Enabling SQL Server as a Vector Database for the Embedding Storage in the RAG Pattern

Repozitář DSpace/Manakin

Jazyk: English čeština 

Enabling SQL Server as a Vector Database for the Embedding Storage in the RAG Pattern

Zobrazit minimální záznam

dc.contributor.advisor Beltran Prieto, Luis Antonio
dc.contributor.author Bossman, Mickson Bonsu
dc.date.accessioned 2025-12-10T23:09:48Z
dc.date.available 2025-12-10T23:09:48Z
dc.date.issued 2024-10-27
dc.identifier Elektronický archiv Knihovny UTB
dc.identifier.uri http://hdl.handle.net/10563/57686
dc.description.abstract This thesis explores the feasibility of adapting Microsoft SQL Server to function as a vector database for high-dimensional embeddings within Retrieval-Augmented Generation (RAG) systems. Traditionally reliant on specialized vector databases, RAG pipelines benefit from semantic search over embeddings. The research proposes a novel approach by using SQL Server with JSON support and stored procedures to store and query embeddings generated via OpenAI's API. A full-stack prototype was implemented, combining SQL Server, FastAPI, Semantic Kernel, and Azure OpenAI services. The system retrieves relevant document chunks based on cosine similarity and feeds them into a language model to generate grounded responses. Evaluation shows SQL Server can achieve effective semantic retrieval with sub-second latency, offering a viable alternative for organizations leveraging existing relational infrastructure.
dc.format 82
dc.language.iso en
dc.publisher Univerzita Tomáše Bati ve Zlíně
dc.rights Bez omezení
dc.subject Retrieval-Augmented Generation cs
dc.subject RAG cs
dc.subject SQL server cs
dc.subject vector database cs
dc.subject Retrieval-Augmented Generation en
dc.subject RAG en
dc.subject SQL server en
dc.subject vector database en
dc.title Enabling SQL Server as a Vector Database for the Embedding Storage in the RAG Pattern
dc.title.alternative Enabling SQL Server as a Vector Database for the Embedding Storage in the RAG Pattern
dc.type diplomová práce cs
dc.contributor.referee Malina, Marek
dc.date.accepted 2025-06-18
dc.description.abstract-translated Retrieval-Augmented Generation (RAG) A hybrid AI framework that combines the power of large language models with external document retrieval. It first retrieves relevant documents from a knowledge base and then uses a generative model (like GPT) to produce answers grounded in that retrieved content. SQL Server A relational database management system developed by Microsoft, widely used for storing and managing structured data. It supports advanced features like stored procedures, JSON processing, and indexing, but traditionally lacks native support for vector or high-dimensional data operations. Vector Database A type of database designed to store and query high-dimensional vector representations (embeddings), typically used in semantic search, recommendation systems, and AI applications. These databases are optimized for similarity searches using techniques like cosine similarity or nearest-neighbor search.
dc.description.department Ústav informatiky a umělé inteligence
dc.thesis.degree-discipline Software Engineering cs
dc.thesis.degree-discipline Software Engineering en
dc.thesis.degree-grantor Univerzita Tomáše Bati ve Zlíně. Fakulta aplikované informatiky cs
dc.thesis.degree-grantor Tomas Bata University in Zlín. Faculty of Applied Informatics en
dc.thesis.degree-name Ing.
dc.thesis.degree-program Information Technologies cs
dc.thesis.degree-program Information Technologies en
dc.identifier.stag 70060
dc.date.submitted 2025-06-02


Soubory tohoto záznamu

Soubory Velikost Formát Zobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

Find fulltext

Prohledat DSpace


Procházet

Můj účet