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Bc. Aleš Ryška
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ABSTRAKT

Tato diplomová práce se zabýbá integraci strojového učení při útoku postranním kanálem
za účelem obnovení klíče. Byl navržen přístup založený na hlubokém učení s využitím
neuronových sítí, který umožňuje extrahovat kryptografická tajemství na základě úniku
informací z postranních kanálů. Metodologie zahrnuje sběr dat, extrakci funkcí a
trénování modelu s optimalizací parametrů a ověřováním. Zhodnocení nástroje proběhlo
na simulovaných i reálných datech.

Klíčová slova: Strojové učení, Útok postranním kanálem, obnovení klíče, hluboké
učení, kryptografie, únik dat, kryptografická tajemství, trénování modelu, kyberbezpečnost,
bezpečnost dat, extrakce klíče, únik informací, optimalizace, simulace

ABSTRACT

This thesis deals with the integration of machine learning in side-channel attacks for
key recovery. A deep learning-based approach using neural networks is proposed to
extract cryptographic secrets based on information leakage from side channels. The
methodology includes data collection, feature extraction, model training with param-
eter optimization, and validation.

Keywords: Machine Learning, Side-Channel Analysis, Key Recovery, Deep Learning,
Cryptography, Data Leakage, Cryptographic Secrets, Model Training, Cybersecurity,
Data Privacy, Key Extraction, Information Leakage, Optimization, Simulation



"We all die. The goal isn’t to live forever, the goal is to create something
that will." Chuck Palahniuk
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INTRODUCTION

The ever-growing reliance on technology necessitates robust security measures to pro-
tect sensitive information. However, malicious actors constantly seek vulnerabilities,
and side-channel attacks pose a significant threat to modern devices. These attacks
exploit unintended data leakage, often through power consumption or electromagnetic
emanations, to extract confidential data. While traditional methods are employed to
counter such attacks, advancements in machine learning (ML) offer promising avenues
for enhanced security. This thesis explores the feasibility of utilizing a research ap-
proach focusing on regular expressions for side-channel analysis, drawing upon current
technological advancements. The focus is on microcontrollers, given their widespread
application in various critical systems, ranging from embedded devices to industrial
control units.

This research investigated to: Delineate the vulnerabilities and effectiveness of exist-
ing side-channel attacks targeting devices. This will involve a thorough examination of
current attack vectors and their potential impact. Acquire and analyze representative
data associated with the power consumption or other relevant side-channel emissions
during the execution of the chosen attack. This data will serve as the foundation for
subsequent ML-based analysis. This will involve exploring ML methods and poten-
tial for extracting valuable information. Evaluate the potential and effectiveness of
the proposed approach, including its broader applicability and potential for further
development.
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I. THEORY
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1 Evolution of Side-Channel Attacks

The Rise of Digital Electronics (1960s-1970s) The 1960s and 1970s marked a trans-
formative era in electronics with the rise of digital technologies. It was during this time
that engineers and researchers first started to observe peculiar signals emitted by these
devices. These signals, initially considered as mere noise or unintended consequences,
would later become the focus of extensive research.

The foundation of side-channel attacks, a formidable category of cybersecurity threats,
can be traced back to the unassuming yet critical period between the 1960s and the
1990s. Next chapters delves into the early exploration of side-channel attacks when
researchers and engineers began to uncover the unintentional signals emitted by elec-
tronic devices during their operation. Image 1.1 simply describes the overview about
attack vectors [14, 26].

Fig. 1.1 Overview about attack vectors

1.1 Electromagnetic Radiation

Electromagnetic interference (EMI) attacks pose a significant threat to the integrity
of microcontroller operations. The most common consequence is a bit-flip, where a
single data bit within the microcontroller’s memory is inadvertently inverted. This
seemingly minor change can lead to corrupted data, erroneous instruction execution,
and ultimately unexpected system behavior. In more severe scenarios, EMI might
disrupt the microcontroller’s clock signal, causing it to skip instructions entirely. This
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disrupts critical operations and potentially bypasses security checks. In the worst-
case scenario, a strong EMI attack can entirely crash the microcontroller, leading to
complete system failure, this attack is shown at image 1.2 [26, 3].

Fig. 1.2 Illustration of Electromagnetic Radiation [28]

The specific consequences of an EMI attack depend on the targeted microcontroller,
the nature of the attack itself, and the overall system function. However, it is crucial
to recognize that even a single bit-flip can be catastrophic in security-sensitive appli-
cations. Such an event could allow attackers to extract sensitive data or compromise
cryptographic keys. Fortunately, there are several strategies to mitigate the risk of
EMI attacks on microcontrollers. Shielding the microcontroller with a metal casing
significantly attenuates incoming electromagnetic fields. Additionally, implementing
filtering circuits on the microcontroller’s power supply and input/output lines helps to
reduce the impact of transient voltage fluctuations. Error detection and correction
(EDAC) techniques, employing error-correcting codes and redundant data storage,
allow the microcontroller to detect and potentially rectify bit-flips caused by EMI.
Finally, careful design practices at the microcontroller level can inherently reduce sus-
ceptibility to electromagnetic interference [3]. By implementing a combination of these
mitigation strategies, system designers can significantly reduce the vulnerability of mi-
crocontrollers to EMI attacks and ensure the security and integrity of critical systems
[26].

1.2 Acoustic Signals

Acoustic attacks present another avenue for disrupting microcontrollers, exploiting
their susceptibility to high-powered sound waves. Unlike EMI attacks using radio
waves, acoustic attacks leverage sound to cause malfunctions. There are two main ways
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sound disrupts these devices: physical disruption and resonance induction. Physical
disruption involves high-powered sound waves causing vibrations that misalign delicate
components or create fractures, disrupting electrical pathways. Resonance induction
occurs when sound waves at specific frequencies resonate with internal components,
affecting electrical signal timing and potentially causing bit-flips or data processing
errors. ional, caused by loud machinery or ultrasonic cleaning devices. The conse-
quences of successful acoustic attacks mirror those of EMI attacks: bit-flips leading to
corrupted data and unexpected behavior, instruction errors causing malfunctions, and
even complete system crashes in severe cases. The severity depends on the microcon-
troller’s design, sound intensity and frequency, and the environment [11]. Fortunately,
there are ways to mitigate acoustic attacks. Encasing the microcontroller in a sturdy,
vibration-dampening material reduces the impact of sound waves. Additionally, en-
closures can be designed to shield against specific problematic frequencies. Similar to
EMI attacks, error correction techniques can help identify and potentially fix bit-flips.
Finally, microcontroller design practices can inherently reduce susceptibility to vibra-
tions and sound-induced electrical noise [26, 3, 11]. By implementing a combination
of these mitigation strategies, system designers can fortify microcontrollers against
acoustic attacks and ensure the reliable operation of critical systems.

1.3 Early Security Implications

While the primary focus during this era was on understanding and controlling unin-
tended signals, a select group of researchers started to recognize the nascent security
implications. Discussions emerged regarding the possibility of exploiting these unin-
tended signals for security breaches. However, these concerns were largely confined to
a niche community, and there was minimal awareness in the broader field of cyberse-
curity.

It highlights the foundational research conducted during the 1960s to the 1990s, a
period when the unintended signals emitted by electronic devices were identified and
categorized. Chapter serves as the historical backdrop for the subsequent evolution of
side-channel attacks into a potent threat to information security.

1.3.1 The Thing

The discovery of a covert listening device within the premises of the American Embassy
in Moscow stands as a significant event in the espionage and diplomatic history. Known
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colloquially as "The Thing," this device was ingeniously concealed within a wooden
carving of the Great Seal of the United States, which had been presented as a gift by
the Soviet Union to the American Ambassador. This episode not only highlights the
ingenuity and audacity of espionage tactics during the Cold War but also underscores
the perpetual game of cat and mouse between global superpowers [29].

The Discovery of The Thing The Great Seal bug, later dubbed "The Thing," was
a remarkable piece of espionage technology for its time. Discovered in the late 1940s,
it was hidden within a seemingly innocuous wooden plaque that adorned the wall of
the U.S. Ambassador’s study in the Moscow Embassy. The device’s discovery was
accidental, coming to light only when a routine sweep for electronic bugs detected
unusual signals emanating from the Ambassador’s office [29].

Technical Ingenuity The Thing (shown at images 1.3 and 1.4) was a marvel of engi-
neering, especially considering the era of its creation. It consisted of a passive resonant
cavity microphone that did not require any power source to operate. Instead, it was
activated by radio waves transmitted from an external source. When these radio waves
were aimed at The Thing, they were modulated by the vibrations of sound waves hit-
ting the microphone diaphragm within the device, thereby transmitting sound back to
the Soviets without the need for any internal power source [29].
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Fig. 1.3 Replica of The Thing displayed at the NSA National Cryptologic Museum
[29].

Fig. 1.4 The seal opened to reveal the hidden microphone [29].

Implications for Diplomatic Security The discovery of The Thing had profound
implications for diplomatic security protocols. It served as a stark reminder of the
vulnerabilities embassies face and the lengths to which adversaries would go to gather
intelligence. In response, significant advancements were made in technical surveillance
countermeasures (TSCM), leading to more sophisticated methods for securing diplo-
matic communications and premises. The Great Seal bug episode is a testament to
the intricate dance of espionage and counterespionage that characterized the Cold War
era. It exemplifies the constant evolution of surveillance technology and the ongoing
need for vigilance in the protection of national security interests. The ingenuity of
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The Thing and its impact on diplomatic security measures continue to be studied by
security professionals and historians alike, serving as a compelling case study in the
field of international relations and espionage [29].

1.4 AES Attack (2002)

In 2002, researchers demonstrated a successful side-channel attack on the Advanced
Encryption Standard (AES-128). This attack showed that even widely adopted cryp-
tographic algorithms were vulnerable to side-channel analysis.

The year 2002 marked a significant milestone in the history of cryptographic attacks
when researchers unveiled a successful side-channel attack on the Advanced Encryption
Standard (AES-128). For example attack on AES, at image 1.5 is a simple leakage
model of this cipher [14, 2, 25].

Fig. 1.5 AES Attack [30]

In this model could be seen that the power consumption of the device is directly related
to the data being processed. Leakage is dependend on the moment of the encryption
process. After measurement a lot of power traces, that could be used statistical analysis
to find the correct key. Correlation between power traces and cipher structure could
be seen at figure 1.6.

To clarify and give some abstract what is happening in the power traces, the high level
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Fig. 1.6 AES Power Traces [30]

model of the AES encryption process at 1.5. One of the most important findings is
that the individual steps of the AES algorithm (Add round key, Mix columns, Shift
rows) could been observed as a pattern in captured power traces.
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The Emergence of AES The Advanced Encryption Standard (AES) was introduced
in 2001 as a replacement for the aging Data Encryption Standard (DES). AES was
designed to provide a high level of security while being efficient in terms of both software
and hardware implementation. Its adoption quickly spread across various industries
and applications, including secure communication and data protection [2].

1.4.1 Detailed view at the attack

Team of researchers, led by Eli Biham and Adi Shamir presented a novel side-channel
attack on AES. This attack was rooted in the principles of differential power analy-
sis (DPA) and marked the first successful practical attack on the AES cryptographic
algorithm. The key aspects of this attack include:

Power Analysis Similar to DPA, the AES attack in 2002 leveraged variations in power
consumption during the execution of the AES algorithm. By carefully measuring these
fluctuations, the researchers were able to gain insights into the internal workings of the
algorithm.

Correlation Analysis The attack relied on advanced statistical techniques, partic-
ularly correlation analysis, to distinguish between the power consumption patterns
associated with different AES key bytes. This analysis allowed the attackers to recover
the secret key with high accuracy [14].

1.4.2 Implications and Significance

The success of the AES attack in 2002 sent shockwaves through the cryptographic
community and had several far-reaching implications:

Cryptographic Standard Vulnerability The attack demonstrated that even well-
regarded cryptographic standards like AES were not immune to the attacks focused
on hardware. It underscored the importance of thoroughly evaluating cryptographic
algorithms for potential side-channel vulnerabilities.

Need for Secure Implementations The attack highlighted the critical role of se-
cure cryptographic implementations. While AES itself remained strong, vulnerabilities
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could emerge if it was not implemented securely, emphasizing the importance of ad-
hering to best practices.

1.4.3 Response and Countermeasures

In response to the AES attack in 2002, the cryptographic community and industry
experts intensified efforts to develop countermeasures and secure implementations [25].

Enhanced Hardware Security Hardware security modules (HSMs) and Secure Ele-
ments was more important topic than before. Secure hardware design principles were
further refined to protect cryptographic keys and operations from side-channel attacks.

Algorithmic Countermeasures Researchers explored techniques such as masking
and blinding to mitigate the risk of power analysis attacks. The AES attack in 2002
serves as a critical milestone in the field of side-channel attacks, highlighting the need
for robust cryptographic standards and secure implementations. Understanding this
attack is instrumental in appreciating the ongoing efforts to secure cryptographic sys-
tems in an ever-evolving threat landscape [14].

1.5 Public Awareness and Countermeasures

As awareness of side-channel attacks grew, researchers and industry professionals be-
gan developing countermeasures to mitigate these threats. This included techniques
such as blinding, masking, and threshold implementations to protect cryptographic
implementations from leaking information.

As side-channel attacks gained prominence in the cybersecurity landscape, public
awareness became a pivotal factor in mitigating these threats. The journey towards
understanding, addressing, and ultimately neutralizing side-channel vulnerabilities has
been marked by a collaborative effort involving educational initiatives, industry out-
reach, and the development of robust countermeasures. [21].

1.6 Raising Public Awareness

Public awareness about side-channel attacks has been a cornerstone of the defense
against them. Educational initiatives have played a vital role in disseminating knowl-
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edge about these attacks. Workshops, conferences, and academic programs have been
established to educate professionals and students alike about the intricacies of side-
channel vulnerabilities. Through these efforts, a growing number of individuals have
become informed about the potential risks these attacks pose.

Industry stakeholders also took proactive measures to raise awareness. Manufactur-
ers, developers, and vendors engaged in outreach programs to inform their user base
about the potential risks associated with side-channel attacks. They emphasized the
importance of secure implementations and the need for regular updates and patches to
mitigate these threats.

Moreover, high-profile incidents of side-channel attacks were disclosed responsibly, con-
tributing to increased awareness. Case studies detailing real-world scenarios served as
educational tools, effectively highlighting the urgency of proactive security measures
[21] [19]. One of the most interesting attack from last days was attack on Trezor
(Cryptocurrency Wallet) [22].

1.7 Standardization and Best Practices

Addressing side-channel vulnerabilities required the establishment of clear guidelines
and best practices for implementing cryptography securely. Standardization bodies
and industry groups played a crucial role in formulating these guidelines. They cov-
ered various aspects, including algorithmic choices, key management, and secure coding
practices. These standards became the foundation for secure cryptographic implemen-
tations. Secure coding standards, in particular, became imperative. These guidelines
instructed developers on how to implement cryptographic algorithms in a way that
minimizes the leakage of sensitive information through side channels. Certification
programs were introduced to validate and attest to the security robustness of crypto-
graphic implementations. Organizations could now seek certification to assure their
stakeholders that their systems were adequately protected against side-channel threats
[21] [19].

1.8 Technological Advancements

Manufacturers and designers recognized the importance of secure hardware designs.
These designs aimed to minimize information leakage through side channels. Man-
ufacturers integrated countermeasures directly into hardware components to bolster
security. Innovations in cryptography also emerged as a significant defense strat-
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egy. Cryptographers explored techniques that inherently resist side-channel attacks.
Threshold implementations and homomorphic encryption, for example, were cryp-
tographic paradigms designed to mitigate information leakage and enhance security.
Dynamic security solutions entered the scene, capable of adapting to emerging side-
channel threats. These solutions often involve continuous monitoring and adjustment
of security parameters based on the evolving threat landscape. This dynamic approach
provided an additional layer of protection against side-channel attacks [21].

1.9 Challenges and Ongoing Efforts

Despite the progress made, challenges persist. Small and medium-sized enterprises
faced hurdles in implementing robust security measures due to resource constraints.
Efforts were made to provide accessible resources and tools for secure implementa-
tion, ensuring that security was not exclusive to large organizations. Recognizing that
side-channel attacks are a global concern, international collaboration efforts were ini-
tiated. Information sharing, joint research endeavors, and the establishment of global
standards aimed to create a unified front against these threats. This collaborative ap-
proach seeks to address side-channel vulnerabilities comprehensively. Public awareness
and countermeasures have been integral in safeguarding against side-channel attacks.
The collaborative efforts of educational institutions, industry stakeholders, and stan-
dardization bodies have significantly contributed to the development of a more secure
cyberspace. As technology continues to advance, maintaining a high level of public
awareness and proactive countermeasures remains essential in safeguarding against the
ever-evolving landscape of side-channel threats [21].
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2 State of the Art: Side-Channel Analysis Research

Research into side-channel attacks continues to advance. As technology evolves, new
vulnerabilities and attack techniques emerge, necessitating ongoing efforts to under-
stand, detect, and defend against side-channel threats.

The field of side-channel attacks remains dynamic, with ongoing research efforts con-
tinuously pushing the boundaries of knowledge and understanding [21].

2.1 Overview of Current Research Landscape

Side-channel attacks represent a constantly evolving threat in the cybersecurity land-
scape. Researchers tirelessly pursue understanding, mitigating, and staying ahead of
these attacks. This chapter explores the current state of side-channel attack research,
delving into the latest trends, innovative techniques, and promising areas that will
shape the future of system security [4, 21].

2.1.1 Emerging Trends in Side-Channel Attack Techniques

The research landscape is abuse with activity across several key areas. An emerging
trend involves the use of advanced attack techniques such as machine learning and
artificial intelligence to automate the process of extracting cryptographic keys from
side-channel information, potentially making attacks more efficient and successful. Ad-
ditionally, researchers are exploring novel cross-device attacks that exploit interactions
between multiple devices within a system, such as using information leaked from a
computer monitor’s side channel to target a nearby smartphone.
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2.1.2 Cryptographic Solutions

With the threat of quantum computers, researchers are diligently studying side-channel
vulnerabilities in post-quantum cryptography algorithms and developing countermea-
sures to ensure their robustness. The security of blockchain systems is also under
scrutiny, as vulnerabilities in cryptocurrency wallets and transactions could lead to
significant financial implications, driving research in this area.

2.2 Hardware Vulnerabilities

Hardware vulnerabilities remain a critical research area. From microarchitectural at-
tacks and cache timing attacks to threats like Rowhammer [4], researchers are probing
hardware for exploitable weaknesses. As quantum computing advances, developing
hardware security components that are resistant to quantum-based side-channel at-
tacks is becoming increasingly crucial [4, 21].

IoT and Embedded System Challenges IoT and embedded systems introduce unique
challenges due to tight energy constraints. Researchers are investigating energy-based
side channels as potential avenues for attacks and devising countermeasures. Addition-
ally, the growing concern surrounding backdoors and malicious modifications embed-
ded within hardware components is prompting research into detection and prevention
methods for these threats [4, 21].

Ethical and Legal Considerations Research in side-channel attacks extends beyond
technical considerations to include ethical and legal implications. Privacy concerns
surrounding the use of side-channel attacks on biometric data and personal informa-
tion are being addressed, alongside the development of legal frameworks and policies
to govern side-channel attacks and their potential consequences. Interdisciplinary ef-
forts that bring together researchers from cryptography, hardware engineering, and
machine learning are fostering innovative solutions. Open-source initiatives are crucial
for knowledge sharing and advancing the field.
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3 Power Analysis

Power analysis constitutes a critical area of study in cryptographic security, particularly
concerning the assessment of vulnerabilities in cryptographic devices. This chapter
focuses on Differential Power Analysis (DPA) and Correlation Power Analysis (CPA),
two sophisticated techniques that exploit variations in power consumption to extract
cryptographic keys from secure electronic systems. Understanding these methods is
imperative for designing robust cryptographic defenses.

3.1 Correlation Power Analysis (CPA)

Correlation Power Analysis (CPA) emerges as a sophisticated side-channel attack
(SCA) technique within the realm of cryptanalysis. Unlike traditional methods that
focus solely on the cryptographic algorithm’s vulnerabilities, CPA exploits information
leakage from the physical implementation of a device during cryptographic operations.
This leakage can manifest in various forms, such as power consumption, electromag-
netic radiation, or timing variations. In CPA, the attacker specifically targets the
relationship between the intermediate values manipulated during cryptographic opera-
tions and the power consumption of the device. The core assumption underlying CPA
is that a device’s power consumption fluctuates based on the number of active bits
(bits with a value of 1) being processed at a given time. Cryptographic operations
often involve extensive bit manipulations, and the switching activity of these bits can
influence the device’s power draw. This relationship between intermediate values and
power consumption forms the basis for a CPA attack, which can be broken down into
several key steps.

Data Acquisition: The attacker initiates the attack by collecting power traces while
the targeted cryptographic device executes the same operation with different plaintexts
but the same secret key. A power trace essentially represents a recording of the device’s
power consumption over time.

Hypothesizing Intermediate Values: The attacker then selects a hypothesized inter-
mediate value within the cryptographic algorithm that they believe might be correlated
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with the power consumption. This hypothesis could be based on the attacker’s knowl-
edge of the algorithm or educated guesses informed by the algorithm’s structure.

Pre-processing the Traces: The collected power traces are pre-processed to reduce
noise and enhance the signal of interest. This pre-processing might involve filtering
techniques or data alignment to compensate for variations and inconsistencies between
the traces.

Correlation Analysis: For each power trace, the attacker calculates a correlation
coefficient between the hypothesized intermediate value and the power consumption
values at corresponding time points in the trace. The correlation coefficient is a statis-
tical measure that indicates the strength and direction of a linear relationship between
two variables.

Key Recovery: Finally, the attacker analyzes the correlation coefficients obtained
for all the traces. Traces where the secret key leads to a high correlation between the
hypothesized intermediate value and the power consumption are considered informa-
tive. By statistically analyzing these informative traces, the attacker might be able
to recover the secret key. While CPA offers advantages like requiring minimal knowl-
edge of the specific cryptographic algorithm and being relatively easy to implement
with the right tools and expertise, it also has limitations. CPA may not be effective
against ciphers with low power consumption variations or masking countermeasures
implemented to thwart such attacks. Additionally, a statistically significant number
of power traces are often required for reliable key recovery. Despite these limitations,
CPA has been demonstrated to be successful against various real-world cryptographic
implementations, including hardware encryption modules and smart cards. This high-
lights the importance of considering side-channel vulnerabilities, like those exploited
by CPA, when designing and deploying cryptographic systems, especially in scenarios
where protecting the confidentiality of secret keys is paramount [13, 6, 4].

3.2 Differential Power Analysis (DPA)

In the late 1990s, researchers Paul Kocher, Joshua Jaffe, and Benjamin Jun published a
groundbreaking paper on Differential Power Analysis (DPA). DPA is a side-channel at-
tack that analyzes variations in a device’s power consumption to extract cryptographic
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keys and sensitive data. This marked the emergence of side-channel attacks as a practi-
cal threat. In the realm of side-channel attacks, Differential Power Analysis (DPA) has
emerged as a powerful and widely recognized technique for extracting cryptographic se-
crets. This chapter explores the foundational principles of DPA, its historical context,
and its profound implications for the security of cryptographic systems [13, 15].

Differential Power Analysis (DPA) constitutes a cornerstone technique within the do-
main of side-channel analysis (SCA) for cryptanalysis. Unlike conventional cryptanal-
ysis that probes vulnerabilities within the cryptographic algorithm itself, DPA capital-
izes on information leakage emanating from the physical implementation of a device
during cryptographic operations. This leakage can manifest in various forms, includ-
ing power consumption fluctuations, electromagnetic emanations, or timing variations
[15]. In a DPA attack, the adversary specifically targets the statistical discrepancies in
power consumption that arise due to the processing of meticulously chosen data pat-
terns within the targeted cryptographic algorithm. The fundamental principle lever-
ages the observation that identical cryptographic operations performed on data inputs
with slight variations, often differing by a single bit, can induce variations in the inter-
mediate values processed. These fluctuations in intermediate values can subsequently
lead to discernible power consumption variations due to the inherent dependence of a
device’s power draw on the number of active bits being manipulated at a given time
[13].

The Principles of Differential Power Analysis capitalizes on the physical properties
of electronic devices, particularly their power consumption, to reveal cryptographic keys
and sensitive data. At its core, DPA relies on the concept that the power consumed
by a device varies depending on the data being processed [13, 15].

Power Consumption Variations Electronic devices exhibit varying power consump-
tion patterns based on the computational operations they perform. For example, dif-
ferent bits of a secret key may cause distinct power spikes or fluctuations.

Statistical Analysis DPA leverages statistical techniques to analyze these power con-
sumption variations. By measuring and comparing power traces for different inputs or
key values, it becomes possible to identify patterns and correlations.



TBU in Zlín, Faculty of Applied Informatics 29

Key Recovery Through sophisticated statistical analysis, DPA can discern which
bits of a cryptographic key are likely to be correct, ultimately leading to the recovery
of the entire key. This process is iterative and involves accumulating evidence over
multiple measurements to refine the key guess.

3.3 A DPA attack can be segmented into several key stages

Data Acquisition: The attacker initiates the attack by collecting a substantial quan-
tity of power traces while the targeted cryptographic device executes the cryptographic
operation under investigation. Each power trace represents a recording of the device’s
power consumption over time during a single execution of the operation, with different
chosen plaintexts being used for each trace.

Data Selection: The attacker meticulously selects pairs of power traces where the
corresponding chosen plaintexts differ in only a single bit position. This selection
process aims to isolate the effect of the single-bit difference on the intermediate values
and the subsequent power consumption variations.

Hypothesis Generation: The attacker formulates a well-defined hypothesis regard-
ing the relationship between a specific intermediate value within the cryptographic
algorithm and the observed power consumption patterns. This hypothesis could be
based on the attacker’s knowledge of the algorithm or through informed guesses about
the data processing steps within the algorithm.

Differential Power Analysis: For each meticulously chosen pair of traces, the at-
tacker performs a differential power analysis operation. This involves subtracting the
corresponding power consumption values at each time point between the two traces,
resulting in a differential power trace. This differential trace is then compared with
a pre-computed template derived from the attacker’s hypothesis about the targeted
intermediate value. The template represents the anticipated power consumption vari-
ations associated with the hypothesized bit transitions within the intermediate value
[13].

Statistical Analysis: The attacker employs rigorous statistical analysis techniques to
evaluate the results of the differential power analysis across all the chosen plaintext
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pairs. Traces where the secret key leads to a high correlation between the differential
power trace and the template are considered informative. By statistically evaluating
these informative traces, the attacker might be able to exploit the observed power
consumption patterns to recover the secret key.

3.3.1 Advantages and disadvantages of DPA

Advantages: DPA offers a more potent approach compared to rudimentary power
analysis techniques by leveraging a robust statistical framework. DPA can be effective
against ciphers exhibiting low power consumption variations, making it a more versatile
tool compared to Correlation Power Analysis (CPA) [13].

Disadvantages: DPA necessitates a statistically significant number of power traces for
reliable key recovery, which can be time-consuming to acquire. For complex algorithms
with numerous intermediate values, DPA can become computationally expensive. DPA
has been demonstrably successful against various real-world cryptographic implemen-
tations, highlighting the criticality of considering side-channel vulnerabilities during
the design phase of secure cryptographic systems. Countermeasures such as masking
and hiding techniques are frequently employed to mitigate the effectiveness of DPA
attacks [13].
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3.4 Hamming distance

The Hamming Distance Model (HD Model) is used in Correlation Power Analysis
(CPA). CPA is a type of side channel attack (SCA) that analyzes information leakage
from a device, such as power consumption, to recover the secret key. The Hamming
distance (HD) is the number of different bits between two data strings. In cryptography,
it refers to the difference between two states in a cryptographic algorithm. The HD
Model assumes a relationship between the power consumption and the HD between an
intermediate value and a reference state value.

An intermediate value is a temporary value created during a cryptographic operation.
The reference state value is a known value used as a reference for comparison. In the
AES encryption algorithm, the ciphertext of the last round can be the reference state,
while the input data of the S-Box in the last round can be the intermediate value. The
HD Model is based on the idea that the larger the HD between the intermediate value
and the reference state value, the greater the difference in power consumption. This
difference in power consumption can be exploited by an attacker to learn information
about the secret key. However, the HD Model requires knowledge of the cryptographic
device’s internal operations. This makes it difficult to implement in practice. For this
reason, a modified version of the HD Model, called the Hamming Weight (HW) Model,
is often used instead.
Equation 3.1 defines the Hamming distance between two binary strings x and y of
length n:

HD(x, y) =
n∑

i=1

1[xi ̸=yi] = ∥x⊕ y∥1 (3.1)
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3.4.1 Hamming weight

Hamming Weight (HW) is a leakage model used in Correlation Power Analysis (CPA).
It discusses the leakage of information during cryptographic operations and shows that
HW leakage can be observed in power traces. In simpler terms, Hamming weight refers
to the number of "1"s in a binary string. In the context of cryptography, it is used
to estimate the amount of information leakage that might occur during cryptographic
operations. This leakage can be exploited by attackers to recover secret keys. The
Hamming weight model is a simpler alternative to the Hamming distance model, which
requires knowledge of the cryptographic device’s internal operations. This makes the
Hamming weight model more practical for real-world applications as shown at image
3.1 and 3.2.

Fig. 3.1 Illustration of Hamming weight data-dependencies in the power consumption
traces of a smart card using an 8-bit data bus [27].

Fig. 3.2 The weight of the byte being processed is proportional to the height of the
power consumption pulse [18].
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4 TRIVIUM

Trivium is a synchronous stream cipher designed with a hardware implementation in
mind. The core principle behind its creation was to explore the boundaries of simpli-
fication in stream cipher design without compromising security, speed, or flexibility.
While simple designs can inherently be more susceptible to basic attacks (hence the
strong discouragement of using Trivium at this stage), their very simplicity can inspire
greater confidence compared to complex schemes, particularly if they withstand a pro-
longed period of public scrutiny. The following section provides a detailed description
of the Trivium stream cipher proposal. Sections below offers a brief overview of its
security considerations and performance [8].

4.1 The Cipher Structure

The Trivium stream cipher is a synchronous design capable of generating a keystream
of length up to 264 bits. This keystream is derived from an 80-bit secret key and an
80-bit initialization vector (IV) (table 4.1).

Parameters
Key size 80 bit
IV size 80 bit
Internal state 288 bit

Tab. 4.1 TRIVIUM - cipher parameters [8]

Initialization: During this stage, the internal state of the cipher is established using
the provided secret key and initialization vector.

Keystream Generation: The internal state undergoes continuous updates, and these
updates serve as the basis for generating the keystream bits. The cipher internal
structure describes image 4.1.



TBU in Zlín, Faculty of Applied Informatics 34

Fig. 4.1 TRIVIUM - diagram of the cipher structure [8]

4.2 Generation of keystream

The proposed Trivium design utilizes a 288-bit internal state denoted as s = (s1, . . . , s288).
Keystream generation is achieved through an iterative process.

1. Extracting State Bits: A specific set of 15 state bits, denoted as t = (t1, . . . , t15),
are extracted from the internal state during each iteration.

2. State Update and Keystream Generation: The extracted bits are used for
two purposes:

• Updating 3 specific bits within the internal state. This update can be rep-
resented as a function f : {0, 1}15 → {0, 1}3, where f(t) = (u1, u2, u3).

• Computing a single keystream bit denoted as zi. The computation of zi

depends on a specific function g : {0, 1}15 → {0, 1} using the extracted bits,
i.e., zi = g(t).
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3. State Rotation: Following the update and keystream generation, the internal
state undergoes a bitwise rotation operation. This can be represented as a shift
function ρ : {0, 1}288 → {0, 1}288, where s = ρ(s′) and s′ is the updated state
after step 2.

This iterative process continues until the desired number of keystream bits (N ≤ 264)
has been generated.

The following pseudocode 1 describes the iterative process used for keystream gener-
ation, where operations are performed over GF(2), meaning that ‘+’ and ‘·’ represent
XOR and AND operations [8].

Algorithm 1 Keystream Generation for Trivium
1: for i = 1 to N do
2: t1 ← s66 + s93 ▷ XOR operation
3: t2 ← s162 + s177 ▷ XOR operation
4: t3 ← s243 + s288 ▷ XOR operation
5: zi ← t1 + t2 + t3 ▷ XOR operation
6: t1 ← t1 + (s91 · s92) + s171 ▷ XOR and AND operations
7: t2 ← t2 + (s175 · s176) + s264 ▷ XOR and AND operations
8: t3 ← t3 + (s286 · s287) + s69 ▷ XOR and AND operations
9: (s1, s2, . . . , s93)← (t3, s1, . . . , s92)

10: (s94, s95, . . . , s177)← (t1, s94, . . . , s176)
11: (s178, s279, . . . , s288)← (t2, s178, . . . , s287)
12: end for

Note that in this document, and the rest of the descriptions, the ‘+’ and ‘·’ symbols
stand for addition and multiplication over GF(2) (i.e., XOR and AND).

4.3 Key and IV Setup

The algorithm is initialized by loading an 80-bit key and an 80-bit Initialization Vector
(IV) into the 288-bit initial state, setting all remaining bits to 0, except for s286,
s287, and s288. Then, the state undergoes rotation over 4 full cycles, similar to the
process described previously but without generating keystream bits. This process is
summarized in the pseudo-code 2 [8, 16]:
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Algorithm 2 Initialization of the Trivium Algorithm
1: (s1, s2, . . . , s93)← (K1, . . . , K80, 0, . . . , 0)
2: (s94, s95, . . . , s177)← (IV1, . . . , IV80, 0, . . . , 0)
3: (s178, s279, . . . , s288)← (0, . . . , 0, 1, 1, 1)
4: for i = 1 to 4× 288 do
5: t1 ← s66 + s91 · s92 + s93 + s171 ▷ XOR and AND operations
6: t2 ← s162 + s175 · s176 + s177 + s264 ▷ XOR and AND operations
7: t3 ← s243 + s286 · s287 + s288 + s69 ▷ XOR and AND operations
8: (s1, s2, . . . , s93)← (t3, s1, . . . , s92)
9: (s94, s95, . . . , s177)← (t1, s94, . . . , s176)

10: (s178, s279, . . . , s288)← (t2, s178, . . . , s287)
11: end for

4.4 Hardware Implementation

The Trivium stream cipher is designed with a focus on hardware practicality, targeting
flexibility especially in resource-constrained environments. Its design is primarily aimed
at achieving three key objectives:

1. Compactness: Suited for scenarios with limited gate count availability.

2. Power Efficiency: Optimized for platforms with restricted power resources.

3. High Speed: Capable of delivering fast encryption for applications requiring
high throughput.

The requirement for a compact implementation naturally leads to a bit-oriented ap-
proach, which also necessitates a non-linear internal state to maintain the generated
non-linearity at the keystream output stage. To enable power-efficient and high-speed
implementations, the design incorporates features that allow for the parallelization of
operations. In Trivium, this is facilitated by ensuring that any state bit remains unused
for at least 64 iterations after being modified. This design choice permits the parallel
computation of up to 64 iterations, assuming that the original scheme’s 3 AND gates
and 11 XOR gates are replicated accordingly. Such parallelization enables a 64-fold
increase in clock frequency without sacrificing overall throughput. Leveraging figures
provided in 4.2 (i.e., 12 NAND gates per flip-flop, 2.5 gates per XOR, and 1.5 gates
per AND), the gate count for various levels of parallelization has been estimated. The
results of this estimation are presented in Table 4.2 [8].



TBU in Zlín, Faculty of Applied Informatics 37

Components 1-bit 8-bit 16-bit 32-bit 64-bit
Flip-flops 288 288 288 288 288
AND gates 3 24 48 96 192
XOR gates 11 88 176 352 704
NAND gates 3488 3712 3968 4480 5504

Tab. 4.2 Estimate gate counts for Trivium hardware implementation [8]

4.5 Security Considerations

The primary security objective for Trivium is to maintain resistance against cryp-
tographic attacks at a level comparable to any theoretical stream cipher sharing its
external parameters. In simpler terms, any attack on Trivium should not be demon-
strably easier to mount compared to an attack on an imaginary stream cipher with the
same capabilities:

• Generating up to 264 bits of keystream,

• Utilizing an 80-bit secret key,

• Employing an 80-bit initialization vector (IV).

Definitively verifying this ideal level of security is a challenging task. Therefore, the
following sections will present arguments that support the belief in Trivium’s resilience
against various cryptanalytic techniques [16].

4.5.1 Correlations

Security analysis of synchronous stream ciphers often involves investigating two distinct
types of correlations:

State-Keystream Correlations: These correlations exist between linear combina-
tions of keystream bits zi and specific internal state bits si. Ideally, an attacker
shouldn’t be able to exploit these correlations to efficiently recover the entire inter-
nal state, which would compromise the cipher’s security [8].

Keystream-Keystream Correlations: Exploited in distinguishing attacks, these cor-
relations exist between the keystream bits themselves.
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While linear correlations between keystream bits and internal state bits are readily
identifiable in Trivium (due to the explicit definition of zi), the cipher’s non-linear
state update mechanism (unlike LFSRs) hinders straightforward recovery of the state
by combining these equations.

Finding correlations of the second type traditionally involves tracing linear paths
through the cipher and approximating the outputs of encountered AND gates as 0.
However, the specific tap positions within Trivium were chosen to ensure any such
linear trail necessitates approximating at least 72 AND gate outputs [8]. This signifi-
cantly increases the complexity of exploiting these correlations for cryptanalysis. The
expression involving the sum of various terms is given by 4.1 [8]:

z1+z16+z28+z43+z46+z55+z61+z73+z88+z124+z133+z142+z202+z211+z220+z289 (4.1)

Assuming a hypothetical scenario where the observed correlation in a specific linear
combination of keystream bits is solely attributable to the considered linear trail, the
corresponding correlation coefficient would theoretically be 2−72. Detecting such a weak
correlation would necessitate analyzing a minimum of 2144 keystream bits, exceeding the
established security requirements for Trivium. While the possibility of more intricate
linear trails with stronger correlations cannot be entirely ruled out, current analysis
suggests it’s improbable that these correlations would surpass 2−40 [8].

4.5.2 Guess and Determine Attacks

In each iteration of Trivium, only a few bits of the state are used, despite the general
rule-of-thumb that sparse update functions should be avoided. As a result, guess and
determine attacks are certainly a concern. A straightforward attack would guess the
bits (s25, . . . , s93), (s97, . . . , s177), and (s244, . . . , s288), totaling 195 bits, after which the
rest of the bits can immediately be determined from the keystream. Further research
should be conducted to examine to what extent more sophisticated attacks can reduce
this number [16].
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4.5.3 Algebraic attacks

Trivium presents a potentially appealing target for cryptanalysis using algebraic at-
tacks. The entire cipher can be readily described by a minimal set of low-degree equa-
tions. However, the cipher’s state update mechanism deviates from a linear model,
posing a challenge for applying the efficient linearization techniques typically employed
to solve equation systems derived from LFSR-based schemes.

While alternative techniques might be applicable for solving Trivium’s specific system
of equations, further investigation is necessary to assess their effectiveness [8].

4.5.4 Resynchronization atacks

Resynchronization attacks pose a threat where an adversary attempts to manipulate
the initialization vector (IV) and analyze the resulting keystream to extract the secret
key. Trivium implements a countermeasure against such attacks by cycling the internal
state a predetermined number of times before generating any keystream output.

Theoretical analysis demonstrates that after two complete cycles (comprising 2 x 288
iterations), each internal state bit exhibits a non-linear dependency on every key and IV
bit. This non-linear relationship significantly increases the difficulty for an adversary
to exploit the manipulated IV and recover the key [8]. Based on this analysis, it is
anticipated that an additional two cycles (for a total of four cycles) would provide a
sufficient level of protection against resynchronization attacks in Trivium.
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II. ANALYSIS
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5 SCAAML: Side Channel Attacks Assisted with Machine Learning

Cryptographic algorithms represent the foremost barrier against attacks. Nevertheless,
these algorithms are vulnerable to side-channel attacks. This area of study, which
presents significant potential for further research and evaluation, is exemplified by the
project whose emblem is depicted in Figure 5.1.

These attacks vector inadvertent leakage of information, such as variations in power
consumption, to extract confidential data.

SCAAML (Side Channel Attacks Assisted with Machine Learning), a project
from Google, emerges as a powerful tool for researchers and security professionals
delving into this intricate domain.

This paper presents a comprehensive exploration of SCAAML, delving into its archi-
tecture, functionalities, and broader implications [6]. Project is accessible via GitHub
repository located at [9].

Fig. 5.1 SCAAML: Side Channel Attacks Assisted with Machine Learning [6]

5.1 The Architecture

SCAAML is a powerful tool built on top of TensorFlow 2.x specifically designed to
analyze side-channel information in cryptography [5]. Side-channel data in this case
are like how much power a device uses while performing an operation (program, en-
cryption, instruction etc.). By analyzing this data, attackers might be able to steal
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secret information. SCAAML helps researchers understand these leaks and develop
better defenses [9]. One of the key strengths of SCAAML is its flexibility. It allows
researchers to choose from various building blocks to create custom analysis tools.

Data Pre-processing: This stage is crucial for cleaning and preparing the raw side-
channel data. Assume a scenario with hundreds of measurements a device’s power
consumption, but it might also include some background noise or irrelevant informa-
tion. SCAAML can normalize the data (ensuring everything is on the same scale),
filter out noise, and even create new features from the existing data to uncover hidden
patterns [6].

Model Selection and Training: SCAAML offers a variety of deep learning model
architectures, like Convolutional Neural Networks (CNNs) or Recurrent Neural Net-
works (RNNs). Each type of model is good at finding different kinds of patterns in
the data. Once a model is chosen, SCAAML trains it using labeled datasets. These
datasets contain side-channel information paired with the secret information it reveals
(like specific parts of a cryptographic key). By training on this data, the model learns
to identify the link between the leak patterns and the hidden secrets [6].

Once a suitable architecture is selected, the model undergoes training using carefully
curated labeled datasets. These datasets consist of side-channel data points anno-
tated with the corresponding secret information they represent (e.g., specific key
bytes). During training, the model learns to map the intricate relationships between
the leak patterns in the data and the hidden secrets. The choice of loss function
(a metric quantifying the model’s prediction error) is crucial, as it guides the model
towards optimal learning and accurate secret recovery.

5.2 Attack Execution

After training, SCAAML is ready to be used for an actual attack. The model takes in
new, unlabeled side-channel data (from an unknown cryptographic operation) and tries
to predict the secret information based on what it learned during training. There are
different attack strategies, like template matching (comparing the data to pre-existing
profiles) or score-based attacks (assigning scores to different possibilities based on how
well they fit the leak patterns) [6].
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5.3 Unlocking the Potential

SCAAML’s integration of machine learning offers several significant advantages for
side-channel analysis.

• Efficiency: Deep learning models can automatically find subtle patterns in data
that humans might miss. This leads to faster and potentially more successful
attacks compared to traditional methods.

• Flexibility: SCAAML’s modular design allows researchers to adapt it to various
scenarios. By customizing the model, training data, and attack strategy, they
can explore a wider range of vulnerabilities.

• Innovation: SCAAML provides a platform for researchers to experiment with
new ideas and explore side-channel analysis in more depth. This can ultimately
lead to the development of stronger cryptographic defenses.

Researchers have employed SCAAML in various ways, extending its reach beyond its
core functionalities.

• Benchmarking: Researchers can use SCAAML to compare different deep learn-
ing models against traditional analysis methods. This helps them to understand
which approaches work best for different situations.

• Countermeasure: SCAAML can be used to test the effectiveness of new tech-
niques designed to protect against side-channel attacks. By simulating attacks
on these countermeasures, researchers can identify weaknesses and improve the
defenses.

5.4 Datasets and models

The SCAAML project offers a powerful framework for exploring side-channel analysis,
but getting started can involve a learning curve. The included scaaml_intro directory
provides tutorial for researchers to delve into this domain. Both datasets and pre-
trained models are available at project repository on GitHub [9].

Pre-Trained models: One of the significant advantages of scaaml_intro lies in its
extensive collection of pre-trained models. Fourty pre-trained models are served as a
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valuable starting point for researchers. They encompass various deep learning architec-
tures, each optimized for specific side-channel analysis tasks. This eliminates the need
to build models from scratch, saving time and allowing to focus on exploring different
attack scenarios. Training all the models take about 24 hours running on GPU, with
performance compared to RTX4090 [5].

The pre-trained models cater to diverse cryptographic algorithms and side-channel leak
types. Whether investigating power consumption variations during AES encryption or
electromagnetic emissions associated with RSA key generation, there is a good chance
to find a pre-trained model suited for needs within scaaml_intro.

Data collection To effectively train and evaluate deep learning models for side-
channel analysis, substantial amounts of data are required. Scaaml introduction rec-
ognizes this need and provides a staggering 8.2GB of datasets [9]. These datasets
encompass various real-world scenarios, incorporating side-channel traces alongside
the corresponding secret information they reveal (e.g., key bytes), all measured on
TinyAES algorithm [9].

The rich diversity of these datasets allows to experiment with different attack strategies
and assess the effectiveness of various pre-trained models. They can also serve as a
foundation for building custom datasets tailored to specific research endeavors.
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6 A Three-Step Approach To State/Key Recovery

This section is based on the research documented in the article by Kumar et al. [16].
For further steps and practical demonstrations, the repository located at [24] will be
utilized.

In the realm of symmetric key cryptography, stream ciphers are critical for ensuring
secure electronic communication. Unlike block ciphers, which have been extensively
studied, stream ciphers have received less attention, making them a prime target for
side channel attacks (SCAs). These attacks exploit physical leakages such as elec-
tromagnetic emissions or power consumption to infer cryptographic keys. Mentioned
research builds upon foundational work by Sim, Bhasin, and Jap at TCHES’21, ad-
vancing a comprehensive framework that integrates several computational techniques
to refine the attack on stream ciphers [16].

Symmetric key cryptography plays a pivotal role in securing modern electronic com-
munications. Symmetric key algorithms are generally more efficient than asymmetric
ones, making them preferable in protocols that support their use. Therefore, it is
crucial to understand the potential threats to the security of these ciphers.

The vulnerabilities of symmetric key systems can be primarily categorized into two
types. The first type, known as classical attacks, involves thorough analysis of the
algorithm’s structure. The second type exploits the physical attributes of the device
executing the cipher, circumventing the sophisticated mechanisms designed to protect
against classical threats [16].

Research used as reference [16] focuses on a specific category of physical attacks, known
as Side Channel Attacks (SCA) [13, 15, 23]. These attacks involve observing the
physical outputs of a device, such as timing, power consumption, and electromagnetic
emissions, during the cipher operation. These observations can reveal critical infor-
mation about the cipher’s secret key. Another prevalent type of physical attack is the
Fault Attack (FA) [1], which also poses significant security risks.
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6.1 Research Focus and Contribution

Despite the importance of Side Channel Attacks, it appears that the focus tends to
lean more towards block ciphers and similar constructs, often leaving stream ciphers
and related mechanisms less examined. This work proposes a framework aimed at
providing an effective model for analyzing stream ciphers through side channel attacks.
Proposed framework is robust, capable of handling real, noisy data traces and supports
both Hamming weight (software) and Hamming distance (hardware) leakage models.
Furthermore, it remains effective even after the cipher enters its pseudo-random phase,
also referred to as the key-stream phase [16].

To illustrate the significance, consider the following observations:

"Knowledge about the Hamming weight of intermediate values can indeed
help in narrowing down possible keys, thus reducing the search space for
the key. However, information on Hamming weight alone often falls short
of revealing the secret key [20]."

"There is no straightforward method to deduce the internal state of the
cipher post-initialization phase, where the key is distributed across 288 bits
of internal state in TRIVIUM. Hence, any attempt to apply a side channel
attack at a later stage seems unpromising [20]."

6.2 Methodological Framework

Focus aims to use a generic framework capable of deducing the key of a stream cipher
or a similar cryptographic system based on side channel leakage, with minimal human
intervention. Framework is designed to extract significant information from the leakage
during the pseudo-random generation algorithm and to account for noise present in the
leakage. The source code is available as open-source on the Bitbucket repository [24].
Further details about modeling approach are provided in next chapters, while the
workflow is summarized in next chapter [16].
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6.3 Framework Workflow

The operation of framework is divided into two main stages [24].

Offline Stage

1. Collect side channel traces from the target device. Depending on whether the
leakage model is based on Hamming weight (software) or Hamming distance
(hardware), these traces are treated as a multi-class classification problem. For
instance, in a 32-bit microcontroller, up to 33 distinct Hamming weights are
possible, defining 33 classes for classification .

2. Train a Machine Learning (ML) model suitable for classification to learn from
these traces.

3. Evaluate the tolerance limit, tl, of an SMT (Satisfiability Modulo Theory) solver
using simulated noisy information.

Online Stage

1. Use the trained ML model to estimate the class (i.e., Hamming weight or distance)
of the target traces.

2. Fit these estimations into an SMT solver. If all ML predictions are accurate, the
SMT solver efficiently returns a solution for the unknown state or key.

3. Adjust the definition of a correct prediction to include a tolerance ϵ > 0. A
prediction is deemed correct if c′ − ϵ ≤ c ≤ c′ + ϵ, where c′ is the predicted class
and c is the actual class.

4. To manage the inherent inaccuracies in ML predictions and the resulting SMT in-
consistencies, employ a Mixed Integer Linear Programming (MILP) model. This
model refines the sequence of ML predictions by integrating cipher-specific con-
straints, like the similarity in Hamming weights across consecutive clock cycles.

5. Feed the output from the MILP model back into the SMT solver, which then
processes it with the established error tolerance, tl.
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The naiveté of the initial ML modeling often results in low accuracy for class predic-
tions, necessitating the rejection of many traces since the SMT solver requires high
accuracy. To address this, was introduced an error tolerance concept, allowing for a
pragmatic compromise between accuracy and computational feasibility [16].

6.3.1 Practical Evaluation and Results

The effectiveness of framework is demonstrated through experiments with the TRIV-
IUM stream cipher on an ARM Cortex-M3 board. The MILP model’s corrections to
the ML output sequence, followed by a description of the SMT model provides a sum-
mary of the SMT module. Experimental results focusing on the Hamming weight and
distance models, respectively.

The primary innovation of framework lies in its integration of ML, MILP, and SMT
under a unified system that addresses both the initialization and pseudo-random gen-
eration phases of stream ciphers.

• Automates the process of key recovery, reducing the need for human intervention.

• Enhances the handling of noisy data, a common issue in practical SCAs.

• Demonstrates practical key recovery on TRIVIUM, an ISO-standardized stream
cipher, highlighting the framework’s effectiveness.

Practical Application Applied framework to TRIVIUM, conducting extensive tests
on a 32-bit software platform. The results underscored the framework’s capability
to effectively decipher keys during various cipher phases, even with noisy electromag-
netic traces. This showcases not only the versatility of approach but also its potential
applicability to other ciphers [16].

Recovery Procedures for Inconsistent SMT Instances The occurrence of incon-
sistencies in SMT instances, although rare, necessitates a robust set of strategies for
effective resolution. Here are proposed several approaches:

1. Retraining the Machine Learning Model: Run the prediction again using
the same traces but retrain the ML model with randomized initial parameters.
This could potentially lead to a different sequence of predictions that may resolve
the inconsistencies.
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2. Increasing the Number of Trace Rounds: Collect traces for a significantly
higher number of rounds. As demonstrated in Section 4, while over 100 rounds
are generally sufficient, collecting up to 500 rounds provides additional data that
may be useful if certain segments prove problematic. This approach leverages
the high success probability of the MILP (Mixed Integer Linear Programming)
model, often resolving issues within one or two attempts.

3. Recollecting Traces: If the issue persists, another viable strategy is to recollect
traces from the device. However, it is important to highlight that increasing
the number of classes in the MILP model reduces its success probability, and
expanding the number of classes in SMT can lead to increased solution times,
crossing a practical threshold. Consequently, maintaining a lower number of
classes is advisable as long as the SMT instances remain solvable [16].

6.3.2 Note on State/Key Recovery

During the pseudo-random generation phase of the cipher, where the cipher is prepared
to produce key-stream or tag, it is possible to recover the unknown state. Depending
on the cipher’s internal structure, full key recovery may be achievable. For instance,
with the TRIVIUM cipher, the state is invertible, which allows it to be reverted back
to the key/IV loading phase, thereby enabling full key recovery. However, in cases
where the state update is not invertible, such as with the LIZARD cipher [10], full key
recovery may not be feasible [16].

Experimental setup: The targeted cryptographic operation was implemented in as-
sembly on an Arduino DUE, featuring an ARM Cortex-M3 processor, 512KB of flash
memory, 96KB of SRAM, and an operating frequency of 84 MHz [16].

Leakage Capture: For the leakage capture, was employed a high-precision EM probe
from Riscure, coupled with a Lecroy WaveRunner 610zi oscilloscope. Initially, a prelim-
inary test using known fixed data was conducted to determine the optimal measurement
spot on the Arduino board an these datasets are available at [24, 16].

For the profiling phase, was employed stratified sampling to ensure representation from
all Hamming Weight (HW) classes. Approximately 33,000 traces were collected, with
each HW class from 0 to 32 contributing about 1,000 traces. In total, around 2,362,000
traces, approximately 221.17, were gathered for the analysis [16, 24].
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7 Evaluation

In final chapter of this thesis wraps up the key, the key findings of this research on
side-channel analysis (SCA) for microcontrollers, focusing on how machine learning
(ML) can be used to improve attack effectiveness.

The primary challenge arises from the classification of Hamming weight or distance by
the machine learning (ML) model. This difficulty is exacerbated by the close proxim-
ity among classes. With a basic implementation, the ML model’s accuracy struggles
to reach 40%, despite extensive efforts to enhance it. Such low accuracy presents a
significant issue, as subsequent processes attempting to deduce unknown components
rely on entirely accurate predictions. Even a single incorrect prediction can lead to
inconsistencies throughout the entire Satisfiability Modulo Theories (SMT) system.
Preliminary evaluations suggest that hundreds of predictions for a typical cipher, such
as TRIVIUM [7], are required, necessitating an impractically large number of indepen-
dent experiments to secure all correct predictions from the ML model [16]. To improve
the accuracy of the ML model, have been observed a crucial pattern: if the correct class
is c, the model is more likely to predict a class within the vicinity of c—specifically,
from c − ϵ to c + ϵ, where ϵ ≥ 1—rather than exactly c. This led to the introduction
of a tolerance parameter, ϵ, which redefines accuracy as follows:

1. When ϵ = 0, the ML model’s accuracy is assessed strictly, requiring the prediction
to match class c exactly.

2. For ϵ > 0, accuracy includes any predicted class within the range from c − ϵ to
c+ ϵ.

Increasing ϵ not only enhances the model’s accuracy according to this tailored defi-
nition but also allows SMT constraints to be adjusted to accommodate more flexible
predictions. Specifically, an SMT constraint of the form x = c′ can be modified to
c′− ϵ ≤ x ≤ c′+ ϵ, where x might represent the Hamming weight of the state, and c′ is
the predicted class. This strategy of introducing error tolerance effectively increases the
accuracy of ML predictions and aligns well with the requirements for SMT modeling
results are shown at 7.1 [16].
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Tolerance (e) 0 1 2 3 4
ML Accuracy 0.3933 0.86678 0.98262 0.99784 0.99967
SMT Solving Time (s) 5.42 254.36 1819.21 28755.36 76797.41

Tab. 7.1 Trade-off between ML tolerance and SMT solution time (sec.) for TRIVIUM
[16]

7.1 ML: Prediction Classes From Traces

Simulation data was from collected 1,000 traces for each HW class, resulting in a total
of 33,000 traces. For the machine learning process, including training, validation, and
testing phases, the dataset size reached approximately 2.36 × 106 ≈ 221.17 traces. It
is important to note that while all classes are represented, the dataset is inherently
imbalanced with unequal class distribution [16].

Model Configuration: The Multi-Layer Perceptron (MLP) model was selected for
its simplicity, configured with input and output layers of sizes 500 and 33, respectively.
The data was split in a 62.5/12.5/25 ratio for training, validation, and testing. Models
were trained using Python 3.8.5, PyTorch 1.8.1+cu102, and Numpy 1.20.3 on an Intel
Xeon Platinum 8260 CPU and NVIDIA Quadro GV100 GPU setup [16].

Training Details ReLU activation functions were utilized post-hidden layers, with
the AdamW optimizer set at a learning rate of 0.0001, incorporating a weighted cross-
entropy loss function to address class imbalance [17]. Training was halted prematurely
if overfitting was detected [16].

Hyper-parameter Optimization For hyper-parameter tuning was choosen Optuna,
a framework for automatic optimization [12]. The process aimed to identify the op-
timal configuration for the number of hidden layers and their sizes using a dataset of
approximately 219.345, with an 80/20 training/validation split. Despite numerous trials
(n=500), the optimal model suggested by Optuna, featuring three hidden layers each
of size 416, yielded results similar to simpler two-layer model [16].

7.2 Model Performance

The performance of the MLP model with two hidden layers, each with 128 neurons, was
found to be optimal when compared to more complex models suggested by Optuna. The
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accuracy of this model, with zero tolerance for error, approached 40%. These results
are shown in table 7.2, highlighting the average accuracy rounded to five decimal places
for different data splits.

The findings suggest that simpler models may be adequate for profiling side-channel
attacks in practical scenarios, avoiding the complexity and computational overhead
associated with more extensive hyper-parameter tuning. This efficiency is crucial in
deploying machine learning for real-time SCA applications [16].

Model Train. Acc Val. Acc. Testing Accuracy with Tolerance (ϵ) Train Time (s)0 1 2 3 4 5 6 ≥ 7
MLP-I 0.3601 0.39389 0.3933 0.86678 0.98262 0.99784 0.99967 0.99991 0.99998 1.0 5530.93
MLP-II 0.3661 0.3931 0.39266 0.86615 0.98234 0.99784 0.99965 0.99992 0.99999 1.0 6340.84

Tab. 7.2 Results for machine learning prediction (with varying tolerance) [16]

The experiments were conducted under different HW models as described. Examined
the SMT solver’s performance under various error tolerances and the number of rounds,
which were initially set to approximately half of the original number of variables (110
rounds).

Solution Time and Error Tolerance The solution times for unique solutions under
the HW/8, HW/16, and HW/32 models with varying error tolerances as shown at table
7.3. The key distinctions between results with only update and HW equations versus
those including key-stream equations are also presented [16].

• Under the HW/8 model, achieved state bit recovery up to an error tolerance of
3. Beyond this tolerance, the Z3 solver returned multiple solutions, requiring
increased computation times even with a higher number of rounds.

• For the HW/16 model, solutions were found up to an error tolerance of 4 within
approximately 1–2 hours.

• Detailed results for the 32-bit microcontroller are reported in Tables 7.2 and 7.4,
noting that the SMT solution times were manageable up to an error tolerance of
4.

MILP Modelling and Success Probability The success rate of the Mixed Integer
Linear Programming (MILP) modelling was specifically noteworthy at an error toler-
ance of 3. This setting showed a very high success rate in correcting predicted HW
classes that fell outside the expected tolerance limits, thus maintaining system consis-
tency [16].
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7.3 Overall Performance

For error tolerance 3, with 150 rounds, the SMT solver achieved a success probability
of 0.968 within 49981.87 seconds and it’s shown in tables 7.3 and 7.4. Increasing the
number of rounds to 170 and 180, as observed reduced solution times and slightly lower
success probabilities. The best result was observed at 170 rounds with a solution time
of 28763.22 seconds and a success probability of 0.946 [16].

Leakage Model Tolerance # Rounds Trials Mean (sec.) S.D. (sec.)

HW/8
1 110 20 1.16 0.05
2 110 20 1.37 0.07
3 110 20 1.58 0.13

HW/16

1 110 20 3.91 0.94
2 110 20 7.38 2.18
3 110 20 15.41 6.35

4
110 20 91.40 187.50
130 20 40.01 22.85
150 20 39.89 18.62

HW/32

1 110 20 239.74 192.64

2 110 20 7975.88 9277.67
130 20 4764.87 4489.14

3
130 6 122582.24 65397.23
150 6 49975.49 31924.09
180 5 36288.82 27153.63

4
130 1 475778.30 –
150 3 494445.14 38190.05
170 2 226005.79 71432.18

Tab. 7.3 Solution times under different HW models without key-stream information
[16]

Leakage Model Tolerance Rounds Trials Mean (sec.) S.D. (sec.)

HW/32

0 110 20 5.42 1.25

1
70 20 1309.19 1144.36
90 20 821.76 1444.34
110 20 254.36 195.43

2

70 1 3408.72 –
90 8 17404.32 27533.08
110 16 10628.26 13962.97
130 20 1819.21 1558.38

3
110 1 140523.60 –
130 3 44911.09 31619.74
170 1 28755.36 –

4 130 1 76797.41 –
170 1 12582.60 –

Tab. 7.4 Results for TRIVIUM under HW/32 model in the Pseudo-random Phase [16]
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7.4 Reduction of Unknown Variables

During the initialization phase of TRIVIUM, the number of unknown variables sig-
nificantly reduces from 288 to 80. This reduction occurs because only the secret key
bits, totaling 80 bits, remain unknown. This contraction in variable space inherently
simplifies the complexity of the problem the SMT solver needs to address [16].

Error Tolerance The reduction in unknown variables allows the SMT solver to oper-
ate with higher error tolerances. This capability is critical for improving the robustness
of the cipher against side-channel attacks, as it allows the system to maintain accuracy
even when the input data (side-channel leakage) includes a higher degree of noise [16].

Handling Multiple Initialization Vectors (IVs) While the results reported in studies
are based on scenarios involving a single Initialization Vector (IV), it is important to
note that SMT model is versatile enough to handle multiple IVs effectively. Each IV
introduces new information to the system, potentially reducing the solution time for
the SMT solver [16].

Operational Efficiency With the introduction of each new IV, and due to the re-
duced number of variables during the initialization phase, the SMT solver can process
instances faster and with higher error tolerance. This efficiency makes the system par-
ticularly adept at handling real-world operational scenarios where rapid key recovery
is essential and result are provided in table 7.5 [16].

For the initial trials, set the number of rounds at 140, based on previous results in
the key-stream generation phase indicating feasible SMT solution times. Adjustments
to the number of rounds were made depending on the incidence of multiple solutions.
Table 7.5 presents the solution times for HW/8, HW/16, and HW/32 during the ini-
tialization phase of TRIVIUM. Highlighted how adjustments in the number of rounds
and error tolerances impact the solver’s performance [16].

For HW/32, with an error tolerance of 15, the SMT solver efficiently resolves instances
in 79.49 seconds at 170 rounds, with a success probability of 1. This efficiency stems
from the ability to predict HW class with 100% accuracy at an error tolerance of 7,
allowing for SMT instance creation without needing MILP corrections [16].

For lower tolerances, as demonstrated, the accuracy of HW prediction allows for reliable
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Leakage Model Tolerance # Rounds Trials Mean (sec.) S.D. (sec.)
HW/8 4 150 20 1.63 0.28

HW/16

5 140 20 2.12 0.23
6 140 20 2.46 0.698
7 140 20 4.45 2.13
8 200 20 153.01 223.71

HW/32

3 140 20 4.93 1.55
4 140 20 8.58 6.90

5 140 20 10.39 11.39
160 20 11.64 6.44

6 140 20 27.07 34.97
7 170 20 79.49 121.89
8 160 20 211.89 636.58
9 160 20 162.08 186.37
10 160 20 585.56 1484.28
11 160 20 1018.86 1629.53
12 160 20 4560.34 5749.65
13 160 11 3646.35 3632.99

14
200 2 18379.19 5143.47
300 2 5566.90 4175.17
280 3 1460.03 1234.7

15 280 1 5859.60 -
Tab. 7.5 Results for TRIVIUM in the Initialisation Phase [16]

SMT solutions at shorter times. For instance, with an error tolerance of 4, nearly
all HW data (approximately 1260 blocks) fall within the error tolerance, leading to
solutions within 8.58 seconds. If inconsistencies arise, adjustments in the tolerance and
the number of rounds are made to optimize the solution time, following the recovery
procedures outlined [16].

The initialization phase of TRIVIUM shows significant potential for rapid and accurate
state recovery using the SMT solver, particularly when leveraging insights from error
tolerance and rounds adjustments. These findings are critical for enhancing the cipher’s
resilience and effectiveness in cryptographic applications [16].

Error Tolerance and SMT Solving Error tolerance is introduced to improve the ML
model’s predictive accuracy, thereby assisting the Satisfiability Modulo Theory (SMT)
solver in recovering the cipher’s state/key more effectively. However, this increases the
solution time, necessitating a balance to optimize both accuracy and computational ef-
ficiency. For the TRIVIUM cipher, optimal results are obtained with an error tolerance
of three, achieving 99.7% accuracy and manageable SMT solution times [16].
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Enhancements and Noise Handling The framework also incorporates Gaussian noise
handling to test robustness under various Signal-to-Noise Ratios (SNRs). Lower SNRs
decrease ML accuracy, impacting the overall success probability of the key recovery
process. Methods to mitigate this include optimizing the ML architecture and imple-
menting pre-processing techniques [16].

7.5 Pre-trained model and datasets

Project offers a collection of pre-trained models [24], serving as a launchpad for re-
searchers investigating this specific attack scenario. These models are likely trained on
datasets containing side-channel information (potentially power consumption traces)
captured during Trivium encryption with a three-step attack strategy.

Project likely incorporates datasets specifically curated for the three-step attack against
Trivium. These datasets are crucial for training and evaluating the effectiveness of the
pre-trained models and any custom models researchers might develop.

The characteristics of the datasets, such as their size, content, and formatting, are
readily available from the provided Bitbucket repository. Could be approximated to
the sections:

• Side-channel traces: Recordings of power consumption or other leakages cap-
tured during Trivium encryption with the three-step attack.

• Corresponding secret information: The key or plaintext bytes targeted dur-
ing the attack, which the models learn to associate with specific patterns in the
side-channel traces.

Total number of traces: 2362000 ≈ 221.17[24]
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The table 7.6 shows the distribution of samples according to their Hamming Weight
(HW):

Hamming Weight (HW) Number of samples
0 14000
1 14000
2 14002
3 14005
4 14012
5 14098
6 14377
7 15514
8 18505
9 26461
10 42142
11 70991
12 113913
13 168198
14 222760
15 264618
16 280021
17 263850
18 221995
19 167451
20 114025
21 71292
22 42623
23 26475
24 18645
25 15532
26 14381
27 14102
28 14010
29 14002
30 14000
31 14000
32 14000

Tab. 7.6 Distribution of samples according to their Hamming Weight [24]
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CONCLUSION

This study presents a significant step forward in the field of cryptographic research.
It introduces a method that systematically combines various analytical techniques,
offering a novel tool for both researchers and practitioners in cybersecurity, enhancing
collective ability to secure digital communications against emerging threats.

Research relies on the fact that datasets for both the TRIVIUM cipher and the SCAAML
framework were available in repositories, which provided valuable resources for this re-
search. The two key areas have been explored: the three-step attack on TRIVIUM and
SCAAML.

The first step of this research involved getting a solid understanding of modern trends
in SCA. Thesis reveal the history and possibilities of various techniques, which helped
me build a strong foundation for comprehending its strengths and weaknesses. With
this theoretical knowledge focused on describing various attacks specifically designed
to target microcontrollers. There were highlighted the vulnerabilities these devices
possess and the potential consequences regarding the SCA.

The implementation phase of research involved a comparison of the two chosen ap-
proaches. SCAAML emerged as a user-friendly framework with a strong foundation
built by Google and Elie Bursztein. Its focus on practicality and its extensive capabil-
ities, including connections to ChipWhisperer and a variety of optimization methods,
make it a very attractive option for SCA practitioners. Project is focused on software
library TinyAES (lightweight library with software AES implementation).

This thesis navigated the complexities of SCA research by combining a theoretical foun-
dation with practical implementation using pre-trained models. In fact, the pretrained
models had close to the same performance on datasets included with the framework
itself. This approach contributes to the understanding and potential applications of
ML-powered SCA. As moving forward, it’s important to prioritize ethical considera-
tions. While SCA techniques are valuable for research, they can pose security risks if
misused. Ensuring that this research adheres to responsible practices and focusing on
theoretical understanding and educational purposes are critical aspects to consider.
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LIMITATIONS AND FUTURE WORKS

The challenges encountered during the initial stages of this research reflect a broader
issue in the field of SCA research. This initial plan was to create this own tools, but
this quickly highlighted the difficulty of securing the proper resources. From the lim-
ited availability of oscilloscopes with proper computer connectivity to the scarcity of
powerful GPUs in today’s AI boom, these limitations can significantly impact research
progress. Have been even tried leveraging Google Cloud and deploying machines with
advanced GPUs like V100s and K80s, but unfortunately, the current demand for AI
resources made it very difficult to get access. Despite communicating with support and
sales teams, the fact that this was for research purposes wasn’t enough. This expe-
rience underscores the need for more readily available resources to support academic
exploration in this crucial field.

While SCAAML offers a practical and well-established approach, this exploration of
the TRIVIUM attack also revealed its unique potential for further research. This
framework presents significant research opportunities, especially for those interested in
delving deeper into advanced SCA techniques. Further research could explore the use of
different machine learning models and preprocessing techniques to enhance accuracy
and reduce the dependency on MILP corrections. Other models like Convolutional
Neural Networks (CNNs), Recurrent Neural Networks (RNNs), or Long Short-Term
Memory (LSTM) networks could be considered for analyzing time-series data from elec-
tromagnetic traces [16]. Developing analytical models such as Hidden Markov Models
(HMM) might allow the framework to operate effectively with less than perfect accu-
racy, potentially eliminating the need for intermediate MILP corrections [16]. Adapting
the framework to accommodate polynomial and weighted leakage functions could pro-
vide a broader application range, although it may require enhancements to the current
SMT model to handle these complexities [16]. The future of SCA research is full of
potential. By addressing resource limitations and fostering responsible research prac-
tices, the field can flourish, ultimately contributing to the development of more robust
and secure cryptographic systems. This thesis serves as a valuable stepping stone on
this path, offering insights and highlighting areas for further exploration.
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