Příprava elektricky vodivých PEDOT:PSS tenkých filmů

Jiří Šalajka

Bakalářská práce 2024

🝯 Univerzita Tomáše Bati ve Zlíně Fakulta technologická

Univerzita Tomáše Bati ve Zlíně Fakulta technologická Ústav inženýrství polymerů

Akademický rok: 2023/2024

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

(projektu, uměleckého díla, uměleckého výkonu)

Jméno a příjmení:	Jiří Šalajka
Osobní číslo:	T21542
Studijní program:	B0711A130009 Materiály a technologie
Specializace:	Polymerní materiály a technologie
Forma studia:	Kombinovaná
Téma práce:	Příprava elektricky vodivých PEDOT:PSS tenkých filmů

Zásady pro vypracování

Hlavním cílem práce je optimalizovat proces přípravy elektricky vodivých polymerních tenkých filmů z PEDOT:PSS zejména z hlediska dosažení co největší měrné elektrické vodivosti, respektive plošné elektrické vodivosti. Dílčí cíle jsou následující:

1) Literární průzkum a výběr materiálu (parametry roztoků/disperzí, dodavatelé)

2) Příprava tenkých filmů z vodivých polymerů metodou rotačního nanášení (spincoating).

3) Charakterizace tenkých filmů (zejména měření UV-Vis absorbčních spekter, stanovení tloušťky).

4) Zjištění převodních křivek mezi výsledky měření pomocí UV-Vis spektroskopie a mechanické profilometrie.

5) Charakterizace vzorků měřením elektrického plošného odporu (Kelvinova a van der Pauw-ova metoda).

6) Testování vlivu složení výchozího roztoku/disperze, úhlové rychlosti, temperování, atd. na elektrickou vodivost filmu.

7) Vyhodnocení a diskuze výsledků a vyhodnocení optimálních parametrů pro přípravu vzorků a jejich elektrických vlastností. Forma zpracování bakalářské práce: tištěná/elektronická

Seznam doporučené literatury:

[1] GIRTAN, Mihaela et al. On the Physical Properties PEDOT: PSS Thin Films. *Materials Today Communications*. 2020, vol. 22, s. 100735. ISSN 2352-4928. Dostupné z: https://www.sciencedirect.com/science/article/pii/S2352492819306580 [2] HOSSEINI, Ehsan, Vinayaraj OZHUKIL KOLLATH a Kunal KARAN. The key mechanism of conductivity in PEDOT:PSS thin films exposed by anomalous conduction behaviour upon solvent-doping and sulfuric acid post-treatment. *Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices*. 2020, vol. 8, no. 12, s. 3982-399. ISSN 2050-7526. Dostupné z: https://pubs.rsc.org/en/content/articlelanding/2020/tc/c9tc06311k

[3] MICCOLI, Ilio et al. The 100th anniversary of the four-point probe technique: the role of probe geometries in isotropic and anisotropic systems. *Journal of Physics. Condensed Matter.* 2015, vol. 27, no. 22, s. 223201. ISSN 0953-8984. Dostupné z: https://iopscience.iop.org/article/10.1088/0953-8984/27/22/223201

[4] SMITS, Friedolf M. Measurement of sheet resistivities with the four-point probe. *Bell System Technical Journal*. 1958, vol. 37, no. 3, s. 711-718. ISSN 0005-8580. Dostupné z: https://ieeexplore.ieee.org/document/6773368

[5] VAN DER PAUW, Leo J. A METHOD OF MEASURING SPECIFIC RESISTIVITY AND HALL EFFECT OF DISCS OF ARBITRARY SHAPE. *Phillips Research Reports*. 1958, vol. 13, no. 1, s. 1-9,. Dostupné z: https://aki.issp.u-to-kyo.ac.jp/okano/WalWiki/etc/VDP_PRR_13_1.pdf

L.S.

Vedoucí bakalářské práce:	Ing. Jan Antoš, Ph.D.
	Centrum polymerních systémů

Datum zadání bakalářské práce:2. ledna 2024Termín odevzdání bakalářské práce:17. května 2024

prof. Ing. Roman Čermák, Ph.D. v.r. děkan Ing. Jana Navrátilová, Ph.D. v.r. ředitel ústavu

Ve Zlíně dne 4. března 2024

PROHLÁŠENÍ AUTORA BAKALÁŘSKÉ PRÁCE

Beru na vědomí, že:

- bakalářská práce bude uložena v elektronické podobě v univerzitním informačním systému a dostupná k nahlédnutí;
- na moji bakalářskou práci se plně vztahuje zákon č. 121/2000 Sb. o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon) ve znění pozdějších právních předpisů, zejm. § 35 odst. 3;
- podle § 60 odst. 1 autorského zákona má Univerzita Tomáše Bati ve Zlíně právo na uzavření licenční smlouvy o užití školního díla v rozsahu § 12 odst. 4 autorského zákona;
- podle § 60 odst. 2 a 3 autorského zákona mohu užít své dílo bakalářskou práci nebo poskytnout licenci k jejímu využití jen s předchozím písemným souhlasem Univerzity Tomáše Bati ve Zlíně, která je oprávněna v takovém případě ode mne požadovat přiměřený příspěvek na úhradu nákladů, které byly Univerzitou Tomáše Bati ve Zlíně na vytvoření díla vynaloženy (až do jejich skutečné výše);
- pokud bylo k vypracování bakalářské práce využito softwaru poskytnutého Univerzitou Tomáše Bati ve Zlíně nebo jinými subjekty pouze ke studijním a výzkumným účelům (tj. k nekomerčnímu využití), nelze výsledky bakalářské práce využít ke komerčním účelům;
- pokud je výstupem bakalářské práce jakýkoliv softwarový produkt, považují se za součást práce rovněž i zdrojové kódy, popř. soubory, ze kterých se projekt skládá. Neodevzdání této součásti může být důvodem k neobhájení práce.

Prohlašuji,

- že jsem na bakalářské práci pracoval samostatně a použitou literaturu jsem citoval. V případě publikace výsledků budu uveden jako spoluautor.
- že odevzdaná verze bakalářské práce a verze elektronická nahraná do IS/STAG jsou obsahově totožné.

Ve Zlíně, dne:

Jméno a příjmení studenta:

podpis studenta

ABSTRAKT

Tato bakalářská práce se zabývá optimalizací přípravy tenkých polymerních filmů z poly(3,4-ethylenedioxythiophen) polystyrensulfonátu (PEDOT:PSS) zejména z hlediska dosažení co největší měrné elektrické vodivosti. Teoretická část práce se obecně věnuje vodivým polymerům a v případě tenkých vrstev jejich charakterizací zejména z hlediska elektrických vlastností. V praktické části je vyhodnocen vliv funkcionalizace PEDOT:PSS za využití dimethylsulfoxidu, proměnlivé teploty žíhání a rychlosti otáčení (spin-coating) na rezistivu výsledných vrstev. Dále je vytvořena převodní křivka mezi výsledky UV-Vis spektroskopie a mechanické profilometrie, což je nezbytné pro nedestruktivní stanovení tloušťky vrstvy a následné stanovení rezistivity Kelvinovou metodou a metodou Van der Pauw. Nakonec je diskutován vliv jednotlivých parametrů na přípravu vzorků a jejich optimální nastavení.

Klíčová slova: tenké polymerní filmy, PEDOT:PSS, DMSO, funkcionalizace, rezistivita

ABSTRACT

This bachelor's thesis focuses on the optimization of the preparation of thin polymer films of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), particularly in terms of achieving the highest electrical conductivity. The theoretical part of the thesis addresses conductive polymers in general, as well as thin films and their characterization mainly in terms of electrical properties. In the practical part, the influence of PEDOT:PSS functionalization using dimethyl sulfoxide, variable annealing temperature, and rotational speed (spin-coating) on the resistivity of the resulting films is evaluated. Additionally, a conversion curve between the results of UV-Vis spectroscopy and mechanical profilometry is established in order to indestructibly evaluate the thickness of films which is necessary for both Kelvin method and Van der Pauw method. Finally, the influence of the parameters on the sample preparation as well as the optimal setting is discussed.

Keywords: thin polymer films, PEDOT:PSS, DMSO, functionalization, resistivity

Tímto bych chtěl poděkovat Ing. Janu Antošovi, Ph.D. a Ing. Pavlu Šulymu, Ph.D. za jejich odborné rady, připomínky a čas věnovaný této práci.

Prohlašuji, že odevzdaná verze bakalářské/diplomové práce a verze elektronická nahraná do IS/STAG jsou totožné.

OBSAH

Ú	VOD		9
I	TEOR	ETICKÁ ČÁST	10
1	VOE	DIVOST	11
	1.1	METODY MĚŘENÍ VODIVOSTI	11
	1.1.1 1.1.2	Kelvinova metoda Metoda Van der Pauw	12 14
2	VOE	DIVÉ POLYMERY	17
	2.1	PEDOT:PSS	18
	2.1.1 2.1.2	Popis, struktura, vlastnosti aplikace Funkcionalizace (zvodivění) PEDOT:PSS	18 19
3	TEN	KÉ FILMY A JEJICH PŘÍPRAVA	20
	3.1	Γενκέ filmy	20
	3.2 I	METODA ROTAČNÍHO NANÁŠENÍ	20
	3.3	OSTATNÍ METODY PŘÍPRAVY TENKÝCH FILMŮ	21
4	CÍL	E PRÁCE	23
II	PRAK	TICKÁ ČÁST	24
5	NÁV	RH EXPERIMENTU	25
	5.1 I	PŘÍPRAVA VZORKŮ	25
	5.1.1	Materiály a chemikálie	25
	5.1.2	Příprava a čištění substrátů Modifikace a rotační nanášení PEDOT PSS	25
	5.2	CHARAKTERIZACE VZORKŮ	28
	5.2.1	Mechanická profilometrie	28
	5.2.2	UV-Vis spektroskopie	28
	5.2.3 5.2.4	Kelvinova metoda Metoda Van der Pauw	29
6	J.Z.T VÝS		30
U	6.1	VYHODNOCENÍ VLIVU PARAMETRŮ NA PŘÍPRAVU VZORKŮ	30
	6.1.1	Literární průzkum a výběr materiálů	30
	6.1.2	Vliv složení výchozího vzorku/disperze	30
	6.1.3	Vliv úhlové rychlosti	33
	6.1.4 6.1.5	VIIV teploty zinani Diskuze optimálních parametrů	36
	6.2	PŘEVODNÍ KŘIVKA UV-VIS SPEKTROSKOPIE A MECHANICKÉ PROFILOMETRIE	37
	6.3	Porovnání vodivosti pomocí Kelvinovy a van der Pauw metody	39
Z	ÁVĚR		40
SI	EZNAM	POUŽITÉ LITERATURY	41

SEZNAM POUŽITÝCH SYMBOLŮ A ZKRATEK	45
SEZNAM GRAFŮ	47
SEZNAM OBRÁZKŮ	48
SEZNAM TABULEK	49
SEZNAM PŘÍLOH	50

ÚVOD

Polymery jsou obecně považovány z hlediska elektrických vlastností za izolanty, protože se v nich nenachází žádné částice schopné volného pohybu. Za určitých podmínek však mohou i samotné polymery být vodivé, což otevírá velkou oblast aplikace, jelikož se dají využít např. při výrobě chemických senzorů, LED nebo laserů. Mezi zástupce vodivých polymerů patří např. poly(3,4-ethylenedioxythiophen) polystyrensulfonát (PEDOT:PSS). [1] [2]

Tenké filmy jsou struktury materiálů, které se vyznačují tím, že jeden jejich rozměr je výrazně menší než zbylé rozměry. Následkem toho mohou vykazovat výjimečné vlastnosti jako je tloušťka, flexibilita nebo vodivost. Tenké filmy je možné připravovat z řady materiálů a řadou způsobů, což má za následek jejich velkou variabilitu. Jedním ze způsobu jejich přípravy je např. metoda rotačního nanášení (spin-coating). [3]

Kombinací vodivých polymerů a tenkých filmů dostáváme výjimečné materiály, které se po stránce elektrických vlastností přibližují polovodičům, ale zároveň si zachovávají vlastnosti typické pro polymery – jednoduchou výrobu nebo mechanickou flexibilitu. Nejvýznamnější vlastností tenkých vrstev z vodivých polymerů je pak elektrická vodivost. Díky tomu je možné tenké polymerní filmy aplikovat v mnoha oblastech jako jsou např. kontakty, senzory, solární panely, tištěné čipy apod. [3] [4]

Cílem této práce je optimalizace přípravy elektricky vodivých tenkých polymerních filmů z PEDOT:PSS pomocí metody rotačního nanášení zejména s ohledem na dosažení co možná nejnižší rezistivity. Za tímto účelem je zkoumán vliv funkcionalizace prostřednictvím různého přídavku dimethylsulfoxidu, odlišné teploty žíhání a různé úhlové rychlosti.

I. TEORETICKÁ ČÁST

1 VODIVOST

Každý materiál vykazuje odlišné elektrické vlastnosti. Jednou ze základních veličin, které se využívají k popisu elektrický vlastností je odpor neboli rezistance. Odpor se značí R a jeho jednotnou je ohm (Ω). Odpor je popsaný vztahem (1), který se také nazývá Ohmův zákon. Ze vztahu (1) je zřejmé, že při stejném napětí (U) bude při vyšším odporu vodiče proudit nižší proud (I). [5] [6]

$$R = \frac{U}{I} \tag{1}$$

Odpor je závislý nejenom na samotném materiálu, ale např. také i na jeho rozměrech. Z toho důvodu se zavádí veličina rezistivita, která se také označuje jako měrný odpor a která je charakteristická pro daný materiál. Rezistivita se značí ρ a její jednotkou je Ω ·m. Vztah (2) definuje rezistivitu, kde *E* je intenzita elektrického pole a *J* hustota elektrického proudu. Tento vztah je platný jen pro izotropní materiály. [5] [6]

$$\rho = \frac{E}{J} \tag{2}$$

Dále se k popisu elektrických vlastností využívá veličina konduktivita neboli měrná elektrická vodivost, která je označována σ a její jednotkou je $\Omega \cdot m^{-1}$. Konduktivita je převrácenou hodnotou rezistivity, což je popsáno vztahem (3). [5]

$$\sigma = \frac{1}{\rho} \tag{3}$$

Pro popis elektrických vlastností tenkých filmů se obvykle využívá veličina zvaná plošný odpor (Sheet Resistance neboli Surface Resistivity). Jedná se o rezistivitu čtvercového materiálu s kontakty na dvou protilehlých stranách, tj. odpor mezi protilehlými stranami čtverce. Výhodou této veličiny je to, že nezávisí na rozměrech čtverce využitého pro měření, a tak je možné mezi sebou jednoduše srovnávat různé materiály. [7]

1.1 Metody měření vodivosti

Znalost rezistivity či konduktivity materiálu je důležitá pro jeho klasifikaci a další aplikace, a to z toho důvodu, že ovlivňuje odpor a další elektrické vlastnosti. To má význam jak u kovů, polovodičů, tak i izolantů, které mohou být využity při výrobě diod, tranzistorů a dalších elektrických součástek. Existuje řada metod měření vodivosti. Při

výběru vhodné metody pro měření je nutné myslet na charakter/geometrii měřeného vzorku. [8] [9]

V nejjednodušších metodách měření je možné využít vztah (4), kde L je délka vodiče a S jeho průřez. Tento vztah je platný pouze pro homogenní izotropní vodič konstantního průřezu. [5] [8]

$$R = \rho \, \frac{L}{S} \tag{4}$$

Při využití vztahu (1) následně dostaneme vztah (5).

$$\rho = R \cdot \frac{S}{L} = \frac{U}{I} \cdot \frac{S}{L}$$
(5)

Z tohoto vztahu je patrné, že pro určení rezistivity je potřeba změřit napětí, proud a rozměry vzorku. Vzhledem k tomu, že konduktivita je převrácenou hodnotou rezistivity, může se vztah snadno upravit pro zjištění konduktivity. Jedním z omezení je však fakt, že se tento vztah dá aplikovat pouze pro přímé vodiče konstantního průřezu. [5] [8] Mezi sofistikovanější metody měření vodivosti tenkých filmů patří např. Kelvinova metoda či metoda Van der Pauw.

1.1.1 Kelvinova metoda

Kelvinova metoda neboli metoda čtyřbodové sondy (The Four-Point Probe) byla objevena před více než 100 lety a dodnes se jedná o jednu z nejpoužívanějších metod pro měření tenkých filmů. Při měření je využita čtyřbodová sonda, která se skládá ze 4 stejně rozmístěných souběžných elektrických sond. Dvě vnější sondy přivádí stejnosměrný proud, přičemž se měří úbytek napětí mezi dvěma vnitřními sondami. Obrázek 1 znázorňuje tuto skutečnost. [7]

Obrázek 1 Schéma sond Kelvinovy metody [10]

Z měření je možné dopočítat plošný odpor (R_s) pomocí vztahu (6), kde ΔV je změna napětí mezi vnitřními sondami, a I je proud mezi vnějšími sondami.

$$R_s = \frac{\pi}{\ln\left(2\right)} \cdot \frac{\Delta V}{I} \tag{6}$$

Dále je možné spočítat rezistivitu za využití vztahu (7), kde h je tloušťka vodivého filmu.

$$\rho = R_S \cdot h \tag{7}$$

Ke vztahu (6) je možné dojít následovně [6]. Při injekci proudu skrz proudovou sondu, vzniká ve vzdálenosti r ekvipotenciální polokoule s proudovou hustotou J popsaná rovnicí (8).

$$J = \frac{I}{2\pi r^2} \tag{8}$$

Aplikací Ohmova zákona lze získat vztah pro změnu potenciálu v závislosti na změně poloměru r (dV/dr), což je popsáno rovnicí (9).

$$\frac{\mathrm{d}V}{\mathrm{d}r} = -\rho \cdot \left(\frac{I}{2\pi r^2}\right) \tag{9}$$

Integrací získáme vztah (10),

$$V - V' = \frac{\rho I}{2\pi} \cdot (\frac{1}{r} - \frac{1}{r'})$$
(10)

kde V je potenciál ve vzdálenosti r, resp. V' je potenciál ve vzdálenosti r' od proudové sondy.

Aplikací okrajových podmínek (V limituje k 0, r limituje k ∞) se vztah zjednoduší následovně. (11).

$$V = \frac{\rho I}{2\pi s} \tag{11}$$

Dalšími úpravami [6] je poté možné odvodit vztah pro výpočet rezistivity mezi sondami (12).

$$\rho = 2\pi s \cdot \left(\frac{\Delta V}{I}\right) \tag{12}$$

V případě tenkých filmů tloušťky t lze ekvipotenciální polokouli aproximovat ekvipotenciálním válcem, kdy proudová hustota ve vzdálenosti r je pak popsána vztahem (13).

$$J = \frac{I}{2\pi rt} \tag{13}$$

Aplikováním stejných podmínek pro elektrické pole a následnou integrací získáme vztah (14).

$$\Delta V = \frac{IR_s}{\pi} \cdot \ln 2 \tag{14}$$

A tudíž plošný odpor je ve tvaru vztahu (15), což odpovídá vztahu (6).

$$R_s = \frac{\pi}{\ln 2} \cdot \frac{\Delta V}{I} = 4,53236 \cdot \frac{\Delta V}{I}$$
(15)

Výsledný vztah ovšem platí pro vrstvu s nekonečným objemem (plochou). V reálu je nutné provést ještě korekce (např. kvůli tvaru a velikosti vzorku). Výhodou této (Kelvinovy) metody je, že se minimalizuje chyba měření způsobená vlivem přívodních odporů. Na druhou stranu však metoda předpokládá, že vzorek je izotropní, což může být nevýhoda v případě měření nehomogenních vzorků. [7] [9]

1.1.2 Metoda Van der Pauw

Metoda Van der Pauw je pojmenována po svém objeviteli, který ji vynalezl v roce 1958. Pro využití této metody je nutné, aby tloušťka vzorku byla homogenní a malá oproti kontaktům, vzorek byl souvislý a kontakty byly umístěny pravidelně na obvodu vzorku. Obrázek 2 znázorňuje pravidelné rozmístění kontaktů. [11]

Obrázek 2 Umístění kontaktů pro Van der Pauw měření [11]

Na vzorek se po obvodu pravidelně připojí 4 kontakty, na kterých se následně změří horizontální a vertikální odpor $R_{ab,cd}$ a $R_{da,bc}$. Horizontální odpor se počítá pomocí vztahu (16).

$$R_{\rm ab,cd} = \frac{V_{\rm C} - V_{\rm D}}{I_{\rm AB}} \tag{16}$$

Vertikální odpor se počítá pomocí vztahu (17).

$$R_{\rm da,bc} = \frac{V_{\rm B} - V_{\rm C}}{I_{\rm DA}} \tag{17}$$

Napětí V_X pak označuje potenciál na kontaktu X. Proud I_{XY} označuje proud měřený (nastavený) mezi kontakty X a Y.

S využitím vztahu (18) se dá poté spočítat průměrná spočítat rezistivita.

$$e^{-R_{\rm ab,cd}} \cdot \frac{\pi \cdot d}{\rho} + e^{-R_{\rm da,bc}} \cdot \frac{\pi \cdot d}{\rho} = 1$$
(18)

V případě, že odpory $R_{ab,cd}$ a $R_{da,bc}$ nejsou stejné, je nutné provést korekci (z důvodu, že kontakty nebyly rozmístěny pravidelně). [11] Uvedená rovnice není analyticky řešitelná, proto se v praxi řeší numericky. Výhodou této metody je její relativně vysoká přesnost (měří se průměrné odpory na celé ploše vzorku). Oproti Kelvinově metodě je náročnější na provedení, protože musí být splněny následující podmínky [12] [13]:

- vzorek musí mít rovný tvar a stejnou tloušťku,
- vzorek nesmí mít žádné izolované otvory,
- vzorek musí být homogenní a izotropní,
- všechny čtyři kontakty musí být umístěny na okrajích vzorku,
- plocha každého jednotlivého kontaktu by měla být alespoň o řád menší než plocha celého vzorku.

Při využití metody van der Pauw je možné také změřit další veličiny jako např. koncentraci náboje, mobilitu či Hallův koeficient (viz <u>appendix</u>). Tyto vlastnosti mohou být důležité zejména u polovodivých materiálů. Pro měření Hallova koeficientu ($A_{\rm H}$) je možné aplikovat vnější magnetické pole o známé hustotě magnetického toku kolmo k povrchu vzorku a změřit změnu diagonálního Van der Pauw odporu ($\Delta R_{\rm AC,DB}$) v závislosti na intenzitě magnetického pole (B_z). Toto měření se provádí při aplikaci Hallova proudu (I_{Hall}) , a v tomto pracovním bodě je změřena změna Hallova napětí (ΔV_{Hall}) při změně intenzity magnetického pole (ΔB_z).

$$A_{\rm H} = \frac{t}{B_{\rm z}} \cdot \Delta R_{\rm AC,DB} = \frac{t}{I_{\rm Hall}} \cdot \frac{\Delta V_{\rm Hall}}{\Delta B_{\rm z}}$$
(19)

Všechny tři fyzikální veličiny jsou měřeny v navzájem kolmém směru (Obrázek 3). [12] [13]

Obrázek 3 Schéma měření Hallova koeficientu pomocí Van der Pauw metody s aplikovaným magnetickým polem kolmým k povrchu vzorku. [11]

2 VODIVÉ POLYMERY

Látky je možné obecně rozdělit na vodiče, polovodiče a izolanty. Ve vodičích se může náboj pohybovat volně, to znamená, že obsahují volně nabité pohyblivé částice a díky tomu mohou vést elektrický proud. Mezi takové látky patří zejména kovy, ale také např. roztoky elektrolytů. Izolanty neboli nevodiče či dielektrika jsou látky, ve kterých se náboj (za normálních podmínek) nemůže volně pohybovat. Mezi takové látky patří např. pryž, plasty, sklo a destilovaná voda. [5] [6]

Polovodiče jsou látky, které bychom mohli zařadit mezi vodiče a izolanty. Primárně se jedná o izolanty, ale odlišují se tím, že energie potřebná k excitaci některých elektronů není tak velká (bandgap). Mimo to můžeme tyto látky dopovat, což znamená, že do látky dodáváme elektrony nebo kladné náboje, které se mohou snadno pohybovat. Díky tomu se tak polovodiče mohou chovat obdobně jako vodiče, ale jen za určitých podmínek (lze je řídit). Mezi tyto látky patří např. křemík nebo germanium. [5] [6] [14]

Polymery se obecně chovají jako nevodiče, protože se v nich nenachází částice, které by se mohly volně pohybovat. To dokazuje i to, že se často polymery využívají např. pro izolování kabelů. Vodivost polymerů můžeme zvýšit např. přidáním anorganického plniva jako mohou být saze nebo grafit. Za určitých podmínek však mohou i samotné polymery vést elektrický proud. Takovéto polymery se nazývají vodivé polymery. [2] [14]

Z hlediska struktury se ve vodivých polymerech musí pravidelně střídat jednoduché a dvojné vazby, což se označuje jako konjugovaný systém dvojných vazeb. V takovéto struktuře umožňují *p*-orbitaly jednotlivých atomů uhlíků delokalizaci π elektronů, podobně jako k tomu dochází u elektronů v benzenovém jádře. Díky tomu se mohou nosiče náboje volně pohybovat. Takovéto polymery se označují jako nedopované vodivé polymery, ale jejich vodivost je poměrně omezená. Mimo to můžeme vodivé polymery dopovat, obdobně jako k tomu dochází při dopování polovodičů. Dopované polymery jsou výrazně vodivější než nedopované. [14] [15] [16]

Z hlediska vlastností se vodivé polymery vyznačují vysokými teplotami tání a tuhnutí, protože jejich pohyblivost je omezená. Vykazují dobrou chemickou, tepelnou a oxidační stabilitu. Z hlediska aplikace se dají využít např. při výrobně chemických senzorů, LED nebo laserů. Mezi zástupce vodivých polymerů patří např. polypyrrol (PPy), polyanilin (PANI) nebo poly(3,4-ethylenedioxythiophen) polystyrénsulfonát (PEDOT:PSS). [1] [2] [16]

2.1 PEDOT:PSS

2.1.1 Popis, struktura, vlastnosti aplikace

PEDOT je jedním z mladších vodivých polymerů, které se v dnešní době využívají. PEDOT se z hlediska struktury skládá z ethylenedioxythiofen (EDOT) jednotky - monomeru. EDOT je nerozpustný v mnoha běžných rozpouštědlech a nestabilní v neutrální stavu, protože na vzduchu rychle oxiduje. Vodivý polymer (PEDOT) se připravuje oxidační polymerizací v polyelektrolytu PSS (polystyren sulfonová kyselina). Polymerizací vzniká disperze PEDOT:PSS, ve které PEDOT je nositelem kladných nábojů a PSS nositelem záporných. Obrázek 4 popisuje tuto strukturu. [3] [17] [18]

Obrázek 4 Složení PEDOT:PSS, levá část znázorňuje morfologii tenkých filmů z PEDOT:PSS, pravá část chemické uspořádání [3]

Z hlediska vlastností je PEDOT:PSS průhledný, tvárný, snadno zpracovatelný a vykazuje také dobrou vodivost, kterou je možné dále ovlivňovat jeho funkcionalizací, protože vlastnosti PEDOT:PSS se v různých disperzích liší, což z něj dělá velmi univerzální materiál. Vzhledem k tomu, že PEDOT v suspenzi vykazuje vodivé vlastnosti a PSS izolační vlastnosti, závisí výsledná vodivost na poměru obou těchto součástí. Díky tomu se z něj dají snadno připravovat tenké filmy, a to zejména pro elektrotechnické součástky. Toho se využívá v organických světelných diodách (OLED) nebo organické fotovoltaice, kde se využívá jako mezifázová vrstva pro přenos děr. Lze ho také využít jako náhradu transparentních vodičů nebo pro povlakování flexibilních substrátů. [19] [20] [21] [22]

2.1.2 Funkcionalizace (zvodivění) PEDOT:PSS

Jak již bylo zmíněno, PEDOT:PSS je možné významně modifikovat, a tak ho přizpůsobovat dle potřeb dané aplikace. Nejvýznamnější modifikace PEDOT:PSS se týká jeho elektrických vlastností, zejména vodivosti. Mimo to je však i možné ovlivňovat mechanické nebo optické vlastnosti, např. průhlednost, drsnost nebo pevnost. [23] [24]

Kromě samotného poměru PEDOT a PSS v samotné disperzi (a jiných vlivů – substrát, žíhání apod.) mají vliv na vlastnosti výsledného filmu také parametry odstřeďování. Vyšší rychlost odstřeďování vede k užší distribuci velikosti částic ve výsledném filmu, což způsobuje, že se částice lépe nabalují na sebe, a to ve výsledku způsobuje vyšší vodivost. Vzhledem k tomu, že se zužuje distribuce částic, tak se taky snižuje drsnost povrchu. [23]

Přidání organického rozpouštědla, jako je např. dimethylsulfoxid (DMSO) nebo etylenglykol (EG), během přípravy PEDOT:PSS může mít výrazný dopad na zlepšení vodivosti. Samotný mechanismus této skutečnosti však zatím není zcela známý. Přidání rozpouštědla může vést ke zvýšení tloušťky tenkého filmu, což je zapříčiněno agregací primárních vrstev. Dále toto rozpouštědlo slouží k odstranění přebytečného PSS z povrchu, jehož následkem roste poměr PEDOT vůči PSS na povrchu filmu. Kromě toho rozpouštědlo může zvyšovat drsnost filmu. [23] [25]

3 TENKÉ FILMY A JEJICH PŘÍPRAVA

3.1 Tenké filmy

Neustálý pokrok v elektrotechnice si klade za cíl hledání nových materiálů, které budou vykazovat lepší vlastnosti než současné materiály. Mezi tyto klíčové vlastnosti patří např. tloušťka, flexibilita nebo vodivost. Jedním z možných kandidátů na takový materiál jsou polymery, konkrétně jejich tenké filmy. [3]

Tenké filmy jsou obecně struktury materiálů, které vykazují širokou škálu uplatnění. Tenký film se vyznačuje tím, že jeden z jeho rozměrů je výrazně menší než jeho zbylé rozměry. Tento rozměr může mít velikost od jednotek nanometrů až po stovky nanometrů. Tenké filmy je možné připravovat pomocí různých technik z různých materiálů, což způsobuje jejich velkou variabilitu. Jedním z nejvýznamnějších materiálů při přípravě tenkých filmů jsou právě polymery, které můžeme snadno modifikovat, a tak upravovat jejich vlastnosti "na míru" pro konkrétní aplikaci. Možnou nevýhodou polymerů oproti anorganickým materiálům může být jejich nižší tepelná odolnost. [3] [22] [26]

Tenké filmy z vodivých polymerů se po stránce elektrických vlastností přibližují vlastnostem polovodičů, ale zároveň si zachovávají mechanickou flexibilitu a jednoduchou výrobu typickou pro polymery. Největší předností tenkých filmů je zejména jejich vodivost. Díky těmto vlastnostem se dají široce aplikovat v různých oblastech jako jsou např. inteligentní balení, medicína či elektrotechnika. Právě elektrotechnika je jednou z klíčových možností aplikace, protože se tenké filmy dají využít v kontaktech, solárních panelech, tištěných čipech, identifikátorech na radiové bázi (RFID), senzorech apod. Kromě toho mohou tyto filmy sloužit i jako izolanty. [3] [4] [22]

3.2 Metoda rotačního nanášení

Metoda rotačního nanášení je jedna z nejrozšířenějších metod pro přípravu tenkých filmů, přičemž se vyznačuje poměrně velkou jednoduchostí. Vzhledem k tomu, že tato metoda umožňuje tvorbu velmi tenkých vrstev s uniformní tloušťkou, tak se hojně využívá v elektrotechnice pro nanášení povlaků/filmů na různé substráty. [27]

Při této metodě se využívá přístroj s názvem spin coater. Materiál, který chceme nanášet (např. polymer) se převede do roztoku za využití odpovídajícího rozpouštědla. Následně se nanese velmi malé množství tohoto roztoku na střed substrátu. Poté dojde k roztočení držáku přístroje (chuck), který se obvykle pohybuje v řádu tisíců otáček za minutu (RPM).

Při tomto otáčení působí na roztok odstředivá síla, která způsobuje rozprostření roztoku do okrajů substrátu za současného vzniku tenké vrstvy. V průběhu toho se zároveň odpařuje rozpouštědlo. Díky tomu vzniká uniformní vrstva, jejíž tloušťka závisí na řadě parametrů, jako jsou např. procesní podmínky (rychlost otáčení, doba otáčení) nebo vlastnosti nanášeného materiálu (koncentrace rozpouštěné látky nebo použité rozpouštědlo). Obrázek 5 schematicky znázorňuje metodu rotačního nanášení. [28]

Obrázek 5 Schématické znázornění rotačního nanášení. A – spin coater, B – substrát, C – roztok [27]

3.3 Ostatní metody přípravy tenkých filmů

Kromě již popsaného rotačního nanášení existuje řada dalších metod, které se využívají při výrobě tenkých filmů. O vhodnosti aplikace konkrétní metody rozhoduje řada parametrů, mezi které patří např. rozsah výroby (průmyslová nebo laboratorní), velikost připravované plochy, využitý materiál, využitý substrát, tolerance přesnosti apod. [26]

Langmuir-Blodgettova metoda umožnuje přípravu tenkých filmů o přesné tloušťce a vysokém uspořádání. Při této metodě se substrát vytahuje z roztoku, přičemž se na substrátu vytváří film částic adsorbujících se z monovrstvy, která existuje na fázovém rozhraní kapalina plyn. Tato metoda je zejména vhodná při využití látky obsahující jak hydrofobní, tak i hydrofilní složku. Obrázek 6 znázorňuje princip této metody. [29]

Obrázek 6 Schéma přípravy tenkých filmů pomocí Langmuir-Blodgettové metody. [30]

Mezi další metody patří **depozice par**. Tato metoda je vhodná zejména pro nanášení kovů, přičemž nanášení polymerů pomocí této metody je obvykle nemožné, jelikož teplota odpařování je obvykle vyšší než teplota degradace. [26]

Kromě toho se dále využívá polymerace pomocí elektronového bombardování, plazmové polymerace nebo UV polymerace. [26]

Testování různých metod nanášení povlaků však není předmětem této práce, proto se pro přípravu vzorků bude dále využívat pouze metoda spin coating.

4 CÍLE PRÁCE

Hlavním cílem bakalářské práce je optimalizace přípravy tenkých filmů z vybraných inkoustů PEDOT:PSS a jeho modifikace zejména za účelem dosažení co největší měrné vodivosti.

Na základě zásad pro vypracování uvedených v zadání práce a provedené literární rešerše byly stanoveny následující dílčí experimentální kroky k naplnění hlavního cíle:

- výběr vhodných materiálů a volba rozsahu parametrů přípravy vzorků, jejichž vliv na vlastnosti připravených vzorků bude sledován,
- charakterizace připravených tenkých filmů vybranými metodami (mechanická profilometrie, Kelvinova metoda a metoda Van der Pauw pro stanovení elektrické měrné vodivosti),
- na základě naměřených dat vybrat nejvhodnější typ vzorku a jeho přípravy pro další postup,
- testování vlivu vybraných parametrů (složení disperze, úhlová rychlost, temperování) procesu přípravy vzorku na elektrickou měrnou vodivost,
- měření UV/Vis spekter a jejich korelace s tloušťkou vzorků (za účelem možnosti nedestruktivního stanovení tloušťky),
- vyhodnocení výsledků a diskuze optimálních parametrů.

II. PRAKTICKÁ ČÁST

5 NÁVRH EXPERIMENTU

5.1 Příprava vzorků

5.1.1 Materiály a chemikálie

Při čištění substrátů byly využity následující chemikálie: Hellmanex III od výrobce Hellma GmbH & Co. KG; aceton, izopropylalkohol od výrobce Sigma Aldrich (San Chose, U.S.A.). Dále byla využita deionizovaná voda.

Pro modifikaci byly využity následující inkousty PEDOT:PSS: RD CLEVIOS P JET N V2 (dále označovaný jako PJET), Clevios P VP Al 4083 (dále označovaný jako Al4083) a Clevios PH510 (dále označovaný jako PH510). Všechny inkousty byly pořízeny od výrobce H.C. Starck Gmbh.

Při modifikaci zakoupených inkoustů byly využity následující chemikálie: triton X-100; dimethylsulfoxid, pro UV spektroskopii, ≥99,8% od výrobce Sigma Aldrich (San Chose, U.S.A.). Při modifikaci byla také využita deionizovaná voda.

5.1.2 Příprava a čištění substrátů

Pro rotační nanášení byly připraveny substráty následujícím způsobem. Laboratorní sklíčka byla nařezána na rozměr cca 12x12 mm. Tento rozměr byl volen s ohledem na rozměr držáku, který byl využit při měření pomocí metody Van der Pauw. Sklíčka následně byla umístěna do držáku substrátů tak, aby obě plochy substrátu byly volně přístupné kapalině. Takto připravené substráty byly umístěny do litrové kádinky a za využití ultrazvuku čištěny následovně:

- 15 minut v deionizované vodě (cca 500 ml) za současného malého přídavku Hellmanex III (cca 25 µl)
- 15 minut v deionizované vodě (cca 500 ml)
- 15 minut v acetonu (cca 500 ml)
- 15 minut v izopropylalkoholu (cca 500 ml)

Poté byly vyjmuty z kapaliny a sušeny v sušárně při 90 °C po dobu 30 minut. Vyčištěné substráty byly skladovány v exsikátoru v laboratorním skle překrytém parafilmem. Před samotným rotačním nanášením byly substráty čištěny v UV ionizátoru po dobu 10 minut. Po tomto čištění byly substráty ihned využity pro přípravu vzorků.

5.1.3 Modifikace a rotační nanášení PEDOT:PSS

Před samotnou modifikací zakoupených PEDOT:PSS inkoustů byly inkousty podrobeny následujícímu postupu, jehož cílem bylo odstranění potenciálních nečistot a aglomerátů, které by se mohly v zakoupených inkoustech vyskytovat.

Z inkoustů bylo odebráno množství cca 20 ml, které bylo umístěno do rozety a dále homogenizováno za využití přístroje UZ Sonoplus HD 2070 kit. Homogenizace se prováděla ve dvou cyklech vždy po dobu 5 minut a výkonu přístroje 70 %. Mezi jednotlivými cykly byla ponechána pauza 5 minut, aby bylo zajištěno, že nedojde k přehřátí vzorku, které by mohlo vést k jeho degradaci. Z důvodu chlazení byla také rozeta v průběhu homogenizace umístěna do chladné vody.

Po homogenizaci následovalo filtrování inkoustu za využití stříkačkového filtru o porozitě 0,22 μm. Po přefiltrování byly inkousty skladovány v lednici a následně modifikovány za využití DMSO a tritonu. Polární rozpouštědlo DMSO zlepšuje vodivost výsledných filmů a triton jakožto povrchově aktivní látka zvyšuje smáčivost, což je důležité pro metodu rotačního nanášení. [20] Při modifikaci bylo vždy použito stejné množství tritonu (1 hmotnostní procento z celkové hmotnosti) a proměnlivé množství DMSO (4 %, 6 %, 8 %, 10 %, 12 %) a příslušné množství inkoustu. Od každé koncentrace bylo vždy připraveno celkové množství 5 g.

Vzorky vzniklé modifikací byly označeny zkratkou inkoustu (PJET, Al4083, PH510), příslušnou koncentrací DMSO (4 %, 6 %, 8 %, 10 %, 12 %) a teplotou žíhání. Např. název PJET 8 % 120 °C označuje vzorek, který byl složen z 1 % tritonu, 8 % DMSO, a 91 % PJET a následně žíhán při teplotě 120 °C.

Celkově bylo připraveno 13 odlišných řad:

- PH510 koncentrace 4 %, 6 %, 8 %, 10 %, 12 %
- PJET koncentrace 4 %, 6 %, 8 %, 10 %, 12 %
- A14083 koncentrace 8 %, 10 %, 12 %

Tyto vzorky byly rotačně nanášeny za využití přístroje Spin Coater Laurell WS650-Mz za následujících podmínek: STATIC mód, doba rotace 40 s, zrychlení 300 RPM/s, otáčky 1000 – 4000 RPM. Pro každou řadu bylo připraveno několik vzorků, které se lišily rychlostí otáček při nanášení. Modifikace rychlosti otáčení měla za následek získání odlišných tlouštěk výsledných vrstev. Celkově byly využity následující rychlosti otáčení:

1000, 1500, 2000, 2500, 3000, 3500 a 4000 RPM. Při nanášení při otáčkách 1000 a 1500 RPM bylo odpipetováno 25 μl na substrát před samotnou rotací a následně byl spuštěn přístroj. Při otáčkách 2000 – 4000 RPM bylo stejné množství vzorku naneseno na substrát až v průběhu rotace držáku přístroje, a to bez přímého kontaktu pipety se substrátem.

Poté, co byly vzorky rotačně naneseny na substrát, byly vyžíhány v sušárně obvykle při teplotě 150 °C po dobu 1 hodiny. Pro zkoumání vlivu teploty na vlastnosti vodivých vrstev byly některé vzorky žíhány při teplotě 120 a 150 °C. Tabulka 1 shrnuje využité koncentrace, rychlosti otáčení a koncentrace. Celkově bylo připraveno 15 různých řad, které obsahovaly 77 vzorků. Připravené vzorky byly skladovány v exsikátoru v laboratorním skle, utěsněné parafilmem. Parametry experimentů byly nastaveny s ohledem na použitou literaturu a definované cíle práce.

Inkoust	Koncentrace DMSO [%]	Otáčky [RPM]	Teplota žíhání [°C]
PH510	4	2000, 2500, 3000, 3500, 4000	150
PH510	6	2000, 2500, 3000, 3500, 4000	150
PH510	8	1000 , 1500, 2000, 2500, 3000, 3500, 4000	120
PH510	8	2000, 2500, 3000, 3500, 4000	150
PH510	8	2000, 2500, 3000, 3500, 4000	180
PH510	10	2000, 2500, 3000, 3500, 4000	150
PH510	12	2000, 2500, 3000, 3500, 4000	150
PJET	4	2000, 2500, 3000, 3500, 4000	150
PJET	6	2000, 2500, 3000, 3500, 4000	150
PJET	8	2000, 2500, 3000, 3500, 4000	150
PJET	10	2000, 2500, 3000, 3500, 4000	150
PJET	12	2000, 2500, 3000, 3500, 4000	150
A14083	8	2000, 2500, 3000, 3500, 4000	150
A14083	10	2000, 2500, 3000, 3500, 4000	150
A14083	12	2000, 2500, 3000, 3500, 4000	150

Tabulka 1 Přehled připravených řad dle inkoustu, koncentrace DMSO, otáček a teploty vyžíhání.

5.2 Charakterizace vzorků

5.2.1 Mechanická profilometrie

Pro stanovení tloušťky vzorků byla využita mechanická profilometrie. Vzorky byly měřeny na přístroji Dektat XT-E (Bruker) za následujících podmínek: typ skenu – standardní sken, rozsah – 65,5 μm, profil – "Hills and Valeys", typ pera – rádius 2,5 μm, síla 3 mg, délka - 700 μm, čas – 10 s, rozlišení – bilaterální.

Pro měření byla na vzorku pomocí ostrého hrotu vytvořena rýha o šířce cca 100 μm, a to tak, aby nedošlo k poškození substrátu, ale pouze jenom vzorku. Následně byly provedeny pro každý vzorek 3 měření na různých místech vzorku. Pro tato měření bylo využito 2bodové lineární fitování a následně byla odečtena tloušťka vzorku. Z těchto 3 měření byla následně stanovena průměrná tloušťka vzorku.

5.2.2 UV-Vis spektroskopie

Pro měření UV-Vis spekter vzorků byl využit přístroj Perkin Elmer Lambda 1050. Při měření bylo nejdříve provedeno měření baseline, aby bylo z výsledných spekter odečteno spektrum absorbance samotného substrátu a spektra tak obsahovala pouze samotný vzorek. Spektra byla měřena v rozsahu vlnových délek 380 – 800 nm.

Využije-li se předpoklad, že absorbance vzorku je závislá na jeho tloušťce (s rostoucí tloušťkou je vzorek méně průhledný, a tak roste i absorbance vzorku), jsme schopni získat závislost absorbance na tloušťce vzorku. K tomu je však potřeba změřit samotnou tloušťku vzorku, a to za využití mechanické profilometrie. Ze získaných tlouštěk a absorbancí je možné následně vytvořit kalibrační křivku, která určuje závislost tloušťky vzorku na absorbanci pro konkrétní vlnovou délku.

Po sestrojení této křivky je možné následně určit nedestruktivně tloušťku vzorku, a to na základě změřené absorbance na přístroji pro měření UV-Vis. Nedestruktivní určení tloušťky vzorku je důležité pro měření rezistivity, pro které je nutné znát tloušťku vzorku, avšak samotný vzorek nesmí být před měřením poškozen.

Z naměřených hodnot absorbance a tlouštěk byla sestrojena kalibrační křivka pro řadu PH510 8 % 120 °C. Aby naměřená křivka obsahovala velký rozsah tlouštěk, byly pro tuto řadu připraveny také vzorky o otáčkách 1000 a 1500 RPM, které obecně vykazovaly vyšší míru nehomogenity, a tak nebyly pro zbytek řad připravovány.

5.2.3 Kelvinova metoda

Kelvinova metoda byla využita pro stanovení vodivosti vzorku. Pro toto měření byl využit systém pro měření plošného elektrického odporu tenkých vrstev od výrobce Ossila Ltd s označení Four-Point Probe. Při měření byla nejdříve ověřena funkčnost přístroje při měření za využití ITO standardu. Následně byly měřeny samotné vzorky, a to za následujících podmínek: rozsah – 1 (max 100 mA), počet vzorků na bod – 8192, cílový proud – 1 mA, maximální napětí – 2 V, nárust napětí – 0,01 V, počet opakování – 25, velikost vzorku 12 mm x 12 mm. Cílový proud, který se využívá jako pracovní bod, byl určen z voltampérové křivky, která byla získána při postupném nárůstu napětí o 0,01 V.

Z měření byl získán plošný odpor, ze kterého byla na základě měření tloušťky z mechanického profilometru dopočítána rezistivita.

5.2.4 Metoda Van der Pauw

Pro měření pomocí metody Van der Pauw byl využit přístroj Linseis HCS 1. Při měření byl nejdříve změřen ITO standard a následně byly změřeny jednotlivé vzorky. V průběhu měření byl nejdříve změřen maximální proud a následně byl změřen vzorek za využití proudu nižšího než maximálního (pracovní bod). Před samotným finálním měřením byl také proveden test připojení, který sloužil k otestování připojení vzorku a linearity voltampérových křivek. Měření bylo prováděno při pokojové teplotě, konkrétně 21 °C.

Vzhledem k časové náročnosti měření bylo měření pomocí této metody provedeno pouze pro řadu PH510 8 % 120 °C, aby bylo možné porovnat měření pomocí Kelvinovy a Van der Pauw metody.

6 VÝSLEDKY A DISKUZE

6.1 Vyhodnocení vlivu parametrů na přípravu vzorků

6.1.1 Literární průzkum a výběr materiálů

V této práci byly studovány 3 odlišné disperze PEDOT:PSS, a to konkrétně PEDOT:PSS: RD CLEVIOS P JET N V2 (dále označovaný jako PJET), Clevios P VP Al 4083 (dále označovaný jako Al4083) a Clevios PH510 (dále označovaný jako PH510). Tyto materiály byly vybrány na základě literární rešerše, kde byly sledovány hodnoty rezistivity. Tabulka 2 obsahuje hodnoty rezistivity vybraných inkoustů.

Materiál	Rezistivita (min) [Ω·m]	Rezistivita (max) [Ω·m]
Heraeus Clevios [™] P VP Al 4083	5	50
Heraeus Clevios [™] P Jet N	$1,1 \cdot 10^{-4}$	3,3 · 10 ⁻⁴
Heraeus Clevios [™] P Jet N V2	5 · 10 ⁻⁵	$5 \cdot 10^{-5}$
Heraeus Clevios [™] PH 510	3,3 · 10 ⁻⁵	3,3 · 10 ⁻⁵
Sigma Aldrich Plexcore® OC RG-1115 organic conductive ink	0,1	3
Sigma Aldrich Poly(thiophene-3-[2-(2- methoxyethoxy)ethoxy]-2,5-diyl), sulfonated solution	0,25	2,5

Tabulka 2 Hodnoty¹ rezistivity vybraných disperzí PEDOT:PSS

Z nalezených inkoustů byly pro další studium vybrány 2 inkousty s nejnižší rezistivitou dle výrobce (PJET, PH510) a dále inkoust s nejvyšší rezistivitou (Al4083). Tyto inkousty mezi hodnotami rezistivit vykazují rozdíl až 5 řádů.

6.1.2 Vliv složení výchozího vzorku/disperze

Pro zjištění vlivu složení výchozího vzorku na výslednou konduktivitu byly připraveny pro každý inkoust vzorky o rozdílné koncentraci DMSO pro otáčky 2000, 2500, 3000, 3500 a 4000 RPM a teplotu 150 °C.

Pro materiál Al4083 byly připraveny 3 odlišné koncentrace, a to 8 %, 10 %, 12 %, které byly měřeny za využití Kelvinovy metody. Všechny koncentrace vykazovaly tak vysokou

¹ Hodnoty byly získány z materiálových listů na stránkách <u>https://matweb.com</u> a <u>https://sigmaaldrich.com</u>.

rezistivitu, že je nebylo možné snadno změřit. Z toho důvodu nejsou pro Al4083 vynesena v grafech žádná data. Dá se říci, že materiál Al4083 při této koncentraci DMSO nevykazoval výraznější změnu elektrických vlastností oproti stavu před modifikací.

Obrázek 7 znázorňuje měření pomocí Kelvinovy metody. Při měření se nejdříve zjišťuje pracovní bod prostřednictvím voltampérové (alternativně ampérvoltové) křivky, která je znázorněna v levém horním grafu. Aby měření poskytovalo relevantní výsledky, je důležité, aby křivka měla lineární charakter. Po dosažení příslušeného cílového proudu se využije tento proud pro měření, které se opakuje 25krát. Toto je znázorněno v dolním grafu. Na základě jednotlivých měření systém poté vyhodnotí průměrnou hodnotu plošného odporu.

Obrázek 7 Ukázka měření pomocí Kelvinovy metody.

Graf 1 znázorňuje závislost průměrné rezistivity (změřené pomocí Kelvinovy metody) a směrodatné odchylky (pro otáčky 2000, 2500, 3000, 3500 a 4000 RPM) na koncentraci DMSO pro inkoust PH510.

Graf 1 Závislost průměrné rezistivity na koncentraci DMSO pro PH510 150 °C.

Z grafu je patrné, že minimální hodnota rezistivity se nachází mezi koncentrací 8 a 10 %, jež vykazují podobnou hodnotu $(4,45 \pm 0,17) \cdot 10^{-5}$ a $(4,43 \pm 0,09) \cdot 10^{-5} \Omega \cdot m$ (Tabulka 3). Při porovnání tabulkové rezistivy pro PH510 $3,3 \cdot 10^{-5} \Omega \cdot m$ lze vidět, že rezistivita řádově odpovídá tabulkové hodnotě. Vzorky o koncentraci 6 a 12 % vykazují poměrně velké směrodatné odchylky, což se dá přisuzovat metodě rotačního nanášení a případné nehomogenitě vzorku.

Tabulka 3 Závislost průměrné rezistivity na koncentraci DMSO pro PH510 150 °C a PJET 150 °C.

Koncentrace DMSO	4 %	6 %	8 %	10 %	12 %
PH510	(5,6 ± 0,4) ·10 ⁻⁵	(4,7 ± 0,7) ·10 ⁻⁵	$(4,45\pm0,17)$ $\cdot10^{-5}$	$(4,43 \pm 0,09)$ $\cdot 10^{-5}$	(5,0±0,7) ·10 ⁻⁵
PJET	$(6,3\pm0,3)$ $\cdot10^{-5}$	$(5,1\pm 0,5)$ $\cdot 10^{-5}$	$(14,5\pm1,7)$ $\cdot10^{-5}$	$(12,3 \pm 1,9)$ $\cdot 10^{-5}$	$(7,4\pm0,9)$ $\cdot10^{-5}$

Graf 2 znázorňuje obdobná data jako předcházející graf, ale pro materiál PJET. Z grafu lze vidět, že optimální koncentrace DMSO lze určit obtížně, protože tvar křivky nevykazuje jednoznačné minimum. Pro podrobnější určení optimální koncentrace nutné provést další experimenty. S ohledem by bylo na hlavní cíl práce, najít nejvodivější materiál, tj. pokud možno co nebyl vzorek s nižší vodivostí dále prozkoumán (rezistivita PJET $5,1\cdot 10^{-5} \Omega \cdot m$ oproti $4,4\cdot 10^{-5} \Omega \cdot m$ pro PH510 – Tabulka 3). Změna rezistivity je oproti nemodifikovanému vzorku podobná jako u PH510.

Graf 2 Závislost průměrné rezistivity na koncentraci DMSO pro PJET 150 °C.

6.1.3 Vliv úhlové rychlosti

Pro zkoumání vlivu úhlové rychlosti na vlastnosti připravených vrstev byly připraveny vzorky pro PH510 8 % 120 °C o otáčkách 1000, 1500, 2000, 2500, 3000, 3500 a 4000 RPM. Tabulka 4 popisuje průměrné hodnoty tlouštěk pro PH510 8 % 120 °C, na základě těchto hodnot byl sestrojen Graf 3, který znázorňuje tloušťku výsledné vrstvy na úhlové rychlosti. Z grafu je patrné, že tloušťka vrstvy s narůstající úhlovou rychlostí klesá a má exponenciální charakter.

Otáčky [RPM]	Průměrná tloušťka vrstvy [nm]
1000	588 ± 5
1500	458 ± 9
2000	375 ± 13
2500	297 ± 16
3000	289 ± 8
3500	258 ± 11
4000	239 ± 10

Tabulka 4 Závislost tloušťky vrstvy na použitých otáčkách pro PH510 8 % 120 °C.

Graf 3 Závislost tloušťky vrstvy na použitých otáčkách pro PH510 8 % 120 °C.

Tloušťka vzorků byla získána pomocí mechanického profilometru. Obrázek 8 je ukázkou vyhodnocení měření na mechanickém profilometru. Po provedení 2bodového lineárního fitování došlo k "zarovnání" substrátu, díky čemuž se poté mohla odečíst tloušťka vzorku jako rozdíl výšek R (profil připraveného vzorku) a M (profil substrátu – sklíčko).

Obrázek 8 Ukázka vyhodnocení měření na mechanickém profilometru.

Obrázek 9 zobrazuje vzorek na mechanickém profilometru. Z obrázku je jednoznačně patrná provedené rýha, která je poměrně pravidelná. Zároveň lze vidět, že připravený vzorek vykazuje zajímavou strukturu povrchu, kdy povrch není zcela hladký. Toto je v souladu s předchozím obrázkem z vyhodnocení profilometrických dat.

Obrázek 9 Fotografie vzorku na mechanickém profilometru.

Obrázek 10 znázorňuje vzorky, které byly využity pro vytvoření grafu 3. Při vizuálním srovnání vzorků je patrné, že kromě samotné tloušťky má úhlová rychlost také vliv na homogenitu výsledných vzorků. Při nižších otáčkách (1000, 1500, 2000 RPM) jsou připravené vrstvy značně nehomogenní, což se projevuje vyšší zabarvením v rozích a okrajích vzorku. Dá se tedy přisuzovat, že vzorky v těchto oblastech jsou tlustší než ve středové oblasti. Nejvyšší úhlové rychlosti (3500 a 4000 RPM) vykazují nejvyšší homogenitu vrstvy, a to bez zcela jakýkoliv defektů. Vysoké úhlové rychlosti, které poskytují vrstvy s nižší tloušťkou, zvyšují laterární odpor, avšak snižují odpor kolmý. V závislosti na aplikaci je nutné volit takovou rychlost, aby byla vrstva, pokud možno homogenní. Na zkoumaných vzorcích se dají doporučit úhlové rychlosti 3500 nebo 4000 RPM.

Obrázek 10 Fotografie vzorků PH510 8 % 120 °C, zleva 1000, 1500, 2000, 2500, 3000, 3500, 4000 RPM.

Z hlediska zkoumání vlivu úhlové rychlosti na rezistivitu vrstev se dá říct, že z měřených dat není možné snadno stanovit, zda úhlová rychlost ovlivňuje rezistivitu. To je dané např. vysokou směrodatnou odchylkou měření. Vliv úhlové rychlosti na optické vlastnosti (absorbanci) je dále diskutován v kapitole věnující se výsledkům z měření UV-Vis spektroskopie.

6.1.4 Vliv teploty žíhání

Pro stanovení vlivu teploty žíhání byly připraveny 3 řady PH510 8 %, a to při teplotách 120 °C, 150 °C a 180 °C. Tyto teploty byly vybrány s ohledem na charakteristické teploty PEDOT:PSS, aby při žíhání nedocházelo k degradaci vrstev. [31]

Teplota žíhání má vliv na výslednou rezistivitu vrstvy, nicméně její vliv je menší při porovnání s koncentrací DMSO (modifikací nanášené suspenze). Při teplotě 120 °C se rezistivita snížila na hodnotu $(4,10 \pm 0,16) \cdot 10^{-5} \Omega \cdot m$, pro teplotu 180 °C $(4,00 \pm 0,16) \cdot 10^{-5} \Omega \cdot m$ oproti $(4,45 \pm 0,17) \cdot 10^{-5} \Omega \cdot m$ pro teplotu 150 °C. Tabulka 5 znázorňuje tyto hodnoty.

Tabulka 5 Závislost průměrné rezistivity na teplotě pro PH510 8 %.

Teplota	120 °C	150 °C	180 °C
PH510 8 %	$(4,10\pm0,16)\cdot10^{-5}$	$(4,45\pm0,17)\cdot10^{-5}$	$(4,00\pm0,16)\cdot10^{-5}$

Nižší či vyšší teploty žíhání tak nejspíše pozitivně ovlivňují rezistivitu studovaného materiálů, ale zejména vyšší teplotu je nutné volit s ohledem na potenciální degradaci. S ohledem na vysokou směrodatnou odchylku měření však nelze snadno stanovit jednoznačnou závislost.

Graf 4 Závislost průměrné rezistivity na teplotě vyžíhání pro PH 510 8 % 120 °C, 150 °C, 180 °C.

6.1.5 Diskuze optimálních parametrů

Optimální parametry přípravy tenkých vrstev je nutné volit vždy s ohledem na využívaný materiál. Nejvýznamnější vliv ze studovaných parametrů má modifikace samotného materiálu prostřednictvím složení nanášené suspenze. Ideální koncentrace DMSO je závislá na využívaném materiálu. Pro PH510 je ideální koncentrace mezi 8 až 10 % DMSO.

Teplota žíhání není zanedbatelná, ale její vliv není až tak významný.

Úhlová rychlost nejspíše neovlivňuje významně rezistivitu, ale má významný vliv na tloušťku vrstvy a její homogenitu. S ohledem na tyto skutečnosti je vhodné volit spíše vyšší otáčky, např. 4000 RPM.

6.2 Převodní křivka UV-Vis spektroskopie a mechanické profilometrie

Graf 5 obsahuje změřené UV-Vis spektra pro PH510 8 % 120 °C pro různé rychlosti otáčení. Z grafu je patrné, že vyšší rychlost otáčení má za následek nižší absorbanci, což je způsobeno menší tloušťkou výsledné vrstvy a její vyšší transparentností.

Graf 5 UV-Vis spektra pro PH510 8 % 120 °C, rychlost otáček 1000, 1500, 2000, 2500, 3000, 3500, 4000 RPM.

Na základě změřených UV-Vis spekter a tloušťky vzorků získané pomocí mechanické profilometrie byla vytvořena převodní křivka mezi UV-Vis absorbancí a tloušťkou

materiálu pro vzorky PH 510 8 % 120 °C, a to konkrétně pro vlnovou délku 500 nm. Graf 6 znázorňuje tuto převodní křivku. UV-Vis spektra jsou přílohou této práce, a tak je možné na základě nich vytvořit převodní křivku pro jakoukoliv preferovanou vlnovou délku.

Graf 6 Převodní křivka mezi UV-Vis a tloušťkou pro vlnovou délku 500 nm a vzorek PH510 8 % 120 °C.

Převodní křivka je dána rovnicí (20),

$$A = 0,000209t - 0,007 \tag{20}$$

kde *t* je tloušťka vrstvy v nanometrech a *A* absorbance. Koeficient determinace je roven 0,98907, takže převodní křivka je poměrně spolehlivá a může sloužit k nedestruktivnímu stanovení tloušťky vrstvy. Tabulka 6 obsahuje hodnoty, které byly využity pro vytvoření této křivky.

Tabulka 6 Hodnoty otáček, absorbance (pro vlnovou délku 500 nm) a tloušťky pro vzorek PH510 8 % 120 °C sloužící k vytvoření převodní křivky.

Otáčky [RPM]	Absorbance [-]	Tloušťka [nm]
1000	0,1176	588
1500	0,0872	458
2000	0,0726	375
2500	0,0569	297
3000	0,0527	289
3500	0,0432	258
4000	0,0472	239

6.3 Porovnání vodivosti pomocí Kelvinovy a van der Pauw metody

Všechny dříve uvedené hodnoty rezistivity byly změřeny pomocí Kelvinovy metody. Pro řadu PH510 8 % 120 °C, která obsahovala 7 vrstev o různých otáčkách byla rezistivita změřena také pomocí metody Van der Pauw, aby byla ověřena spolehlivost Kelvinovy metody.

V přílohách je možné najít výsledné reporty z měření metodou Van der Pauw. Tyto reporty kromě rezistivity obsahují další veličiny, které by pomocí Kelvinovy metody nebylo možné získat. Jedná se např. o Hallův koeficient, mobilitu nebo koncentraci nábojů.

Graf 7 znázorňuje hodnoty rezistivity změřené pomocí obou metod v závislosti na úhlové rychlosti. Bohužel se nepodařilo pomocí metody Van der Pauw změřit hodnoty rezistivity pro otáčky 1000 a 2000 RPM, což bylo zapříčiněno nejspíše nehomogenitou vzorků a přítomnosti nečistot/bublin ve vzorcích. Z měřených dat je patrné, že obě metody poskytují velmi podobné hodnoty, a to konkrétně průměrnou hodnotu rezistivity $4,1\cdot10^{-5} \Omega \cdot m$ pro Kelvinovu metodu a $4,4\cdot10^{-5} \Omega \cdot m$ pro metodu Van der Pauw. Odchylky jsou způsobeny nejspíše nehomogenitou vzorků nebo také chybou metod, nicméně hodnoty rezistivity jsou potvrzeny alespoň 2 nezávislými metodami. Z grafu by se dalo usuzovat, že rezistivita je závislá na použité úhlové rychlosti, to však nebylo v této práci potvrzeno.

Graf 7 Porovnání hodnot rezistivity pro vzorky PH510 8 % 120 °C, rychlost otáček 1000, 1500, 2000, 2500, 3000, 3500, 4000 dle Kelvinovy a Van der Pauw metody.

ZÁVĚR

Tato práce se zabývala přípravou elektricky vodivých PEDOT:PSS tenkých filmů a jejím cílem bylo optimalizovat proces přípravy elektricky vodivých polymerních filmů za použití PEDOT:PSS tak, aby dosahovaly co možná nejnižší rezistivity.

Za tímto účelem proběhla literární rešerše, na základě které byly zvoleny 3 materiály k dalšímu praktickému studiu. Tyto materiály byly podrobeny funkcionalizaci za využití tritonu a dimethylsulfoxidu, přičemž byl studován vliv koncentrace dimethylsulfoxidu na výslednou rezistivitu. Dále byl studován vliv teploty žíhání a úhlové rychlosti na výsledné vlastnosti.

Celkově bylo připraveno 15 různých řad, které obsahovaly 77 vzorků. Všechny vzorky byly charakterizovány pomocí Kelvinovy metody a mechanické profilometrie, díky čemuž byla zjištěna jejich rezistivita. Vybrané vzorky byly dále charakterizovány pomocí metody Van der Pauw a UV-Vis spektroskopie.

Ze získaných dat byla metodou UV/Vis získána převodní křivka mezi absorbancí a tloušťkou vzorku, kterou je možné využít k nedestruktivnímu stanovení tloušťky vzorku. Znalost tloušťky vrstvy je nezbytná pro stanovení rezistivity materiálu vybranými metodami. Dále byly diskutovány vlivy procesních parametrů, jako je složení vzorku, teplota žíhání a úhlová rychlost na výsledné vlastnosti připravených tenkých vrstev.

Nejlepších výsledků bylo dosaženo pro PH510 s koncentrací dimethylsulfoxidu 8 – 10 %, kde díky funkcionalizaci bylo dosaženo nejnižší hodnoty rezistivity, která řádově odpovídá tabulkové hodnotě. Teplota na výslednou rezistivitu nemá významný vliv, nicméně nejlepších výsledků bylo dosaženo pro teploty 120 °C a 150 °C. Úhlová rychlost výrazně neovlivňuje rezistivitu, ale má významný vliv na homogenitu vzorku a jeho celkovou kvalitu. Samotné podmínky přípravy filmu je však vždy nutné volit s ohledem na použitý materiál a finální aplikaci. Získané výsledky je pak možné využít při laboratorní práci nebo při návrhu elektrotechnických zařízení "na míru", díky čemuž je možné připravit materiál s vhodnými vlastnostmi pro danou aplikaci.

SEZNAM POUŽITÉ LITERATURY

- AWUZIE, Chioma I. Conducting Polymers. Online. *Materials Today: Proceedings*.
 2017, roč. 4, č. 4, s. 5721-5726. ISSN 2214-7853. Dostupné z: https://doi.org/10.1016/j.matpr.2017.06.036. [cit. 2024-01-13].
- [2] KATEDRA MAKROMOLEKULÁRNÍ FYZIKY. Vodivé polymery a polovodiče.
 Online. [2024] Dostupné z: https://kmf.troja.mff.cuni.cz/okno/vyzkum.php?idv=9.
 [cit. 2024-01-13].
- [3] NARDES, Alexandre Mantovani. On the conductivity of PEDOT:PSS thin films. Online, disertační práce. Eidhoven University of Technology, 2007. Dostupné z: https://doi.org/10.6100/IR631615. [cit. 2024-01-13].
- [4] VALTAKARI, Dimitar; LIU, Jun; KUMAR, Vinay; XU, Chunlin; TOIVAKKA, Martti a SAARINEN, Jarkko J. Conductivity of PEDOT: PSS on Spin-Coated and Drop Cast Nanofibrillar Cellulose Thin Films. Online. *Nanoscale Research Letters*. 2015, roč. 10, č. 1, s. 711-718. ISSN 1931-7573. Dostupné z: https://doi.org/10.1186/s11671-015-1093-y. [cit. 2024-01-13].
- [5] HALLIDAY, David; RESNICK, Robert a WALKER, Jearl. Fyzika. Svazek 2. 2.přeprac. vyd. Brno: VUTIM, 2013. ISBN 978-80-214-4123-1.
- [6] KUPHALDT, Tony R. Lessons In Electric Circuits Volume I. Online. Ibiblio.
 Copyright (C) 2000-2023. Dostupné z: https://www.ibiblio.org/kuphaldt/electricCircuits/DC/index.html [cit. 2024-01-13].
- [7] OSSILA. Calculate Sheet Resistance Using the Four-Probe Method. Online. [2024].
 Dostupné z: https://www.ossila.com/pages/sheet-resistance-theory. [cit. 2024-01-13].
- [8] NORTHRUP, Edwin F. Methods of Measuring Electrical Resistance. Science. 1913, roč. 37, č. 954, s. 562-564. ISSN 00368075.
- [9] MICCOLI, Ilio.; EDLER, Frederik.; PFNÜR, Herbert. a TEGENKAMP, Chrictoph. The 100th anniversary of the four-point probe technique: the role of probe geometries in isotropic and anisotropic systems. Online. *Journal of Physics: Condensed Matter.* 2015, roč. 27, č. 22. ISSN 0953-8984. Dostupné z:

https://doi.org/10.1088/0953-8984/27/22/223201. [cit. 2024-01-13].

- [10] SMITS, Fenne M. Measurement of Sheet Resistivities with the Four-Point Probe: the role of probe geometries in isotropic and anisotropic systems. Online. *Bell System Technical Journal*. 1958, roč. 37, č. 3, s. 711-718. ISSN 0005-8580. Dostupné z: https://doi.org/10.1002/j.1538-7305.1958.tb03883.x. [cit. 2024-01-13].
- [11] LINSEIS. Van-der-Pauw measurement. Online. [2024]. Dostupné z: https://www.linseis.com/en/methods/van-der-pauw-measurement/. [cit. 2024-01-13].
- [12] WEBSTER, John. The Measurement, Instrumentation and Sensors Handbook. CRC Press, 1999. ISBN 0-8493-2145-X.
- [13] VAN DER PAUW, Leo. J. A METHOD OF MEASURING SPECIFIC RESISTIVITY AND HALL EFFECT OF DISCS OF ARBITRARY SHAPE. Online. In: SZE, S M (ed.). Semiconductor Devices: Pioneering Papers. 1. WORLD SCIENTIFIC, 1991, s. 174-182. ISBN 978-981-02-0209-5. Dostupné z: https://doi.org/10.1142/9789814503464_0017. [cit. 2024-01-13].
- [14] TAHERIAN, Reza. The Theory of Electrical Conductivity. In: Electrical Conductivity in Polymer-Based Composites: Experiments, Modelling and Applications. Elsevier, 2019, s. 1-18. ISBN 9780128125410.
- [15] KIM, Youngno; KIM, Yunryeol a KIM, Jung. Highly Conductive PEDOT: PSS Thin Films with Two-Dimensional Lamellar Stacked Multi-Layers. Online. *Nanomaterials*. 2020, roč. 10, č. 11. ISSN 2079-4991. Dostupné z: https://doi.org/10.3390/nano10112211. [cit. 2024-01-13].
- [16] KAUR, Gagan; ADHIKARI, Raju; CASS, Peter; BOWN, Mark a GUNATILLAKE, Pathiraja. Electrically conductive polymers and composites for biomedical applications. Online. *RSC Advances*. 2015, roč. 5, č. 47, s. 37553-37567. ISSN 2046-2069. Dostupné z: https://doi.org/10.1039/C5RA01851J. [cit. 2024-01-13].
- [17] ZHENG, Erjin, Priyesh JAIN, Hao DONG, Zhiyin NIU, Shinya CHEN, Shukun ZHONG a Qiuming YU. Chemical Polymerization of Hydroxymethyl and Chloromethyl Functionalized PEDOT: PSS. Online. ACS Applied Polymer

Materials, 2019, roč. 1, č. 11, s. 3103-3114. ISSN 2637-6105. Dostupné z: https://doi.org/10.1021/acsapm.9b00757. [cit. 2024-01-13].

- [18] BALINT, Richard; CASSIDY, Nigel J. a CARTMELL, Sarah H. Conductive polymers: Towards a smart biomaterial for tissue engineering. Online. *Acta Biomaterialia*. 2014, roč. 10, č. 6, s. 2341-2353. ISSN 17427061. Dostupné z: https://doi.org/10.1016/j.actbio.2014.02.015. [cit. 2024-01-13].
- [19] OSSILA. PEDOT:PSS (Poly(3,4-ethylenedioxythiophene) Polystyrene Sulfonate).
 Online. [2024]. Dostupné z: https://www.ossila.com/collections/pedot. [cit. 2024-01-13].
- [20] DAUZON, Emilie; MANSOUR, Ahmed E. a NIAZI Muhammad R. Conducting and Stretchable PEDOT:PSS Electrodes: Role of Additives on Self-Assembly, Morphology and Transport. Online. ACS Appl. Mater. Interfaces. 2019, roč. 11, č. 19, s. 17570-17582. ISSN 1944-8244. Dostupné z: https://doi.org/10.1021/acsami.9b00934 [cit. 2024-01-13].
- [21] MAHAJAN, Mrunal S.; MARATHE, Dagadu M. a GHOSH Sanjay S. Changes in in-plane electrical conductivity of PEDOT: PSS thin films due to electric field induced dipolar reorientation. Online. *RSC Advances*. 2015, roč. 5, č. 105, s. 86393-86401. ISSN 2046-2069. Dostupné z: https://doi.org/10.1039/C5RA13610E. [cit. 2024-01-13].
- [22] ŠEVČÍK, Jakub. Příprava a charakterizace nanokompozitních tenkých filmů s využitím v organické elektronice. Disertace. Zlín: Univerzita Tomáše Bati ve Zlíně, Fakulta technologická, 2019.
- [23] YAN, Hu a CHENG, Wenzhen. Highly Conductive PEDOT/PSS Thin Films for Potential Organic Transparent Electrodes of Touchscreens. Online. *Recent Patents* on Materials Science. 2012, roč. 6, č. 1,, s. 68-74. ISSN 18744648. Dostupné z: https://doi.org/10.2174/1874464811306010068. [cit. 2024-01-13].
- [24] GIRTAN, Mihaela; MALLET, Romain a SOCOL, Marcela. On the Physical Properties PEDOT: PSS Thin Films. Online. *Materials Today Communications*. 2020, roč. 22, č. 19, s. 17570-17582. ISSN 2352-4928. Dostupné z: https://doi.org/10.1016/j.mtcomm.2019.100735. [cit. 2024-01-13].

- [25] NARDES, Alexandre Mantovani; KEMERINK, Martijn a JANSSEN, René A. J. Microscopic Understanding of the Anisotropic Conductivity of PEDOT: PSS Thin Films. Online. *Advanced Materials*. 2007, roč. 19, č. 9, s. 1196-1200. ISSN 0935-9648. Dostupné z: https://doi.org/10.1002/adma.200602575. [cit. 2024-01-13].
- [26] LICARI, James J. Handbook of Polymer Coatings for Electronics: Chemistry, Technology and Applications. 2 vyd. William Andrew, 1991. ISBN 978-0815512356.
- [27] WASHO, B. D. Rheology and Modeling of the Spin Coating Process. Online. *IBM Journal of Research and Development*. 1977, roč. 21, č. 2, s. 190-198. ISSN 0018-8646. Dostupné z: https://doi.org/10.1147/rd.212.0190. [cit. 2024-01-13].
- [28] TYONA, David M. A theoretical study on spin coating technique. Online. Advances in materials Research. 2013, roč. 2, č. 4, s. 195-208. ISSN 2234-0912. Dostupné z: https://doi.org/10.12989/amr.2013.2.4.195. [cit. 2024-01-13].
- [29] PETTY, Michael C. Langmuir-Blodgett Films: An Introduction. Cambridge University Press, 1996. ISBN 9780521424509.
- [30] BIOLIN SCIENTIFIC. Fabricating Highly Organized Nanoparticles Thin Films. Online., Dostupné z: http://www.biolinscientific.com/zafepress.php?url=%2Fpdf%2FKSV%20NIMA%2F Application%20Overviews%2Ffabricating-highly-organized-nanoparticle-thinfilms.pdf [cit. 2024-01-13].
- [31] MERCK. Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate). Online. 2024, Dostupné z: https://www.sigmaaldrich.com/CZ/en/product/aldrich/655201. [cit. 2024-01-13].

SEZNAM POUŽITÝCH SYMBOLŮ A ZKRATEK

°C	stupeň Celsia
μl	mikrolitr
∞	nekonečno
A	absorbance
$A_{ m H}$	Hallův koeficient
A14083	Clevios P VP Al 4083
Bz	intenzita magnetického pole
DMSO	dimethylsulfoxid
dV/dr	změna potenciálu v závislosti na změně poloměru r
Ε	intenzita elektrického pole
EDOT	ethylenedioxythiofen
G	gram
Н	tloušťka
Ι	elektrický proud
$I_{ m Hall}$	Hallův proud
$I_{\rm XY}$	proud mezi kontakty X a Y (A, B, C, D)
J	hustota elektrického proudu
L	délka vodiče
LED	světelná dioda
mA	miliampér
mg	miligram
ml	mililitr
mm	milimetr
nm	nanometr
OLED	organické světelné diody
PANI	polyanilin
PEDOT:PSS	poly(3,4-ethylenedioxythiophen) polystyrensulfonát

PH510	Clevios PH510
PJET	PEDOT: PSS: RD CLEVIOS P JET N V2
РРу	Polypyrrol
PSS	polystyren sulfonová kyselina
R	Odpor
r	poloměr (r) ekvipotenciální polokoule (válce)
<i>r</i> ′	poloměr (r') ekvipotenciální polokoule (válce)
$R_{\rm ab,cd}$	horizontální odpor
R _{da,bc}	vertikální odpor
RPM	počet otáček za minutu (Revolutions Per Minute)
RPM/s	(počet otáček za minutu) za sekundu
R_s	plošný odpor
S	průřez vodiče
S	Sekunda
t	tloušťka filmu
U	Napětí
V	Volt
<i>V</i> ′	potenciál ve vzdálenosti r' od proudové sondy
$V_{\rm X}$	potenciál na kontaktu X (A, B, C, D)
ΔB_{z}	změna intenzity magnetického pole
$\Delta R_{ m AC,DB}$	změna diagonálního Van der Pauw odporu
ΔV	změna napětí
$\Delta V_{ m Hall}$	změna Hallova napětí
π	Ludolfovo číslo
ρ	rezistivita
σ	konduktivita
Ω	ohm
Ω·m	ohm metr
$\Omega \cdot m^{-1}$	ohm na metr

SEZNAM GRAFŮ

Graf 1 Závislost průměrné rezistivity na koncentraci DMSO pro PH510 150 °C32
Graf 2 Závislost průměrné rezistivity na koncentraci DMSO pro PJET 150 °C33
Graf 3 Závislost tloušťky vrstvy na použitých otáčkách pro PH510 8 % 120 °C34
Graf 4 Závislost průměrné rezistivity na teplotě vyžíhání pro PH 510 8 % 120 °C, 150 °C, 180 °C
Graf 5 UV-Vis spektra pro PH510 8 % 120 °C, rychlost otáček 1000, 1500, 2000, 2500, 3000, 3500, 4000 RPM
Graf 6 Převodní křivka mezi UV-Vis a tloušťkou pro vlnovou délku 500 nm a vzorek PH510 8 % 120 °C
Graf 7 Porovnání hodnot rezistivity pro vzorky PH510 8 % 120 °C, rychlost otáček 1000, 1500, 2000, 2500, 3000, 3500, 4000 dle Kelvinovy a Van der Pauw metody

SEZNAM OBRÁZKŮ

Obrázek 1 Schéma sond Kelvinovy metody [10]12
Obrázek 2 Umístění kontaktů pro Van der Pauw měření [11]14
Obrázek 3 Schéma měření Hallova koeficientu pomocí Van der Pauw metody s aplikovaným magnetickým polem kolmým k povrchu vzorku. [11]
Obrázek 4 Složení PEDOT:PSS, levá část znázorňuje morfologii tenkých filmů z PEDOT:PSS, pravá část chemické uspořádání [3]18
Obrázek 5 Schématické znázornění rotačního nanášení. A – spin coater, B – substrát, C – roztok [27]21
Obrázek 6 Schéma přípravy tenkých filmů pomocí Langmuir-Blodgettové metody. [30].22
Obrázek 7 Ukázka měření pomocí Kelvinovy metody31
Obrázek 8 Ukázka vyhodnocení měření na mechanickém profilometru
Obrázek 9 Fotografie vzorku na mechanickém profilometru35
Obrázek 10 Fotografie vzorků PH510 8 % 120 °C, zleva 1000, 1500, 2000, 2500, 3000, 3500, 4000 RPM

SEZNAM TABULEK

Tabulka 1 Přehled připravených řad dle inkoustu, koncentrace DMSO, otáček a teplot vyžíhání
Tabulka 2 Hodnoty rezistivity vybraných disperzí PEDOT:PSS
Tabulka 3 Závislost průměrné rezistivity na koncentraci DMSO pro PH510 150 °C a PJE7 150 °C
Tabulka 4 Závislost tloušťky vrstvy na použitých otáčkách pro PH510 8 % 120 °C32
Tabulka 5 Závislost průměrné rezistivity na teplotě pro PH510 8 %
Tabulka 6 Hodnoty otáček, absorbance (pro vlnovou délku 500 nm) a tloušťky pro vzorel PH510 8 % 120 °C sloužící k vytvoření převodní křivky

SEZNAM PŘÍLOH

Příloha 1	Tabulka UV-Vis spekter
Příloha 2	Výsledky měření z Van der Pauw 1500 RPM
Příloha 3	Výsledky měření z Van der Pauw 2500 RPM
Příloha 4	Výsledky měření z Van der Pauw 3000 RPM
Příloha 5	Výsledky měření z Van der Pauw 3500 RPM
Příloha 6	Výsledky měření z Van der Pauw 4000 RPM

PŘÍLOHA 1: TABULKA UV-VIS SPEKTER

Vlnová délka [nm]			Abso	rbance [-]			
Otáčky [RPM]	1000	1500	2000	2500	3000	3500	4000
800	0,2568	0,1885	0,1510	0,1252	0,1091	0,0857	0,0933
799	0,2563	0,1881	0,1507	0,1256	0,1092	0,0852	0,0929
798	0,2563	0,1884	0,1506	0,1259	0,1100	0,0855	0,0930
797	0,2556	0,1879	0,1505	0,1254	0,1079	0,0854	0,0928
796	0,2555	0,1879	0,1501	0,1250	0,1098	0,0855	0,0925
795	0,2551	0,1876	0,1500	0,1251	0,1081	0,0855	0,0928
794	0,2547	0,1874	0,1498	0,1243	0,1100	0,0855	0,0926
793	0,2544	0,1873	0,1496	0,1241	0,1078	0,0853	0,0926
792	0,2543	0,1868	0,1495	0,1246	0,1085	0,0851	0,0927
791	0,2534	0,1866	0,1493	0,1243	0,1090	0,0848	0,0924
790	0,2532	0,1864	0,1488	0,1242	0,1078	0,0850	0,0924
789	0,2529	0,1864	0,1492	0,1242	0,1070	0,0851	0,0924
788	0,2527	0,1862	0,1486	0,1240	0,1088	0,0848	0,0926
787	0,2520	0,1859	0,1487	0,1236	0,1070	0,0851	0,0920
786	0,2518	0,1859	0,1479	0,1232	0,1082	0,0848	0,0920
785	0,2520	0,1856	0,1482	0,1233	0,1069	0,0848	0,0922
784	0,2512	0,1853	0,1479	0,1224	0,1070	0,0845	0,0915
783	0,2505	0,1849	0,1474	0,1219	0,1082	0,0842	0,0915
782	0,2503	0,1848	0,1475	0,1220	0,1062	0,0843	0,0914
781	0,2496	0,1847	0,1469	0,1217	0,1077	0,0840	0,0915
780	0,2493	0,1842	0,1469	0,1216	0,1058	0,0838	0,0912
779	0,2490	0,1841	0,1470	0,1213	0,1077	0,0839	0,0913
778	0,2485	0,1838	0,1465	0,1216	0,1057	0,0836	0,0916
777	0,2480	0,1835	0,1461	0,1213	0,1069	0,0836	0,0912
776	0,2479	0,1836	0,1460	0,1212	0,1052	0,0836	0,0911
775	0,2472	0,1831	0,1458	0,1204	0,1070	0,0830	0,0909
774	0,2469	0,1828	0,1451	0,1198	0,1049	0,0833	0,0905
773	0,2469	0,1827	0,1454	0,1203	0,1055	0,0837	0,0909
772	0,2461	0,1824	0,1449	0,1191	0,1054	0,0833	0,0905
771	0,2458	0,1821	0,1447	0,1185	0,1064	0,0829	0,0903
770	0,2455	0,1821	0,1447	0,1185	0,1043	0,0834	0,0903
769	0,2452	0,1820	0,1444	0,1190	0,1056	0,0833	0,0902
768	0,2444	0,1815	0,1442	0,1188	0,1038	0,0827	0,0899
767	0,2442	0,1813	0,1439	0,1185	0,1053	0,0826	0,0899
766	0,2438	0,1811	0,1438	0,1181	0,1039	0,0824	0,0897
765	0,2433	0,1806	0,1434	0,1187	0,1042	0,0823	0,0896
764	0,2430	0,1807	0,1432	0,1188	0,1049	0,0824	0,0896
763	0,2425	0,1802	0,1431	0,1176	0,1033	0,0818	0,0895
762	0,2421	0,1799	0,1428	0,1176	0,1055	0,0817	0,0897
761	0,2418	0,1798	0,1426	0,1187	0,1033	0,0819	0,0895
760	0,2411	0,1792	0,1422	0,1180	0,1028	0,0815	0,0892
759	0,2407	0,1793	0,1420	0,1179	0,1034	0,0815	0,0895

Vlnová délka [nm]	Absorbance [-]						
Otáčky [RPM]	1000	1500	2000	2500	3000	3500	4000
758	0,2403	0,1787	0,1417	0,1169	0,1031	0,0814	0,0891
757	0,2401	0,1789	0,1417	0,1163	0,1021	0,0814	0,0889
756	0,2392	0,1783	0,1412	0,1155	0,1027	0,0810	0,0890
755	0,2390	0,1780	0,1407	0,1151	0,1029	0,0813	0,0888
754	0,2388	0,1778	0,1409	0,1150	0,1028	0,0811	0,0886
753	0,2380	0,1776	0,1403	0,1150	0,1011	0,0804	0,0880
752	0,2379	0,1773	0,1405	0,1157	0,1028	0,0810	0,0880
751	0,2375	0,1772	0,1403	0,1160	0,1018	0,0812	0,0886
750	0,2367	0,1767	0,1398	0,1159	0,1024	0,0807	0,0880
749	0,2362	0,1764	0,1394	0,1149	0,1006	0,0802	0,0876
748	0,2360	0,1759	0,1391	0,1137	0,1020	0,0801	0,0878
747	0,2354	0,1756	0,1389	0,1142	0,1003	0,0802	0,0874
746	0,2350	0,1755	0,1387	0,1153	0,1021	0,0801	0,0876
745	0,2348	0,1752	0,1386	0,1154	0,1007	0,0800	0,0875
744	0,2343	0,1752	0,1381	0,1150	0,1001	0,0797	0,0874
743	0,2335	0,1745	0,1378	0,1146	0,0996	0,0795	0,0871
742	0,2333	0,1741	0,1376	0,1142	0,0997	0,0793	0,0870
741	0,2329	0,1741	0,1373	0,1136	0,1009	0,0792	0,0867
740	0,2323	0,1738	0,1369	0,1124	0,0989	0,0788	0,0865
739	0,2319	0,1733	0,1370	0,1120	0,0999	0,0785	0,0863
738	0,2312	0,1730	0,1366	0,1124	0,0986	0,0789	0,0862
737	0,2308	0,1729	0,1363	0,1125	0,0999	0,0784	0,0861
736	0,2306	0,1723	0,1362	0,1115	0,0984	0,0782	0,0862
735	0,2301	0,1722	0,1360	0,1106	0,0989	0,0789	0 <i>,</i> 0859
734	0,2295	0,1720	0,1357	0,1107	0,0985	0,0784	0 <i>,</i> 0857
733	0,2291	0,1713	0,1350	0,1104	0,0992	0,0784	0,0853
732	0,2288	0,1715	0,1352	0,1107	0,0977	0,0785	0,0852
731	0,2284	0,1711	0,1351	0,1098	0,0983	0,0785	0,0855
730	0,2278	0,1708	0,1345	0,1094	0,0984	0,0781	0,0851
729	0,2274	0,1705	0,1344	0,1100	0,0979	0,0777	0,0851
728	0,2268	0,1701	0,1341	0,1104	0,0973	0,0775	0,0851
727	0,2263	0,1694	0,1337	0,1095	0,0962	0,0766	0,0849
726	0,2260	0,1690	0,1334	0,1080	0,0973	0,0772	0,0843
725	0,2255	0,1690	0,1332	0,1087	0,0964	0,0769	0,0841
724	0,2250	0,1686	0,1330	0,1096	0,0974	0,0764	0,0839
723	0,2247	0,1686	0,1330	0,1088	0,0957	0,0768	0,0839
722	0,2240	0,1681	0,1324	0,1080	0,0962	0,0761	0,0838
721	0,2236	0,1675	0,1322	0,1076	0,0951	0,0757	0,0835
720	0,2233	0,1675	0,1319	0,1070	0,0968	0,0763	0,0838
719	0,2227	0,1670	0,1319	0,1074	0,0952	0,0759	0,0838
718	0,2223	0,1669	0,1317	0,1078	0,0948	0,0759	0,0835
717	0,2219	0,1664	0,1309	0,1067	0,0955	0,0758	0,0830
716	0,2213	0,1660	0,1308	0,1057	0,0943	0,0755	0,0828
715	0,2209	0,1657	0,1307	0,1058	0,0950	0,0752	0,0827

Vlnová délka [nm]			Abso	rbance [-]			
Otáčky [RPM]	1000	1500	2000	2500	3000	3500	4000
714	0,2204	0,1653	0,1304	0,1071	0,0938	0,0752	0,0824
713	0,2200	0,1652	0,1304	0,1075	0,0943	0,0754	0,0822
712	0,2193	0,1644	0,1297	0,1058	0,0934	0,0749	0,0817
711	0,2189	0,1642	0,1294	0,1044	0,0947	0 <i>,</i> 0748	0,0820
710	0,2185	0,1640	0,1294	0,1043	0,0925	0,0750	0,0819
709	0,2179	0,1636	0,1290	0,1049	0,0930	0,0747	0,0818
708	0,2176	0,1630	0,1287	0,1050	0,0936	0,0743	0,0818
707	0,2171	0,1629	0,1284	0,1042	0,0937	0,0739	0,0817
706	0,2166	0,1623	0,1284	0,1033	0,0931	0,0738	0,0813
705	0,2159	0,1617	0,1278	0,1025	0,0914	0,0738	0,0812
704	0,2157	0,1616	0,1276	0,1030	0,0920	0,0740	0,0812
703	0,2153	0,1615	0,1273	0,1042	0,0906	0,0741	0,0807
702	0,2147	0,1612	0,1271	0,1041	0,0921	0,0737	0,0800
701	0,2143	0,1608	0,1271	0,1031	0,0927	0,0736	0,0802
700	0,2139	0,1604	0,1267	0,1015	0,0907	0,0729	0,0809
699	0,2134	0,1598	0,1264	0,1007	0,0913	0,0722	0,0804
698	0,2130	0,1597	0,1262	0,1007	0,0910	0,0724	0,0800
697	0,2125	0,1591	0,1260	0,1005	0,0900	0,0728	0 <i>,</i> 0798
696	0,2121	0,1588	0,1255	0,1010	0,0910	0,0726	0,0796
695	0,2118	0,1583	0,1253	0,1010	0,0901	0,0727	0 <i>,</i> 0796
694	0,2112	0,1580	0,1251	0,1001	0,0907	0,0727	0 <i>,</i> 0795
693	0,2105	0,1579	0,1246	0,1004	0,0901	0,0727	0,0789
692	0,2102	0,1572	0,1246	0,1008	0,0899	0,0720	0 <i>,</i> 0785
691	0,2101	0,1570	0,1244	0,1001	0,0900	0,0716	0,0789
690	0,2095	0,1566	0,1241	0,0989	0,0882	0,0715	0,0788
689	0,2089	0,1564	0,1241	0,0997	0,0883	0,0714	0,0788
688	0,2085	0,1560	0,1241	0,1009	0,0883	0,0713	0,0787
687	0,2077	0,1552	0,1230	0,0992	0,0880	0,0709	0,0778
686	0,2069	0,1546	0,1225	0,0974	0,0872	0,0702	0,0773
685	0,2066	0,1543	0,1226	0,0966	0,0882	0,0702	0,0771
684	0,2062	0,1543	0,1227	0,0972	0,0865	0,0710	0,0774
683	0,2058	0,1539	0,1223	0,0984	0,0872	0,0708	0,0774
682	0,2054	0,1532	0,1217	0,0975	0,0871	0,0702	0,0768
681	0,2048	0,1527	0,1215	0,0966	0,0868	0,0697	0,0762
680	0,2043	0,1522	0,1213	0,0982	0,0873	0,0699	0,0764
679	0,2037	0,1519	0,1208	0,0987	0,0862	0,0698	0 <i>,</i> 0765
678	0,2032	0,1517	0,1207	0,0981	0,0864	0,0695	0,0766
677	0,2027	0,1511	0,1206	0,0971	0,0863	0,0692	0,0764
676	0,2023	0,1508	0,1202	0,0956	0,0856	0,0691	0,0760
675	0,2018	0,1505	0,1197	0,0951	0,0847	0,0690	0,0753
674	0,2013	0,1501	0,1193	0,0959	0,0859	0 <i>,</i> 0688	0,0751
673	0,2006	0,1497	0,1192	0,0958	0,0847	0,0695	0,0752
672	0,2003	0,1494	0,1192	0,0943	0,0852	0,0693	0,0749
671	0,1999	0,1488	0,1188	0,0930	0,0849	0,0679	0,0744

Vlnová délka [nm]			Abso	rbance [-]			
Otáčky [RPM]	1000	1500	2000	2500	3000	3500	4000
670	0,1993	0,1483	0,1186	0,0935	0,0845	0,0682	0,0742
669	0,1987	0,1480	0,1186	0,0948	0,0838	0 <i>,</i> 0684	0,0745
668	0,1982	0,1475	0,1183	0,0955	0,0835	0,0677	0,0744
667	0,1979	0,1471	0,1177	0,0949	0,0845	0,0672	0,0741
666	0,1975	0,1469	0,1173	0,0930	0,0825	0 <i>,</i> 0668	0,0740
665	0,1970	0,1468	0,1173	0,0928	0,0830	0,0667	0,0738
664	0,1965	0,1462	0,1171	0,0935	0,0825	0,0674	0,0735
663	0,1959	0,1457	0,1165	0,0929	0,0829	0,0671	0,0730
662	0,1954	0,1453	0,1161	0,0919	0,0823	0,0664	0,0730
661	0,1949	0,1442	0,1157	0,0923	0,0815	0,0663	0,0730
660	0,1945	0,1437	0,1156	0,0920	0,0813	0,0662	0,0725
659	0,1939	0,1437	0,1155	0,0900	0,0820	0,0658	0,0723
658	0,1931	0,1434	0,1154	0,0890	0,0814	0,0658	0,0726
657	0,1928	0,1431	0,1150	0,0891	0,0814	0,0660	0,0726
656	0,1922	0,1424	0,1145	0,0892	0,0806	0,0652	0,0718
655	0,1918	0,1421	0,1144	0,0897	0,0811	0,0654	0,0716
654	0,1913	0,1415	0,1141	0,0905	0,0810	0 <i>,</i> 0655	0,0715
653	0,1907	0,1411	0,1138	0,0902	0,0806	0,0651	0,0714
652	0,1899	0,1408	0,1138	0,0888	0,0789	0,0646	0,0709
651	0,1894	0,1401	0,1134	0,0897	0,0798	0,0644	0,0705
650	0,1892	0,1398	0,1130	0,0894	0,0792	0,0647	0,0708
649	0,1888	0,1397	0,1128	0,0880	0,0791	0,0649	0,0706
648	0,1884	0,1391	0,1126	0,0885	0,0784	0,0648	0,0701
647	0,1878	0,1386	0,1119	0,0888	0,0796	0,0643	0,0696
646	0,1869	0,1383	0,1115	0,0873	0,0787	0,0641	0,0695
645	0,1867	0,1379	0,1116	0,0865	0,0783	0,0636	0,0699
644	0,1864	0,1376	0,1112	0,0880	0,0782	0,0634	0,0698
643	0,1857	0,1366	0,1110	0,0876	0,0765	0,0628	0,0689
642	0,1852	0,1361	0,1109	0,0861	0,0785	0,0627	0,0689
641	0,1847	0,1361	0,1105	0,0870	0,0778	0,0633	0,0692
640	0,1843	0,1358	0,1104	0,0863	0,0763	0,0631	0,0690
639	0,1837	0,1352	0,1107	0,0849	0,0778	0,0626	0,0684
638	0,1830	0,1345	0,1100	0,0848	0,0767	0,0622	0,0682
637	0,1821	0,1339	0,1091	0,0855	0,0775	0,0620	0,0683
636	0,1817	0,1334	0,1089	0,0871	0,0755	0,0622	0,0682
635	0,1812	0,1332	0,1086	0,0870	0,0757	0,0617	0,0673
634	0,1811	0,1329	0,1089	0,0859	0,0757	0,0616	0,0673
633	0,1804	0,1324	0,1082	0,0839	0,0757	0,0613	0,0668
632	0,1798	0,1317	0,1081	0,0828	0,0738	0,0609	0,0666
631	0,1794	0,1314	0,1077	0,0838	0,0752	0,0607	0,0668
630	0,1787	0,1311	0,1074	0,0851	0,0742	0,0610	0,0668
629	0,1782	0,1305	0,1075	0,0849	0,0743	0,0605	0,0668
628	0,1775	0,1303	0,1070	0,0840	0,0750	0,0601	0,0666
627	0,1768	0,1299	0,1066	0,0823	0,0739	0,0606	0,0660

Vlnová délka [nm]			Abso	rbance [-]			
Otáčky [RPM]	1000	1500	2000	2500	3000	3500	4000
626	0,1762	0,1292	0,1057	0,0813	0,0734	0,0602	0,0653
625	0,1757	0,1288	0,1056	0,0815	0,0732	0,0594	0,0649
624	0,1753	0,1283	0,1058	0,0818	0,0750	0,0597	0,0654
623	0,1746	0,1279	0,1055	0,0829	0 <i>,</i> 0730	0 <i>,</i> 0597	0,0656
622	0,1743	0,1277	0,1052	0,0837	0,0720	0 <i>,</i> 0594	0,0654
621	0,1738	0,1267	0,1048	0,0822	0,0726	0 <i>,</i> 0589	0,0648
620	0,1732	0,1268	0,1048	0,0805	0,0747	0,0591	0,0642
619	0,1725	0,1262	0,1044	0,0815	0,0719	0 <i>,</i> 0587	0,0640
618	0,1723	0,1263	0,1040	0,0829	0 <i>,</i> 0730	0 <i>,</i> 0586	0,0650
617	0,1717	0,1256	0,1035	0,0828	0,0710	0 <i>,</i> 0585	0,0647
616	0,1707	0,1242	0,1031	0,0813	0,0721	0 <i>,</i> 0582	0,0635
615	0,1702	0,1244	0,1030	0,0799	0,0703	0,0579	0,0627
614	0,1696	0,1238	0,1025	0,0782	0,0710	0 <i>,</i> 0578	0,0629
613	0,1692	0,1236	0,1025	0,0781	0,0704	0,0580	0,0634
612	0,1686	0,1233	0,1020	0,0777	0,0707	0 <i>,</i> 0578	0,0629
611	0,1676	0,1223	0,1013	0,0768	0,0707	0,0570	0,0619
610	0,1675	0,1222	0,1015	0,0771	0,0689	0,0574	0,0623
609	0,1670	0,1223	0,1011	0,0791	0,0707	0,0571	0,0626
608	0,1664	0,1213	0,1005	0,0780	0 <i>,</i> 0694	0,0567	0,0623
607	0,1659	0,1209	0,1006	0,0775	0,0691	0,0577	0,0623
606	0,1650	0,1208	0,1003	0,0786	0,0707	0 <i>,</i> 0569	0,0617
605	0,1644	0,1202	0,1003	0,0795	0,0684	0,0559	0,0613
604	0,1638	0,1196	0,0996	0,0782	0,0677	0,0560	0,0606
603	0,1635	0,1195	0,0991	0,0766	0 <i>,</i> 0688	0 <i>,</i> 0553	0,0607
602	0,1635	0,1189	0,0995	0,0763	0,0679	0,0553	0,0613
601	0,1624	0,1186	0,0986	0,0785	0 <i>,</i> 0692	0,0556	0,0607
600	0,1619	0,1179	0,0983	0,0791	0,0666	0,0557	0,0607
599	0,1612	0,1175	0,0984	0,0789	0,0665	0,0556	0,0605
598	0,1607	0,1175	0,0980	0,0776	0,0679	0,0559	0,0602
597	0,1599	0,1171	0,0972	0,0762	0,0661	0,0553	0,0602
596	0,1593	0,1163	0,0966	0,0744	0,0680	0,0546	0,0599
595	0,1586	0,1156	0,0966	0,0737	0,0656	0,0550	0,0595
594	0,1585	0,1156	0,0970	0,0744	0,0671	0,0550	0,0595
593	0,1582	0,1156	0,0960	0,0746	0 <i>,</i> 0685	0,0545	0,0593
592	0,1573	0,1150	0,0956	0,0743	0,0662	0,0540	0,0589
591	0,1570	0,1145	0,0953	0,0735	0,0660	0,0544	0,0584
590	0,1562	0,1135	0,0954	0,0732	0,0668	0,0542	0,0575
589	0,1556	0,1138	0,0952	0,0738	0,0645	0,0542	0,0576
588	0,1550	0,1133	0,0944	0,0748	0 <i>,</i> 0656	0 <i>,</i> 0538	0,0571
587	0,1542	0,1126	0,0941	0,0745	0,0672	0,0530	0,0573
586	0,1538	0,1127	0,0941	0,0758	0,0642	0,0531	0,0581
585	0,1534	0,1119	0,0940	0,0748	0,0648	0,0533	0,0573
584	0,1524	0,1110	0,0930	0,0725	0,0654	0,0529	0,0566
583	0,1520	0,1110	0,0931	0,0708	0,0642	0,0528	0,0565

Vlnová délka [nm]	Absorbance [-]							
Otáčky [RPM]	1000	1500	2000	2500	3000	3500	4000	
582	0,1518	0,1109	0,0934	0,0725	0,0656	0,0527	0,0569	
581	0,1509	0,1099	0,0925	0,0721	0,0620	0,0522	0,0564	
580	0,1507	0,1103	0,0922	0,0712	0 <i>,</i> 0658	0,0524	0,0563	
579	0,1500	0,1102	0,0914	0,0701	0,0621	0,0519	0,0554	
578	0,1494	0,1088	0,0914	0,0698	0,0645	0,0521	0,0550	
577	0,1488	0,1085	0,0910	0,0696	0,0621	0,0521	0,0548	
576	0,1484	0,1085	0,0909	0,0701	0,0651	0,0520	0,0547	
575	0,1479	0,1083	0,0911	0,0717	0,0636	0,0516	0,0553	
574	0,1475	0,1083	0,0906	0,0719	0,0619	0,0514	0,0551	
573	0,1469	0,1077	0,0905	0,0698	0,0625	0,0515	0,0556	
572	0,1458	0,1071	0,0900	0,0692	0,0630	0,0510	0,0551	
571	0,1457	0,1067	0,0893	0,0695	0,0615	0,0504	0,0545	
570	0,1450	0,1065	0,0888	0,0696	0,0627	0,0512	0,0538	
569	0,1445	0,1058	0,0888	0,0697	0,0610	0,0508	0,0545	
568	0,1442	0,1059	0,0884	0,0715	0,0628	0,0505	0,0546	
567	0,1437	0,1055	0,0885	0,0723	0,0596	0,0508	0,0544	
566	0,1429	0,1045	0,0883	0,0696	0,0615	0,0501	0,0532	
565	0,1426	0,1049	0,0882	0,0699	0,0624	0,0504	0,0530	
564	0,1425	0,1049	0,0880	0,0687	0,0597	0,0503	0,0532	
563	0,1417	0,1038	0,0874	0,0679	0,0626	0,0498	0,0524	
562	0,1414	0,1040	0,0871	0,0689	0,0607	0,0502	0,0528	
561	0,1410	0,1037	0,0869	0,0694	0,0595	0,0501	0,0536	
560	0,1399	0,1022	0,0859	0,0671	0,0630	0,0490	0,0528	
559	0,1387	0,1022	0,0847	0,0651	0,0578	0,0487	0,0523	
558	0,1388	0,1016	0,0850	0,0649	0,0608	0,0487	0,0525	
557	0,1380	0,1017	0,0851	0,0646	0,0600	0,0485	0,0521	
556	0,1375	0,1011	0,0850	0,0653	0,0575	0,0489	0,0522	
555	0,1372	0,1008	0,0843	0,0644	0,0602	0,0481	0,0517	
554	0,1368	0,1007	0,0839	0,0643	0,0595	0,0479	0,0514	
553	0,1364	0,1003	0,0835	0,0655	0,0563	0,0470	0,0507	
552	0,1358	0,1000	0,0835	0,0648	0,0599	0,0485	0,0505	
551	0,1353	0,0988	0,0828	0,0650	0,0579	0,0480	0,0500	
550	0,1346	0,0994	0,0827	0,0662	0,0585	0,0479	0,0505	
549	0,1341	0,0991	0,0826	0,0674	0,0581	0,0478	0,0505	
548	0,1339	0,0985	0,0822	0,0679	0,0568	0,0473	0,0498	
547	0,1336	0,0983	0,0821	0,0677	0,0605	0,0471	0,0493	
546	0,1334	0,0988	0,0818	0,0677	0,0559	0,0478	0,0494	
545	0,1326	0,0974	0,0811	0,0661	0 <i>,</i> 0587	0,0473	0,0499	
544	0,1317	0,0975	0,0806	0,0660	0 <i>,</i> 0558	0,0467	0,0497	
543	0,1314	0,0970	0,0804	0,0650	0,0556	0,0463	0,0499	
542	0,1308	0,0965	0,0801	0,0644	0 <i>,</i> 0583	0,0467	0,0492	
541	0,1309	0,0960	0,0800	0,0627	0,0549	0,0465	0,0492	
540	0,1302	0,0960	0,0792	0,0617	0,0564	0,0460	0,0490	
539	0,1291	0,0954	0,0794	0,0615	0,0566	0,0467	0,0481	

Vlnová délka [nm]			Abso	rbance [-]			
Otáčky [RPM]	1000	1500	2000	2500	3000	3500	4000
538	0,1296	0,0953	0,0785	0,0619	0,0587	0,0463	0,0482
537	0,1291	0,0956	0,0790	0,0609	0,0555	0,0467	0,0480
536	0,1283	0,0944	0,0781	0,0602	0,0546	0 <i>,</i> 0458	0,0481
535	0,1274	0,0943	0,0776	0,0599	0,0579	0,0458	0,0481
534	0,1277	0,0945	0,0774	0,0612	0,0551	0,0459	0,0483
533	0,1272	0,0945	0,0781	0,0631	0,0531	0,0454	0,0475
532	0,1266	0,0937	0,0771	0,0626	0,0572	0,0442	0,0465
531	0,1264	0,0932	0,0773	0,0625	0,0546	0,0452	0,0472
530	0,1261	0,0935	0,0775	0,0628	0,0533	0,0457	0,0478
529	0,1255	0,0936	0,0767	0,0632	0,0563	0,0451	0,0480
528	0,1248	0,0924	0,0766	0,0611	0,0531	0,0441	0,0475
527	0,1240	0,0917	0,0759	0,0593	0,0546	0,0441	0,0468
526	0,1240	0,0919	0,0755	0,0581	0,0519	0,0446	0,0461
525	0,1238	0,0916	0,0753	0,0580	0 <i>,</i> 0555	0,0439	0,0465
524	0,1234	0,0914	0,0749	0,0581	0,0543	0,0436	0,0468
523	0,1226	0,0914	0,0749	0,0580	0,0519	0,0446	0,0467
522	0,1227	0,0906	0,0755	0,0603	0 <i>,</i> 0554	0,0437	0,0470
521	0,1225	0,0903	0,0746	0,0612	0 <i>,</i> 0535	0,0435	0,0465
520	0,1222	0,0899	0,0748	0,0624	0,0531	0,0439	0,0458
519	0,1218	0,0901	0,0740	0,0619	0 <i>,</i> 0560	0,0439	0 <i>,</i> 0458
518	0,1211	0,0898	0,0741	0,0614	0,0517	0,0435	0,0463
517	0,1211	0,0892	0,0739	0,0615	0,0523	0,0435	0,0465
516	0,1209	0,0897	0,0744	0,0607	0,0547	0,0434	0,0461
515	0,1207	0,0895	0,0740	0,0596	0,0509	0,0437	0,0461
514	0,1203	0,0890	0,0739	0,0577	0,0538	0,0441	0,0466
513	0,1202	0,0895	0,0735	0,0566	0,0525	0,0437	0,0462
512	0,1201	0,0895	0,0738	0,0580	0,0510	0,0432	0,0455
511	0,1200	0,0886	0,0733	0,0575	0,0517	0,0434	0,0463
510	0,1198	0,0896	0,0738	0,0571	0,0541	0,0437	0,0468
509	0,1198	0,0897	0,0739	0,0584	0,0524	0,0425	0,0466
508	0,1198	0,0888	0,0740	0,0600	0,0517	0,0434	0,0467
507	0,1198	0,0887	0,0735	0,0603	0,0553	0,0444	0,0470
506	0,1192	0,0886	0,0740	0,0591	0,0535	0,0443	0,0475
505	0,1191	0,0880	0,0737	0,0580	0,0523	0,0441	0,0474
504	0,1187	0,0883	0,0741	0,0571	0 <i>,</i> 0556	0,0434	0,0467
503	0,1187	0,0884	0,0735	0,0566	0,0520	0,0444	0,0463
502	0,1182	0,0877	0,0734	0,0571	0,0529	0,0438	0,0470
501	0,1177	0,0877	0,0729	0,0562	0,0545	0,0436	0,0472
500	0,1176	0,0872	0,0726	0,0569	0,0527	0,0432	0,0472
499	0,1171	0,0875	0,0726	0,0571	0,0515	0,0438	0,0470
498	0,1167	0,0870	0,0724	0,0570	0,0516	0,0441	0,0473
497	0,1161	0,0864	0,0721	0,0554	0,0528	0,0434	0,0471
496	0,1157	0,0863	0,0716	0,0566	0,0547	0,0439	0,0463
495	0,1152	0,0860	0,0717	0,0578	0,0503	0,0440	0,0456

Vlnová délka [nm]	Absorbance [-]						
Otáčky [RPM]	1000	1500	2000	2500	3000	3500	4000
494	0,1142	0,0851	0,0704	0,0562	0,0530	0,0430	0,0452
493	0,1134	0,0841	0,0704	0,0561	0,0520	0,0426	0,0457
492	0,1130	0,0844	0,0701	0,0552	0,0492	0,0423	0,0453
491	0,1126	0,0838	0,0700	0,0549	0,0500	0,0422	0,0449
490	0,1119	0,0831	0,0696	0,0537	0,0518	0,0419	0,0448
489	0,1116	0,0831	0,0696	0,0524	0,0499	0,0413	0,0446
488	0,1112	0,0827	0,0688	0,0527	0 <i>,</i> 0485	0,0404	0,0443
487	0,1102	0,0816	0,0678	0,0531	0,0511	0,0406	0,0437
486	0,1095	0,0813	0,0677	0,0523	0,0474	0,0409	0,0433
485	0,1091	0,0811	0,0674	0,0517	0,0484	0,0403	0,0429
484	0,1083	0,0803	0,0666	0,0511	0,0495	0,0402	0,0425
483	0,1077	0,0798	0,0661	0,0517	0,0465	0,0396	0,0424
482	0,1066	0,0788	0,0660	0,0522	0,0484	0,0390	0,0411
481	0,1059	0,0788	0,0651	0,0522	0,0476	0,0390	0,0405
480	0,1057	0,0784	0,0648	0,0504	0,0446	0,0383	0,0410
479	0,1054	0,0779	0,0649	0,0487	0,0456	0,0388	0,0407
478	0,1053	0,0780	0,0649	0,0501	0,0475	0,0386	0,0414
477	0,1055	0,0782	0,0654	0,0518	0,0475	0,0393	0,0423
476	0,1054	0,0781	0,0651	0,0531	0,0467	0,0397	0,0422
475	0,1052	0,0779	0,0653	0,0516	0,0454	0,0386	0,0419
474	0,1052	0,0777	0,0658	0,0504	0,0480	0,0391	0,0421
473	0,1049	0,0776	0,0655	0,0494	0,0479	0,0393	0,0423
472	0,1047	0,0778	0,0650	0,0496	0,0449	0,0402	0,0420
471	0,1045	0,0775	0,0652	0,0505	0,0471	0,0398	0,0417
470	0,1046	0,0772	0,0653	0,0509	0,0491	0,0395	0,0415
469	0,1046	0,0772	0,0652	0,0516	0,0455	0,0394	0,0412
468	0,1041	0,0775	0,0648	0,0534	0,0458	0,0395	0,0413
467	0,1040	0,0774	0,0650	0,0548	0,0486	0,0400	0,0419
466	0,1042	0,0773	0,0655	0,0534	0,0466	0,0394	0,0425
465	0,1041	0,0777	0,0655	0,0528	0,0464	0 <i>,</i> 0397	0,0429
464	0,1041	0,0776	0,0657	0,0533	0,0492	0,0403	0,0433
463	0,1043	0,0773	0,0652	0,0542	0,0479	0,0401	0,0431
462	0,1044	0,0776	0,0661	0,0539	0,0471	0,0405	0,0433
461	0,1040	0,0779	0,0658	0,0506	0 <i>,</i> 0460	0,0408	0,0436
460	0,1040	0,0779	0,0661	0,0507	0,0471	0,0408	0,0441
459	0,1038	0,0774	0,0656	0,0516	0 <i>,</i> 0488	0,0407	0,0438
458	0,1038	0,0776	0,0656	0,0531	0 <i>,</i> 0479	0,0415	0,0435
457	0,1038	0,0776	0,0656	0,0542	0 <i>,</i> 0468	0,0413	0,0434
456	0,1035	0,0772	0,0658	0,0525	0,0493	0,0410	0,0434
455	0,1030	0,0770	0,0658	0,0502	0 <i>,</i> 0476	0,0403	0,0431
454	0,1029	0,0774	0,0659	0,0512	0,0461	0,0404	0,0429
453	0,1029	0,0770	0,0657	0,0530	0,0459	0,0402	0,0426
452	0,1026	0,0765	0,0654	0,0541	0,0468	0,0401	0,0429
451	0,1024	0,0763	0,0651	0,0529	0,0486	0,0403	0,0430

Vlnová délka [nm]	Absorbance [-]						
Otáčky [RPM]	1000	1500	2000	2500	3000	3500	4000
450	0,1025	0,0768	0,0651	0,0517	0,0476	0,0401	0,0427
449	0,1021	0,0764	0,0646	0,0501	0,0459	0,0395	0,0425
448	0,1021	0,0762	0,0647	0,0493	0,0453	0,0398	0,0427
447	0,1019	0,0761	0,0645	0,0496	0,0467	0,0402	0,0428
446	0,1015	0,0757	0,0642	0,0493	0,0475	0,0399	0,0425
445	0,1010	0,0755	0,0636	0,0486	0,0446	0,0393	0,0424
444	0,1003	0,0747	0,0628	0,0491	0,0454	0,0391	0,0417
443	0,0999	0,0741	0,0626	0,0502	0,0462	0,0385	0,0414
442	0,0995	0,0746	0,0627	0,0506	0,0448	0,0383	0,0414
441	0,0996	0,0749	0,0626	0,0510	0,0446	0,0387	0,0413
440	0,0995	0,0747	0,0625	0,0515	0,0447	0,0383	0,0414
439	0,0999	0,0748	0,0629	0,0508	0,0469	0,0388	0,0410
438	0,1002	0,0749	0,0631	0,0489	0,0465	0,0397	0,0410
437	0,1000	0,0754	0,0629	0,0500	0,0446	0,0393	0,0411
436	0,0997	0,0750	0,0629	0,0518	0,0437	0,0388	0,0409
435	0,0996	0,0746	0,0629	0,0524	0,0444	0,0385	0,0409
434	0,0997	0,0747	0,0627	0,0509	0,0461	0,0385	0,0412
433	0,0997	0,0748	0,0626	0,0497	0,0468	0,0388	0,0416
432	0,0994	0,0749	0,0625	0,0491	0,0454	0,0386	0,0416
431	0,0995	0,0746	0,0626	0,0488	0,0453	0,0385	0,0415
430	0,0992	0,0744	0,0624	0,0488	0,0470	0,0384	0,0415
429	0,0991	0,0747	0,0624	0,0494	0,0459	0,0383	0,0417
428	0,0992	0,0752	0,0627	0,0493	0,0461	0,0389	0,0417
427	0,0992	0,0757	0,0625	0,0491	0,0450	0,0392	0,0419
426	0,0992	0,0755	0,0626	0,0500	0,0440	0,0389	0,0417
425	0,0991	0,0749	0,0625	0,0511	0,0443	0,0389	0,0416
424	0,0988	0,0747	0,0621	0,0519	0,0461	0,0384	0,0414
423	0,0986	0,0751	0,0620	0,0510	0,0469	0,0381	0,0412
422	0,0986	0,0753	0,0619	0,0507	0,0460	0,0388	0,0413
421	0,0987	0,0750	0,0624	0,0499	0,0450	0,0390	0,0414
420	0,0987	0,0750	0,0623	0,0492	0,0457	0,0388	0,0412
419	0,0988	0,0752	0,0618	0,0495	0,0465	0,0388	0,0410
418	0,0991	0,0756	0,0625	0,0511	0,0453	0,0388	0,0413
417	0,0989	0,0756	0,0628	0,0523	0,0446	0,0387	0,0411
416	0,0986	0,0752	0,0623	0,0530	0,0450	0,0388	0,0411
415	0,0988	0,0751	0,0622	0,0538	0,0466	0,0390	0,0416
414	0,0989	0,0754	0,0620	0,0519	0,0467	0,0389	0,0415
413	0,0988	0,0755	0,0623	0,0498	0,0451	0,0388	0,0413
412	0,0986	0,0757	0,0625	0,0501	0,0447	0,0389	0,0411
411	0,0988	0,0757	0,0626	0,0510	0,0460	0,0391	0,0411
410	0,0991	0,0755	0,0627	0,0524	0,0475	0,0395	0,0415
409	0,0993	0,0756	0,0627	0,0534	0,0484	0,0398	0,0418
408	0,0992	0,0758	0,0631	0,0525	0,0474	0,0398	0,0418
407	0,0992	0,0759	0,0626	0,0509	0,0460	0,0394	0,0420

Vlnová délka [nm]	Absorbance [-]						
Otáčky [RPM]	1000	1500	2000	2500	3000	3500	4000
406	0,0992	0,0757	0,0625	0,0511	0,0457	0,0392	0,0422
405	0,0993	0,0760	0,0633	0,0529	0,0460	0,0395	0,0422
404	0,0994	0,0759	0,0629	0,0536	0,0474	0,0398	0,0419
403	0,0994	0,0760	0,0631	0,0539	0,0479	0,0396	0,0417
402	0,0996	0,0761	0,0636	0,0540	0,0467	0,0398	0,0418
401	0,0995	0,0760	0,0635	0,0546	0,0461	0,0399	0,0420
400	0,0998	0,0765	0,0639	0,0550	0,0474	0,0398	0,0424
399	0,1001	0,0766	0,0640	0,0545	0,0493	0,0404	0,0427
398	0,1002	0,0767	0,0644	0,0539	0,0485	0,0406	0,0426
397	0,1007	0,0771	0,0652	0,0534	0,0482	0,0407	0,0429
396	0,1009	0,0769	0,0650	0,0525	0,0483	0,0407	0,0428
395	0,1009	0,0765	0,0650	0,0532	0,0478	0,0401	0,0426
394	0,1012	0,0765	0,0648	0,0548	0,0491	0,0401	0,0429
393	0,1014	0,0770	0,0654	0,0553	0,0498	0,0405	0,0428
392	0,1016	0,0773	0,0655	0,0555	0,0501	0,0412	0,0429
391	0,1019	0,0776	0,0658	0,0551	0,0505	0,0414	0,0431
390	0,1023	0,0775	0,0661	0,0536	0,0495	0,0411	0,0431
389	0,1025	0,0775	0,0660	0,0528	0,0492	0,0412	0,0431
388	0,1027	0,0775	0,0669	0,0528	0,0505	0,0413	0,0434
387	0,1032	0,0777	0,0672	0,0534	0,0502	0,0414	0,0437
386	0,1037	0,0780	0,0673	0,0547	0,0496	0,0418	0,0441
385	0,1039	0,0780	0,0674	0,0557	0,0502	0,0420	0,0440
384	0,1042	0,0779	0,0673	0,0565	0,0502	0,0420	0,0439
383	0,1045	0,0780	0,0677	0,0572	0,0499	0,0421	0,0441
382	0,1048	0,0783	0,0684	0,0576	0,0502	0,0422	0,0443
381	0,1053	0,0786	0,0686	0,0564	0,0506	0,0422	0,0446
380	0,1060	0,0789	0,0692	0,0556	0,0509	0,0425	0,0453

PŘÍLOHA 2: VÝSLEDKY MĚŘENÍ Z VAN DER PAUW 1500 RPM

Hall effect measurement report

Parameters

Date:	st 3 13 14:27:07 2024
Sample name:	03_13_2024_1500
Temperature:	21.02 °C
Res. current:	1 mA
Hall current:	1 mA
Thickness:	0.458 µm

Measurement data BC +MAC -MAC AB AC [mV] [mV] [mV] [mV] [mV] 14.29 22.38 8.216 8.317 8.351 22.38 8.228 14.28 8.31 8.338 DA BD [mV] +MBD -MBD CD [mV] [mV] [mV] [mV]

AB(m [mV]) 	BC(m)[mV]	CD(m)	[mV]	DA(m)
14.28	2	2.38	-8.169	9 -8.	241	-8.27
14.29	2	2.38	-8.149	9 -8.	242	-8.269

[mV]			
14.23	22.43	14.23	22.43
14.23	22.43	14.23	22.43

Sheet resistance:	<mark>81.66</mark> Ω	Mobility:	-0.146044 cm ² /(V s)
Resistivity:	0.00374 Ω cm	Conductivity:	267 /(Ω cm)
CCC (Sheet):	-5.234e+17 /cm ²	CCC (bulk):	-1.143e+22 /cm ³
AC cross Hall coefficient:	-0.009953 cm ³ /C	BD cross Hall coefficient:	0.008861 cm ³ /C
Ratio of Vertical/Horizontal:	1.5666	Average hall coefficient:	-0.0005462 cm ³ /C
Magneto-Resistance:	-0.0599444 % at 0.68 T		

PŘÍLOHA 3: VÝSLEDKY MĚŘENÍ Z VAN DER PAUW 2500 RPM

Hall effect measurement report

Parameters

Date:	st 3 13 13:37:04 2024
Sample name:	03_13_2024_2500
Temperature:	21.08 °C
Res. current:	1 mA
Hall current:	1 mA
Thickness:	0.297 µm

Measurement data AB BC [mV] AC +MAC -MAC [mV] [mV] [mV] [mV] 31.06 169.2 232.2 233.3 235.5 -104 0.1801 -180 -184.5 -188.6

[mV]	DA [mV]	RD [WA]	+MBD [mV]	-MBD [mV]
0.1318	-104	0.03052	0.03462	0.03851
30.56	227.3	-0.4787	-0.461	-0.4704

AB(m) [mV]	BC(m)[mV]	CD(m) [mV]	DA(m)
184.1	31.05	0.1191	-105.6
-105.2	0.157	30.58	232.5

Sheet resistance:	139.1 Ω	Mobility:	23.4593 cm ² /(V s)
Resistivity:	0.004131 Ω cm	Conductivity:	242 /(Ω cm)
CCC (Sheet):	1.913e+15 /cm ²	CCC (bulk):	6.44e+19 /cm ³
AC cross Hall coefficient:	0.1932 cm ³ /C	BD cross Hall coefficient:	0.0006145 cm ³ /C
Ratio of Vertical/Horizontal:	1.61194	Average hall coefficient:	0.09691 cm ³ /C
Magneto-Resistance:	7.77783 % at 0.68 T		

PŘÍLOHA 4: VÝSLEDKY MĚŘENÍ Z VAN DER PAUW 3000 RPM

Hall effect measurement report

Parameters

Date:	st 3 13 13:16:36 2024
Sample name:	03_13_2024_3000
Temperature:	21.08 °C
Res. current:	1 mA
Hall current:	1 mA
Thickness:	0.289 µm

Measurement data AB BC AC +MAC -MAC [mV] [mV] [mV] [mV] [mV] 32.59 36.33 3.693 3.74 3.818 32.59 36.33 3.599 3.656 3.747 CD DA BD [mV] +MBD -MBD [mV] [mV] [mV] [mV] 32.59 36.31 -3.633 -3.699 -3.741 32.64 36.32 -3.601 -3.671 -3.738

AB(m) [mV]	BC(m)[mV]	CD(m) [mV]	DA(m)
32.53	36.4	32.56	36.37
32.54	36.4	32.6	36.4

Sheet resistance:	156 Ω	Mobility:	-0.689956 cm ² /(V s)
Resistivity:	0.004509 Ω cm	Conductivity:	222 /(Ω cm)
CCC (Sheet):	-5.798e+16 /cm ²	CCC (bulk):	-2.006e+21 /cm ³
AC cross Hall coefficient:	-0.01747 cm ³ /C	BD cross Hall coefficient:	0.01125 cm ³ /C
Ratio of Vertical/Horizontal:	1.11399	Average hall coefficient:	-0.003111 cm³/C
Magneto-Resistance:	0.026924 % at 0.68 T		

PŘÍLOHA 5: VÝSLEDKY MĚŘENÍ Z VAN DER PAUW 3500 RPM

Hall effect measurement report

Parameters				
Date:	st 3 13 13:04:16 2024			
Sample name:	03_13_2024_3500			
Temperature:	21.03 °C			
Res. current:	1 mA			
Hall current:	1 mA			
Thickness:	0.257 µm			

Measurement data					
AB [mV]	BC [mV]	AC [mV]	+MAC [mV]	-MAC [mV]	
31.71	50.55	18.74	19.19	19.36	
31.72	50.55	18.78	19.31	19.4	
CD	DA	BD	+MBD	-MBD	
CD [mV]	DA [mV]	BD [mV]	+MBD [mV]	-MBD [mV]	
CD [mV] 31.7	DA [mV] 50.55	BD [mV] -18.69	+MBD [mV] -19.19	-MBD [mV] -19.31	
CD [mV] 31.7 31.71	DA [mV] 50.55	BD [mV] -18.69 -18.73	+MBD [mV] -19.19 -19.26	-MBD [mV] -19.31 -19.33	

AB(m) [mV]	BC(m) [mV]	CD(m) [mV]	DA(m)
31.7	50.57	31.7	50.57
31.7	50.57	31.7	50.57

Sheet resistance:	183 Ω	Mobility:	-0.742432 cm²/(V s)
Resistivity:	0.004702 Ω cm	Conductivity:	213 /(Ω cm)
CCC (Sheet):	-4.595e+16 /cm2	CCC (bulk):	-1.788e+21 /cm3
AC cross Hall coefficient:	-0.02411 cm ³ /C	BD cross Hall coefficient:	0.01713 cm ³ /C
Ratio of Vertical/ Horizontal:	1.59433	Average hall coefficient:	-0.003491 cm ³ /C
Magneto- Resistance:	0.00771886 % at 0.68 T		

PŘÍLOHA 6: VÝSLEDKY MĚŘENÍ Z VAN DER PAUW 4000 RPM

Hall effect measurement report

Parameters

Date:	st 3 13 12:51:41 2024
Sample name:	03_13_2024_4000
Temperature:	21.09 °C
Res. current:	1 mA
Hall current:	1 mA
Thickness:	0.239 µm

Measurement data BC AC [mV] +MAC -MAC AB [mV] [mV] [mV] [mV] 41.83 -10.05 51.84 -10.02 -9.975 51.84 41.83 -9.949 -9.984 -10 +MBD CD DA BD -MBD [mV] [mV] [mV] [mV] [mV] F1 02 41.02 10.00 10.1 10.04

51.05	1.05	10.00	5 10.1	10.04
51.85 4	1.83	10.09	9 10.11	10.06
AB(m)	BC(m	ı)[mV]	CD(m) [mV	/] DA(m)
[mV]				- ` `

41.83

51.82 41.82

Results

Sheet resistance:	211.4 Ω	Mobility:	-0.161271 cm ² /(V s)
Resistivity:	0.005053 Ω cm	Conductivity:	198 /(Ω cm)
CCC (Sheet):	-1.83e+17 /cm ²	CCC (bulk):	-7.659e+21 /cm ³
AC cross Hall coefficient:	-0.01101 cm ³ /C	BD cross Hall coefficient:	0.009376 cm ³ /C
Ratio of Vertical/Horizontal:	0.806887	Average hall coefficient:	-0.0008149 cm ³ /C
Magneto-Resistance:	-0.0064539 % at 0.68 T		

51.85