additionally, the virtual DOM of React is also highly

valued, as it streamlines the development process. [2] It is noteworthy that React was initially

created by a Facebook engineer, Jordan Walke in 2011, with support from Instagram in 2012.

While the library was first released to the public in 2013, it has continued to evolve over the

years, [3] with the latest version released in 2022. [4] React is utilized by many renowned

companies, including Facebook, Instagram, WhatsApp, Atlassian, Uber Eats, Airbnb,

Dropbox, Netflix, Codecademy, and Skyscanner, to name a few. [5] In summary, Reacts

TBU in Zlín, Faculty of Applied Informatics 13

popularity and utility are evident in its features and adoption by many high-profile

companies, making it a widely used and respected library for web development.

1.2 Svelte

Svelte is a modern JavaScript framework that has garnered considerable attention from

developers due to its intuitive development approach and efficient code-writing capabilities.

Unlike other popular JavaScript frameworks like React and Vue, Svelte does not use a virtual

DOM, instead relying on direct reflection to the DOM, leading to surgical updates at runtime.

[6]Created in 2016 by Rich Harris, a software developer on the New York Times graphics

team, Svelte is written in TypeScript and has continued to evolve, with the most recent

version released in 2023. The framework has gained popularity among React and Vue

developers due to its ease of use and reduced development time, leading to lightweight

programs that do not use a virtual DOM. [7] Svelte has gained widespread adoption by

prominent companies, with its usage doubling in 2021, as reported on its website. Notable

companies such as Apple, Spotify, Square, Rakuten, Bloomberg, Reuters, Ikea, and Brave

have all incorporated Svelte into their development process. [6] Apple's use of Svelte for the

development of the Apple Music Beta website is an excellent example of the framework's

capabilities. [8] Overall, Svelte's popularity is increasing, and it is quickly becoming a

preferred choice for developers who desire an efficient and lightweight framework for

building web applications. With its intuitive approach, rapid development time, and surgical

updates, Svelte is poised to continue its upward trajectory as a viable and powerful

framework in the world of web development.

1.3 DOM

The World Wide Web Consortium (W3C) developed the Document Object Model (DOM)

in 1998 to provide a standardized programming interface that web browsers can easily

understand and utilize. [10] The DOM's primary purpose is to create a representation of the

web page, allowing all available data to be accessed quickly and conveniently through three

programs. The beauty of the DOM's design is its language-agnostic nature, allowing it to be

utilized with any programming language. [9] It is not designed for any language or

framework, and developers can use it either manually or through a library or framework that

includes it in a JavaScript file. It is advisable to use a separate JavaScript file for manual

code addition. The process involves writing JavaScript code that targets different parts of

TBU in Zlín, Faculty of Applied Informatics 14

the document, such as elements, attributes, and text nodes, to access and manipulate the

DOM.

This makes it possible to create dynamic web pages with user-page interactions, such as

updating page content based on user input or handling asynchronous server requests.

Accessing the information through DOM functions [10] further enhances its functionality.

The example below demonstrates how the Document Object Model (DOM) interacts with

HTML by dividing it into sections and adding subparts, which allows for quicker and easier

accessibility. This approach provides a more organized and structured way of working with

HTML code. The example below demonstrates how the Document Object Model (DOM)

interacts with HTML by dividing it into sections and adding subparts, which allows for

quicker and easier accessibility. This approach provides a more organized and structured

way of working with HTML code.

Figure 1: Represent of Document Object Model

TBU in Zlín, Faculty of Applied Informatics 15

To summarize, the Document Object Model (DOM) is a fundamental concept for web

developers, as it offers a standardized interface for manipulating web documents that have

been widely adopted and implemented in web browsers. The DOM's implementation allows

for faster and easier access to web page data and empowers developers to create dynamic

and interactive web pages. Understanding the DOM and its functions is therefore essential

for web development, as it enables developers to leverage the full potential of this powerful

tool.

1.4 JavaScript Frameworks

JavaScript has experienced a surge in popularity among developers, leading to the creation

and development of numerous frameworks. [11] As there are multiple frameworks available,

developers may find it challenging to select the best one, given that they all aim to offer

similar features and approaches, yet each has its unique characteristics. Brendan Eich

invented JavaScript in 1995, and it gained popularity in the early 2000s as a programming

language for web development. [12] JavaScript enabled developers to perform tasks that

were not possible with HTML and CSS alone. With time, many new features were added to

JavaScript, simplifying its usage for developers. JavaScript frameworks are collections of

pre-written JavaScript libraries that provide a structure for developing programs. Adding

these libraries can be difficult and time-consuming, and they may not meet the application's

standards being developed. The use of a framework streamlines the development process

and maintains consistency in the application’s structure. [13] In 2023, the world of web and

mobile application development is dominated by multiple JavaScript frameworks, each

offering unique features and advantages to developers. Frameworks have become an

essential tool for developers, facilitating the creation of websites, web applications, mobile

applications, and games with ease. [14]

 React, Angular, Vue, Ember, and Backbone are some of the most famous and widely used

JavaScript frameworks in 2023. React, developed by Facebook, is a popular choice for

building complex and dynamic user interfaces. Angular, developed by Google, is a powerful

and feature-rich framework for building web applications.

TBU in Zlín, Faculty of Applied Informatics 16

 Vue, developed by Evan You, is a lightweight and flexible framework that is easy to learn

and use. Ember, developed by a team of developers, is a full-featured framework that

emphasizes convention over configuration. Finally, Backbone, developed by Jeremy

Ashkenas, is a lightweight and minimalist framework that provides a solid foundation for

building web applications. Given that the popularity of JavaScript frameworks continues to

grow, new frameworks are likely to emerge, each with its unique features and advantages.

As such, developers must remain up to date with the latest trends and technologies to remain

competitive in the fast-paced world of web and mobile application development. [14]

1.5 Tailwind CSS

Since the Tailwind is used for the design aspect, concise description of the framework is

procided. Tailwind is a CSS library that is open-source and can be used to design

applications. Its purpose is to provide a clearer and more efficient way of writing code by

using only the necessary styles. This results in improved performance, especially for

responsive web applications. Essentially, Tailwind enables developers to streamline their

CSS code and create more efficient and effective web applications. [24] The difference

between using Tailwind CSS and writing plain CSS is significant as seen in the chart. With

plain CSS, there are many individual classes that must be parsed by the application, whereas

with Tailwind CSS, all classes come from a single source and only the necessary classes are

used. This greatly reduces the amount of parsing the application must do and results in faster

load times and improved performance. In other words, using Tailwind CSS streamlines the

process of styling and improves the efficiency of the application. [25]

 Figure 2: Difference between TailwindCSS and CSS [25]

TBU in Zlín, Faculty of Applied Informatics 17

1.6 Performance API

To accurately measure the performance of an application and account for various factors that

can affect it,ther Performance API can be used . This API allows us to measure the

performance of an application and view the measurements and marks within the developer

tools. There are four types of measurement available with this API, which can help to

accurately measure the performance of an application regardless of device model or

connection quality. By utilizing the Performance API, we can better optimize our application

and ensure a smoother user experience. [33]

Figure 3: Performace API [33]

TBU in Zlín, Faculty of Applied Informatics 18

2 MAIN CONCEPTS OF FRAMEWORKS

In order to gain a comprehensive understanding of two frameworks or JavaScript library

along with their underlying principles and functional capabilities, it is imperative to delve

into the key features of each framework and its architecture. By exploring the fundamental

concepts and components that define each framework, one can ascertain the various

resources and tools that are available for use. Through this approach, a deeper understanding

of the framework's structure and functionality can be achieved.

2.1 React

React is a widely used JavaScript library that has gained popularity for its ability to build

user interfaces based on components. It follows a one-way data flow model where data is

passed down from parent components to child components through props. This approach

helps in organizing and managing code effectively.[1]

2.1.1 Key Features

One of the key features of React is its virtual DOM. It provides a lightweight representation

of the real DOM, enabling efficient updates by rendering only the necessary components

instead of the entire page. This feature is particularly useful for building large and complex

applications that require frequent updates and changes.[18]

2.1.2 Components

React components can be categorized into two types: Functional Components and Class

Components. Functional Components are simpler and easier to understand as they use ES6

syntax and pure JavaScript to return React elements. On the other hand, Class Components

are more complex and offer additional functionality such as state management and lifecycle

methods. Both types of components are used to build independent UI components that are

not directly connected to each other. This modular approach facilitates easier testing and

maintenance of the application.[17]

TBU in Zlín, Faculty of Applied Informatics 19

2.1.3 Rendering

React provides the ability to conditionally render components, allowing them to be displayed

only when needed. This feature is crucial for reducing the size of the application and

improving its overall performance. Each React component has a rendering function that

accepts the React element and specifies where it should be added or mounted in the

DOM.[16][18]

2.1.4 Community and Supporting Libraries

React has a thriving community and is supported by numerous libraries and frameworks. For

example, React Loadable is a library that enhances application performance by loading

resources faster. React Responsive provides a way to create breakpoints in applications using

the useMediaQuery hook and Media Query, making it easier to build responsive applications

that adapt to different screen sizes and devices. React Beautiful DnD is a library that offers

drag-and-drop functionality, enabling users to interact with the application in a more

intuitive and engaging manner.[15]

2.1.5 JSX

React utilizes JSX syntax, which stands for JavaScript Extension. JSX allows developers to

write UI code and JavaScript code together in a single file. This feature is highly beneficial

for users as it improves the readability and maintainability of the code. Although using JSX

is not mandatory, it is widely preferred by most programmers.[36]

One significant advantage of JSX is its performance. When compared to normal JavaScript,

JSX is faster. It achieves this by leveraging the efficient rendering capabilities of the virtual

DOM. By representing the UI elements in a declarative manner, JSX enables React to

optimize the rendering process, resulting in improved performance and responsiveness of

the application. [37]

TBU in Zlín, Faculty of Applied Informatics 20

2.1.6 Lifecycle

React components go through three main lifecycle phases: mounting, updating, and

unmounting.During the mounting phase, a component is created and inserted into the DOM.

This involves initializing state, setting up event listeners, and rendering the component's UI.

In the updating phase, changes to the component's state or props trigger a re-rendering

process. React efficiently updates only the necessary parts of the DOM. The unmounting

phase occurs when a component is removed from the project or the DOM. It allows for any

necessary cleanup tasks before the component is completely removed.

In conclusion, React is a powerful and flexible library for building high-quality user

interfaces. Its component-based architecture, virtual DOM, and conditional rendering make

it easy to develop complex applications that are efficient and maintainable. With its large

and active community, as well as a wide range of supporting libraries and frameworks, React

is an excellent choice for building modern web applications.

2.2 Svelte

Svelte has emerged as a cutting-edge front-end framework that has disrupted the

development landscape. It is known for delivering exceptional performance while

minimizing code usage, making it a popular choice among developers. The framework draws

insights from leading frameworks like React, Angular, and Vue, and innovates their ideas to

create a more efficient and streamlined development experience.

2.2.1 Unique Performance Optimization Approach

A key distinguishing feature of Svelte is its unique approach to optimizing performance and

usage. Unlike React, Svelte doesn't rely on a virtual DOM. Instead, it compiles code to

JavaScript at build time. This approach, inspired by Angular, allows Svelte to perform

updates and interactions directly with the DOM. As a result, Svelte offers faster and more

efficient operations, especially for large applications.

TBU in Zlín, Faculty of Applied Informatics 21

2.2.2 Unused CSS Style Checking

Svelte offers a standout feature of building and checking unused CSS styles. This capability

allows developers to eliminate unnecessary CSS styles that can slow down performance.

Svelte ensures that only necessary CSS styles are included, leading to faster loading times

and a more streamlined application.

2.2.3 Ease of Use

Svelte's appeal also lies in its ease of use. Developers can write programs in Svelte with

basic knowledge of CSS, HTML, and JavaScript. The framework uses classic languages and

adds JavaScript markup, enabling developers to add CSS to each component separately

without interference. This approach simplifies the debugging process, reducing the time and

resources required to resolve issues.

2.2.4 Efficiency for Large-scale Applications

For developers working on large-scale applications, Svelte proves to be an excellent choice.

Compared to React projects, Svelte requires 40% less code, resulting in significantly faster

and more efficient development. Minimizing unnecessary code simplifies the debugging

process and allows developers to focus on building high-quality applications without

unnecessary complexity.

2.2.5 Lifecycle

In Svelte, the lifecycle of a component can be divided into three main phases:

creation/initialization, update, and destruction/cleanup.

During the creation/initialization phase, the component is set up, and initial values are

assigned to data properties.

In the update phase, any changes to the component's state or props are detected, and the

component's template is re-evaluated and updated accordingly.

Finally, in the destruction/cleanup phase, the component is removed or destroyed, and any

necessary cleanup tasks can be performed, such as unsubscribing from event listeners or

releasing resources.

TBU in Zlín, Faculty of Applied Informatics 22

In conclusion, Svelte is a powerful and innovative front-end framework that is

revolutionizing the development landscape. Its unique approach to performance

optimization and usage, along with its ease of use, makes it an excellent choice for

developers of all skill levels. Svelte is rapidly becoming the future of front-end development,

and its popularity is expected to continue to grow in the years to come.

TBU in Zlín, Faculty of Applied Informatics 23

 ANALYSIS

TBU in Zlín, Faculty of Applied Informatics 24

3 DESIGN OF APPLICATIONS

This chapter focuses on the design of an application for the purpose of comparing

frameworks. The application will be designed in a straightforward manner, utilizing both

frameworks to showcase their differences. The main goal of this chapter is to provide a

practical demonstration of the distinctions between the frameworks.

3.1 Requirements

This section aims to examine the criteria that applications should fulfill and the expected

outcomes based on their functional and non-functional requirements. These criteria will be

categorized into two distinct areas: functional needs and non-functional needs.

3.1.1 Functional Requirements

Functional requirements play a vital role in application development by defining the specific

functionalities and capabilities that an application should possess. These requirements serve

as a blueprint, outlining the intended behaviors and features that align with the objectives

and user needs. By providing clear guidance on the desired functionalities, functional

requirements assist developers in effectively shaping the application's development process.

Moreover, functional requirements serve as a means of communication between

stakeholders, developers, and project participants. They facilitate a shared understanding of

the application's scope and purpose, ensuring that all parties involved have a common vision

of the expected functionalities. This alignment helps streamline the development process and

mitigate misunderstandings, ultimately leading to a more successful outcome. By focusing

on user needs and aligning functionalities accordingly, functional requirements contribute to

user satisfaction. They help developers prioritize and implement the features that are most

important to the target audience, enhancing the overall user experience. By meeting these

expectations, applications can increase user engagement and adoption, leading to higher

levels of user satisfaction and long-term success.

The inclusion of a rating and comment feature is intended for testing user inputs and is not

connected to any server-side functionality. It serves as a simulated representation of such a

feature, allowing users to provide ratings and comments as part of their interaction with the

application. It is important to note that the rating and comment functionality is solely for

demonstration purposes and does not involve any real-time data processing or storage on a

server.

TBU in Zlín, Faculty of Applied Informatics 25

Functional Requirements

Description

FR-01-BookList Users will be able to view a comprehensive list of all

books that are currently available.

FR-02-Search The user will have the capability to look up a

specific book by its name.

FR-03-AddFavorite Users have the option to add their preferred books to

a "Favorites" category, which will be saved locally.

FR-04-RemoveFavorite Users can delete their preferred books from the

"Favorites" category, which will be removed locally.

FR-05-BookDetails Providing information for each book.

FR-06-AddingComment The user will have the ability to provide comments

or reviews on the website.

FR-07-AddRating The user will be able to assign a rating to the website

while leaving their comment.

Table 1: Functional Requirements

3.1.2 Non-Functional Requirements

In order to enhance the performance of the application's functional requirements, the

implementation of non-functional requirements will be undertaken. These non-functional

requirements focus on aspects beyond the specific functionalities and capabilities of the

application, aiming to optimize its overall user experience. By addressing factors such as

reliability, scalability, usability, and performance, the application can deliver an enhanced

level of performance and meet the expectations and needs of its users.

TBU in Zlín, Faculty of Applied Informatics 26

None-Functional Requirements

 Description

NF-01-Styling Tailwind CSS will be utilized in the design of the

application to enhance the user interface.

NF-02-Resposive The program will be functional on all browsers and

able to adjust to various screen sizes.

NF-03-User-Friendly The application will have a user interface that is

easy to use and navigate for all users.

NF-04-Web-Browser The implementation of the application should be

focused on web browser applications.

NF-05-Storage The capacity to store data locally within a device.

Table 2: None Functional Requirements

3.2 Use Case Diagram

The provided diagram depicts the use case scenario of the application, involving an

individual referred to as the User. The User possesses the capability to engage with the

application and initiate various actions. These actions include navigating through book

details, managing a personalized list of favorite books by adding or removing them, and

providing feedback in the form of comments and ratings for the website .

TBU in Zlín, Faculty of Applied Informatics 27

3.3 Wireframes

In this section, a wireframe will be utilized to present the implementation of the application

design. The design encompasses four pages, each accompanied by a menu, in order to fulfill

various requirements. The first page, known as the home page, serves as the main interface

of the application Furthermore, individual wireframes will be provided for each of the

available pages, offering a visual representation of the design and layout of these respective

components.

Figure 4: Use Case Diagram

TBU in Zlín, Faculty of Applied Informatics 28

3.3.1 Home Wireframe

This wireframe illustrates the homepage, which functions as the central page of the

application. The homepage comprises various elements, including a section for comments

and ratings. Additionally, it features a navigation link to the booklist page.

3.3.2 BookList Wireframe

This wireframe presents the booklist page, which serves as a comprehensive listing of all

available books within the application. Users have the ability to browse through the entire

collection of books. Furthermore, the wireframe includes a search functionality that allows

users to conveniently search for specific books based on their preferences or criteria.

Figure 5: Home Wireframe

TBU in Zlín, Faculty of Applied Informatics 29

3.3.3 BookDeatil Wireframe

This wireframe represents a book details page utilized for the purpose of presenting a

comprehensive description pertaining to the selected book.

Figure 7: BookDetail Wireframe

Figure 6: BookList Wireframe

TBU in Zlín, Faculty of Applied Informatics 30

3.3.4 Favorite Wireframe

This wireframe illustrates the favorites page, which exhibits a curated compilation of books

that users have chosen to include in their personal favorites list.

 Figure 8: Favorite Wireframe

TBU in Zlín, Faculty of Applied Informatics 31

4 APPLICATION IMPLEMENTIONS

Two software applications have been developed using different frameworks to highlight

their unique features and facilitate user understanding. The aim of this exercise is to compare

and contrast the characteristics and functionalities of the two frameworks utilized in the

development of these software applications.

4.1 React Installation

This section provides detailed instructions on how to set up and configure a React framework

to effectively integrate with the application.

Installation of Framework

Steps React + TailwindCSS

1. Installation npx create-react-app [appName]

2. Redirecting to the project cd my-project

3.Install Tailwind CSS npm install -D tailwindcss

4. Generate config.js for

tailwind

npx tailwindcss init

5. Costomize Tawind.config.js content: [

"./src/**/*.{js,jsx,ts,tsx}",

],

6. Create a CSS file

And add to the file

@tailwind base;

@tailwind components;

@tailwind utilities;

7. Run the Application npm run start

 Table 3: Installation of React

TBU in Zlín, Faculty of Applied Informatics 32

4.2 Svelte Installation

This section offers step-by-step instructions on configuring a Svelte framework to

seamlessly integrate with your application and ensure smooth functionality.

Installation of Framework

Steps Svelte + TailwindCSS

1. Installation npm create svelte@latest [appName]

2. Redirecting to the project cd my-app

3.Install Tailwind CSS npm install -D tailwindcss postcss autoprefixer

4. Generate config.js for

tailwind

npx tailwindcss init -p

5. Costomize Talwind.config.js content: ['./src/**/*.{html,js,svelte,ts}'],

6. Create CSS File And add it

to the file

@tailwind base;

@tailwind components;

@tailwind utilities;

7. Run the Application npm run dev

Table 4: Installation of Svelte

4.3 Folder Structure

Comprehending the file structure is vital for effective framework utilization. Each file within

the structure holds a distinct purpose, making it essential to provide a brief overview and

discuss their significance. Understanding this is of paramount importance.

TBU in Zlín, Faculty of Applied Informatics 33

4.3.1 React Folders

In a React application, the file structure typically consists of two primary sections: the "src"

folder and the "public" folder. The "src" folder encompasses the core components, routing

configuration, and CSS stylesheets of the application. It serves as the main area for building

the application's functionality.

On the other hand, the "public" folder is primarily utilized for displaying icons, images, or

other static assets within the application. It acts as a repository for files that are directly

served to the user without undergoing any specific processing.

4.3.2 Svelte folders

Both Svelte and React exhibit similarities in their folder structures. In Svelte, similar to

React, it is common to find an "src" folder that houses components, routing configuration,

and CSS styling. This folder serves as the primary location for constructing the application's

functionality in Svelte.

To handle the display of images and icons, Svelte developers can employ either a "public"

folder, akin to React, or a "static" folder. Both options allow for the inclusion of static files

such as images and icons in the application.

Figure 9: React Folders

TBU in Zlín, Faculty of Applied Informatics 34

4.4 Code structure

To enhance comprehension of the implementation process, it is essential to elucidate the

code structure employed by each framework, as they possess distinct styles..

Figure 10:Svelte Folders

TBU in Zlín, Faculty of Applied Informatics 35

4.4.1 React code structure

React employs a code structure wherein every component is implemented using the JSX

extension. JSX enables the combination of HTML-like syntax within JavaScript for

enhanced component definition and rendering.

4.4.2 Svelte code structure

The code structure utilized for writing Svelte components aligns with the exemplified

format, while Svelte components are conventionally stored with the file extension ".svelte".

Figure 12: Base code of Svelte

Figure 11: Base code of React

TBU in Zlín, Faculty of Applied Informatics 36

4.5 Routing

Both React and Svelte support routing, and there are similar ways to implement it in both

frameworks. In React, you can use "react-router-dom" and import the "Route" and "Routes"

components. In Svelte, you can use "svelte-routing" and import the "Router" and "Route"

components. With these components, you can navigate between pages in your application.

The code blocks for implementing routing in both frameworks are similar, with the only

difference being the syntax used to write the code.

4.5.1 Routing in React

In React, you can utilize routing to enable navigation between pages. Essentially, you define

a unique route for each page, and you can access a specific page by using its corresponding

route name.

Figure 13: Routing in React

TBU in Zlín, Faculty of Applied Informatics 37

4.5.2 Routing in Svelte

In Svelte, a similar approach is followed for routing by importing the necessary routing

components or libraries. This allows you to define routes for your pages and navigate

between them.

4.6 Functionalities

There are multiple functions created to perform different tasks in my applications, and I will

be discussing the variations between them.

4.6.1 API fetching

When fetching data from an API in both React and Svelte, I used Axios and followed the

same functionality and methods. However, the main difference between the two frameworks

was in how I kept track of changes in the API data. In React, I used hooks like

`useState` and `useEffect` to manage state and lifecycle events and keep track of the data

changes. In contrast, in Svelte I simply declared the variable and relied on Svelte's reactivity

system to automatically update the data. This difference in approach helps to highlight the

different philosophies and design patterns of the two frameworks.

 Figure 14: Routing in Svelte

TBU in Zlín, Faculty of Applied Informatics 38

4.6.2 Favorite

In the application analysis, it was noted that users can add and remove books to and from

their favorites list. To implement this functionality, different approaches were taken in React

and Svelte. In React, the "context" technique was utilized to pass data and prevent code

duplication. Meanwhile, in Svelte, parameters were used to share information between

components. Additionally, in both frameworks, the favorite books array was stored in local

storage to ensure that the list was saved and persisted even after the user closed or refreshed

the page.

Figure 16: Fetching in Svelte

Figure 15: Fetching in React

TBU in Zlín, Faculty of Applied Informatics 39

4.6.2.1 Adding and Removing Favorites in React

The "addToFavorites" function allows the user to add a book to their favorites array. It

creates a new array called "newFavorites" by combining the existing favorites with the new

book, and then stores this updated array in the local storage.

The "removeFromFavorites" function is implemented by checking the book's ID in the

favorites array. If a book with a matching ID is found, it is removed from the favorites array.

Then, the new favorites array is set, and the updated array is saved in the local storage.

Figure 17: Adding to Favorites React

Figure 18: Removing from Favorites React

TBU in Zlín, Faculty of Applied Informatics 40

4.6.2.2 Adding and Removing Favorites in Svelte

The process of adding and removing books from the favorites is implemented by retrieving

the book's ID and comparing it within the favorites array. If the ID exists in the array, the

book is removed using the splice method. This ensures that the remove function works

correctly. On the other hand, if the ID does not exist, the book is pushed to the favorites

array. Finally, the updated favorites array is saved locally in the browser's local storage.

4.6.3 Favorite checker

To prevent duplicate entries on the favorites page, I implemented a function that checks if a

book already exists in the favorites list. If the book exists in the list, the function allows the

user to remove it. If not, the user can add it to the list. This is achieved by checking the book

ID to ensure that each book is unique in the list.

Figure 20: Checking Favorite list in React

Figure 19: Favorite Adding and Removing in Svelte

TBU in Zlín, Faculty of Applied Informatics 41

The development of the same functionality in Svelte was done as follows:

4.6.4 Search

Our applications have a feature that allows users to search for books by their titles. This

feature was implemented in both frameworks in a similar manner.

4.6.5 Navigation to book Details

To enable users to view book details, another function had to be implemented. This was done

by creating a new page and passing the book's information based on its ID when it was

clicked. In both React and Svelte, navigation was used to accomplish this.

 Figure 24: Navigation to BookDetails in both Frameworks

Figure 21: Checking Favorite list in Svelte

Figure 22: Search in React

Figure 23: Search in Svelte

TBU in Zlín, Faculty of Applied Informatics 42

When the book is clicked, the button's event handler triggers a navigation action by passing

the book's ID. This navigation action directs the user to a specific page or view associated

with the clicked book's ID.

4.6.6 BookDetails Fetch

In the book details component, the book's ID is shared to fetch data from the API. This was

achieved by passing parameters. updating data in React requires useEffect, but in Svelte

there is only assignment to reactive propert

 Figure 25: Button Event handeral for Navigation

Figure 26: Fetching BookDetail in React

TBU in Zlín, Faculty of Applied Informatics 43

4.6.7 Adding Comments and Rating

One of the functionalities of our application is the ability for users to leave comments. This

feature allows users to share their opinions, provide feedback, and engage in discussions

within the application. By leaving comments, users can interact with content and

communicate their thoughts effectively.

4.6.7.1 Commenting and Rating in React

In the React implementation for adding and rating comments, the code checks if the

comment is not empty before submitting it. If the comment is not empty, it will be submitted.

Otherwise, if the comment is empty, it will not be submitted. After submitting, the value of

the comment is set to null using the ̀ useState` hook, preparing it for the next comment entry.

Figure 27: Fetching BookDetails in Svelte

Figure 28: SubmitingComment and Rating in React

TBU in Zlín, Faculty of Applied Informatics 44

4.6.7.2 Coomenting and Rating in Svelte

The same concept was applied when implementing the functionality in Svelte, following a

similar approach. However, instead of using the `useState` hook in React, an empty array

was used for storing comments, and separate variables were used for rating and comment in

Svelte. The overall logic and behavior remain consistent, with the difference lying in the

specific syntax and conventions of each framework.

4.6.8 Additional Information

Another functionality implemented after displaying the description of each book is the

ability for users to expand or show less of the description. This allows for a more user-

friendly experience, especially for longer descriptions.

4.6.8.1 Additional Information in React

The `toggleDescription` function updates the state of `showFullDescription` by toggling its

value. It uses the `setShowFullDescription` function provided by React's `useState` hook.

When called, it inverses the current value of `showFullDescription`, effectively showing or

hiding the full description depending on its previous state.

Figure 29: Submitting Comment and Rating in Svelte

Figure 30: Additional Information in React

TBU in Zlín, Faculty of Applied Informatics 45

4.6.8.2 Additional Information in Svelte

The code allows users to toggle the display of the book description. When the

`toggleDescription` function is called, it flips the value of the `showFullDescription`

variable. After the update, if `showFullDescription` is true, the page smoothly scrolls to the

'full-description' element.

4.7 HTML Templates Creation

Given the extensive amount of HTML and CSS code, will focus on the essential elements

and their implementation in both frameworks to enhance comprehension. By highlighting

these key aspects, readers will gain a better understanding of how HTML and CSS are

utilized in each framework.

4.7.1 Conditional Statements in HTML

To implement the functionality where the color and functionality of the button change based

on whether a book is already added to the favorite list, conditional statements such as "if"

and "else" can be utilized. Using these statements, you can determine if a book exists in the

favorite list and adjust the appearance and behavior of the button accordingly. If the book is

already added to the list, the button will be displayed as a "Remove" button. Conversely, if

the book is not in the favorite list, the button will be displayed as an "Add" button. By

employing "if" and "else" statements, you can dynamically modify the button based on the

book's presence or absence in the favorite list.

Figure 31: Additional Information in Svelte

TBU in Zlín, Faculty of Applied Informatics 46

4.8 Looping and Array Iteration in HTML

In programming, loops are employed to enhance efficiency and customize code. They allow

us to iterate through an array until the last index, repeating specific operations until that point

is reached. To achieve this, I utilized the "map" function in React, which enables iteration

through an array and displaying missing values. On the other hand, in Svelte, I utilized the

"forEach" method, which allows looping through an array and returning the modified array.

By utilizing these functionalities, the code becomes more concise and tailored to the specific

requirements of the program.

Figure 32: Conditioning in Html Tags React

Figure 33; Conditioning in Html Tags Svelte

Figure 34: Mapping in React

TBU in Zlín, Faculty of Applied Informatics 47

4.9 User Interface

The purpose of developing two applications with identical functionality and user interfaces

was to examine their differences in terms of operation and ensure compatibility across

multiple platforms. The main goal was to create user-friendly applications that could

seamlessly function on any platform.

4.9.1 Home page User Interface

The home page is designed to provide a welcoming experience for the user. It includes a

brief description of the application and a menu bar for easy navigation. Additionally, there

is a section dedicated to displaying a list of books for quick access. The design is user-

friendly and responsive, meaning it adapts well to different screen sizes and devices.

Furthermore, there is a section where users can leave comments and ratings for the website,

enhancing interactivity and user engagement.

Figure 35: Looping in Svelte

TBU in Zlín, Faculty of Applied Informatics 48

Figure 37:Home page “iPad” Figure 36:Home page “iPhone”

Figure 38: Home page “MacBook Air”

TBU in Zlín, Faculty of Applied Informatics 49

4.9.2 BookList page User Interface

We have designed a BookList page that displays a list of books fetched from an API. The

page includes a menu, a search bar for users to search for books, and buttons to add or remove

books. Additionally, there is a details button to provide more information about each book.

We have ensured that the UI of the Home page is optimized for various landscapes, including

iPad, iPhone, and desktop, allowing users to have a consistent and user-friendly experience

across different devices.

Figure 39: BookList “iPad”

TBU in Zlín, Faculty of Applied Informatics 50

Figure 41: BookList “MacBook Air”

 Figure 40: BookList “iPhone”

TBU in Zlín, Faculty of Applied Informatics 51

4.9.3 Favorite User Interface

Following the development of the Home page, a Favorites page was also created. On this

page, users have the ability to store a list of favorite books in an array. When a book is added

to the favorites, the corresponding button's state is changed to a "remove" button, allowing

users to easily remove the book from their favorites. Additionally, users can access detailed

information about each book on this page. The user interface of the Favorites page has been

designed to be compatible and visually appealing across different landscape orientations,

ensuring a consistent and enjoyable user experience on various devices.

Figure 42: Favorites “iPad”

TBU in Zlín, Faculty of Applied Informatics 52

Figure 43: Favorites “MacBook Air”

Figure 44: Favorites “iPhone“

TBU in Zlín, Faculty of Applied Informatics 53

4.9.4 BookDetails User interface

There is a button responsible for navigating to the book details page. When this button is

clicked, the user is directed to a page that provides additional information about the book.

The book details page includes a concise description of the book, the author's name, the

book's title, and the number of pages it contains.

Figure 45: BookDetails “iPad”

TBU in Zlín, Faculty of Applied Informatics 54

Figure 46: BookDetails “MacBook Air”

Figure 47: BookDetails “iPhone”

TBU in Zlín, Faculty of Applied Informatics 55

5 PERFORMACE

To evaluate the performance of different frameworks and assess their size and loading, 20

tests were conducted for each framework and calculated the average values for each metric.

5.1 Navigation Timing

To measure the performance of the application objectively, our focus is on evaluating the

loading and processing times of each framework. Specifically, we are interested in analyzing

the time it takes for the DOM to become interactive and for processing to complete, as shown

in the accompanying diagram. The DOM becomes interactive when it is ready for

manipulation, regardless of any ongoing data loading. Processing is considered complete

when the DOM has finished rendering.

We will also compare the overall loading time of the application, which is calculated as the

difference between the start and end times of the load event. This provides a standardized

measure of the time required for the application to be fully loaded and ready for use.The

purpose of examining the load time and processing performance is to objectively compare

how the real DOM and virtual DOM are updated. While the Svelte framework does not

employ a virtual DOM, React utilizes a virtual DOM. The objective is to measure and

analyze the speed at which these frameworks can load and process data when implementing

the same functionality within the application. This analysis aims to determine the relative

efficiency and speed of data loading and processing between the two frameworks, without

introducing any subjective bias.[26]

Figure 48: Load and Process counting [26]

TBU in Zlín, Faculty of Applied Informatics 56

5.1.1 Navigation Timing of React

The following table displays the results obtained from testing a React application using

Navigation Timing to load 250 books and measure the application's performance 20 times.

By calculating the average of the results, we can obtain more accurate current results for the

loading and processing of the React application .results for each variable is available by

getting the difference between each start and end time.

TestNumber
DomInteractive

[ms]

DomComplete

[ms]

LoadEventEnd

[ms]

LoadEventStart

[ms]

1 503.4 719.5 719.8 719.8

2 398.7 1285.7 1285.9 1285.9

3 391.4 829.5 829.7 829.7

4 399 713.7 714 714

5 400.5 782.1 782.7 782.7

6 400.2 825.5 825.9 825.9

7 409.3 744.3 744.7 744.7

8 394.2 819.2 819.4 819.4

9 400 731.3 731.3 731.3

10 396 692.9 693.2 693.2

11 428.3 1593 1593.3 1593.3

12 392.8 721.7 721.8 721.8

13 397.1 728.2 728.5 728.4

14 413 788.8 789.1 789.1

15 91.9 596.7 597 596.9

16 405.7 735.7 736 736

17 121.5 477.6 477.9 477.9

18 401.1 788.9 789.2 789.2

19 106.3 456.3 456.5 456.5

20 404.3 855 855.2 855.1

Average 352.78 794.28 794.56 794.54

Table 5: Navigation Timing for React

TBU in Zlín, Faculty of Applied Informatics 57

5.1.2 Navigation Timing of Svelte

The performance timing for the Svelte application was also calculated using the same

method as the React application. One observation that caught my attention was that the load

timing was very close to when the DOM is complete, with only a few milliseconds

TestNumber
DomInteractive

[ms]

DomComplete

[ms]

LoadEventStart

[ms]

LoadEventEnd

[ms]

1 126.2 145.5 145.5 145.5

2 149.8 233.5 233.5 233.5

3 143.1 165.5 165.5 165.5

4 138.7 202.3 202.3 202.3

5 164.7 293.9 293.9 293.9

6 145.3 173.1 173.1 173.1

7 150.9 193.1 193.2 193.2

8 161 183.8 183.8 183.8

9 131.8 244.4 244.5 244.5

10 140.7 209.8 209.8 209.8

11 173.1 219.1 219.1 219.1

12 154.5 232.3 232.3 232.3

13 174 227.3 227.3 227.3

14 168.4 205.4 205.4 205.4

15 143.8 229.8 229.8 229.8

16 137 162.2 162.2 162.2

17 134.5 157.8 157.8 157.8

18 122.7 253.2 253.3 253.3

19 134 314 314 314

20 132.7 153.7 153.7 153.7

Average 146.35 210 210 210

 Table 7: Navigation Timing for Svelte

Variable Calculations

Process= DOM Complete - DOM Interactive 441.5 ms

Load= Load Event End - Load Event Start 0.02 ms

Table 6: Navigation Results in React

TBU in Zlín, Faculty of Applied Informatics 58

Variable Calculations

Process= DOM Complete - DOM Interactive 63.65 ms

Load= Load Event End - Load Event Start 0 ms

Table 8: Navigation Results in Svelte

5.1.3 Overall of Navigation Timing

After obtaining the results, we can visualize the disparity in loading and processing

times of each framework using a chart table. This table will provide a clear representation of

the differences observed.

63.62

441.5

0.5

50.5

100.5

150.5

200.5

250.5

300.5

350.5

400.5

450.5

500.5 Navigation Timing

Process [ms] Load [ms]

Table 9: Difference between Frameworks for Navigation Timing

TBU in Zlín, Faculty of Applied Informatics 59

5.2 User Timing

 To test the timing of each framework while performing a task, you can utilize the "User

Timing" API, which allows you to measure the timing of a specific task. This involves

creating marks at the start and end of the task, and then using the "performance.measure()"

method to measure the duration between the marks.By implementing this approach, you can

accurately measure the execution time of different tasks within each framework and compare

their performance.[34]After completing the navigation timing analysis, another aspect that

caught my attention was the time required to display all the books. To measure this, I began

utilizing user timing by tracking the rendering time of the last element in the array. This

element typically includes an image, the book's title, and buttons for adding, removing, and

accessing details. By measuring the time it takes to render this final element, I can gain

insights into the overall performance of displaying the entire collection of books.

TBU in Zlín, Faculty of Applied Informatics 60

5.2.1 React user Timing

The timing measurement was performed for the last index of the array during the book

display process. This measurement was conducted using the same method, which involved

having a total of 250 books and conducting 20 tests per framework.

TestNumber Duration [ms]

1 9.6

2 8.3

3 11.3

4 14.5

5 8.5

6 8.8

7 8.6

8 6.4

9 10.3

10 12.6

11 8.5

12 11.4

13 10.4

14 13.1

15 15.1

16 12.8

17 10.1

18 7.7

19 7.8

20 8.2

Average 10.2

Table 10: User Timing in React

TBU in Zlín, Faculty of Applied Informatics 61

5.2.2 Svelte user timing

The identical method used in React to measure User Timing for a specific task was also

employed in Svelte. This allowed for consistent measurement and comparison of Timing

between the two frameworks for the same task.

TestNumber Durattion [ms]

1 91.3

2 98.5

3 91.8

4 104.1

5 57.2

6 92.3

7 113.1

8 106.7

9 64.6

10 94

11 105.1

12 97.1

13 66.1

14 75

15 57.6

16 113.3

17 109.2

18 92.2

19 63.2

20 70.5

Avarage 88.15

Table 11: User Timing in Svelte

TBU in Zlín, Faculty of Applied Informatics 62

5.2.3 Overall of User Timing

After conducting 20 tests and calculating the average duration for each framework, two

results were obtained. The difference between these results is presented in the chart below:

5.3 Performace Memory

In order to obtain more precise information about the actual size of JavaScript in each

application and gain deeper insights into memory usage, the Memory API performance tool

can be utilized. By comparing the obtained results, we can extract valuable data such as the

'jsHeapSizeLimit', which represents the overall size of data utilized by JavaScript.

Additionally, the 'totalJSHeapSize' provides the current total memory consumption in bytes

by JavaScript. Lastly, the 'usedJSHeapSize' indicates the specific portion of the

'totalJSHeapSize' that is actively being utilized. These metrics obtained from the Memory

API performance tool enable developers to assess and optimize memory usage, leading to

more efficient JavaScript applications. [35]

88.15

10.2
0

10

20

30

40

50

60

70

80

90

100

Svelte [ms] React [ms]

User Timing

Figure 49: Difference between Frameworks for User Timing

TBU in Zlín, Faculty of Applied Informatics 63

5.3.1 Performance Memory of React

The memory usage of React was measured by running 20 tests and calculating the average

value. The average memory usage for React was found to be approximately 0.032367 GB

for the total heap and 0.030245 GB for the used heap. These values indicate the amount of

memory allocated and utilized by React during the tests.

TestNumber jsHeapSizeLimit

[bytes]

totalJSHeapSize

[bytes]

usedJSHeapSize

[bytes]

1 4294705152 18095915 14505331

2 4294705152 27406048 25255740

3 4294705152 30408217 28259333

4 4294705152 37006443 34873411

5 4294705152 37214333 34830109

6 4294705152 36952619 34770228

7 4294705152 43669632 41404360

8 4294705152 30551225 28437397

9 4294705152 37268238 35179870

10 4294705152 30551021 28505225

11 4294705152 37005888 34881096

12 4294705152 37214965 34972171

13 4294705152 30813851 34820109

14 4294705152 30813892 28589023

15 4294705152 37530903 28507044

16 4294705152 37476542 35029699

17 4294705152 37214535 35293138

18 4294705152 43669267 41445915

19 4294705152 30813419 28640707

20 4294705152 43407247 41308011

Average 4294705152 34754210 32475393.8

Table 12: Performance Memory of React

TBU in Zlín, Faculty of Applied Informatics 64

5.3.2 Performance Memory of Svelte

By employing the same method in a Svelte application, a significant difference in memory

usage compared to React was observed. The total heap usage for Svelte was approximately

0.012581 GB, while the used heap amounted to 0.011572 GB. These values indicate a lower

memory footprint for Svelte compared to React, suggesting more efficient memory

utilization in the Svelte application.

TestNumber jsHeapSizeLimit

[bytes]

totalJSHeapSize

[bytes]

usedJSHeapSize

[bytes]

1 4294705 7425495 6906185

2 4294705152 10057388 9390516

3 4294705152 11487457 10727229

4 4294705152 15846175 14649342

5 4294705152 11829341 110298869

6 4294705152 16188065 14929909

7 4294705152 11752117 10951965

8 4294705152 16110836 14833744

9 4294705152 11753375 11055831

10 4294705152 16112096 14958576

11 4294705152 11833115 11170476

12 4294705152 16453980 15170476

13 4294705152 12018037 11269417

14 4294705152 12018662 11181822

15 4294705152 17425957 15230337

16 4294705152 12018662 11313902

17 4294705152 17427219 15148491

18 4294705152 12361808 11573904

19 4294705152 17769103 15466451

20 4294705152 12284582 11453358

Average 4294705152 13508736.55 12424989.55

Table 13: Perfomace Memory of Svelte

TBU in Zlín, Faculty of Applied Informatics 65

5.3.3 Overall of Memory Performace

Svelte:

• Total heap usage: 0.012581 GB

• Used heap: 0.011572 GB

React:

• Total heap usage: 0.032367 GB

• Used heap: 0.030245 GB

Comparing these values, it is evident that Svelte consumes significantly less memory

compared to React. The total heap usage and used heap in Svelte are approximately one-

third of the corresponding values in React. This suggests that Svelte is more efficient in

terms of memory utilization, resulting in a lower memory footprint for Svelte applications

compared to React applications.

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

React Svelte

Memory Usage

totalJSHeapSize [bytes] usedJSHeapSize [bytes]

Figure 50: Difference between Frameworks for Memory Performance

TBU in Zlín, Faculty of Applied Informatics 66

5.4 Size of the application

The size of an application has a significant impact on its performance, determining whether

it will run faster or slower. While comparing the application sizes of different frameworks,

there is some intriguing discoveries. Interestngly, the size of the same application developed

in another framework was only one-fifth of the size of the React application. This significant

reduction in size could be the primary reason behind the faster performance observed in the

alternative framework.

5.5 framework Usages

Based on another survey conducted by the State of JS, there is potential for further

exploration and discovery of differences by delving deeper into the results. [28]

Figure 52: Application size in React

 Figure 51: Application size in Svelte

TBU in Zlín, Faculty of Applied Informatics 67

5.5.1 Retention

 The survey conducted to determine the usage of ration was based on a calculation that

involved dividing the total usage by the sum of users who expressed a desire to use it again

and those who said they would not use it again. Looking at the graph, we can observe that

React was the leading framework until 2019. However, after the introduction of Svelte, there

was a significant drop in the number of users for React, indicating that developers started to

prefer other frameworks, including Svelte. It is not clear whether Svelte was the sole reason

For this shift, as other frameworks could have also played a role. Although Svelte's

popularity has been affected by the emergence of other frameworks like Solid, it still ranks

higher than React based on user rankings.

Figure 53: Retention of Frameworks [28]

TBU in Zlín, Faculty of Applied Informatics 68

5.5.2 Interested

For the next survey or question, the focus was on people or groups who were interested in

learning the framework. The calculation involved dividing the number of people who wanted

to learn the framework by the total number of people who expressed interest in learning it,

including those who were not interested.

Based on the results, we can observe that the interest in learning the framework increased

steadily from the beginning to the introduction of Svelte. However, there was a significant

drop in interest in React, with almost half of the users expressing no interest in learning the

framework anymore.

5.5.3 Awareness

Several factors can affect the popularity of a framework, such as the knowledge and

awareness of the technology within the programming community. Therefore, a survey was

conducted to assess the awareness of the technology. The calculation involved subtracting

the number of respondents who answered "never heard" from the total number of answers,

and then dividing by the total number of respondents.

Figure 54: Interest in Frameworks [28]

TBU in Zlín, Faculty of Applied Informatics 69

In the awareness chart, it is evident that React gained significant awareness right from the

beginning of its launch as a framework. On the other hand, the situation is different for

Svelte. While its average awareness has been improving over time, it still falls short

compared to React. This doesn't necessarily mean that Svelte is not competing with React,

as there are other frameworks in the market that are also vying for attention and adoption.

5.6 Survey

Frontend development frameworks have their own communities and supporters, and two

well-known and trustworthy websites for programmers are used to gather data about their

popularity. A survey conducted on Stack Overflow in 2022 shows that React is currently the

most widely used framework, with a growing community of developers. While React has

the fastest-growing community among other frameworks, Svelte is also gaining in usage and

development. According to research, both frameworks are proving to be versatile and useful

Figure 55: Awareness of Frameworks [28]

TBU in Zlín, Faculty of Applied Informatics 70

to programmers, and as a result, their communities are expected to grow even more in the

future. Overall, both React and Svelte have promising futures.[29]

5.7 Git Community

 As we are aware, every technology has its own community, such as GitHub, which consists

of a diverse range of individuals from various areas and backgrounds across the globe. [30]

These communities have different objectives, with some aiming to learn and acquire new

skills, while others focus on development and gaining more experience. Now, let's discuss

the communities associated with different frameworks, including the issues they encounter

and the commits they have made up until this point.

5.7.1 React GitHub Community

In the React community, there is a large following of individuals actively engaged in

working on various projects and resolving issues. Currently, there are 2.6k followers

dedicated to different projects within React. Additionally, there are 56 repositories that are

actively being worked on, with each repository having a few open issues that require

attention and resolution. [31]

 Figure 56: Trend questions of frameworks in 2022 [29]

TBU in Zlín, Faculty of Applied Informatics 71

5.7.2 Svelte GitHub Community

Despite being a relatively newer framework and not as widely known as others, the Svelte

community has garnered a substantial number of followers. Considering its launch time, the

community's size of 1.6k followers is quite commendable. Svelte can even be seen as a

competitor to React, given its comparable number of followers. Furthermore, Svelte boasts

an even higher number of repositories compared to React, with a total of 71 repositories

actively maintained by the community. [32]

5.8 Personal Experience and Background

Starting from scratch and delving into two new frameworks was a challenging experience

for me. I had no prior background in either of them, making a fair comparison between them

more appropriate towards the end. Personally, I preferred using React due to its concept

being easier for me to grasp. React also benefits from extensive documentation, numerous

available sources, and a strong support community, which made the learning process

smoother. Additionally, my previous experience working with Blazor contributed to my

better understanding of Redact’s concepts. On the other hand, Svelte, as mentioned on its

official site, offers an easy and fast learning curve, even with a limited background in front-

end technologies. While Svelte may have less support and available learning resources

compared to React, it is simplicity and quick start-up potential make it an appealing

framework to consider.

A crucial aspect for beginners in any technology is the availability of learning resources to

enhance their knowledge. Limited sources can make it challenging to acquire new skills,

often leading individuals to choose easier alternatives. In terms of code implementation, I

personally found React to be more straightforward, despite that Svelte is claiming that it

requires 40% less code. From my experience, this statement did not hold true, as the

availability of comprehensive sources was lacking for React. On the other hand, having

multiple frameworks with abundant sources and support is preferable for users. In the case

of Svelte, while the official documentation is well done, it lacks crucial information that

users may require. In contrast, React offers well-documented resources, and even if the

answers are not found in the official documentation, other platforms like Stack Overflow

provide better support for React. This demonstrates the importance of comprehensive and

accessible sources for users, which can significantly impact their choice of framework.

TBU in Zlín, Faculty of Applied Informatics 72

5.9 Research comparison

Several research studies have been conducted to compare various JavaScript frameworks

and their related research works in terms of usage, performance, memory usage, and other

relevant features. These studies aim to provide insights into the current research trends and

advancements in JavaScript.

I have conducted thorough research and obtained test results that strongly demonstrate the

correlation between rendering performance and memory usage. These results provide solid

evidence to support the findings and conclusions of the study, offering valuable insights for

optimizing rendering algorithms and resource allocation.

In the conducted research comparing rendering times between React, Svelte, Angular, and

Vue, the results show similarities between Svelte and React, where React exhibited shorter

rendering times while Svelte had slightly higher rendering times. Additionally, the memory

usage in Svelte was significantly lower compared to React. These findings provide evidence

that Svelte's rendering is slower than React, despite its lower memory usage. Contrary to

expectations, the lower memory usage does not positively impact the rendering speed in

Svelte.

Figure 57: Render of other Researches [38]

TBU in Zlín, Faculty of Applied Informatics 73

Several research studies have been conducted to compare the Svelte and React frameworks,

shedding light on their respective strengths and characteristics. One approach employed in

these studies involves examining the frameworks as JavaScript application frameworks,

specifically their roles and functionalities in the development of web application user

interfaces.A noteworthy research endeavor conducted at Turun Ammattikorkeakoulu delved

into the implementation aspects of Svelte and React. The study aimed to analyze how these

frameworks can be effectively implemented in real-world applications, taking into

consideration factors such as code structure, ease of use, and development workflow. By

scrutinizing the implementation intricacies, the researchers sought to gain a comprehensive

understanding of the frameworks' practical implications and their suitability for different

project requirements.[40]

In Greece, another insightful research project was carried out, focusing on the performance

aspect of Svelte and React in terms of DOM manipulation. Specifically, the study sought to

ascertain how efficiently each framework could handle tasks such as updating, deleting, and

modifying elements within the Document Object Model (DOM). The aim was to identify

any significant discrepancies in the performance of these frameworks when it comes to

dynamic UI updates and interactions. By quantifying the performance metrics and

conducting comparative analyses, the researchers aimed to provide developers with valuable

insights for making informed decisions regarding framework selection based on their

specific performance requirements.[41]

Moreover, there was an intriguing research investigation that centered around the cross-

platform UI development capabilities of React and Svelte. With the ever-increasing variety

of devices and screen sizes, ensuring optimal user experiences across platforms has become

crucial. This research study aimed to evaluate how React and Svelte address the challenges

of creating responsive user interfaces that adapt seamlessly to diverse screen dimensions. By

assessing factors such as layout responsiveness, component adaptability, and rendering

efficiency, the researchers aimed to determine the strengths and weaknesses of each

framework in accommodating the needs of modern multi-device environments.[39]

TBU in Zlín, Faculty of Applied Informatics 74

In summary, these research studies provide valuable insights into the Svelte and React

frameworks, exploring their implementation aspects, performance in DOM manipulation,

and cross-platform UI development capabilities. By examining and comparing these

frameworks in various contexts, the research community aims to advance our understanding

of JavaScript frameworks and assist developers in making informed choices based on

specific project requirements and objectives.

TBU in Zlín, Faculty of Applied Informatics 75

CONCLUSION

After the application designs were completed, they were implemented and subsequent

measurements were conducted to evaluate their performance and functionality. Each

application underwent rigorous testing, and the obtained results were subjected to detailed

analysis. During the evaluation process, various factors such as available resources,

community support, and functional capabilities of different frameworks were taken into

consideration, leading to the determination that React enjoys wider usage and support.

Upon careful examination of the provided materials, it becomes apparent that both Svelte

and React possess distinct advantages and disadvantages. Svelte is renowned for its user-

friendly nature, as emphasized in its documentation, whereas React also offers a manageable

learning curve. In terms of implementation, Svelte necessitates less code but imposes certain

restrictions on writing, while React provides greater flexibility albeit at the potential cost of

increased code volume.

With respect to performance, noteworthy discrepancies exist between the two frameworks.

Svelte exhibits exceptional memory utilization, owing to its lightweight and efficient nature.

Moreover, it demonstrates superior loading and processing speeds, thereby positioning itself

as a standout performer in these domains. Conversely, React excels in rendering speed, with

its rendering timing estimated to be approximately seven times faster than that of Svelte.

Considering the surveys conducted and the communities surrounding each framework,

Svelte is currently experiencing a surge in popularity while React continues to be

acknowledged as a robust and influential framework. Consequently, based on a

comprehensive analysis, it can be inferred that Svelte represents a more promising

framework with considerable potential for future advancement.

In conclusion, Svelte offers a more intuitive learning experience, requires less code while

incorporating certain limitations, showcases commendable memory utilization and

expeditious loading times, whereas React distinguishes itself through its rendering speed.

Both frameworks boast vibrant communities, yet Svelte is emerging as a formidable

contender. The research findings collectively support the notion that Svelte is a more

auspicious framework, poised for significant contributions to the realm of front-end

development..

TBU in Zlín, Faculty of Applied Informatics 76

BIBLIOGRAPHY

[1] React.component. React [online]. [Accessed 14 March 2023]. Available from:

https://reactjs.org/docs/react-component.html.

[2] OKORO, Alvin. React virtual DOM - using virtual dom in react. KnowledgeHut

[online]. 12 February 2023. [Accessed 16 March 2023]. Available from:

https://www.knowledgehut.com/blog/web-development/react-virtual-dom.

[3] The history of react native: Facebook's open source app development framework.

TechAhead [online]. 13 May 2021. [Accessed 16 March 2023]. Available from:

https://www.techaheadcorp.com/blog/history-of-react-native/.

[4] Versions. React [online]. [Accessed 16 March 2023]. Available from:

https://reactjs.org/versions/.

[5] CHAVAN, Bakuli. Top companies using react JS services to their best! Bigscal

[online]. 23 January 2023. [Accessed 16 March 2023]. Available from:

https://www.bigscal.com/blogs/frontend-technology/top-companies-using-react-js-

services-to-their-best/.

[6] Svelte. • Cybernetically enhanced web apps [online]. [Accessed 16 March 2023].

Available from: https://svelte.dev/.

[7] BEATA TWARDOWSKA MAR 22. Why Svelte is the next big thing in javascript

development. Naturaily [online]. 22 March 2022. [Accessed 16 March 2023].

Available from: https://naturaily.com/blog/why-svelte-is-next-big-thing-javascript-

development.

[8] R/sveltejs - apple beta music uses Svelte. reddit [online]. [Accessed 16 March 2023].

Available from:

https://www.reddit.com/r/sveltejs/comments/v7ic2s/apple_beta_music_uses_svelte/

.

[9] Introduction to the DOM - web apis: MDN. Web APIs | MDN [online]. [Accessed

16 March 2023]. Available from: https://developer.mozilla.org/en-

US/docs/Web/API/Document_Object_Model/Introduction.

https://reactjs.org/docs/react-component.html
https://www.techaheadcorp.com/blog/history-of-react-native/
https://reactjs.org/versions/
https://www.bigscal.com/blogs/frontend-technology/top-companies-using-react-js-services-to-their-best/
https://www.bigscal.com/blogs/frontend-technology/top-companies-using-react-js-services-to-their-best/
https://svelte.dev/
https://naturaily.com/blog/why-svelte-is-next-big-thing-javascript-development
https://naturaily.com/blog/why-svelte-is-next-big-thing-javascript-development
https://www.reddit.com/r/sveltejs/comments/v7ic2s/apple_beta_music_uses_svelte/
https://www.reddit.com/r/sveltejs/comments/v7ic2s/apple_beta_music_uses_svelte/
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction

TBU in Zlín, Faculty of Applied Informatics 77

[10] Document object model (DOM) level 1 specification. Dokument Object

Model (DOM) Level 1 Specification [Vidur Apparao, Steven Byrne, Mike

Champion, Scott Isaacs, Ian Jacobs, Arnaud Le Hors, Gavin Thomas Nicol, Jonathan

Robie, Robert Sutor, Chris Wilson, Lauren Wood] [online]. [Accessed 16 March

2023]. Available from: http://www.dret.net/biblio/reference/dom.

[11] How javascript programming language is becoming a market leader.

mobileLIVE [online]. 18 November 2022. [Accessed 16 March 2023]. Available

from: https://www.mobilelive.ca/blog/javascript-leader.

[12] Loops in JavaScript - performing repeated operations on a data set. [online].

[Accessed 16 March 2023]. Available from:

https://launchschool.com/books/javascript/read/loops_iterating.

[13] SIMPLILEARN. JavaScript frameworks: What are they and how do they

work?: Simplilearn. Simplilearn.com [online]. 1 March 2023. [Accessed 16 March

2023]. Available from:

[14] ADMIN. The future of javascript: What to expect in 2023? Programmer Force

[online]. 23 January 2023. [Accessed 16 March 2023]. Available from:

https://pf.com.pk/blogs/the-future-of-javascript-what-to-expect-in-

2023/#:~:text=Even%20after%20such%20a%20long,scalable%20and%20user%2D

friendly%20applications.

[15] DAAN. 8 react libraries that I'd like to introduce to you. Medium [online]. 15

February 2022. [Accessed 3 March 2023]. Available from:

https://levelup.gitconnected.com/8-react-libraries-that-id-like-to-introduce-to-you-

3802770b3952.

[16] GOSPEL, Darlington. React.js architecture pattern: Implementation + best

practices . [online]. 30 January 2023.

[Accessed 1 March 2023]. Available from:

https://www.knowledgehut.com/blog/web-development/react-js-architecture.

[17] React. – The library for web and native user interfaces [online]. [Accessed 18

March 2023]. Available from: https://react.dev/.

http://www.dret.net/biblio/reference/dom
https://www.mobilelive.ca/blog/javascript-leader
https://launchschool.com/books/javascript/read/loops_iterating
https://pf.com.pk/blogs/the-future-of-javascript-what-to-expect-in-2023/#:~:text=Even%20after%20such%20a%20long,scalable%20and%20user%2Dfriendly%20applications
https://pf.com.pk/blogs/the-future-of-javascript-what-to-expect-in-2023/#:~:text=Even%20after%20such%20a%20long,scalable%20and%20user%2Dfriendly%20applications
https://pf.com.pk/blogs/the-future-of-javascript-what-to-expect-in-2023/#:~:text=Even%20after%20such%20a%20long,scalable%20and%20user%2Dfriendly%20applications
https://levelup.gitconnected.com/8-react-libraries-that-id-like-to-introduce-to-you-3802770b3952
https://levelup.gitconnected.com/8-react-libraries-that-id-like-to-introduce-to-you-3802770b3952
https://www.knowledgehut.com/blog/web-development/react-js-architecture

TBU in Zlín, Faculty of Applied Informatics 78

[18] GACKENHEIMER, Cory. The Core Of React. In : Introduction to react:

Using react to build scalable and efficient user interfaces. New York : Apress, 2015.

p. 21–27.

[19] LEVLIN, Mattias. DOM benchmark comparison of the front-end JavaScript

frameworks React, Angular, Vue, and Svelte. thesis. 2020.

[20] Úvod do Technologie Svelte. SvelteJS [online]. [Accessed 21 March 2023].

Available from: https://www.sveltejs.cz/.

[21] Getting started with Svelte - learn web development: MDN. Learn web

development | MDN [online]. [Accessed 21 March 2023]. Available from:

https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Client-

side_JavaScript_frameworks/Svelte_getting_started.

[22] SVELTEJS. Unused CSS selector warning - disable specific parts? · issue

#1594 · sveltejs/svelte. GitHub [online]. [Accessed 21 March 2023]. Available from:

https://github.com/sveltejs/svelte/issues/1594

[23] MELTZER, Rachel. What is JavaScript used for? Lighthouse Labs [online].

3 December 2020. [Accessed 30 March 2023]. Available from:

https://www.lighthouselabs.ca/en/blog/what-is-javascript-used-

for#:~:text=Javascript%20is%20used%20by%20programmers,by%2097.0%25%20

of%20all%20websites.

[24] Rapidly build modern websites without ever leaving your HTML. Tailwind

CSS [online]. [Accessed 27 April 2023]. Available from: https://tailwindcss.com/

[25] The Main Advantage Of TailwindCSS [online]. 6 August 2021. How To

Debug CSS. [Accessed 2023]. Available from: https://planflow.dev/blog/the-

main-advantage-of-tailwindcss.

[26] MOZDEVNET. Navigation Timing - web apis: MDN. Web APIs | MDN

[online]. [Accessed 20 April 2023]. Available from:

https://developer.mozilla.org/en-

US/docs/Web/API/Performance_API/Navigation_timing.

https://www.sveltejs.cz/
https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Client-side_JavaScript_frameworks/Svelte_getting_started
https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Client-side_JavaScript_frameworks/Svelte_getting_started
https://github.com/sveltejs/svelte/issues/1594
https://www.lighthouselabs.ca/en/blog/what-is-javascript-used-for#:~:text=Javascript%20is%20used%20by%20programmers,by%2097.0%25%20of%20all%20websites
https://www.lighthouselabs.ca/en/blog/what-is-javascript-used-for#:~:text=Javascript%20is%20used%20by%20programmers,by%2097.0%25%20of%20all%20websites
https://www.lighthouselabs.ca/en/blog/what-is-javascript-used-for#:~:text=Javascript%20is%20used%20by%20programmers,by%2097.0%25%20of%20all%20websites
https://tailwindcss.com/
https://developer.mozilla.org/en-US/docs/Web/API/Performance_API/Navigation_timing
https://developer.mozilla.org/en-US/docs/Web/API/Performance_API/Navigation_timing

TBU in Zlín, Faculty of Applied Informatics 79

[27] BOTHRA, Komal. What are User Timing Marks and measures? Seahawk

[online]. 24 April 2023. [Accessed 2 May 2023]. Available from:

https://seahawkmedia.com/site-speed-glossary/what-are-user-timing-marks-and-

measures/ .

[28] State of JavaScript 2022. Front-end Frameworks [online]. [Accessed 3 May

2023]. Available from: https://2022.stateofjs.com/en-US/libraries/front-end-

frameworks/.

[29] Stack Overflow trends [online].

https://gist.github.com/eyesofkids/14d94c8da3953440bd6e4bb46ed4220c.

[Accessed 1 May 2023]. Available from:

https://insights.stackoverflow.com/trends?tags=reactjs%2Cvue.js%2Cangular%2Cs

velte%2Cangularjs.

[30] GitHub Community guidelines. GitHub Docs [online].

[Accessed 4 May 2023]. Available from:

https://docs.github.com/en/site-policy/github-terms/github-community-guidelines.

[31] React community. GitHub [online]. [Accessed 1 May 2023]. Available

from: https://github.com/reactjs

[32] Svelte. GitHub [online]. [Accessed 6 May 2023]. Available from:

https://github.com/sveltejs

[33] PREETHI ON DEC 20 and PREETHI. Breaking

down the performance API: CSS-tricks. CSS [online]. 20 December 2017. [Accessed

10 May 2023]. Available from: https://css-tricks.com/breaking-performance-api/.

[34] MOZDEVNET. Performance - web apis: MDN. Web APIs | MDN [online].

[Accessed 9 May 2023]. Available from: https://developer.mozilla.org/en-

US/docs/Web/API/Performance.

[35] MOZDEVNET. Performance: Memory property - web apis: MDN. Web

APIs | MDN [online]. [Accessed 16 May 2023]. Available from:

https://developer.mozilla.org/en-US/docs/Web/API/Performance/memory.

https://2022.stateofjs.com/en-US/libraries/front-end-frameworks/
https://2022.stateofjs.com/en-US/libraries/front-end-frameworks/
https://insights.stackoverflow.com/trends?tags=reactjs%2Cvue.js%2Cangular%2Csvelte%2Cangularjs
https://insights.stackoverflow.com/trends?tags=reactjs%2Cvue.js%2Cangular%2Csvelte%2Cangularjs
https://docs.github.com/en/site-policy/github-terms/github-community-guidelines
https://css-tricks.com/breaking-performance-api/
https://developer.mozilla.org/en-US/docs/Web/API/Performance
https://developer.mozilla.org/en-US/docs/Web/API/Performance
https://developer.mozilla.org/en-US/docs/Web/API/Performance/memory

TBU in Zlín, Faculty of Applied Informatics 80

[36] Rendering elements. React [online]. [Accessed 4 April 2023]. Available

from: https://legacy.reactjs.org/docs/rendering-elements.html

[37] ReactJS JSX - javatpoint. www.javatpoint.com [online].

[Accessed 15 May 2023]. Available from: https://www.javatpoint.com/react-jsx.

[38] TOMAS MARX-RAACZ VON HIDVÉG. Are the frameworks good

enough? thesis. 2022.

[39] OKSANEN, Miikka. Javascript frontend web app frameworks React vs

Svelte. thesis. 2021.

[40] HAAPASALO, Karel. JAVASCRIPTIN SOVELLUSKEHYS

VERKKOSOVELLUKSEN KÄYTTÖLIITTYMÄN TOTEUTUKSESSA. thesis.

2021.

[41] HAIDER, Ali. Javascript frontend web app frameworks React vs Svelte.

thesis. [no date].

https://www.javatpoint.com/react-jsx

TBU in Zlín, Faculty of Applied Informatics 81

LIST OF ABBREVIATIONS

API - Application programming interface

CSS - Cascading Style Sheets

DOM - Document Object Model

DnD - Drag and Drop

GB - GigaByte

HTML - HyperText Markup Language

JSX - JavaScript XML

UI - User Interface

XML - Extensible Markup Language

TBU in Zlín, Faculty of Applied Informatics 82

LIST OF FIGURES

Figure 1: Represent of Document Object Model ... 14

Figure 2: Difference between TailwindCSS and CSS [25] ... 16

Figure 3: Performace API [33] ... 17

Figure 4: Use Case Diagram .. 27

Figure 5: Home Wireframe .. 28

Figure 6: BookList Wireframe ... 29

Figure 7: BookDetail Wireframe ... 29

Figure 8: Favorite Wireframe .. 30

Figure 9: React Folders .. 33

Figure 10:Svelte Folders .. 34

Figure 11: Base code of React ... 35

Figure 12: Base code of Svelte .. 35

Figure 13: Routing in React ... 36

Figure 14: Routing in Svelte .. 37

Figure 15: Fetching in React .. 38

Figure 16: Fetching in Svelte ... 38

Figure 17: Adding to Favorites React ... 39

Figure 18: Removing from Favorites React ... 39

Figure 19: Favorite Adding and Removing in Svelte .. 40

Figure 20: Checking Favorite list in React .. 40

Figure 21: Checking Favorite list in Svelte ... 41

Figure 22: Search in React .. 41

Figure 23: Search in Svelte ... 41

Figure 24: Navigation to BookDetails in both Frameworks ... 41

Figure 25: Button Event handeral for Navigation ... 42

Figure 26: Fetching BookDetail in React .. 42

Figure 27: Fetching BookDetails in Svelte .. 43

Figure 28: SubmitingComment and Rating in React ... 43

Figure 29: Submitting Comment and Rating in Svelte .. 44

Figure 30: Additional Information in React .. 44

Figure 31: Additional Information in Svelte .. 45

Figure 32: Conditioning in Html Tags React .. 46

Figure 33; Conditioning in Html Tags Svelte .. 46

Figure 34: Mapping in react ... 46

https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925137
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925137
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925138
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925138
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925139
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925139
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925140
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925140
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925141
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925141
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925142
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925142
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925143
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925143
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925144
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925144
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925145
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925145
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925146
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925146
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925147
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925147
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925148
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925148
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925149
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925149
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925150
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925150
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925151
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925151
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925152
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925152
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925153
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925153
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925154
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925154
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925155
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925155
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925156
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925156
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925157
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925157
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925158
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925158
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925159
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925159
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925161
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925161
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925162
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925162
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925163
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925163
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925164
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925164
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925165
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925165
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925166
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925166
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925167
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925167
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925168
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925168
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925169
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925169
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925170
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925170

TBU in Zlín, Faculty of Applied Informatics 83

Figure 35: Looping in Svelte ... 47

Figure 36:Home page “iPhone” .. 48

Figure 37:Home page “iPad” .. 48

Figure 38: Home page “MacBook Air” ... 48

Figure 39: BookList “iPad” .. 49

Figure 40: BookList “iPhone” ... 50

Figure 41: BookList “MacBook Air” .. 50

Figure 42: Favorites “iPad” ... 51

Figure 43: Favorites “MacBook Air” .. 52

Figure 44: Favorites “iPhone“ .. 52

Figure 45: BookDetails “iPad” .. 53

Figure 46: BookDetails “MacBook Air” ... 54

Figure 47: BookDetails “iPhone” .. 54

Figure 48: Load and Process counting [26] .. 55

Figure 49: Difference between Frameworks for User Timing .. 62

Figure 50: Difference between Frameworks for Memory Performance 65

Figure 51: Application size in Svelte ... 66

Figure 52: Application size in React .. 66

Figure 53: Retention of Frameworks [28] ... 67

Figure 54: Interest in Frameworks [28] ... 68

Figure 55: Awareness of Frameworks [28] ... 69

Figure 56: Trend questions of frameworks in 2022 [29] .. 70

Figure 57: Render of other Researches [38] .. 72

https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925171
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925171
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925172
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925172
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925173
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925173
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925174
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925174
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925175
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925175
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925176
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925176
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925177
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925177
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925178
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925178
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925179
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925179
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925180
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925180
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925181
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925181
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925182
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925182
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925183
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925183
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925184
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925184
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925185
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925185
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925186
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925186
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925187
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925187
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925188
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925188
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925189
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925189
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925190
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925190
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925191
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925191
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925192
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925192
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925193
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925193

TBU in Zlín, Faculty of Applied Informatics 84

LIST OF TABLES

Table 1: Functional Requirements ... 25

Table 2: None Functional Requirements ... 26

Table 3: Installation of React ... 31

Table 4: Installation of Svelte .. 32

Table 5: Navigation Timing for React ... 56

Table 6: Navigation Results in React ... 57

Table 7: Navigation Timing for Svelte .. 57

Table 8: Navigation Results in Svelte .. 58

Table 9: Difference between Frameworks for Navigation Timing 58

Table 10: User Timing in React ... 60

Table 11: User Timing in Svelte .. 61

Table 12: Performance Memory of React .. 63

Table 13: Perfomace Memory of Svelte .. 64

https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925417
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925417
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925420
https://utbcz-my.sharepoint.com/personal/s_jameel_utb_cz/Documents/example.docx#_Toc135925420

TBU in Zlín, Faculty of Applied Informatics 85

APPENDICES

Appendix P I: fulltext.pdf

Appendix P II: Thesis Project

APPENDIX P I: APPENDIX TITLE

Appendix P I:

• Contains the pdf file of mt thesis project

Appendix P II:

Contains the source Code

• Svelte

Contains the source code for Svelte project

• React

Contains the source code for React project

