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Abstract

Diversity in evolutionary systems and its application to permutative based combinato-
rial optimization problems is the core objective of this dissertation.

Stagnation and its implication through chaotic attributes is outlined and new attack
strategies are developed to induce viabilty to canonical metaheuristics.

Three new permutative versions of Self Organising Migrating Algorithm (SOMA)
are developed, being the Permutative Set Handling, Static Permutative SOMA and
Dynamic Permutative SOMA.

Novel clustered population paradigms based loosly around the concept of chaotic
attractors and edges are developed and utilised through Differential Evolution (DE)
and SOMA. New selection and deletion criteria’s are developed and vetted with the
canonical algorithms.

Six unique and challenging permutative based combinatorial optimization prob-
lems are solved using these heuristics with good results obtained.



Chapter 1

Introduction

One of the most challenging optimization problems is permutative based combinato-
rial optimization. This class of problem harbours some of the most famous optimiza-
tion problems like travelling salesman and vehicle routing problem.

Another very important branch is that of scheduling, to which a number of man-
ufacturing problems are associated. The most realised and of interest are the shop
scheduling problems of flow shop and job shop.

What makes a permutative problem complex is that the solution representation is
very concise, since it must have a discrete number of values, and each occupied variable
in the solution is unique. Given a problem of size n, a representation can be described
as x= {x1,x2,x3, ...,xn}, where each value xi in the solution is unique and the entire set
of solutions is an integer representation from {1, n}.

From an optimization point of view, this represents a number of problems. Firstly,
the search space is discrete and a number of validations inevitably have to be conducted
in order to have a viable solution. Secondly, the search space is very large, to the scale
of n!. Consequently, these problems are generally termed NP or NP Hard [24].

The usual approach is to explore the search space in the neighbourhood of good
solutions in order to find better solutions. This unfortunately has the effect of con-
verging the population, which then leads to stagnation. The usual term is local optima
convergence/stagnation. Local minima regions acts as attractor basins, where solu-
tions converge. Diversity in the population decreases and possibility of future evolution
diminishes.

This research looks at the diversity of the population in order to aid the application
of metaheuristics. A permutative solution and its representation present some advan-
tages to this effect. The usual measure of a solution is its fitness, in respect to the
problem being solved. In a permutative solution, the distinct ordering of values gives
the opportunity to have other measures of diversity.

The second application of this research is the development of viable varients of
permutative versions of Self Organising Migrating Algorithm (SOMA) [51]. SOMA is
a native heuristic, which is based around the concept of cooperating group of solutions
in hyperspace. SOMA is loosly based around the concept of “swamp intelligence”.
SOMA has been effectivelty applied to a number of real-domian problems, however no
application for permutative problems have been published. This research strives to be
the first appliction of SOMA to permutative problems and bring completeness to the
heuristic.

In order to guage the effectiveness of the developed heuritics, a number of different
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and difficult permutative based combinatorial optimization problems is solved. A total
of six unique problem classes are solved, ranging from logistics, manufacturing and
scheduling.

The thesis is divided into two parts; theoratical and practical. The therotical part
contains chapters on Differential Evolution (Chapter 2), Self Organising Migrating Al-
gorithm (Chapter 3), Permutative Self Organising Migrating Algorithm (Chapter 4)
and Chaotic Signature in Population Dynamics (Chapter 5).

The experimental section contains the chapters of the different problem classes.
The chapters include those of Permutative Flowshop Scheduling (Chapter 6), Flow
Shop Scheduling with Limited Intermediate Storage (Chapter 7), Flow Shop Schedul-
ing with NoWait (Chapter 8), Quadratic Assignment Problem (Chapter 9), Capacitated
Vehicle Routing Problem (Chapter 10) and Job Shop Scheduling (Chapter 11). The dis-
sertation is concluded with the chapter on Analysis and Conclusions.
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Theoretical Section
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Chapter 2

Differential Evolution

Differential evolution (DE) is one of the evolutionary optimization methods proposed
by Storn and Price [38]. DE was first introduced to solve the Chebychev polynomial
fitting problem by Storn and Price [38].

DE is a population-based and stochastic global optimizer. In general, the DE
algorithm starts with establishing the initial population. Each individual has an m-
dimensional vector with parameter values determined randomly and uniformly between
predefined search ranges. In a DE algorithm, candidate solutions are represented by
chromosomes based on floating-point numbers. In the mutation process of a DE algo-
rithm, the weighted difference between two randomly selected population members is
added to a third member to generate a mutated solution. Then, a crossover operator
follows to combine the mutated solution with the target solution so as to generate a
trial solution. Thereafter, a selection operator is applied to compare the fitness function
value of both competing solutions, namely, target and trial solutions to determine who
can survive for the next generation.

In order to describe DE, a schematic is given in Fig 2.1.
There are essentially five sections to the code. Section 1 describes the input to the

heuristic. D is the size of the problem, Gmax is the maximum number of generations,
NP is the total number of solutions, F is the scaling factor of the solution and CR is
the factor for crossover. F and CR together make the internal tuning parameters for the
heuristic.

Section 2 outlines the initialisation of the heuristic. Each solution xi, j,G=0 is created
randomly between the two bounds x(lo) and x(hi) . The parameter j represents the index
to the values within the solution and i indexes the solutions within the population.
So, to illustrate, x4,2,0 represents the second value of the fourth solution at the initial
generation.

After initialisation, the population is subjected to repeated iterations in section 3.
Section 4 describes the conversion routines of DE. Initially, three random numbers

r1,r2,r3 are selected, unique to each other and to the current indexed solution i in the
population in 4.1. Henceforth, a new index jrand is selected in the solution. jrand points
to the value being modified in the solution as given in 4.2. In 4.3, two solutions, x j,r1,G
and x j,r2,G are selected through the index r1 and r2 and their values subtracted. This
value is then multiplied by F, the predefined scaling factor. This is added to the value
indexed by r3 .

However, this solution is not arbitrarily accepted in the solution. A new random
number is generated, and if this random number is less than the value of CR, then the
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Canonical Differential Evolution Algorithm

1.Input :D,Gmax,NP≥ 4,F ∈ (0,1+) ,CR ∈ [0,1],and initial bounds :x(lo),x(hi).

2.Initialize :

{
∀i≤ NP∧∀ j ≤ D : xi, j,G=0 = x(lo)j + rand j [0,1]•

(
x(hi)j − x(lo)j

)

i= {1,2, ...,NP}, j = {1,2, ...,D},G= 0,rand j[0,1] ∈ [0,1]




3.While G< Gmax

∀i≤ NP






4. Mutate and recombine :
4.1 r1,r2,r3 ∈ {1,2, ....,NP},
randomly selected,except :r1 (= r2 (= r3 (= i

4.2 jrand ∈ {1,2, ...,D}, randomly selected once each i

4.3 ∀ j ≤ D,u j,i,G+1 =






x j,r3,G+F · (x j,r1,G− x j,r2,G)
if (rand j[0,1] <CR∨ j = jrand)
x j,i,G otherwise

5. Select

xi,G+1 =
{

ui,G+1 if f (ui,G+1)≤ f (xi,G)
xi,G otherwise

G= G+1

Figure 2.1: Canonical Differential Evolution Algorithm

new value replaces the old value in the current solution. Once all the values in the solu-
tion are obtained, the new solution is vetted for its fitness or value and if this improves
on the value of the previous solution, the new solution replaces the previous solution in
the population. Hence the competition is only between the new child solution and its
parent solution.

Price [38] has suggested ten different working strategies. It mainly depends on the
problem on hand for which strategy to choose. The strategies vary on the solutions to
be perturbed, number of difference solutions considered for perturbation, and finally
the type of crossover used. The following are the different strategies being applied.

The convention shown is DE/x/y/z. DE stands for Differential Evolution, x rep-
resents a string denoting the solution to be perturbed, y is the number of difference

Table 2.1: DE Strategies
Strategy Formulation

Strategy 1: DE/best/1/exp: ui,G+1 = xbest,G+F •
(
xr1,G− xr2,G

)

Strategy 2: DE/rand/1/exp: ui,G+1 = xr1,G+F •
(
xr2,G− xr3,G

)

Strategy 3: DE/rand-to-best/1/exp ui,G+1 = xi,G+λ •
(
xbest,G− xr1,G

)
+F •

(
xr1,G− xr2,G

)

Strategy 4: DE/best/2/exp: ui,G+1 = xbest,G+F •
(
xr1,G− xr2,G− xr3,G− xr4,G

)

Strategy 5: DE/rand/2/exp: ui,G+1 = x5,G+F •
(
xr1,G− xr2,G− xr3,G− xr4,G

)

Strategy 6: DE/best/1/bin: ui,G+1 = xbest,G+F •
(
xr1,G− xr2,G

)

Strategy 7: DE/rand/1/bin: ui,G+1 = xr1,G+F •
(
xr2,G− xr3,G

)

Strategy 8: DE/rand-to-best/1/bin: ui,G+1 = xi,G+λ •
(
xbest,G− xr1,G

)
+F •

(
xr1,G− xr2,G

)

Strategy 9: DE/best/2/bin ui,G+1 = xbest,G+F •
(
xr1,G− xr2,G− xr3,G− xr4,G

)

Strategy 10: DE/rand/2/bin: ui,G+1 = x5,G+F •
(
xr1,G− xr2,G− xr3,G− xr4,G

)
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solutions considered for perturbation of x, and z is the type of crossover being used
(exp: exponential; bin: binomial).

DE has two main phases of crossover: binomial and exponential. Generally, a
child solution ui,G+1 is either taken from the parent solution xi,G or from a mutated
donor solution vi,G+1 as shown : u j,i,G+1 = v j,i,G+1 = x j,r3,G+F •

(
x j,r1,G− x j,r2,G

)
.

The frequency with which the donor solution vi,G+1 is chosen over the parent so-
lution xi,G as the source of the child solution is controlled by both phases of crossover.
This is achieved through a user defined constant, crossover CR, which is held constant
throughout the execution of the heuristic.

The binomial scheme takes parameters from the donor solution every time that the
generated random number is less than the CR as given by rand j [0,1] < CR , else all
parameters come from the parent solution xi,G.

The exponential scheme takes the child solutions from xi,G until the first time that
the random number is greater than CR, as given by rand j [0,1] < CR, otherwise the
parameters comes from the parent solution xi,G.

To ensure that each child solution differs from the parent solution, both the expo-
nential and binomial schemes take at least one value from the mutated donor solution
vi,G+1.

2.0.1 Tuning Parameters
Outlining an absolute value for CR is difficult. It is largely problem dependent. How-
ever a few guidelines have been laid down [38]. When using binomial scheme, inter-
mediate values of CR produce good results. If the objective function is known to be
separable, then CR = 0 in conjunction with binomial scheme is recommended. The
recommended value of CR should be close to or equal to 1, since the possibility or
crossover occurring is high. The higher the value of CR, the greater the possibility of
the random number generated being less than the value of CR, and thus initiating the
crossover.

The general description of F is that it should be at least above 0.5, in order to
provide sufficient scaling of the produced value.

The tuning parameters and their guidelines are given in Table 2.2

Table 2.2: Guide to choosing best initial control variables
Control Variables Lo Hi Best? Comments

F: Scaling Factor 0 1.0+ 0.3 – 0.9 F ≥ 0.5
CR: Crossover probability 0 1 0.8 − 1.0 CR = 0, seperable

CR = 1, epistatic

2.1 Enhanced Differential Evolution
Enhanced Differential Evolution (EDE) [8, 9], heuristic is an extension of the Discrete
Differential Evolution (DDE) variant of DE [10]. One of the major drawbacks of the
DDE algorithm was the high frequency of in-feasible solutions, which were created
after evaluation. However, since DDE showed much promise, the next logical step
was to devise a method, which would repair the in-feasible solutions and hence add
viability to the heuristic.
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To this effect, three different repairment strategies were developed, each of which
used a different index to repair the solution. After repairment, three different enhance-
ment features were added. This was done to add more depth to the code in order to
solve permutative problems. The enhancement routines were standard mutation, inser-
tion and local search. The basic outline is given below.

1. Initial Phase

(a) Population Generation: An initial number of discrete trial solutions are
generated for the initial population.

2. Conversion

(a) Discrete to Floating Conversion: This conversion schema transforms the
parent solution into the required continuous solution.

(b) DE Strategy: The DE strategy transforms the parent solution into the child
solution using its inbuilt crossover and mutation schemas.

(c) Floating to Discrete Conversion: This conversion schema transforms the
continuous child solution into a discrete solution.

3. Mutation

(a) Relative Mutation Schema: Formulates the child solution into the discrete
solution of unique values.

4. Improvement Strategy

(a) Mutation: Standard mutation is applied to obtain a better solution.
(b) Insertion: Uses a two-point cascade to obtain a better solution.

5. Local Search

(a) Local Search: 2 Opt local search is used to explore the neighborhood of the
solution.

2.1.1 Permutative Population
The first part of the heuristic generates the permutative population. A permutative
solution is one, where each value within the solution is unique and systematic. A basic
description is given in Equation 2.1.

PG = {x1,G,x2,G, ...,xNP,G}, xi,G = x j,i,G

x j,i,G=0 = (int)
(
rand j [0,1]•

(
x(hi)j +1− x(lo)j

)
+

(
x(lo)j

))

i f x j,i /∈
{
x0,i,x1,i, ...,x j−1,i

}

i= {1,2,3, ...,NP} , j = {1,2,3, ..,D} (2.1)

where PG represents the population, x j,i,G=0 represents each solution within the
population and x(lo)j and x(hi)j represents the bounds. The index i references the solution
from 1 to NP, and j which references the values in the solution.
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2.1.2 Forward Transformation
The transformation schema represents the most integral part of the code. Onwubolu
[10] developed an effective routine for the conversion.

Let a set of integer numbers be represented as in Equation 2.2:

xi ∈ xi,G (2.2)

which belong to solution x j,i,G=0 . The equivalent continuous value for xi is given
as 1•102 < 5•102 ≤ 102.

The domain of the variable xi has length of 5 as shown in 5•102. The precision of
the value to be generated is set to two decimal places (2 d.p.) as given by the superscript
two (2) in 102 . The range of the variable xi is between 1 and 103. The lower bound
is 1 whereas the upper bound of 103 was obtained after extensive experimentation.
The upper bound 103 provides optimal filtering of values which are generated close
together [10].

The formulation of the forward transformation is given as:

x′i =−1+
xi • f •5
103−1 (2.3)

Equation 2.3 when broken down, shows the value xi multiplied by the length 5
and a scaling factor f. This is then divided by the upper bound minus one (1). The
value computed is then decrement by one (1). The value for the scaling factor f was
established after extensive experimentation. It was found that when f was set to 100,
there was a tight grouping of the value, with the retention of optimal filtration′s of
values. The subsequent formulation is given as:

x′i =−1+
xi • f •5
103−1 =−1+

xi • f •5
103−1 (2.4)

2.1.3 Backward Transformation
The reverse operation to forward transformation, backward transformation converts the
real value back into integer as given in Equation 2.5 assuming xi to be the real value
obtained from Equation 2.4.

int [xi] =
(1+ xi)•

(
103−1

)

5• f =
(1+ xi)•

(
103−1

)

500
(2.5)

The value xi is rounded to the nearest integer.

2.1.4 Recursive Mutation
Once the solution is obtained after transformation, it is checked for feasibility. Feasi-
bility refers to whether the solutions are within the bounds and unique in the solution.

xi,G+1 =





ui,G+1 if

{
u j,i,G+1 (=

{
u1,i,G+1, ...,u j−1,i,G+1

}

x(lo) ≤ u j,i,G+1 ≤ x(lo)
xi,G

(2.6)

Recursive mutation refers to the fact that if a solution is deemed in-feasible, it is
discarded and the parent solution is retained in the population as given in Equation 2.6.
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2.1.5 Repairment
In order to repair the solutions, each solution is initially vetted. Vetting requires the
resolution of two parameters: firstly to check for any bound offending values, and sec-
ondly for repeating values in the solution. If a solution is detected to have violated a
bound, it is dragged to the offending boundary.

u j,i,G+1 =
{

x(lo) if u j,i,G+1 < x(lo)
x(hi) if u j,i,G+1 > x(hi)

(2.7)

Each value, which is replicated, is tagged for its value and index. Only those values,
which are deemed replicated, are repaired, and the rest of the values are not manipu-
lated. A second sequence is now calculated for values, which are not present in the
solution. It stands to reason that if there are replicated values, then some feasible val-
ues are missing. The pseudocode if given in Figure 2.2

Algorithm for Replication Detection

Assume a problem of size n, and a schedule given as X = {x1, ..,xn}. Create a random
solution schedule ∃!xi : R(X) := {x1, ..,xi..,xn}; i∈ Z+, where each value is unique and
between the bounds x(lo) and x(hi).

1. Create a partial empty schedule P(X) := {}

2. For k = 1,2, ....,n do the following:

(a) Check if xk ∈ P(X).
(b) IF xk /∈ P(X)

Insert xk→ P(Xk)
ELSE

P(Xk) = /0

3. Generate a missing subset M (X) := R(X)\P(X).

Figure 2.2: Pseudocode for replication detection

Three unique repairment strategies were developed to repair the replicated values:
front mutation, back mutation and random mutation, named after the indexing used for
each particular one.

Random Mutation

The most complex repairment schema is the random mutation routine. Each value is
selected randomly from the replicated array and replaced randomly from the missing
value array as given in Figure 2.3.

Since each value is randomly selected, the value has to be removed from the array
after selection in order to avoid duplication. Through experimentation it was shown
that random mutation was the most effective in solution repairment.
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Algorithm for Random Mutation

Assume a problem of size n, and a schedule given as X = {x1, ..,xn}. Assume the
missing subset M(X) and partial subset P(X) from Figure 2.2.

1. For k = 1,2, ....,n do the following:

(a) IF P(Xk) = /0
Randomly select a value from theM (X) and insert it in P(Xk) given as
M (XRnd)→ P(Xk)

(b) Remove the used value from theM (X).

2. Output P(X) as the obtained complete schedule.

Figure 2.3: Pseudocode for random mutation

2.1.6 Improvement Strategies
Improvement strategies were included in order to improve the quality of the solutions.
Three improvement strategies were embedded into the heuristic. All of these are one
time application based. What this entails is that, once a solution is created each strategy
is applied only once to that solution. If improvement is shown, then it is accepted as
the new solution, else the original solution is accepted in the next population.

Standard Mutation

Standard mutation is used as an improvement technique, to explore random regions
of space in the hopes of finding a better solution. Standard mutation is simply the
exchange of two values in the single solution.

Two unique random values are selected r1,r2 ∈ rand [1,D], where as r1 (= r2 . The
values indexed by these values are exchanged: Solutionr1

exchange↔ Solutionr1 and the
solution is evaluated. If the fitness improves, then the new solution is accepted in the
population. The routine is shown in Figure 2.4.

Insertion

Insertion is a more complicated form of mutation. However, insertion is seen as pro-
viding greater diversity to the solution than standard mutation.

As with standard mutation, two unique random numbers are selected r1,r2 ∈ rand [1,D].
The value indexed by the lower random number Solutionr1 is removed and the solution
from that value to the value indexed by the other random number is shifted one index
down. The removed value is then inserted in the vacant slot of the higher indexed value
Solutionr2 as given in Figure 2.5.

2.1.7 Local Search
There is always a possibility of stagnation in evolutionary algorithms. DE is no exemp-
tion to this phenomenon.

10



Algorithm for Standard Mutation

Assume a schedule given as X = {x1, ..,xn}.

1. Obtain two random numbers r1 and r2, where r1 = rnd
(
x(lo),x(hi)

)
and r2 =

rnd
(
x(lo),x(hi)

)
, the constraint being r1 (= r2

(a) Swap the two indexed values in the solution
i. xr1 = xr2 and xr2 = xr1 .

(b) Evaluate the new schedule X ′ for its objective given as f (X ′).
(c) IF f (X ′) < f (X)

i. Set the old schedule X to the new improved schedule X ′ as X = X ′.

2. Output X as the new schedule.

Figure 2.4: Pseudocode for standard mutation

Algorithm for Insertion

Assume a schedule given as X = {x1, ..,xn}.

1. Obtain two random numbers r1 and r2, where r1 = rnd
(
x(lo),x(hi)

)
and r2 =

rnd
(
x(lo),x(hi)

)
, the constraints being r1 (= r2 and r1 < r2.

(a) Remove the value indexed by r1 in the schedule X .
(b) For k=r1,.....,r2−1, do the following:

i. xk = xk+1.
(c) Insert the higher indexed value r2 by the lower indexed value r1 as: Xr2 =

Xr1 .

2. Output X as the new schedule.

Figure 2.5: Pseudocode for Insertion

Stagnation is the state where there is no improvement in the populations over a
period of generations. The solution is unable to find new search space in order to find
global optimal solutions. The length of stagnation is not usually defined. Sometimes a
period of twenty generation does not constitute stagnation. Also care has to be taken
as not be confuse the local optimal solution with stagnation. Sometimes, better search
space simply does not exist. In EDE, a period of five generations of non-improving
optimal solution is classified as stagnation. Five generations is taken in light of the fact
that EDE usually operates on an average of a hundred generations. This yields to the
maximum of twenty stagnations within one run of the heuristic.
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To move away from the point of stagnation, a feasible operation is a neighborhood
or local search, which can be applied to a solution to find better feasible solution in the
local neighborhood. Local search in an improvement strategy. It is usually independent
of the search heuristic, and considered as a plug-in to the main heuristic. The point of
note is that local search is very expensive in terms of time and memory. Local search
can sometimes be considered as a brute force method of exploring the search space.
These constraints make the insertion and the operation of local search very delicate to
implement. The route that EDE has adapted is to check the optimal solution in the pop-
ulation for stagnation, instead of the whole population. As mentioned earlier five (5)
non-improving generations constitute stagnation. The point of insertion of local search
is very critical. The local search is inserted at the termination of the improvement
module in the EDE heuristic.

Local search is an approximation algorithm or heuristic. Local search works on
a neighborhood. A complete neighborhood of a solution is defined as the set of all
solutions that can be arrived at by a move. The word solution should be explicitly
defined to reflect the problem being solved. This variant of the local search routine is
described in [33] as is generally known as a 2-opt local search.

Algorithm for Local Search

Assume a schedule given as X = {x1, ..,xn}, and two indexes α and β . The size of the
schedule is given as n. Set α = 0.

1. While α < n

(a) Obtain a random number i= rand[1,n] between the bounds and under con-
straint i /∈ α .

(b) Set β = {i}
i. While β < n
A. Obtain another random number j= rand[1,n] under constraint j /∈

β .

B. IF Δ(x, i, j) < 0;
{

xi = x j
x j = xi

C. β = β ∪{ j}
ii. α = α ∪{ j}

Figure 2.6: Pseudocode for 2 Opt Local Search

The basic outline of a local search technique is given in Figure 2.6. A number α is
chosen equal to zero (0) (α = /0). This number iterates through the entire population,
by choosing each progressive value from the solution. On each iteration of α , a ran-
dom number i is chosen which is between the lower (1) and upper (n) bound. A second
number β starts at the position i, and iterates till the end of the solution. In this second
iteration another random number j is chosen, which is between the lower and upper
bound and not equal to value of β . The values in the solution indexed by i and j are
swapped. The objective function of the new solution is calculated and only if there is
an improvement given as Δ(x, i, j) < 0, then the new solution is accepted.
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The complete template of Enhanced Differential Evolution is given in Figure 2.7.

Enhansed Differential Evolution Template

Input :D,Gmax,NP≥ 4,F ∈ (0,1+) ,CR ∈ [0,1],and bounds :x(lo),x(hi).

Initialize :





∀i≤ NP∧∀ j ≤ D

{
xi, j,G=0 = x(lo)j + rand j [0,1]•

(
x(hi)j − x(lo)j

)

i f x j,i /∈
{
x0,i,x1,i, ...,x j−1,i

}

i= {1,2, ...,NP}, j = {1,2, ...,D},G= 0,rand j[0,1] ∈ [0,1]
Cost : ∀i≤ NP : f (xi,G=0)




While G< Gmax

∀i≤ NP






Mutate and recombine :
r1,r2,r3 ∈ {1,2, ....,NP}, randomly selected, except :r1 (= r2 (= r3 (= i
jrand ∈ {1,2, ...,D}, randomly selected once each i

∀ j ≤ D,u j,i,G+1 =






(
γ j,r3,G

)
←

(
x j,r3,G

)
:
(
γ j,r1,G

)
←

(
x j,r1,G

)
:(

γ j,r2,G
)
←

(
x j,r2,G

)
Forward Transformation

γ j,r3,G+F · (γ j,r1,G− γ j,r2,G)
if (rand j[0,1] <CR∨ j = jrand)(

γ j,i,G
)
←

(
x j,i,G

)
otherwise

(
u′i,G+1

)
=






(
ρ j,i,G+1

)
←

(
ϕ j,i,G+1

)
Backward Transformation(

u j,i,G+1
)mutate←

(
ρ j,i,G+1

)
Mutate Schema

if
(
u′j,i,G+1

)
/∈

{
(u0,i,G+1) ,(u1,i,G+1) , ..

(
u j−1,i,G+1

)}

(
u j,i,G+1

)
←

(
u′i,G+1

)
Standard Mutation

(
u j,i,G+1

)
←

(
u′i,G+1

)
Insertion

Select :

xi,G+1 =
{

ui,G+1 if f (ui,G+1)≤ f (xi,G)
xi,G otherwise

G= G+1
Local Search xbest = Δ(xbest , i, j) if stagnation

Figure 2.7: EDE Template

13



Chapter 3

Self Organising Migrating
Alrogithm

The second utilized heuristic is SOMA [51], which is based on the competitive-cooperative
behaviour of intelligent creatures solving a common problem.

In SOMA, individual solutions reside in the optimized model′s hyperspace, looking
for the best solution. It can be said, that this kind of behaviour of intelligent individuals
allows SOMA to realize very successful searches.

Because SOMA uses the philosophy of competition and cooperation, the variants
of SOMA are called strategies. They differ in the way as to how the individuals affect
all others. The best operating strategy is called ′AllToAll′ and consists of the following
steps:

1. Definition of parameters. Before execution, the SOMA parameters (PathLength,
Step, PRT, Migrations see Table 3.1) are defined.

2. Creating of population. The population SP is created and subdivided into clus-
ters.

3. Migration loop.

(a) Each individual is evaluated by the cost function
(b) For each individual the PRT Vector is created.
(c) All individuals, perform their run towards the randomly selected according

to (3.1). Each solution is selected piecewise. The movement consists of
jumps determined by the Step parameter until the individual reaches the
final position given by the PathLength parameter. For each step, the cost
function for the actual position is evaluated and the best value is saved.
Then, the individual returns to the position, where it found the best-cost
value on its trajectory.

SOMA, like other evolutionary algorithms, is controlled by a number of parame-
ters, which are predefined. They are presented in Table 3.1.

Mutation

Mutation, the random perturbation of individuals, is applied differently in SOMA com-
pared with other evolutionary strategies. SOMA uses a parameter called PRT to achieve

14



Table 3.1: SOMA parameters

Name Range Type

PathLength (1.1 − 3) Control
StepSize (0.11 − PathLength) Control
PRT (0 − 1) Control

perturbation. It is defined in the range [0, 1] and is used to create a perturbation vector
(PRT Vector) as shown in Equation 3.1:

i f rnd j < PRT then PRTVector j = 1
else 0, j = 1, ..,n (3.1)

The novelty of this approach is that in its canonical form, the PRT Vector is created
before an individual starts its journey over the search space. The PRT Vector defines
the final movement of an active individual in search space.

The randomly generated binary perturbation vector controls the allowed dimen-
sions for an individual. If an element of the perturbation vector is set to zero, then the
individual is not allowed to change its position in the corresponding dimension.

Crossover

In standard evolutionary strategies, the crossover operator usually creates new individ-
uals based on information from the previous generation. Geometrically speaking, new
positions are selected from an N dimensional hyper-plane. In SOMA, which is based
on the simulation of cooperative behaviour of intelligent beings, sequences of new po-
sitions in the N-dimensional hyperplane are generated. The movement of an individual
is thus given as follows:

!r =!r0+!mtPRTVector (3.2)

where:

• !r : new candidate solution

• !r0 : original individual

• !m : difference between leader and start position of individual

• t : ∈ [0 , Path length]

• PRTVector : control vector for perturbation

It can be observed from Equation 3.2 that the PRT vector causes an individual to
move toward the leading individual (the one with the best fitness) in N-k dimensional
space. If all N elements of the PRT vector are set to 1, then the search process is carried
out in an N dimensional hyperplane (i.e. on a N+1 fitness landscape). If some elements
of the PRT vector are set to 0, then the second terms on the right−hand side of Equation
3.2 equals 0. This means those parameters of an individual that are related to 0 in the
PRT vector are not changed during the search. The number of frozen parameters, k, is
simply the number of dimensions that are not taking part in the actual search process.
Therefore, the search process takes place in an N-k dimensional subspace.
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For each individual, once the final placement is obtained, the values are re−converted
into integer format. SOMA conversion is different from that used for DE. The values
are simply rounded to the nearest integer and repaired using the repairment procedure.
This process was developed and selected during experimentation.
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Chapter 4

Permutative Self Organising
Migrating Algorithm

SOMA has been applied effectively to a number of differential optimization problems.
One of the core objectives of this dissertation work was to develop the “permutative”
version of SOMA, which can be applied to permutative based combinatorial problems.

As with the problem enountered with the conversion of DE into combinatorial
space, effective conversion strategy had to be developed for SOMA.

The following section outlines the three developed strategies; each unique.

4.1 Discrete Set Handling
Discrete Set Handling (DSH) was the first varient developed by Zelinka and Lampinen
to solve the mixed-integer-discrete problems encountered in mechanical engineering
design.

DSH is employed when a set of values containing discrete values, which are “strict
sence”; implying its ridigity in the optimization problem. A “discrete set” is created,
which is simply an index to the real set.

A solution in the population can be presented as

xi,G = {x1,x2,x3, ...,xN} : i ∈ NP

Each variable x in the solution can be represented by an arbitary set containing
totally unrelated variables.

The psedocode representation is given in Figure 4.1.
For example assume a set of values which are totally non-related:

SET {1.2,3,4.77,0.11,True,False,Bool}. It is simply not possible to optimize such a
set of varibles. DSH creates an arbitary index set, where each value is an index to the
set: DHS : {1,2,3,4,5,6,7}. DHS set is then optimized and during fitness evaluation,
the index is simply used to link the actual value. An example is given in Figure 4.2.

The DSH simply creates parity with the “base” optimization problem; which in this
case is the differential domain.
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Algorithm for Discrete Set Handling

Assume a set X of arbitary variables of size n. There are NP solutions in the popula-
tions, the the maximm number of jumps is given as Jmp= PathLength

/
StepSize

1. For k = 1,2, ....,NP do the following:

(a) Create a random solution schedule ∃!xi : {Nk} := {x1, ..,xi..,xn}; i ∈ Z+

2. For k = 1,2, ....,NP do the following:

(a) Take two solutions from the population, N1 and N2.
(b) For j = 1,2, ...,Jmp do the following:

i. Create a temporay schedule matrix
{
TJmp

}
.

ii. Calculate the new solution
{
Tj

}
:= N1 + (N2−N1) • ( j •StepSize) •

PRTVector

3. For j = 1,2, ....,NP do the following:

(a) For k = 1,2, ....,n do the following:
i. Iterchange the values between the two solutions using the values in{

Tj,k
}
as the index to the values in X given as: ∀k

{
Tj,k

}
:⇔ XTj,k .

(b) Calculate the objective function of each solution: f
({
Tj

})
.

(c) If the new solution improves on the old solution N1, f
({
Tj

})
< f (N1) it

replaces the old solution in the population: N1 =
{
Tj

}
.

Figure 4.1: Algorithm for Discrete Set Handling

Figure 4.2: Discrete parameter handling

4.2 Permutative Set Handling
DHS is a viable approach when the values of the initial schedule are NOT permutative.
There is no rule enforcing non-replicaton of the values. Therefore, it becomes possible
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to have non viable values in the solution. The only approach is to enforce dual indexing,
first of the schedule and then of the DHS. This is effects duplicates the schedule and
adds more checking and correcting routines.

Permutative Set Handling (PSH) is an approach developed, based on the drawbacks
of the DHS. Each solution is created as permutative, similar to as described for EDE,
however, no conversion is done to change the variables between the operational do-
mains. Instead, repairment is done to each solution. The repairment procedure selected
is given as in Figure 4.3.

Algorithm for Random Repair

Assume a problem of size n, and a schedule given as X = {x1, ..,xn}. Create a random
solution schedule ∃!xi : R(X) := {x1, ..,xi..,xn}; i∈ Z+, where each value is unique and
between the bounds.

1. Create a partial empty schedule P(X) := {}

2. For k = 1,2, ....,n do the following:

(a) Check if xk ∈ P(X).
(b) IF xk /∈ P(X)

Insert xk→ P(Xk)
ELSE

P(Xk) = /0

3. Generate a missing subset M (X) := R(X)\P(X).

4. For k = 1,2, ....,n do the following:

(a) IF P(Xk) = /0
Randomly select a value from theM (X) and insert it in P(Xk) given as
M (XRnd)→ P(Xk)

(b) Remove the used value from theM (X).

5. Output P(X) as the obtained complete schedule.

Figure 4.3: Algorithm for Random Repair

The outline of PSH is given in below.

1. Initial Phase

(a) Population Generation: An initial number of permutative trial solutions are
generated for the initial population.

2. SOMA

(a) SOMA Strategy: The SOMA strategy transforms the parent solution into
the child solution using its inbuilt crossover and mutation schemas.
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3. Mutation

(a) Relative Mutation Schema: Formulates the child solution into a permutative
solution of unique values.

4. Evaluation

(a) Fitness: Evaluate each solution for its fitness.

5. Generations

(a) Iteration: Iterate the solution till a specified generation.

The pseudocode for PSH is given in Figure 4.4
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Algorithm for Permutative Set Handling

Assume a schedule of size n. There are NP solutions in the population, and the maxi-
mum number of jumps is given as Jmp=PathLength

/
StepSize. The population matrix

is given as {NNP}. The lower bound is given as LB and the upper bound asUB. Create
a partial empty schedule P(X) := {}

1. Create a temporary jump schedule matrix
{
TJmp,n

}
.

2. For k = 1,2, ....,NP do the following:

(a) Create a random solution schedule ∃!xi : {Nk} := {x1, ..,xi..,xn}; i ∈ Z+

3. For k = 1,2, ....,NP do the following:

(a) Take two solutions from the population, one indexed and the best solution,
Nk and Nbest .

(b) For j = 1,2, ...,Jmp do the following:

i. Calculate the new solution
{
Tj

}
:= Nk+(Nbest −Nk)• ( j •StepSize)•

PRTVector

(c) For i= 1,2, ....,n do the following:
i. Round each value to the nearest integer

{
Tk,i

}
=

[
Tk,i

]
.

ii. IF
{
Tk,i

}
< LB

Insert
{
Tk,i

}
= LB

ELSE IF
{
Tk,i

}
>UB

Insert
{
Tk,i

}
=UB

(d) For i= 1,2, ....,n do the following:
i. Check if

{
Tk,i

}
∈ P(X).

ii. IF
{
Tk,i

}
/∈ P(X)

Insert
{
Tk,i

}
→ P(Xk)

ELSE
P(Xk) = /0

(e) Generate a missing subset M (X) := {Tk}\P(X).
(f) For i= 1,2, ....,n do the following:

i. IF P(Xi) = /0
Randomly select a value from theM (X) and insert it in P(Xi) given
as M (XRnd)→ P(Xi)

ii. Remove the used value from theM (X).
(g) Set {Tk} = P(X).

4. Output {T} as the obtained complete schedule.

Figure 4.4: Algorithm for Permutative Set Handling
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4.3 Static Permutative SOMA
Permutative SOMA is a unique version of SOMA developed on this dissertation work
as a complementary approach to solve permutative problems.

Repairement, however effective it may be proven, has a drawback as to that it does
not match the idealogy of the canonical heuristic. The argument will always be as to
how to prove the effectiveness of the underlying heuristic, and the advantage of using
repairment strategy.

In EDE, the objective was to have pure conversion between domains. This was fea-
sible due to the vector operations of DE. SOMA, however is a “migrating” algorithm,
where the “space” between two solutions is mapped in step-sizes.

Following this framework, a permutative SOMA; termed P-SOMA has been devel-
oped for strict sence permutative problems.

The first varient is called the Static P-SOMA.
The framework is given below:

1. Initial Phase

(a) Population Generation: An initial number of permutative trial solutions are
generated for the initial population.

(b) Fitness Evaluation: Each soltuion is evaluated fr its fitness.

2. P-SOMA

(a) Calculate Jump Sequence: Taking two solutions, the number of possible
jumps positions is calculated between each corresponding variable.

(b) Generate New Solution: Using the jump positions; a feasible permutative
solution is generated.

(c) Recalulate Jump Sequence: The jump sequence is re calculated taking into
consideration the used values.

3. Selection

(a) New Solution:The new solutions are evaluated for it fitness and the best
new fitness based solution replaces the old solution if it improves upon its
fitness.

4. Generations

(a) Iteration:Iterate the solution till a specified generation.

The framework is described in detail in the following sub-sections.

4.3.1 Initial Population
The initial population is quite simple to generate. A number of pre-defined variables
are required as given in Table 4.1.

The Population Size and Generations are standard operating parameters of meta-
heuristics. Lower bound refers to the lower limit of the problem being dealt with. The
Upper bound refers to the upper limit of the solutions.
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Table 4.1: Operating variables of P-SOMA
Variable Syntax Description

Population Size NP The number of solutions
Generations Gen Total iteration
Lower bound LB Lower limit
Upper Bound UB Upper limit
Minimum Jump MinJ Minimum number of solutions generated

between two solutions
Maximum Jump MaxJ Maximum number of solutions generated

between two solutions

The Minimum Jump and Maximum Jump sequences are the equivalent to the Step-
size in canonical SOMA.

The creation of the initial populaiton is given in Equation 4.1.

Initialize :





∀i≤ NP∧∀ j ≤UB :

{
xi, j,G=0 = LB+ rand j [0,1]• (UB−LB)
i f xi, j /∈

{
x0,i,x1,i, ..,x j−1

}

i= {1,2, ...,NP}, j = {1,2, ...,UB}, Gen= 0, rand j[0,1] ∈ [0,1]
(4.1)

4.3.2 P-SOMA
P-SOMA is the routines which calculates the jumps between two solutions in the k-
dimensional space. In a permutatve setting, a problem is UB-dimensional.

Calculating Jump Position

The first part consists of calculating the differences between adjacent solutions as given
in Equation 4.2.

JumpSeq=
UB⋃

j=1

∣∣xi, j− xi+n, j
∣∣;

i= {1, ..,NP−1} ; n= {i+1, ..NP}
(4.2)

JumpPos is a list of values which contain the jump positions between two solutions.
In a static setting, the MinJumps is set as a minimum period of jump. In this case

the MinJumps is set by default as 1.

Generating New Solution

The second routine is the selection of the values of the new solution. The idealology
of this varient is have as many values as possible within the placement of the two
solutions. Starting piecewise from the first solution, the first placed jump value is
selected for the next solution. The next value is checked for replication and if unique,
is selected for the second position as shown in Equation 4.3.
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xk =
{

xk, j = JumpSeq j,l
if JumpSeq j,l /∈

{
xk,1,xk,2, ..,xk, j−1

}

j = {1,2, ...,D}; l = {MinJumps,MinJumps•2, ..,MinJumps•n}
k = {1,2..,MaxJumps}

(4.3)

If a infeasible “JumpSeq” list is encountered, the corresponding value in the new
solution is skipped. Once the entire list is filled with the values from the “JumpSeq”
list, the remaining values are randomly placed in the solution as given in Equation 4.4.

xk =






if xk, j = /0
xk, j = Random[LB;UB];
if Random[LB;UB] /∈,

{
xk,1,xk,2, ..,xk, j

} (4.4)

Re-calculating Jump Position

Once each new solution is created, the corresponding value is removed from the “JumpSeq”
list. This way, the corresponding dimension for the particular solution is locked and
only through random generation can a dimensional replication be made.

4.3.3 Selection
Each new solution is evalauted for its fitness, and if it improve on the fitness of the
“first” jump solution, it replaces that particular solution in the population.

4.3.4 Template
The generic template is given in Figure 4.5.

4.3.5 Pseudocode
The pseudocode of the algorithm in given in Figure 4.6.
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P-SOMA Template

1.Input : Gmax,NP,MinJ ≥ 1,MaxJ ≥ 1 and initial bounds :UB,LB.

2.Initialize :





∀i≤ NP∧∀ j ≤UB :

{
xi, j,G=0 = LB+ rand j [0,1]• (UB−LB)
i f xi, j /∈

{
x1,i,x2,i, ..,x j−1

}

i= {1,2, ...,NP}, j = {1,2, ...,UB},G= 0,rand j[0,1] ∈ [0,1]




3.While G< Gmax

∀i≤ NP






4. Calculate Jump Sequence :

4.1 JumpSeqk =
UB⋃

j=1

∣∣xi, j− xi+n, j
∣∣; i= {1,2, ...,NP}, j = {1,2, ...,UB}

∀k ≤MaxJ






4.2 : xk =






xk, j = JumpSeq j,l
if JumpSeq j,l /∈

{
xk,1,xk,2, ..,xk, j−1

}

l = {MinJumps,MinJumps•2, ..,MinJumps•n}

4.3 : xk =






if xk, j = /0
xk, j = Random[LB;UB];
if Random[LB;UB] /∈,

{
xk,1,xk,2, ..,xk, j

}

5.Select

xi,G+1 =
{

xk if f (xk)≤ f (xi,G)
xi,G otherwise

G= G+1

Figure 4.5: P-SOMA Template
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4.3.6 Worked Example
The ideal explanation of P-SOMA is through the use of a worked example. Consider
two random permutative solutions of size 10 which can be represented as in Table 4.2:

Table 4.2: Example of Initial Population

Solutions Representation

x1 {1, 2, 8, 6, 7, 4, 10, 9, 5, 3}
x2 {6, 7, 3, 4, 2, 1, 5, 8, 9, 10}

Using Equation 4.2, the jump sequence can be calculated as given in Table 4.3:

Table 4.3: Example of Jump sequence calculation

Solutions Representation

x1 {1, 2, 8, 6, 7, 4, 10, 9, 5, 3}
x2 {6, 7, 3, 4, 2, 1, 5, 8, 9, 10}

Jump Sequence {5, 5, 5, 2, 5, 3, 5, 1, 4, 7}

Using these values, the MinJ can be seen as the lowest value and MaxJ as the
maximum value. From these values MinJ = 1 and MaxJ = 5. MaxJ is chosen as 5 and
not 7, since the frequency of 5 is higher than that of 7.

Using MinJ and MaxJ, the JumpSeq’s are generated in Table 4.4.

Table 4.4: Example of Jump sequence generation

x1 x2 JumpSeq

1 6 {2, 3, 4, 5}
2 7 {2, 3, 4, 5, 6, 7}
8 3 {7, 6, 5, 4}
6 4 {5}
7 2 {6, 5, 3}
4 1 {3, 2}
10 5 {9, 8, 7, 6}
9 8 { }
5 9 {6, 7, 8}
3 10 {4, 5, 6, 7, 8, 9}

Now, using the selection of closest feasible value, a new solution can be selected as
shown in Table 4.5.

The new solution can be represented as in Table 4.6.
The missing values are randomly placed in the solution. From the solution, the

number of fixed dimension is 8 and 2 dimensions are outside of the two solution set-
tings. These two values are the overshoot, which in the canonical SOMA is described
as the PathLength.
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Table 4.5: Example of new solution generation

x1 x2 JumpSeq

1 6 {2, 3, 4, 5}
2 7 {2, 3, 4, 5, 6, 7}
8 3 {7, 6, 5, 4}
6 4 {5}
7 2 {6, 5, 3}
4 1 {3, 2}
10 5 {9, 8, 7, 6}
9 8 { }
5 9 {6, 7, 8}
3 10 {4, 5, 6, 7, 8, 9}

Table 4.6: Example of new solution

Solution { 2, 3, 7, 5, 6, , 9, , 8, 4 }

Missing Values {1, 10 }

New Solution { 2, 3, 7, 5, 6, 10, 9, 1, 8, 4 }

Figure 4.7 shows the two solutions plotted in two dimension, and the feasible jump
space between them. Figure 4.8 shows the new solution plotted between the two solu-
tions. As described only two dimensions of the new solutions are outside of the fesible
jump space.

Once the solution is plotted, the “JumpSeq” is re-calculated. The values already
used are removed from the “JumpSeq” and the second solution is calculated. The re-
calculation is given in Table 4.7.

Table 4.7: Example of Jump sequence re-calculation

x1 x2 JumpSeq

1 6 {3, 4, 5}
2 7 {2, 4, 5, 6, 7}
8 3 {6, 5, 4}
6 4 { }
7 2 {5, 3}
4 1 {3, 2}
10 5 {8, 7, 6}
9 8 { }
5 9 {6, 7}
3 10 {5, 6, 7, 8, 9}

The new selection is now done as in Table 4.8:
The second new solution can be represented as in Table 4.9:
In the second solution, only 7 dimensions are locked, and 3 are open. As the
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Table 4.8: Example of new solution selection

x1 x2 JumpSeq

1 6 {3, 4, 5}
2 7 {2, 4, 5, 6, 7}
8 3 {6, 5, 4}
6 4 { }
7 2 {5, 3}
4 1 {3, 2}
10 5 {8, 7, 6}
9 8 { }
5 9 {6, 7}
3 10 {5, 6, 7, 8, 9}

Table 4.9: Example of new solution representation

Solution { 3, 2, 6, , 5, , 8, , 7, 9 }

Missing Values {1, 4, 10 }

New Solution { 3, 2, 6, 4, 5, 1, 8, 10, 7, 9 }

solutions are generated, the number of locked dimension reduces and the number of
open dimensions increases.

In P-SOMA, only the specified “MaxJ” number of solutions are generated for any
two solutions. This gurantees a possible maximum number of UB jumps for any two
solutions.

4.4 Dynamic Permutative SOMA
Dynamic P-SOMA is a second approach of SOMA. The main difference in Dynamaic
P-SOMA is that the MinJ and MaxJ are self adapting.

Whereas, in the static approach, the MinJ and MaxJ were dependent on the actual
ordering of the solutions, in the dynamic approach, they are dependent of the problem
size being solved. MinJ is adapted as the jump iteration of at least a fifth of the problem
space; hense a fifth of the possible jump space is mapped. MaxJ is usually set to lower
than half of the problem size. This is done in order to have more manageable evolution
rate and secondly, to induce more randomness into the heuristic as shown in Table 4.10.

Table 4.10: Dynamic P-SOMA parameters

Parameters Static P-SOMA Dynamic P-SOMA

MinJ Minimum difference < 1/5

MaxJ Maximum difference < 50%

For larger sized problems, it is more prudent to have an even mapping of the solu-
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tions space. The pseudocode for Dynamic P-SOMA is given in Figure 4.9.

29



Algorithm for Static P-SOMA

Assume a problem of size n, and two solutions X1 = {x1,1, ..,x1,n} and X2 =
{x2,1, ..,x2,n} in k dimensional space. Create a random solution schedule ∃!xi : R(X) :=
{x1, ..,xi..,xn}; i ∈ Z+,

1. Create a empty schedule for the jump sequence JS := {}.

2. For k = 1,2, ....,n do the following:

(a) Calculate the difference between the adjacent values of X1 and X2 given as
JSk =

∣∣X1,k−X2,k
∣∣.

3. Calculate theMinimum Jumps (MinJ) andMaximum Jumps (MaxJ) between the
two solutions asMinJ =min [JS] and MaxJ =max [JS].

4. Create a Jump Matrix, which contains all jump solutions as {TMaxJ,n} and a Jump
Sequence Matrix {Pn,MaxJ} which contains the partial jumps between the two
solutions.

5. For k = 1,2, ....,n do the following:

(a) For j = 1,2, ....,JSk do the following:
i. Generate a list of values between the adjacent values of X1,k and X2,k
given as:
IF X1,k < X2,k
Insert Pk, j =min

{
X1,k,X2,k

}
+ j

ELSE IF X1,k > X2,k
Insert Pk, j =max

{
X1,k,X2,k

}
− j

ELSE IF X1,k = X2,k
Pk, j = /0

6. For k = 1,2, ....,MaxJ do the following:

(a) Create a schedule for each jump sequence starting from the first feasible
value in the partial schedule {Pn,MaxJ}

(b) For i= 1,2, ....,k do the following:
i. For j = 1,2, ....,Pk do the following:
A. IF Pi, j /∈ Tk

Insert
{
Tk,i

}
:= Pi, j

ELSE{
Tk,i

}
= /0

7. For k = 1,2, ....,MaxJ do the following:

(a) Generate a missing subset M (X) := R(X)\{Tk} for each schedule.
(b) For i= 1,2, ....,k do the following:
(c) IF

{
Tk,i

}
= /0

Randomly select a value from theM (X) and insert it in P(Xk) given as
M (XRnd)→

{
Tk,i

}

(d) Remove the used value from theM (X).

8. Output {T} as the obtained complete schedule.

Figure 4.6: Algorithm for Static P-SOMA
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Figure 4.8: New solution in the jump space
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Algorithm for Dynamic P-SOMA

Assume a problem of size n, and two solutions X1 = {x1,1, ..,x1,n} and X2 =
{x2,1, ..,x2,n} in k dimensional space. Create a random solution schedule ∃!xi : R(X) :=
{x1, ..,xi..,xn}; i ∈ Z+.

1. Set the Minimum Jumps (MinJ) and Maximum Jumps (MaxJ) between the two
solutions asMinJ = n/α;α ≤ 0.2 and MaxJ = n

/
β ;β ≤ 0.5.

2. Create a empty schedule for the jump sequence JS := {}.

3. For k = 1,2, ....,n do the following:

(a) Calculate the difference between the adjacent values of X1 and X2 given as
JSk =

∣∣X1,k−X2,k
∣∣.

4. Create a Jump Matrix, which contains all jump solutions as {TMaxJ,n} and a Jump
Sequence Matrix {Pn,MaxJ} which contains the partial jumps between the two
solutions.

5. For k = 1,2, ....,n do the following:

(a) For j = 1,2, ....,JSk do the following:
i. Generate a list of values between the adjacent values of X1,k and X2,k
given as:
IF X1,k < X2,k
Insert Pk, j =min

{
X1,k,X2,k

}
+(MinJ • j)

ELSE IF X1,k > X2,k
Insert Pk, j =max

{
X1,k,X2,k

}
− (MinJ • j)

ELSE IF X1,k = X2,k
Pk, j = /0

6. For k = 1,2, ....,MaxJ do the following:

(a) Create a schedule for each jump sequence starting from the first feasible
value in the partial schedule {Pn,MaxJ}

(b) For i= 1,2, ....,k do the following:
i. For j = 1,2, ....,Pk do the following:
A. IF Pi, j /∈ Tk

Insert
{
Tk,i

}
:= Pi, j

ELSE{
Tk,i

}
= /0

7. For k = 1,2, ....,MaxJ do the following:

(a) Generate a missing subset M (X) := R(X)\{Tk} for each schedule.
(b) For i= 1,2, ....,k do the following:
(c) IF

{
Tk,i

}
= /0

Randomly select a value from theM (X) and insert it in P(Xk) given as
M (XRnd)→

{
Tk,i

}

(d) Remove the used value from theM (X).

8. Output {T} as the obtained complete schedule.

Figure 4.9: Algorithm for Dynamic P-SOMA
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Chapter 5

Chaotic Signature in Population
Dynamics

Population and its application to chaotic systems is well documented. Populations
viewed as dynamical systems was first discussed by [30]. Subsequent work by [20],
further chronicled the work of viewing populations as number systems. The logisitc
map, the simpliest chaotic system is also used for the modeling of population dynamics
[30]. Another system is the Voltterra-Lotka equations of biological models.

Chaos in optimization has been largely explored through Neural Networks [27].
The core approach has been to avoid regions of “local optima” or “stagnation” in order
to find better solutions. The basic concept has been that chaotic dynamics have been
able to search for solutions along the formation of a strange attractor which has fractual
structures. These structures are then used to search for solutions in state space along
such fratural attractors who’s Legesgue measure is zero.

Nozawa [32] modified the Hopfield-Neural network by the Eulers method to create
an equivalent to the chaotic neural network of [2]. A 10 city problem is solved with
better results than stochastic models.

Yamada and Aihara [50] solved the Traveling Salesman Problem with chaotic neu-
ral networks by computing the largest Lyaponov exponent. They showed that the solv-
ing abilities are very high when the largest Lypanov exponent is near zero, which im-
plies that “an edge of chaos ” could have high performance to solve combinatorial
problems.

Maintenance scheduling problems were solved by a chaotic simulated annealing
approach by [6]. It was also proven of the existance of chaotic dynamics in solving
combinatorial problems using chaotic neural networks.

A further exploration of chaos in optimization was done by [28], who proposed
a new network model of chaotic potts spin. Using this method the constraint term is
always satisfied and feasible solutions are always obtained.

This research takes a similar approach to the ones described, as the main aspect is
the avoidance of “local optima” regions in the search space. However, we look upon
the population as the driving system behind the convergence of the population.

The usual approach is to visiualize the population as a fitness landscape, where
solutions transverge towards global optimal solutions. This approach takes a differnet
view of the population. A population is looked upon as an information base, a “genetic
code” base where each solution occupies a distinct place in the information space. An
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example is given in Figure 5.1.

Figure 5.1: Population representation

During successive generations, solutions are mated together, and an exchange of
information takes place. Based on selection criteria of different algorithms, new and
better performing solutions are accepted in the population after each generation.

However, during evolution, solutions tend to converge towards each other. What
this in effect does, is reduce the amount of information available in the information
plane of the collective information gene pool. Even if the solution converges towards
the global minima, the information left in the population is usually marginal. This is
what is termed as “local optima stagnation”.

The main input in this research is the creation of a dynamic population which is
kept on the threshold of information viability and which can be used by any number of
metaheuristics as a population paradigm.

5.1 Population Dynamics
Each solution in a population contains certain information, its own “genetic code”
which is used for replication. A way to visualise it is to see a solution as occupying a
certain point in the information space as given in Figure 5.2.

The basin or trough that the solution occupies is dependent on the number of so-
lutions which occupy the same basin. The basin boundaries are not exactly linear, but
rather a contour. This presents the possibility/probability for entry and escape from this
specific point as given in Figure 5.3.

As population evolves, the information is shared within the evolving solutions.
Within a number of generations, a number of solutions can occupy the same informa-
tion space. The size of the “basin” increasing and its attraction energy also increases.
As more and more solutions are replicated, the number of “evolutionary channels”
which exists between the solutions decreases. This gives rise to stagnation of the pop-
ulation, where no new solutions with new/better information is produced.
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Figure 5.2: Solution in information space

Figure 5.3: Solution boundary in information space

5.1.1 Initial population
The main reason for random population is to provide an initial loose mapping of the
solution space. For permutative problems, where solution ordering is stringent, it is
often the case that adjacent values are required. A typical approach of using local
search heuristics to search in the neighbourhood of the solutions usually yields closely
aligned solutions.

The initial population P, for this heuristic is partially stochastic and partly determin-
istic. The population is divided into two sub-populations, SPs, one randomly generated
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(SPrand) and the other structurally generated (SPstruct).
The formulation for SPrand is fairly simple. A random permutative string is gener-

ated for each solution till a specified number given as Psize.
The structured population SPstruct is somewhat more complex. It is made of two

parts. In the first part, an initial solution is generated with ascending values given
as xascending = {1,2,3, ..,n}, where n is the size of the problem. In order to obtain a
structured solution, the first solution is segmented and recombined in different orders
to produce different combinations. The first segmentation occurs at n

/
2, and the two

halfś are swapped to produce the second solution. The second fragmentation occurs
by the factor 3; n

/
3 Three regions of solutions now exist. The number of possible

recombination′s that can exist is 3! = 6. At this point there are nine solutions in the
SPstruct . The general representation is given as:

k ≥ 1+2!+3!+ ....+ z! (5.1)

where z is the total number of permutations possible and k is Psize
/
2 .

The psedocode of r the populaiton generation is given in Figure 5.4.

Algorithm for Clustered Population Generation

Assume a population given as P which is divided equally into two sub-populations;
one random SPr and one strustured SPs. The schedule size is n and population size is
NP. The maximum catanation of the schedule is given as c and the permutation rate is
given as pr = c!.
Generate random population.

1. For i= 1,2, ....,NP/2 do the following:

(a) Create a random solution schedule ∃!xi : SPr := {x1, ..,xi..,xn}; i ∈ Z+

2. Create structured population.

(a) Calculate the trucation point and number as tp =
⌊n/c

⌋
.

(b) Generate two schedules, one forward biased Xf = {1,2, ...,n} and the other
reverse biased Xr = {n,n−1, ...,1}.

(c) Generate permutation list for forward bias given as:{
Xf

}
=

{{
1, ..,xtp

}
,
{
xtp +1, .....,2• xtp

}
, ....,

{
c• xtp , ...,n

}}
and reverse

bias as {Xr} =
{{
n, ..,c• xtp

}
,
{
2• xtp , .....,xtp +1

}
, ....,

{
xtp , ...,1

}}
.

(d) i= 1,2, ...., pr do the following:
i. Generate a permutative list based on the truncation points in the solu-
tion.

3. Output P= SPr ∪SPs as the final population.

Figure 5.4: Algorithm for Clustered Population Generation
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5.1.2 Solution Dynamics
A solution represented as x= {x1,x2, ...,xn}, where n is the number of variables, within
a population has a number of attributes. Usually the most visible is its fitness value, by
which it is measured within the population. This approach is not so viable in order to
measure the diversity of the solution in the population. In retrospect, a single solution
is assigned a number of attributes for measure, as given in Table 5.1.

Table 5.1: Solution Parameters
Parameter Description Activity

Deviation Measure of the deviation of the solution Control
Spread Alignment of the solution Control
Life Number of generation cycles Selection
Offspring Number of successful offspring′s produced Selection

The most important attribute is the deviation (the difference between successive
values in a solution). Since we are using only permutative solutions, deviation or or-
dering of the solution is important. This is due to the fact that each value in the solution
is unique. Each value in the solution has a unique footprint in the search space. The
formulation for deviation is given as:

δ =





n−1
∑
i=1

|xi− xi+1|

n



xi ∈ {x1,x2, ...,xn} (5.2)

Spread of a solution gives the alignment of the solution. Each permutative solution
has a specific ordering, whether it is forward aligned or reverse aligned. Whereas
deviation measures the distance between adjacent solutions, spread is the measure of
the hierarchy of subsequent solutions given as:

∂ =
{

+1 i f (xi+1− xi)≥ 1
−1 i f (xi+1− xi)≤ 1
i ∈ {1,2, ....,n}

(5.3)

The generalisation of spread is given in Table 5.2.

Table 5.2: Spread generalization

Spread Generalization

> 0 Forward spread
0 Even spread
< 0 Reverse spread

Life is the number of generations the solution has survived in the population and
Offspring is the number of viable solutions that have been created from that particular
solution. These two variables are used for evaluating the competitiveness of different
solutions.

The pseudocode is given in Figure 5.5
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Algorithm for Solution Dynamics

Assume a problem of size n, and a schedule given as X = {x1, ..,xn}. There are NP
schedules in the population. Initialize Xsprd = 0.

1. For i= 1,2, ....,NP do the following:

(a) Calculate deviation: Xi,dev =
n−1
∑
1

|xi−xi+1|
n

(b) Calculate spread: Xi,sprd = Xsprd + 1⇔
n−1
∑
1

(xi− xi+1) > 1 and Xi,sprd =

Xsprd−1⇔
n−1
∑
1

(xi− xi+1) < 1

Figure 5.5: Algorithm for Solution Dynamics

5.1.3 Chaotic Features
Within the population, certain solutions are seen to exhibit attracting features. These
points are usually local optima regions, which draw the solutions together. The ap-
proach utilized is to subdivide the population in clusters, each cluster a distinct distance
from another.

Figure 5.6 shows a “deviation” space with three clusters. Each cluster contains “n”
solutions. At any one time “n” clusters will be in the population, and these clusters
share information to create new solutions.

Figure 5.6: Clusters in deviation space

Two controlling parameters are now defined which control the clusters.
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Chaos Attractor CA: The distance that each segment of solution has to differ from
each other. TheCA is given in (5.4).

CA ∈ [0.1,1+) (5.4)

Within the population indexed by the deviation, solutions with similar deviation are
clustered together, and each cluster is separated by at least a singleCA as seen in (5.5).

(δ1,δ2, ...,δi)
CA↔(δi+1,δi+2, ...,δ2i)

CA↔
...

CA↔(δ3i+1,δ3i2, ...,δ4i)
(5.5)

The second controlling factor is the Chaos Edge CE . Whereas CA is the mapping
of individual solutions,CE is the measure of the entire population. Figure 5.7 shows the
deviation space with the boundary outline. The entire “active” solution space is within
the region of the outer contours. This is the “chaotic edge” of the current information
space.

Figure 5.7: Boundary of the clusters

CE is the measure of the deviation of the fitness of the population and is used to
prevent the population from stagnating to any fitness minima. The algorithm is given
in FIgure 5.8

5.1.4 Selection and Deletion
Selection of the next generation is based on a tier-based system. If the new solution im-
proves on the global minima, it is then accepted in the solution. Otherwise, competing
clusters jokey for the new solution. Initially the solution is mapped for its deviation.
This deviation is then mapped to the corresponding cluster.

Within the cluster, the placement of the solution is evaluated. If the new solution
corresponds to an existing solution, or reduces the threshold CA value of the cluster,
then it is discarded.
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Algorithm for Chaotic Features Calculation

Assume a problem of size n, and a schedule given as X = {x1, ..,xn}. There are NP
schedules in the population {P} and each schedule has a deviation and fitness given by
Xdevi and Xsprd . The cluster distance is given byCA. Initilaize four clusters {C1}, {C2},
{C3} and {C4}.

1. For i= 1,2, ....,NP do the following:

(a) Sort the {P} in asending order of Xdevi.
(b) Divide the population into the four clusters based on Xdevi.
(c) For j = 1, ..,4 do the following:

i. Calculate the difference between boundary solutions of each cluster
{C}. CA, j = Xmax[Xdevi],Cj −Xmin[Xdevi],Cj

ii. IFCA, j <CA
A. Dynamic clustering of the boundary solutions of each cluster.

2. Output {PC} as the clustered population.

Figure 5.8: Algorithm for Chaotic Features Calculation

The solution is accepted if it improves on the CA value of the cluster (hence im-
proving diversity) and also to some extent keeps the balance of the CE . If the cluster
has less than average solutions, then the new solution is admitted.

Table 5.3 gives the selection criteria.

Table 5.3: Selection criteria
Variables Criteria

Fitness Improves clusters best solution
CA Increases the value ofCA
CE Problem dependent

Once the solution is added to the cluster, another solution can be discarded. This
solution is usually elected from the middle placed solutions in the cluster, whose fitness
is not in the top 5% of the population. If no such solutions exist, then the average rated
solution is removed. Solution with high Life and low Offspring are discarded, since
they are considered dormant within the cluster.

Table 5.4 gives the deletion criteria.

5.1.5 Dynamic Clustering
The selection and crossover criteria have now been outlined. After each generation /
migration, the clusters are reconfigured. Since, in all heuristics, there is a tendency to
converge, it is imperative to keep the solutions unique.
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Algorithm for Selection

Assume a problem of size n, and a new schedule given as Xnew = {x1, ..,xn}. There
are NP schedules in the population {P} and each schedule has a deviation and fitness
given by Xdevi and Xsprd . The cluster distance is given byCA.

1. Calculate the deviation and spread of the solution Xnew as Xnew,devi and Xnew,devi.

2. Find the associated cluster PC,X of the new solution Xnew based on Xnew,devi:
Xnew,devi ∈C.

3. Calculate the fitness of the new solution f (Xnew).

4. IF Xnew→{PC,X}
∥∥Xnew,devi∪ {PC,X} >CA,X

(a) Insert the new solution in the associated cluster Xnew→{PC,X}.
(b) Update the life Xli f e and offspring Xo f sprng value of the parent solution.
(c) Calculate theCE,X of the new cluster.

Figure 5.9: Algorithm for Selection

Table 5.4: Deletion criteria
Variables Criteria

Life High
Offspring Low
CA Decreases

The procedure is to calculate the deviation of the new solutions. Since a mesh of
solutions may exist, it is feasible to reconfigure certain boundary solutions. Figure 5.11
can be a representation of a sub-population (SP).

A mutation routine is used to reconfigure the solution. By altering certain posi-
tions within the solution it is possible to realign the deviation and spread of the solu-
tion. Boundary values within the solutions (usually represented by the upper and lower
bound of the solution) are swapped. Another approach is to have two random posi-
tions generated and the values in these positions swapped. An illustration is given to
describe this process in Table 5.5, Figure 5.12 and Figure 5.13.

Table 5.5: Swap of boundary values

Solution Deviation Spread

10 9 6 5 2 1 8 7 4 3 2.1 -7
1 9 6 5 2 10 8 7 4 3 3.0 -5

Once the boundary values are re-aligned, the second migration/generation loop oc-
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Algorithm for Deletion

Assume a problem of size n, and a new schedule given as Xnew = {x1, ..,xn}. There
are NP schedules in the population {P} and each schedule has a deviation and fitness
given by Xdevi and Xsprd and life and offspring given as Xli f e and Xo f sprng. The cluster
distance is given byCA and the Edge is given asCE . The active cluster is given as PC,A.

1. Randomly select a boundary solution as in the active cluster XA. If the solution
has poor offspring and long life in comparison to the avegare values of the cluster,
it is deleted from the population.

2. IF XA,o f sprng < avg
[
PC,o f sprng

]∥∥XA,li f e > avg
[
PC,li f e

]

(a) Delete XA.

If the selected solution increases theCA value between the clusters, it is selected
for deletion.

3. ELSE IF (XA (⊂ {PC,X}) >CA

(a) Delete XA.

4. Calculate theCE,X of the new cluster.

Figure 5.10: Algorithm for Deletion

curs. The pseudocode is given in Figure 5.14.

5.2 Metaheuristics
The clustered population is designed to be used by any metaheuristic. This is the
advantage of this approach, since it is not tied down to a specific method. This section
discusses three different heuristics of Genetic Algorithm (GA), Differential Evolution
(DE) from Section 2 and Self-Organising Migrating Algorithm (SOMA) from Section
4. Each of these heuristics has been applied to a number of permutative opimization
problems.

In each of the heuristics used, the canonical population was removed and replaced
with the clustered population and its integrated features.

5.2.1 Genetic Algorithms
Genetic Algorithm (GA) is an adaptive heuristic search algorithm premised on the evo-
lutionary ideas of natural selection and genetics. GA is designed to simulate processes
in natural system necessary for evolution, specifically those that follow the principles
first laid down by Charles Darwin of survival of the fittest. As such, they represent
an intelligent exploitation of a random search within a defined search space to solve a
problem [25].
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Figure 5.12: Fuzzy clustering and boundary solution isolation
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Figure 5.13: Realigned solutions into discrete clusters

Algorithm for Dynamic Clustering

Assume four clusters C1 - C4, each with seperation distance CA,i, where i refers to the
corresponding cluster. Each schedule has n variables.

1. Isolate each schedule in a cluster which has a seperation value less than that of
CA: Xdevi <CA,X .

2. DO

(a) Randomly select two unique random indicies on the schedule Rnd [r1,r2] ∈
n.

(b) Using these indicies exchange the values in the solution: xr1 ⇔ xr2 .
(c) Calculate new deviation of the solution Xnew,devi.
(d) IF Xdevi >CA,X

i. Accept new schedule in the solution Xnew→{PC,X}

3. WHILE new schedule NOT accepted in cluster

Figure 5.14: Algorithm for Dynamic Clustering
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A number of variants of GA exist. For this research, a two-point crossover approach
was used as the crossover methodology for the propagation of the population.

A two-point crossover approach is simple to execute. Two solutions from differ-
ent clusters are randomly selected. These solutions are checked to ensure that their
spread is not equal. This is done to map more diversified solutions. Two crossover po-
sitions are randomly selected in the solutions given as {CP1,CP2} = Random [n], and
the two solutions are mated with a possibility of six unique offspring′s being created.
An illustration of the selection and crossover is given in Figure 5.15.
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Figure 5.15: GA representation

An example of this process can be shown by having the two values of crossover
given as CP1 = 2 and CP2 = 4. The two solutions selected for crossover can be rep-

resented as x1 =
{
2,5, |4

2
,3, |1

4
,6

}
and x2 =

{
3,4, |1

2
,2, |6

4
,5

}
. Three regions exist

within each solution. By swapping alternate regions, a total number of possible solu-
tions is now given as in Table 5.6.

With this crossover process, infeasible solutions are usually created. An effective
repairment routine is described in the following section that was used to repair the
solutions.

Once all the solutions are repaired, their fitness is evaluated and the solution with
the best fitness is selected for possible adaptation into the population.
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Table 5.6: Possible solutions from crossover
Permutation Solution

{1,1,2} {2,5,4,3,6,5}
{1,2,1} {2,5,1,2,1,6}
{1,2,2} {2,5,1,2,6,5}
{2,1,1} {3,4,4,3,1,6}
{2,1,2} {3,4,4,3,6,5}
{2,2,1} {3,4,1,2,1,6}

Repairment

The repairment process is given in a number of routines. The first routine is to check
the entire solution for repeated values. These repeated values and their positions are
isolated in a replicated array xrepl =

{
x j,x j+n, ..,x

}
. The second routine is to find which

values are missing from the solutions given as xmis = {1, ..,n}∩{x1,x2, ..,xn}.
Since, the replicated array contains a number of sequences of replicated solutions,

randomly one solution in each sequence is labelled as feasible and repatriated back into
the main solution. This leaves the replicated array containing only infeasible values.

Randomly each value is selected from the missing array and inserted in the position
of a replicated value in the replicated array xmis

random→ xrepl .
Finally, the replicated array is reinserted in the solution array with all values now

feasible xrepl → x.
An illustrative example is given in Table 5.7.

Table 5.7: Illustrative example of repairment.

Routine Rand x xrepl xmis

Replicated {1,3,4,3,4, (1,1,1∗)
values 10,6,7,1,1} (4∗,4)

Missing {2,8,9}
value

Feasible {3,1} {∗,3,4,3,∗, (1,1,1∗)
solution 10,6,7,∗,1} (4∗,4)

Repair {2,3,1} {1
3
,1
1
,4
2
} {2

2
,8
3
,9
1
}

solution {3,1,2}

Final {8,3,4,5,9,
solution 10,6,7,2,1}

5.2.2 Differential Evolution Algorithm
Differential Evolution (DE) [38], is the second heuristic selected to be used in con-
junction with the clustered population. DE uses a vector perbutation methodology for
crossover.
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There are ten working strategies for DE, but the one selected for implementation is
the DE/rand/2/bin represented as in Equation 5.6.

Ui,G+1 = xbest,G+F · (x j,r1,G− x j,r2,G− x j,r3,G− x j,r4,G) (5.6)

This strategy was selected since it maps to the four unique clusters in the SP. The
best solution is selected from the entire SP based on fitness value. Then, each random
solution is selected from each distinct cluster. Again the selected values are checked
for opposing spread. If the spread is identical, then a second round of selection occurs.
A schematic is given in Figure 5.16.
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Figure 5.16: DE selection

The selection of the cluster is random, so r1 can be selected from any cluster with
no preference. These values are subtracted given as x j,r1,G− x j,r2,G− x j,r3,G− x j,r4,G.
The resulting value is multiplied by the scaling factor F and added to the best solution
as given in Fig. 5.17.

The resulting value is only accepted in the new solution if a generated random
number is below the given threshold provided by the controlling parameter of CR. This
procedure provides added stochasticity to the heuristic.

5.2.3 Self Organising Migrating Algorithm
The third utilized heuristic is SOMA [51], which is based on the competitive-cooperative
behaviour of intelligent creatures solving a common problem.

In SOMA, individual solutions reside in the optimized model′s hyperspace, looking
for the best solution.
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Figure 5.17: DE crossover

Three version of SOMA ave been used; SOMA with PSH, Static P-SOMA and
Dynamic P-SOMA.

The schematic of SOMA with clustered population is given in Figure 5.18.
SOMA, like other evolutionary algorithms, is controlled by a number of parame-

ters, which are predefined. They are presented in Table 5.8.

Table 5.8: SOMA parameters for PSH

Name Range Type

PathLength 3 Control
StepSize 0.21 Control
PRT (0 − 1) Control

For each individual, once the final placement is obtained, the values are re−converted
into integer format. SOMA conversion is different from that used for DE. The values
are simply rounded to the nearest integer and repaired using the repairment procedure.
This process was developed and selected during experimentation.

5.3 General Template
Collating all the piecewise explanation, a general generic template is now described.
The conceptual framework of this approach has been published in [14].

48



!"#$

%&"'(#)*"'

%+,-./0/1

%+,-./021

%+,-.20/1

3456"#7-/ 3456"#7-8

3456"#7-9

3456"#7-:

Figure 5.18: SOMA migration utilizing clustered population

1. Initialize: Assign the problem size n, population size Psize, sub population sizes
SPstruct SPrand , and the control parameters ofCA andCE .

2. Generate: Randomly create SPrand , half the size of Psize, and then structurally
create SPstruct . These two form the basis of the population.

3. Calculate: Calculate the deviation and spread of each solution in the population.
Taking the deviation values, configure the population into four clusters. The
minimal separation value between the clusters is assigned as CA. Taking the
entire SP, the standard deviation of the fitness is computed. This is labelled as
theCE .

4. Generation/Migration

(a) Taking each SP in turn, the selected heuristic of GA, DE or SOMA is ap-
plied to the population.

(b) The new solution is calculated for its deviation and spread.
(c) Using the selection criteria, the solution is placed within the cluster corre-

sponding to its deviation. If replicated solutions exist, then it is discarded.
Selection is based on fitness and the move of theCA andCE .

5. Re-calculation: The SP is re-calculated for its cluster boundaries.

6. Dynamic clustering: If the value ofCA has deceased, then the boundary solutions
are reconfigured. TheCE value is calculated for the new population.

The generic template is given in Figure 5.19
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Chapter 6

Permutative Flow Shop
Scheduling

In many manufacturing and assembly facilities, a number of operations have to be done
on every job. Often these operations have to be done on all the jobs in the same order
implying the jobs have to follow the same route. The machines are assumed to be set
up in series and the environment is referred to as a flow shop [36].
Flow Shop Fm: There are m machines in series. Each job has be pocessed in

each one of the m machines. All the jobs have to follow the same route (i.e., they
have to processed on Machine 1, and then on Machine 2, etc). After completing on
one machine, a job joins the queue at the next machine. Usually all jobs are assumed
to operate under the First In First Out (FIFO) discipline - that is a job caanot “pass”
another while waiting in a queue. Under this effect the envirnment is refereed to as a
permutative flow shop. the general syntex of this problem as described in the triplet
format α|β |γ , is given as

Fm |Perm |Cmax
The first field denotes the problem being solved, the second field the type of problem (in
this case permutative) and the last field denotes the objective being under investigation,
which is the makespan (total time taken to complete the job).

Stating these problem descriptions more elaborately, the minimization of comple-
tion time (makespan) for a flow shop schedule is equivalent to minimizing the objective
function ℑ:

ℑ =
n

∑
j=1

Cm, j (6.1)

s.t.

Ci, j =max
(
Ci−1, j,Ci, j−1

)
+Pi, j (6.2)

where,Cm, j = the completion time of job j,Ci, j = k (any given value),Ci, j =
j
∑
k=1

C1,k

; Ci, j =
j
∑
k=1

Ck,1 machine number, j job in sequence, Pi, j processing time of job j on

machine i. For a given sequence, the mean flow time, MFT = 1
n

m
∑
i=1

n
∑
j=1

ci j , while the

52



condition for tardiness is cm, j > d j. The constraint of Equation 6.2 applies to these two
problem descriptions.

The value of the makespan under a given permutation schedule can also be com-
puted by determining the critical path in a directed graph corresponding to the sched-
ule.

For a given sequence j1, .., jn , the graph is constructed as follows: For each opera-
tion of a specific job jk on a specific machine i, there is a node (i, jk)with the processing
time for that job on that machine. Node (i, jk), i= 1, ...,m−1 and k= 1, ....,n−1 , has
arcs going to nodes (i+1, jk) and (i, jk+1). Nodes corresponding to machine m have
only one outgoing arc, as do the nodes in job jn. Node (m, jn), has no outgoing arcs as
it is the terminating node and the total weight of the path from first to last node is the
makespan for that particular schedule [36]. A schmetic is given in Fig 6.1.
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Figure 6.1: Directed graph representation for Fm |Perm |Cmax

6.1 Experimentation
Two separate phases of experimentation was conducted to show the benefits of clus-
tering of the population. The first set was the application of canonical forms of the
heuristics to the problem of flow shop scheduling, in order to set a benchmark from
which any improvement can be measured. To this effect, the control parameters and all
other operational parameters were kept stagnant.

The control parameters of the population are given in Table 6.1.
Psize is generally dependent on the scale of the problem being solved. However the

benefits of using a large population is not evident, especially when clustering. Through
experimentation, the optimal population cluster was from 200 to 400 solutions. Larger
population led to complication in clustering and proved ineffective in improving the
heuristic.
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Table 6.1: Population operating parameters

Parameter Value

Psize 200 - 400
Generations > 250/SP
Clusters 4
CA > 0.1

Another important fact was that the optimal number of cluster was found to be 4
for best performance of the heuristic.

The control parameters of SOMA and DE are presented in Table 6.2 and Table 6.3.

Table 6.2: SOMA operating parameters

Parameter Range

PathLength 3
StepSize 0.23
PRT (0 - 1)

Table 6.3: DE operating parameters

Parameter Value

F 0.3
CR 0.1

All parameters in Table 6.2 and Table 6.3 were obtained through extensive experi-
mentation.

The experimentation was conducted on a parallel 16 Apple X-Serve cluster at the
Tomas Bata University in Zlin, Czech Republic. All codes were written inMathematica
7 platform. All the mentioned data sets were obtained from [3].

6.1.1 Car, Rec, Hel Benchmark problem sets
The first sets of Flowshop scheduling benchmark problems are Car [5], Rec [41] and
Hel [23] benchmark sets. A total of 31 instances exist, each of varying size and diffi-
culty [37].

Table 6.4 gives the results obtained by the heuristics of GA, DE and SOMA. The
first phase of comparison is done with the canonical and clustered counterpart of these
heuristics in order to show the benefits of using clustering.

The results are presented as percentage increase over the reported optimal value.
The results are presented in two formats. The first is the heuristic applied in its canon-
ical form, or without clustering. The second part is the results presented with the
clustered population. These heuristics are marked with the subscript Clus.

Comparing each heuristic with and without clustering, it is evident that a clustered
population improves the heuristic. For GA, the improvement is dramatic. Since only a
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Table 6.4: Comparison of canonical and clustered heuristics in Car/Rec/Hel problem

Name n x m Cost GA GAClus DE DEClus SOMA SOMAClus

Car1 11x5 7038 0 0 0 0 0 0
Car2 13x4 7166 0 0 0 0 0 0
Car3 12x5 7312 0 0 0 0 0 0
Car4 14x4 8003 0 0 0 0 0 0
Car5 10x6 7720 0 0 0 0 0 0
Car6 8x9 8505 0 0 0 0 0 0
Car7 7x7 6590 0 0 0 0 0 0
Car8 8x8 8366 0 0 0 0 0 0
Rec01 20x5 1247 1.04 0 0 0 0 0
Rec03 20x5 1109 1.76 0 0 0 0 0
Rec05 20x5 1242 1.43 0 0 0 0.002 0
Rec07 20x10 1566 1.22 0 0.98 0 0.01 0
Rec09 20x10 1537 1.45 0 0.32 0 0 0
Rec11 20x10 1431 1.32 0 0.54 0 0 0
Rec13 20x15 1930 0.96 0.34 0.45 0.31 0 0
Rec15 20x15 1950 0.87 0.5 0.32 0.28 0.01 0
Rec17 20x15 1902 1.67 0.31 0.29 0.28 0.02 0
Rec19 30x10 2093 1.09 0.41 0.42 0.338 0.02 0
Rec21 30x10 2017 1.68 0.37 0.39 0.38 0.02 0
Rec23 30x10 2011 2.45 0.32 0.21 0.21 0.03 0
Rec25 30x15 2513 2.11 0.43 0.32 0.29 0.03 0
Rec27 30x15 2373 1.2 0.63 0.42 0.27 0.01 0
Rec29 30x15 2287 1.32 0.73 0.61 0.34 0 0
Rec31 50x10 3045 1.91 0.52 0.7 0.32 0.04 0
Rec33 50x10 3114 2.34 0.43 0.84 0.28 0 0
Rec35 50x10 3277 0.43 0.42 0.91 0.27 0 0
Rec37 75x20 4951 3.42 0.9 1.32 0.33 0.09 0.02
Rec39 75x20 5087 2.45 0.89 1.56 0.29 0.06 0.02
Rec41 75x20 4960 3.21 0.92 1.98 0.28 0.09 0.01
Hel01 100x10 513 3.7 0.97 2.1 0.53 0.02 0.01
Hel02 20x10 135 1.21 0 1.97 0 0 0

two point crossover approach was used, the results obtained with GA were not promis-
ing, especially for larger problems. However, the solutions improved with clustering,
on average all the solutions exhibited optimal values of less than 1% over the opti-
mal. A possible advantage of clustering is that mutation was included in GA through
clustering.

The results of DE were obtained from [11]. In 11 instances, the optimal value was
obtained, and on average the percentage increase was below 1%. Using clustering,
DEClus markedly improves all the soltuions. This is clearly seen in the large problems
sizes of 50 jobs and more. The improvement is clearly in excess of 1.5%.

The final heuristic, SOMA, is the best performing heuristic in these problem in-
stances. The results of SOMA [13] are very close to the optimal, usually in the range
of only 0.05 above the optimal. SOMAClus further improved these results with only
four instances failing to find the reported optimal, and all of them at most only 0.02%
above the optimal.

The second phase of comparison is done with other published heuristics on the
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same problem instances. Comparison of the clustered heuristics is done with the Im-
proved Genetic Algorithm (IGA) and Multiagent Evolutionary Algorithm (MAEA)
[26] and the Hybrid Genetic Algorithm (H-GA) and Othogonal Genetic Algorithm
(OGA) of [48]. The results are given in Table 6.5.

Table 6.5: Comparison of clustered heuristics with other published heuristics

Name n x m Cost H-GA OGA IGA MAEA GAClus DEClus SOMAClus

Car1 11x5 7038 0 0 0 0 0 0 0
Car2 13x4 7166 0 0 0 0 0 0 0
Car3 12x5 7312 0 0 0 0 0 0 0
Car4 14x4 8003 0 0 0 0 0 0 0
Car5 10x6 7720 0 0 0 0 0 0 0
Car6 8x9 8505 0 0 0 0 0 0 0
Car7 7x7 6590 0 0 0 0 0 0 0
Car8 8x8 8366 0 0 0 0 0 0 0
Rec01 20x5 1247 0 0.04 0 0 0 0 0
Rec03 20x5 1109 0 0 0 0 0 0 0
Rec05 20x5 1242 0.08 0.21 0 0 0 0 0
Rec07 20x10 1566 0 0.79 0 0 0 0 0
Rec09 20x10 1537 0 0.35 0 0 0 0 0
Rec11 20x10 1431 0 0.91 0 0 0 0 0
Rec13 20x15 1930 0.52 1.08 0.62 0 0.34 0.31 0
Rec15 20x15 1950 0.92 1.23 0.46 0 0.5 0.28 0
Rec17 20x15 1902 1.26 2.08 1.73 0 0.31 0.28 0
Rec19 30x10 2093 0.38 1.76 1.09 0.28 0.41 0.338 0
Rec21 30x10 2017 0.89 1.64 1.44 0.44 0.37 0.38 0
Rec23 30x10 2011 0.45 1.9 0.45 0.44 0.32 0.21 0
Rec25 30x15 2513 1.03 2.67 1.63 0.43 0.43 0.29 0
Rec27 30x15 2373 1.18 2.09 0.8 0.56 0.63 0.27 0
Rec29 30x15 2287 1.05 3.28 1.53 0.78 0.73 0.34 0
Rec31 50x10 3045 0.56 1.49 0.49 0.1 0.52 0.32 0
Rec33 50x10 3114 0 1.87 0.13 0 0.43 0.28 0
Rec35 50x10 3277 0 0 0 0 0.42 0.27 0
Rec37 75x20 4951 2.54 3.41 2.26 2.72 0.9 0.33 0.02
Rec39 75x20 5087 1.79 2.28 1.14 1.61 0.89 0.29 0.02
Rec41 75x20 4960 2.82 3.43 3.27 2.7 0.92 0.28 0.01
Hel01 100x10 513 - - - 0.38 0.97 0.53 0.01
Hel02 20x10 135 - - - 0 0 0 0

In general comparison with published results, the clustered approaches of SOMAClus
and DEClus are the top two performing heuristics. MAEA approach is the best com-
parative heuristic, however SOMAClus is easily the better performing heuristic for large
problems. In comparison of MAEA with DEClus, even though MAEA obtains more
optimal solutions, DEClus, performs more consistently in large problems.

6.1.2 Taillard Benchmark problem sets
The second set of benchmark problems is referenced from [44]. These sets of problems
have been extensively evaluated [42]. This benchmark set contains 120 particularly
hard instances each of 10 different sizes, selected from a large number of randomly
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generated problems.
As in the previous case, the first comparison is done with canonical and clustered

approaches of GA, DE and SOMA

Table 6.6: Comparison of canonical and clustered heuristics
GA GAClust DE DEClus SOMA SOMAClus

Problem Δavg Δstd Δavg Δstd Δavg Δstd Δavg Δstd Δavg Δstd Δavg Δstd

20x5 2.12 1.23 2 1.34 0.98 0.66 0.55 0.71 0.42 0.48 0.39 0.6
20x10 3.22 0.76 2.9 0.87 1.81 0.77 1.32 0.98 1.29 0.45 1.28 0.55
20x20 3.42 0.98 1.9 0.76 1.75 0.57 0.98 1.32 1.09 0.34 0.96 0.65
50x5 1.76 0.76 0.56 0.88 0.4 0.36 0.33 0.76 0.41 0.34 0.32 0.29
50x10 4.32 1.53 2.54 1.23 3.18 0.94 3.13 0.77 4.8 1 3.8 0.97
50x20 4.53 1.22 4.22 0.93 4.05 0.65 3.67 0.56 3.9 0.69 3.3 0.56
100x5 2.32 1.43 0.98 1.32 0.41 0.29 0.38 0.54 0.4 0.24 0.21 0.28
100x10 4.43 0.87 3.65 0.76 1.46 0.36 1.31 0.32 3.14 1.4 2.98 0.87
100x20 6.75 1.54 5.32 1.32 3.61 0.36 2.23 0.45 4.96 0.65 3.96 0.56
200x10 2.54 2.67 2.24 1.86 0.95 0.18 0.69 0.54 2.4 1.1 1.78 0.98
200x20 4.53 2.24 3.87 2.03 2.34 0.43 2.32 0.98 3.43 1.42 2.54 0.78
500x10 5.32 2.78 4.98 2.03 3.54 0.76 2.65 1.43 5.64 2.45 3.45 1.87

The results are tabulated in Table 6.6 as quality solutions with the percentage rel-
ative increase in makespan with respect to the upper bound provided by [44]. To be
specific the formulation is given as:

Δavg =
(H−U)×100

U
(6.3)

where H denotes the value of the makespan that is produced by the utilized algorithm
and U is the upper bound or the lower bound as computed.

From the presented results, it is evident that clustered heuristics perform better. The
earlier trend continues in these problem instances, with SOMAClus performing the best
over the majority of the instances, followed by DEClus and GAClus. DEClus however
performs better for the larger sized instances of 100 jobs. This is attributed to the
fact that for the Taillard sets, as in the previous study of D[34], 2 opt local search
was employed, and for consistency and comparison basis, local search was employed
likewise in the clustered approach of DEClus.

The benefits of the clustered heuristics are not as marked as in the first set of in-
stances, however on each problem class, an improvement is shown. The average im-
provements range from around 1% for GA to 0.4% for SOMA.

The second part of the comparison is done with the results obtained for the best-
clustered heuristics of SOMAClus and DEClus with those produced by GA, Particle
Swarm Optimization PSOspvand DE with local search DEspv+exchange as in [47] [46]
and given in Table 6.7.

SOMAClusis the best performing heuristic in six instances (20x5, 20x10, 20x20,
50x5, 50x20) with DEClus obtaining better results in the other three instances (100x10,
100x20, 200x10) with one instance of 100x5 drawn and DEspv+exchange performing
best in 50x10 instance. The advantage of DEspv+exchange is the fact that it employs
local search, whereas SOMAClusdoes not. However, SOMA is using migration jumps,
which also increases the search space fitness evaluations.

In terms of consistency, the average standard deviation of SOMAClusis below 1.0%.
This is in line of DEspv+exchange and DEClus, which goes to show that these heuristics
are reliable.
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Table 6.7: Comparison of clustered heuristics with other published heuristics

GA PSOspv DEspv+ex DEClus SOMAClus

Problem Δavg Δstd Δavg Δstd Δavg Δstd Δavg Δstd Δavg Δstd

20x5 3.13 1.86 1.71 1.25 0.69 0.64 0.55 0.71 0.39 0.6
20x10 5.42 1.72 3.28 1.19 2.01 0.93 1.32 0.98 1.28 0.55
20x20 4.22 1.31 2.84 1.15 1.85 0.87 0.98 1.32 0.96 0.65
50x5 1.69 0.79 1.15 0.7 0.41 0.37 0.33 0.76 0.32 0.29
50x10 5.61 1.41 4.83 1.16 2.41 0.9 3.13 0.77 3.8 0.97
50x20 6.95 1.09 6.68 1.35 3.59 0.78 3.67 0.56 3.3 0.56
100x5 0.81 0.39 0.59 0.34 0.21 0.21 0.38 0.54 0.21 0.28
100x10 3.12 0.95 3.26 1.04 1.41 0.57 1.31 0.32 2.98 0.87
100x20 6.32 0.89 7.19 0.99 3.11 0.55 2.23 0.45 3.96 0.56
200x10 2.08 0.45 2.47 0.71 1.06 0.35 0.69 0.54 1.78 0.98

The DE results of this chapter have been published in [35], [11], [10], and the
PSOMA results have been published in [12] and [13].

58



Chapter 7

Flow Shop Scheduling with
Limited Intermediate Storage

Consider m machines in series with zero intermediate storage between sucessive ma-
chines. If a given machine finishes the processing of any given job, the job cannot
proceed to the next machine while that machine is busy, but must remain on that ma-
chine, which therefore remians idle. This phenomenon is refered to as blocking [36].

In this section only flow shops with zero intermediate storage are considered since
any flow shop with positive (but finite) intermediate storage between machines can be
modeled as a flow shop with zero intermediate storage.This is due to the fact that the
storage space capable of containing one job may be regarded as a machine on which
the processing tme of all machines are equal to zero.

The problem of minimizing the makespan in a flow shop with zero intermediate
storages is referred to in what follows as

Fm |block |Cmax

Let Di j denote the time that job j actually departs machine i. Clearly Di j ≥ Ci j.
Equality holds that job j is not blocked. The time job j starts its processing at the first
machine id denoted by D0 j. The following recursive relationship hold under sequence
j1, ....., jn.

Di, j1 =
i

∑
l=1

pl, j1 (7.1)

Di, jk =max
(
Di−1, jk + pi, jk ,Di+1, jk−1

)
(7.2)

Dm, jk = Dm−1, jk + pm, jk (7.3)

The makespan can also be calculated by determining the critical path in the directed
graph. In this graph, node (i, jk) is the departure time of job jk from machine i. In
contrast with permutative flowshop in Chapter 6, in the graph the arcs, rather than the
nodes, have weights. Node (i, jk), i = 1, ...,m− 1;k = 1, ....,n− 1, has two outgoing
arcs; one arc goes to node (i+1, jk) and has a weight or distance pi+1, jk , the other arc
goes to node (i−1, jk+1) and has weight zero. Node (m, jk) has only one outgoing
arc to node (m− 1, jk+1) with zero weight. Node (i, jn) has only one outgoing arc
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to node (i+1, jn) with weight pi+1, jn . Node (m, jn) has no outgoing arcs. The Cmax
under sequence j1, ....., jn is equal to the length of the maximum weight path from node
(0, j1) to node (m, jn).

The directed graph is given in Figure 7.1.
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Figure 7.1: Directed graph representation for Fm |block |Cmax

7.1 Experimentation
The theme of this dissertation is the utilization of the Taillard Problem Sets [44] to solve
the different scheduling problems. The flowshop problems from Chapter 6 are used for
the simulations for flowshop with blocking. This approach allows for an analysis of the
difference in makespan for the same problem utilized with different restrictions.

The experimentation for Fm |block |Cmax was done in two parts.
The first section describes the evaluation of EDE with the taillard benchmark sets

alongside that of clustered DE.
The second section outlines the procedure with P-SOMA.
The control parameters of the clustered population for both heuristics are given in

Table 7.1.
The control parameters of SOMA and DE are presented in Table 7.2 and Table 7.3.
All parameters in Table 7.2 and Table 7.3 were obtained numerically.
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Table 7.1: Population operating parameters

Parameter Value

Psize 200 - 400
Generations > 250/SP
Clusters 4
CA > 0.1

Table 7.2: P-SOMA operating parameters

Parameter Range

MinJ Dynamic
MaxJ (0.2 - 0.5) x Problem size
Version All-to-One

Table 7.3: DE operating parameters

Parameter Value

F 0.3
CR 0.1
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7.1.1 Differential Evolution
The Tailliard Problem Sets for Flowshop [44] have only been evaluated for “permuta-
tive flowshop scheduling” . The lower bound values for Fm |block |Cmax is not pro-
vided. Therefore the raw values are provided for all 120 problem instances as the first
lower bound evaluation of the Fm |block |Cmax for DE. The results are tabulated in
tables of problem size with avaerage and standard deviation of the specific instances
provided. The results for DE and DEclust are given in Tables 7.4 - 7.15.

Table 7.4: 20 job 5 machine
Fm |block |Cmax
Instance DE DEclust

Tai01 1694 1583
Tai02 1657 1540
Tai03 1687 1502
Tai04 1682 1615
Tai05 1632 1517
Tai06 1648 1614
Tai07 1685 1592
Tai08 1674 1546
Tai09 1693 1540
Tai10 1605 1469

Average 1665.7 1551.8
Std Dev 29.657 48.661

Table 7.5: 20 job 10 machine
Fm |block |Cmax
Instance DE DEclust

Tai11 2084 1961
Tai12 2147 2042
Tai13 2158 1824
Tai14 2047 1785
Tai15 1985 1850
Tai16 1978 1809
Tai17 1965 1885
Tai18 2144 2022
Tai19 2074 1966
Tai20 2106 2052

Average 2068.8 1919.6
Std Dev 72.942 101.321

Table 7.6: 20 job 20 machine
Fm |block |Cmax
Instance DE DEclust

Tai21 2698 2673
Tai22 2605 2536
Tai23 2755 2692
Tai24 2684 2673
Tai25 2705 2698
Tai26 2688 2544
Tai27 2610 2566
Tai28 2681 2587
Tai29 2704 2662
Tai30 2688 2543

Average 2681.8 2617.4
Std Dev 44.456 67.781

Table 7.7: 50 job 5 machine
Fm |block |Cmax
Instance DE DEclust

Tai31 3856 3728
Tai32 4055 3908
Tai33 4021 3708
Tai34 3965 3803
Tai35 3944 3874
Tai36 4021 3848
Tai37 3893 3624
Tai38 3864 3779
Tai39 3754 3536
Tai40 3952 3800

Average 3932.5 3760.8
Std Dev 92.018 114.914
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Table 7.8: 50 job 10 machine
Fm |block |Cmax
Instance DE DEclust

Tai41 4306 4298
Tai42 4251 4135
Tai43 4316 4196
Tai44 4481 4364
Tai45 4439 4344
Tai46 4289 4154
Tai47 4455 4334
Tai48 4356 4214
Tai49 4387 4282
Tai50 4361 4213

Average 4364.1 4253.4
Std Dev 76.201 81.732

Table 7.9: 50 job 20 machine
Fm |block |Cmax
Instance DE DEclust

Tai51 5191 5181
Tai52 4965 4868
Tai53 5014 4911
Tai54 5048 4979
Tai55 5106 4936
Tai56 5110 4996
Tai57 5184 4989
Tai58 5174 4946
Tai59 5197 4960
Tai60 5163 5007

Average 5115.2 4977.3
Std Dev 81.881 83.127

Table 7.10: 100 job 5 machine
Fm |block |Cmax
Instance DE DEclust

Tai61 7865 7659
Tai62 7625 7521
Tai63 7251 7179
Tai64 7305 7156
Tai65 7548 7460
Tai66 7455 7386
Tai67 7694 7508
Tai68 7465 7337
Tai69 7821 7740
Tai70 7764 7590

Average 7579.3 7453.6
Std Dev 211.323 192.208

Table 7.11: 100 job 10 machine
Fm |block |Cmax
Instance DE DEclust

Tai71 8400 8301
Tai72 8355 8122
Tai73 8309 8263
Tai74 8641 8511
Tai75 8247 8131
Tai76 8264 8107
Tai77 8382 8228
Tai78 8259 8195
Tai79 8561 8406
Tai80 8457 8389

Average 8387.5 8265.3
Std Dev 132.541 136.100
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Table 7.12: 100 job 20 machine
Fm |block |Cmax
Instance DE DEclust

Tai81 9198 9104
Tai82 9162 9043
Tai83 9058 8956
Tai84 9164 9024
Tai85 9173 9077
Tai86 9124 9089
Tai87 9226 9117
Tai88 9274 9101
Tai89 9192 8983
Tai90 9451 9313

Average 9202.2 9080.7
Std Dev 104.659 97.780

Table 7.13: 200 job 10 machine
Fm |block |Cmax
Instance DE DEclust

Tai91 16587 16375
Tai92 16354 16049
Tai93 16443 16304
Tai94 16985 16368
Tai95 16494 16376
Tai96 16478 16134
Tai97 16678 16378
Tai98 16531 16371
Tai99 16445 16166
Tai100 16543 16416

Average 16553.8 16293.7
Std Dev 175.262 128.555

Table 7.14: 200 job 20 machine
Fm |block |Cmax
Instance DE DEclust

Tai101 17204 17005
Tai102 17465 17260
Tai103 17356 17204
Tai104 17223 17039
Tai105 17239 17164
Tai106 17355 17243
Tai107 17648 17527
Tai108 17422 17333
Tai109 17389 17203
Tai110 17524 17329

Average 17382.5 17230.7
Std Dev 140.741 150.018

Table 7.15: 500 job 20 machine
Fm |block |Cmax
Instance DE DEclust

Tai111 42687 41951
Tai112 42151 42363
Tai113 42310 41800
Tai114 42573 42107
Tai115 42667 42171
Tai116 42981 42372
Tai117 42982 42104
Tai118 42236 42015
Tai119 42515 41755
Tai120 43517 42474

Average 42661.9 42111.2
Std Dev 412.562 241.599
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The bolded values in each table represents the better heuristic for that specific prob-
lem instance. Upon analysis, it can be concluded that clustering of the population im-
proves the heuristic, as all the problem instances had the DEclust approach as the better
performing heuristic.

7.1.2 Permutative Self Organising Migrating Algorithm
The results for PSOMA and PSOMAclust are also provided as the “raw” results for all
120 problem instances. This is the first evaluation of SOMA with Fm |block |Cmax and
hence is the first benchmark results for this problem class. The results are tabulated
in Tables 7.16 - 7.27 where each table represents a specific problem size. The average
and standard deviation values is given for each problem size. The bolded values is the
better performing heuristic.

Table 7.16: 20 job 5 machine
Fm |block |Cmax
Instance PSOMA PSOMAclust

Tai01 1623 1529
Tai02 1614 1568
Tai03 1623 1482
Tai04 1684 1673
Tai05 1647 1553
Tai06 1664 1578
Tai07 1621 1559
Tai08 1605 1544
Tai09 1594 1588
Tai10 1598 1457

Average 1627.3 1533.1
Std Dev 29.18 59.09

Table 7.17: 20 job 10 machine
Fm |block |Cmax
Instance PSOMA PSOMAclust

Tai11 1956 1911
Tai12 2085 2030
Tai13 1962 1882
Tai14 1803 1717
Tai15 1825 1806
Tai16 1804 1759
Tai17 1865 1830
Tai18 2001 1985
Tai19 2058 1917
Tai20 2108 1966

Average 1946.7 1880.3
Std Dev 117.047 101.346
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Table 7.18: 20 job 20 machine
Fm |block |Cmax
Instance PSOMA PSOMAclust

Tai21 2704 2635
Tai22 2546 2462
Tai23 2709 2686
Tai24 2777 2606
Tai25 2841 2624
Tai26 2647 2564
Tai27 2708 2590
Tai28 2664 2556
Tai29 2755 2630
Tai30 2648 2573

Average 2699.9 2592.6
Std Dev 81.323 60.268

Table 7.19: 50 job 5 machine
Fm |block |Cmax
Instance PSOMA PSOMAclust

Tai31 3845 3781
Tai32 3985 3900
Tai33 3844 3710
Tai34 3861 3778
Tai35 3916 3856
Tai36 3952 3881
Tai37 3754 3690
Tai38 3895 3840
Tai39 3645 3590
Tai40 3859 3754

Average 3855.6 3778
Std Dev 97.866 96.446

Table 7.20: 50 job 10 machine
Fm |block |Cmax
Instance PSOMA PSOMAclust

Tai41 4311 4281
Tai42 4251 4143
Tai43 4289 4205
Tai44 4351 4302
Tai45 4258 4318
Tai46 4374 4279
Tai47 4513 4344
Tai48 4366 4200
Tai49 4308 4235
Tai50 4320 4302

Average 4334.1 4260.9
Std Dev 75.31 62.964

Table 7.21: 50 job 20 machine
Fm |block |Cmax
Instance PSOMA PSOMAclust

Tai51 5212 5176
Tai52 5051 4943
Tai53 5132 4951
Tai54 5028 4977
Tai55 5203 5010
Tai56 5068 4961
Tai57 5124 5021
Tai58 5178 5019
Tai59 5134 5047
Tai60 5146 5072

Average 5127.6 5017.7
Std Dev 62.45 69.791
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Table 7.22: 100 job 5 machine
Fm |block |Cmax
Instance PSOMA PSOMAclust

Tai61 7698 7621
Tai62 7605 7515
Tai63 7451 7373
Tai64 7308 7288
Tai65 7655 7521
Tai66 7546 7453
Tai67 7698 7583
Tai68 7642 7505
Tai69 7835 7740
Tai70 7884 7723

Average 7632.2 7532.2
Std Dev 169.939 142.385

Table 7.23: 100 job 10 machine
Fm |block |Cmax
Instance PSOMA PSOMAclust

Tai71 8545 8415
Tai72 8259 8192
Tai73 8437 8303
Tai74 8597 8521
Tai75 8351 8266
Tai76 8236 8149
Tai77 8317 8277
Tai78 8264 8127
Tai79 8467 8378
Tai80 8409 8344

Average 8388.2 8297.2
Std Dev 124.25 122.97

Table 7.24: 100 job 20 machine
Fm |block |Cmax
Instance PSOMA PSOMAclust

Tai81 9146 9071
Tai82 9178 9081
Tai83 9137 9077
Tai84 9087 9077
Tai85 9083 8962
Tai86 9168 9094
Tai87 9321 9234
Tai88 9258 9195
Tai89 9247 9101
Tai90 9367 9265

Average 9199.2 9115.7
Std Dev 96.002 90.112

Table 7.25: 200 job 10 machine
Fm |block |Cmax
Instance PSOMA PSOMAclust

Tai91 16784 16333
Tai92 16343 16200
Tai93 16432 16317
Tai94 16478 16388
Tai95 16984 16318
Tai96 16357 16129
Tai97 16594 16480
Tai98 16946 16438
Tai99 16528 16149
Tai100 16437 16387

Average 16595 16313.9
Std Dev 248.901 119.52
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Table 7.26: 200 job 20 machine
Fm |block |Cmax
Instance PSOMA PSOMAclust

Tai101 17254 17102
Tai102 17554 17423
Tai103 17498 17308
Tai104 17402 17265
Tai105 17365 17285
Tai106 17487 17366
Tai107 17587 17476
Tai108 17448 17325
Tai109 17437 17362
Tai110 17447 17330

Average 17447.9 17324.2
Std Dev 95.067 100.383

Table 7.27: 500 job 20 machine
Fm |block |Cmax
Instance PSOMA PSOMAclust

Tai111 42874 42261
Tai112 42997 42265
Tai113 42551 41950
Tai114 42578 42167
Tai115 42651 42087
Tai116 43015 42457
Tai117 43170 42059
Tai118 42887 41975
Tai119 43008 42006
Tai120 43879 42157

Average 42961 42138.4
Std Dev 382.5 157.197

Upon analysis of all the instances, PSOMAclust is seen as the better performing
heuristic, as it manages to find the better solution for all the problem instances.

7.2 Analysis
This section comapres the two better performing heuristics from the canonical and
clustered approach in order to vet as to which is a better overall heuristic. From the
previous results, DEclust and PSOMAclust are the better performing heuristics, and are
hense compared. The compared results are given in Tables 7.28 - 7.39. The bolded
value is the better perfoming heuristic for the specific problem instance.

Table 7.28: 20 job 5 machine
Fm |block |Cmax
Instance DEclust PSOMAclust

Tai 01 1583 1529
Tai 02 1540 1568
Tai 03 1502 1482
Tai 04 1615 1673
Tai 05 1517 1553
Tai 06 1614 1578
Tai 07 1592 1559
Tai 08 1546 1544
Tai 09 1540 1588
Tai 10 1469 1457

Average 1551.8 1553.1
Std Dev 48.661 59.09

Table 7.29: 20 job 10 machine
Fm |block |Cmax
Instance DEclust PSOMAclust

Tai 11 1961 1911
Tai 12 2042 2030
Tai 13 1824 1882
Tai 14 1785 1717
Tai 15 1850 1806
Tai 16 1809 1759
Tai 17 1885 1830
Tai 18 2022 1985
Tai 19 1966 1917
Tai 20 2052 1966

Average 1919.6 1880.3
Std Dev 101.321 101.346
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Table 7.30: 20 job 20 machine
Fm |block |Cmax
Instance DEclust PSOMAclust

Tai 21 2673 2635
Tai 22 2536 2462
Tai 23 2692 2686
Tai 24 2673 2606
Tai 25 2698 2624
Tai 26 2544 2564
Tai 27 2566 2590
Tai 28 2587 2556
Tai 29 2662 2630
Tai 30 2543 2573

Average 2617.4 2592.6
Std Dev 67.781 60.268

Table 7.31: 50 job 5 machine
Fm |block |Cmax
Instance DEclust PSOMAclust

Tai 31 3728 3781
Tai 32 3908 3900
Tai 33 3708 3710
Tai 34 3803 3778
Tai 35 3874 3856
Tai 36 3848 3881
Tai 37 3624 3690
Tai 38 3779 3840
Tai 39 3536 3590
Tai 40 3800 3754

Average 3760.8 3778
Std Dev 114.912 96.446

Table 7.32: 50 job 10 machine
Fm |block |Cmax
Instance DEclust PSOMAclust

Tai 41 4298 4281
Tai 42 4135 4143
Tai 43 4196 4205
Tai 44 4364 4302
Tai 45 4344 4318
Tai 46 4154 4279
Tai 47 4334 4344
Tai 48 4214 4200
Tai 49 4282 4235
Tai 50 4213 4302

Average 4253.4 4256.33
Std Dev 81.732 62.964

Table 7.33: 50 job 20 machine
Fm |block |Cmax
Instance DEclust PSOMAclust

Tai 51 5181 5176
Tai 52 4868 4943
Tai 53 4911 4951
Tai 54 4979 4977
Tai 55 4936 5010
Tai 56 4996 4961
Tai 57 4989 5021
Tai 58 4946 5019
Tai 59 4960 5047
Tai 60 5007 5072

Average 4977.3 5017.7
Std Dev 83.127 69.79
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Table 7.34: 100 job 5 machine
Fm |block |Cmax
Instance DEclust PSOMAclust

Tai 61 7659 7621
Tai 62 7521 7515
Tai 63 7179 7373
Tai 64 7156 7288
Tai 65 7460 7521
Tai 66 7386 7453
Tai 67 7508 7583
Tai 68 7337 7505
Tai 69 7740 7740
Tai 70 7590 7723

Average 7453.6 7532.2
Std Dev 192.208 142.38

Table 7.35: 100 job 10 machine
Fm |block |Cmax
Instance DEclust PSOMAclust

Tai 71 8301 8415
Tai 72 8122 8192
Tai 73 8263 8303
Tai 74 8511 8521
Tai 75 8131 8266
Tai 76 8107 8149
Tai 77 8228 8277
Tai 78 8195 8127
Tai 79 8406 8378
Tai 80 8389 8344

Average 8265.3 8297.2
Std Dev 136.10 122.97

Table 7.36: 100 job 20 machine
Fm |block |Cmax
Instance DEclust PSOMAclust

Tai 81 9104 9071
Tai 82 9043 9081
Tai 83 8956 9077
Tai 84 9024 9077
Tai 85 9077 8962
Tai 86 9089 9094
Tai 87 9117 9234
Tai 88 9101 9195
Tai 89 8983 9101
Tai 90 9313 9265

Average 9080.7 9115.7
Std Dev 97.78 90.11

Table 7.37: 200 job 10 machine
Fm |block |Cmax
Instance DEclust PSOMAclust

Tai 91 16375 16333
Tai 92 16049 16200
Tai 93 16304 16317
Tai 94 16368 16388
Tai 95 16376 16318
Tai 96 16134 16129
Tai 97 16378 16480
Tai 98 16371 16438
Tai 99 16166 16149
Tai 100 16416 16387

Average 16293.7 16313.9
Std Dev 128.555 119.52
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Table 7.38: 200 job 20 machine
Fm |block |Cmax
Instance DEclust PSOMAclust

Tai101 17204 17102
Tai102 17465 17423
Tai103 17356 17308
Tai104 17223 17265
Tai105 17239 17285
Tai106 17355 17366
Tai107 17648 17476
Tai108 17422 17325
Tai109 17389 17362
Tai110 17524 17330

Average 17382.5 17324.2
Std Dev 140.741 100.38

Table 7.39: 500 job 20 machine
Fm |block |Cmax
Instance PSOMA PSOMAclust

Tai 111 41951 42261
Tai 112 42363 42265
Tai 113 41800 41950
Tai 114 42107 42167
Tai 115 42171 42087
Tai 116 42372 42457
Tai 117 42104 42059
Tai 118 42015 41975
Tai 119 41755 42006
Tai 120 42474 42157

Average 42111.2 42138.4
Std Dev 241.599 157.19

The summerised results are given in Table 7.40 for the average and standard devia-
tion values. In general conclusions, DEclust is the better overall heuristic having better
overall values in 9 out of 12 problem classes. However, PSOMAclust provides better
consistancy with better deviation values in the problem classes.

Table 7.40: DEclust and PSOMAclust summerised results for Fm |block |Cmax
Instance Δavg Δstd

job mach DEclust PSOMAclust DEclust PSOMAclust

20 5 1551.8 1553.1 48.661 59.09
20 10 1919.6 1880.3 101.321 101.346
20 20 2617.4 2592.6 67.781 60.268
50 5 3760.8 3778 114.912 96.446
50 10 4253.4 4256.33 81.732 62.964
50 20 4977.3 5017.7 83.127 69.79
100 5 7453.6 7532.2 192.208 142.38
100 10 8265.3 8297.2 136.10 122.97
100 20 9080.7 9115.7 97.78 90.11
200 10 16293.7 16313.9 128.555 119.52
200 20 17382.5 17324.2 140.741 100.38
500 20 42111.2 42138.4 241.599 157.19

71



Chapter 8

Flow Shop Scheduling with No
Wait

The third varient of flow shop is also the most challenging and practical [36]. Consider
a flow shop with zero intermediate storage subject to different operating procedures.
A job, when it goes through the system, is not allowed to wait at any machine. For
this process, all susequent machines have to be idle, at the completion of the job on a
machine upstream. This is the opposite to the blocking case where the jobs are pushed
down by machines upstream. In this case the jobs are pulled down the line by machines
which have become idle. This constraint is refered to as the no-wait constraint, and
minimising the makespan in such a flow shop is referred to as the

Fm |nwt |Cmax

Among all types of scheduling problems, no-wait flowshop owns lots of important
applications in different industries such as chemical processing [40], food processing
[22], concrete ware production [21], and pharmaceutical processing [39] amongst oth-
ers.

For the computational complexity of the no-wait flowshop scheduling problem,
[19] proves that it is strongly NP-complete. Therefore, only small size instances of the
no-wait flowshop problem can be solved with reasonable computational time by exact
algorithms.

The no-wait flowshop scheduling problem can be described as follows: Given the
processing times p jk for job j and machine k, each of n jobs ( j = 1,2, ..,n) will be
sequenced through m machines (k = 1,2, ..,m) Each job j has a sequence of m op-
erations

(
o j1,o j2, ....,o jm

)
. To satisfy the no-wait restriction, the completion time of

the operation o jk must be equal to the earliest time to start of the operation o j,k+1 for
k = 1,2, ..,m− 1. In other words, there must not be any waiting times between the
processing of any consecutive operation of each of n jobs. The problem is then to find
a schedule such that the processing order of jobs is the same on each machine and the
maximum completion time should be minimized.

Suppose that the job permutation x= {x1,x2, ...,xn} represents the schedule of jobs
to be processed. Let x = {x1,x2, ...,xn} be the minimum delay on the first machine
between the start of job x j and x j−1 restricted by the no- wait constraint when the job
x j is directly processed after the job x j−1. The minimum delay can be computed from
the following expression:
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Then the makespan can be defined as

Cmax (x) =
n

∑
j=2

d
(
x j,x j−1

)
+

m

∑
k=1

p(xn,k) (8.2)

The no-wait flowshop scheduling problem with the makespan criterion is to find a
permutation x∗ in the set of all permutations X such that

Cmax (x∗)≤C (xn,m)∀x ∈ X (8.3)

8.1 Experimentation
The experimentation for Fm |nwt |Cmax was done in two parts.

The first section describes the evaluation of DE with the Taillard benchmark sets
alongside that of clustered DE. The second section outlines the procedure with P-
SOMA, both with and without clustering.

The control parameters of the clustered population for both the experiments is given
in Table 8.1.

Table 8.1: Population operating parameters

Parameter Value

Psize 200 - 400
Generations > 250/SP
Clusters 4
CA > 0.1

The control parameters of SOMA and DE are presented in Table 8.2 and Table 8.3.

Table 8.2: P-SOMA operating parameters

Parameter Range

MinJ Dynamic
MaxJ (0.2 - 0.5) x Problem size
Version All-to-One

All parameters in Table 8.2 and Table 8.3 were obtained numerically.

8.1.1 Differential Evolution
As described in the previous chapter, the Taillard flowshop sets have not been sub-
jected to the Fm |nwt |Cmax , and the results presented in this section are the “raw”
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Table 8.3: DE operating parameters

Parameter Value

F 0.6
CR 0.1

values, which can be then used as the benchmark results for this specialized problem
class. The results are presented in Tables 8.4 - 8.15. The bolded values are the better
performing heuristic for that specific instance.

Table 8.4: 20 job 5 machine Fm |nwt |Cmax
Instance DE DEclust

Tai01 1793 1714
Tai02 1853 1753
Tai03 1804 1704
Tai04 1984 1967
Tai05 1845 1813
Tai06 1920 1878
Tai07 1842 1780
Tai08 1877 1847
Tai09 1821 1811
Tai10 1842 1681

Average 1858.1 1794.8
Std Dev 57.054 87.929

Table 8.5: 20 job 10 machine
Fm |nwt |Cmax
Instance DE DEclust

Tai11 2649 2516
Tai12 2954 2641
Tai13 2545 2189
Tai14 2278 2278
Tai15 2603 2481
Tai16 2589 2287
Tai17 2455 2216
Tai18 2631 2413
Tai19 2442 2285
Tai20 2551 2494

Average 2569.7 2380
Std Dev 174.714 149.947

Table 8.6: 20 job 20 machine
Fm |nwt |Cmax
Instance DE DEclust

Tai21 3545 3419
Tai22 3612 3318
Tai23 3789 3549
Tai24 3541 3287
Tai25 3861 3588
Tai26 3854 3550
Tai27 3685 3634
Tai28 3512 3342
Tai29 3852 3642
Tai30 3752 3666

Average 3700.3 3499.5
Std Dev 139.834 144.659

Table 8.7: 50 job 5 machine Fm |nwt |Cmax
Instance DE DEclust

Tai31 4212 4158
Tai32 4657 4518
Tai33 4365 4220
Tai34 4187 4074
Tai35 4388 4291
Tai36 4587 4455
Tai37 4215 4094
Tai38 4588 4286
Tai39 4256 3943
Tai40 4558 4335

Average 4401.3 4237.4
Std Dev 182.072 176.82
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Table 8.8: 50 job 10 machine
Fm |nwt |Cmax
Instance DE DEclust

Tai41 5633 5777
Tai42 5568 5438
Tai43 5832 5761
Tai44 6105 5986
Tai45 5931 5684
Tai46 5887 5706
Tai47 6254 6101
Tai48 5861 5712
Tai49 5745 5596
Tai50 5848 5703

Average 5866.4 5746.4
Std Dev 203.188 185.778

Table 8.9: 50 job 20 machine
Fm |nwt |Cmax
Instance DE DEclust

Tai51 8052 7968
Tai52 7564 7436
Tai53 7965 7832
Tai54 8106 8004
Tai55 8154 7939
Tai56 8254 8158
Tai57 7936 7850
Tai58 7941 7885
Tai59 7968 7753
Tai60 8205 8088

Average 8014.5 7891.3
Std Dev 194.94 200.656

Table 8.10: 100 job 5 machine
Fm |nwt |Cmax
Instance DE DEclust

Tai61 9107 8961
Tai62 9004 8608
Tai63 9054 8683
Tai64 8578 7881
Tai65 8827 8732
Tai66 8964 8733
Tai67 8679 8571
Tai68 8752 8501
Tai69 9147 9003
Tai70 9106 9040

Average 8921.6 8671.3
Std Dev 199.774 334.192

Table 8.11: 100 job 10 machine
Fm |nwt |Cmax
Instance DE DEclust

Tai71 11589 11406
Tai72 11487 11376
Tai73 11985 11587
Tai74 11754 11547
Tai75 11287 11135
Tai76 11234 11185
Tai77 11884 11771
Tai78 11255 10705
Tai79 11859 11665
Tai80 11883 11672

Average 11621.7 11404.9
Std Dev 290.382 322.882
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Table 8.12: 100 job 20 machine
Fm |nwt |Cmax
Instance DE DEclust

Tai81 16952 16425
Tai82 16151 15187
Tai83 16124 15588
Tai84 15875 15142
Tai85 15486 14915
Tai86 15214 14727
Tai87 15849 15535
Tai88 15879 15266
Tai89 16994 16356
Tai90 16552 16303

Average 16107.6 15544.3
Std Dev 582.762 618.664

Table 8.13: 200 job 10 machine
Fm |nwt |Cmax
Instance DE DEclust

Tai91 23201 22733
Tai92 23486 22804
Tai93 25611 23527
Tai94 25614 24182
Tai95 23581 22350
Tai96 22518 22435
Tai97 23118 22503
Tai98 24551 23483
Tai99 23198 22303
Tai100 23568 22966

Average 23844.6 22928.6
Std Dev 1061.689 618.471

Table 8.14: 200 job 20 machine
Fm |nwt |Cmax
Instance DE DEclust

Tai101 31056 30489
Tai102 31148 30388
Tai103 31089 28859
Tai104 32066 31547
Tai105 31254 30665
Tai106 32117 31879
Tai107 34512 33248
Tai108 31587 30267
Tai109 32628 31534
Tai110 31554 30386

Average 31901.1 30926.2
Std Dev 1053.972 1183.314

Table 8.15: 500 job 20 machine
Fm |nwt |Cmax
Instance DE DEclust

Tai111 81245 80536
Tai112 82224 81383
Tai113 80373 75058
Tai114 80662 77444
Tai115 78095 75994
Tai116 79661 77026
Tai117 79148 77455
Tai118 80154 78600
Tai119 78664 76928
Tai120 78984 76771

Average 79921 77719.5
Std Dev 1261.475 1953.431

Upon analysis, the clustered approach of DE, DEclust is the better performing
heuristic obtaining better values in every problem instance.
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8.1.2 Permutative Self Organising Migrating Algorithm
The PSOMA results follow the same outline as the DE results with “raw” data pre-
sented for each instance. The results are given in Tables 8.19 - 8.27. The bolded values
represent the better performing heuristic for that problem instance.

Table 8.16: 20 job 5 machine
Fm |nwt |Cmax
Instance PSOMA PSOMAclust

Tai01 1765 1745
Tai02 1705 1694
Tai03 1764 1733
Tai04 1895 1868
Tai05 1841 1799
Tai06 1818 1798
Tai07 1752 1717
Tai08 1826 1810
Tai09 1814 1770
Tai10 1654 1605

Average 1783.4 1753.9
Std Dev 70.16 73.06

Table 8.17: 20 job 10 machine
Fm |nwt |Cmax
Instance PSOMA PSOMAclust

Tai11 2504 2429
Tai12 2548 2519
Tai13 2465 2303
Tai14 2321 2233
Tai15 2405 2336
Tai16 2315 2204
Tai17 2467 2407
Tai18 2548 2458
Tai19 2406 2320
Tai20 2551 2462

Average 2453 2367.1
Std Dev 89.178 104.16

Table 8.18: 20 job 20 machine
Fm |nwt |Cmax
Instance PSOMA PSOMAclust

Tai21 3468 3438
Tai22 3405 3366
Tai23 3564 3543
Tai24 3864 3700
Tai25 3684 3577
Tai26 3741 3610
Tai27 3564 3482
Tai28 3452 3344
Tai29 3687 3599
Tai30 3654 3507

Average 3608.3 3516.6
Std Dev 143.903 112.265

Table 8.19: 50 job 5 machine
Fm |nwt |Cmax
Instance PSOMA PSOMAclust

Tai31 4448 4365
Tai32 4616 4527
Tai33 4283 4234
Tai34 4398 4323
Tai35 4563 4485
Tai36 4693 4524
Tai37 4464 4363
Tai38 4509 4454
Tai39 4207 4108
Tai40 4408 4343

Average 4458.9 4372.6
Std Dev 146.692 132.803
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Table 8.20: 50 job 10 machine
Fm |nwt |Cmax
Instance PSOMA PSOMAclust

Tai41 5714 5675
Tai42 5694 5568
Tai43 5961 5857
Tai44 5997 5910
Tai45 6252 6158
Tai46 5966 5829
Tai47 6352 6235
Tai48 5964 5845
Tai49 5847 5786
Tai50 6152 6080

Average 5989.9 5894.3
Std Dev 214.039 209.423

Table 8.21: 50 job 20 machine
Fm |nwt |Cmax
Instance PSOMA PSOMAclust

Tai51 8625 8539
Tai52 8102 8077
Tai53 8424 8313
Tai54 8235 8170
Tai55 8546 8401
Tai56 8424 8319
Tai57 8150 8006
Tai58 8147 8094
Tai59 8269 8174
Tai60 8257 8129

Average 8317.9 8222.2
Std Dev 178.212 165.979

Table 8.22: 100 job 5 machine
Fm |nwt |Cmax
Instance PSOMA PSOMAclust

Tai61 9106 8995
Tai62 8759 8689
Tai63 8638 8512
Tai64 8694 8590
Tai65 9018 8909
Tai66 8967 8892
Tai67 9152 9009
Tai68 8692 8571
Tai69 9257 9173
Tai70 9382 9221

Average 8966.5 8856.1
Std Dev 261.221 253.586

Table 8.23: 100 job 10 machine
Fm |nwt |Cmax
Instance PSOMA PSOMAclust

Tai71 12084 11965
Tai72 11952 11798
Tai73 12102 11964
Tai74 13257 12379
Tai75 12085 11935
Tai76 12084 11750
Tai77 12345 12243
Tai78 11582 11485
Tai79 11984 11805
Tai80 12184 12091

Average 12165.9 11941.5
Std Dev 430.339 256.048
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Table 8.24: 100 job 20 machine
Fm |nwt |Cmax
Instance PSOMA PSOMAclust

Tai81 17468 16361
Tai82 15937 15787
Tai83 16152 16081
Tai84 16558 16113
Tai85 16084 15867
Tai86 16007 15996
Tai87 16753 16510
Tai88 16225 16132
Tai89 16287 16127
Tai90 16794 16682

Average 16426.5 16165.6
Std Dev 472.814 278.341

Table 8.25: 200 job 10 machine
Fm |nwt |Cmax
Instance PSOMA PSOMAclust

Tai91 24158 24051
Tai92 24531 23481
Tai93 24515 24401
Tai94 25168 24284
Tai95 24681 23990
Tai96 24937 23733
Tai97 24967 24453
Tai98 24788 24147
Tai99 24987 23698
Tai100 25843 24360

Average 24857.5 24081.1
Std Dev 453.614 345.55

Table 8.26: 200 job 20 machine
Fm |nwt |Cmax
Instance PSOMA PSOMAclust

Tai101 24158 31498
Tai102 33442 32970
Tai103 34587 31334
Tai104 34688 32072
Tai105 33201 32155
Tai106 33874 32836
Tai107 34087 33065
Tai108 35045 32082
Tai109 34512 33073
Tai110 33781 31904

Average 33937.2 32298.9
Std Dev 853.6 647.44

Table 8.27: 500 job 20 machine
Fm |nwt |Cmax
Instance PSOMA PSOMAclust

Tai111 83547 82312
Tai112 84571 83893
Tai113 83514 81677
Tai114 83648 81362
Tai115 83957 82102
Tai116 83547 82218
Tai117 82657 81451
Tai118 83451 82547
Tai119 82514 81547
Tai120 82668 81478

Average 83407.4 82058.7
Std Dev 638.943 766.952

PSOMAclust is the better performing heuristic which obtains better value for each
problem instance. It can be concluded that clustering the population is able to improve
the performance of PSOMA.
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8.2 Analysis
This section compares the two better performing heuristics from the canonical and clus-
tered approach in order to vet as to which is a better overall heuristic. From the previous
results, DEclust and PSOMAclust are the better performing heuristics. The compared re-
sults are given in Tables 8.28 - 8.39. The bolded value is the better perfoming heuristic
for the specific problem instance.

Table 8.28: 20 job 5 machine
Fm |nwt |Cmax
Instance DEclust PSOMAclust

Tai 01 1714 1745
Tai 02 1753 1694
Tai 03 1704 1733
Tai 04 1967 1868
Tai 05 1813 1799
Tai 06 1878 1798
Tai 07 1780 1717
Tai 08 1847 1810
Tai 09 1811 1770
Tai 10 1681 1605

Average 1794.8 1753.9
Std Dev 87.929 73.06

Table 8.29: 20 job 10 machine
Fm |nwt |Cmax
Instance DEclust PSOMAclust

Tai 11 2516 2429
Tai 12 2641 2519
Tai 13 2189 2303
Tai 14 2278 2233
Tai 15 2481 2336
Tai 16 2287 2204
Tai 17 2216 2407
Tai 18 2413 2458
Tai 19 2285 2320
Tai 20 2494 2462

Average 2380 2367.1
Std Dev 149.947 104.160

Table 8.30: 20 job 20 machine
Fm |nwt |Cmax
Instance DEclust PSOMAclust

Tai 21 3419 3438
Tai 22 3318 3366
Tai 23 3549 3543
Tai 24 3287 3700
Tai 25 3588 3577
Tai 26 3550 3610
Tai 27 3634 3482
Tai 28 3342 3344
Tai 29 3642 3599
Tai 30 3666 3507

Average 3499.5 3516.6
Std Dev 144.65 112.26

Table 8.31: 50 job 5 machine
Fm |nwt |Cmax
Instance DEclust PSOMAclust

Tai 31 4158 4365
Tai 32 4518 4527
Tai 33 4220 4234
Tai 34 4074 4323
Tai 35 4291 4485
Tai 36 4455 4524
Tai 37 4094 4363
Tai 38 4286 4454
Tai 39 3943 4108
Tai 40 4335 4343

Average 4237.4 4372.6
Std Dev 176.820 132.803
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Table 8.32: 50 job 10 machine
Fm |nwt |Cmax
Instance DEclust PSOMAclust

Tai 41 5777 5675
Tai 42 5438 5568
Tai 43 5761 5857
Tai 44 5986 5910
Tai 45 5684 6158
Tai 46 5706 5829
Tai 47 6101 6235
Tai 48 5712 5845
Tai 49 5596 5786
Tai 50 5703 6080

Average 5746.4 5894.3
Std Dev 185.778 209.423

Table 8.33: 50 job 20 machine
Fm |nwt |Cmax
Instance DEclust PSOMAclust

Tai 51 7968 8539
Tai 52 7436 8077
Tai 53 7832 8313
Tai 54 8004 8170
Tai 55 7939 8401
Tai 56 8158 8319
Tai 57 7850 8006
Tai 58 7885 8094
Tai 59 7753 8174
Tai 60 8088 8129

Average 7891.3 8222.2
Std Dev 200.656 165.979

Table 8.34: 100 job 5 machine
Fm |nwt |Cmax
Instance DEclust PSOMAclust

Tai 61 8961 8995
Tai 62 8608 8689
Tai 63 8683 8512
Tai 64 7881 8590
Tai 65 8732 8909
Tai 66 8733 8892
Tai 67 8571 9009
Tai 68 8501 8571
Tai 69 9003 9173
Tai 70 9040 9221

Average 8671.3 8856.1
Std Dev 334.192 253.586

Table 8.35: 100 job 10 machine
Fm |nwt |Cmax
Instance DEclust PSOMAclust

Tai 71 11406 11965
Tai 72 11376 11798
Tai 73 11587 11964
Tai 74 11547 12379
Tai 75 11135 11935
Tai 76 11185 11750
Tai 77 11771 12243
Tai 78 10705 11485
Tai 79 11665 11805
Tai 80 11672 12091

Average 11404.9 11941.5
Std Dev 322.881 256.048
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Table 8.36: 100 job 20 machine
Fm |nwt |Cmax
Instance DEclust PSOMAclust

Tai 81 16425 16361
Tai 82 15187 15787
Tai 83 15588 16081
Tai 84 15142 16113
Tai 85 14915 15867
Tai 86 14726 15996
Tai 87 15535 16510
Tai 88 15266 16132
Tai 89 16356 16127
Tai 90 16303 16682

Average 15544.3 16165.6
Std Dev 618.663 278.3419

Table 8.37: 200 job 10 machine
Fm |nwt |Cmax
Instance DEclust PSOMAclust

Tai 91 22733 24051
Tai 92 22804 23481
Tai 93 23527 24401
Tai 94 24182 24284
Tai 95 22350 23990
Tai 96 22435 23733
Tai 97 22503 24453
Tai 98 23483 24147
Tai 99 22303 23698
Tai 100 22966 24360

Average 22928.6 24059.8
Std Dev 618.471 332.77

Table 8.38: 200 job 20 machine
Fm |nwt |Cmax
Instance DEclust PSOMAclust

Tai 101 30489 31498
Tai 102 30388 32970
Tai 103 28859 31334
Tai 104 31547 32072
Tai 105 30665 32155
Tai 106 31879 32836
Tai 107 33248 33065
Tai 108 30267 32082
Tai 109 31534 33073
Tai 110 30386 31904

Average 30926.2 32298.9
Std Dev 1183.314 647.44

Table 8.39: 500 job 20 machine
Fm |nwt |Cmax
Instance DEclust PSOMAclust

Tai 111 80536 82312
Tai 112 81383 83893
Tai 113 75058 81677
Tai 114 77444 81362
Tai 115 75994 82102
Tai 116 77026 82218
Tai 117 77455 81451
Tai 118 78600 82547
Tai 119 76928 81547
Tai 120 76771 81478

Average 77719.5 82058.7
Std Dev 1953.431 766.95
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The summerised results are given in Table 8.40 for the average and standard devia-
tion values. In general conclusions, DEclust is the better overall heuristic having better
overall values in 10 out of 12 problem classes. DEclust also performs better in larger
problem sizes. However, PSOMAclust provides better consistancy with better deviation
values in 11 out of 12 problem classes.

Table 8.40: DEclust and PSOMAclust summerised results for Fm |nwt |Cmax
Instance Δavg Δstd

job mach DEclust PSOMAclust DEclust PSOMAclust

20 5 1794.8 1753.9 87.929 73.06
20 10 2380 2367.1 149.947 104.160
20 20 3499.5 3516.6 144.65 112.26
50 5 4237.4 4372.6 176.820 132.803
50 10 5746.4 5894.3 185.778 209.423
50 20 7891.3 8222.2 200.656 165.979
100 5 8671.3 8856.1 334.192 253.586
100 10 11404.9 11941.5 322.881 256.048
100 20 15544.3 16165.6 618.663 278.3419
200 10 22928.6 24059.8 618.471 332.77
200 20 30926.2 32298.9 1183.314 647.44
500 20 77719.5 82058.7 1953.431 766.95
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Chapter 9

Quadratic Assignment Problem

QAP is an important problem in theory and practice. Formally, given n facilities and n
locations, two n x n matrices A= [ai j] and B= [brs], where ai j is the distance between
locations i and j and brs is the flow between facilities r and s, the QAP can be stated as
follows:

min
ψεS(n)

n

∑
i=1

n

∑
j=1

bi jaψiψ j (9.1)

where S(n) is the set of all permutations (corresponding to the assignments) of the set
of integers {1,. . .,n}, and the ψi gives the location of facility i in the current solution
ψεS(n). Here bi jaψiψ j describes the cost distribution of simultaneously assigning fa-
cility i to location ψ j and facility j to location ψi.

The term quadratic stems from the formulation of the QAP as an integer optimiza-
tion problem with a quadratic objective function. Let xi j be a binary variable which
takes value 1 if facility i is assigned to location j and 0 otherwise. Then the problem
can be formulated as:

min
n

∑
i=1

n

∑
j=1

n

∑
l=1

n

∑
k=1

ai jbklxikx jl (9.2)

subject to the constraints
n

∑
i=1

xi j = 1,
n

∑
j=1

xi j = 1,xε{0,1} (9.3)

According to [43], the QAP instances found in QAPLIB can be classified into four
classes;

• Unstructured, randomly generated instances: Instances with the distance and
flow matrix entries generated randomly according to an uniform distribution.
The taixxa is an example of these instances, which are considered the most diffi-
cult to solve (we note that x≡ integer number).

• Unstructured instances: Instances with the grid matrix defined as the Manhat-
tan distance between grid points on a n1 x n2 grid and with random flows.

• Real-life instances: ‘Real-life’ instances from practical application of the QAP.
Amongst them are the layout problem of the hospital (kra30x)and instances cor-
responding to the layout of the typewriter keyboards (bur26x). The real-life in-
stances have in common that the flow matrices have (in contrast to the previously
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mentioned randomly generated instances) many zero entries and the entries are
not uniformly distributed.

• Real-life like instances: Because the real life like instances are mainly of small
size, [43] proposed the taixxb instances in such a way that they resemble the
distribution found in real life problems.

In order to differentiate different classes of QAP the flow dominance fd is used. It
is defined as the coefficient of the flow matrix entries multiplied by the factor of 100
and is represented as:

f d(B) = 100 · σ
µ

(9.4)

where
µ =

1
n2

·
n

∑
i=1

n

∑
j=1

bi j

and

σ =

√
1

n2−1 ·
n

∑
i=1

n

∑
j=1

(bi j−µ)2

The general description is that unstructured randomly generated problems with a
uniform distribution have a fd of less than 1.2 while real life structured problems have
a fd larger than 1.2.

9.1 Experimentation
This section presents the results obtained from the three different sets of experimenta-
tions conducted. Each experiment was repeated 10 times with the same control values.
The presented results are the best solutions obtained from these ten simulation on each
instant.

All experimentation was conducted on an parallel array of 16 X-Serves with a total
of 64 Quad Zeon processors all running on Grid Mathematica platform.

9.1.1 Genetic Algorithm Results
The first set of results is from Genetic Algorithms. The operational parameters of GA
is given in Table 9.1.

Table 9.1: GA operational values

Parameter Value

Strategy 2 Point Crossover
Mutation Single
Population
size

500 - 1000

Generations 500 - 1000

The generic and clustered GA results for the irregular problems is presented in
Table 9.2.
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Table 9.2: Clustered GA Irregular QAP comparison

Instant fd n Optimal GA GAclust

bur26a 2.75 26 5246670 1.64 1.25
bur26b 2.75 26 3817852 1.95 1.34
bur26c 2.29 26 5426795 1.75 1.56
bur26d 2.29 26 3821225 1.24 1.21
bur26e 2.55 26 5386879 1.52 1.32
bur26f 2.55 26 3782044 1.62 1.56
bur26g 2.84 26 10117172 1.53 1.42
bur26h 2.84 26 7098658 1.65 1.54
chr25a 4.15 26 3796 2.3 1.56
els19 5.16 19 17212548 0.94 0.91
kra30a 1.46 30 88900 1.23 1.12
kra30b 1.46 30 91420 1.64 1.34
tai20b 3.24 20 122455319 1.58 1.21
tai25b 3.03 25 344355646 1.61 0.94
tai30b 3.18 30 637117113 2.19 1.24
tai35b 3.05 35 283315445 2.32 0.85
tai40b 3.13 40 637250948 2.54 1.12
tai50b 3.1 50 458821517 2.75 1.24
tai60b 3.15 60 608215054 2.68 1.52
tai80b 3.21 80 818415043 3.11 1.95

Table 9.3: Clustered GA Regular QAP comparison

Instant fd n Optimal GA GAclust

nug20 0.99 20 2570 0.98 0.85
nug30 1.09 30 6124 0.84 0.82
sko42 1.06 42 15812 0.95 0.84
sko49 1.07 49 23386 1.12 0.93
sko56 1.09 56 34458 1.35 0.94
sko64 1.07 64 48498 1.68 1.23
sko72 1.06 72 66256 2.52 1.54
sko81 1.05 81 90998 3.21 2.15
tai20a 0.61 20 703482 0.98 0.52
tai25a 0.6 25 1167256 0.68 0.68
tai30a 0.59 30 1818146 1.02 0.95
tai35a 0.58 35 2422002 1.32 0.98
tai40a 0.6 40 3139370 1.54 1.22
tai50a 0.6 50 4941410 1.62 1.31
tai60a 0.6 60 7208572 2.13 1.98
tai80a 0.59 80 13557864 3.21 2.35
wil50 0.64 50 48816 1.89 0.98

The results of the regular problems in given in Table 9.3.
The results clearly demonstrate that using clustering improves the results of generic
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GA. Even though the results obtained for GA are not as competitive for the QAP in-
stances, the main idea of this research of clustering of the population to improve the
performance of metaheuristics is validated.

9.1.2 Differential Evolution Results
The second experiment is conducted with Differential Evolution algorithm. Extensive
experimentation was conducted with both the regular and irregular QAP problems.
Comaprison is done with the DE heuristic without clustering [11].

The operational parameters of DE are given in Table 9.4.

Table 9.4: DE operational values

Parameter Value

Strategy DE/rand/2/bin
CR 0.9
F 0.3
Population 500 - 1000
Generation 500 - 1000

The first part of the results is on the irregular QAP instances. The results are pre-
sented in Table 9.5. The columns represent the name of the problem, its flow domi-
nance, problem size, optimal reported value, DE result and DE with clustering result.

Table 9.5: Clustered DE Irregular QAP comparison

Instant fd n Optimal DE DEclust

bur26a 2.75 26 5246670 0.006 0
bur26b 2.75 26 3817852 0.0002 0
bur26c 2.29 26 5426795 0.00005 0
bur26d 2.29 26 3821225 0.0001 0
bur26e 2.55 26 5386879 0.0002 0
bur26f 2.55 26 3782044 0.000001 0
bur26g 2.84 26 10117172 0.0001 0
bur26h 2.84 26 7098658 0.0001 0
chr25a 4.15 26 3796 0.227 0.07
els19 5.16 19 17212548 0.0007 0
kra30a 1.46 30 88900 0.0328 0.024
kra30b 1.46 30 91420 0.0253 0.015
tai20b 3.24 20 122455319 0.0059 0
tai25b 3.03 25 344355646 0.003 0
tai30b 3.18 30 637117113 0.0239 0
tai35b 3.05 35 283315445 0.0101 0.002
tai40b 3.13 40 637250948 0.027 0
tai50b 3.1 50 458821517 0.001 0
tai60b 3.15 60 608215054 0.0144 0.012
tai80b 3.21 80 818415043 0.0287 0.014
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Comparing the results of DE and DEclust , it is easy to see that DEclust performs
better than DE. Of the 8 burxx instances, the optimal result is obatined for all instances.
On the kraxx and taixx instances, DEclust outperforms DE marginally.

The second part of the results is on the regular QAP instances as given in Table 9.6.

Table 9.6: Clustered DE Regular QAP comparison

Instant fd n Optimal DE DEclust

nug20 0.99 20 2570 0.018 0
nug30 1.09 30 6124 0.005 0
sko42 1.06 42 15812 0.009 0
sko49 1.07 49 23386 0.009 0
sko56 1.09 56 34458 0.012 0
sko64 1.07 64 48498 0.013 0.006
sko72 1.06 72 66256 0.011 0.007
sko81 1.05 81 90998 0.011 0.01
tai20a 0.61 20 703482 0.037 0
tai25a 0.6 25 1167256 0.026 0
tai30a 0.59 30 1818146 0.018 0
tai35a 0.58 35 2422002 0.038 0
tai40a 0.6 40 3139370 0.032 0.019
tai50a 0.6 50 4941410 0.033 0.026
tai60a 0.6 60 7208572 0.037 0.012
tai80a 0.59 80 13557864 0.031 0.021
wil50 0.64 50 48816 0.004 0

DEclust outperfoms DE in regular QAP instances. It manages to find 10 optimal
instances out of the 16 tested. Of the remaining 6, DEclust obtains close to 0.01% to the
optimal.

9.1.3 Self Organising Migration Algorithm Results
The third and final experiment was conducted with SOMA. The operational parameters
of SOMA is given in Table 9.7.

Table 9.7: SOMA operational values
Parameter Value

Strategy All-to-All
Step Size 0.21
PathLength 3
Population 500 - 1000
Migration 500 - 1000

The results are compared with those of SOMA without clustering of [13] and is
given in Table 9.8.

The results of clustered SOMA with regular problems is given in Table 9.9.
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Table 9.8: Clustered SOMA Irregular QAP comparison

Instant fd n Optimal SOMA SOMAclust

bur26a 2.75 26 5246670 0 0
bur26b 2.75 26 3817852 0 0
bur26c 2.29 26 5426795 0 0
bur26d 2.29 26 3821225 0 0
bur26e 2.55 26 5386879 0 0
bur26f 2.55 26 3782044 0.03 0.01
bur26g 2.84 26 10117172 0 0
bur26h 2.84 26 7098658 0 0
chr25a 4.15 26 3796 0.129 0.10
els19 5.16 19 17212548 0 0
kra30a 1.46 30 88900 0.002 0.002
kra30b 1.46 30 91420 0.03 0.027
tai20b 3.24 20 122455319 0.004 0
tai25b 3.03 25 344355646 0 0
tai30b 3.18 30 637117113 0.043 0
tai35b 3.05 35 283315445 0 0
tai40b 3.13 40 637250948 0.02 0
tai50b 3.1 50 458821517 0.2 0.2
tai60b 3.15 60 608215054 0.5 0.2
tai80b 3.21 80 818415043 0.8 0.4

Table 9.9: Clustered SOMA Regular QAP comparison

Instant fd n Optimal SOMA SOMAclust

nug20 0.99 20 2570 0 0
nug30 1.09 30 6124 0.02 0
sko42 1.06 42 15812 0.01 0
sko49 1.07 49 23386 0.005 0
sko56 1.09 56 34458 0.01 0
sko64 1.07 64 48498 0.06 0.02
sko72 1.06 72 66256 0.2 0.04
sko81 1.05 81 90998 0.35 0.05
tai20a 0.61 20 703482 0 0
tai25a 0.6 25 1167256 0 0
tai30a 0.59 30 1818146 0.01 0
tai35a 0.58 35 2422002 0.03 0
tai40a 0.6 40 3139370 0.623 0.58
tai50a 0.6 50 4941410 0.645 0.42
tai60a 0.6 60 7208572 0.62 0.62
tai80a 0.59 80 13557864 1.05 0.95
wil50 0.64 50 48816 0 0

9.2 Analysis
Comparison of the obtained results is done with some published heuristics. The first
comparison is done with the irregular QAP instances. The two best performing results
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of DEclust and SOMAclust is compared with the Improved Hybrid Genetic Algorithm of
[29] shown as GA1 and the highly refereed Ant Colony approach of [18] given as HAS
in Table 9.10.

Table 9.10: Irregular QAP comparison

Instant fd n Optimal GA1 HAS DEclust SOMAclust

bur26a 2.75 26 5246670 - 0 0 0
bur26b 2.75 26 3817852 - 0 0 0
bur26c 2.29 26 5426795 - 0 0 0
bur26d 2.29 26 3821225 - 0 0 0
bur26e 2.55 26 5386879 - 0 0 0
bur26f 2.55 26 3782044 - 0 0 0.01
bur26g 2.84 26 10117172 - 0 0 0
bur26h 2.84 26 7098658 - 0 0 0
chr25a 4.15 26 3796 - 3.082 0.07 0.10
els19 5.16 19 17212548 - 0 0 0
kra30a 1.46 30 88900 0 0.629 0.024 0.002
kra30b 1.46 30 91420 0 0.071 0.015 0.027
tai20b 3.24 20 122455319 - 0.091 0 0
tai25b 3.03 25 344355646 - 0 0 0
tai30b 3.18 30 637117113 - 0 0 0
tai35b 3.05 35 283315445 - 0.025 0.002 0
tai40b 3.13 40 637250948 - 0 0 0
tai50b 3.1 50 458821517 - 0.192 0 0.2
tai60b 3.15 60 608215054 - 0.048 0.012 0.2
tai80b 3.21 80 818415043 - 0.667 0.014 0.4

The best perfomring algorithm is DEclust which obtains the best comparitive result
in 17 out of 20 problem instances. SOMAclust obtains the best results in 13 instances
and HAS in 12 instances. The hybrid Genetic Algorithm appproach however is able to
find the optimal result in the two instances that it is applied, where the other heuristics
are not so effective. For the larger size problems,DEclust proves to be a better optimizer.

The second set of comparison is done with the regular QAP instances. Comparison
of the clustered SOMA and DE is done with the GA (GA1) approach of [29], greedy GA
(GAGreedy) of [1], GA (GA2) of [17], Simulated Annealing algorithm (TB2M) of [4],
Robust Tabu Search (RTS) of [43], Combined Simulated Annealing and Tabu Search
(IA-SA-TS) of [31] and Ant Colony (HAS) of [18]. The results are given in Table 9.11.

As with the irregular problem, DEclust is the best performing algorithm. It man-
ages to find the best value in 16 out of 17 instances, of which 10 are optimal values.
SOMAclust is the second best heuristic with 10 best solutions, all of which are optimal
values of those particular problems.

The DE results of this chapter have been published in [15] and the PSOMA results
have been published in [16].
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Table 9.11: Regular QAP comparison

Instant fd n Optimal GA1 GAGreedy GA2 TB2M RTS IA-SA-
TS

HAS DEclust SOMAclust

nug20 0.99 20 2570 - - - - - - 0 0 0
nug30 1.09 30 6124 0 0.07 0 0.94 0.73 0.52 0.098 0 0
sko42 1.06 42 15812 0 0.250 0 0.66 1.03 0.46 0.076 0 0
sko49 1.07 49 23386 0.038 0.210 0.009 0.67 0.54 0.46 0.141 0 0
sko56 1.09 56 34458 0 0.02 0.001 0.66 0.53 0.50 0.101 0 0
sko64 1.07 64 48498 0 0.22 0 0.57 0.93 0.45 0.504 0.006 0.02
sko72 1.06 72 66256 0.042 0.29 0.014 0.60 0.52 0.48 0.702 0.007 0.04
sko81 1.05 81 90998 0.067 0.2 0.014 0.46 0.41 0.40 0.493 0.01 0.05
tai20a 0.61 20 703482 - - - - - - 0.675 0 0
tai25a 0.6 25 1167256 - - - - - - 1.189 0 0
tai30a 0.59 30 1818146 - - - - - - 1.311 0 0
tai35a 0.58 35 2422002 - - - - - - 1.762 0 0
tai40a 0.6 40 3139370 - - - - - - 1.989 0.019 0.58
tai50a 0.6 50 4941410 - - - - - - 2.8 0.026 0.42
tai60a 0.6 60 7208572 - - - - - - 0.313 0.012 0.62
tai80a 0.59 80 13557864 - - - - - - 1.108 0.021 0.95
wil50 0.64 50 48816 0.028 0.07 0.002 0.25 0.55 0.16 0.061 0 0
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Chapter 10

Capacitated Vehicle Routing
Problem

The Vehicle Routing Problem (VRP) introduced for the first time by [7] is a complex
combinatorial optimization problem, which can be seen as a merge of two well-known
problems: the Traveling Salesperson Problem (TSP) and the Bin Packing Problem
(BPP).

It can simply be described as follows: given a fleet of vehicles with uniform capac-
ity, a common depot, and several costumer demands, find the set of routes with overall
minimum route cost which service all the demands.

Assume a quantity di of a single commodity which is to be delivered to each cus-
tomer i∈N = {1, ...,n} from a central depot {0} using k independent delivery vehicles
of identical capacity C . Delivery is to be accomplished at minimum total cost, with
ci j ≥ 0 denoting the transit cost from i to j , for 0 ≤ i, j ≤ n. The cost structure is
assumed symmetric, i.e., ci j = c ji and cii = 0.

Combinatorially, a solution for this problem consists of a partition ofN into k routes
{R1, ....,Rk}, each satisfying ∑ j∈Rid j ≤C, and a corresponding permutation σi of each
route specifying the service ordering. This problem is naturally associated with the
complete undirected graph consisting of nodes N ∪{0}, edges E, and edge-traversal
costs ci j,{i, j} ∈ E. In this graph, a solution is the union of k cycles whose only
intersection is the depot node. Each cycle corresponds to the route serviced by one
of the k vehicles. By associating a binary variable with each edge in the graph, the
following integer programming formulation is obtained:

min ∑
e∈E

cexe

∑
e={0, j}∈E

xe = 2k (10.1)

∑
e={i, j}∈E

xe = 2 ∀i ∈ N (10.2)

∑
e={i, j}∈E
i∈S, j/∈S

xe ≥ 2b(S) ∀S⊂ N, |S| > 1 (10.3)

0≤ xe ≤ 1 ∀e= {i, j} ∈ E, i, j (= 0 (10.4)

92



0≤ xe ≤ 2 ∀e= {0, j} ∈ E (10.5)

xe integral ∀e ∈ E (10.6)

For ease of computation, b(S) =
⌈

(∑ i∈Sdi)
C

⌉
is defined as an obvious lower bound

on the number of trucks needed to service the customers in set S. Constraints 10.1
and 10.2 are the degree constraints. Constraints 10.3 is a generalization of the subtour
elimination constraints from the TSP and serves to enforce the connectivity of the so-
lution, as well as to ensure that no route has total demand exceeding the capacity C .
A (possibly) stronger inequality may be obtained by computing the solution to a Bin
Packing Problem (BPP) with the customer demands in set S being packed into bins of
sizeC. Equation 10.3 is the capacity constraints.

It is clear from the description that the VRP is closely related to two difficult com-
binatorial problems. By setting C = ∞, the Multiple Traveling Salesman Problem
(MTSP) is obtained. An MTSP instance can be transformed into an equivalent TSP
instance by adjoining to the graph k− 1 additional copies of node 0 and its incident
edges (there are no edges among the k depot nodes). On the other hand, the question of
whether there exists a feasible solution for a given instance of the VRP is an instance
of the BPP. The decision version of this problem is conceptually equivalent to a VRP
model in which all edge costs are taken to be zero (so that all feasible solutions have
the same cost). Hence, the first transformation can be seen as the relaxing the underly-
ing packing (BPP) structure and the second transformation as relaxing the underlying
routing (TSP) structure. A feasible solution to the full problem is a TSP tour (in the
expanded graph) that also satisfies the packing constraints (i.e., that the total demand
along each of the k segments joining successive copies of the depot does not exceed
C).

Because of the interplay between the two underlying models, instances of the Vehi-
cle Routing Problem can be extremely difficult to solve in practice. In fact, the largest
solvable instances of the VRP are two orders of magnitude smaller than those of the
TSP. Exact solution of the VRP thus presents an interesting challenge.
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10.1 Experimentation
As with all the other problem classes, experimentation for CVRP was done in two
parts.

The first section describes the evaluation of EDE with the Taillard benchmark sets
alongside that of clustered DE.

The second section outlines the procedure with P-SOMA.
The control parameters of the clustered population for both are given in Table 10.1.

Table 10.1: Population operating parameters

Parameter Value

Psize 200 - 400
Generations > 250/SP
Clusters 4
CA > 0.1

The control parameters of SOMA and DE are presented in Table 10.2 and Table
10.3.

Table 10.2: P-SOMA operating parameters

Parameter Range

MinJ Dynamic
MaxJ (0.2 - 0.5) x Problem size
Version All-to-One

Table 10.3: DE operating parameters

Parameter Value

F 0.6
CR 0.1

All parameters in Table 10.2 and Table 10.3 were obtained numerically.
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10.1.1 Differential Evolution Algorithm
A total of 12 problems of the Taillard sets have been experimented. Three different sets
exist of four instances of size 75, 100 and 150. The results of canonical and clustered
DE are given in Tables 10.4 - 10.6. The bolded values are the best results for that
particular instance. The average and standard deviation values are also provided.

Table 10.4: DE VRP 75 tour result
Instance n Optimal DE DEclust

Tai75a 75 1618.36 1.391 1.065
Tai75b 75 1344.62 0.955 0.828
Tai75c 75 1291.01 1.401 1.168
Tai75d 75 1365.24 1.258 0.825

Average 1.251 0.972
Std Dev 0.208 0.172

Table 10.5: DE VRP 100 tour result
Instance n Optimal DE DEclust

Tai100a 100 2041.34 1.562 1.294
Tai100b 100 1940.61 1.579 1.173
Tai100c 100 1406.2 1.475 1.419
Tai100d 100 1581.25 1.556 1.170

Average 1.543 1.264
Std Dev 0.046 0.118

Table 10.6: DE VRP 150 tour result
Instance n Optimal DE DEclust

Tai150a 150 3055.23 2.184 2.055
Tai150b 150 2656.47 2.204 1.833
Tai150c 150 2341.84 1.991 1.904
Tai150d 150 2645.39 2.225 1.688

Average 2.150 1.870
Std Dev 0.107 0.152

The clustered approach of DE, DEclust is the better performing heuristic, obtaining
the better value for each problem instance.
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10.1.2 Permutative Self Organising Migrating Algorithm
An identical experimentation procedure as the the one described for DE was conducted
for PSOMA. The results are tabulated in Tables 10.7 - 10.9, grouped in accordance to
their sizes.

Table 10.7: PSOMA VRP 75 tour result
Instance n Optimal PSOMA PSOMAclust

Tai75a 75 1618.36 0.932 0.928
Tai75b 75 1344.62 1.005 0.754
Tai75c 75 1291.01 1.214 1.181
Tai75d 75 1365.24 1.104 0.950

Average 1.064 0.953
Std Dev 0.122 0.175

Table 10.8: PSOMA VRP 100 tour result
Instance n Optimal PSOMA PSOMAclust

Tai100a 100 2041.34 1.688 1.144
Tai100b 100 1940.61 1.605 1.467
Tai100c 100 1406.2 1.699 1.414
Tai100d 100 1581.25 1.476 1.459

Average 1.617 1.371
Std Dev 0.103 0.152

Table 10.9: PSOMA VRP 150 tour result
Instance n Optimal PSOMA PSOMAclust

Tai150a 150 3055.23 2.146 1.772
Tai150b 150 2656.47 2.479 2.217
Tai150c 150 2341.84 2.145 1.962
Tai150d 150 2645.39 2.102 1.743

Average 2.218 1.924
Std Dev 0.175 0.218

As with DEclust , the clustered approach of PSOMAclust is the better performing
heuristic, finding better values in all problem instances.
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10.2 Analysis
The analysis is done with DEclust and PSOMAclust for the VRP. The results are given
in Tables 10.10 - 10.12.

Table 10.10: DEclust PSOMAclust VRP 75 tour result comparison

Instance n Optimal DEclust PSOMAclust

Tai75a 75 1618.36 1.065 0.928
Tai75b 75 1344.62 0.828 0.754
Tai75c 75 1291.01 1.168 1.181
Tai75d 75 1365.24 0.825 0.950

Average 0.972 0.953
Std Dev 0.172 0.175

Table 10.11: DEclust PSOMAclust VRP 100 tour result comparison

Instance n Optimal DEclust PSOMAclust

Tai100a 100 2041.34 1.294 1.144
Tai100b 100 1940.61 1.173 1.467
Tai100c 100 1406.2 1.419 1.414
Tai100d 100 1581.25 1.170 1.459

Average 1.264 1.371
Std Dev 0.118 0.152

Table 10.12: DEclust PSOMAclust VRP 150 tour result comparison

Instance n Optimal DEclust PSOMAclust

Tai150a 150 3055.23 2.055 1.772
Tai150b 150 2656.47 1.833 2.217
Tai150c 150 2341.84 1.904 1.962
Tai150d 150 2645.39 1.688 1.743

Average 1.870 1.924
Std Dev 0.152 0.218

The results are almost evenly split between DEclust and PSOMAclust . PSOMAclust
obtains 5 out of 12 better results and DEclust obtains 7 out of 12. However, DEclust is
a better performing heuristic in the larger problem instances, with better average and
standard deviation values.
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Chapter 11

Job Shop Scheduling

A job shop problem (JSP) is different from a flow shop scheduling problem, in which
all job follow the same route. In the JSP, the route of the job is fixed, however not
necessarily the same for each job. If a job has to visit certain machines more than once,
the job is said to recirculate [36]. This chapter deals with jobs which do not recirculate.
The problem designation is

Jm ‖Cmax
The JSP can be described by a set of n jobs {Ji}1≤ j≤n which is to be processed on a set
of m machines {Mr}1≤r≤m. The problem can be characterized as follows:

1. Each job must be processed on each machine in the order given in a pre-defined
technological sequence of machines.

2. Each machine can process only one job at a time.

3. The processing of job Jj on machine Mr is called the operation Ojr.

4. Operation Ojr requires the exclusive use ofMr for an uninterrupted duration p jr,
its processing time; the preemption is not allowed.

5. The starting time and the completion time of an operation Ojr is denoted as s jr
and c jr respectively. A schedule is a set of completion times for each operation{
c jr

}
1≤ j≤n,1≤r≤m that satisfies above constraints.

6. The time required to complete all the jobs is called the makespan, which is de-
noted asCmax. By definition,Cmax =max1≤ j≤n,1≤r≤m c jr.

The problem is “general”, in the sense that the technological sequence of machines
can be different for each job as implied in the first condition and that the order of jobs
to be processed on a machine can be also different for each machine. The predefined
technological sequence of each job can be given collectively as a matrix

{
Tjk

}
in which

Tjk = r corresponds to the k-th operation Ojr of job Ji on machine Mr. The objective
of optimizing the problem is to find a schedule that minimizesCmax [49].

11.1 Experimentation
The experiment is conducted on the Taillard benchmark Jobshop scheduling instances
[45]. A total of 80 problem instances are available, ranging from 15 job - 15 machine
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to 100 job - 20 machine problems. The results is presented as the increment on the
lower bound provided by Taillard [45]. The equation is given as

Δ =
(H−U)

U
(11.1)

where H is the obtained value andU is the lower bound provided by [45].
The simulations were done in two parts; the first with DE and the second with

PSOMA. As with all experiments, two phases of experiment was done with each algo-
rithm, the first with permutative version and the second with the clustered version. The
results are given in the subsequent sections.

The control parameters of PSOMA and DE are presented in Table 11.1 and Table
11.2.

Table 11.1: P-SOMA operating parameters

Parameter Range

MinJ Dynamic
MaxJ (0.2 - 0.5) x Problem size
Version All-to-One

Table 11.2: DE operating parameters

Parameter Value

F 0.7
CR 0.1

All parameters in Table 10.2 and Table 10.3 were obtained numerically.

11.1.1 Differential Evolution Algorithm
The results obtained for the JSS Taillard instances is given in Tables 11.3 - 11.10.
The instances are grouped in respect to their sizes. The bolded values are the better
performing heuristic. In addition, the average and standard deviation values are also
provided for each problem size.

As with all other experimentation, the reinforced clustered approach of DEclust is
the better performing heuristic. However, the canonical approach of DE manages to
find similar values in a number of instances.
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Table 11.3: 15 job 15 machine Jm ‖Cmax
Instance Optimal DE DEclust

Tai01 1231 0.451 0.408
Tai02 1244 0.392 0.392
Tai03 1218 0.492 0.404
Tai04 1175 0.549 0.470
Tai05 1224 0.503 0.376
Tai06 1238 0.330 0.330
Tai07 1227 0.424 0.374
Tai08 1217 0.451 0.391
Tai09 1274 0.343 0.343
Tai10 1241 0.411 0.396

Table 11.4: 20 job 15 machine Jm ‖Cmax
Instance Optimal DE DEclust

Tai11 1359 0.641 0.538
Tai12 1367 0.691 0.536
Tai13 1342 0.503 0.425
Tai14 1345 0.552 0.446
Tai15 1339 0.525 0.51
Tai16 1360 0.525 0.513
Tai17 1462 0.501 0.408
Tai18 1396 0.437 0.437
Tai19 1335 0.431 0.431
Tai20 1348 0.567 0.526

Table 11.5: 20 job 20 machine Jm ‖Cmax
Instance Optimal DE DEclust

Tai21 1644 0.470 0.427
Tai22 1600 0.635 0.443
Tai23 1557 0.597 0.489
Tai24 1646 0.530 0.495
Tai25 1595 0.457 0.396
Tai26 1645 0.524 0.424
Tai27 1680 0.535 0.457
Tai28 1603 0.577 0.487
Tai29 1625 0.530 0.530
Tai30 1584 0.506 0.506

Table 11.6: 30 job 15 machine Jm ‖Cmax
Instance Optimal DE DEclust

Tai31 1764 0.434 0.434
Tai32 1795 0.555 0.535
Tai33 1791 0.572 0.549
Tai34 1829 0.473 0.428
Tai35 2007 0.425 0.414
Tai36 1819 0.597 0.435
Tai37 1771 0.570 0.556
Tai38 1673 0.605 0.571
Tai39 1795 0.484 0.469
Tai40 1674 0.676 0.502

Table 11.7: 30 job 20 machine Jm ‖Cmax
Instance Optimal DE DEclust

Tai41 2018 0.656 0.601
Tai42 1949 0.698 0.573
Tai43 1858 0.606 0.606
Tai44 1983 0.560 0.560
Tai45 2000 0.604 0.554
Tai46 2015 0.789 0.563
Tai47 1903 0.710 0.609
Tai48 1949 0.690 0.589
Tai49 1967 0.593 0.560
Tai50 1926 0.682 0.645

Table 11.8: 50 job 15 machine Jm ‖Cmax
Instance Optimal DE DEclust

Tai51 2760 0.419 0.419
Tai52 2756 0.458 0.394
Tai53 2717 0.385 0.364
Tai54 2839 0.357 0.308
Tai55 2679 0.478 0.458
Tai56 2781 0.436 0.372
Tai57 2943 0.397 0.310
Tai58 2885 0.431 0.383
Tai59 2655 0.458 0.437
Tai60 2723 0.349 0.349
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Table 11.9: 50 job 20 machine Jm ‖Cmax
Instance Optimal DE DEclust

Tai61 2868 0.484 0.484
Tai62 2869 0.719 0.537
Tai63 2755 0.704 0.590
Tai64 2702 0.608 0.559
Tai65 2725 0.676 0.558
Tai66 2845 0.571 0.571
Tai67 2825 0.605 0.530
Tai68 2784 0.519 0.496
Tai69 3071 0.501 0.438
Tai70 2995 0.512 0.445

Table 11.10: 100 job 20 machine Jm ‖Cmax
Instance Optimal DE DEclust

Tai71 5464 0.571 0.567
Tai72 5181 0.568 0.514
Tai73 5568 0.586 0.586
Tai74 5339 0.574 0.551
Tai75 5392 0.610 0.602
Tai76 5342 0.624 0.598
Tai77 5436 0.637 0.615
Tai78 5394 0.641 0.632
Tai79 5358 0.633 0.620
Tai80 5183 0.681 0.667
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11.1.2 Permutative Self Organising Migrating Algorithm
PSOMA was also subjected to the same problem instances as DE. The results are iden-
tically grouped in Tables 11.11 - 11.18, according to the problem sizes.

Table 11.11: 15 job 15 machine Jm ‖Cmax
Instance Optimal PSOMA PSOMAclust

Tai01 1231 0.597 0.542
Tai02 1244 0.666 0.549
Tai03 1218 0.496 0.496
Tai04 1175 0.714 0.660
Tai05 1224 0.615 0.602
Tai06 1238 0.584 0.560
Tai07 1227 0.475 0.475
Tai08 1217 0.675 0.591
Tai09 1274 0.658 0.585
Tai10 1241 0.560 0.480

Table 11.12: 20 job 15 machine Jm ‖Cmax
Instance Optimal PSOMA PSOMAclust

Tai11 1359 0.598 0.538
Tai12 1367 0.536 0.536
Tai13 1342 0.425 0.425
Tai14 1345 0.500 0.446
Tai15 1339 0.510 0.510
Tai16 1360 0.608 0.513
Tai17 1462 0.479 0.408
Tai18 1396 0.488 0.488
Tai19 1335 0.495 0.459
Tai20 1348 0.526 0.526

Table 11.13: 20 job 20 machine Jm ‖Cmax
Instance Optimal PSOMA PSOMAclust

Tai21 1644 0.781 0.718
Tai22 1600 0.750 0.750
Tai23 1557 0.800 0.768
Tai24 1646 0.730 0.673
Tai25 1595 0.763 0.638
Tai26 1645 0.771 0.740
Tai27 1680 0.863 0.764
Tai28 1603 0.728 0.719
Tai29 1625 0.833 0.720
Tai30 1584 0.777 0.777

Table 11.14: 30 job 15 machine Jm ‖Cmax
Instance Optimal PSOMA PSOMAclust

Tai31 1764 0.830 0.689
Tai32 1795 0.810 0.810
Tai33 1791 0.860 0.733
Tai34 1829 0.724 0.715
Tai35 2007 0.607 0.569
Tai36 1819 0.794 0.772
Tai37 1771 0.884 0.817
Tai38 1673 0.866 0.755
Tai39 1795 0.711 0.711
Tai40 1674 0.871 0.836
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Table 11.15: 30 job 20 machine Jm ‖Cmax
Instance Optimal PSOMA PSOMAclust

Tai41 2018 0.910 0.877
Tai42 1949 0.877 0.877
Tai43 1858 0.959 0.948
Tai44 1983 0.935 0.891
Tai45 2000 0.852 0.795
Tai46 2015 0.906 0.849
Tai47 1903 0.849 0.849
Tai48 1949 0.850 0.813
Tai49 1967 0.891 0.828
Tai50 1926 0.995 0.886

Table 11.16: 50 job 15 machine Jm ‖Cmax
Instance Optimal PSOMA PSOMAclust

Tai51 2760 0.716 0.702
Tai52 2756 0.643 0.643
Tai53 2717 0.661 0.621
Tai54 2839 0.535 0.535
Tai55 2679 0.690 0.690
Tai56 2781 0.675 0.675
Tai57 2943 0.586 0.574
Tai58 2885 0.658 0.658
Tai59 2655 0.732 0.717
Tai60 2723 0.614 0.614

Table 11.17: 50 job 20 machine Jm ‖Cmax
Instance Optimal PSOMA PSOMAclust

Tai61 2868 0.801 0.801
Tai62 2869 0.808 0.808
Tai63 2755 0.849 0.840
Tai64 2702 0.847 0.830
Tai65 2725 0.896 0.875
Tai66 2845 0.813 0.794
Tai67 2825 0.900 0.856
Tai68 2784 0.880 0.806
Tai69 3071 0.789 0.676
Tai70 2995 0.824 0.795

Table 11.18: 100 job 20 machine Jm ‖Cmax
Instance Optimal PSOMA PSOMAclust

Tai71 5464 0.721 0.679
Tai72 5181 0.716 0.682
Tai73 5568 0.714 0.644
Tai74 5339 0.695 0.597
Tai75 5392 0.668 0.650
Tai76 5342 0.675 0.627
Tai77 5436 0.632 0.623
Tai78 5394 0.697 0.663
Tai79 5358 0.675 0.675
Tai80 5183 0.625 0.618

The clustered approach of PSOMAclust is the better performing heuristic. It mana-
gaes to find the better value for every instance, however, on some occasions it is unable
to improve on the result of the canonical version of PSOMA.
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11.2 Analysis
Comparison was done between the clustered approach of DEclust and PSOMAclust . The
results are given in Tables 11.19 - 11.26 and the comparison result is given in Table
11.27. DEclust is by far the better performing heuristic of the two, managing to find
better values for all problem classes. It also manages to find better average and devia-
tion values for the instances.

Table 11.19: 15 job 15 machine Jm ‖Cmax
Instance Optimal DEclust PSOMAclust

Tai01 1231 0.408 0.542
Tai02 1244 0.392 0.549
Tai03 1218 0.404 0.496
Tai04 1175 0.470 0.660
Tai05 1224 0.376 0.602
Tai06 1238 0.330 0.560
Tai07 1227 0.374 0.475
Tai08 1217 0.391 0.591
Tai09 1274 0.343 0.585
Tai10 1241 0.396 0.480

Average 1228.9 0.388 0.554
Std Dev 25.141 0.038 0.058

Table 11.20: 20 job 15 machine Jm ‖Cmax
Instance Optimal DEclust PSOMAclust

Tai11 1359 0.538 0.538
Tai12 1367 0.536 0.536
Tai13 1342 0.425 0.425
Tai14 1345 0.446 0.446
Tai15 1339 0.510 0.510
Tai16 1360 0.513 0.513
Tai17 1462 0.408 0.408
Tai18 1396 0.437 0.488
Tai19 1335 0.431 0.459
Tai20 1348 0.526 0.526

Average 1365.3 0.477 0.485
Std Dev 38.337 0.051 0.047

Table 11.21: 20 job 20 machine Jm ‖Cmax
Instance Optimal DEclust PSOMAclust

Tai21 1644 0.427 0.718
Tai22 1600 0.443 0.750
Tai23 1557 0.489 0.768
Tai24 1646 0.495 0.673
Tai25 1595 0.396 0.638
Tai26 1645 0.424 0.740
Tai27 1680 0.457 0.764
Tai28 1603 0.487 0.719
Tai29 1625 0.530 0.720
Tai30 1584 0.506 0.777

Average 1617.9 0.466 0.727
Std Dev 36.570 0.042 0.043

Table 11.22: 30 job 15 machine Jm ‖Cmax
Instance Optimal DEclust PSOMAclust

Tai31 1764 0.434 0.689
Tai32 1795 0.535 0.810
Tai33 1791 0.549 0.733
Tai34 1829 0.428 0.715
Tai35 2007 0.414 0.569
Tai36 1819 0.435 0.772
Tai37 1771 0.556 0.817
Tai38 1673 0.571 0.755
Tai39 1795 0.469 0.711
Tai40 1674 0.502 0.836

Average 1791.8 0.489 0.741
Std Dev 92.886 0.060 0.078
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Table 11.23: 30 job 20 machine Jm ‖Cmax
Instance Optimal DEclust PSOMAclust

Tai41 2018 0.601 0.877
Tai42 1949 0.573 0.877
Tai43 1858 0.606 0.948
Tai44 1983 0.560 0.891
Tai45 2000 0.554 0.795
Tai46 2015 0.563 0.849
Tai47 1903 0.609 0.849
Tai48 1949 0.589 0.813
Tai49 1967 0.560 0.828
Tai50 1926 0.645 0.886

Average 1956.8 0.586 0.861
Std Dev 51.115 0.029 0.044

Table 11.24: 50 job 15 machine Jm ‖Cmax
Instance Optimal DEclust PSOMAclust

Tai51 2760 0.419 0.702
Tai52 2756 0.394 0.643
Tai53 2717 0.364 0.621
Tai54 2839 0.308 0.535
Tai55 2679 0.458 0.690
Tai56 2781 0.372 0.675
Tai57 2943 0.310 0.574
Tai58 2885 0.383 0.658
Tai59 2655 0.437 0.717
Tai60 2723 0.349 0.614

Average 2773.8 0.379 0.643
Std Dev 91.111 0.049 0.058

Table 11.25: 50 job 20 machine Jm ‖Cmax
Instance Optimal DEclust PSOMAclust

Tai61 2868 0.484 0.801
Tai62 2869 0.537 0.808
Tai63 2755 0.590 0.840
Tai64 2702 0.559 0.830
Tai65 2725 0.558 0.875
Tai66 2845 0.571 0.794
Tai67 2825 0.530 0.856
Tai68 2784 0.496 0.806
Tai69 3071 0.438 0.676
Tai70 2995 0.445 0.795

Average 2843.9 0.521 0.808
Std Dev 116.303 0.052 0.054

Table 11.26: 100 job 20 machine Jm ‖Cmax
Instance Optimal DEclust PSOMAclust

Tai71 5464 0.576 0.679
Tai72 5181 0.514 0.682
Tai73 5568 0.586 0.644
Tai74 5339 0.551 0.597
Tai75 5392 0.602 0.650
Tai76 5342 0.598 0.627
Tai77 5436 0.615 0.623
Tai78 5394 0.632 0.663
Tai79 5358 0.620 0.675
Tai80 5183 0.667 0.618

Average 5365.7 0.594 0.646
Std Dev 118.251 0.043 0.229

Table 11.27: DEclust and PSOMAclust summerised results for Jm ‖Cmax
Instance Δavg Δstd

job mach DEclust PSOMAclust DEclust PSOMAclust

15 15 0.388 0.554 0.038 0.058
20 15 0.477 0.485 0.051 0.047
20 20 0.466 0.727 0.042 0.043
30 15 0.489 0.741 0.060 0.078
30 20 0.586 0.861 0.029 0.044
50 15 0.379 0.643 0.049 0.058
50 20 0.521 0.808 0.052 0.054
100 20 0.594 0.646 0.043 0.229

105



Chapter 12

Analysis and Conclusions

12.1 Population Dynamics
In terms of population dynamics, two unique population representations are given. The
first set of results are for the QAP problem of “Bur26a”, which is first solved byDEclust
and the by PSOMAclust .

For each set, four graphs are presented, the first two are the initial and final popu-
lation in “deviation” space. The third is the “Edge” representation and the final is the
“best solution” in the population.

The initial popualtion for the DEclust is given in Figure 12.1.
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Figure 12.1: Initial Population Clustering for DEclust

The final population clustering is given in Figure 12.2.
The deviation of the solutions is from 1 - 2.75 in the initial population and 5 - 10 in

the final population. This shows a drift of the solutions in the deviation space. Another
point of interest is that the solutions are still diversified in their structure. The solu-
tions within the clusters have converged, however the overall diversity is maintained
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Figure 12.2: Final Population Clustering for DEclust

within the population. This opens more oppertunity to obtain better solutions in next
generations.

The Edge CE of the population throughout the population generation (in this case,
200 generations) for DEclust is given in Figure 12.3.
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Figure 12.3: Edge for DEclust

A general decline of the spread of the clusters and fitness values is seen. This is
typical for a minimising function.

The final graph of the best individual is seen in Figure 12.4.
A direct correlation is seen between the graphs of Edge and Best Individual. The

Edge is a prelude to a shift in solution space. A shift generally signifies a region of
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Figure 12.4: Best Individual for DEclust

new solutions, and possibiltiy of further improvement.
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A second set of results for the QAP for PSOMAclust is given in Figures 12.5 to
12.8. Figures 12.5 and 12.6 give the initial and final solution represenataion in terms
of deviation. As seen for the DEclust , the solution remains diversified for the entirity of
the generation. The solution also drift in the deviation space from 2.75 to 8, signifying
exploration of the solution space.
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Figure 12.5: Initial Population Clustering for PSOMAclust
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Figure 12.6: Final Population Clustering for PSOMAclust

The “Edge” and “Best Individual” graphs are given in Figures 12.7 and 12.8. As
with the DEclust , a correlation is seen with the Edge and Best Individual. The Edge is
seen as a prelude to the exploration space. The measure of the population provides an
indicator as to the shift in the best solution in the population.
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Figure 12.7: Edge for PSOMAclust
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Figure 12.8: Best Individual for PSOMAclust
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The final set of population dynamics is given for the flowshop scheduling problem
of Tai01 in Figures 12.9 to 12.12. The applied heuristic is DEclust . This provides a
comparison with another problem class from QAP.

The initial and final solution representation is given in Figures 12.9 and 12.10. As
with the representation for QAP, a shift in the deviation space is seen for the population.
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Figure 12.9: Initial Population Clustering for FSS
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Figure 12.10: Final Population Clustering for FSS

The Edge and Best Individual graphs are also correlated. The Edge graph in Figure
12.11 is a representation of a more hapharzard system. The increase in value is an
indication of “stagnation” of the system, where new selection criteria are envoked in
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order to bypass local optima region. Another indicatior is that even though the Best
Individual in Figure 12.12 levels off at generation 45, the Edge graph shows active
search indications right up to generation 85.
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Figure 12.11: Edge for FSS
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Figure 12.12: Best Individual for FSS
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12.2 Conclusion
From the obtained results, it is evident that clustering of the population improves the
performance of the applied heuristics. An effort has been made during this research to
have a generic form of the clustering, which in effect can be applied to any canonical
heuristic.

Clustering can be seen as a tool for the diversification of the solution, and not
for propagation. It in effect ensures that unique indicatiors are utilized in order to
facilitate the non-convergence of the population. During the initial experimentation
it was observed that simple arithematic operators such as “deviation” and “spread”
performed exceptionally for the permutative based combinatorial problems.

Clustering inexorably includes new selection and deletion criteria, which aid and
abeit the drift of the clusters in the deviation space.

In order to validate the clustering approach, two unique paradigm heuristical ap-
proaches of DE and SOMA have been utilised. For the premutative flowshop and
quadratic assignment problem, Genetic Algorithm (GA) has also been used to provide
completeness of the heuristics. DE is a “vector” oriented approach, whereas SOMA is
based on “swamp” paradigm.

A total of six unique permutative based combinatorial optimization problem classes
have been solved using the clustered approaches of SOMA and DE. In order to have
consistancy, the Taillard benchmark problem sets have been selected for all these
problems, alongside in some cases other problem classes. The Taillard sets are math-
ematically structured which reflect both problems with good varience and those which
reflect practical problem settings. These problems range from small to large in size and
difficulty [44].
Permutative flowshop is the generic version of flowshop, which has been solved

for a number of years. In this problem class, PSOMAclust performs exceptionally well
compared with the optimal solutions and other published heuristics.

The second version of flowshop, flowshop with limited intermediate storage or
flowshop wih blocking is a advanced version of flowshop which reflects a more practical
shop floor setting. DEclust is a better performing heuristic for this problem class.

The most current and technologically advanced version of flowshop is flowshop
with no-wait, where jobs do not wait between machines. This problem class is the most
challenging to solve, and has the most practical application in today’s manufacturing
systems. DEclust is the best performing heuristic for this problem class.

The fourth problem is that of quadratic assignment problem. Two unique in-
stances have been solved; regular and irregular. The QAP problem is reflected in
the “distance” and “flow” matrix approach with a number of practical applications.
PSOMAclust is the better performing heuristic in this problem class, compared with the
optimal values and other published heuristics.

The fifth problem is the capacitated vechicle routing problem. The CVRP prob-
lem is the combined problem of Traveling Salesman (TSP) and Bin Packing Problem
(BPP). The difficulty rating of this problem is twice that of TSP, with a more practical
setting. DEclust and PSOMAclust are equally impressive for this problem class, with
DEclust performing better for the larger sized instances.

The final problem is the job shop scheduling problem. JSS is one of the most chal-
lenging scheduling problem in manufacturing systems. DEclust is the better performing
heuristic for this problem class.

A total of 429 different problem instances have been used with up to 6 unique
heuristics. A minimum of 10 experimentation have been conducted for each instance.
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An approximate minimum of 10 million generation cycles have been done with an
approximate minimum of 200 million objective function evaluations conducted in order
to validate the clustered approach.

During the course of this research, five unique heuristics have been developed and
one heuristic expanded. The clustering approach is the main heuristical development
of this research. SOMA has been applied for the first time to permutative problem with
the development of Permutative Set Handling, Dynamic PSOMA and Static PSOMA.
Discrete Set Handling has been expanded to include permutative problems.

One of the most impressive feats of this research has been the relative exclusion of
“local search” heuristics from the evaluation of the heuristics. DE only incorportaes a 2
opt local search when stagnation is detected, which is very minimal, whereas PSOMA
does not incorporate any local search heuristics. This provides a novality to this ap-
proach since local search routines have become a hallmark for permutative heuristics
in recent years, to an extent that the true effectiveness of the underlying metaheuristics
are almost impossible to judge.

The results obtained through the extensive evaluation of the different problem classes
validate the clustered approach, and the developed permutative and clustered versions
of DE and SOMA.
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