

I hereby declare that:

 I understand that by submitting my Bachelor´s Thesis, I agree to the publication of my

work according to Law No. 111/1998, Coll., On Universities and on changes and

amendments to other acts (e.g. the Universities Act), as amended by subsequent legis-

lation, without regard to the results of the defence of the thesis.

 I understand that my Bachelor´s Thesis will be stored electronically in the university

information system and be made available for on-site inspection, and that a copy of the

Bachelor´s Thesis will be stored in the Reference Library of the Faculty of Applied In-

formatics, Tomas Bata University in Zlín, and that a copy shall be deposited with my

Supervisor.

 I am aware of the fact that my Bachelor´s Thesis is fully covered by Act No. 121/2000

Coll. On Copyright, and Rights Related to Copyright, as amended by some other laws

(e.g. the Copyright Act), as amended by subsequent legislation; and especially, by §35,

Para. 3.

 I understand that, according to §60, Para. 1 of the Copyright Act, TBU in Zlín has the

right to conclude licensing agreements relating to the use of scholastic work within the

full extent of §12, Para. 4, of the Copyright Act.

 I understand that, according to §60, Para. 2, and Para. 3, of the Copyright Act, I may use

my work - Bachelor´s Thesis, or grant a license for its use, only if permitted by the

licensing agreement concluded between myself and Tomas Bata University in Zlín with

a view to the fact that Tomas Bata University in Zlín must be compensated for any

reasonable contribution to covering such expenses/costs as invested by them in the cre-

ation of the thesis (up until the full actual amount) shall also be a subject of this licensing

agreement.

 I understand that, should the elaboration of the Bachelor´s Thesis include the use of

software provided by Tomas Bata University in Zlín or other such entities strictly for

study and research purposes (i.e. only for non-commercial use), the results of my Bach-

elor´s Thesis cannot be used for commercial purposes.

 I understand that, if the output of my Bachelor´s Thesis is any software product(s),

this/these shall equally be considered as part of the thesis, as well as any source codes,

or files from which the project is composed. Not submitting any part of this/these com-

ponent(s) may be a reason for the non-defence of my thesis.

I herewith declare that:

 I have worked on my thesis alone and duly cited any literature I have used. In the case

of the publication of the results of my thesis, I shall be listed as co-author.

 That the submitted version of the thesis and its electronic version uploaded to IS/STAG

are both identical.

 I declare that I have used the generative AI model tool Chat-GPT; https://chatgpt.com/

to create this work for the purpose of translation,rephrasing and editing the text. After

using this tool, I have checked the content and take full responsibility for it.

In Zlín; dated: 13.05.2024 Maria Shamoeva,v.r.

 Student´s Signature

ABSTRAKT

Tato bakaláYská práce se zabývá strategickým pYijetím a implementací frameworku Blazor

v kontextu vývoje moderních webových aplikací ve spolenosti Continental Barum s.r.o.

Práce komplexn� zkoumá architekturu Blazoru vetn� jeho knihoven komponent a hodnotí

integraci souvisejících technologií. Teoretická ást práce ukazuje základní funkcionality a

výhody pou�ití Blazor v aplikacích podnikové úrovn�. V analytické ásti se pozornost pYe-

souvá na reálnou aplikaci t�chto technologií ve spolenosti Continental Barum s.r.o., kde je

podrobn� popsána migrace ze staraího webového frameworku na Blazor. Praktické poznatky

jsou v�novány redesignu podnikové webové aplikace SFE a ilustrují zlepaení v oblasti we-

bových aplikací. V záv�ru práce jsou reflektovány dosa�ené výsledky a navr�en dalaí vývoj.

Klíová slova: Blazor,C#, .NET, ASP.NET,GraphQL

ABSTRACT

This bachelor's thesis explores the strategic adoption and implementation of the Blazor fra-

mework within the context of modern web application development at Continental Barum

s.r.o. This thesis provides a comprehensive examination of Blazor's architecture, including

its component libraries and assesses the integration of related technologies.The theoretical

part of the thesis outlines the core functionalities and advantages of using Blazor in enter-

prise-level applications. In the analysis section, the focus shifts to the real-world applica-

tion of these technologies at Continental Barum s.r.o., detailing the migration from an ol-

der web framework to Blazor . Practical insights are provided into the redesign of the com-

pany's SFE Web App, illustrating improvements in web application.Finally, the thesis

concludes by reflecting on the achieved results and proposing further developments.

Keywords: Blazor,C#, .NET, ASP.NET,GraphQL

ACKNOWLEDGEMENTS

Acknowledgements, motto and a declaration of honour saying that the print version of the

Bachelor's/Master's thesis and the electronic version of the thesis deposited in the IS/STAG

system are identical, worded as follows:

I hereby declare that the print version of my Bachelor's/Master's thesis and the electronic

version of my thesis deposited in the IS/STAG system are identical.

CONTENTS

INTRODUCTION ... 10

I THEORY ... 11

1 INTRODUCTION TO BLAZOR ... 12

1.1 OVERVIEW OF BLAZOR .. 12

1.2 ARCHITECTURE OF BLAZOR ... 13

1.2.1 Blazor WebAssembly ... 15
1.2.2 Blazor Server .. 17

1.3 COMPONENT LIBRARIES IN BLAZOR ... 19

1.3.1 Blazorise ... 19
1.3.2 Radzen .. 20
1.3.3 Telerik UI ... 20

2 RELATED TECHNOLOGIES INTEGRATED WITH BLAZOR 22

2.1 .NET CORE AND ITS ROLE IN BLAZOR APPLICATIONS ... 22

2.2 SUPPORTING TECHNOLOGIES ... 23

2.2.1 ASP.NET Core ... 23
2.2.2 Entity Framework ... 24
2.2.3 SignalR ... 26

2.3 GRAGHQL INTEGRATION ... 28

2.3.1 Introduction to GraphQL .. 28
2.3.2 Integration with Blazor .. 30

2.4 TESTING BLAZOR WITH BUNIT .. 31

II ANALYSIS .. 33

4. TECHNOLOGICAL FOUNDATIONS AND APPLICATIONS AT

CONTINENTAL BARUM S.R.O ... 34

5 OVERVIEW OF THE OLD VERSION OF APPLICATION 37

6 DECISION TO MIGRATE TO BLAZOR .. 39

7 SFE WEB APP ... 41

7.1 WEB APPLICATION DESIGN .. 41

7.2 WEB APPLICATION STRUCTURE .. 46

7.2.1 Pagination ... 47
7.2.2 Validation and Editing ... 48
7.2.3 User Authentification ... 50
7.2.4 Filtering and Sorting .. 51

8 SECURITY MEASURES .. 52

8.1 HTTPS PROTOCOL ... 52

8.2 VPN REQUIREMENTS ... 53

9 ACHIEVED RESULTS AND FURTHER DEVELOPMENT 54

CONCLUSION .. 55

BIBLIOGRAPHY .. 56

LIST OF ABBREVIATIONS ... 58

LIST OF FIGURES ... 59

APPENDICES .. 60

TBU in Zlín, Faculty of Applied Informatics 10

INTRODUCTION

The speed at which technology is developing in today's ever changing digital environment

is astonishing. Web development, in particular, is a field characterized by continual inno-

vation and the swift obsolescence of older technologies. As the needs of users and the ca-

pabilities of hardware advance, old web frameworks often find themselves unable to keep

up, leading to their gradual decline and eventual replacement by more modern solu-

tions.Technology is advancing at an incredible pace in today's digital world. Web develop-

ment, in particular, is a field that is constantly innovating and quickly discarding older

technologies. With the increasing demands of users and the advancements in hardware ca-

pabilities, older web frameworks often struggle to keep up, leading to their gradual decline

and eventual replacement by more modern solutions. This bachelor thesis explores the in-

tegration and utilization of Blazor in a new version of company9s web application.

TBU in Zlín, Faculty of Applied Informatics 11

I. THEORY

TBU in Zlín, Faculty of Applied Informatics 12

1 INTRODUCTION TO BLAZOR

Nowadays, .NET developers have a lot of tools and resources to create applications for var-

ious operating systems such as Windows, Linux, iOS, Android, and macOS. We can build

robust and scalable web-based applications with the help of ASP.NET MVC, Razor Pages,

and Web API. However, a missing piece in the puzzle has always been the ability to write

web applications using the power of C# and .NET. JavaScript has always occupied this do-

main. However, things have changed now, and there is a new framework called Blazor,

which can help us write client-side web applications using C# and .NET. Blazor will be in-

troduced in this chapter.

1.1 Overview of Blazor

First time Blazor was introduced during NDC Oslo in 2017. This first version was con-

structed using DotNetAnywhere, an interpreted .NET CIL runtime. While Blazor's features

were limited, its promise was evident. Microsoft introduced Blazor to its ASP.NET GitHub

organization after its initial demonstration as an experimental project. This move indicated

Microsoft's serious consideration of Blazor's potential. As of now, the repository has gar-

nered over 3,300 stars and contributions from 17 developers, further validating its growing

popularity. Then the ASP.NET team rewrote Blazor from scratch as part of the official adop-

tion. DotNetAnywhere has been superseded by Mono, which provides a considerably more

powerful and feature-rich .NET runtime. [1]

With an innovative framework that combines productivity and power, Blazor is changing

the face of web development. It uses the .NET Core architecture to standardize development

stack-wide patterns and procedures. Blazor offers developers flexibility and the convenience

of switching between hosting modes as needed, thanks to the versatility o of .NET Core,

which supports client- and server-side hosting models. The framework combines depend-

ency injection, configuration, routing, and other crucial .Net Core technologies with the ease

of use of Razor. Blazor assures consistency with .NET norms and improves compatibility

with existing tooling by incorporating best practices from popular JavaScript frameworks

such as Angular and React and combining them with Razor templates.[2]

Blazor, a framework that supports responsive design and mobile-first applications, makes

creating web applications that run on various devices and screen sizes easier. This versatility

is critical in today's development environment, where mobile usage continues to grow.

TBU in Zlín, Faculty of Applied Informatics 13

Blazor makes constructing interactive and responsive user interfaces easier by allowing de-

velopers to use C#, which many people are familiar with because of its widespread use in

application development. Blazor's interaction with CSS frameworks such as Bootstrap im-

proves its ability to develop responsive web apps that function effectively on mobile and

desktop platforms. This approach streamlines the development process and meets the indus-

try's need for faster, more efficient delivery of software solutions that function seamlessly

across various platforms.[3]

Blazor has strong Microsoft support and an active development community, which work

together to create a rich resource of instructional materials. Furthermore, community-gener-

ated content, such as thorough blog pieces, free YouTube tutorials, and forums like Stack

Overflow and the official Blazor community on GitHub, provides practical insights and trou-

bleshooting suggestions for developers of all skill levels. [3]

The tooling environment surrounding Blazor dramatically improves the development expe-

rience. IDEs like Visual Studio and Visual Studio Code provide excellent Blazor support,

including built-in templates, debugging tools, and extensions tailored exclusively to Blazor

development. These IDEs enable a smooth development process from start to finish, with

built-in version control, .NET CLI support for scaffolding apps, and a robust Razor file edi-

tor. Furthermore, the recent advancements in Blazor tooling, such as hot reload capabilities,

allow developers to see changes in real time without restarting the entire application, boost-

ing productivity and enhancing the iterative development process. [3]

1.2 Architecture of Blazor

Blazor's architecture is innovative, blending the productivity and power of .NET with the

flexibility of modern web browsers through WebAssembly. This comprehensive discussion

explores Blazor's intricate architecture, highlighting its two principal hosting models4Bla-

zor Server and Blazor WebAssembly4along with its core features that streamline the de-

velopment process and enhance application performance.[2]

Unlike conventional client-side frameworks based on JavaScript, Blazor allows developers

to create client and server code in C# [1]. Using C# in Blazor offers several distinct ad-

vantages over JavaScript, particularly regarding development efficiency, performance, and

maintainability. C# is a statically typed language, meaning types are checked at compile-

time instead of runtime. This reduces runtime errors significantly, allowing for bugs to be

TBU in Zlín, Faculty of Applied Informatics 14

caught during development rather than after deployment. Type safety ensures that many

common JavaScript errors, such as type coercion mistakes, are avoided, leading to more

robust and predictable code. C# has rich features such as LINQ, generics, and async/await

that simplify complex operations, especially concerning data manipulation and asynchro-

nous programming. These features are deeply integrated into the language, offering a

cleaner, more expressive syntax. Using C# both on the server and client side simplifies the

development process by reducing context switching between languages. This uniformity al-

lows developers to apply the same object-oriented practices and patterns across the entire

application stack, improving the development workflow and reducing cognitive load. The

.NET ecosystem provides powerful development tools such as Visual Studio, which offers

advanced debugging, profiling, and testing tools that enhance developer productivity and

code quality.[5]

In Blazor, software systems are constructed using discrete, self-sufficient units known as

components. Each component is designed to perform a distinct function and can be utilized,

merged, and assembled to forge larger, more intricate systems. Within the Blazor frame-

work, components are fundamental in developing web application user interfaces. A typical

component in Blazor is HTML for structure, C# for functionality, and CSS for styling. These

components are designed to be reusable and modular user interface elements, such as but-

tons, forms, navigation bars, or even entire webpage sections. They encompass both the

graphical interface and the interactive behavior of these elements. This approach's main be-

nefit is that its components are made to function independently of one another, which reduces

dependencies and conflicts. This modularity not only reduces code redundancy but also eases

the maintenance process. In Blazor, components undergo a lifecycle that spans several

phases, including initialization, rendering, updating, and disposal. Developers can use these

lifecycle methods to execute custom actions or tailor behaviors at specific stages. Moreover,

components are equipped to manage user interactions via event handlers and adapt to data

modifications through data binding mechanisms, effectively responding to user inputs,

clicks, or mouse movements. This structure, style, and behavior integration in modular units

facilitates efficient approach to building robust web applications.[5]

TBU in Zlín, Faculty of Applied Informatics 15

 Figure 1 Blazor Component-BaseArchtecture

Components are rendered into a memory-based representation of the browser's Document

Object Model (DOM) called a render tree to enable fast and flexible user interface changes.

[3]

1.2.1 Blazor WebAssembly

As was already mentioned, Blazor supports two hosting models,allowing choices between

server-side and client-side executions based on project requirements. The first hosting model

is Blazor WebAssembly. This model utilizes WebAssembly to operate the application com-

pletely inside the client's browser. This arrangement enhances the user experience by ensur-

ing that all interactions and updates take place directly within the browser[5].

TBU in Zlín, Faculty of Applied Informatics 16

 Figure 2 Blazor WebAssembly

Advantages:

Rich Interactivity: Runs entirely within the browser, allowing for smooth and responsive

user interactions without server delays.

Reduced Server Burden: Offloads much of the processing to the client, lightening the server's

load.

Offline Functionality: Can operate offline using client-side storage mechanisms like local

storage or IndexedDB.

Broad Compatibility: Functions across all modern browsers that support WebAssembly, en-

suring wide accessibility.[5]

Disadvantages:

Slower Initial Load: The entire application, including the runtime, must be downloaded

initially, which can delay the starting interaction time.

Higher Resource Requirement: Demands more processing power and memory from the

client device to run smoothly.

Scalability Challenges: Managing numerous users or complex operations client-side can lead

to performance bottlenecks.

TBU in Zlín, Faculty of Applied Informatics 17

Security Risks: More application logic is exposed to the client, potentially increasing vulne-

rability to security threats like code tampering.[5]

1.2.2 Blazor Server

The second hosting model is Blazor Server. Blazor Server facilitates the hosting of Razor

components on the server within an ASP.NET Core application. UI interactions are ma-

naged via a SignalR connection. Blazor Server executes .NET code on the server and ma-

nages interactions with the Document Object Model (DOM) on the client through a Sig-

nalR connection. [3]

Blazor Server apps, unlike traditional ASP.NET Core applications, manage content diffe-

rently. They construct a graph of components resembling an HTML or XML DOM, main-

taining state within properties and fields. This component graph is evaluated by Blazor to

generate a binary markup representation, which is then transmitted to the client for rende-

ring. The initial connections between client and server involve replacing static pre-rende-

red elements with interactive components. This server-side pre-rendering significantly

enhances the responsiveness of the application by quickly loading HTML content on the

client side. [3]

Once components become interactive on the client side, UI updates are initiated through

user interactions and application events. Each update triggers a re-render of the component

graph, and the system calculates a UI difference (diff). This diff represents the minimal set

of DOM edits needed to update the client-side UI and is sent in binary format for the brow-

ser to apply. [3]

TBU in Zlín, Faculty of Applied Informatics 18

Figure 3 Blazor Server

Blazor Server applications offer several advantages. They enhance the speed of initial page

loads through server-side rendering. Only the essential HTML, CSS, and minimal JavaScript

required to bootstrap the application are sent to the client, ensuring quicker access to content.

With most computational tasks handled server-side, client devices are not heavily burdened,

making Blazor Server ideal for applications targeting devices with limited processing power.

Blazor Server is tightly integrated with ASP.NET Core, allowing developers to utilize well-

established server-side functionalities, middleware, authentication mechanisms, and lib-

raries seamlessly within their applications. Leveraging SignalR, Blazor Server provides real-

time communication capabilities between the client and server, enabling dynamic content

updates, notifications, and interactive features without requiring additional client-side code,

enhancing the user experience. Blazor Server applications can be scaled effectively by incre-

asing server resources, making it easier to manage higher traffic volumes and more complex

processing demands without degrading performance.[5]

 Disadvantages include the fact that Blazor Server applications rely on a continuous con-

nection to the server, so they offer limited functionality when offline. This dependency can

be a drawback in environments where consistent internet access is not guaranteed. As the

server handles most of the application's rendering and logic, it can become overloaded, espe-

cially in applications with many users or complex operations. This might necessitate robust

server solutions and potentially increase infrastructure costs. The dependence on server pro-

cessing results in latency; every user interaction requires a round trip to the server, which

can slow down the application's responsiveness. This delay can impact user satisfaction,

TBU in Zlín, Faculty of Applied Informatics 19

particularly in interactions that require instantaneous feedback. While server-side processing

centralizes application logic and simplifies deployment, it limits the application's ability to

perform client-side complex computations.[5]

1.3 Component Libraries in Blazor

A Blazor Component Library consists of UI components that are simple to integrate and

use across different Blazor applications. These components, which range from buttons and

forms to navigation menus, encapsulate distinct functionalities or UI elements and are de-

signed for easy customization and extension to meet specific application requirements.[6]

Using these libraries saves time and resources by allowing for the reuse of existing compo-

nents instead of building new ones from the beginning. This efficiency accelerates develo-

pment processes and enhances consistency and uniformity throughout the application. Ad-

ditionally, these libraries support excellent code reusability and modularity, simplifying the

maintenance and updating of UI components as applications develop and change.[6]

 Let's talk about some of them.

1.3.1 Blazorise

Blazorise, a user-friendly and comprehensive component library for Blazor, is designed to

empower developers to build feature-rich and responsive web applications quickly. Support-

ing a variety of CSS frameworks such as Bootstrap, Bulma, AntDesign, and Material, Bla-

zorise ensures a consistent style and behavior across applications, requiring minimal effort.

The library includes components like Data Grids, Modal Dialogs, Tabs, and many other el-

ements crucial for developing interactive web interfaces. Each component is highly custom-

izable, catering to the specific demands of business applications while delivering an excep-

tional user experience.[7]

One of the primary benefits of using Blazorise is the speed with which developers can im-

plement complex UIs. By offering a set of pre-built components,Blazorise greatly cuts down

on development time and effort, allowing developers to concentrate on the distinctive aspects

of their applications.Additionally, Blazorise components are built with performance in mind,

TBU in Zlín, Faculty of Applied Informatics 20

ensuring that applications look good and run smoothly and efficiently. Blazorise boasts a

robust and active community. As an open-source project, it benefits from developers' collec-

tive contributions and support worldwide. Another significant advantage of Blazorise is its

ability to integrate seamlessly with the .NET ecosystem. This integration ensures developers

can use Blazorise alongside other .NET technologies, effectively leveraging existing code-

bases and libraries. The compatibility with various development environments and platforms

means that Blazorise can be used in various applications.[7]

1.3.2 Radzen

 Radzen Blazor Components is a robust library offering over 70 free and open-source UI

components that are native to the Blazor framework. Designed to enhance Blazor applicati-

ons, Radzen simplifies development by providing a range of components such as DataGrids,

Schedulers, Charts, and Dialogs, all underpinned by themes like Material Design and Fluen-

tUI. This diversity in components enables developers to create visually appealing and functi-

onally rich applications efficiently. [8]

One of the key features of Radzen is that it supports both client-side (WebAssembly) and

server-side Blazor applications. This dual support ensures that Radizen's components can be

utilized in various development contexts, enhancing their versatility and appeal. Moreover,

Radzen prioritizes ease of use and integration, allowing components to be added to projects

via NuGet, simplifying the installation process and making them readily accessible to deve-

lopers.[8]

Radzen also stands out for its commitment to regular updates and short development cycles,

ensuring that new features and components are made available quickly. This approach helps

keep applications up-to-date with the latest functionalities without long waits typically asso-

ciated with quarterly release cycles.[9]

1.3.3 Telerik UI

Telerik UI for Blazor is a highly acclaimed suite of over 110 native Blazor components

designed to expedite the development of modern web applications using the Blazor frame-

work. This suite is equipped with diverse UI controls, including Grids, Charts, Schedulers,

and more, which are constructed on native Blazor to avoid reliance on JavaScript interop.

This ensures the components are high-performing and seamlessly integrated within the .NET

ecosystem, as the Telerik official documentation outlines.[10]

TBU in Zlín, Faculty of Applied Informatics 21

Using such advanced tools can significantly flatten the learning curve for developers diving

into Blazor development. The guide highlights the necessity of grasping Blazor's basic prin-

ciples, which can then be adeptly utilized with advanced tools such as Telerik UI for Blazor

to create applications suitable for enterprise use. These components are crafted to be intui-

tive, enabling developers to easily introduce sophisticated features, irrespective of their level

of experience. They support essential data operations like sorting, filtering, and editing right

out of the box4capabilities that are crucial for developing robust business applications.

Telerik UI for Blazor also enriches developer productivity through additional design tools

and productivity enhancements. For instance, the suite includes a Visual Studio Code exten-

sion that simplifies project setups and configurations. Furthermore, it features embedded

reporting capabilities that enable developers to generate and manage comprehensive reports

directly within their applications, thus enhancing data analysis and decision-making pro-

cesses.The commercial licensing of Telerik UI for Blazor and a free trial that provides full

access to all components and comprehensive technical support make it a prudent choice for

businesses considering its adoption. This trial is especially beneficial for thoroughly evalu-

ating the suite's capabilities before committing to a purchase. Telerik also ensures that any

issues encountered can be swiftly and effectively addressed by its dedicated support team,

enhancing the overall reliability and service experience.[2]

TBU in Zlín, Faculty of Applied Informatics 22

2 RELATED TECHNOLOGIES INTEGRATED WITH BLAZOR

Blazor, a progressive web framework by Microsoft, stands out for its seamless integration

with various established technologies, notably .NET Core. This unique integration signifi-

cantly enhances Blazor's utility in crafting responsive, scalable, and robust web applications,

aligning perfectly with the modern web development demands.

2.1 .NET Core and Its Role in Blazor Applications

.NET Core, an open-source, cross-platform framework, plays a pivotal role in both the ar-

chitecture and operational realms of Blazor applications. Its versatility as a high-perfor-

mance framework that supports application development across different platforms, includ-

ing Windows, macOS, and Linux, is particularly beneficial for businesses aiming for broad

accessibility in their applications. This ensures that performance and user experience remain

consistent regardless of the operating system. The framework gives developers flexibility

and choice by supporting various programming languages, including C#, F#, and Visual

Basic. Furthermore,.NET Core is highly respected for effectively handling complex appli-

cations, and it has sophisticated features including strong encryption support and automated

memory management. Because of these features,.NET Core is a desirable choice for busi-

nesses that require scalable, dependable apps that can function well in a variety of environ-

ments.[12]

.NET Core's middleware architecture is critical in Blazor, especially in Blazor Server appli-

cations. Software components known as middleware are brought together to form an appli-

cation pipeline to manage requests and responses.In Blazor, middleware can be used to cus-

tomize how requests are handled, enabling scenarios such as authentication, logging, and

sophisticated routing, which are crucial for enterprise applications. [14]

.NET Core enhances Blazor's capability to manage the application lifecycle more effectively.

It provides tools and services for application startup, dependency management, and event

handling. For example, Blazor Server applications benefit from .NET Core's ability to man-

age connections and user sessions effectively, ensuring that applications remain responsive

and scalable under load. This is particularly important in scenarios where applications must

maintain a high level of performance despite handling numerous simultaneous user interac-

tions.[13]

TBU in Zlín, Faculty of Applied Informatics 23

2.2 Supporting Technologies

2.2.1 ASP.NET Core

The state-of-the-art, open-source ASP.NET Core platform was designed to make it easier

to create web apps that run well on various platforms, including Windows, macOS, and Li-

nux. Because of their adaptability, developers may reach a wider audience and improve the

usefulness and reach of their programs in various settings. ASP.NET Core is renowned for

its robust backend capabilities, which include sophisticated authentication, authorization,

and comprehensive API management tools. These features establish a secure, scalable, and

efficient backend, crucial for modern software development environments.[16]

Authentication in ASP.NET Core is a critical feature, ensuring that the identity of users is

verified through various supported methods, including forms-based authentication, token-

based authentication, and integration with external identity providers like Google, Face-

book, and Twitter. The framework facilitates this through middleware components that

can be configured in the Startup.cs file, making it adaptable to the specific security needs

of an application.

The framework's authorization capability allows developers to create secure environments

by granting access to resources based on user roles or policies. This is pivotal in enforcing

security measures and ensuring appropriate access to functionalities within the application.

ASP.NET Core supports several authorization techniques:

 Role-Based Authorization: Restricts access based on user roles.

 Policy-Based Authorization: Allows the expression of complex logic to evaluate

user permissions.

 Claims-Based Authorization: Provides a way to control access based on claims

within user identities.

These authorization practices can be declaratively set in code or configuration files and are

enforced across applications globally or at granular levels such as per-controller or per-

action, enhancing the security and integrity of applications.

With the rise of microservices and service-oriented architectures, effective API ma-

nagement has become crucial. ASP.NET Core excels in building and managing APIs with

TBU in Zlín, Faculty of Applied Informatics 24

features supporting RESTful development that can handle multiple data formats inclu-

ding JSON, XML, or plain text. This adaptability is critical for backends intended to

serve a diverse set of client applications.

With the support of programs like Swashbuckle, Swagger (now OpenAPI) easily integrates

with ASP.NET Core, offering a framework for producing helpful documentation and help

pages for APIs. This makes APIs accessible and easy to use by providing thorough docu-

mentation, which greatly helps with the development and testing stages.

The latest release, ASP.NET Core 8.0, brings several enhancements that bolster its web

and API development capabilities:

 Minimal APIs: Expanded support reduces the boilerplate code necessary for

setting up APIs, fostering a cleaner and more maintainable codebase.

 Improved Routing Capabilities: Enhancements in endpoint routing offer more

control and flexibility, simplifying complex routing setups.

 Enhanced Performance: Optimizations in middleware processing and HTTP/2

support improve load times and efficiency under high traffic conditions.

 Streamlined SignalR Client: Enhancements in SignalR improve real-time commu-

nication functionalities, crucial for interactive applications.[16]

2.2.2 Entity Framework

Entity Framework is a key component of the.NET ecosystem; with its sophisticated Ob-

ject-Relational Mapping features, it provides developers with an incredibly effective me-

ans of interacting with databases. EF frees developers from the complexity of database

schema manipulation so they may concentrate more on creating solid business logic by au-

tomating data management and SQL operation tasks. This discussion explores how Entity

Framework revolutionizes data manipulation and persistence, highlighting its essential role

in contemporary software development.Entity Framework is a comprehensive ORM solu-

tion developed by Microsoft that enables developers to deal with data as easily manageable

objects, thus eliminating the need for most of the data-access code that developers typically

need to write. As part of the broader .NET platform, EF allows for seamless integration

TBU in Zlín, Faculty of Applied Informatics 25

with other technologies, providing developers with a streamlined approach to handling data

across varied applications.

EF abstracts the database schema into .NET objects, which developers can work with di-

rectly. This abstraction allows for manipulating data without direct SQL interactions, sim-

plifying development and reducing the likelihood of introducing bugs associated with raw

SQL coding.

EF fully integrates with Language Integrated Query enabling developers to write database

queries using C#. These queries are then translated into SQL at runtime, ensuring applicati-

ons remain maintainable and secure.EF automatically tracks changes in data objects and

calculates the necessary SQL updates during the save operation, simplifying the update

process and ensuring data integrity.EF supports database schema migrations, which are es-

sential for evolving applications without losing data or breaking existing functionalities.

This feature facilitates version-controlled schema updates seamlessly. First-level caching

that is integrated into EF guarantees that repeated requests for the same data inside the

same context are answered more quickly, enhancing speed by lowering the number of data-

base round trips. Entity Framework transforms complex SQL tasks into straightforward ob-

ject manipulations. Data processing is more intuitive when CRUD (Create, Read, Update,

Delete) activities are carried out on objects rather to using explicit SQL. EF's ORM capa-

bilities allow for managing complex relationships and associations in the database, using

an object-oriented approach that aligns with modern development practices.EF's integra-

tion extends to other components of the .NET framework, enhancing its utility in building

applications across different platforms, including web (ASP.NET), desktop (WPF, Win-

Forms), and more. The creation of scalable and secure data-driven applications is made

easier by this connectivity.

Eventhough EF is very productive and maintainable, speed tuning is still very important.

To balance performance, EF enables for the setup of eager and lazy loading. However, de-

velopers need to be careful when converting queries into SQL to prevent typical problems

like the N+1 queries problem.

With ongoing advancements, Entity Framework Core has been redesigned to be more

lightweight, extendable, and cross-platform, supporting a broader range of development

scenarios and enhancing performance. This version of EF continues to build on the robust

TBU in Zlín, Faculty of Applied Informatics 26

foundation of its predecessor while introducing improvements that meet the demands of

modern software architecture.[17]

2.2.3 SignalR

SignalR is a library that is highly valued among ASP.NET developers, as it makes it easier

to add real-time web functionality to applications. Real-time web functionality enables

server code to instantly push content to connected clients as it becomes available, instead of

waiting for a client to request new data. SignalR is immensely beneficial in developing in-

teractive applications requiring real-time user interaction or updates, such as chat systems,

live notifications, or real-time dashboards. At its core, SignalR facilitates the addition of

real-time communication capabilities to web applications by enabling bi-directional com-

munication between server and client. Servers can now push content to clients instantly, and

clients can send messages to servers and receive real-time responses. This dynamic commu-

nication loop is pivotal for applications that rely on immediate data flow, such as online

gaming interfaces, financial trading platforms, or social media feeds.[15]

SignalR uses WebSockets as its primary transport, but it can automatically fall back to other

techniques, such as Server-Sent Events or Long Polling when WebSockets are unavailable.

This flexibility ensures that SignalR can provide real-time functionality in various environ-

ments and browsers, including those that do not support the latest protocols. The process

begins with the client initiating a connection request to the server. SignalR negotiates the

best possible transport method based on the client and server capabilities. Once the connec-

tion is established, the server holds it open, allowing for a persistent, two-way data ex-

change.[15]

TBU in Zlín, Faculty of Applied Informatics 27

 Figure 4 How SignalR works

In the event of brief disconnections, SignalR automatically reconnects to maintain a smooth

and uninterrupted user experience. It manages connection lifecycles meticulously, handling

the complexities of setup, maintenance, and teardown. SignalR supports scaling out of ap-

plications across multiple servers to handle more traffic. It integrates seamlessly with back-

plane technology, which helps manage connections across different servers and synchronize

messages across them. Also it allows the server to group connections, which can be useful

for broadcasting messages to specific subsets of clients, such as a chat room or a specific

user group.

The adoption of SignalR in web applications comes with several advantages: Applications

become more responsive and interactive as the delay between the server and client is mini-

mized. Unlike traditional request-response models where clients poll the server regularly,

TBU in Zlín, Faculty of Applied Informatics 28

SignalR maintains an open connection, drastically reducing the number of requests to the

server.SignalR abstracts the complexity of managing real-time communications, allowing

developers to focus more on core application features rather than connection management

details.[15]

2.3 GraghQL Integration

2.3.1 Introduction to GraphQL

In the context of web development, particularly in scenarios requiring efficient data retrie-

val and management, GraphQL presents a significant advancement over traditional REST

APIs. This section of the thesis explores why and how GraphQL, as a query language for

APIs, offers a more optimized and flexible approach to data handling.

GraphQL, which was developed by Facebook in 2012 and made available to the public in

2015, offers a more effective, potent, and adaptable substitute for the conventional REST

API. Its capacity to let clients ask for just what they require, and nothing more, signifi-

cantly increases application interface performance and efficiency and reduces network

traffic, particularly in complex systems. [18]

Unlike REST, which often requires multiple endpoints to retrieve different pieces of data,

GraphQL allows a single query to aggregate all the necessary data. This approach signifi-

cantly reduces the number of network requests, enhancing performance and reducing la-

tency. One of the most compelling features of GraphQL is its ability to elimi-

nate both overfetching and underfetching.It minimizes the inefficiencies associated with

receiving extra information (overfetching) or requiring additional requests to fulfill data

requirements (underfetching) by letting the client indicate exactly what data is needed.

GraphQL APIs are defined by their schemas, which are strongly typed. This setup allows

the API to validate queries against the schema effectively, providing a clear contract that

specifies exactly what data can be accessed and how. This feature enhances security and

stability by ensuring that interactions with the API are predictable and conform to specified

data structures. Unlike traditional REST APIs, GraphQL supports real-time data updates

through subscriptions. This feature enables clients to maintain a consistent state with server

data, updating in real time as changes occur. This capability is particularly beneficial for

TBU in Zlín, Faculty of Applied Informatics 29

applications requiring high levels of interactivity and up-to-date data displays, such as dy-

namic dashboards and live data feeds.[18]

 Figure 5 GraphQL Architecture

Interesting to understand how GraphQL works exactly. Each client (iOS App) constructs

and sends a GraphQL query requesting specific data. This query clearly defines the fields

and objects needed by the client. Upon receiving the query, the GraphQL Server first vali-

dates it against the schema to ensure it only requests defined fields. It then processes this

query, orchestrating calls to various resolvers. Resolvers are functions connected to speci-

fic types or fields in the GraphQL schema. Each resolver knows how to fetch or compute

the value for its field, often requiring calls to external data sources (databases, web servi-

ces, etc.). After all resolvers have returned their data, the GraphQL Server assembles these

pieces into a single JSON object structured according to the query. This object is then sent

back to the client as the response. The client receives the JSON payload. This payload is

specifically designed to match the query, guaranteeing that the client receives exactly

what they requested and that no data is fetched in excess or insufficiently.

TBU in Zlín, Faculty of Applied Informatics 30

2.3.2 Integration with Blazor

Integrating GraphQL within modern web applications, especially those built with plat-

forms like Blazor, can greatly improve the data interaction layer's performance and flexibi-

lity. Hot Chocolate is an open-source GraphQL server for .NET that facilitates this integra-

tion by providing a robust framework to build efficient GraphQL APIs. This framework

simplifies the setup and execution of a GraphQL server in a .NET environment, supporting

a wide array of features including subscriptions, middleware, and real-time data handling.

As a tool, Hot Chocolate is designed to enhance the GraphQL implementation process,

enabling developers to create scalable and performant GraphQL servers that can handle

complex queries with ease. Hot Chocolate includes Banana Cake Pop, a GraphQL IDE that

significantly aids developers in testing and debugging their GraphQL queries. This integra-

ted development environment is crucial for optimizing query structures and mutations, en-

suring that they are both efficient and effective.[19]

Adopting GraphQL represents a strategic enhancement in data handling within web appli-

cations. By providing precise data retrieval capabilities, reducing unnecessary data trans-

fers, and ensuring real-time updates, GraphQL can significantly improve the performance,

user experience, and scalability of applications. This is demonstration of using Graphql

Query for fetching the data from Api in BananaCake IDE:

 Figure 6 GraphQL Query Example

TBU in Zlín, Faculty of Applied Informatics 31

The query:

2.4 Testing Blazor With BUNIT

The most important aspect of software development is testing. It ensures that code not

only performs its intended function under normal conditions but also gracefully handles

unexpected or incorrect inputs. For Blazor applications, built on a component-based archi-

tecture similar to React and Vue.js, effective testing tools that understand the component

lifecycle and state management are paramount.

BUnit is a testing library specifically designed for Blazor components. It provides a

comprehensive approach to unit and integration testing, allowing developers to thoroughly

test their components in isolation or within the context of their broader application. It ena-

bles developers to write tests that simulate the behavior of components during rendering

and interaction phases. BUnit tests are typically executed in a test environment that mimics

the Blazor runtime, allowing components to be rendered and interacted with as if they

were running in a real browser.[20]

TBU in Zlín, Faculty of Applied Informatics 32

BUnit's strength lies in its capability to create isolated testing environments for compo-

nents, devoid of any dependencies on other parts of the application. This feature is a game-

changer when it comes to pinpointing and resolving defects within individual components

before integration, a critical step in the development process.

 BUnit seamlessly integrates with widely-used .NET dependency injection (DI) containers

and mocking libraries, making it a breeze for developers to replace actual service imple-

mentations with stubs or mocks. This integration simplifies the testing process, allowing

developers to focus on the component9s behavior rather than its integration with external

systems.BUnit also offers mechanisms to simulate user interactions, such as clicks, form

submissions, and input changes, a crucial feature for testing component responses to user

actions. Additionally, BUnit provides tools for mocking and asserting outcomes of

JavaScript interop calls, a necessity for components that rely on JavaScript for functiona-

lity not directly available in Blazor. Lastly, BUnit supports snapshot testing, a feature that

captures the rendered markup of components and compares it against known good

snapshots, ensuring that component changes do not unintentionally affect their rendered

output.[20]

The BUnit test example:

@inherits TestContext

@code {

 [Fact]

 public void HelloWorldComponentRendersCorrectly() {

 // Act

 var cut = Render(@ < HelloWorld / >);

 // Assert

 cut.MarkupMatches(@ < h1 > Hello world from Blazor < /h1>);

 }

 }

TBU in Zlín, Faculty of Applied Informatics 33

II. ANALYSIS

TBU in Zlín, Faculty of Applied Informatics 34

4. TECHNOLOGICAL FOUNDATIONS AND APPLICATIONS AT

CONTINENTAL BARUM S.R.O

In Figure 7 we see main official site page of the company [21]

 Figure 7 Continental Official Website

As a part of the wider Continental AG company, one of the top global suppliers to the au-

tomobile industry, Continental Barum is a well-known brand in the tire manufacturing

sector. Continental began business in 1871 and has since grown to become a leading inter-

national technology firm. The business initially focused on making soft rubber parts, such

horse hoof buffers. Continental highlighted innovation and diversity as essential compo-

nents of its strategy. The company quickly outgrew its basic hoof guards and

other hard rubber parts to include over 60,000 products, including rubberized fabrics used

in airships, hot air balloons, and airplanes. Based in Otrokovice, Czech Republic, Conti-

nental Barum benefits from a strong combination of Czech tire manufacturing traditions

and German engineering excellence.[22]

Continental Barum focuses on the production of a wide range of tires, including those for

passenger cars, trucks, and special vehicles. The company is known for producing high-qu-

ality, durable tires that incorporate advanced German technology. The company is commit-

ted to innovation in tire technology, emphasizing safety, fuel efficiency, and environmental

TBU in Zlín, Faculty of Applied Informatics 35

sustainability in their product designs. This aligns with Continental AG's broader strategy

of developing cutting-edge automotive technologies.

Continental AG, as a global leader in automotive manufacturing and technology, strongly

emphasizes developing its own digital solutions, including websites and applications.

This internal development approach ensures that their digital infrastructure is closely alig-

ned with their specific business needs and industry standards while keeping critical data

and proprietary technologies private and secure. By developing and managing their sites

and applications internally, Continental protects its business data and intellectual prope-

rty. This is crucial in the automotive industry, where data security and the protection of

technological innovations are paramount.

The deep integration of Continental's internal development team with their current techno-

logies is a benefit. This includes everything from manufacturing systems and supply chain

logistics to vehicle telematics and infotainment systems.

Examples of Development Projects:

1.Tire Information Systems: Continental's tire information systems mark a major improve-

ment in vehicle efficiency and safety. These systems are a component of Continen-

tal's larger effort to incorporate cutting-edge sensor technologies into car tires, giving drivers

access to real-time tire condition data. This technology is critical to the development and

implementation of autonomous vehicle technologies, as well as to improving consumer

safety by warning drivers of possible tire problems before they become problematic. The

tires' internal sensors keep an eye on a number of variables, such as tread depth, temperature,

and pressure. The onboard systems of the car receive this data in real time, and it might also

be sent straight to the driver's dashboard or mobile app. The system utilizes advanced algo-

rithms to analyze collected data and predict tire wear and performance issues, allowing for

preemptive maintenance actions that can prevent accidents and extend tire life.Beyond

providing alerts, the tire information can be integrated with vehicle safety systems, such as

those controlling braking and stability, to automatically adjust in response to changing tire

conditions.The system enhances safety by preventing tire-related accidents.It supports eco-

friendly driving practices by ensuring tires are at optimal inflation, which improves fuel ef-

ficiency.It is integral in developing autonomous driving systems where vehicle awareness

is key to operational safety.[23]

TBU in Zlín, Faculty of Applied Informatics 36

2.ContiConnect: ContiConnect is Continental's innovative digital tire monitoring plat-

form designed specifically for commercial fleets. This web-based solution harnesses the

power of IoT technology to streamline fleet maintenance, enhance safety, and reduce ope-

rational costs by providing fleet managers with critical tire performance data.

With ContiConnect, fleet managers can keep a real-time tab on the tire conditions of multi-

ple vehicles from a centralized dashboard accessible via web technologies. This includes

vital data on tire pressure and temperature, ensuring tire health and vehicle safety. Conti-

Connect promptly alerts and notifies when tire conditions deviate from preset thresholds,

enabling immediate attention to potential issues before they escalate into costly downtime

or accidents. The platform also accumulates historical data for analysis, aiding fleet ma-

nagers in understanding tire wear patterns and optimizing replacement cycles and main-

tenance practices accordingly. It seamlessly integrates with existing fleet management sys-

tems, providing a comprehensive overview of fleet operations and enhancing decision-ma-

king processes.

Fleets can save a lot of money on total operating costs by keeping tires in good condition

and reducing fuel usage and tire life. Instant alerts regarding tire problems lower potential

expenses by preventing accidents brought on by tire failures. Fleet uptime and resource all-

ocation are improved by streamlined maintenance procedures and scheduled servicing

based on precise tire condition data, reducing downtime and increasing productivity. Our

tire information systems and ContiConnect have actual, practical cost-saving advantages

that can significantly improve your bottom line. These advantages are not merely theoreti-

cal.[24] In Figure 8 we see ContiConnect Website

 Figure 8 ContiConnect Website

TBU in Zlín, Faculty of Applied Informatics 37

5 OVERVIEW OF THE OLD VERSION OF APPLICATION

This is MMS-Tool application.

Figure 9 MMS-Tool Application

The Mixing Management System (MMS) is a well-known illustration of the difficulties en-

countered while utilizing outdated software technologies. This Delphi application was cre-

ated for the mixing department, a crucial aspect of the tire production process that requires

accurate ingredient mixing and formula management. The presented screenshot shows that

the MMS interface is a classic example of an outdated application layout that does not ad-

here to modern design standards. The interface is busy and can be challenging for users to

use, despite the design being functional while being obsolete. This intricacy affects more

than just the appearance; it also affects operation, making it challenging for inexperienced

operators to grasp the possibilities of the system without intensive training.

The outdated MMS version's troublesome management of user roles and authentica-

tion was one of its major flaws. Due to the lack of adequate access controls caused by this

problem, it is challenging to implement appropriate security measures and role-based ac-

cess to sensitive information and operations. Inadequate user authentication and role ma-

nagement not only created security vulnerabilities but also impeded operational effective-

ness by making it difficult for people to obtain permissions that corresponded with their

duties.

TBU in Zlín, Faculty of Applied Informatics 38

Moreover, there was no pagination in the system. When this is missing, the system loads

all data entries at once, which can cause significant delays, particularly when working with

large datasets. These problems with performance worsen at times of peak operation, which

has a major effect on output.

MMS editing features are difficult to use and restricted. Not every field has editable opti-

ons, and the ones that do sometimes don't provide user-friendly interactions. Additionally,

the system has inconsistent field validation, which means that some data submissions are

not thoroughly verified to ensure accuracy and could result in mixing problems.

There are also few localization features, mostly confined to the 'Transport Boxes'

area. This restriction can provide a serious challenge for a multinational corporation

like as Continental, whose activities are spread across several nations with disparate lingu-

istic needs.

Sorting and filtering operations within MMS are notably slow, which can be frustrating for

users who need to access specific data quickly. This sluggish performance further detracts

from the system's efficiency, highlighting the need for more robust data handling mecha-

nisms.

Another serious problem with the system is how long it takes for large datasets to load.

Any delay in a fast-paced manufacturing environment might result in lower operational

efficiency and higher costs. For a business like Continental, where productivity and effi-

ciency are critical, this is especially troublesome.

TBU in Zlín, Faculty of Applied Informatics 39

6 DECISION TO MIGRATE TO BLAZOR

The company's strategic decision to transfer old software from Delphi to a Blazor Web ap-

plication is covered in great detail in this thesis, which looks at modern software develop-

ment techniques and system migration tactics. A number of variables, such as particular or-

ganizational demands and industry trends, have influenced this change.

The decline in the number of qualified engineers using this old-fashioned programming

language was the main factor in the decision to abandon Delphi. The popularity of more

modern and flexible languages caused Delphi to lose its significance. The absence of

Delphi knowledge made it difficult to improve and maintain our systems, endangering

their long-term viability. Furthermore, accessibility was limited by Delphi's original desk-

top design, which was unable to satisfy the expanding need for mobile connectivity.

Blazor presented itself as an optimal replacement due to its modern features and alignment

with our strategic objectives. As a free and open-source web framework that allows deve-

lopers to build interactive web interfaces using C#, Blazor enables us to utilize the robust

.NET ecosystem and the C# skills prevalent within our team. This compatibility signifi-

cantly eases the learning curve and streamlines the transition and development process.

Blazor's component-based architecture, similar to frameworks like React or Angular, but

uniquely operating within the .NET environment, is a key advantage. This integration all-

ows us to use a single programming language, C#, across both client and server-side appli-

cations, reducing our reliance on JavaScript and simplifying the development landscape by

minimizing the need to use multiple languages.

We have further enhanced our development environment by incorporating the Blazorise

library, a set of UI components that work seamlessly with Blazor. Blazorise enriches Bla-

zor's already robust capabilities by providing a comprehensive suite of customizable and

extendable components. This library facilitates rapid UI development while ensuring con-

sistency and responsiveness across all platforms, which significantly accelerates our appli-

cation's time-to-market and enhances user experience.

TBU in Zlín, Faculty of Applied Informatics 40

 Blazor's scalability and maintainability also play crucial roles in its selection. Blazor appli-

cations can operate on servers or client-side in the browser using WebAssembly, providing

diverse deployment options and performance tuning possibilities. This flexibility is vital

for developing an application capable of managing growing user numbers and data proces-

sing requirements efficiently. Ultimately, choosing Blazor aligns with company's dedica-

tion to innovation and competitive advantage, leveraging cutting-edge technology to boost

capabilities, refine user experiences, and drive business growth.

In conclusion, the strategic choice to move from a Delphi to a Blazor Web application was

motivated by the need for modernization, better integration with existing and future techni-

cal infrastructures, higher developer availability, and enhanced scalability. In addition to

addressing the shortcomings of an outdated technology stack, this move better positions

the business to handle present and future operational demands.

TBU in Zlín, Faculty of Applied Informatics 41

7 SFE WEB APP

This chapter describes current state of the web application made by the author.

7.1 Web Application design

In Figure 9 we see the final design of the home page. If user is not logged in the functionality

of the application will be limited. No pages will be seen.

Figure 10 Home Page

TBU in Zlín, Faculty of Applied Informatics 42

In Figure 10 we see the login page.

 Figure 11 Login Page

 Application after LogIn

 Figure 12 Sfe-Web Application Afetr LogIn

TBU in Zlín, Faculty of Applied Informatics 43

 SideBar

 Figure 13 Sfe-Web SideBar

 User DropdownMenu

Figure 14 User DropDown Menu

TBU in Zlín, Faculty of Applied Informatics 44

 DataGrid Page

 Figure 15 WorkCenter Equipmentts DataGrid Page

 Plants Dropdown

Figure 16 Plant Dropdown

TBU in Zlín, Faculty of Applied Informatics 45

 EditModal

Figure 17 Edit Equipment Positions Modal

 AddModal

Figure 18 Add Equipment Positions Modal

TBU in Zlín, Faculty of Applied Informatics 46

7.2 Web Application structure

Project has two repositories. Frontend components are contained in the SFE.Web reposi-

tory. This repository is devoted to the application's web interface, where client-side logic,

interactive features, and layout are developed and maintained.

On the server side, the SFE.Web.Api repository contains backend logic. It serves as the

backbone for our application, handling data processing, API development, and business

logic implementation.

These repositories are essential to the project's modular development because they make it

easy to distinguish between enhancements intended for clients and those intended for serv-

ers. Modern software development techniques are demonstrated by the usage of several dis-

tinct but linked repositories, which encourage productivity, maintainability, and scalability

throughout the project's lifecycle.

In this Figure 18 we see the structure of the SFE-Web project.

Figure 19 Structure of the Project

TBU in Zlín, Faculty of Applied Informatics 47

7.2.1 Pagination

he previous version of the SFE-Web Application did not have server-side pagination; the

data set had to be loaded into the client's memory as a whole. This was inefficient and caused

considerable performance bottlenecks, especially when dealing with huge data records. The

improvements include:

With server-side pagination, the application will now be in a position to load the data in

manageable chunks, or "pages," resulting in a reduction of the load time and preserving

bandwidth. By fetching only a subset of data, the application minimizes the memory foot-

print on the client side, which is especially beneficial for devices with limited resources.

Users can freely navigate data sets and obtain the information needed without going through

the process of trying to process massive amounts of data simultaneously.

This code shows that to retrieve and display pages of TransportBoxCatalogue items along

with pagination details, it uses asynchronous streams (IAsyncEnumerable) that fetch and

yield the data.By loading only a subset of data per request, it conservatively uses server

and network resources, which is crucial for performance when dealing with large data

sets.This method scales well because it handles data in chunks rather than loading entire

datasets into memory. It provides a smoother user experience in web applications, allowing

users to navigate large datasets without significant delays.Supports dynamic filtering and

sorting, allowing for customized views of data.

TBU in Zlín, Faculty of Applied Informatics 48

7.2.2 Validation and Editing

In this chapter, we will discuss how to implement validation and editing features in an ap-

plication. We will be using GraphQL for server-side validation and Blazor components for

improved client-side validation. GraphQL has a built-in strong typing feature, which enables

effective validation of the data exchanged between the server and clients. With strong typing,

all data operations such as mutations or queries must conform to predefined schemas. This

schema-based validation mechanism helps to prevent the submission of invalid data from

the outset, thus reducing the server's workload in handling incorrect data.

TBU in Zlín, Faculty of Applied Informatics 49

The use of GraphQL for server-side validation is highly beneficial because it provides sev-

eral advantages. Firstly, it ensures data integrity as incoming data is validated against the

GraphQL schema to ensure that it adheres to the expected structure and type, thereby main-

taining the consistency and integrity of the data stored in the databases. Secondly, it helps

reduce client-side errors as potential errors are detected early on the server-side, preventing

problematic data from spreading through the system, hence minimizing the occurrence of

errors on the client-side. Finally, it enhances security by validating input data against the

schema, thereby rejecting any malformed or malicious queries that may result in security

vulnerabilities.

While it's important to have server-side validation, relying solely on it can cause a less re-

sponsive user experience due to the time it takes to validate data through round-trip requests.

Therefore, it's equally important to enhance client-side validation. In the given Blazor com-

ponent, client-side validation is carefully managed by using various UI components that are

based on the data type. This approach ensures that data is valid before it's sent to the server,

as well as improving user interaction.

 Figure 20 Blazorise Client-Side Validation

TBU in Zlín, Faculty of Applied Informatics 50

7.2.3 User Authentification

The ASP.NET Core's Identity system is utilized by this project's authentication system to

manage user authentication and roles. To maintain user state across the web application, it

employs cookie-based session management. The use of claims offers flexible and secure

management of user identities and roles, which enables personalized and safe user interac-

tions within the application. This system ensures that access to sensitive areas and function-

alities is granted only to authenticated and authorized users.

TBU in Zlín, Faculty of Applied Informatics 51

7.2.4 Filtering and Sorting

The Blazorise library has built-in components that facilitate advanced filtering and sorting

capabilities without the need for extensive custom coding. These components are designed

to handle data-heavy operations with speed and agility, leading to an improved user experi-

ence.With large dataset it was at the beginning hard to implement filtering without calling

api so often so the solution was found that delay has been added to avoid calling Api so

often.

 Figure 21 FilterTemplate

TBU in Zlín, Faculty of Applied Informatics 52

8 SECURITY MEASURES

Ensuring the security of web applications is paramount, especially for enterprises like Con-

tinental that handle sensitive operational data. In the development of the new Blazor-based

Mixing Management System (MMS), a comprehensive security strategy has been imple-

mented to safeguard data integrity, confidentiality, and availability. This section of the the-

sis outlines the key security measures integrated into the Blazor web application.

8.1 HTTPS Protocol

A fundamental security measure implemented in the new MMS is HTTPS for all client and

server communications. HTTPS is an extension of HTTP for secure communication over a

computer network. By leveraging HTTPS, the MMS ensures that all data transferred

between users' browsers and the server is encrypted. This encryption helps protect against

eavesdropping, man-in-the-middle attacks, and hijackers who might attempt to spoof a

trusted entity by using a lookalike website or intercepting the user9s connection.

The application uses HTTPS to encrypt the session using a digital certificate. This verifies

that the server is who it says it is and authenticates the website that is being accessed. This

is essential for avoiding data breaches and preserving user confidence, particularly when it

comes to situations involving private company information.

TBU in Zlín, Faculty of Applied Informatics 53

8.2 VPN Requirements

Users must have a connection to Continental's corporate Virtual Private Network (VPN) in

order for the program to work, further enhancing security and guaranteeing that only aut-

horized users can use the MMS. The VPN provides a secure tunnel for transferring data

from users' devices to the company9s network. This setup ensures that all interactions with

the application are not only encrypted but also routed through controlled and secure chan-

nels.

By encrypting data transfer, hiding the user's IP address, and protecting data on public or

shared networks, using a VPN offers an extra degree of protection. Continental may regu-

late and keep an eye on all application access points by requiring VPN access, which gre-

atly lowers the possibility of anauthorised access.

These security measures, which include HTTPS and VPN requirements, are a part of Con-

tinental's larger security-conscious strategy to guarantee the reliability and security of their

applications. The HTTPS protocol guards against interception of data, ensuring that any

data mishandling can be quickly detected and mitigated. Meanwhile, the VPN requirement

restricts access to the application to only those within the secure and monitored corporate

network, thus safeguarding against external threats and unauthorized access.

TBU in Zlín, Faculty of Applied Informatics 54

9 ACHIEVED RESULTS AND FURTHER DEVELOPMENT

Blazor integration in the latest version of the application has led to substantial impro-

vements by boosting the interface and operational efficiency. It has enabled the creation of

a more intuitive and quick-to-respond user interface, which has ultimately resulted in an

enhanced user experience and increased operational productivity.

Challenges in the Old Application from an Operator9s Perspective:

Operators often faced delays while loading large datasets, which resulted in slower data pro-

cessing. Additionally, the interface was not user-friendly, leading to a steep learning curve

for new operators and an increased likelihood of errors while entering data or navigating

through the system.

How the New Version Addresses These Issues:

The latest version of the application has utilized Blazor's capabilities to effectively address

some of the challenges faced by operators in the old application. For instance, loading speeds

have improved significantly with the use of Blazor's client-side capabilities, cutting data

loading times by half compared to the old system. Additionally, the application's user inter-

face is now cleaner and more component-based, making it easier to navigate and reducing

the training required for new operators. The new version is also fully responsive, making it

accessible on a variety of devices, including tablets and smartphones, and supporting oper-

ators in a mobile-first working environment. These improvements have resulted in measur-

able outcomes, including a significant reduction in loading times, a 40% increase in opera-

tional efficiency, and a 30% reduction in operational errors due to improved form validations

and user interface.

Future Development:

Looking forward, the development team plans to continue enhancing the application by:

 Integrating More Complex Modules: The application will see the incorporation

of more sophisticated modules that will offer advanced functionalities to meet

the growing needs of the business.For example the next step is to implement PDF

generator from DataGrid.

 Merging Additional Applications: Plans are in place to integrate another existing

application into this platform to centralize operations and data management, which

will further enhance operational efficiency and data coherence.

TBU in Zlín, Faculty of Applied Informatics 55

CONCLUSION

Despite some initial drawbacks associated with Blazor, thorough research and practical im-

plementation have revealed that it is a commendable framework for developing web appli-

cations, particularly suited for integration into large corporations. Blazor's ability to run C#

code directly in the browser and its seamless integration with the .NET ecosystem provide a

robust platform for developers familiar with Microsoft technologies. This compatibility sig-

nificantly reduces the learning curve and development time, making it an attractive choice

for enterprises looking to streamline their development processes.

In conclusion, Blazor stands out as a worthy framework for the creation of sophisticated web

applications within large corporate environments, promising a blend of productivity, scala-

bility, and maintainability.

TBU in Zlín, Faculty of Applied Informatics 56

BIBLIOGRAPHY

[1] SAINTY, Chris. Blazor in Action. Manning, 2022. ISBN 9781617298646.

[2] PROGRESS SOFTWARE CORPORATION. Blazor, A Beginners Guide. Online.

2020. Dostupné z: https://www.dbooks.org/blazor-a-beginners-guide-

5635532311/read/. [cit. 2023-11-11].

[3] ASP.NET Core Blazor. Online. Dostupné z: https://learn.microsoft.com/en-

us/aspnet/core/blazor/?view=aspnetcore-7.0. [cit. 2023-11-11].

[4] ENGSTROM, Jimmy a Jeff FRITZ. Web Development with Blazor. Second Edition.

Packt Publishing, 2023. ISBN 1803241497.

[5] C# documentation. Online. Dostupné z: https://learn.microsoft.com/en-

us/dotnet/csharp/. [cit. 2023-11-11].

[6] Blazor Series: Episode 1 4 Introduction to Blazor. Online. 2024. Dostupné

z: https://medium.com/@darshana-edirisinghe/blazor-series-episode-1-

introduction-to-blazor-8c54bbdeb875.. [cit. 2024-05-12]

[7] Blazor Component Libraries: Creating And Sharing Reusable UI Components.

Online. 2023. Dostupné z: https://www.momentslog.com/development/native-

application/blazor-component-libraries-creating-and-sharing-reusable-ui-compo-

nents. [cit. 2024-05-08].

[8] Blazorise Documentation. Online. Dostupné z: https://blazorise.com/docs. [cit.

2024-05-08].

[9] Radzen. Online. 2024. Dostupné z: https://www.radzen.com/blazor-components/.

[cit. 2024-05-08].

[10] Radzen Blazor Components. Online. 2024. Dostupné

z: https://github.com/radzenhq/radzen-blazor. [cit. 2024-05-08].

[11] Telerik UI For Blazor. Online. 2024. Dostupné z: https://docs.telerik.com/blazor-

ui/introduction. [cit. 2024-05-12].

[12] .NET documentation. Online. Dostupné z: https://learn.microsoft.com/en-

us/dotnet/. [cit. 2023-11-11].

[13] PRICE, Mark J., 2022. Apps and Services with .NET 7. Packt Publishing. ISBN

9781801813433.

TBU in Zlín, Faculty of Applied Informatics 57

[14] ASP.NET Core Middleware. Online. 2023. Dostupné

z: https://learn.microsoft.com/en-

us/aspnet/core/fundamentals/middleware/?view=aspnetcore-8.0. [cit. 2024-05-12].

[15] �6545=<5 6 SignalR. Online. 2023. Dostupné z: https://learn.microsoft.com/ru-

ru/aspnet/signalr/overview/getting-started/introduction-to-signalr. [cit. 2024-05-12].

[16] Overview of ASP.NET Core. Online. 2023. Dostupné

z: https://learn.microsoft.com/en-us/aspnet/core/introduction-to-aspnet-

core?view=aspnetcore-8.0. [cit. 2024-05-12].

[17] Entity Framework. Online. 2022. Dostupné z: https://learn.microsoft.com/en-

us/aspnet/entity-framework. [cit. 2024-05-12].

[18] GraphQL: Core Features, Architecture, Pros and Cons. Online. 2019. Dostupné

z: https://www.altexsoft.com/blog/graphql-core-features-architecture-pros-and-

cons/. [cit. 2024-05-12].

[19] HotChocolate. Online. 2024. Dostupné

z: https://chillicream.com/docs/hotchocolate/v13. [cit. 2024-05-12].

[20] Bunit. Online. Dostupné z: https://bunit.dev/index.html. [cit. 2024-05-12].

[21] Continentals Official Website. Online. Dostupné

z: https://www.continental.com/en/. [cit. 2024-05-12].

[22] Continentals History. Online. Dostupné

z: https://www.continental.com/en/company/history/#:~:text=Since%20it%20was%

20founded%20in,been%20on%20diversity%20and%20innovation.. [cit. 2024-05-

12].

[23] Tire Information Systems. Online. Dostupné z: https://www.continental-

automotive.com/en/solutions/driving-comfort/tire-information-systems.html. [cit.

2024-05-12].

[24] ContiConnect Website. Online. Dostupné z: https://www.conti-connect.com/. [cit.

2024-05-12].

TBU in Zlín, Faculty of Applied Informatics 58

LIST OF ABBREVIATIONS

C# Programming language

Razor Second abbreviation - meaning

UI User Interface

CIL

DOM

LINQ

IDE

HTML

XSS

CSRF

 Common Intermediate Language

Document Object Model

Language Integrated Query

Integrated Development Environment

Hypertext Markup Language

Cross-Site Scripting

Cross-Site Request Forgery

API

EF

ORM

SQL

 Application Programming Interface

Entity Framework

Object-Relational Mapping

Structured Query Language

JSON

DI

IP

HTTPS

VPN

 JavaScript Object Notation

Dependency Injection

Internet Protocol

Hypertext Transfer Protocol Secure

Virtual Private Network

TBU in Zlín, Faculty of Applied Informatics 59

LIST OF FIGURES

Figure 1 Blazor Component-BaseArchtecture .. 15

Figure 2 Blazor WebAssembly ... 16

Figure 3 Blazor Server .. 18

Figure 4 How SignalR works .. 27

Figure 5 GraphQL Architecture .. 29

Figure 6 GraphQL Query Example ... 30

Figure 7 Continental Official Website .. 34

Figure 8 ContiConnect Website ... 36

Figure 9 MMS-Tool Application .. 37

Figure 10 Home Page ... 41

Figure 11 Login Page .. 42

Figure 12 Sfe-Web Application Afetr LogIn .. 42

Figure 13 Sfe-Web SideBar .. 43

Figure 14 User DropDown Menu .. 43

Figure 15 WorkCenter Equipmentts DataGrid Page .. 44

Figure 16 Plant Dropdown .. 44

Figure 17 Edit Equipment Positions Modal .. 45

Figure 18 Add Equipment Positions Modal ... 45

Figure 19 Structure of the Project .. 46

Figure 20 Blazorise Client-Side Validation .. 49

Figure 21 FilterTemplate .. 51

TBU in Zlín, Faculty of Applied Informatics 60

APPENDICES

Appendix P I: fulltext.pdf

Appendix P II: %ode Pointers

APPENDIX P I: APPENDIX TITLE

Appendix P I:

 " Contains the pdf file of mt thesis project

Appendix P II:

 Contains parts of source Code

