Enabling SQL Server as a Vector Database for the Embedding Storage in the RAG Pattern
Zobrazit minimální záznam
| dc.contributor.advisor |
Beltran Prieto, Luis Antonio
|
|
| dc.contributor.author |
Bossman, Mickson Bonsu
|
|
| dc.date.accessioned |
2025-12-10T23:09:48Z |
|
| dc.date.available |
2025-12-10T23:09:48Z |
|
| dc.date.issued |
2024-10-27 |
|
| dc.identifier |
Elektronický archiv Knihovny UTB |
|
| dc.identifier.uri |
http://hdl.handle.net/10563/57686
|
|
| dc.description.abstract |
This thesis explores the feasibility of adapting Microsoft SQL Server to function as a vector database for high-dimensional embeddings within Retrieval-Augmented Generation (RAG) systems. Traditionally reliant on specialized vector databases, RAG pipelines benefit from semantic search over embeddings. The research proposes a novel approach by using SQL Server with JSON support and stored procedures to store and query embeddings generated via OpenAI's API. A full-stack prototype was implemented, combining SQL Server, FastAPI, Semantic Kernel, and Azure OpenAI services. The system retrieves relevant document chunks based on cosine similarity and feeds them into a language model to generate grounded responses. Evaluation shows SQL Server can achieve effective semantic retrieval with sub-second latency, offering a viable alternative for organizations leveraging existing relational infrastructure. |
|
| dc.format |
82 |
|
| dc.language.iso |
en |
|
| dc.publisher |
Univerzita Tomáše Bati ve Zlíně |
|
| dc.rights |
Bez omezení |
|
| dc.subject |
Retrieval-Augmented Generation
|
cs |
| dc.subject |
RAG
|
cs |
| dc.subject |
SQL server
|
cs |
| dc.subject |
vector database
|
cs |
| dc.subject |
Retrieval-Augmented Generation
|
en |
| dc.subject |
RAG
|
en |
| dc.subject |
SQL server
|
en |
| dc.subject |
vector database
|
en |
| dc.title |
Enabling SQL Server as a Vector Database for the Embedding Storage in the RAG Pattern |
|
| dc.title.alternative |
Enabling SQL Server as a Vector Database for the Embedding Storage in the RAG Pattern |
|
| dc.type |
diplomová práce |
cs |
| dc.contributor.referee |
Malina, Marek |
|
| dc.date.accepted |
2025-06-18 |
|
| dc.description.abstract-translated |
Retrieval-Augmented Generation (RAG) A hybrid AI framework that combines the power of large language models with external document retrieval. It first retrieves relevant documents from a knowledge base and then uses a generative model (like GPT) to produce answers grounded in that retrieved content. SQL Server A relational database management system developed by Microsoft, widely used for storing and managing structured data. It supports advanced features like stored procedures, JSON processing, and indexing, but traditionally lacks native support for vector or high-dimensional data operations. Vector Database A type of database designed to store and query high-dimensional vector representations (embeddings), typically used in semantic search, recommendation systems, and AI applications. These databases are optimized for similarity searches using techniques like cosine similarity or nearest-neighbor search. |
|
| dc.description.department |
Ústav informatiky a umělé inteligence |
|
| dc.thesis.degree-discipline |
Software Engineering |
cs |
| dc.thesis.degree-discipline |
Software Engineering |
en |
| dc.thesis.degree-grantor |
Univerzita Tomáše Bati ve Zlíně. Fakulta aplikované informatiky |
cs |
| dc.thesis.degree-grantor |
Tomas Bata University in Zlín. Faculty of Applied Informatics |
en |
| dc.thesis.degree-name |
Ing. |
|
| dc.thesis.degree-program |
Information Technologies |
cs |
| dc.thesis.degree-program |
Information Technologies |
en |
| dc.identifier.stag |
70060
|
|
| dc.date.submitted |
2025-06-02 |
|
Soubory tohoto záznamu
|
K tomuto záznamu nejsou připojeny žádné soubory.
|
Tento záznam se objevuje v následujících kolekcích
Zobrazit minimální záznam