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RESUMÉ 

Předložená disertační práce se zabývá problematikou řízení jednorozměrných systémů se 

zpožděními v algebraickém smyslu v okruhu speciálních meromorfních funkcí, jeho využitím 

v procesu autotuningu a laděním získaných anizochronních regulátorů. 

Popis systémů se vstupně výstupním a/nebo vnitřním zpožděním, jakož i návrh struktury 

regulátorů, je založen na využití revidovaného a rozšířeného okruhu stabilních a ryzích 

kvazipolynomiálních meromorfních funkcí. Množina všech stabilizujících regulátorů je určena 

řešením lineární diofantické rovnice (Bézoutovy rovnosti) spolu s Youla-Kučerovou parametrizací 

v uvedeném okruhu. Postup umožňuje zajištění vnitřní stability regulačního obvodu, asymptotické 

sledování průběhu žádané hodnoty a kompenzaci poruchy modelované na vstupu řízené soustavy. 

Jednou z výhod je, že v nominálním případě lze užitím netriviálního uzavřeného regulačního 

obvodu docílit konečného spektra některých přenosových funkcí. Metoda je doplněna odvozením 

podmínek stability pro vybrané kvazipolynomy, neboť tato znalost je zásadní pro správný postup 

návrhu, a zobecněného Nyquistova kritéria pro systémy se zpožděním a speciální strukturu řízení. 

Práce dále obsahuje návrh několika postupů ladění získaných anizochronních regulátorů, 

jmenovitě spojité posouvání pólů uzavřeného regulačního obvodu, kvazioptimální umístění 

dominantních pólů v levé komplexní polorovině a rozložení spektra při požadovaném překmitu 

přechodové funkce. 

Pro nalezení dostatečně přesného modelu řízené soustavy jsou taktéž analyticky odvozeny 

vztahy pro identifikaci neznámých parametrů modelu z reléového experimentu s využitím relé typu 

nasycení, čímž práce zasahuje do oblasti autotuningu. 

Pro inženýrské využití spojitých řídicích algoritmů na číslicovém počítači jsou stručně 

popsány možnosti jejich diskretizace a zjednodušení a vybrané postupy implementovány na 

anizochronní regulátory. 

Součástí práce jsou příklady objasňující popsané teoretické poznatky a výsledky simulací 

v prostředí MATLAB/Simulink. 

V neposlední řadě disertace prezentuje výsledky reálných identifikačních a řídicích 

experimentů na laboratorním modelu zaokruhované tepelné soustavy vykazujícím výrazná vnitřní 

zpoždění, doplněny o základní analýzu robustní stability a kvality regulace z hlediska robustnosti, 

čímž je verifikována praktická využitelnost použitého přístupu.   

 



SUMMARY 

The presented dissertation thesis is focused on control of single-input single-output time 

delay systems by algebraic means in the ring of special meromorphic functions, on its use in the 

autotuning and on the tuning of obtained anisochronic controllers. 

Time delay systems description as well as controller design is based on the utilization of 

the extended and revised ring of stable proper quasipolynomial meromorphic functions. The 

solution of a Diophantine equation (Bézout identity) together with Youla-Kučera parameterization 

in the ring constitutes the set of all stabilizing controllers. The approach enables to satisfy inner 

feedback system stability, asymptotic reference tracking and input disturbance attenuation. A 

benefit of the methodology is that one can acquire a finite spectrum of some feedback transfer 

functions using a non-trivial control system. Contrariwise, a sufficiently accurate model of the 

controlled process is needed. Proven stability conditions for some quasipolynomials (since it is 

crucial for the correct controller design) and a generalized Nyquist criterion for time delay systems 

and a special control system structure are derived as well. 

The thesis then comprises design of selected controller tuning approaches for the obtained 

anisochronic controllers. Namely, a continuous feedback system spectrum shifting, a quasioptimal 

dominant pole placement and a pole placement when a desired transfer function overshoot is 

prescribed. Some original ideas are involved in the methods. 

Analytically derived formulas for the identification of unknown model parameters from 

feedback-relay experiment with saturation relay in order to find a sufficiently accurate process 

model are presented as well. 

For real-world applications with digital computers, control algorithms ought to be 

discretized and simplified; hence, some approaches are briefly described and implemented. 

A numerous examples together with MATLAB/Simulink results clarify theoretic 

statements throughout the thesis. Selected complex examples involve. 

Last but not least, results of identification and control of a laboratory heating plant with 

significant delays, with a basic robust stability and robust performance analysis, are presented in the 

thesis, which clearly affirms the practical applicability of the approach. 
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LIST OF SYMBOLS AND ABBREVIATIONS 

Symbols 

■  end of a lemma, theorem, definition, remark, 

observation or example 

□ end of a proof 

\ set relative complement 

∅   empty set 

⋅    cardinality of a set, absolute value, modulus, gain 

⋅    a matrix norm 

=:    definition 

≡    identity 

=̂   transformation (correspondence) 

p    a partial order, ordering 

⊆    set inclusion 

∪    union 

∩    intersection 

1   multiplicative identity element 

( )sa   plant transfer function denominator as 

a (quasi)polynomial 

α    real part of a complex number 

( )Kα    spectral abscissa 

A   amplitude of a plant output for limit cycles 

A
~

   amplitude of a plant output from ATV+ test 
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Ai, ( )τA
~

, Bi, ( )τB
~

, C, ( )τC
~

, Hi  state matrices 

( )sA  plant transfer function denominator in ∞H ( + ), 

RMS, RPS (after coprime factorization) 

   infinitesimal generator 

( )sb   plant transfer function numerator as 

a (quasi)polynomial 

B+, B-, B   (upper, lower) amplitude of a relay output 

( )sB  plant transfer function numerator in ∞H ( + ), RMS, 

RPS (after coprime factorization) 

 behavior 

C   space of continuous functions 

( )ηDC    safe upper bound 

   set of all complex numbers 

k     k-dimensional space of complex numbers 

 −
0 ,  − ,  +

0 ,  +   set of complex numbers from the open and closed 

 left half-plane, and the open and closed right half-

plane, respectively 

( )td , ( )sD   load disturbance and its Laplace image, 

respectively 

δ  delta transform operator 

D a disk in the complex plane  

 a region in the complex plane 

( )sΔ  perturbation function 
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e  identity element of a group 

ie  i-th Euclidean unit vector 

ε  arbitrarily small positive real number 

( )te , ( )sE  control error and its Laplace image, respectively  

  ring of pseudopolynomials 

iη    lumped delays 

η    vector of delays 

φ+   closed Jordan curve (in anti-clockwise direction) 

Dφ    phase lag by artificial delay 

( )KΦ    an objective (cost) function 

γ    variable associated with δ  

ijγ    weighting controller parameters  

G   a group 

( )sG  plant transfer function, perturbed plant transfer 

function 

( )ωj⋅G  a transfer fucntion in the frequency domain 

( ) ( )zGzG QDRD ,  discretized controllers‘ transfer functions 

( )sG0   nominal plant transfer function, inner feedback 

transfer function 

( ) ( )sLsGO ,    open loop transfer function 

( )sGDE    disturbance-to-error transfer function 

( )sGDY    disturbance-to-output transfer function 
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( ) ( )sGsG RQ ,    controllers’ transfer functions 

( )sGQ , ( )sGQ , ( )sGR    simplified controllers‘ transfer functions 

( )sGWE , ( )sS0 , ( )sS   reference-to-error transfer function (nominal) 

sensitivity function 

( )sGWY , ( )sT0 , ( )sT   reference-to-output transfer function (nominal) 

complementary sensitivity function 

( )sG    plant transfer functions matrix 

( )thWY   reference-to-output step response function 

CH    set of all entire functions 

∞H ( + )  Hardy space of functions analytic and bounded in 

the right half-plane 

i  iteration step 

( )tiWY   reference-to-output impulse function 

I a set of indexes 

Im imaginary part 

I  an ideal 

I unit matrix 

( )δI  discrete-time (delta) integrator 

j    imaginary unit 

JISE, JISTE   values of ISE and ISTE criteria, respectively 

k  plant static gain, static characteristics direction 

(slope) for saturation relay, discretization step 

mink  lower bound on k  (for saturation relay) 
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uk    ultimate gain 

K , numK , denK   vector of controller parameters (in the controller 

transfer function numerator and denominator, 

respectively) 

*K , optK    vector of optimal controller parameters 

λΔ    discretization step 

L   maximum value of lumped delay 

L1, L2, L∞   Lebesgue spaces and norms 

   Laplace transform 

⋅m    a multiplicity 

⋅Δm    a multiplicity difference 

210 ,, mmm    controller real (selectable) coefficients 

( )sm0    characteristic (quasi)polynomial of a plant 

( )sm    characteristic (quasi)polynomial of a closed loop  

( )sM 0    characteristic meromorphic function 

M   number of migration rounds 

n   system order 

nC, nR number of complex conjugate pairs and real poles, 

respectively 

ni number of iterations 

nsp, nsz number of currently shifted poles and zeros, 

respectively 

N number of discrete samples 
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NH   number of lumped delays 

NU number of unstable poles (zeros) or conjugate 

pairs 

   set of all natural numbers 

RO       relative order 

p   pole multiplicity 

( ) ( )spsp DN ,   numerator and denominator (quasi)polynomial of 

( )sP , respectively 

P    a partially ordered set, population 

( )sP   controller transfer function denominator in RMS or 

RPS 

( )tPH  heater power 

RP    reachability matrix 

q    quotient, shifting operator 

0q    crossover gain 

Cq    critical gain 

( )sQ , ( )sR   controller transfer function numerator in RMS or 

RPS  

r   reminder, number of controller parameters 

dennum rr ,   number of free controller parameters in the 

transfer function numerator and denominator, 

respectively 

Ωr    spectral radius 
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Mrr ,...,1    independent delays 

R   a ring 

( )AR    describing function of a relay 

Re   real part 

RMS  ring of proper and stable (retarded) 

quasipolynomial meromorphic functions 

RPS ring of stable and proper rational functions 

k     k-dimensional space of real numbers 

+     positive real numbers 

 [ ]s      a polynomial in s  over real numbers 

 [ ]zs,   a 2-D polynomial (a polynomial in s  and z  over 

real numbers) 

 ( )s      a rational function in s  over real numbers 

 ( )zs,      a rational function in s  and z  over real numbers 

     ring of polynomials in ( )sτ−exp  over Θ  

s     complex variable (from the Laplace transform) 

s      complex conjugate of s  

s0 , si, iσ     system (or transfer function) poles 

ρ      sampling radius 

S     a ground set, simplex 

S      sensitivity matrix 

t     time variable 
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normtt max,max ,    time to step response maximum peak overshoot 

and its normed value, respectively 

ft   final time 

Ot      time to step response peak overshoot 

( ) ( )stst DN ,   numerator and denominator (quasi)polynomial of 

( ) ( ) ( )sRsQsT += , respectively 

τ , T     distributed delay, input-output delay 

+τ      artificial delay 

ϑ      internal delay 

sT , 0T      sampling period 

uT      ultimate period 

( )t      solution operator 

Θ  ring generated by entire functions from the 

transformation of distributed delays 

( )tu      vector of inputs 

( )tu , ( )sU   control signal (manipulated input) and its Laplace 

image, respectively 

( )sU  Fourier image of decayed ( )tu  

( )sU      vector of transformed inputs 

PRTv      perturbation vector 

( )tx      vector of state variables 

( )tξ      initial state vector 
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tx   vector of state variables from the Banach space 

within the range [ ]τ,0∈t  

X  Banach space of continuous functions 

X
~

 Hilbert product space 

( )tw , ( )sW   reference value and its Laplace image, 

respectively 

( )sWM , ( )sWP  weight functions 

( )ty      vector of outputs 

( )ty , ( )sY  plant output signal and its Laplace image, 

respectively 

( )sY  Fourier image of decayed ( )ty  

( )sY      vector of transformed outputs 

z     complex number, variable from the z-transform 

     integers 

ω  frequency, imaginary part of a complex number 

0ω  crossover frequency 

Cω  critical frequency 

uω  ultimate frequency 

⋅Ω      a set 
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Abbreviations 

1-D, 2-D   one-dimensional, two-dimensional 

1DoF   One-Degree-of-Freedom 

A/D   Analog/Digital 

ATV, ATV+   Autotune Variation (plus) 

BIBO     Bounded Input Bounded Output 

CTCR     Clustering Treatment of Characteristic Roots 

DC     Direct (stationary) Component 

DDS     Delay Dependent Stability 

deg     degree 

den     denominator 

DFT     Discrete Fourient Transform 

DTFT     Discrete-Time Fourient Transform 

DIS     Delay Independent Stability 

EGSA     Extended Gradient Sampling Algorithm 

FDE     Functional Differential Equation 

FFT     Fast Fourier Transform 

FSA     Finite Spectrum Assignment 

GCD     Greatest Common Divisor 

IMC     Internal Model Control 

ISE     Integrated Squared Error 

ISTE     Integrated Squared Time Error 

LCM     Least Common Multiple 

LQ     Linear-Quadratic 
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LM     Levenberg-Marqurdt 

LMS     Linear Multistep 

LTI     Linear Time-Invariant 

MIMO     Multi-Input Multi-Output 

MS     Microsoft 

num     numerator 

NM     Nelder-Mead 

ODE     Ordinary Differential Equation 

PC     Personal Computer 

PID  Proportional–Integral–Derivative (controller), 

Principal Ideal Domain 

PP  Pole Placement 

PPSA Pole-Placement Shifting based controller tuning 

Algorithm 

QCSA  Quasi-Continuous Shifting Algorithm 

R-K Runge-Kutta 

SISO     Single-Input Single-Output 

SOMA     Self-Organizing Migration Algorithm 

TDS     Time Delay System(s) 

TFC     Two Feedback Controllers 

UFD, UFR    Unique Factorization Domain (Ring) 

 

Besides aforementioned more or less general symbols and abbreviations, there are 

also other ones used “locally”, i.e. for the only purpose, in the thesis. Their meaning should 

be always clear from the context. 
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1 INTRODUCTION 

In this introductory chapter, an explanation of the work motivation and the 

background of the problem dealt with in this thesis are presented. The structure of the 

thesis is also introduced. 

1.1 Motivation and background 

It is a well known fact that a large number of both hypothetic and real-life 

processes and systems in a wide spectrum of human activities (e.g. in biology, chemistry, 

economics, mechanics, information technologies, etc.) are affected by delay as their 

generic part. Delay within the meaning of a lag or latency has been usually assumed to 

take effect in input-output relations only, and moreover, in a one time instant. However, 

this conception is somewhat restrictive in effort to fit and model the real plant dynamics 

since in many cases delay appears in process inner feedback loops (or/and it can be of a 

distributed or nature).  

Time delay systems (TDS), also called hereditary, anisochronic, or systems with 

aftereffect or dead-time, involve delays as other dynamical elements, besides integrators. 

Hence, instead of ordinary differential equations (ODEs), these systems are described by 

equations with deviating arguments or so-called differential-difference equations which 

belong to the class of infinite dimensional functional differential equations (FDEs). 

Anisochronic models serve not only for description of systems in which the inner loops are 

really delayed but they (even of low order) can adequately fit the dynamics of many 

conventional high-order systems. In contrast to undelayed linear time-invariant (LTI) 

systems, linear TDS have some surprising features, namely, they own an infinity spectrum, 

which makes these systems difficult to control and resistant to many “classical” 

controllers. Delay significantly deteriorates the dynamics and performance of feedback 

control loops, and control theory has been dealing with the problem of delay effect on the 

feedback system since its nascence. 

Although it may appear that the simplest approach consists in replacing TDS by 

some finite dimension approximations, it is not a convenient solution in general since it 
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leads to a higher degree of complexity and one looses the process dynamics information. 

Therefore, naturally, other approaches to control of TDS ought to be developed utilizing 

non-approximated (notwithstanding linear) process model to keep information about 

dynamics expressed by delays. 

Algebraic structures in their charming and attractive elegance proved to be suitable 

and effective tools for system dynamics description and control system design. Modern 

control theory has been adopting algebraic approaches and parlance, which are based on 

TDS description in a suitable field, ring or module and the subsequent operation in the 

algebraic structure, for decades. 

This work is focused on theory, simulation and practical application problems 

related to control of single-input single-output (SISO) linear TDS designed through the 

general solutions of Diophantine equations in the revised and extended ring of proper and 

stable quasipolynomial meromorphic functions (RMS). 

1.2 Overview of the thesis 

The content of this work is divided into nine main chapters. In an attempt to 

facilitate the orientation in the text for reader, a simple guideline throughout the thesis is 

provided. 

This first, introductory, part is intended for explaining the motivation for writing 

the thesis and background of the issue, and it includes the thesis overview. 

In the second chapter, the current state of the research and theoretical background 

devoted to description, analysis and algebraic control of LTI TDS and to some controller 

tuning principles, and basics of autotuning including references to recent and momentous 

literature are introduced. 

The main goals of the thesis follow in the third chapter. 

The fourth (and the principal) part starts with the analysis and revision of the RMS 

set followed by the derivation of controllers in RMS for two control system structures. 

Moreover, it includes many examples to illustrate given problems. 
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Next, the fifth part presents the application of selected tuning approaches usable in 

an effort to set the unknown (free) anisochronic controller parameters appropriately. Pole 

placement methods are accentuated. 

In the sixth chapter, the fundamentals of the relay feedback experiment due to TDS 

model parameters identification are utilized where a saturation relay and the Fourier 

transform are taken into account. 

The subsequent, seventh, section presents results of identification and algebraic 

control experiments realized on real laboratory model of a circuit heating system. The 

chapter contains a mathematical model of the process, its linearization, controller design in 

RMS and its tuning, controller robust analysis, simplification and digital implementation, in 

sequence. Moreover, controller design for simple models obtained from the relay test and 

that for simplified (finite-dimensional) controller structures are introduced. Simulation 

experiments facilitate the selection of the suitable controller for the final real-time control 

trial. 

The aim of the eighth chapter is to sum up main contributions of the thesis both for 

science community and practical applications, and to foreshadow further direction in the 

research. 

The final, ninth, chapter concludes the whole work. 

References to the sources drawn in the work, the list of author’s publications 

associated with the subject of the thesis and his curriculum vitae are naturally placed at the 

end of the work. 
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2 ACTUAL STATE OF RESEARCH AND THEORETICAL 

BACKGROUND 

2.1 Models of linear TDS 

Linear time-invariant time delay systems (LTI TDS) have usually been assumed to 

contain delay elements in input-output relations only. All the system dynamics has been 

hence modeled by point accumulations in the form of a set of ordinary differential 

equations. The Laplace transform then results in a transfer function expressed by a serial 

combination of a delayless term and a delay. However, this conception is somewhat 

restrictive in effort to fit the real plant dynamics because inner feedbacks are often of time-

distributed or delayed nature.  

Anisochronic (or hereditary) TDS models, on the other hand, offer a more 

universal dynamics description applying both integrators and delay elements either in 

lumped or distributed form so that delays appear on the left side of a differential equation 

which is no longer ordinary (ODE) but rather functional (FDE) - this brings the concept of 

internal (or state) delays. In the further text, an abbreviation TDS means LTI TDS 

containing state delays with or without input-output delays. 

Already Volterra formulated differential equations incorporating the past states 

when he was studying predator-pray models [170]. The theory of these models was then 

developed by Bellman and Cooke [6], Krasovskii [67], Kolmanovskii and Nosov [66], 

Zítek [195], Górecki et al. [47] , Marshall et al. [86] and especially by Hale and Verduyn 

Lunel [50] and Niculescu [106], to name a few.  Aftereffect phenomenon is included in 

many processes, e.g. in chemical processes [198], heat exchange networks [197], in 

internal combustion engines with catalytic converter [142], in models of mass flow in 

sugar factory [42], in metallurgic processes [100], etc. Plenty of references to examples of 

processes with internal delays, covering a wide range of human activities (e.g. biology, 

chemistry, economics, communication and information technologies, etc.) are introduced 

in [65], [106], [141]. Capabilities and advantages of this class of models and controllers for 

modeling and process control were broadly discussed in [83]. TDS models can be used not 

only for description of those systems embodying internal delays but they are successfully 
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capable to express the dynamics of high-order systems and processes even without 

apparent delays [151], [173], [205], which simplifies the processes description. 

2.1.1 State space description 

In the LTI case, TDS can be described by state and output functional differential 

equations in the following form [47], [141] 
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 (2.1) 

where ∈x n is a vector of state variables, ∈u m stands for a vector of inputs, ∈y l 

represents a vector of outputs, Ai, ( )τA
~

, Bi, ( )τB
~

, C, ( )τC
~

, Hi are matrices of compatible 

dimensions, Li ≤≤η0  are lumped (discrete) delays and convolution integrals express 

distributed delays. If 0H ≠i for any i = 1,2,...NH, model (2.1) is called neutral; on the other 

hand, if 0H =i for every i = 1,2,...NH, so-called retarded model is obtained. It should be 

noted that the state of model (2.1) is given not only by a vector of state variables in the 

current time (in one time instant), but also by a segment of the last model history of state 

and input variables, i.e. ( ) ( ) 0,,, Ltt −∈++ τττ ux . 

Model (2.1) can also be expressed in more consistent functional form using 

Riemann-Stieltjes integrals so that both lumped and distributed delays are under one 

convolution [141], [195], [205] 
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Contrariwise, integrals in (2.1) can be rewritten into sums using the Laplace 

transform, which is suitable for model implementation in computers and simulations. 

Under some assumptions, see [141], the transform correspondence is the following 
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Subsequent utilization of the reverse Laplace transform instructs how to realize a model. 

For the scalar case of ( )τF , explicit relations between convolution integrals for distributed 

delays with 
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and derivatives of functions 
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was presented in [16]. Note that σ  stands for the complex conjugate of σ  and ( )it  denotes 

the i-th derivative of t. ( )sσθ  is an entire function with ( ) τσθσ = . 

Alternatively, one can use a numeric approximation of convolutions in (2.1) or 

(2.2) to get state and output equations containing lumped delays only, which can, however, 

destabilize even a stable system, see  [141] and reference herein. Another possibility is to 

introduce a new state variable ( ) ( ) ( ) T

d

d
⎥⎦
⎤

⎢⎣
⎡=

t

t
tt

x
xz , see e.g. [143]. 

2.1.2 Input-output description as a transfer function (matrix) 

Considering model (2.1) and zero initial conditions, the following input-output 

description of a general multi-input multi-output (MIMO) system in the form of the 

transfer matrix using the Laplace transform is obtained 
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The main advantage of the TDS system description in the form of the transfer 

function lies in its practical usability when system analysis and control design. All transfer 

functions in G(s) (or a transfer function in SISO case) have identical denominator in the 

form 
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where prefix num means the numerator of the determinant, and 

( )∑
=

≠−
nh

j
njnj sm

1

constantexp η holds for a neutral system; otherwise, the system is retarded. 

The expression on the right-hand side of (2.8) represents a so-called quasipolynomial [36]. 

Indeed, ( )sM 0  is a ratio of quasipolynomials (i.e. a meromorphic function) in general due 

to distributed state (internal) delays, and all roots of the denominator of ( )sM 0  are those of 

the numerator in this case. As a consequence, a transfer function (in a SISO case) can be 

expressed as a meromorphic function as well. 

2.1.3 Operator-based description of autonomous TDS 

In order to comprehend a chapter of this thesis, let us briefly introduce another 

possible (autonomous) TDS description and some associated notions. When investigating 

on e.g. stability of TDS, the operator-based state space description of an autonomous 

system can be advantageous, see [10], [29], [50], [171], [187]. 

Consider e.g. autonomous state part of (2.1), i.e. 



- 36 - 

 
( ) ( ) ( ) ( ) ( ) ( )∫∑∑ −+−++−=

==

LN

i
ii

N

i

i
i ttt

t

t

t

t AH

01
0

1

d
~

d

d

d
d τττηη

xAxAxA
x

H
x

 (2.9) 

and introduce the state and its derivative 
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in the Banach space of continuous real function on the defined interval 
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provided with the supremum norm of the initial function ( ) ( ) [ ]0,, Lttt −∈= ξx , i.e., 
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, and that of its derivative as well. 

Let the solution operator ( ) 0, ≥tt  on the Banach space be defined by 

 ( ) Xt t ∈= ξξ ,x  (2.12) 

The family of { ( )t } 0≥t  is strongly continuous semigroup [116], [171] with 

infinitesimal generator  : ( ) XX →⊆  given by 
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Then (2.9) can be written as a Cauchy problem in the operator form [29]. 

ξx =0  
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0, >ttx  (2.15) 
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 A survey of some other (predominantly state space) models of TDS is introduced 

in [141]. Moreover, in this thesis, selected algebraic-based models over fields and rings are 

depicted in Subchapters 2.3 and 4.1. 

2.2 Poles and zeros, stability of TDS 

Formula (2.8) expresses the characteristic quasipolynomial of system (2.1), the 

meaning of which is as similar as for delay-free systems, i.e. the solution of ( ) 00 =sm  

determines zero points of the transfer function denominator. In principle, there are two 

cases when the set these solutions do not equal to the system poles. First, the realization of 

the system (or an appropriate model) is not minimal, so that in the SISO case there is a 

common factor in the numerator and the denominator of the transfer function, as known 

for finite-dimensional systems. Second (which is specific for TDS), there is an effect of a 

distributed delay which results in a common root of the numerator and denominator of the 

transfer function, yet there is no common factor which can be reduced. The following 

example [74] clarifies the latter case for distributed input-output delays. 

Example 2.1 

Consider the transfer function 

 ( ) ( )
( )

( ) ( )
1

exp1exp1

−
−−==

s

s

sU

sY
sG  (2.16) 

The common root of the numerator and denominator, 1=σ , is unstable (see Subchapter 

2.2.2). Although the is no stable realization in the form (2.1) only with lumped delays, 

there exists a realization using convolutions (distributed delays) which is stable 

 ( ) ( ) ( ) τττ dexp
1

0
∫ −= tuty  (2.17) 

since it is defined via a finite integral. ■ 
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2.2.1 Poles and zeros 

In the further text, poles and zeros will mean transfer function poles and zeros, for 

the simplicity. More precisely for a SISO case, poles ∈ii ,σ  of LTI TDS are solutions of 

the equation 

( ) ( )[ ] 0det0 =−= sssM AI  (2.18) 

Zeros ∈ii ,ζ  are given by the solution of 

( ) ( ) ( )[ ] ( )
( )[ ] 0

det

adj =
−
−=

ss

ssss
sG

AI
BAIC

 (2.19) 

where the matrices ( )sA , ( )sB , ( )sC  are defined in (2.7). This definition ignores possible 

common roots of a numerator and denominator of the transfer function since they do not 

influence the system dynamics. The role of poles and zeros is the same as for delay-free 

systems, so that they decide about system stability and phase minimality, respectively. 

Due to transcendental character of ( )sM 0  caused by functionality of its 

exponential terms, the number of poles is infinite; however, as for delay-free systems, 

spectrum { }∞==Ω 1: iiσ  decides about asymptotic system stability. Spectral properties of 

retarded and neutral systems significantly differ; according to [6] poles occur in chains 

depending of the type of a system. For systems of retarded type, poles satisfy −∞→iσRe  

and thus there are only finitely many poles in any right half-plane; whereas poles of a 

neutral type system lie in a band centered on the imaginary axis, which implies that it owns 

an infinite number of poles with ai >σRe  for some finite real a. Note that there also exist 

systems of advanced type satisfying ∞→iσRe . 

Locations of poles can be done using a gridding procedure [174], [176] or via 

discretization methods [12], [39], [77], estimating either the solution operator or the 

infinite dimensional generator, among others. 

Stability notions of both retarded and neutral TDS systems together with a brief 

overview of the literature dealing with this topic are introduced in the following 

subchapter. 
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2.2.2 Stability of TDS 

We introduce some stability notions and preliminaries for TDS with respect to 

different properties of retarded and neutral systems to understand the literature overview 

and the further text of the thesis. 

Delay independent stability (DIS) means that delay(s) may cover the full range 

[ ]∞,0 , whereas in delay-depended stability (DDS) one considers that the finite interval 

[ ]21,τττ ∈  is taken into account. 

Considering the characteristic equation (2.18), a TDS is asymptotically stable if all 

poles are located in the open left half-plane,  −
0 , i.e. there is no s satisfying 

( ) 00 =sM  (2.20) 

with 0Re ≥s  for retarded TDS and 0,Re <≥ ααs  for neutral ones. This definition agrees 

with exponential stability for TDS. 

In the case of neutral systems, one has to be more careful when deciding about 

stability since there may be infinite braches of poles tending to the imaginary axis. Strictly 

negative roots of the characteristic (quasi)polynomial (or meromorphic function), thus, do 

not guarantee a satisfactory stable behavior of a system from the asymptotic (and robust) 

point of view. Let us introduce an associated difference equation and two stability notions 

for neutral TDS which are close to each other in the meaning. 

Given a SISO neutral TDS (2.9), an associated difference equation is defined as 

( ) ( ) 0
1
∑
=

=−−
HN

i
ii tt ηxHx  (2.21) 

A neutral TDS is said to be formally stable if 

( ) 0:,exprank
1

≥∀=⎥⎦
⎤

⎢⎣
⎡ −−∑

=
ssnsI

HN

i
ii ηH  (2.22) 

see e.g. in [18], [75]. It also means that system (2.9) has only a finite number of poles in 

the right complex half-plane [137]. Clearly from (2.21) and (2.22), a system is formally 

stable if characteristic equation  
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 ( ) ( ) 0expdet
1

,0 =⎥⎦
⎤

⎢⎣
⎡ −−= ∑

=

HN

i
iiD sIsm ηH  (2.23) 

expressing the spectrum of the difference equation has all roots in  −
o .  

 The feature of a neutral TDS that rightmost solution of (2.23) is not continuous in 

its delays [52] gives rise to another (yet a germane) stability notion. Strong stability of the 

difference equation (2.21) means that it remains exponentially stable when subjected to 

small variations in delays (i.e. a TDS remains formally stable). A system is strongly stable 

if and only if 

 ( ) [ ) 11,2,0:jexpmax:
1

0 <
⎭
⎬
⎫

⎩
⎨
⎧

≤≤∈⎟
⎠
⎞

⎜
⎝
⎛= ∑

=
Ω Hi

N

i
ii Nir

H

πθθγ H  (2.24) 

where ( )⋅Ωr  denotes the spectral radius. Alternatively, the necessary and sufficient strong 

stability condition in the Laplace transform can be formulated as 

 ∑
=

<
nh

j
njm

1

1  (2.25) 

see e.g. [50], [208] where njm  are coefficients for the highest s-power in (2.8). A sufficient 

condition for this type of stability is e.g. 

 ∑
=

<
HN

i
i

1

1H  (2.26) 

where ⋅  is a matrix norm. A strongly stable system is robust against infinitesimal changes 

in delays of a neutral TDS which can destroy asymptotic stability of the difference 

equation. 

 The practical connection between these two stability notions is that a control 

feedback with a formally unstable system may not be strongly stable [141]. Clearly, a 

strongly stable TDS is formally stable. 

 Let us mention other stability terms useful when dealing with algebraic description 

and control of TDS, namely H∞ stability and BIBO stability. 
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 A system is H∞ stable if its transfer function ( )sG  lies in the space ∞H ( + ) of 

functions analytic and bounded in the right complex half-plane, i.e. providing the finite 

norm 

 ( ){ } ∞<≥=
∞

0Re:sup: ssGG  (2.27) 

see e.g. [115]. That is, the system has finite ( )∞,02L  to ( )∞,02L  gain where ( )∞,02L  norm 

of an input or output signal ( )th  is defined as 

 ( ) ( )∫
∞

=
0

2

2
d: tthth  (2.28) 

 Notice, for instance, that a transfer function having no pole in the right complex 

half-plane but a sequence of poles with real part converging to zero can be H∞ unstable due 

to unbounded gain at the imaginary axis [115]. 

 The notion of BIBO (Bounded Input Bounded Output) stability is stronger than the 

preceding one and usually more difficult to analyze. A SISO TDS is BIBO stable if a 

bounded input ( ) 1Mtu < , 0<t , ∈1M  produces a bounded output ( ) 2Mty < , 0<t , 

∈2M ; in other words, it has a finite L∞ gain. It holds that the system is BIBO stable if its 

transfer function is an element of a commutative Banach algebra (L1 + δ) of Laplace 

transforms of functions of the form 

 ( ) ( ) ( ) 0,
1

≥−+= ∑
∞

=
tththth

i
iia τδ  (2.29) 

where ( ) ( )∞∈ ,01Ltha , i.e. 

 ( ) ∞<∫
∞

0

dttha  (2.30) 

∈ih , ,0,00 >= iττ for i > 0, ( )tδ  stands for the Dirac delta function, and 

 ∑
∞

=
∞<

1i
ih  (2.31) 
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 BIBO stability implies H∞ stability [27], [75]. 

 Finally, before a brief overview of basic and some recent literature resources is 

presented, let us mention interdependences of delays [89]. Generally, in many practical 

application delays are not independent from each other. Assume that N delays 

Nii ,...,2,1, =τ depend on M ≤ N so-called independent delays Mrr ,...,1 as 

 rγT
i

M

j
jiji r == ∑

=1

γτ  (2.32) 

where [ ] ∈= T
iMiii γγγ ,..., 21γ M are non-zero vectors with non-negative integer 

coefficients and ( )N∞∈ ,0r . The numbers Mrr ,...,1  are rationally independent if and only 

if  

 ∈=∑
=

j

M

j
jj nrn ,0

1

 (2.33) 

implies Mjn j ,...,2,1,0 == . For example, two numbers are rationally independent if and 

only if their ratio is an irrational number. Otherwise they are rationally dependent. 

 A special case of (2.32), fully independent delays, corresponds to M = N, ii eγ = , 

the j-th unity vector in N and Nττ ,...,1 are rationally independent delays. In another 

special case where M = 1, the delays  Nττ ,...,1  are called commensurate, as they are natural 

multiples of the same number 1r . For example, the numbers 1,π , 1 + π  are rationally 

dependent (not rationally independent), yet not commensurate (Michiels and Niculescu, 

2007a). 

 Without any attempt to be exhaustive, we refer now to some of recent stability 

analysis approaches and literature resources. 

 Stability of retarded systems with only one delay was studied e.g. in [109], [140] 

based on the well known Rekasius transform (substitution) 

( ) ( ) ( ) ∈+−→− iiii TsTsTs ,1/1exp τ + mapping exponentials to rational functions which 

holds true exactly for ωj=s  and serves to find the position where the roots cross the 
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imaginary axis. In [107], [159] a second order retarded TDS and in [153] a third order one 

with two delays waere studied. In the last reference, where the authors utilized their CTCR 

(Clustering Treatment of Characteristic Roots) algorithm, non-commensurate delays and 

DDS together with a type of delay interdependence in the characteristic quasipolynomial 

(called cross-talking) were considered. Tools of CTCR and the Rekasius mapping were 

also used in [26] to investigate DIS of retarded TDS with multiple delays via sufficient 

elimination of Ti by means of a special discriminant and the Déscartes rule of signs. There 

was also recalled that stability of a delay-free system is a necessary condition for DIS here. 

A similar problem for TDS with parametric uncertainties and non-commensurate delays 

was solved in [40] providing a huge literature overview and a sufficient DIS condition. 

Some DIS and DDS criteria for retarded TDS with multiple uncertain delays were 

established in [189] by using both the time-domain and the frequency-domain methods. 

DIS for retarded TDS with multiple delays was studied in [91] where the authors discussed 

delay interference phenomenon. Robust stability measures using so-called stability radius 

were introduced in [93]. 

 Concerning stability of neutral systems, to name just a few recent contributions, 

the notion of safe upper bound on roots of the difference equations was introduced in [94] 

and further developed in [96]. In the latter, a necessary and sufficient condition for strong 

stability was also given and rationally dependent delays were considered. The notion of so-

called p-stability (including small delays, model errors, discretization etc.) was established 

and developed in [95]. DDS of neutral TDS with multiple yet commensurate delays was 

studied in [41] providing so-called stability windows and location of all crossing 

frequencies and unstable poles. The authors utilized a mapping 

( ) ( ) [ ]πθθωτ ,0,jexpjexp ∈−→− , instead of the Rekasius transform to obtain a simpler 

imaginary axis crossing analysis. 

 A huge overview of methods based predominantly on Ljapunov-Krasovskii 

approaches can be found in [141]. There were also published some monographs about TDS 

stability and related problems, e.g. [48], [92], [188], during the last decade. 

 Many of the methods mentioned above are complex and hard to implement. In this 

thesis we utilize the argument-increment based stability criterion (also called the argument 
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principle or the Mikhaylov stability criterion) for TDS applied to retarded systems e.g. in 

[47], [104], [196] and to neutral ones in [208].  

Let φ+ denotes a closed Jordan curve enclosing the region ∈ in the positive 

direction. The number ND of zeros of ( )sm0  of retarded type inside  is given by 

 
( )
( ) ( )sms
sm

sm
ND 0

0

0 arg
2

1
d

j2

1
+

+

Δ== ∫ ϕ
ϕ ππ
&

 (2.34) 

 A more useful and practical formula when studying stability of retarded 

quasipolynomials was presented e.g. in [47]. If ( ) 000 >m  and ( ) 00 ≠sm  for any imaginary 

ωj=s , ∈ω , then 

 ( )
[ )∞∈=

Δ−=
,0,j

0arg
1

2 ωωπ s
U sm

n
N  (2.35) 

where NU is the number of roots of ( )sm0  in  + and n stands for the highest s-power in 

( )sm0 . If all the zeros are located in  −
0 , i.e. NU = 0, (2.35) results in 

 ( )
[ ) 2

arg
,0,j

0

π
ωω

n
sm

s

=Δ
∞∈=

  (2.36) 

which (taking mutual implication) agrees with the well known Mikahylov stability 

criterion used by some authors when control of TDS as well, e.g. [197], [125]. 

 Analysis of neutral TDS is a rather more complicated due to the absence of a limit 

of ( )sm0argΔ ; however, it holds true the following [208]. Consider a quasipolynomial 

( )sm0  of neutral type as in (2.8) satisfying ( ) 000 >m , ( ) 00 ≠sm  for any imaginary ωj=s , 

∈ω , and (2.25). Then ( )sm0  is strongly and asymptotically stable if and only if 

 ( )
[ )

Φ+≤Δ≤Φ−
∞∈= 2

arg
2 ,0,j

0

ππ
ωω

n
sm

n

s

 (2.37) 

where 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Φ ∑

=

nh

j
njm

1

arcsin  (2.38) 
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 Although both criteria are used to the characteristic quasipolynomial ( )sm0  to 

determine whether all its roots are located in  −
0 , they can also be useful when dealing 

with zeros of the characteristic meromorphic function ( )sM 0  (for distributed internal 

delays) simply by subtraction the phase change of the numerator and denominator, i.e. 

  ( ) ( ) ( )sMsMsM 000 denargnumargarg Δ−Δ=Δ  (2.39) 

 If both quasipolynomials are of retarded type, one abides by (2.36); otherwise (i.e. 

the numerator is of neutral type yet strongly stable), (2.37) and (2.38) are considered. 

Moreover, n must be taken as a relative degree of ( )sM 0  as 

 ( ) ( )sMsMn 00 dendegnumdeg −=  (2.40) 

 This vague statement above is going to be precised in Subchapter 4.6 dealing with 

the derivation of a generalized Nyquist criterion for TDS. 

2.3 Algebraic description of TDS 

2.3.1 Theoretical background, basic algebraic notions 

Prior to a brief overview of particular algebraic structures utilized by some authors 

when analysis (and/or synthesis) of TDS, it is convenient to introduce some basic algebraic 

notions being used in this thesis and their elementary properties if useful [144], [185]. 

A group, G, is an algebraic structure with binary operation · satisfying: 

a) For each  Gba ∈, , it holds that Gba ∈⋅ . 

b) For all Gcba ∈,, , ( ) ( ) Gcbacba ∈⋅⋅=⋅⋅  (associativity). 

c) There exists an element Ge∈ , such that for every element Ga∈ , it holds that 

Gaeeaa ∈⋅=⋅=  (identity element, neutral element). 

d) For each Ga∈ , there exists an element Gb∈  such that Geabba ∈=⋅=⋅  

(inverse element). 
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A set satisfying a) and b) only from the definition above, i.e. without a necessity of 

identity and inverse elements, is called a semigroup. If one requires the existence of an 

identity element, a so-called monoid is obtained. A group with the commutative property, 

i.e. 

e)  For each Gba ∈, , Gabba ∈⋅=⋅  

is called a commutative (abelian) group. 

A ring, R, is a set with two binary operations +, · (generally interpreted as addition 

and multiplication) for which it holds true the following: 

a) R is a commutative group under addition with an identity element denotes as 0. 

b) For any Rcba ∈,, , ( ) Rcabacba ∈⋅+⋅=⋅+  and ( ) Rbcacbac ∈⋅+⋅=+⋅  

(left and right distributivity). 

c) For every Rcba ∈,, , it holds that ( ) ( ) Rcbacba ∈⋅⋅=⋅⋅  (Associativity of 

multiplication). 

Some authors add another property of a ring as: 

d) There exists R∈1  such that for every Ra ∈≠ 0 , Raa ∈⋅=⋅ 11  (multiplicative 

identity). 

If d) holds, then a ring is a commutative group under + and a commutative monoid 

under ·, together with distributivity. In a commutative ring, the commutative property holds 

also for multiplication. 

A unit of the ring (or an invertible element) is Ra ∈≠ 0 , for which there exists 

Ra ∈−1 , such that 111 =⋅=⋅ −− aaaa . If all elements of a ring are units, the ring is called a 

field. 

It is said that Rb∈  divides Ra∈  (i.e. ab | ) if there exists Rq∈ , such that 

bqa ⋅= . Two elements Rba ∈,  are associated if ab |  and ba | . 

Let R be a commutative ring and Rba ∈, . A common divisor Rc∈  of a, b is an 

element of the ring, for which ac |  and bc | . Rd ∈  is the greatest common divisor (GCD) 
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of a, b if for every common divisor Rc∈  of Rba ∈,  it holds that dc | . The GCD is 

determined unambiguously except for associativity.  

A nonzero noninvertible element a  of a commutative ring R  is called irreducible 

if it is divisible solely by a unit or any element associated with a . In some rings, so-called 

prime elements generalizing prime numbers are introduced. A prime elements is a nonzero 

noninvertible Ra∈ , such that if ( )cba ⋅|  for some Rcb ∈, , then always ba |  or ca | . 

Every prime element is irreducible, the converse is not true in general. 

A ring R in which every nonzero noninvertible Ra∈  can be uniquely decomposed 

in a (finite) product of irreducible or prime elements (except for the ordering and 

associativity) is called a unique factorization ring (UFR). 

A commutative ring with identity (under multiplication) such that for any two 

elements Ra ∈≠ 0  and Rb ∈≠ 0  it holds that 0≠⋅ba  is called an integral domain. An 

UFR which is an integral domain is labeled as a unique factorization domain (UFD). 

A field of fractions of an integral domain R (at least with one element) is the 

“smallest” field containing R, such that necessary elements satisfying the divisibility (by a 

nonzero element) are added. An element c  of this field can be expresses in the form 

bac /=  where Rba ∈, , 0≠b . 

An ideal I (of the ring R) is a subset of R with the following properties: 

a) For every Iba ∈, , it holds that Iba ∈+ . 

b) For each Ia∈  and Rr∈ , Ira ∈⋅ . 

It holds that an intersection of ideals is an ideal as well. Let { } RaaaM n ⊆= ,..., 21 , 

then an intersection of all ideals of R containing M is called an ideal generated by M. It is 

also the “smallest” ideal including M. Ideals of the form { }RrraaR ∈⋅= | , i.e. those 

generated by (the only one) element a , are called principal. 

If every ideal of an integral domain is principal, a so-called principal ideal domain 

(PID) is obtained. It holds true that every PID is UFD; however, the converse is not true in 

general. 
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A Noetherian ring R is primarily defined as that satisfying the so-called finite 

ascending chain condition. Equivalently, it is possible to circumscribe the term as follows: 

A ring R is Noetherian if its every ideal is finitely generated, i.e. Mn =  is a finite number. 

A (left) module (or R-module) M over the ring R is a commutative group 

satisfying: 

 a) For every Rr∈ , Mba ∈, , it holds that ( ) brarbar ⋅+⋅=+⋅ M∈ . 

b) For every Rsr ∈, , Ma∈ , ( ) asarasr ⋅+⋅=⋅+ M∈ . 

c) For every Rsr ∈, , Ma∈ , ( ) ( )asrasr ⋅⋅=⋅⋅ M∈ . 

d) If there exists a multiplicative identity R∈1 , and Ma∈ , then Maa ∈=⋅1  

Modules are similar to vector spaces, yet in modules, coefficients are taken from 

rings, not from fields. A free module is that with a basis. For instance, since nonzero 

elements in a ring are not necessarily invertible, a relation MaRrar ii

n

i
ii ∈∈=⋅∑

=
,,0

1

, 

where M is a free module, does not imply that each ir  is the linear combination of the 

remaining ones [24]. 

A partially ordered set (poset) is defined as an ordered pair ( )p,SP =  where S  is 

called the ground set of P  and p  is the partial order of P . A relation p  is a poset on S  

if: 

a) For all Sa∈ , aap  (reflexivity) 

b) For Sba ∈, , if bap  and abp , then ba ≡  (antisymmetry) 

c) For Scba ∈,, , bap  and cbp  implies bap  (transitivity) 

From a PID, a Bézout domain is distinguished in which every finitely generated 

ideal is principal. In a Bézout domain, PID is UFD and viceversa. Thus, a PID admits the 

existence of an infinitely generated ideal which is principal. 
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In a Bézout domain R, for every pair Rba ∈,  (or generally for a finite set of 

elements) there exists the ( )bad ,GCD=  which meets the Bézout identity (or more 

generally a linear Diophantine equation) 

Ryxdybxa ∈=⋅+⋅ ,,  (2.41) 

A solution Ryx ∈,  is not determined uniquely but (an infinitely many) solutions 

of (2.41) are given by the parameterization 

 

d

a
zyy

d

b
zxx

⋅=

⋅±=

m0

0

 (2.42) 

where {x0, y0} is a particular solution of (2.41) and Rz∈ . 

If (2.41) is solved for any Rc∈  on the right-hand side instead of ( )ba,GCD , it is 

necessary to verify whether there exists ( )ba,GCD  (especially in a ring which is not 

Bézout or PID) for which ( ) cba |,GCD . 

The Bézout identity can be solved e.g. using a generalized (extended) Euclidean 

algorithm which can be described as follows. Let ba,  be given and the task is to find 

( )bad ,GCD=  and a pair yx,  according to (2.41). The iterative procedure can be written 

as 

 
⎣ ⎦

ni

rrr

rqrr

iii

iiii

...,,4,3
12

12

=
≥≥

⋅−=

−−

−−

 (2.43) 

i.e. the current reminder ir  of the division can be expressed by preceding reminders 

21, −− ii rr  and using the whole quotient 12 / −−= iii rrq .  

In every step of the algorithm, it is possible to write the following identity 

 iii ybxar ⋅+⋅=  (2.44) 

where ii yx ,  are from the ring. The first two reminders are chosen as 
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10

01

2

1

⋅+⋅==
⋅+⋅==

babr

baar
 (2.45) 

 The desired ( )bad ,GCD=  then equals the last nonzero reminder, 

∞<=≠ + nrr nn ,0,0 1 . 

The whole procedure can be expressed in a table (matrix) form as follows 

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
dyx

tv

b

a 0
~

operations
matrix

row

elementary

~
10

01
 (2.46) 

The result is determined by two Diophantine equations  

dybxa

tbva

=⋅+⋅
=⋅+⋅ 0

 (2.47) 

 In the case when (2.41) is solved for any fixed Rc∈  on the right-hand side instead 

of ( )bad ,GCD=  it is possible (if a solution exists) to use the extended Euclidean 

algorithm again in the following two possibilities: 

 1) To use scheme (2.46) for Rc∈  instead of ( )bad ,GCD= . Generally, it is not 

necessary to achieve the zero element on the upper right matrix corner. 

 2) Obviously 

 

cybax

c
d

yc
b

d

xc
a

d

c
dybxa

=⋅+

=+

=⋅+⋅

11

/

 (2.48) 

Hence, ( )ba,GCD , x,y  are found using (2.46) first, and subsequently, the following 

substitution is used 

 
d

c
yy

d

c
xx == 11 ,  (2.49) 

to get the desired solution. 
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For the necessity and comprehension of the further text, some basic notions from 

the complex functions analysis ought to be introduced. 

A holomorphic function is a complex-valued function of a single (or multiple) 

complex variable defined on a region ⊆  which is infinitely complex differentiable (i.e. 

there exists all complex derivatives) at any point ∈0z . 

The term holomorphic function is often used interchangeably with or compared to 

an analytic function which is generally a complex-valued function of a single (or multiple) 

complex variable defined on a region ⊆ , in which the Taylor series expansion exists at 

every point ∈0z . That is, a series ( ) ( )( )( )∑
∞

=
−=

0
00!

1

i

ii zzzf
i

zT  converges to ( )zf  for 

every point z  from a neighborhood of 0z . For complex functions, a holomorphic function 

implies an analytic function. A function holomorphic on all  is called entire. 

An isolated singularity of a complex function ( )zf  is a point 0z , in which the 

function is not differentiable; however, there exists an open disk D centered at 0z  such that 

( )zf  is holomorphic on the disk excluding 0z . There are several types of isolated 

singularities. A pole is an isolated singularity 0z  of ( )zf  such that ( )zf  converges 

uniformly to infinity for 0zz → . Thus, if there exists the improper limit ( ) ∞=→ zfzz 0
lim , 

then there exists also ∈n , so that ( ) ( ) ∞<−→ zfzz n
zz 00

lim . A removable singularity is 

another type of an isolated one for which ( ) ∞≠→ zfzz 0
lim . In this case, it is possible to 

define ( ) ( )zfzf zz 0
lim0 →= , so that ( )zf  becomes holomorphic. An essential singularity 

represents the last type of an isolated singularity which evinces “peculiar” behavior within 

the neighborhood of the singularity, and it holds that the limit ( )zfzz 0
lim →  does not exist 

here. 

A meromorphic function is a complex-valued function of a complex variable 

which is holomorphic on an open subset ⊆  except a set of poles. The function can be 

expressed as a ratio of two holomorphic functions. 
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2.3.2 Fields, rings and modules for description of TDS 

The nascence of algebraic methods in description of TDS is connected with fields, 

namely with systems over fields [58], which can be written in the (retarded) state-space 

form 

 
( ) ( ) ( )
( ) ( )tt

ttt

Cxy

BuAxx

=
+=&

 (2.50) 

where elements of CBA ,, are from a fixed field and ( ) ( )
t

t
t

d
dx

x =& . 

The next step was to further generalize the concept of linear systems, to include 

the case in which coefficients belong to a ring. The first, general, in-depth research into the 

properties of systems over rings was constituted in [145], [146]. One of the primordial 

attempts to utilize ring theory to infinite-dimensional linear systems was made by Kamen 

0\[59] where an operator theory was presented, the particular case of systems defined via 

rings of distributions. Namely, the ring Θ  generated by the entire functions ( )sσθ  defined 

in (2.6), their derivatives and 1 was introduced there. Ring models for TDS with lumped 

delays was published in [102]. 

In [156], linear systems over commutative rings, especially TDS, were intensively 

studied. The author i.a. presented the simplest TDS over rings, those with commensurate 

delays where the introduction of the operator ( ) ( )τδ −= txtx : , whereτ represents the 

smallest delay, yields state matrix entries in the ring of polynomials [δ ]. In more details, 

let the model be 

 
( ) ( ) ( )

( ) ( )∑

∑

=

=

−=

−+−=

N

k
k

N

k
kk

ktt

ktktt

0

0

τ

ττ

xCy

uBxAx&
 (2.51) 

then state and output matrices in (2.50) read 

 ∑∑∑
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===
N

k

k
k

N

k

k
k

N

k

k
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000

,, δδδ CCBBAA  (2.52) 
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Using a substitution ( )skk τδ −→ exp , one can obtain the Laplace transform form 

of the state model for TDS with commensurate delays. If delays are not commensurate, we 

need to define a finite set of delay operators Nδδδ ,...,, 21 resulting in a ring  [ ]Nδδδ ,...,, 21 . 

Some authors, e.g. Youla (1968), introduced the field  ( )Nδδδ ,...,, 21  of rational functions 

in  [ ]Nδδδ ,...,, 21  in order to study networks with transmission lines (i.e. delayed systems). 

Reachability and observability of a general system with coefficients over a ring are 

analyzed in [156] as well. 

Conte and Perdon [22] further studied the realization of such systems. These 

authors also developed the geometrical approach to the study of dynamical systems with 

coefficients over a ring concerning TDS. The overview of the methodology was presented 

in [24]. In this framework, the main tool lies in the view that ( ) ( ) ( )ttt yux ,,  in (2.51) are 

free R-modules.  

Concerning input-output maps, which are substantive for the aims of this thesis, 

Sontag [156] and Morse [102] mentioned the conception of 2-D systems which naturally 

arises from the transfer function of a TDS with commensurate delays over a ring (2.51), 

(2.52). Translation the state-space description into the transfer function according to the 

first formula in (2.7) results in a rational function in s  and )exp( sτ− . This expresses that 

two operators are used here, i.e. the integrator and the delay operator, which are 

algebraically independent (due to the fact that the exponential term is a transcendental 

function) in the meaning of that there is no nontrivial linear combination of s  and 

)exp( sτ−  over real numbers equaling to zero. Thus, the ring  ( )[ ]ss τ−exp, of 

quasipolynomials, which is isomorphic to the ring of real polynomials in two variables (a 

so-called 2-D polynomial)  [ ]zs, , is obtained. Quasipolynomials defined in (2.8) do not 

coincide with those introduced above since commensurate delays only are considered here. 

This concept was further studied and developed e.g. in [44], [101]. It holds that any two 

coprime elements in  ( )[ ]ss τ−exp,  have a finite number of common zeros, see e.g. [74]. 
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However, some authors pointed out that the use of quasipolynomials does not 

permit to effectively handle some stabilization and control tasks, thus other rings based on 

quasipolynomials for TDS with commensurate delays were introduced. 

For instance, Brethé and Loiseau [16], Loiseau [74] established the following 

rings: A ring  = ∪Θ  ( )[ ]sτ−exp  = ( )[ ]sτ−Θ exp  of all linear combinations, with real 

coefficients, of distributed delays from Θ  and lumped delays, and a ring 

 = [ ]s  = ∪Θ  ( )[ ]ss τ−exp,  of so-called pseudopolynomials which consists of Laplace 

transforms of operators that are generated using derivatives, lumped and distributed delays. 

Any element ( )∈sT  can be written in the (coprime) form ( ) ( )( ) ( )sDssNsT /exp, τ−∈ , 

( )( )∈− ssN τexp,  ( )[ ]ss τ−exp, , ( )∈sD  [ ]s . Two pseudopolynomials are coprime if and 

only if there are neither their common zeros nor factors in the form ( )skτ−exp . Ring 

[ ]s  is not isomorphic to [ ]x , which means that the variables are not algebraically 

independent (transcendental) over , see an example in [16]. Moreover, it is a Bézout 

domain, yet not an Euclidean ring nor a Noetherian ring nor a UFD. Notice that  and 

 ( )[ ]ss τ−exp,  share the same field of fractions, i.e.  ( )( )ss τ−exp, . The transfer function 

can then be expresses as a fraction of two pseudopolynomials. 

Behavioral approach, as it was introduced for dynamical systems in [186], was 

presented by Gluessing-Lueerssen [46] for TDS, again with commensurate delays. In 

contrast to above mentioned works, the author considered systems in the behavioral point 

of view instead of systems over rings. A behavior is the kernel of a delay-differential 

operator. More precisely, consider equations in the scalar case in the form 

 ( )( )∑∑
= =

=−
L

j

N

i

i
ij jtxp

0 0

0  (2.53) 

where ∈tpij , , ( )( )tx i  denotes the i-th derivative of the function ( )tx :  → . Behaviors 

 are those functions ( )tx  satisfying (2.53). Alternatively, P
~

ker=  where 

∑∑
= =

∈=
L

j

N

i

ji zsP
0 0

 [ ]zs,  and P
~

 denotes the associated delay-differential operator, i.e. 
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( ) ( )( )∑∑
= =

−=
L

j

N

i

i
ij jtxptxP

0 0

~
. It is stated in [46] that it is algebraically more adequate to 

consider the ring  [ ]1,, −zzs  instead of  [ ]zs, . There is also defined the ring 

 :={ ∈p  ( )[ ] ( ) }CHzspzzs ∈− ,|, 1  (2.54) 

as the appropriate domain in order to translate relations between behaviors, lying between 

 [ ]1,, −zzs  and  ( )[ ]1, −zzs , where the latter means the ring of polynomials in 1, −zz  with 

the coefficients in rational functions in s  with real parameters, and CH is the set of all 

entire functions. It was proved that  is not a UFD and not a Noetherian ring; however, it 

is a Bézout ring. 

However, delays are naturally real-valued and thus the limitation to 

commensurate delays is rather restrictive for real applications [94]. Dealing with rings for 

input-output maps of TDS with even non-commensurate delays, it is crucial for this thesis 

to mention here the family of approaches (originally developed for delayless systems) 

utilizing a field of fractions where the transfer function is expressed as a ratio of two 

coprime (or relatively prime) elements of a suitable ring [28], [69], [167]. The process of 

finding such coprime pair is called a coprime factorization. 

One of such rings for continuous-time systems is the ring of stable and proper 

rational functions, RPS, [69], [138]. An element of this ring is defined as a ratio of two 

polynomials in s  over  where the denominator polynomial is Hurwitz stable (i.e. free of 

roots located in the closed right half-plane including imaginary axis) and, moreover, the 

ratio is proper (i.e. the s-degree of the numerator is less or equal to the denominator). 

Alternatively, the element of RPS is analytic and bounded for 0Re ≥s  including infinity, 

i.e. it lies in ∞H ( + ). Such a definition is, however, not sufficient for TDS since e.g., as 

demonstrated in Example 2.1, the Laplace form of a stable system including in ∞H ( + ) 

can have an unstable denominator. 

The utilization of RPS in description (and control) of TDS requires a rational 

approximation of a general meromorphic transfer function as a first step of a coprime 
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factorization, for instance, by a substitution of the exponential terms, 

( ) ( )∈≈− sXsτexp  ( )s . 

An example of a coprime factorization in RPS follows. 

Example 2.2 

Consider a stable TDS with distributed delays governed by the transfer function 

(2.16). The use of e.g. the first order Padé rational approximation results in 

 ( ) ( )
( )

( )( ) ( )
( )( )

( )
( )sa

sb

ss

s

sU

sY
sG =

+−
−++≈=
15.01

1exp11exp15.0
 (2.55) 

where ( )sa , ( )∈sb  [ ]s . Notice that the common root 1−=s  characterizing the delay 

distribution in this example vanished after the rationalization. An addition, although the 

relative order of the transfer function is preserved, the absolute one has increased. To 

establish coprime factors ( ) ( ) ( )smsasA /= , ( ) ( ) ( )smsbsB /= , ( )sm ∈ [ ]s  (with no zero in 

 )+ , ( ) PSRsA ∈ , ( ) PSRsB ∈ , one has to realize the divisibility condition in RPS: 

Any ( ) PSRsA ∈  divides ( ) PSRsB ∈  if and only if all unstable zeros (including s → ∞) of 

( )sA  are those of ( )sB . Inclusion of infinity in the condition gives rise to the 

requirement ( ) ( ) 2degdeg == sasm , and moreover, there is no s  with Re 0≥s  satisfying 

( ) 0=sm . ■ 

 The main drawback of the ring, i.e. the necessity of a rational approximation, 

induces the idea of introduction a similar, yet rather different, ring avoiding this operation. 

2.3.3 RMS ring 

The original definition of the ring of proper and stable retarded quasipolynomial 

(RQ) meromorphic functions, RMS, is the subject of this subchapter [199]. The basic idea 

for its introduction proceeds from the following ideas. First, as mentioned above in the 

previous subchapter, a rational approximation of the transfer function in the form of a ratio 

of two quasipolynomials is required for the use of the ring RPS. This operation brings a loss 

of system dynamics information, as can be seen from Example 2.2. Second, from the 
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practical point of view, there is no reason to be limited to commensurate delays in a model, 

thus, a more universal description ought to be introduced. Third, authors took into account 

the fact that two variables, z and s, are not independent from the functional point of view, 

thus, a one-dimensional (1-D) instead of 2-D approach can be used. Last but not least, as 

stated above, quasipolynomials in the transfer function do not permit to effectively handle 

some stabilization and control tasks such as impulse-free stability and controller 

properness and parameterization. 

An element ( ) MSRsT ∈  is represented by a proper fraction of two 

quasipolynomials  

 ( ) ( )
( )sx

sy
sT =  (2.56) 

where a denominator ( )sx  is a quasipolynomial of degree n and a numerator can be 

factorized as  

 ( ) ( ) ( )ssysy τ−= exp~  (2.57) 

where ( )sy~  is a quasipolynomial of degree l and 0>τ . ( )sx  is stable, which means that 

there is no zero of ( )sx , s0, such that 0Re 0 ≥s . Moreover, the ratio is proper, i.e. l ≤ n. 

Obviously, the condition 0>τ  is too restrictive (or more likely a misprint); the 

inequality 0≥τ  would be more natural instead. The original definition of RMS has some 

drawbacks; especially, it does not constitute a ring, which requires making some changes 

in the definition as presented in Subchapter 4.1.1. Namely, although the retarded structure 

of TDS is considered only, the minimal ring conditions require the use of neutral 

quasipolynomials at least in the numerator of ( )sT . Moreover, the original definition 

brings problems when comprising models with distributed delays and handling the 

coprime factorization. 

2.4 Algebraic control of TDS 

Algebraic approaches of control systems theory aim at changing differential 

equations into algebraic ones, thanks to the use of the Laplace transform. 
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2.4.1 TDS stabilizability and controllability 

Let us briefly mention notions of controllability and stabilizability of TDS which 

present differences compared to finite dimensional systems [141]. First, controllability 

means to reach a function tx  within the time range [ ]tTt ,−  instead of a point ( )tx  at one 

time instant. As second, delays introduce the existence of a required minimum reaching 

time, e.g. a system with input-output delay T can not be controlled within time T. 

The concept of controllability is not unique here. Richard [141] provides an 

overview of different controllability definitions, including 2-controllability, absolute 

controllability, ( ,ψ n)-controllability, spectral controllability, n-controllability and ring-

controllability and presents the chain of implications between some of them as well. 

However, all the statements are made in the state space and most of the definitions hold for 

models with commensurate delays, which is almost useless for the purpose of this thesis. 

The definition of the spectral controllability mentioned above can be extended to 

non-commensurate delays as follows. The system (2.1) with matrices (2.7) is spectrally 

controllable if and only if 

 ( ) ( )[ ] ∈∀= snsss ,,-rank BAI  (2.58) 

see [111], [205]. Alternatively, the criterion can be formulated as 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ∈∀=− snsssssss n ,,,,rank 12 BABABAB K  (2.59) 

where on the left-hand side is the well known spectral controllability (reachability) matrix 

[ ]BAABBP 1,...,,: −= n
R . 

In e.g. [24] two different notions of reachability of TDS over a ring are defined 

and distinguished: Given the obvious reachability matrix RP , the system is weakly 

reachable if RP has full rank, whereas it is said reachable if RP is (right) invertible over R. 

For example, it is easy to prove that a system ( ) ( ) ( )tutut δτ =−=x& is weakly reachable and 

not reachable over [δ ]. Clearly, the condition (2.59) agrees with the weak reachability. 
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It was proved in [158] - although for commensurate delays only - that if the system 

is spectrally controllable, then it is ring controllable, i.e. any element of the appropriate R-

module can be reached by the feedback from any initial state. 

A similar notion of the (finite) spectrum assignability for TDS with commensurate 

delays (which can be extended to those with non-commensurate ones) was introduced by 

Sontag [156] and Spong and Tarn [158]. Intuitively, the system is spectral assignable if 

there exists a finite number of state feedback controller parameters (with appropriate 

controller and control system structures) such that the closed-loop spectrum contains 

arbitrary (but fixed) poles. Brethé and Loiseau [16] proved that TDS (with commensurate 

point delays) is finite spectrum assignable if and only if it is spectrally controllable. 

If one wants to assign only stable poles, the spectral assignability turns to the 

(spectral) stabilizability, i.e. the necessary and sufficient condition for the stabilizability is  

 ( ) ( )[ ] ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ∈∀== − snssssssssss n ,,,,rank,-rank 12 BABABABBAI K  +  

  (2.60) 

However, since the condition is based on the state space description, it depends on 

the system realization as shown in the following example. 

Example 2.3 

Consider an integrator with distributed input-output delay governed by functional 

differential equation 

 ( ) ( )∫ −=
1

0

dττtuty&  (2.61) 

By introduction of a state variable ( ) ( )tytx = , (2.61) represents the state equation 

as well. Using the Laplace transform on the convolution, the following image of the 

equation is obtained 

 ( ) ( ) ( ) ( ) ( )sUsBsU
s

s
ssX =−−= exp1

 (2.62) 

Hence, the system is stabilizable since ( ) 1rank =sB  for all complex s. 
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Contrariwise, by derivation, model (2.61) becomes 

 ( ) ( ) ( )1−−= tututy&&  (2.63) 

the “direct” state space realization of which is 

 ( ) ( ) ( ) ( )1
1

0

1

0

00
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⎦
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⎡
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+⎥
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⎢
⎣

⎡
= tututt xx&  (2.64) 

which yields the stabilizability test as 

 ( ) ( ) ( )[ ] ( )
( ) ∈±==⎥

⎦

⎤
⎢
⎣

⎡
−−

−−
= kks

s

s
sss ,j2,0

0exp1

exp10
rank,rank πBAB  (2.65) 

Obviously, the system is not (spectrally) stabilizable. ■ 

The stabilization of systems over rings was the aim of [37], [49]. 

The most important result for the stabilization of TDS in input-output space, 

namely for BIBO stabilization, which is crucial for this work, was presented e.g. in [75], 

[155]. The system is said to be BIBO stabilizable if there exists a feedback loop such that 

the closed-loop system is BIBO stable, see Subchapter 2.2.2. Then it holds the following 

necessary condition: 

Let TDS be in the form of the transfer function 

 ( ) ( )
( )sa

sb
sG =  (2.66) 

where ( ) ( )sbsa ,  are quasipolynomials as in (2.8). Then if the system is BIBO stabilizable, 

then it admits a Bézout factorization over ∞H ( + ), i.e. there exist 

( ) ( ) ( ) ( )∈sQsPsBsA ,,, ∞H ( + ), such that 

 ( ) ( )
( )sA

sB
sG =  (2.67) 

 ( ) ( ) ( ) ( ) 1=+ sQsBsPsA  (2.68) 
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Further, if the system is BIBO stabilizable, then any coprime factorization (2.67), 

having no common factor on ∞H ( + ), is also Bézout. Moreover, two elements 

( ) ( )∈sBsA , ∞H ( + ) form a Bézout factorization if and only if  

 ( ) ( )( ) 0inf
0Re

>+
≥

sBsA
s

 (2.69) 

In fact, a coprime factorization does not guarantee a Bézout factorization as 

clarified in the following example. In such cases the system is not BIBO stabilizable. 

Example 2.4 

A TDS of neutral type has a transfer function 

 ( ) ( )
( )

( )
( ) ( )( )( )1exp1

1

+−−
===

sssa

sb

sU

sY
sG  (2.70) 

Clearly, a pair 

 ( ) ( ) ( )( )( )
2

1exp1
,

2

1

+
+−−=

+
=

s

ss
sA

s
sB  (2.71) 

has no nontrivial (non-unit) common factor, i.e. it is coprime. However, 

( ) ∈=± kkA ,0j2π , and ( ) 0j2lim =±
→∞

πkB
k

, hence (2.69) does not holds true and the 

system is not BIBO stabilizable.  ■ 

As stated in [75] for neutral-type TDS, a system that is not formally stable is not 

BIBO stable nor stabilizable. However, this is not true exactly, as shown in [115]. 

2.4.2 Overview of algebraic methods in control of TDS 

Algebraic control and controller design methods for TDS generally follow 

algebraic analytic approaches described in Subchapter 2.3.2. Without being exhaustive, an 

overview of some methods and literature sources follows. 

One of the first algebraic results in the area of control of TDS was presented by 

Sontag [156]. As mentioned above, he studied the reachability, coefficient- and pole-

assignability of TDS with lumped and commensurate delays, originating from the 
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possibility of deriving methods and techniques from the framework of systems with 

coefficients over the field of real numbers. Similar results were published e.g. in [102], 

[157]. A general algebraic solution to the problem of control of linear systems over 

arbitrary commutative rings by dynamic output feedback is given in [38]. Mounier [103] 

considered tracking problems and Picard et al. [135], [136] dealt with precompensation 

feedback loop for TDS and the model matching, respectively. 

Kamen et al. [62] studied stabilization of TDS with non-commensurate delays by 

finite dimensional controllers where it was shown there that a spectrally stabilizable time-

delay system can always be stabilized using a finite-dimensional compensator obtained by 

a rational approximation. In [63], the existence and construction of proper stable Bézout 

factorizations of transfer function matrices for TDS with commensurate time delays in 

terms of a specialized ring of lumped and distributed delays was introduced. Furthermore, 

regarding 2-D systems, let us mention works of Morf et al. [101], who found a constructive 

results for 2-D polynomial matrices factorization, Šebek [160], [161] investigated 

procedures for the characteristic polynomial assignment (by a transformation into 1-D 

polynomials) and asymptotic tracking via solving two linear equations in 2-D polynomials.  

These approaches above adopt the concept of Diophantine equations (originally 

derived for discrete-time systems) which can be found throughout the algebraic control 

theory, particularly in the form of the Bézout identity [69], [167], see Subchapter 2.3.1. 

Algebras for distributed LTI systems were introduced in [27]. 

A geometrical approach was developed and applied to a number of control 

problems e.g. in [23], [55], [57]. In [24] the geometric approach via ring and modules 

algebra for systems over rings was used to provide the solution of problems such as 

disturbance decoupling and block decoupling. 

In the framework of a behavioral approach for control of TDS, the controllability 

criterion for, generally, multivariable systems with commensurate yet even distributed 

delays using ranks of associated matrices was introduced and proved in the most 

significant work by Gluessing-Lueerssen [46]. This criterion generalizes the spectral 

controllability test for time-delay state-space systems as in (2.58). 
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In [16], the ring [ ]s  was utilized to solve the task of the finite spectrum 

assignment for SISO TDS with lumped commensurate delays via a state feedback with 

convolution integrals (distributed delays), so-called Volterra integrals of type (2.3). 

Bézout-type identity with 2-D polynomial matrices was used there. 

The results of author’s long-standing work and research on algebraic control of 

TDS with commensurate delays were summarized and reviewed in [74]. The author 

pointed out that algebraic approaches fail to give a constructive procedure for stabilizing 

TDS and the use of distributed delays in the feedback can lead to effective procedures 

solving this problem, see also [83], [183]. Exact model matching (including disturbance 

rejection) in  ( )[ ]ss τ−exp, ,  ( )[ ]ss τexp,  and  ( )( )[ ]ssτexp   for retarded and neutral TDS, 

respectively, was one of the topics solved in the paper. The second part of the contribution 

dealt with the stabilization of TDS using the ring of pseudopolynomials, , see Subchapter 

2.3.2, the realization over  of a fraction of elements in , and with the pole placement 

using . It was recalled there that a system is stabilizable if the plant transfer function 

numerator and denominator have no unstable common zero - compare with (2.69). Another 

finding states that there always exists a stable realization over , however, over 

 ( )[ ]sτ−exp  does not, see Example 2.3. 

The strongest result about  constructively proved in [74] is the following. For 

two coprime elements of , say ( ) ( )sbsa , , there exist a pair ( ) ( )∈sysx ,  satisfying 

( ) ( ) ( ) ( ) 1=+ sysbsxsa , see (2.68) for the comparison.  

Stabilization and synthesis of the so-called fractional exponential systems has been 

worked out e.g. in [9]. 

Surveys [141], [183] focused on advances in control of TDS also includes 

overview of some algebraic methods, particularly in robust control of systems with 

commensurate delays. 

The main result of [75], that neutral TDS that are not formally stable are not BIBO 

stabilizable, has already been introduced above, see Subchapter 2.4.1, where the authors 

employed the algebra of Laplace transform elements from ∞H ( + ). This finding, 
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however, holds for strictly proper systems, i.e. proper systems can have a Bézout coprime 

factorization, see example ( ) ( )1)exp(/ +−+= sssssG  in [160]. The authors provided 

stabilizing procedure for state-space models via distributed feedback of the form as in [16]. 

A generalization of a so-called structure at infinity (closely related to the coprime 

factorization) and the introduction of non-equivalent notions of proper and biproper 

fractions for both retarded and neutral TDS with commensurate delays (in 2-D) were 

presented in [30]. In the paper, advantages of the use of pseudopolynomials for distributed 

delays were mentioned as well.   

Partington and Bonet [115], in their very attractive paper, studied H∞ and BIBO 

stabilizability of neutral SISO TDS with one internal delay. They paid their attention to 

controlled systems with limit case for strong (and formal) (in)stability, ∑
=

=
ih

j
njm

1

1, see 

(2.25). The authors stated that in [75] it had actually been proven that formally unstable 

neutral TDS can not be exponentially stabilized. However, they disproved that such 

systems can not be BIBO stable. For instance, it was proved there that a system with 

transfer function ( ) ( )∉+−+= 1)exp(/10 ssssG ∞H ( + ) and it is not BIBO stable, yet 

( ) ( ) ( )∈+= 1/0 ssGsG ∞H ( + ) but still not BIBO stable, and 

( ) ( ) ( ) ∈+= kssGsG 1/0 ∞H ( + ) and is BIBO stable for k ≥ 4. For all there three systems, 

the Bézout factorization condition (2.69) can not be satisfied. In extension to [75], they 

showed that many neutral systems can not be stabilized in an H∞ sense. Moreover, it was 

proved that any H∞-stabilizable SISO system can be stabilized by a proper controller of a 

finite dimension (compare to [62]). The authors opened the question of the existence of an 

infinite-dimensional controller for such systems. Although no algebraic methods are used 

in the work, the results are fruitful for this thesis. 

A novel controller parameterization that reflect the Internal Model Control (IMC) 

structure for both, SISO and MIMO TDS, independent on the coprime factorization, was 

proposed in [194]. 

A robust control based algebraic approach, namely via a structured singular value, 

applied to three practical problems was introduced in [31]. 
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2.4.3 Control of TDS in the RMS ring  

As mentioned above, this thesis intends primarily to use the ring of stable and 

proper meromorphic functions, RMS, or its revised form, more precisely, therefore the 

overview of selected contributions dedicated to control in this ring follows. Notice that the 

conception of RMS has not been finalized in many of these papers. 

A control methodology for retarded TDS with non-commensurate delays based on 

the RMS ring was introduced in [199]. Besides a conventional control loop with the Bézout 

identity and the Youla-Kučera parameterization for system stabilization and asymptotical 

tracking of stepwise reference, the affine parameterization was adopted. The idea of the 

affine parameterization in RMS was extended in [201], [202]. In the former paper, the 

authors solved asymptotic stability, (again stepwise) reference tracking and disturbance 

rejection followed by the shifting of the closed-loop poles [171]. The cascade controller 

scheme for unstable plants plays the important role here. The latter one dealt with state-

feedback pre-stabilization supported by a finite-dimensional observer and followed by the 

affine parameterization again. The methodology provides a finite spectrum assignment of 

the control loop. A specific cascade control structure satisfying the disturbance 

compensation presented in [203] improved the ideas introduced in the papers above. 

To name just a few contributions by the author of this thesis related to controller 

design in RMS, control of unstable retarded TDS and that of integrating processes with dead 

time by two feedback controllers were designed in [131] and [122] respectively. The link 

between relay-based autotuning and controller design was set e.g. in [130], [139]. 

Reference tracking and disturbance rejection of non-stepwise external inputs with delayed 

plants and two feedback controllers were solved in [129]. However, some authors’ (mainly 

early) papers suffer from mistakes and inaccuracies. 

Yet, as pointed in [124], the algebraic structure defined in [199] does not constitute 

a ring and, moreover, neutral-type system structures ought to be included in the definition. 
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2.5 Control system structures 

An essential step in controller design is the selection of the control system 

structure, hence, the description of control system structures utilized in this thesis follows. 

The first one agrees with the simple negative feedback loop, whereas the second one 

introduces a secondary (slave) controller making the task of load disturbance rejection 

easier and better to solve. Moreover, it will be shown later that this control structure 

enables to guarantee a (quasi)finite spectrum assignment. 

2.5.1 1DoF control structure 

One-Degree-of-Freedom (1DoF) system structure is depicted in Fig. 2.1, where , 

( )sW  is the Laplace transform of the reference signal, ( )sD  stands for that of the load 

disturbance, ( )sE  is transformed control error, ( )sU  represents the plant input, and ( )sY  

is the plant output controlled signal in the Laplace transform. The plant transfer function is 

depicted as ( )sG , and ( )sGR  stands for a controller in the scheme. 

 

Fig. 2.1 1DoF control system structure 

Let  ( ) ( ) ( )sAsBsG /=  and ( ) ( ) ( )sPsQsGR /= , then the following basic transfer 

function can be derived in the control system in general 
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2.5.2 TFC control structure 

Two-Feedback-Controllers (TFC) control system, see e.g. [112], is another 

controller structure, displayed in Fig. 2.2. The transformed signals and transfer functions 

have the same meaning as for 1DoF and ( )sGQ  states for the transfer function of the 

secondary (slave) controller in the inner feedback loop. 

 

Fig. 2.2 TFC control system structure 

In the structure, the following transfers can be derived 
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where 

 
)(

)(
)(,

)(

)(
)(

sP

sQ
sG

sP

sR
sG QR ==  (2.74) 

Obviously, 1DoF and TFC coincide if and only if 0)( =sGQ . 

2.6 Tuning of controllers for TDS 

A suitable setting (of free parameters) of finally derived controller(s) is another 

important task in controller design. 
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The most of tuning approaches have dealt with an optimal setting of the state 

feedback. For instance, Linear-Quadratic (LQ) optimal control was proposed e.g. in [45], 

[47], [82]. Yet, these approaches are marked by the enormous complexity of the control 

laws. An interesting idea of the state-feedback controller tuning by the change of delays in 

the feedback was proposed e.g. in [110]. 

Regarding output-feedback control, the stabilizing effect of delayed feedback was 

pointed out in [1]. The optimal modulus principle for TDS via classical PID controllers 

was implemented in [205]. A dead-beat (i.e. that guaranteeing the minimal number of 

control actions) controller for discrete-time TDS models was derived in [183]. H∞ optimal 

control of TDS based on operator methods and frequency domain descriptions of systems 

was solved in [43]. The LQ control technique ensuring asymptotical tracking of step 

reference and step load disturbance attenuation for stable, integrating and unstable plants 

with input-output delay based on delay approximation and the polynomial approach was 

presented in [32]. 

An overview of some other (rather controller design) methods was presented in 

[141]. A detailed PID controllers design for systems with time delay was published in 

[150]. A number of results on control and tuning of systems with input-output delays were 

published as well, see e.g. [108], [169] and references therein. 

As a pole placement tuning methodology is concerned in this thesis, a basic 

overview of pole placement (PP) and finite spectrum assignment (FSA) methods for TDS 

ought to be presented.  

2.6.1 Finite spectrum assignment 

A FSA methodology for SISO linear systems with delays in state and/or control 

variables was introduced in [83] for the first time. The authors utilized a feedback law 

involving convolutory integrals over past and present values of input and state variables 

(i.e. distributed delays in the feedback). The results were extended by Watanabe [183], 

however, the procedure is too complex. 
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As mentioned above, Brethé and Loiseau [16] proposed an algebraic approach by 

means of pseudopolynomials based on the Bézout identity. 

A comprehensive treatment of FSA for controlled plants with input-output delays 

was made in [164], [180]. 

2.6.2 Static pole placement for TDS 

Extending the system PP task to TDS brings a rather different problem in 

comparison to finite-dimensional systems. The crucial difference lies mainly in the fact 

that the characteristic quasipolynomial has an infinite number of zeros, yet a finite number 

of (free) controller parameters. Hence, in the contrary to FSA, the aim of PP is to place 

some (dominant) poles of, generally, infinite spectrum instead of to design control law 

resulting in a finite-dimensional feedback. The problem was already formulated in [113]. 

The notion “static” in this subchapter heading expresses PP strategies assigning poles “at 

once” to the prescribed positions without iterations. For spectrally controllable systems, it 

is possible to place as many poles as free controller parameters are available. 

A specific and crucial problem for TDS is that the poles dominancy must be 

checked, e.g. using methods introduced in Subchapter 2.2.1 or via a conformal mapping 

technique and the Mikhailov (or Nyquist) criterion [197], [200]. Indeed, any attempt to 

place poles too left in the complex plane results to moving the rest of the spectrum to the 

right. The dominancy can be understand in the classical sense as the smallest distance of 

real parts of poles from the imaginary axis, or via the calculation of poles residues as it was 

introduced e.g. in [206]. 

Pole assignment problem for controllable TDS has been solved in [71] where a 

systematic procedure was derived. 

Frequency domain pole assignment employing conformal mapping for a general 

class of delays expressed by convolutions of the form (2.2) was proposed in [197]. 

Dominant pole placement for TDS with input-output delay and the PID controller based on 

the ultimate gain and ultimate frequency from the Nyquist plot was presented e.g. in [181], 

[182], [200] and improved in [73]. In [169], the same problem, however, in the Laplace 

domain was solved. 
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A simple method of designing state variable feedback in TDS assigning the 

dominant system poles on prescribed positions was presented e.g. in [206]. Look at the 

idea in more details. Consider the closed-loop characteristic quasipolynomial ( )K,sm  with 

a vector K  of r unknown (free) controller parameters as 

 [ ] ∈= T
rKKK ,...,, 21K r (2.75) 

If the aim is to assign nR real feedback poles, iσ , i = 1...nR, into prescribed 

positions, the following set of linear algebraic equations are to be solved  
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where 0K  is a vector of arbitrary parameters values (ideally) near the desired K  and jKΔ  

represent the parameters increments (i.e. KKK Δ+= 0 ). The left-hand side equality in 

(2.76) comes if ( )K,sm  is linear with respect to K , which is usual in linear control, and 

the sensitivity functions do not depend on K . 

In case of complex conjugate poles, it is necessary to solve real and imaginary 

parts of (2.76) separately as 
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where Cn  expresses the number of prescribed complex conjugate pairs. 

Equations (2.76) or (2.77) have a unique solution if Rnr =  or cnr 2= , 

respectively, and they are linearly independent. If the intention is to place less poles than 

the number of free parameters is, i.e. Rnr >  or Cnr 2> , respectively, sets (2.76) or (2.77) 

are to be solved using so-called Moore-Penrose pseudoinverse, [134], minimizing the 

norm 
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Contrariwise, if Rnr <  or Cnr 2< , respectively, it is not possible to place poles to 

the prescribed positions exactly, and the pseudoinverse provides the least squares 

minimization 
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In case of prescribed multiple poles of p-th order, formulas (2.76) or (2.77) not 

only for ( )K,sm  but also for  

 ( )( ) ( ) 1,...,2,1,d/,d, −== plssmsm lll KK  (2.80) 

must hold. 

Alternatively, if linearity of the algebraic equations is not required, one can solve a 

set on non-linear algebraic equations 
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without linearization (2.76), (2.77); however, it requires a rather more sophisticated 

computational methods, e.g. the well known Newton method. 

An example demonstrating the pole assignment procedure follows. 
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Example 2.5 

Consider the characteristic quasipolynomial 

 ( ) ( )sassm τ−+= exp  (2.82) 

The task is to find a pair { }τ,a  when a prescribed pair of roots of 

(2.82), ωασ j±= , is given. The exact analytic solution (meeting the requirements of the 

positivity of { }τ,a  and the negativity of σ ) reads 
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 Compare now the solution with (2.77) in the working point [ ]τ,a  = [ ]1,1 .  
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where ττ Δ+=Δ+= 1,1 aa . By decomposition into real and imaginary parts, (2.84) 

becomes 
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 For example, let 5.0j1±−=σ , then (2.83) gives 9273.0,4423.0 == τa . In 

contrast to that, (2.85) reads 

 
8032.0496.23032.1

3855.17339.13855.2

=Δ−Δ−
−=Δ+Δ

τ
τ

a

a
 (2.86) 

which results in 0299.0,5591.0 −=Δ−=Δ τa , i.e. 9701.0,4409.0 == τa . Contrariwise, a 

quasipolynomial with 9701.0,4409.0 == τa  has the dominant pair of roots as 

5612.0j9269.0 ±−=σ . ■ 

So-called σ-stabilizability (roughly speaking – closed loop spectrum is to be 

located left from the prescribed value 0<−σ  determining exponential decay) was 

addressed in [99] for retarded TDS and in [64] for neutral ones. A similar problem was 
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solved in [168] for a delay-free DC servomotor controlled by a delayed feedback using 

shaping of the characteristic quasipolynomial with the dominant poles analysis. 

Pole placement issues for TDS were also partially investigated e.g. in [47], [82], 

[184]. 

2.6.3 Continuous pole placement for TDS 

The mentioned specific feature of TDS that placing the desired dominant poles 

may cause the effect that unexpected dominant poles emerge somewhere to the right of the 

desired ones has induced the investigation of iterative (shifting) algorithms pushing the 

undesirable poles to the left. Although this class of approaches has been developed for 

state feedback control, it can be applied to output controllers effortlessly. 

Let us describe basic steps of algorithms introduced in [90], [171] which have the 

common idea, yet utilize a rather different tools. The core of algorithms, called also Quasi-

Continuous Shifting Algorithm (QCSA), combines the estimation of poles locations with 

changing controller parameters based either on the prescription of new desired poles 

positions or on the sensitivity (tendency) of current poles. The method starts with the static 

pole placement introduced in 2.6.2 where initial closed-loop poles positions are set. Let Sn  

denotes the number of shifted dominant poles, then Sn  (or more) dominant are to be found. 

Exactly Sn  poles are then moved left (in real axis) with appropriately short distance. The 

number of shifted poles can be increased if necessary (e.g. when the algorithm is cycled). 

The differences between the two approaches [90], [171] lie in the way how to induce the 

shifting and in the number of possibly shifted poles. Naturally, it depends also on whether 

a feedback has retarded or neutral character, see [94]. 

A short description and a summarization of the two algorithm variants of QCSA 

follow. Consider the idea of [171] for single roots first. Equation (2.76) and (2.77) can be 

written in the matrix form as 

 bKA =Δ  (2.87) 

where 
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where Rii ni ...1, ==ασ  are current real poles, Ciii ni ...1,j =±= ωασ  mean complex 

conjugate pairs of poles, 0K  represents the vector of actual controller parameters and 

0<Δ iα  stands for a shift of real parts of poles. Hence, a new vector of controller 

parameters KKK Δ+= 0 , or KKK Δ+= Re0 , is calculated using the pseudoinverse  

 bAK +=Δ  (2.89) 

based on the chosen value of iαΔ . In every iteration step it is necessary to check the 

prescribed poles dominancy. Naturally, one can use nonlinear equations (2.81); however, it 

requires more complex calculations. 

If Sn  denotes the number of currently shifted poles, it must hold 

that rnnn CRS ≤+= 2 , i.e. one controller parameter can move one pole, not the whole 

conjugate. 

The case of a p-multiple pole can be easily solved similarly as in (2.88) where 

1−p  s-derivatives of ),( Ksm  are to be used to calculate appropriate rows in bA, .  
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 The methodology published in [90] utilized an extrapolation 
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yielding 
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A matrix 
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is so-called sensitivity matrix which enables to estimate parameters changes according to 

 σSK Δ=Δ +  (2.93) 

where [ ]TnS
σσσ ΔΔΔ=Δ ,...,, 21σ . 

It holds that 
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thus, if poles are shifted in the real axis only, it can be calculated 

 ( ) { }σSK Δ=Δ + ReRe  (2.95) 

The advantage of this technique is that up to r2  (complex conjugate) poles can be 

shifted, since one controller parameter can be used to adjust a real pole or a pair of (both) 

complex conjugate poles. Unfortunately, in case of a p-multiple pole, the technique fails 

and one can consider a pole a “nest” of close single poles. 

Prior to an algorithm summarization, a specific of neutral TDS ought to be 

mentioned. Since there exist vertical strips of characteristic roots the position of which in 
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the real axis is not continuous with respect to delays, the so called safe upper bound has 

been defined [94]. The notion expresses the real number that is definitely higher than the 

real part of the rightmost strip even considering small changes in delays. If such number is 

strictly negative, the system is strongly stable and thus it can be stabilized safely. More 

precisely, define ( )ηDc  as 

 ( ) ( ){ }0:Resup: == smsc DD η  (2.96) 

where η  is the vector of NH delays and ( )smD  is the characteristic quasipolynomial (2.23) 

related to the associated difference equation (2.21). As mentioned in Subchapter 2.2.2, 

( )ηDc  is not continuous with respect to η and it expresses the real part of the rightmost 

strip of poles of a neutral TDS. The safe upper bound ( )∈ηDC  is defined as follows 
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It holds that ( )ηDC ≥ ( )ηDc  and ( )ηDC  is continuous in the delays. It has been 

proved in  [94] that the quantity ( )ηDC  is the unique zero of the strictly decreasing function 

 ∈c  ( ) 1, −→ ηcf  (2.98) 

where ( )η,cf  is defined as 
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where ( )⋅Ωr  means the spectral radius. It is possible to estimate an upper bound on ( )ηDC  

using the fact that 
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as the unique solution of the equation 
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If the control law can not change any of iH  (or, equivalently any of njm , see 

(2.25)), one can concentrate on the characteristic roots (poles) with the real part larger than 

( )ηDC , since the value of ( )ηDC  can not be adjusted in this case. It holds that all poles in 

the half-plane Re 0, >+≥ εεDCs , lie in a compact (i.e. closed and bounded) set and the 

number of these roots is finite [52], [94]. Hence only isolated poles right from the value of 

( )ηDC  can be taken into account when shifting. In the contrary, if iH  can be changed, the 

value of ( )ηDC  varies and it must be recalculated in every iteration step; however, there is 

still no reason to deal with the characteristic roots left from ( )ηDC . The knowledge of 

( )ηDC  prevents to spend much control action to poles with smaller real part which are 

useless for feedback stabilization. 

The case ( ) 0>ηDC agrees with strong instability, and if it is not possible to 

improve ( )ηDC , one can give the controller tuning up. 

To sum up, the basic steps of the algorithms follow. 

Algorithm 2.1 

Input: The characteristic quasipolynomial ),( Ksm  with an initial setting 0K , 

initialize the counter as i = 1, 0KK =i . 

Step 1: If ),( Ksm  is of a neutral type and coefficients for the highest s-power njm  

can not be modified, determine whether 10 <γ . If not, give up. 

Step 2: Set the number of shifted poles 1=Sn , compute ( )ηDC  and choose 0>ε if 

),( Ksm  is neutral. 

Step 3: Compute the rightmost roots σ of ),( Ksm , or those with ≥σRe ( ) ε+ηDC  

in the neutral case. 

Step 4: Choose the desired poles shifts σΔ  of Sn  rightmost poles and compute the 

pseudoinverse (2.89), or equivalently, calculate the sensitivity matrix (2.92) and the 

pseudoinverse (2.95). Update iii KKK Δ+=+1 . 
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Step 5: Monitor the rightmost uncontrolled poles, or those with ≥σRe ( ) ε+ηDC . 

If necessary (e.g. when the rightmost poles are close to each other), increase Sn . Stop when 

stability is reached or if rnS = . In neutral case, the algorithm stops also when the leftmost 

from the controlled characteristic roots reaches ( )ηDC . Otherwise, increment the counter i 

and go to Step 3. 

Output: The vector of controller parameters K  and the positions of the rightmost 

poles. ■ 

Recall that )(sm  as the closed loop transfer function denominator quasipolynomial 

in the case of distributed delays also contains roots which are not system poles and they 

can not be shifted by any mean. These roots are common zeros of the numerator and 

denominator of the characteristic meromorphic function )(sM  introduced in (2.8), see 

Example 2.1. Hence, it would be more suitable to consider )(sM  instead of )(sm  in the 

algorithm. 

2.6.4 Optimal pole placement minimizing the spectral abscissa 

The basic aim of the continuous pole placement is to gradually refine the positions 

of the rightmost poles in the real axis by arbitrarily small changes in the controller 

parameters. This process can be viewed as the optimization of the so-called spectral 

abscissa which is defined as 

 ( ) ( ) ( ){ }0:Remax: == ii
i

m σσα K  (2.102) 

Thus, the objective is to solve the optimization problem 

 ( )K
K

αmin  (2.103) 

or to reach ( )Kα  to be strictly negative at least.  

Again, in case of distributed delays, one ought to take )(sM  instead of )(sm . 

The problem was solved e.g. in [166] where state feedback controller design and 

the Extended Gradient Sampling Algorithm (EGSA), see [17], for the abscissa 
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minimization have been used to retarded TDS with lumped delays. It has been pointed out 

in the paper that a complex optimization algorithm ought to be used instead of a standard 

one, say, the well known steepest descent algorithm, when dealing with this task. 

The reason lies in some spectral abscissa function properties. The first problem 

arises from the fact that ( )Kα  is non-convex, i.e. it may have multiple local minima. It is 

clear that with such behavior the global minimum is hard to find, and many optimization 

algorithms will converge to a local minimum. The second difficulty is that ( )Kα  is non-

smooth with respect to parameter changes in points where more then one real poles or 

conjugate pairs are with the maximum real part [90], [166]. At these points the function 

( )Kα  is hence not differentiable. As third, the function is non-Lipschitz, for example, at 

points where the maximum real part has multiplicity greater than one [17]. However, it is 

assumed that the spectral abscissa is differentiable almost everywhere. 

An extension of the paper referenced above to neutral state feedback was 

attempted to do in [88], [172]. The limitation (2.24) or (2.25) due to strong stability 

requires introducing a rather different objective function than (2.103) leading to a 

constrained optimization problem (in the input-output formulation) 

 ( ) ∑
=

<
nh

j
njm

1

1,min K
K

α  (2.104) 

Note that in the state space, (2.24) is taken instead of (2.25). A restriction of the 

objective function can be included as a penalty subfunction. In [88], the following option is 

made 

 ( ) ( ) ( )
2

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛+= ∑
=

nh

j
njmΦ KKK λα  (2.105) 

where ( )KΦ  is the objective function and λ  represents a weighting parameter. This 

conception, however, does not guarantee that the restriction (2.25) holds true. A rather 

more suitable option would be 

 ( ) ( ) ( )
2

1

1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−+= ∑
=

nh

j
njmΦ KKK ελα  (2.106) 
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where 10 <<< ε , for which holds the following theorem. If { }iλ  is an increasing sequence 

with ∞=∞→ ii λlim  and 0→ε , then ( ) ( ) ( )iiii ΦΦΦ λλ ,, 11
* KKK ≤≤ ++ , where *K  is the 

optimal solution of the minimization of (2.106) and it holds that  

 ( ) 01lim
2

1

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −− ∑
=

→∞

n

i

h

j
njm Kελ , i.e. ( ) ε−→∑

=
1

1

nh

j
njm K  (2.107) 

see e.g. [3]. 

Another possibility is to introduce a barrier function, e.g. as 

 ( ) ( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−= ∑

=

nh

j
njmΦ

1

1ln KKK λα  (2.108) 

as utilized in [172], yet for a state feedback controller. 

The spectral abscissa minimization for a general class of retarded TDS described 

by (2.2) (without the neutral term) using a state-feedback controller was presented in [97]. 

The method application follows two steps. First, a number of rightmost poles, smaller than 

the number of controlled one, is directly assigned, which makes some controller 

parameters constrained. Second, the remaining degrees of freedom in the space of 

controller parameters are used to shift the rest of the spectrum as far to the left as possible, 

again by the EGSA. If the prescribed poles are not dominant after shifting, new poles 

positions are to be selected. 

 In [127] a similar idea was independently introduced. In contrast to [97] , there are 

nevertheless some differences. Firstly, the approach presented in [127] uses the input-

output space of meromorphic Laplace transfer functions, whereas the one in [97] deals 

purely with the state space. Second, poles are initially placed in desired positions 

unambiguously according to the estimated maximal overshoot; however, they can leave 

their positions during the shifting. The dominant poles move to the prescribed ones and the 

rest of the spectrum is pushed to the left again by minimization of an objective function 

(including the spectral abscissa), without the requirement of resetting the selection of 

assigned poles. Last but not least, the Self-Organizing Migration Algorithm (SOMA), see 

[192], is utilized as a minimization technique. For more details, see Subchapters 5.1 - 5.3. 
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Note that the closed-loop zeros can be optimized in the similar way as poles are, 

because of the fact that zeros placed too right in the complex plane cause undesirable high 

oscillations, see details e.g. in [127].  

2.7 Robust stability and robust performance 

Robust analysis constitutes a set of possible tools for controller quality and 

performance evaluation, particularly when an ideal plant mathematical model does not 

match the real system behavior perfectly. The existence of a family of models gives rise to 

the notion of model uncertainty which can be formulated as a structured or unstructured 

uncertainty. Robustness means that a certain characteristics (e.g. internal stability) of a 

control system valid for a nominal plant model holds also for a family of models in the 

neighborhood of the nominal one. Basic robust analysis tasks are robust stability and 

robust performance. Robust stability agrees with the requirement that the asymptotic 

stability of a control feedback loop is preserved for all models from the family. Robust 

performance is usually expressed by a weighted limitation on (reference or disturbance) 

control errors under perturbations in the frequency domain. 

We pay attention to unstructured uncertainty, more precisely multiplicative disk 

uncertainty which enables to develop simple general analytic methods and results. Let 

( )sG0  be the nominal plant transfer function and ( ) ( ) ( )[ ] ( )sGsWssG M 01 Δ+=  be a family 

of perturbed transfer functions. Here ( )sWM  is a fixed stable weight function expressing 

the uncertainty frequency distribution. Perturbation ( )sΔ  is a variable stable transfer 

function satisfying ( ) 1≤Δ
∞

s . Moreover, ( )sG  and ( )sG0  have the same number of 

unstable poles. It holds that 

 
( )
( ) ( ) ωω
ω
ω ∀≤− ,j1
j

j

0
MW

G

G
 (2.109) 

which means that ( ) ( )ωω j/j 0GG  lies in the disk with center 1 and radius ( )ωjMW . The 

weight function is selected so that it covers all systems from the family 
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For instance, ( )sWM  can be taken as follows [154] 

 ( )
1

0

+

+=

∞

s
r

T
rTs

sWM  (2.111) 

where 0r  and ∞r  are relative uncertainties for the steady state (ω = 0) and high frequencies 

(typically 2>ω ), respectively, and T/1  means an approximate frequency wherein the 

uncertainty almost reaches its upper bound. The following example demonstrates the 

construction [70]. 

Example 2.6 

A process of bleaching in the stationery industry can be modeled by the transfer 

function 

 ( ) ( )( ) [ ]9.0,0,1.0exp
12

1 ∈+−
+

= ττ s
s

sG  (2.112) 

where τ  arises from neglecting of a fast plant dynamics. Equation (2.112) expresses the 

family of models for which 0=τ  agrees with the nominal model, whereas ( ]9.0,0∈τ  

gives rise to perturbation models. Hence  

 
( )
( ) ( ) ( ) ωωωτ
ω
ω ∀≤−−=− ,j1jexp1
j
j

0
MW

G

G
 (2.113)  

In [70], ( )sWM  was chosen as 

 ( )
1

1.2
+

=
s

s
sWM  (2.114) 

A comparison of Bode plots of the weighting function and normalized perturbations 

according to (2.113) is displayed in Fig. 2.3. 
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Fig. 2.3 Bode plots expressing the meaning of ( )sWM  for Example 2.6 

 ■ 

2.7.1 Nominal performance 

Consider a simple feedback loop as in Fig. 2.1. The (nominal) sensitivity function 

( ) ( ) ( ) ( )sWsEsGsS WE /0 ==  is a very good closed-loop performance indicator. The 

frequency-depended gain bound on ( )ωj0S  is a typical performance requirement. Usually, 

( )ωj0S  has small values for 0→ω ; however, there is a peak on middle frequencies 

causing noise amplification. Hence, the elimination of this peak improves control quality 

and it can be formulated by the upper bound ( )ωj/1 PW  as follows 

 ( ) ( ) ( ) ( ) 1jj,j/1j 00 <⇔∀<
∞

ωωωωω SWWS PP  (2.115) 

A graphical interpretation of the nominal performance condition (2.115) can be 

obtained using some simple calculations and it means that the distance of the Nyquist plot 

of the (nominal) open loop ( ) ( ) ( )ωωω jjj 00 GGL R=  from the critical point 1−  is less then 

the maximal value of ( )ωjPW , see a sketch in Fig. 2.4. [35] 
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Fig. 2.4 The graphical interpretation of nominal performance 

The weight function ( )ωjPW  (or more precisely 1/ ( )ωjPW ) is chosen according 

to user requirements and can be constructed similarly as in (2.111). 

2.7.2 Robust stability 

As mentioned above, the closed-loop system is called robustly stable if it is stable 

for the whole family of perturbed plant models. For multiplicative uncertainty, the 

feedback system as in Fig. 2.1 is robustly stable if and only if 

 ( ) ( ) 1jj 0 <
∞

ωω TWM  (2.116) 

where ( ) ( ) ( ) ( )sWsYsGsT WY /0 ==  is the so-called (nominal) complementary sensitivity 

function, see e.g. [35]. 

The graphical interpretation of condition (2.116) can be easily obtained by some 

calculation 

 
( ) ( )

( ) ( ) ( ) ( ) ( ) ωωωω
ω
ωω ∀−−<⇔<

+
∞

,1jjj1
j1

jj
00

0

0 LLW
L

LW
M

M  (2.117) 

It means that the number of open-loop Nyquist plot encirclements must be the 

same for the whole family of perturbed plants, see Fig. 2.5, according to [33].  
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Fig. 2.5 The graphical interpretation of robust stability 

The graphical interpretation can serve for the robust stability condition derivation 

for other control system loops, see Subchapter 7.6. 

2.7.3 Robust performance 

The general notion of robust performance is that both, internal stability and 

performance, should hold for the whole family of perturbed plants. The robust 

performance condition should therefore be 

 ( ) ( ) 1jj 0 <
∞

ωω TWM  and ( ) ( ) 1jj <
∞

ωω SWP  (2.118) 

The combination of the two conditions in (2.118) gives 

 ( ) ( ) ( ) ( ) 1jjjj 00 <+
∞

ωωωω SWTW PM  (2.119) 

The following sketch of proof of (2.119), which can be found e.g. in [35], can 

provide direction for derivation of robust performance condition when other feedback 

loops are used, see Subchapter 7.6 again. 

Assume 

 ( ) ( ) 1jj <
∞

ωω SWP  (2.120) 

hence 
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Since ( ) ( ) ( ) ( ) ( )ωωωωω jj1jjj1 00 TWTW MM −≥Δ+ , the worst case is 
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Therefore, from (2.120), the robust performance condition (2.119) holds. 

The graphical interpretation of (2.119) is depicted in Fig. 2.6, see [33]. 

 

Fig. 2.6 The graphical interpretation of robust performance 

A compromise condition, between nominal and robust performance, is 

 ( ) ( ) ( ) ( ) 1jjjj
2

0

2

0 <+
∞

ωωωω TWSW MP  (2.123) 

since it holds that 
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2.8 Fundamentals of relay autotuning 

By autotuning (i.e. automatic tuning), a set of methods which enable the controller 

to be tuned automatically on demand from an operator or an external signal is meant [2], 

[53]. Industrial experience has clearly indicated that this is highly desirable and useful 

feature. The whole procedure usually consists of two basic steps: Process model 

parameters identification followed by controller tuning; however, some approaches do not 

require explicit model identification. 

The beginning of autotuning is linked up with the very famous work of Ziegler and 

Nichols [193] where, besides the PID controller tuning rule, an interesting identification 

procedure based on the information on the critical gain and the critical frequency was 

introduced. This is often referred to as the trial-and-error procedure. Historically, other 

methodologies were investigated as well, for example, the Cohen-Coon method [20], 

which requires an open-loop test on the process and it is thus inconvenient to apply. The 

disadvantage of other methods is e.g. the need of large setpoint change, see details in [53]. 

A set of methods called selftuning [8], which performs at-once or continual plant 

identification and adaptively reset controller parameters, usually requires a priori 

information about the time scale of the process dynamics to be provided (due to a sampling 

period) and is time and computer-memory consumptive. 

2.8.1 Relay feedback test 

The relay feedback autotuning (identification) test performing limit cycle 

oscillations, which does not have shortcomings mentioned above, was successfully applied 

to the autotuning of PID controllers in [2] and it is widely used and in practice as a well 

applicable technique. It is robust, easy to implement, timesaving, easy to use and close-

loop control which keeps the process close to the setpoint. The classical relay-feedback 

loop scheme with a symmetrical relay is depicted in Fig. 2.7. 
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Fig. 2.7 Relay-feedback test scheme 

If the process is stabilizable and has a phase lag of at least π  radians, the process 

input ( )tu  and output ( )ty  are logged until the system reaches stationary oscillations, the 

amplitude A of error e(t) equals the amplitude of y(t) and the phase shift between e(t) and 

y(t) is –π. Hence, the ultimate period uT  is obtained from oscillations, which gives the 

information about the critical point, together with the ultimate gain which is approximately 

given by 

 
A

B
ku π

4=  (2.125) 

where B is the relay amplitude. The ultimate (critical) frequency is close to the value of 

uu T/2πω = . Formula (2.125) comes from linearization of the relay output via the Fourier 

series approximation when upper harmonic components of the signal are neglected, since a 

relay is a non-linear element and it can be linearized for linear theory approaches, details 

can be viewed e.g. in [191]. 

However, the original relay feedback test - sometimes called ATV (Autotune 

Variation), see  [76], [191] – has two basic drawbacks. First, due to an approximation, the 

estimation of the critical point is not accurate enough for some processes, such as those 

with large time delays [179]. For example, there is an error of 23% for a first order 

unstable system with input-output delay. Second, the basic test enables to estimate only 

single point of the frequency characteristics. Hence, there have been investigated and 

developed many advanced techniques, which should eliminate the two mentioned 

deficiencies. Much research has been undertaken in identifying multiple points on the 

process frequency response, for instance, inserting of an integral or a delay element into 

the open loop [148], [163], see Subchapter 2.8.4, an analytic expression of some quantities 
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in input and output signals [79], [177], a utilization of a damping element [178] or a 

decomposition into transient and stationary cycle parts [179] followed by the discrete 

Fourier transform (DFT) - or the discrete-time Fourier transform (DTFT), more precisely - 

or the fast Fourier transform (FFT), see  Subchapter 2.8.5, or the use of a parasitic relay 

[53] or a saturation relay [149], [191], see details in Subchapter 2.8.3, etc. 

2.8.2 Model parameters identification 

As mentioned above, the relay feedback experiment can be utilized for model 

parameters identification. An asymmetric (biased) relay, after removing stationary 

components, enables to estimate the static gain of the system according to 
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+
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 (2.126) 

see [76], [171]. The static characteristic of a biased relay is displayed in 

 

Fig. 2.8, where −+ ≠ BB . 

 

Fig. 2.8 Asymmetric (biased) relay static characteristics 
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Nevertheless, this estimation of k can be inaccurate, due to e.g. model 

nonlinearities or a shift of the operation point. 

A relay with hysteresis of value ε , the static characteristics of which is displayed 

in Fig. 2.9, is another type of an on-off relay which is suitable for noise elimination while 

autotuning experiment; however, it causes a phase shift, thus the estimation of uω  is not 

accurate – the found point lies at a frequency smaller then the ultimate one. 

 

Fig. 2.9 Relay with hysteresis static characteristics 

Dominant input-output delay, sayτ , [191], can be estimated as a lag between the 

change of ( )tu  and the maximum (minimum) value of ( )ty  within the period, which is 

clear from Fig. 2.10. Good results are given using a relay with hysteresis here. 

 

Fig. 2.10 Dominant input-output time delay estimation 

Let ( )sG  be the controlled system transfer function and )(AR  the describing 

(linearized) function of a relay (or a nonlinear element, in general), then for sustained 

oscillation holds j01)j()( +−=uGAR ω , or equivalently 
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 [ ] πωω −== )j()(arg,1)j()( uu GARGAR  (2.127) 

which describes one point at the open-loop Nyquist plot giving rise to the estimation of 

two plant model parameters by the solution of it. As mentioned above, an estimation of 

two or more points requires using a special technique. 

In [117], [173], the relay-feedback experiment was used to identification of a 

stable time-delay model of the first order with one input-output and one internal delay, 

where an additional (artificial) delay was utilized. Moreover, an approach based on a time-

domain description instead of frequency one leading to the solution of nonlinear algebraic 

equations was introduced in [117]. Due to, generally, an ill-conditioned set of equations 

and multimodality of its solution, it would be useful to solve the equations by some 

advanced methods, such as the SOMA [192] or the Nelder-Mead (NM) method [105], see 

Subchapters 5.3 and 5.4. 

2.8.3 Saturation relay 

Model parameters estimation can be improved by a saturation relay [149], [191], 

the static characteristics of which is depicted in Fig. 2.11. 

 

Fig. 2.11 Saturation relay static characteristics 

Its advantage lies in the feature that relay output is not stepwise (i.e. with an abrupt 

slope change at the zero point), but it provides a smooth transient around the zero point. 

The relay input signal ( )te  is multiplied by k up to the limit value B of ( )tu , hence ( )tu  is 

(ideally) in the form of a harmonic (sine) waves with an upper and lower limit. The output 

of the nonlinear element ( )tu  looks like a truncated sinusoidal wave, see Fig. 2.12. The 
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height of the relay output response is limited by AkB = ; the meaning of A is clear from 

the figure.  

Obviously, the ideal case is that when ( )tu  has the shape of ( )te  while AA = , 

where A is the amplitude of ( )te . In this case, the ultimate gain equals the value of 

k exactly. Another limit case arrives when ∞→k which agrees with the standard on-off 

relay. 

 

Fig. 2.12 Relay input and output signals for saturation relay 

The describing function of the relay can be obtained from the Fourier series 

expansion of ( )tu  and ( )te  as follows 
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 (2.128) 

Hence, the aim is to find k (or A ) such that AA =  which provides the exact 

critical gain estimation. On the other hand, there is also a potential problem that can make 

the test fail. If the slope of the static characteristics k  is too small, or equivalently, if 

AA > , a limit cycle may not exist. To avoid this, there has been proposed a two-step 
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procedure finding a rough estimate of the lower bound on k , say mink , followed by a 

saturation relay test [149], [191]: 

1) Select the height of the relay B (manipulated input). 

2) Use an ideal relay (set the slope to a large value) to estimate uk  according to 

(2.125). Set ukk =min . 

3) Calculate the slope of the saturation relay min4.1 kk = . 

4) Use the saturation relay with calculated k. 

5) Find uω  from the relay feedback test and compute the ultimate gain from 

(2.128). 

2.8.4 Artificial delay for identification of more parameters 

As mentioned above, the standard relay feedback test enables to identify only one 

point at the Nyquist curve, i.e. two unknown parameters of the model, and the estimation 

of other model parameters requires a special technique. 

One of the possibilities is to use the ATV+ (Autotune Variation Plus) [72], [84], 

[148]. The first step of the ATV+ procedure is a standard relay test. The second step 

introduces an artificial delay +τ  between the relay and the process. 

The overall phase shift is –π, however only a part of this is attributed to the 

process, as +τ is characterized by the phase leg += τωφ uD
~  where uω~  is a new ultimate 

frequency. The new amplitude Ã of the output can be read as well. Every next setting of 

+τ determines one point of the Nyquist curve, hence, one needs to set the number 

⎡ ⎤12/ −n  of various values of +τ  where n  is the number of unknown model parameters. 

In [72] the following setting was suggested 

 
uω

πτ
12

5=+  (2.129) 

where uω  means the ultimate frequency with no artificial delay. 
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2.8.5 Use of relay transient 

In [54], there was proposed a technique that could obtain multiple points on the 

process frequency response in a step test by removing stationary components followed by 

applying the DFT, DTFT, or FFT to the remaining signals there. The procedure was 

improved in [178] where a method that can identify multiple points simultaneously under 

one relay test was proposed, the description of which follows. 

Using a standard relay test, ( )tu  and ( )ty  are recorded from the initial time until 

the system reaches a stationary oscillation and they are subjected to exponential decaying 

as 
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Obviously, ( )tu  and ( )ty  will decay to zero for 0>a  and ∞→t . 

The Fourier transform applied to (2.130) results in 
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Hence 
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( )ωjU  and ( )ωjY  can be computed at discrete frequencies with DTFT as 
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where T  is the sampling interval, N  means the number of samples and 

( )TNt f 1−= expresses the final time when the value of ( )tu  (or ( )ty ) is sufficiently small. 
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Usually, 2/Nm =  and ( )NTll /2πω = , see e.g. (Wang et al., 1999a). If, moreover, 

∈= nN n ,2 , then the standard FFT can be used for faster computing. 

The method can identify accurate frequency response points as many as desired 

with one relay experiment. 

2.9 Controller discretization 

A sampled-data approximation of TDS is needed e.g. in computation of the system 

spectrum when the infinite spectrum is transformed into a finite one, the order of which 

depends on the sampling period and a discretization method, or for a computer realization 

of anisochronic controllers. The latter case is the primarily motivation for the following 

brief framework overview of basic ideas of discretization of TDS, both in a state and an 

input-output space, since the author intended to use the discrete-time algorithms for a 

laboratory experiment.  

A number of methods is based on a state-space description, see e.g. (2.1). 

Moreover, almost all of them consider retarded systems with or without distributed delays, 

hence, these systems are assumed below. The differences for neutral systems are briefly 

mentioned throughout the following subchapter. Although equation (2.1) describes a 

controlled plant, the approaches can be treated analogously for controllers. 

2.9.1 State space methods 

Prior to a discretization itself, an interpolation of point delays and an 

approximation of distributed delays ought to be introduced. Since a value of delay 

Li ≤≤η0 in (2.1) is not an integer multiple of a sampling period sT , delayed quantities  

( )itx η−  and ( )itu η−  must be interpolated by these quantities yet with delays 

HkkTsk ,...1,0, ==τ , where ⎡ ⎤sTLH /=  and L  is the highest delay value of the system. 

Linear interpolation is the simplest and for practical purposes sufficient interpolation 

method given by 

 ( ) ( ) ( ) ( )idiidii txtxtx ,1,1 +−+−−≈− ταταη  (2.134) 
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where ⎣ ⎦sii Td /η= , siid Td=,τ , ( ) siid Td 1,1 +=+τ , idiid ,1, +≤≤ τητ  and a weighting 

coefficient ( ) [ ]1,0/, ∈−= sidii Tτηα  

 A rather neglected task is the comprisal of distributed delays (i.e. convolution 

integrals) in the model and their subsequent approximation by lumped delays followed by 

the use of formula (2.134). One possibility is to use the idea [143] mentioned in 

Subchapter 2.1.1. Alternatively, in [165] the following approximation was proposed 
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where LN
N

i
i /

1

=∑
=
β . For instance, the well known Simpson’s numerical integration 

method agrees with ( )LN 12/1 =β , ( )LN 3/2 =β , ( )LN 6/3 =β , ( )LN 3/4 =β , 

( )LN 12/5 =β . Note that even some very good convolution integral approximation can 

lead to an unstable control action in case of a delayed feedback, see  [165]. 

 Now look at the discretization itself. Let 

 ( )[ ] idkkTtid xtx
s

−=
=− ,τ  (2.136) 

and likewise for ( )idtu ,τ− analogously. Then the right-hand side of a retarded system (2.1) 

can be written in a discrete form 
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where BA HH ,  are maxima of corresponding integers di according to (2.136), 

( )BA HHH ,max=  and it holds that lÂ  and lB̂  are linear combinations of iA and iB , 

respectively. 

For a simple discrete approximation of TDS, it is sufficient to use a numeric 

method for the solution of  
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 (2.138) 
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in the following form [171], [175] 

 ( )kskk T fxx Φ+=+1  (2.139) 

where functional ( )kfΦ  is determined by the solution method, for instance, (the implicit) 

Trapezoidal method reads ( ) kkk fff 5.05.0 1 +=Φ + , the Euler implicit method agrees with 

( ) 1+=Φ kk ff , it is also possible to consider higher order Runge-Kutta (R-K) methods etc. 

Generally, implicit numerical methods provide better approximation than the explicit ones. 

Thanks to the TDS model linearity, ( )kfΦ  is a linear combination of ...2,1,0,1, −=− mmkf  

A suitable value of the sampling period sT  is questionable. It is necessary to take 

account of process (or controller) and external inputs dynamics. The smaller sT  yields the 

better approximation and stability of the numerical method, yet there is higher round-off 

error and computational requirements. The problem has been discussed e.g. in [39]. 

Although the aim of this subchapter is to provide an easy-handling discretization, 

instead of the best one, the author has to mentione some more sophisticated discrete 

approximations based on discretization of the solution operator or that of the infinitesimal 

generator, see Subchapter 2.1.3., which serve mainly for spectrum estimation. 

Consider an autonomous TDS only since the input part of the model can be 

governed simply as in (2.137). For discrete approximation of the solution operator, it is 

necessary consider the whole system state Xt ∈x defined in (2.10) instead of ( )tx , or its 

discrete form, more precisely 

 [ ]THkHkkkkt AA −+−−=→ xxxxx ,,,, 11 Kx  (2.140) 

determining the system state at the step k as 

 kk xx Φ=+1  (2.141) 

where ∈Φ  ( ) ( )nHnH AA 11 +×+ is the discrete approximation of the solution operator ( )t . 

Formula (2.141) is the discrete form of 
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=+ sTtx ( ) tsT x  (2.142) 

The first row of the matrix Φ  is determined by (2.139) and the others usually have 

a simple form such that corresponding elements of vectors 1+kx  and kx  equals. Particular 

forms of Φ for the Euler explicit, Euler implicit and Trapezoidal methods can be found 

e.g. in [171]. The application of the R-K methods has been introduced in [12] without the 

distributed delay term and in [13] with this term. The distributed delay case by using 

Linear Multistep (LMS) methods was proposed e.g. in [77]. A revision of LMS methods 

and their comparison with R-K schemes was introduced in [10]. All these methods are 

called pseudospectral. 

An alternative – so-called spectral – approach, introducing the generalized Fourier 

projection represented by the Hilbert product space =X
~

n×L2 [ ),0,( L− n), instead of the 

classic interpolation in the Banach space (2.11), was proposed in [11]. More precisely, the 

initial function is ( ) ( ) ( ) [ )0,,,0 Lttt −∈== ξxpx , ( ) X
~

, ∈ξp , rather then 

( ) ( ) [ ]0,, Lttt −∈= ξx , ( ) Xt ∈ξ . Then the solution operator and infinitesimal generator are 

defined in the realm of X
~

, differently from (2.12) and (2.13), see details in [11]. 

Another family of discretization approaches (used mainly for the spectrum 

estimation) consists in those based on the infinitesimal generator of the semigroup. The 

discrete form of (2.15) acquires the form 

=
t
t

d

dx
0, >t

STx  

( ) ( ) ( )( ) ( )[ ]TsAsAs THTHT −−−−= ξξξξx ,1,,,00 K  (2.143) 

 The Euler explicit approximation scheme together with the Trapezoidal rule and 

the quadratic approximation of the derivative can be found e.g. in [171]. Similar 

approaches were introduced in [5]. A R-K method was presented in [12], a comparison of 

that with LMS ones e.g. in [13]. A pseudospectral approach utilizing Lagrange 

interpolating polynomial and its derivative for backward differentiation was proposed in 
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[14]. The differentiation methods in the Hilbert space mentioned above together with 

convergence results were introduced in [15].  

Notice that all the above mentioned methods consider retarded systems (with or 

without distributed delays) only. In the author’s of this thesis opinion, the extension of the 

methods above to neutral TDS requires either to introduce a discrete state vector 

[ ]THHkHkHkkkkt NAAA −−−+−−=→ xxxxxx ,,,,,, 11 KKx  instead of (2.140), where NH  is the 

maximum delay in neutral terms, or to take (2.139) and (2.143) in a recursive form. 

A rather different approach was presented in [56]. Briefly, the idea is based on the 

Taylor series expansion of ( )tx  in the vicinity of the operation point 

 ( ) ( ) ( ) ( )
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tt
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where Δ is a discretization step (e.g. the sampling period) and derivatives of state and 

input variables are calculated as derivations of (2.1), hence, for instance 
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 (2.145) 

 By a backward substitution (2.1) into (2.145) and then the result into (2.144) and 

by the interpolation (2.134) and the approximation of distributed delays (2.135), the final 

form (2.139) is obtained (its autonomous part). Functional ( )kfΦ  is determined by the 

number of expansion elements in (2.144). The accuracy of the discretization increases with 

the number of elements; however, the more elements are taken the higher maximum delay 

value is. The use of the method to neutral TDS is questionable since it is not possible to 

obtain zero derivatives of state and input variables by recursion.  

 The delta transform, generally introduced in [98], was used for discretization and 

spectrum estimation, respectively, of neutral TDS e.g. in [171], [175], [204]. 

 Let q  be the shifting operator and δ  the delta transform operator defined by 
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( )

s

s

s T

sT

T

q 1exp1 −=−=δ  (2.146) 

then 

 ( ) ss TsTq δ+== 1exp  (2.147) 

The fundamental feature of the delta transform is that as 0→sT  the delta model of 

the system converges to its Laplace transform, i.e. s→γ , where γ  is the variable 

associated with operator δ ; however, the discrete model does not. Then the model 

 ( ) ( ) ( )δδδ FX I=  (2.148) 

instead of (2.139) can be considered - easily by substituting (2.148) into (2.139) - where 

( )δX  is the δ -transform of ( )tx , ( )δF  stands for the transform of (2.137) and ( )δI  means 

the discrete-time integrator, see [21], [204], satisfying 

 ( )
δ

δ 1
lim 0 =→ I

ST  (2.149) 

 The delta transform of (2.141) and (2.142) reads 

 ( ) ( )δδδ XX
sT

IΦ −=  (2.150) 

where ( )δX  means transformed tx  and I  is the unit matrix. 

2.9.2 Input-output methods 

In the literature, the task of the discretization of TDS in an input-output 

formulation is not as frequent as in the state-space case. However, let us mention here two 

possible ideas depending on the relative value of sT  with respect to the system dynamics 

and external signals. 

In case of a short period, it is possible to use the δ -transform as a derivative 

estimation, as introduced in Subchapter 2.9.1. The idea rests on the introduction of variable 

γ associated with operator δ  defined as 
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 ( ) ss TzT

z

αα
γ

−+
−=
1

1
 (2.151) 

where z  is the variable from the z-transform and [ ]1,0∈α  represents a weighting 

parameter. The choice of α enables to obtain different first order models, such as forward 

( 0=α ), backward ( 1=α ) or Tustin ( 5.0=α ) one. The substitution γ→s  in the transfer 

function system model results in a discrete-time model in z  associated with the shifting 

operator q. However, this substitution is applied to s-powers expressing derivatives only, 

whereas delay exponential terms are subjected to a natural transformation 

 ( ) ( ) ( )ηη −=− txsXs ˆexp  (2.152) 

followed by (linear) interpolation (2.134) and 

 ( ) ( )s
k kTtxzXz −=− ˆ  (2.153) 

The advantage of the input-output map approximation in applications is that there 

is not need to approximate distributed delays. 

For a higher sampling period sT , there is a possibility of a rational approximation 

in the general form 

 ( ) ( )
( )τ
ττ

sp

sp
s

−≈−exp  (2.154) 

where e.g. the Padé approximation, Laguerre shift, Kautz shift, Fourier analysis-based 

method, etc., see [4], [80], [81], [114], [120], followed by the known equivalent z-

transform formula 

 ( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

⎭
⎬
⎫

⎩
⎨
⎧−= −−

s

sG
LZzzG R

R
111  (2.155) 

Although (2.155) represents the exact discretization, controller transfer function 

( )sGR  includes rational approximation, hence, there is an information loss problem about 

the dynamics. 
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It is suitable to filter the measured input signal due to sensors noise when 

controller realization, e.g. by using an averaging or the Butterworth filter of an appropriate 

order (with the maximally flat characteristics at low frequencies). 
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3 GOALS OF THE THESIS 

The principal goal of this doctoral thesis is to utilize proposed algebraic control 

laws achieved through the general solutions of the Bézout identity in RMS for systems with 

delays. 

The work deals not only with theoretical aspects of the ring and algebraic 

controller design but also with the (quasi)finite spectrum assignment, (sub)optimal pole 

placement, TDS stability analysis, improved relay test identification for TDS and last but 

not least with problems of a practical application, represented by utilization of designed 

controllers on a circuit heating laboratory model. 

Ergo, the main aims of the thesis can be summarized into the following points: 

1. Description and classification of TDS, their stability issues, algebraic notions 

related to TDS and their control, general introduction of a relay feedback test 

and some tuning, robust analysis and discretization matters for these systems. 

Crucial parts are supported by an overview of the state of the art. This goal has 

been the issue of Chapter 2 of this thesis. 

2. Analysis and description of linear time-invariant SISO TDS in RMS ring and 

determination of the basic algebraic properties of this ring. 

3. Formulation and development of algebraic approach to design of SISO 

continuous-time controllers in RMS ring. 

4. Derivation of stability conditions for a selected class of retarded 

quasipolynomials depending on a non-delay real parameter for the purpose of 

performing the coprime factorization and controller parameterization, and the 

derivation of the generalized Nyquist criterion for control system robust 

analysis. 

5. Definition of a suboptimal and optimal pole placement for infinite-dimensional 

control systems and the implementation of advanced iterative algorithms for the 

solution of this task. 
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6. Design of a relay feedback experiment for identification of a simple TDS model 

of retarded type using advanced methods – the saturation relay, determination 

of more frequency characteristics points – in time and frequency domain. 

7. Verification and implementation of proposed identification and control 

approaches in control of a laboratory circuit heating system followed by robust 

analysis of the solution and a simplification of final controllers. 
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4 ALGEBRAIC CONTROLLER DESIGN IN RMS 

This, the most crucial, subsection of this thesis aims the novel definition of RMS 

ring followed by all basic steps of algebraic controller design utilizing this ring. Some 

stability issues for selected retarded quasipolynomials are also discussed and the 

generalized Nyquist criterion for two feedback control system structures is simply derived. 

4.1 RMS ring 

As mentioned in Subchapter 2.3.3, the original definition of the ring, [199], has 

some drawbacks. Therefore, it is necessary to revise the definition and propose a new, 

alternative, definition of the ring eliminating the above mentioned deficiencies.  

4.1.1 Revision of the ring 

First, the following simple example shows that the original definition does not 

constitute a ring 

Example 4.1 

Consider two elements of RMS 

 ( ) ( ) ( ) ( )
2

exp1
,

2 21 +
−+=

+
=

s

ss
sT

s

s
sT  (4.1) 

 Yet, a sum of them  

 ( ) ( ) ( ) ( )( ) ( )
MSR

s

sss
sTsTsT ∉

+
−+−+=+=

2

expexp1
21  (4.2) 

since the numerator is a neutral (even formally unstable) quasipolynomial, which is 

inconsistent with the original ring definition.  ■ 

The above introduced example indicates that it is necessary to include neutral 

terms in the definition. 

The second drawback comes from the requirement of stable denominator. The 

transfer function of a stable system with distributed delays has common numerator and 
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denominator root from the right half-plane; however, there is no reason to consider it as 

unstable in any sense, see Example 2.1. Rephrased, an element of the ring should include a 

removable singularity in  +  (but not poles). Analogously, spectral stabilizability can be 

viewed in the similar manner, see Example 2.3. 

From these two examples, ∞H ( + ) seems to be a suitable candidate for the ring 

definition (as for RPS ring, see Subchapter 2.3.2). However, there are some troubles with 

neutral systems, as discussed in 2.4.1 (Example 2.4) and 2.4.2. Namely, although a 

formally unstable neutral TDS with a vertical strip of poles tending to the imaginary axis 

from left (for ∞→0Im s ) can be BIBO (and hence ∞H ( + )) stable, it does not permit the 

Bézout factorization, [75], [115]. Since formal stability is not given in input-output relation 

(transfer function), consider a rather more strict notion – strong stability – given by 

condition (2.25) instead. Formal stability is hence required; however, its testing by strong 

stability condition (2.25) could not be included in the ring definition since it may lead to 

strong instability during algebraic operations on ring elements. 

The following short examples demonstrate and clarify the above ideas. 

Example 4.2 

Let be given three neutral delayed systems (plants) governed by transfer functions 

 

( ) ( ) ( )( )
( ) ( )( )43

21

11)exp(

1

,
11)exp(

1
,

1)exp(

1

++−+
=

++−+
=

+−+
=

ssss
sG

ssss
sG

sss
sG

 (4.3) 

All the systems have poles located in  −
0 , except for ∞→0Im s  where the 

asymptotic pole lies on the imaginary axis, see Fig. 4.1, where displayed poles (asterisks) 

are -0.4011, -0.0379 + 3.4264j, -0.0054 + 9.5293j, -0.0020 + 15.7713j, -0.0010 + 22.0365j, 

-0.0006 + 28.3096j, -0.0004 + 34.5864j, -0.0003 + 40.8652j, -0.0002 + 47.1451j.  
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Fig. 4.1 Root loci of the rightmost poles of ( )sG1  from (4.3) 

However, although there is no pole (except the asymptotic case) in  + , neutral 

systems (4.3) can not be considered as asymptotically stable since there is no positive 

α satisfying α−≤0Re s  for all 0s , see Subchapter 2.2.2. Moreover, these systems are 

neither strongly nor formally stable - use test (2.25) and any state-space realization 

followed by (2.23), or simply, the chain of poles reaches the imaginary axis. Nevertheless, 

other stability notions are more attractive. An easy test on ( )ωj1G , ( )ωj2G , ( )ωj3G  shows 

that ∞=
∞1G , 22 =

∞
G , 13 =

∞
G , hence ∉1G ∞H ( + ), ∈32 ,GG ∞H ( + ). As proved 

in [115], 1G  and 2G are not BIBO stable, yet 3G  is BIBO stable. This means that formal 

instability does not automatically implies ∞H  or BIBO instability which makes problems 

when decision about the inclusion of the system into an algebraic structure (or set).  ■ 

Example 4.3 

This example demonstrates the necessity of formal stability in the definition of RMS 

ring, not only for elements of RMS but also for their inversions.  
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Consider a coprime factorization in ∞H ( + ) of system ( )sG2  from (4.3), i.e. 

 ( ) ( )
( )( )

( )

( )
( )sA

sB

s

ssss
s

sG =

+
++−+

+=
2

2

2

11)exp(
2

1

 (4.4) 

More information about (Bézout) coprime factorization can be found in 

Subchapter 4.1.2. Notice that the factorization (4.4) is coprime yet not Bézout. 

As stated above, the system ( )sG  is formally unstable but from ∞H ( + ), i.e. 

( ) ( )∈sAsB / ∞H ( + ). However, one can verify that ( )∉sA/1 ∞H ( + ). This yields a 

mismatch in the ring definition since there is not an unambiguous answer whether ( )sA  is 

invertible (a unit) or not. If both terms were not coprime, it would not pose a problem since 

such situations are natural also in RPS ring. If ( )sG  was formally stable, it would hold that 

( )∈sA/1 ∞H ( + ). As a conclusion, a set ∞H ( + ) is not a sufficient candidate for RMS 

ring. ■ 

Hence, there seem to be two possibilities for the ring definitions regarding formal 

stability. Either to include the requirement of formal stability of the quasipolynomial 

numerator in the ring definition and thus to exclude the existence of coprime factorization 

for formally unstable systems, or to take it into consideration in ring divisibility conditions 

(i.e. to admit a formally unstable numerator). Naturally, we decided to choose the latter 

option, since it is not possible to avoid a formal unstable numerator in ring elements as 

demonstrated in Example 4.1. 

Example 4.4 

The aim of this example is to show that strong stability could not be included in 

the ring definition; however, the necessity of formal stability has been already proved in 

Example 4.3. 

Consider a formally and strongly stable element from ∞H ( + ) 
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 ( ) ( ) 1)exp(8.01

1

+−+
=

ss
sT  (4.5) 

Now make a multiplication 

 

( ) ( ) ( ) ( )[ ]

( ) ( ) 1)exp(8.012)2exp(64.0)exp(6.11
1

1)exp(8.01

1

2

22

+−++−+−+
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+−+
==

sssss

ss
sTsTsT

 (4.6) 

which is obviously strongly unstable, yet formally stable, since ( )sT  and ( )sT2  have the 

same spectrum (except for poles multiplicity). Hence, this algebraic operation 

(multiplication) preserves formal yet not strong stability. Recall, however, that formal 

stability will be tested by verification of strong stability, so there is some kind of 

conservativeness.  ■ 

 The crucial part of this subchapter, the RMS ring proposal, as a revisited and 

extended definition to the original one, follows. 

 Definition 4.1 (RMS ring) 

An element ( )sT  of RMS ring is represented by a ratio of two (quasi)polynomials 

( ) ( )sxsy /  where the denominator is a (quasi)polynomial of degree n and the numerator 

can be factorized as  

 ( ) ( ) ( )ssysy τ−= exp~  (4.7) 

where ( )sy~  is a (quasi)polynomial of degree l and 0≥τ . Note that the degree of a 

quasipolynomial means its highest s-power. 

The element lies in the space ∞H ( + ), i.e. it is analytic and bounded in  + , 

particularly, there is no pole s0 such that 0Re 0 ≥s  for a retarded denominator. Moreover, 

( )sT  is formally stable, i.e. there is no vertical strip of poles with 0,Re 0 >−≥ εεs  for a 

neutral element. The strong stability condition (2.25) for (quasi)polynomial ( )sx  is a 
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sufficient but not necessary condition guaranteeing that. If the term includes distributed 

delays, all roots of ( )sx  in  +  are those of ( )sy  (i.e. they are removable singularities).  

In addition, the ratio is proper, i.e. l ≤ n. More generally, there exists a real number 

R > 0 for which holds that 

 ( ) ∞<
≥>

sT
Rss ,0Re

sup  (4.8) 

see [115].  ■ 

Notice that the properness condition (4.8) is not necessary in the definition since 

the ∞H  stability condition according to (2.27) implies (4.8). 

4.1.2 Coprime factorization and the Bézout identity 

A basic operation on the quasipolynomial transfer function of TDS is coprime 

factorization by which the transfer function is decomposed into a coprime (or relatively 

prime) pair of ring elements. Since the intention is to use coprime factors in the Bézout 

equation (2.68), the factorization should also be Bézout, i.e. there must exists a stabilizing 

solution of (2.68) satisfying (2.69). 

When dealing with coprime factorization, the divisibility condition has to be 

stated. 

Lemma 4.1 (Divisibility in RMS) 

Any ( ) MSRsA ∈  divides ( ) MSRsB ∈  if and only if all unstable zeros (including s → 

∞) of ( )sA  are those of ( )sB , and moreover, the numerator of ( )sA  is formally stable.  ■ 

Note that zeros mean the roots of the whole term of the ring, not only those of the 

numerator.  

 Again, problems appear when dealing with neutral TDS or with those including 

distributed delays. An example of coprime, yet not Bézout, factorization of formally 

unstable neutral TDS was demonstrated in Example 2.4 and Example 4.3.  
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The following two examples demonstrate a typical coprime factorization over RMS 

and a specific problem with distributed delays, respectively. 

Example 4.5 

The system is governed by the transfer function 

 ( ) ( )
( ) )2exp(

1))exp(2(
)exp(

2 s
sss

ss

sa

sb
sG −

+−++
−+==  (4.9) 

which is a stable retarded TDS. Coprime factorization of (4.9) over RMS can be performed 

e.g. as follows 
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sss
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sss
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2expexp
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where ( )sA , ( )∈sB RMS  and ( )sm  is a stable (quasi)polynomial of degree 2. It is suitable 

to set ( )sm  as a polynomial since it appears as a factor in the control feedback 

characteristic quasipolynomial, see Subchapters 4.2 - 4.4, 4.7. Its degree must equal 2, 

otherwise elements would not be proper or coprime. ■ 

Example 4.6 

 Consider a simple system with distributed delays with transfer function (2.16) and 

suggest a factorization 

 ( ) ( ) ( )
( ) ( )
( )

( )

( )
( )sA

sB

sm

s
sm

s

s

s
sG =

−

−−

=
−

−−=
1

exp1exp1

1

exp1exp1
 (4.11) 

In this case, the common denominator (quasi)polynomial ( )sm  could not be stable 

since it would lead to non-coprime elements in RMS. Indeed, let, for instance, ( ) 1+= ssm , 

then there exists a term ( )  MSRsT ∈ that is a non-zero non-invertible common divisor of 

both ( ) ( )sBsA ,  (which are then reducible), e.g. 



- 112 - 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1
exp1exp1

1
1

,
1
1

1
1

00 −
−−

+
−==

+
+

+
−==

s

s

s

s
sBsTsB

s

s

s

s
sAsTsA  (4.12) 

The solution of this problem is read as follows: The common denominator ( )sm  

must include all common zeros 0s  of ( ) ( )sbsa ,  with 0Re 0 ≥s  (even asymptotic ones 

tending to the imaginary axis). Thus, the coprime factorization (4.11) should read 

 ( ) ( ) ( )
( ) ( )

( )
( )sA

sB

s

s
s

s

s

s
sG =

−
−
−

−−

=
−

−−=

1

1
1

exp1exp1

1

exp1exp1
 (4.13) 

 ■ 

 The notion of coprime factorization is closely related to the existence of a solution 

of the Bézout identity. As stated e.g. in Example 2.4, for formally unstable TDS such 

solution in ∞H ( + ) (an thus not in RMS) does not exist – we can obtain coprime yet not 

Bézout coprime factors. 

 If a pair ( ) ( )∈sBsA , MSR is Bézout coprime, it is possible to solve the Bézout 

identity (or to find the GCD) using the extended Euclidean algorithm, see Subchapter 

2.3.1. Prior to the implementation of the extended Euclidean algorithm to MSR ring, an 

ordering of ring elements has to be defined, so that a poset is obtained. Thus, define 

( )p,MSRP =  as 

a) ( ) ( )sBsA p
 
if and only if ( ) ( )sBsA | . 

b) ( ) ( )sBsA ≡  if and only if ( ) ( )sBsA |  and ( ) ( )sAsB | , or equivalently, ( )sA  is 

associated with ( )sB . 

c) ( )sA  is not related to ( )sB  if and only if ( ) ( )sBsA |/  and ( ) ( )sAsB |/ . 

The procedure of finding the GCD ( ) ( )( )sBsA ,  can be characterized as follows. 

Assume these three situations: 

a) If ( ) ( )sBsA ≡ , the GCD of both is simply either ( )sA  or ( )sB . 
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b) If ( ) ( )sBsA f , keep the following scheme 

 
( )
( )

( )
( )

( ) ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ −
⎥
⎦

⎤
⎢
⎣

⎡

sB
sB

sA

sB

sA

10

01
~

10

01
 (4.14) 

hence, ( )sB  is the GCD of ( )sA  and ( )sB , according to (2.46). If ( ) ( )sAsB f , the 

procedure is analogous with GCD ( ) ( )( )sBsA , = ( )sA . 

c) Let ( )sA  and ( )sB  be not related to each other. In this case, follow this scheme 

 

( )
( )

( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )
( )

( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

+
++

−

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡ +

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

sYsBsXsAsYsX
sYsBsXsA

sXsA

sYsBsXsA

sXsB

sYsBsXsAsYsX

sB

sB

sYsBsXsAsYsX

sB

sXsAsX

sB

sA

0
~

10
~

10
~

10

0
~

10

01

(4.15) 

Here, the GCD of ( )sA  and ( )sB  equals ( ) ( ) ( ) ( )sYsBsXsA + . In scheme (4.15), it 

is supposed that there can be found quotients ( ) ( )sYsX ,  such that the element 

( ) ( ) ( ) ( )sYsBsXsA +  divides ( )sA , ( )sB . Since ( )sA , ( )sB  are Bézout coprime, 

( ) ( ) ( ) ( )sYsBsXsA +  must be a unit of the ring. 

In other words, the objective is to find structures of ( )sX , ( )sY  and to set zeros and 

poles of ( ) ( ) ( ) ( )sYsBsXsA +  such that divisibility conditions as in Lemma 4.1 are satisfied 

or the element is invertible. This task can be troublesome; however, if formally unstable 

neutral TDS were avoided being included, every numerator/denominator quasipolynomial 

would have only a finite number of unstable zeros, which would make possible to find the 

GCD ( ) ( )( )sBsA , . 

If the task is to solve the Bézout identity (2.68) itself instead of the 

GCD ( ) ( )( )sBsA , , one can use scheme (2.49) where 1=c . This yields these results, 

respectively 
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 a) ( ) ( ) ( ) ( ) ( ) ( )sB
sQsPsQ

sA
sP

1
,0and/or0,

1 ====  (4.16) 

 b) ( ) ( ) ( ) ( ) ( ) ( )sB
sQsPsQ

sA
sP

1
,0or0,

1 ====  (4.17) 

 c) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )sYsBsXsA

sY
sQ

sYsBsXsA

sX
sP

+
=

+
= ,  (4.18) 

The following examples elucidate the whole procedure. 

Example 4.7 

Assume coprime factorization (4.13) and find GCD ( ) ( )( )sBsA ,  first. Since ( )sA  

divides ( )sB , it holds that ( ) ( )sAsB f , hence 

 GCD ( ) ( )( ) ( ) 1
1

1
, =

−
−==

s

s
sAsBsA  (4.19) 

according to (4.14). 

The Bézout identity (2.68) then has the solution given by (4.17) as 

 ( ) ( ) ( ) 0,1
1 === sQ
sA

sP  (4.20) 

 ■ 

Example 4.8 

Now let the factorization be given by (4.10) with ( ) ( )21+= ssm . In this case, the 

both elements ( )sA  and ( )sB  are associated, thus ( ) ( )sBsA ≡  and scheme (4.15) can be 

used when solving GCD ( ) ( )( )sBsA , . This scheme yields e.g. 
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( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )
( )

( ) ( ) ( )( )
( ) ( ) ( )( )sBsA
s

sssss

s

ssssss
sYsBsXsA

sYsX

,GCD
1

13exp2expexp2

1

2expexp1exp2

1

2

2

2

2

=
+

+−+−+−++=

+
−−+++−++=+⇒

==

 (4.21) 

where ( )sX , ( )sY  are chosen for the simplicity. Then the solution of the Bézout identity 

according to (4.18) reads 

 ( ) ( ) ( )
( ) ( ) ( )( ) 13exp2expexp2

1
2

2

+−+−+−++
+==

sssss

s
sQsP  (4.22) 

 In case of asymptotically stable systems, i.e. ( )sA  is invertible (a unit), it is 

possible to use also a simple procedure when solving the Bézout identity 

 ( ) ( ) ( )
( )sA

sB
sPsQ

−=⇒= 1
1  (4.23) 

By applying this rule to the example, the following solution is obtained 

 ( ) ( ) ( )( ) ( )
( )( ) 1exp2

2expexp1
2

2

+−++
−−+−+=

sss

ssss
sP  (4.24) 

This scheme has some advantages, i.a. it enables that the reference-to-output transfer 

function to have only real poles if ( )sm  is a polynomial, see Subchapter 4.3. The use of the 

Bézout identity for control feedback stabilization is introduced in Subchapter 4.2.  ■ 

4.1.3 Basic properties of the ring 

Follow now terms introduced in Subchapter 2.3.1 and try to match some of them 

with RMS ring. 

Lemma 4.2 

A set RMS introduced in Definition 4.1 constitutes a commutative ring. ■ 

Proof. A sketch of proof that RMS meets ring conditions follows. 
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Clearly, RMS is closed under addition with associativity and the neutral element 

0=E . The inverse element ( ) MSRsB ∈  under addition of ( ) MSRsA ∈  is simply 

( ) ( )sAsB −= . Since ( ) ( ) ( ) ( ) MSRsAsBsBsA ∈+=+ , it is a commutative group. 

The closure under multiplication with associativity is also evident since the 

numerator and denominator of any ( ) MSRsA ∈  are composed of quasipolynomial factors – 

retarded ones and formally stable neutral ones, respectively. Since the operation of 

multiplication is commutative, left and right distributivity hold as well. In case of 

distributed delays, it is not possible to obtain more unstable denominator zeros then 

numerator ones of any ( ) MSRsA ∈  under multiplication. The multiplicative identity element 

equals 1.  □ 

Lemma 4.3 

An element ( ) MSRsA ∈  is a unit (invertible element) if and only if ( )sA  has zero 

relative order and has the (asymptotically and formally) stable numerator. ■ 

The proof of Lemma 4.3 is evident (e.g. the necessity can be proved by the 

negation of the right hand side of the lemma) with the aid of Lemma 4.1. Note that stable 

numerator means that is has only stable zeros in the appropriate meaning. 

Lemma 4.4 

An element ( ) MSRsA ∈  is irreducible if and only if its numerator is formally stable 

and 

 1≤+ UR NO  (4.25) 

where RO  is the relative order and UN  stands for the number of real zeros 

UiU Nis ,...2,1,, =  or conjugate pairs UiUiU Niss ,...2,1,, ,, =  with 0Re , ≥iUs  and 0Re , ≥iUs  of 

( )sA , respectively. ■ 

Proof. Necessity. Consider the following three cases 

a) 0=RO , 1=UN  
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b) 1=RO , 0=UN  

c) 2≥RO  

Use an indirect proof. First, let a) is not valid; hence, 0=RO , 1>UN . Consider a 

(quasi)polynomial ( )sc  with only one unstable zero (or a pair of unstable zeros), say 

( ) 01, =Usc  (or ( ) ( ) 01,1, == UU scsc ) and an arbitrary stable (quasi)polynomial ( )sb  of the 

same order (i.e. first or second one). Then 

 ( ) ( )
( )

( ) ( )
( ) ( )

( )
( ) ( ) ( )sAsA
sb

sc

scsa

sbsa

sa

sa
sA

den

num

den

num
21===  (4.26) 

where ( )sA1  and  ( )sA2  are neither associated with ( )sA  nor units. 

 Now, let b) is not valid, i.e. 1=RO , 0>UN , and assume a stable 

(quasi)polynomial ( )sd  of the first order. Then follow the scheme 

 ( ) ( )
( )

( ) ( )
( ) ( ) ( ) ( )sAsA

sdsa

sdsa

sa

sa
sA

den

num

den

num
21

1 ===  (4.27) 

Again, ( )sA1  and  ( )sA2  are neither associated with ( )sA  nor units. 

 Finally, let c) holds. Then it is possible to write e.g. scheme (4.27). 

 Sufficiency. Consider the three cases introduced above again. 

 If a) holds and the numerator is formally stable (even asymptotically), scheme 

(4.26) fails, since ( )sA1  is a unit and ( )sA2  is associated with ( )sA . Moreover, there is not 

possible to find another “reducible” scheme. 

Similarly, if b) holds and is formally stable, ( )sA1 is a unit and ( )sA2  is associated 

with ( )sA  in scheme (4.27); hence, ( )sA  is irreducible. □ 

Lemma 4.5 

RMS ring does not constitute UFR. ■ 

Proof. Consider the following element of the ring 
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( )

s

sτ−− exp1
 (4.28) 

Nonzero zeros of the numerator of (4.28) are 

 ∈−== k
k

s
k

s kk ,j
2

j,
2

τ
π

τ
π

 (4.29) 

Define polynomials 

 ( ) ( )( )kkk sssssP −−=  (4.30) 

Then the factorization 

 

( ) ( )( )( )
( )

( )
( )

( )( )( )
( ) ( )

( ) ( )
( )

...

exp1

exp1exp1

4
0

21

21

4
0

2
0

1

1

2
0

=
+

+−−=

=
+

+−−=−−

ms

sPsP

sPssP

mss

ms

sP

ssP

mss

s

s

τ

ττ

 (4.31) 

where m0 > 0 is infinite and thus the RMS ring is not a UFR, and none of left-hand factors in 

(4.31) is irreducible and none of all factors is a unit. □ 

Lemma 4.6 

RMS  is an integral domain.  ■ 

Proof. Consider ( ) ( )∈sBsA , RMS where ( )sA  is a unit. Let ( ) ( ) 0=sBsA and multiply 

the whole equation by ( )sA/1 . It yields ( ) 0=sB and we have a contradiction. □ 

Hence, Lemma 4.5 and Lemma 4.6 imply that RMS is not UFD. 

Lemma 4.7 

RMS  does not constitute PID.  ■ 

Proof. Simply, it holds that every PID is UFD. Since RMS  is not UFD according to 

Lemma 4.6, it is not PID. □ 

Lemma 4.8 

RMS  does not constitute a Bézout domain. ■ 
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Proof. It is sufficient to show that there exists a pair ( ) ( )∈sBsA , RMS which does 

not give a solution pair ( ) ( )∈sPsQ , RMS of (2.68). Indeed, as mentioned above several 

times, coprime factorization of formally unstable TDS does not have a stabilizing solution 

of the Bézout identity in ∞H ( + ), i.e. condition (2.69) does not hold. Since 

∞H ( + )⊃ RMS, which is evident from Definition 4.1, such solution does not exist in RMS 

as well. □ 

The decision whether RMS is a Noetherian ring is not successfully solved. 

Typically, a ring is a Bézout domain yet not PID, i.e. there exists an infinitely generated 

ideal which is not principal. In such cases, the ring is not Noetherian, see e.g. ring  of 

pseudopolynomials or ring , see Subchapter 2.3.2. 

4.2 Objectives in controller design 

The aim of this section is to outline controller design based on the algebraic 

approach in the RMS ring satisfying the closed loop stability in that sense that all transfer 

functions in the feedback are from RMS and the characteristic quasipolynomial (or 

meromorphic function) is formally stable. Moreover, controller feasibility, reference 

tracking and load disturbance rejection are other basic control performance requirements to 

be satisfied. 

The following subchapters present the whole controller design procedure for two 

various control schemes in details. 

4.3 Derivation of controllers for 1DoF 

Consider the simple negative feedback loop as in Fig. 2.1. External inputs, 

reference and load disturbance signals, respectively, have forms 

 ( ) ( )
( ) ( ) ( )

( )sF

sH
sD

sF

sH
sW

D

D

W

W == ,  (4.32) 

where ( )sHW , ( )sH D , ( )sFW , ( )sFD ∈RMS. Basic general feedback transfer functions are 

introduced in (2.72). 
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The first step in controller design is the fulfillment of control system stability, here 

in RMS sense. 

4.3.1 Closed loop stabilization 

A crucial theorem follows. 

Theorem 4.1 

Given a Bézout coprime pair ( ) ( )sBsA , ∈RMS of a plant ( ) ( ) ( )sAsBsG /=  the 

closed-loop system is RMS stable if and only if there exist pairs ( ) ( )∈sQsP , RMS of all 

proper (feasible) controllers ( ) ( ) ( )sPsQsGR /=  satisfying the Bézout identity 

 ( ) ( ) ( ) ( ) 1=+ sQsBsPsA  (4.33) 

a particular stabilizing solution of which, say ( ) ( )sQsP 00 , , can be then parameterized as 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )sZsAsQsQ

sZsBsPsP

m0

0

=
±=

 (4.34) 

where ( )∈sZ RMS, ( ) ( ) ( ) 00 ≠sZsBsP m . ■ 

Proof. Follow basic steps of the proof of the analogous theorem for RPS ring [167] 

or the original RMS ring [199]. However, some details have to be modified and precised. 

The proof has three steps (they can be considered as separate lemmas). 

Step 1: If ( ) ( ) ( )sAsBsG /= , ( ) ( ) ( )sPsQsGR /=  are two Bézout coprime fractions 

in RMS, then the feedback control system is stable (in RMS sense) if and only if ( )∈sC/1 RMS 

where ( ) ( ) ( ) ( ) ( )sQsBsPsAsC += . 

Consider the following four transfer functions 
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⎢
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⎥
⎦

⎤
⎢
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⎥
⎦

⎤
⎢
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⎥
⎦

⎤
⎢
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⎡
+

=⎥
⎦

⎤
⎢
⎣

⎡

sW

sD

sQsBsPsB

sQsAsPsA

sC

sW

sD

sGsGsG

sG

sGsGsY

sU

R

R

R

1

1

1

1

 (4.35) 
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The feedback system is stable if and only if the four transfer functions in (4.35) are 

from RMS. Sufficiency is evident. To prove necessity, induce a contradiction: Let 

( )∉sC/1 RMS and there is a common zero 0z  with 0Re 0 ≥z  (including asymptotic ones or 

infinity) of ( ) ( )sPsA , ( ) ( )sQsA , ( ) ( )sPsB , ( ) ( )sQsB  which is cancelled such that all 

transfer functions are stable. However, this case is impossible, either since both pairs 

( ) ( )sBsA ,  and ( ) ( )sQsP ,  are coprime or they are even Bézout coprime, i.e. (2.69) holds. 

As known e.g. from Example 4.3, a simple coprimeness can not be sufficient in some cases 

of neutral systems. Moreover, note that the definition of the ring and the divisibility rule do 

not allow situation that ( )∉sC/1 RMS and functions in (4.35) are simultaneously from the 

ring. 

Step 2: A controller ( )sGR  stabilizes ( )sG  if and only if it has the form 

( ) ( ) ( )sPsQsGR

~
/

~=  where ( ) ( )∈sQsP
~

,
~

RMS is a solution pair of ( ) ( ) ( ) ( ) 1
~~ =+ sQsBsPsA . 

Sufficiency: If the Bézout identity holds, ( ) 1=sC , and thus the feedback system is 

stable according to Step 1. 

Necessity: If there exists a stabilizing controller ( ) ( ) ( )sPsQsGR /= , then 

( ) ( ) ( ) ( ) ( )sQsBsPsAsC +=  and ( )∈sC/1 RMS, see Step 1. Clearly, the same controller 

 ( ) ( )
( )

( )
( )
( )
( )sC

sP

sC

sQ

sP

sQ
sGR ~

~

~

~
==  (4.36) 

satisfies the Bézout identity ( ) ( ) ( ) ( ) 1
~~ =+ sQsBsPsA . 

Step 3: All stabilizing pairs ( ) ( )∈sQsP , RMS of (4.33) are given by (4.34) where 

( ) ( )sQsP 00 ,  is a particular solution of the equation and ( )∈sZ RMS. 

Inserting (4.34) into the Bézout identity (4.33) clearly yields the same formula 

structure. Conversely, it holds that ( ) ( ) ( )( ) ( ) ( ) ( )( )sQsQsBsPsPsA 00 −=− . Since ( ) ( )sBsA ,  

are coprime, ( )sA  is a factor of ( ) ( )sQsQ 0− , i.e. ( ) ( ) ( ) ( )sQsQsZsA 0−=  for some 
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( )∈sZ RMS. Viceversa ( )sB  is a factor of ( ) ( )sPsP −0 , i.e. ( ) ( ) ( ) ( )sPsPsZsB −= 0 . It is 

easy to prove that there is also possible to switch signs in (4.33). Hence, every RMS 

stabilizing controller can be parameterized as in (4.34). □ 

Parameterization (4.34) is used to satisfy remaining control and performance 

requirements, such as reference tracking, disturbance rejection etc. 

4.3.2 Reference tracking and load disturbance rejection 

The task of this subsection is to find ( )∈sZ RMS in (4.34) so that the reference 

signal is tracked and load disturbance is asymptotically attenuated. First, the both tasks are 

separated and analyzed; yet, finally, it is shown that they have to be solved together. 

As first, consider the problem of reference tracking. The solution idea results from 

the form of ( )sGWE defined in (2.72). Consider the limit 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )sF

sH
sPssAsWssGssEte

W

W
sWEsWsWt 000 limlimlimlim →→→→∞ === (4.37) 

where W⋅ means that the signal is a response to the reference not influenced by other 

external inputs. Limit (4.37) reaches zero if ( ) ∞<→ sEWs 0lim  and ( )sEW  is analytic and 

bounded in the closed right half-plane, i.e. ( )∈sEW ∞H ( + ) and has no pole there 

(including an asymptotic case). If one wants to prevent the closed loop stability from the 

sensitivity to small delays, the denominator of ( )sEW  must be a (quasi)polynomial 

satisfying (2.25), in addition. Moreover, it must hold that ( )sGWE  is proper (or, 

equivalently, ( )sEW  is strictly proper) because of the feasibility (impulse free modes) of 

( )teW . This implies, in other words, that the reference tracking is fulfilled if ( )sEW ∈RMS. 

Alternatively, from the algebraic point of view, ( )sFW  must divide the product 

( ) ( )sPsA  in RMS. It means that one has to set all zeros of ( )sP  (with corresponding 

multiplicities) in  +  as zeros of ( )sFW  - unless there are any already contained in ( )sA . 

Recall that zeros mean zero points of a whole term in RMS here, not only those of a 

quasipolynomial numerator. 
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As second, take a look at load disturbance attenuation, which is analyzed in a very 

similar way. Thus, the task is to find a suitable ( )∈sZ RMS in (4.34) so that the load 

disturbance is asymptotically rejected. Assume the limit 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )sF

sH
sPssBsWssGssYty

D

D
sDYsDsDt 000 limlimlimlim →→→∞→ ===

 (4.38) 

using (2.72). The analogous analysis as in the previous subchapter yields the requirement 

 ( ) ( ) ( )( )sPsBsFD |  (4.39) 

in RMS. Since ( )sB  is given, the task is to find a suitable form of ( )sP  again.  

 Now, there are two various requirements on ( )sP , i.e. ( ) ( ) ( )( )sPsAsFW |  and 

( ) ( ) ( )( )sPsBsFD | , which can not be solved by a sequential utilization of (4.34). Indeed, if 

any ( )sP  is found so that ( )sFW  divides ( ) ( )sPsA , a subsequent use of parameterization 

(4.34) for (4.39) can invalidate the preceding divisibility. As a conclusion, the both 

conditions have to be considered together as 

 ( ) ( )( ) ( ) ( )( ) ( )sPsBsAsFsF DW ,GCD|,LCM  (4.40) 

which makes the general procedure more involved and it naturally carries some 

conservativeness (compared to the separate two conditions). 

Introduce a constructive procedure in more details. As first, assume a set  

 ( ){ }WiWiWWiWW liF ,...,2,1,0Re,0: ,,, =≥==Ω σσσ   (4.41) 

of zeros of ( )sFW  in  +  with their corresponding multiplicities WiW lim ,...2,1,, = . Note that 

1=Wm  means a single zero, 2=Wm  stands for a double one, etc. Let, in general, there be 

some zeros of ( )sA  in  +  that are those of ( )sFW . Define now the set of indexes 

 ( ){ }0,: ,, =Ω∈=Ι iWWiWA Ai
W

σσ  (4.42) 

and the set of common zeros 
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 { } WAWiWA WW
i Ω⊆Ι∈Ω∈=Ω :,σ  (4.43) 

with multiplicities 
WW AiA im Ι∈,,  (in ( )sA ). For zeros in 

WAΩ , introduce multiplicity 

differences as  { }0,max ,,, iAiWiWA WW
mmm −=Δ . 

Now, let the multiplicities WiW lim ,...2,1,, = of zeros of WΩ  be updated to 

WiW lim ,...2,1,, =  as follows 

 
⎩
⎨
⎧

Ι∉
Ι∈Δ

=
W

WW

AiW

AiWA
iW im

im
m

,

,

,

,
,  (4.44) 

which takes zeros of ( )sA  into consideration as well. 

Analogously, a set 

 ( ){ }DiDiDDiDD liF ,...,2,1,0Re,0: ,,, =≥==Ω σσσ  (4.45) 

is introduced. The corresponding multiplicities are DiD lim ,...2,1,, = . Consider a set of 

common zeros of some zeros in  +  of ( )sB  and ( )sFD  as 

 { } DBDiDB DD
i Ω⊆Ι∈Ω∈=Ω :,σ  (4.46) 

where 

 ( ){ }0,: ,, =Ω∈=Ι iDDiDB Bi
D

σσ  (4.47) 

with multiplicities 
DD BiB im Ι∈,,  in ( )sB  and introduce multiplicity differences 

{ }0,max ,,, iBiDiDB DD
mmm −=Δ , 

DBi Ι∈ . 

Again, update the multiplicities DiD lim ,...2,1,, = of zeros of DΩ  to 

DiD lim ,...2,1,, = as follows 

 
⎩
⎨
⎧

Ι∉
Ι∈Δ

=
D

DD

BiD

BiDB
iD im

im
m

,

,

,

,
,  (4.48) 

Now, merge the both sets 
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 U DWWD ΩΩ=Ω  (4.49) 

and define the corresponding multiplicities as 

 

( )
( )

{ }⎪
⎩

⎪
⎨

⎧

ΩΩ∈
ΩΩΩ∈
ΩΩΩ∈

=

⋅ I
I
I

DWiiDiW

DWDiDiD

DWWiWiW

iWD

mm

m

m

m

,,,

,,

,,

,

,,max

\,

\,

σ
σ
σ

 (4.50) 

Let the overall number of zeros in WDΩ  be WDWD l=Ω . 

Assume a stabilizing particular solution given by a pair ( )sP0 , ( )sQ0  and consider 

a factorization of a suitable parameterizing element ( )∈sZ RMS as 

 ( ) ( ) ( )sZsZsZ 21=  (4.51) 

The structure of the first factor, ( )sZ1 , is chosen so that the product ( ) ( )sZsB 1  has 

a suitable form, e.g. ( )sP0  and ( ) ( )sZsB 1  has the same denominator quasipolynomial, and 

it has no unknown parameters. Contrariwise, ( )sZ2  includes some selectable controller 

parameters which are to be placed properly. Let  

 ( ) ( )
( )sz

sz
sZ

D

N

,2

,2
2 =  (4.52) 

where ( )sz D,2  has a simple and known form and ( )sz N,2  be a in a simple form again, say as 

a polynomial, with N  selectable parameters Nααα ,..., 21  

 ( ) ( )NNN szsz ααα ,...,, 21,2,2 =  (4.53) 

The task is to determine the number N  and to prescribe how to set all the 

unknown parameters. Hence, denote  

 ( ) ( ) ( ) ( ) ( )
( )

( )
( )sp

sp

sz

sz
sZsBsPsP

D

NN

D

NN αααααα ,...,,,...,,
21

,2

21,2
10 =−=   (4.54) 

Define now the set of indexes 

 ( ){ }0,: ,, =Ω∈=Ι iWDDWDiWDp pi
D

σσ  (4.55) 
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and the set of common zeros 

 { } WDpWDiWDp DD
i Ω⊆Ι∈Ω∈=Ω :,σ  (4.56) 

with corresponding multiplicities 
DD pip im Ι∈,,  in ( )spD .  

Now, basically, all zeros of ( )sFW  and ( )sFD  in  +  must be placed as zeros of 

( )sP , unless they are included in ( )sA  and ( )sB , respectively. Again, update the zeros 

multiplicities in WDΩ  as follows 

 
⎩
⎨
⎧

Ι∉=
Ι∈=+

=
D

DD

pWDiWD

pWDipiWD
iWD lim

limm
m

...1,

...1,

,

,,
,  (4.57) 

The cumulative multiplicity is 

 ∑
=

=
WDl

i
iWDmM

1
,  (4.58) 

The analysis above yields the requirement of the following setting equations for 

reference tracking and load disturbance rejection 

 ( ) iWDWDNiWDNj

j

mjlip
s

WDiWD

,21,1

1

,...2,1,...1,0,...,,
d
d

,

===⎥
⎦

⎤
⎢
⎣

⎡

Ω∈
−

−

σ

ααασ  (4.59) 

Zeros with 0, ≤iWDm  are naturally excluded from (4.59). If equations (4.59) are 

independent, the number of these equations is M , thus, finally, MN = . 

4.4 Derivation of controllers for TFC 

Analogously as for 1DoF control system, the controller design procedure is now 

proposed for the TFC structure, see Fig. 2.2. This control scheme brings two advantages. 

As first, it is possible to partially decouple and solve separately tasks of (asymptotic) 

reference tracking and load disturbance rejection. However, these problems are still 

partially connected. As second, it is possible to introduce new free control parameters 

which give additional degrees of freedom. Moreover, the control structure enables to 

obtain a finite number of poles for some feedback transfer functions, namely for reference-
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to-output one, hence, the submethod proposed in Subchapter 4.4.4 is called the quasi-finite 

spectrum assignment. 

4.4.1 Closed loop stabilization 

Let both external inputs be considered as in (4.32). Crucial transfer functions for 

the TFC scheme are given by (2.73). 

A statement analogous to Theorem 4.1 follows. 

Theorem 4.2 

Given a Bézout coprime pair ( ) ( )sBsA , ∈RMS of a plant ( ) ( ) ( )sAsBsG /=  the TFC 

system is RMS stable if and only if there exist pairs ( ) ( )∈sTsP , RMS satisfying the Bézout 

identity 

 ( ) ( ) ( ) ( ) 1=+ sTsBsPsA  (4.60) 

a particular stabilizing solution of which, say ( ) ( )sTsP 00 , , can be then parameterized as 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )sZsAsTsT

sZsBsPsP

m0

0

=
±=

 (4.61) 

where ( )∈sZ RMS, ( ) ( ) ( ) 00 ≠sZsBsP m  and ( ) ( ) ( )sRsQsT += , i.e. pairs ( ) ( )∈sQsP , RMS 

and ( ) ( )∈sRsP , RMS give rise to proper controllers ( ) ( ) ( )sPsQsGQ /=  and 

( ) ( ) ( )sPsRsGR /= , respectively. ■ 

A proof of Theorem 4.2 can be easily performed by substituting ( )sT  into (4.33) 

instead of ( )sQ  and taken into consideration transfer functions (2.73) instead of (2.72). 

4.4.2 Solution decomposition 

It holds that ( ) )()( sQsRsT += , which indicates that the solution ( )sT  of (4.60) 

and (4.61) has to be decomposed so that other requirements on )(sQ  and )(sR are met.  

Let 
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( )
( )

( )
( )st

ssts

st

st
sT

D

n

i

k

j
ij

i
ij

n

D

N

i

∑∑
= =

−+
== 0 1

exp
)(

ϑ
 (4.62) 

Introduce a set of real selectable parameters iij kjni ...1,,...1,0, ==γ  where n is the 

degree of ( )stN , ik  expresses the number of non-zero (delay) terms for is , ∑
=

+=
n

i
iT kN

1

1  is 

the number of all non-zero terms in ( )stN , and set 

( )
( )

( ) ( ) ( )
( )st

ssts
sQ

st

ssts
sR

D

n

i

k

j
ij

i
ijij

n
n

D

n

i

k

j
ij

i
ijij

n
n

i

i

∑∑

∑∑

= =

= =

−−+−
=

−+
=

0 1
0

0 1
0

exp11
)(

exp
)(

ϑγγ

ϑγγ

 (4.63) 

Obviously, ( ) )()( sQsRsT += . 

4.4.3 Load disturbance rejection and reference tracking 

Let disturbance rejection be investigated first. The load disturbance rejection 

condition can be derived similarly as for 1DoF structure as introduced in Subchapter 4.3.2. 

This task can be solved by a suitable selection of ( )sZ  in (4.61). The crucial condition 

stems from ( )sGDY  defined in (2.73) which is formally identical with that introduced in 

(2.72). Hence, the limit (4.38) reaches zero if divisibility condition (4.39) holds.  

The asymptotic reference tracking is a bit more involved then that for 1DoF 

structure. Consider the limit 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )[ ] ( )

( )sF

sH
sQsBsPsAs

sWssGssEte

W

W
s

WEsWsWt

+=

==

→

→→∞→

0

00

lim

limlimlim

  (4.64) 

The limit reaches zero if ( ) ( ) ( )( )sPsAsFW |  and, simultaneously, ( ) ( ) ( )( )sQsBsFW | . 

The former condition can be combined and satisfied analogously as for 1DoF; however, 

the latter one requires the use of decomposition (4.63). Therefore, in the following text, the 
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load disturbance rejection problem is worked out completely, whereas the reference 

tracking task is solved only partially and it will be fully established later. 

Simply, one can follow equations from (4.41) to (4.59) exactly. As a result, 

( ) ( ) ( )( )sPsAsFW |  and ( ) ( ) ( )( )sPsBsFD |  which ensures load disturbance rejection; 

however, to meet the requirement of asymptotic reference tracking, it is necessary to 

provide ( ) ( ) ( )( )sQsBsFW |  in addition. This task can be efficiently solved by 

decomposition (4.63). Note that the notation from equations (4.41) to (4.59) is adopted in 

the sequel. 

To solve the task more precisely, recall first that ( )sP  and ( )sT  – after 

parameterization (4.61) – contain the number of N  parameters iα  unambiguously 

determined by the number M  of equations (4.59), and WΩ  stands for the set of zeros of 

( )sFW  located in  +  with their corresponding multiplicities WiW lim ,...2,1,, = . Define the set 

of indexes 

( ){ }0,: ,, =Ω∈=Ι iWWiWB Bi
W

σσ  (4.65) 

and the set of corresponding zeros 

{ } WBWiWB WW
i Ω⊆Ι∈Ω∈=Ω :,σ  (4.66) 

with multiplicities 
WW BiB im Ι∈,,  (in ( )sB ). For zeros in 

WBΩ , introduce multiplicity 

differences as  { }0,max ,,, iBiWiWB WW
mmm −=Δ . 

Now, let the multiplicities WiW lim ,...2,1,, = of zeros of WΩ  be updated to 

WiWB lim ,...2,1,, = as follows 

⎩
⎨
⎧

Ι∉
Ι∈Δ

=
W

WW

BiW

BiWB
iWB im

im
m

,

,

,

,
,  (4.67) 

Recall that the quasipolynomial numerator of ( )sT , i.e. ( )stN , can be generally 

decomposed by means the number TN  of (free) parameters ijγ . To take the influence of 

the denominator ( )stD  into consideration, let 
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( ){ }0,: ,, =Ω∈=Ι iWDWiWt ti
D

σσ  (4.68) 

and 

{ } WtWiWt DD
i Ω⊆Ι∈Ω∈=Ω :,σ  (4.69) 

with corresponding multiplicities 
DD tit im Ι∈,,  in ( )stD . 

Update the zeros multiplicities in WΩ  as follows 

 
⎩
⎨
⎧

Ι∉=
Ι∈=+

=
D

DD

D
tWiWB

tWitiWB
iWBt lim

limm
m

...1,

...1,

,

,,
,  (4.70) 

Denote the cumulative multiplicity as 

 ∑
=

=
W

DD

l

i
iWBtWBt mM

1
,  (4.71) 

Consider now the following three cases 

1) If 
DWBtT MN > , parameters ijγ  can be prescribed by the solution of 

( ) iWBtWiWNj

j

D

WiW

mjlit
s ,,1

1

,...2,1,...1,0,
d

d

,

===⎥
⎦

⎤
⎢
⎣

⎡

Ω∈
−

−

σ

σ γ  (4.72) 

where [ ]Tnknkk n
γγγγγγ ,...,...,,...,,... 0111001 10

=γ . In this case, there is a number of 

DWBtT MNN −=Δ  free independent parameters (i.e. the solution of (4.72) is ambiguous).  

2) If 
DWBtT MN = , the reference tracking can be satisfied by (4.72) as well; 

however, γ  is determined unambiguously and there are no additional degrees of freedom. 

3) If 
DWBtT MN < , the number TN  of free parameters is not enough to solve (4.72), 

hence, other selectable parameters ββ nii ...0, = have to be added, e.g. by a simple 

modification of ( )sT  as follows 

( ) ( )
01

1
1

01
1

1

1
...

...

βββ
βββ

β

β

β

β

β

β

++++

++++
= −

−

−
−

sss

sss
sTsT n

n
n

n
n

n

 (4.73) 
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where Nn Δ−≥β . Now ( )sT1  is recalculated such that a new vector [ ]Tnβ
ββ ,..., 0γγ =  of 

free parameters is obtained and (4.72) can be solved, after the decomposition analogous to 

(4.63). 

This adjustment can be also preformed when some additional degrees of freedom 

are required (in points 1 or 2). 

4.4.4 Quasi-finite spectrum assignment 

As mentioned above, the TFC structure can be used to perform quasi-finite 

spectrum assignment controller design in the sense that, at least, reference-to-output 

transfer function has a finite number of poles. It is easy to prove that asymptotically (and 

formally) stable systems naturally yield a finite spectrum feedback via procedures already 

described for the 1DoF and TFC structures. 

To make it clear e.g. for TFC (the following procedure can be done analogously 

for 1DOF), consider that ( )sa  in (4.10) has all zeros in  −
0  (including the asymptotic case) 

and ( )sm  is a polynomial. Then ( )∈sA RMS is a unit (invertible) and hence ( ) ( )sBsA | , i.e. 

( ) ( )sAsB f , which means GCD ( ) ( )( )sBsA , = ( )sA . In this case, the stabilizing Bézout 

equation (4.60) can be solved according to (4.23) as 

( ) ( ) ( )
( )

( ) ( )
( )sa

sbsm

sA

sB
sPsT

−=−=⇒= 1
1 00  (4.74) 

If the parameterization (4.51) – (4.54) is adopted with ( ) ( ) ( )sasmsZ /1 =  and 

( )∈sZ2  ( )s , the denominator ( )stD  of ( )sT  is a polynomial (or a real constant in most 

cases). Then ( )sR  has a polynomial denominator, and since the reference-to-output 

transfer function reads ( ) ( ) ( )sRsBsGWY = , it has a finite number of poles. However, as it is 

obvious from (2.73), load disturbance transfers via infinite-dimensional subsystems and 

the numerator and denominator in ( )sM  are quasipolynomials in general, hence a “full” 

finite spectrum assignment is not reached. 
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The main idea to satisfy the quasi-finite spectrum assignment for an unstable TDS 

using TFC stems from the consideration of the scheme in Fig. 2.2 as a simple feedback 

loop (i.e. 1DoF) with a pre-stabilizing inner loop, instead of a “direct” solution in RMS 

described in Subchapters 4.4.1 - 4.4.3.  Then the stable inner subsystem can be proceeded 

as it was introduced above. 

The pre-stabilization is given by the solution of (4.33) which can be obtained by 

the extended Euclidean algorithm described for RMS in Subchapter 4.1.2. The main trouble 

is how find ( ) ( )sYsX ,  in (4.15) such that ( ) ( ) ( ) ( )sYsBsXsA +  is a unit, i.e. the numerator 

quasipolynomial of the term is stable. Due to this reason, stability analyses of simple 

retarded quasipolynomials with respect to a real undelayed parameter have been made 

[125], [126]. The main results are the matter of the following subchapter. 

4.5 Stability analysis of selected retarded quasipolynomials 

Study now the stability of the following two selected simple retarded 

quasipolynomials by means of the argument principle (the Mikhaylov stability criterion) 

given by condition (2.36) 

( ) ( ) kqsassm +−+= ϑexp1  (4.75) 

( ) ( ) ( )skqsassm τϑ −+−+= expexp2  (4.76) 

where ∈≠ 0a , ∈τϑ,,k + are fixed. The main goal is to find upper and lower bounds 

on the parameter ∈≠0q  such that quasipolynomials (4.75) and (4.76) have all zeros 

located in  −
0 . Although the quasipolynomial (4.75) is a special case of (4.76), these 

analyses are made separately. 

Consider quasipolynomial (4.75) first. The loop-shape-like procedure is based on 

the requirement that the appropriate Mikhaylov curve for [ )∞∈ ,0ω  must have the overall 

argument change equal to 2/π  (starting on the positive real axis). 
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Lemma 4.9 

For ω = 0, the imaginary part of the Mikhaylov curve of quasipolynomial (4.75) 

equals zero and it approaches infinity for ω → ∞. ■ 

Proof. Decompose ( )ωj1m  into real and imaginary parts as 

( ){ } ( ) kqam += ϑωω cosjRe 1  (4.77) 

( ){ } ( )ϑωωω sinjIm 1 am −=  (4.78) 

Obviously 

( ){ } ( ){ } ∞== →∞=
ωω ωω jImlim,0jIm 101 mm  □ 

Lemma 4.10 

If (4.75) has all its zeros located in  −
0 , the following inequality holds 

k

a
q

−>  (4.79) 

and thus the Mikhaylov curve starts on the positive real axis. ■ 

Proof. If (4.75) has all its zeros located in  −
0 , the overall argument shift equals to 

2/π  according to (2.36). Moreover, Lemma 4.9 states that the imaginary part goes to 

infinity. These two requirements imply that for stable quasipolynomial is 

( ){ } 0jRe
01 >

=ωωm  (4.80) 

By application of (4.80) onto (4.77) yields the condition (4.79). □ 

Lemma 4.10 represents the necessary stability condition and the lower bound for q. 

The curve can either pass through the first or the fourth quadrant for an infinitesimally 

small 0>Δ=ω , which is clarified in the following simple lemma. 

Lemma 4.11 

A point on the Mikhaylov curve of (4.75) lies in the first quadrant for an 

infinitesimally small 0>Δ=ω  if and only if 
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1≤ϑa  (4.81) 

This point lies in the fourth quadrant if and only if 

1>ϑa  (4.82) 

 ■ 

Proof. Necessity. If the point on the curve goes to the first quadrant for an 

infinitesimally small 0>Δ=ω , then the change of function ( ){ }ωjIm 1m  in 0=ω  is 

positive or this function is increasing in Δ=ω . It is known fact that this is satisfied if 

either 

( ){ } 0jIm
d

d

0
1 >

=ω
ω

ω
m  (4.83) 

or there exists even n∈ such that 

( ){ } ( ){ } ( ){ } 0jIm
d
d

,0jIm
d
d

...jIm
d
d

0

1

0

11

1-

0
1 >===

==
−

= ωωω
ω

ω
ω

ω
ω

ω
mmm n

n

n

n

 (4.84) 

(i.e. there is a local minimum of ( ){ }ωjIm 1m  in 0=ω ) or there is odd n ≥ 3∈ such that 

( ){ } ( ){ } ( ){ }

( ){ } 0jIm
d
d

,0jIm
d
d

,0jIm
d
d

...jIm
d
d

1

0

1

0

11

1-

0
1

>

≠===

Δ=

==
−

=

ω

ωωω

ω
ω

ω
ω

ω
ω

ω
ω

m

mmm n

n

n

n

 (4.85) 

(i.e. there is a point of inflexion of ( ){ }ωjIm 1m  in 0=ω ; however, the function is 

increasing in Δ=ω ). 

Analyze the previous three conditions. First, relation (4.83) with respect to (4.78) 

reads 

( ){ } ( ) 01cos1jIm
d
d

0
0

1 >−=−=
=

=

ϑϑωϑω
ω ω

ω
aam  (4.86) 

which is satisfied for 1<ϑa . 

Second, condition (4.84) can be taken into account if 



- 135 - 

( ){ } 10jIm
d
d

0
1 =⇔=

=

ϑω
ω ω

am  (4.87) 

hence 

( ){ } ( ){ } 0jIm
d
d

,0jIm
d
d

1
0

13

3

1
0

12

2

>=
=
=

=
=

ϑ
ω

ϑ
ω

ω
ω

ω
ω

aa

mm  (4.88) 

where the first non-zero nth derivation is odd, and thus (4.84) can not be satisfied for 

1=ϑa ; however, we can test (4.85). Indeed 

( ){ } 0jIm
d

d

1

1 >
=
Δ=

ϑ
ω

ω
ω

a

m  (4.89) 

and thus function ( ){ }ωjIm 1m  in Δ=ω  is increasing. 

Similarly, one can easily verify that if the Mikhaylov plot pass through the fourth 

quadrant first, then function ( ){ }ωjIm 1m  decreases in 0=ω when (4.82) holds . 

Sufficiency. If conditions (4.81) or (4.82) are considered, particular derivations of 

( ){ }ωjIm 1m  can be calculated, which guarantee, according to (4.83) – (4.85), whether there 

is a tendency of the Mikhaylov curve to go to the first or the fourth quadrant, respectively. □ 

The meaning of Lemma 4.11 is demonstrated in Fig. 4.2 

 

Fig. 4.2 Clarification of Lemma 4.11 
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Lemma 4.12 

If the lower bound (4.79) holds and a, k, q are bounded, then ( ){ }ωjRe 1m  is 

bounded for all 0>ω . ■ 

Proof. Assume that 0>a . Then 

( ){ } ( ) kqakqamkqaa +≤+=≤+−<− ϑωω cosjRe2 1  (4.90) 

On the other hand, if 0<a  

( ){ } kqkqamkqa 2jRe0 1 <+−≤≤+< ω  (4.91) 

where the left-hand sides of (4.90) and (4.91) and the right-hand one of (4.91) employ 

condition (4.79). The case when a = 0 can be discarded due to definition (4.75) of the 

quasipolynomial.  □ 

The requirement of bounded parameters is natural with regard to their physical 

meaning as process quantities or controller gains. 

Lemma 4.13 

If (4.79) holds, there it exists an intersection of the Mikhaylov plot with the 

imaginary axis for some 0>ω  if and only if 

0>a  and akq ≤  (4.92) 

 ■ 

Proof. Necessity. Show a contradiction, hence if 0<a  and (4.79) holds, then 

( ){ }ωjRe0 1mkqa ≤+<  according to Lemma 4.12 and thus there is no intersection with 

the imaginary axis. 

Sufficiency. Consider 0>a . If akq ≤ , there must exists 0>ω  such that 

( ) kqa =ϑωcos , hence, ( ){ } 0jRe 1 =ωm . □ 

Searching of the stability upper bound will be made in two branches, so that 

conditions (4.81) and (4.82) are solved separately. The following theorem presents the 

necessary and sufficient stability condition for the former case. 
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Theorem 4.3 

If (4.81) holds, then quasipolynomial (4.74) has all its zeros in  −
0  if and only if 

condition (4.79) is satisfied. ■ 

Proof. Necessity. See Lemma 4.10. 

Sufficiency. Lemma 4.10 indicates that if (4.79) is satisfied, the Mikhaylov curve 

starts on the positive real axis for 0=ω . According to Lemma 4.9 the imaginary part of 

the curve goes to infinity and Lemma 4.12 states that for bounded parameters, the curve is 

bounded in the real axis. Now for the stability it is sufficient to certify that for 1≤ϑa  the 

Mikhaylov plot does not leave either the first and the fourth quadrant, or the first and the 

second quadrant, since then the overall phase shift is π/2. 

Indeed, Lemma 4.12 and Lemma 4.13 state that if 0<a , there is no intersection 

with the imaginary axis and thus the plot lies in the first and the fourth quadrant. 

Otherwise, if ϑ/10 ≤< a , an intersection with the imaginary axis can exist because of 

Lemma 4.13. Thus, it ought to be verified that there is no intersection with the real axis. 

Consider two cases: 

1) If ( ) 0,0sin >≥ ωϑω , then 

( ){ } ( ) ( ) ( )
0

sin
1

sin
sinjIm 1 >⎟

⎠
⎞

⎜
⎝
⎛ −=−≥−=

ϑω
ϑωω

ϑ
ϑωωϑωωω am  (4.93) 

2) If ( ) 0,0sin >< ωϑω , we induce a contradiction. Hence, assume that there 

exists 0>ω  such that ( ) 0sin <ϑω  and ( ){ } 0jIm 1 =ωm . Then 

( )ϑω
ω

sin
=a  (4.94) 

which yields ( ) 0sin >ϑω  and thus we have a contradiction.  □ 

The both cases above in the second part of the proof of Theorem 4.3 are pictured 

in Fig. 4.3. 
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Fig. 4.3 For 1≤ϑa , the Mikhaylov plot of ( )sm1  must lie in the first and the fourth 
quadrant (left) or in the first and second quadrant (right) 

Consider now the second case, i.e. 1>ϑa . The following result reinforces 

condition (4.79). 

Definition 4.2 

Let (4.79) holds. The crossover frequency 0ω  (for ( )sm1 ) is defined as 

( ){ }{ }0jIm,0:min: 10 =>= ωωωω m  (4.95) 

for some 0,0 >≠ ϑa . In other words, it represents the least solution of (4.94). ■ 

The frequency is graphically displayed in Fig. 4.4. 

 

Fig. 4.4 Crossover frequency for ( )sm1  
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Theorem 4.4  

If (4.82) holds, then quasipolynomial (4.75) has all its zeros located in  −
0  if and 

only if 

( )
k

a
q 0cos ϑω−>  (4.96) 

Proof. Necessity. Lemma 4.9 and Lemma 4.10 state that the Mikhaylov curve for 

stable quasipolynomial (4.75) starts on the positive real axis. Condition (4.82) guaranties 

that the initial movement of the curve in the imaginary axis is negative, see Lemma 4.11. 

Thus, the curve has to pass through the fourth followed by the first quadrant. In other 

words, the first crossing with the real axis on the frequency 00 >ω  has to satisfy 

( ){ } ( )
( ){ } ( ) 0cosjRe

0sinjIm

001

0001

>+=
=−=

kqam

am

ϑωω
ϑωωω

 (4.97) 

which gives (4.96) directly. 

Sufficiency. If (4.82) holds, then 0>a  and 

( )
k

a

k

a
q

−≥−> 0cos ϑω
 (4.98) 

and thus the Mikhaylov curve for quasipolynomial (4.75) starts on the positive real axis 

according to Lemma 4.10 and the initial change of the curve in the imaginary axis is 

negative, see Lemma 4.11. Condition (4.96) then agrees with the fact that the curve crosses 

positive real axis first, as it is obvious from (4.77). Since the curve is bounded in the real 

part and the imaginary part goes to infinity (see Lemma 4.9 and Lemma 4.12), the overall 

phase shift is π/2 and thus the quasipolynomial ( )sm1  has all its zeros located in  −
0 . □ 

Regarding ( )sm2  defined in (4.76), introduce formally particular lemmas first 

which are identical with some lemmas above. 

Lemma 4.14 

For ω = 0, the imaginary part of the Mikhaylov curve of quasipolynomial (4.76) 

equals zero and it approaches infinity for ω → ∞. ■ 
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Lemma 4.15 

If (4.76) has all its zeros located in  −
0 , (4.79) holds. ■ 

Proofs of Lemma 4.14 and Lemma 4.15 can be performed analogously as for 

Lemma 4.9 and Lemma 4.10, respectively. The following lemma is analogous to Lemma 

4.11, yet let us build a proof for it. 

Lemma 4.16 

A point on the Mikhaylov curve of (4.76) lies in the first quadrant for an 

infinitesimally small 0>Δ=ω  if and only if 

1≤+ τϑ kqa  (4.99) 

This point lies in the fourth quadrant if and only if 

1>+ τϑ kqa  (4.100) 

 ■ 

Proof. Necessity. If the point goes to the first quadrant for an infinitesimally small 

0>Δ=ω , one of conditions (4.83) – (4.85) holds for ( )sm2 . 

Relation (4.83) with respect to (4.76) reads 

( ){ } ( ) ( ) 01coscos1jIm
d
d

0
0

2 >−−=−−=
=

=

τϑτωτϑωϑω
ω ω

ω
kqakqam  (4.101) 

which gives 1<+ τϑ kqa . 

Condition (4.84) applied to (4.76) yields 

( ){ } 10jIm
d
d

0
2 =+⇔=

=

τϑω
ω ω

kqam  (4.102) 

The second derivation is 

( ){ } ( ) ( ) 0sinsinjIm
d
d

0

22

0

22

2

=+=
=

=
ω

ω

τωτϑωϑω
ω

kqam  (4.103) 

Generally, any even n-th derivation reads 
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( ){ } ( ) ( ) ( )( )

( ){ } 0jIm
d

d

sinsin1jIm
d

d

0

2

1
22

=⇒

+−=

=

−

ω

ω
ω

τωτϑωϑω
ω

m

kqam

n

n

nn
n

n

n

 (4.104) 

This implies that (4.84) can not be satisfied. 

Third, assume that there exists a non-zero odd n-th derivation, n ≥ 3, in 0=ω  

( ){ } ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( )( )1
2

3

0

1
2

31

0

2

3

0

2

11cos1cos1

coscos1jIm
d

d

−
−

=

−
−=+

=

−

=

−−−=−−−=

+−=

nn
n

nn
nkqa

nn
nn

aaaa

kqam

τϑϑτωτϑϑωϑ

τωτϑωϑω
ω

ω

τϑ

ωω
n

 

 (4.105) 

Test the latter condition in (4.85), obviously 

( ){ } ( ) ( )( ) ( ) 0coscoscosjIm
d

d

1

2 >Δ+Δ−Δ=
=+

Δ=
ττϑϑω

ω
τϑ

ω
am

kqa

 (4.106) 

since 

( )
( ) 1

cos

cos
lim

0
=

Δ
Δ

+→Δ τ
ϑ

 (4.107) 

Analogously, one can easily verify that if the Mikhaylov plot passes through the 

fourth quadrant first, then function ( ){ }ωjIm 2m  decreases in 0=ω and (4.100) holds. 

Sufficiency. Consider condition (4.99) and verify that it satisfies (4.83) or (4.85) 

for ( )sm2 , respectively. In the same way, formula (4.100) gives rise to 

( ){ } 0jIm
d

d

0
2 <

=ω
ω

ω
m  (4.108) 

which induces the initial tendency of the Mikhaylov plot to go to the fourth quadrant. □ 

Lemma 4.17  

If a, k, q are bounded, then ( ){ }ωjRe 2m  is bounded for all ω  > 0. ■ 
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Proof. Assume the following four different condition.  

1) If 0>a  and 0>kq , then 

( ){ } ( ) ( ) kqakqamkqa +≤+=≤−− τωϑωω coscosjRe 2  (4.109) 

2) If 0>a  and 0<kq , then 

( ){ } kqamkqa −≤≤+− ωjRe 2  (4.110) 

3) If 0<a  and 0>kq , then 

( ){ } kqamkqa +−≤≤− ωjRe 2  (4.111) 

4) If 0<a  and 0<kq , then 

( ){ } kqamkqa −−≤≤+ ωjRe 2  (4.112) 

It is possible to summarize and unify results (4.109) – (4.112) as 

( ) ( ){ } kqamkqa +≤≤+− ωjRe 2  (4.113) 

 □ 

Proposition 4.1  

If (4.79) and (4.99) are satisfied simultaneously, then 

( ) 1≤−τϑa  (4.114) 

Proof. Obviously, 

( ) 1≤+<−
−>

τϑτϑ kqaa
akq

 (4.115) 

 □ 

The preceding proposition also expresses that for a quasipolynomial (4.76) with 

zeros in  −
0 , when the corresponding Mikhaylov plot passes the first quadrant as first, the 

condition (4.115) holds. 

Proposition 4.2  

If the following inequality holds 
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( ) 1>−τϑa  (4.116) 

then the corresponding Mikhaylov plot of a quasipolynomial (4.76) with zeros in  −
0  

passes the fourth quadrant as first. ■ 

Proof. Lemma 4.15 states that (4.79) holds for a “stable” quasipolynomial (4.76). 

Then 

 ( ) τϑτϑ kqaa
akq

+<−<
−>

1  (4.117) 

which induces that the Mikhaylov plot goes to the fourth quadrant as first, due to Lemma 

4.16. □ 

Proposition 4.3 

There always exists an intersection of the Mikhaylov curve of (4.76) with the 

imaginary axis. ■ 

Proof. The intersection exists if ( ){ } 0jRe 2 =ωm , i.e. 

( ) ( )τωϑω coscos kqa −=  (4.118) 

for some 0>ω . Obviously, since 0>ϑ , 0>τ , there is 0>ω  satisfying relation (4.118).

 □ 

The upper stability bound will now be found via some unproven observations and 

a theorem. 

Definition 4.3 

Let (4.79) holds. A crossover frequency 0ω  for ( )sm2  is an element of the set 

( ){ } ( ){ }{ }0jIm,0jRe,0:: 220 ==>=Ω ωωωω mm  (4.119) 

for some crossover gain 0q  and 0,,,0 >≠ ϑτka . ■ 

A crossover frequency, hence, has to satisfy simultaneously these two identities 

( ) ( )
( ) ( ) 0sinsin

0coscos

0000

000

=−−
=+
τωϑωω

τωϑω
kqa

kqa
 (4.120) 
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Relations (4.120) can also be expressed by transcendental equation 

( ) ( )( )000 sincos ωτϑτωω −= a  (4.121) 

Note that equation (4.121) is in the form suitable for utilization of numerical 

methods, i.e. some ratios of goniometric functions are not desirable for this purpose.  

The crossover gain 0q  can be calculated from (4.120) as  

( )
( )0

00
0 sin

sin

τω
ϑωω

k

a
q

−=  (4.122) 

Definition 4.4 

Let (4.79) holds. The critical frequency Cω  is defined as 

( )
)

( )
) ⎭

⎬
⎫

⎩
⎨
⎧

=Δ=ΔΩ∈=
∞∈=∈= 2

arg,0arg,:min:
,[j,

2
,0[j,
20

πωωω
ωωωωωω CC ss

C smsm  (4.123) 

for the corresponding critical gain Cq  given by (4.122), where Cω  is placed instead of 0ω , 

and 0,,,0 >≠ ϑτka . ■ 

Obviously, the critical frequency is the least crossover frequency for which the 

argument change is zero for [ )Cωω ,0∈  and consequently it equals 2/π  for [ )∞∈ ,Cωω . 

The quasipolynomial is then on the “stability margin” for Cq , which has to satisfy the 

necessary condition (4.79). There can hence exist some crossover frequencies less then the 

critical one which do not mean the “stability margin”. 

The difference between the crossover and the critical frequency is clarified in Fig. 

4.5. Whereas the left-hand side picture displays the critical frequency, the right-hand side 

position shows the crossover one only, because the phase shift of ( )ωjm2  for [ )∞∈ ,0ωω  is 

2/7π−  and there is not another 0ω . 
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Fig. 4.5 The difference between Cω (left) and Cωω ≠0  (right) 

Observation 4.1 

Let Cqq = , then the Mikhaylov plot of (4.76) circumscribes curves in the 

clockwise direction around the center of the rotation (like a “whirligig”). Moreover, if 

(4.99) holds, then the Mikhaylov plot initially moves to the first quadrant (as proved in 

Lemma 4.16) followed by the fourth quadrant for some frequencies 0>ω . It means that 

although relation (4.99) quarantines that the plot tends to move to the first quadrant for 

0=ω , it immediately passes over the positive real axis to the fourth quadrant anyway. The 

situation is displayed in Fig. 4.6. ■ 

 

Fig. 4.6 Explanation of Observation 4.1 
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Remark 4.1  

In [89], [90], a lemma which states that the spectrum of a general retarded 

quasipolynomial is continuous with respect to continuous changes of all its parameters is 

proved. This fact implies that the Mikhaylov plot of an appropriate quasipolynomial is 

continuous in both axes with respect to these parameters’ changes, and viceversa. ■ 

Theorem 4.5 

Consider the following five possibilities: 

a) If ( ) 0sin =Cτω and ( ) 0cos >Cτω , ( ) 0cos <Cτω , then quasipolynomial (4.76) has 

all its zeros in  −
0  if and only if 

( )
( ) q

k

a

k

a

C

C <⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
,

cos

cos
max

τω
ϑω

 (4.124) 

( )
( )C

C

k

a
q

k

a

τω
ϑω

cos

cos−<<−
 (4.125) 

respectively. 

b) If ( ) 0cos =Cτω and ( ) 0sin >Cτω , ( ) 0sin <Cτω , then quasipolynomial (4.76) 

has all its zeros in  −
0  if and only if 

( )
( )C

CC

k

a
q

k

a

τω
ϑωω

sin

sin−<<−
 (4.126) 

( )
( ) q

k

a

k

a

C

CC <⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
,

sin

sin
max

τω
ϑωω

 (4.127) 

c) If ( ) 0sin >Cτω  and ( ) 0cos <Cτω , ( ) 0sin <Cτω  and ( ) 0cos >Cτω , then 

quasipolynomial (4.76) has all its zeros in  −
0  if and only if (4.125) or (4.126), (4.124) or 

(4.127), hold, respectively. 

d) If ( ) 0sin >Cτω  and ( ) 0cos >Cτω , then if 

( ) ( ) ( ) ( )CCCCCC kqakqa τωτϑωϑτωτϑωϑ coscos1sinsin −−>+  (4.128) 
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then quasipolynomial (4.76) has all its zeros in  −
0  if and only if (4.124) holds, otherwise 

the quasipolynomial has all its zeros in  −
0 if and only if (4.126) holds. 

e) If ( ) 0sin <Cτω  and ( ) 0cos <Cτω , then if (4.128) holds, (4.76) has all its zeros in 

 −
0  if and only if (4.125) is satisfied. Otherwise, if condition (4.128) does not hold, the 

quasipolynomial is stable if and only if (4.127) holds. 

Recall that Cω  is the critical frequency. 

Proof. Necessity. For all the cases in the theorem, the Mikhaylov curve of a 

“stable” quasipolynomial (4.76) starts on the positive real axis, and thus the necessary 

condition (4.79) included in (4.124) - (4.127) holds, as proved in Lemma 4.15. Lemma 

4.16 states condition (4.99) guaranties that the initial change of the Mikhaylov curve in the 

imaginary axis is positive. i.e. the curve tends to move to the first quadrant for 0=ω ; 

however, according to Observation 4.1, it immediately moves to the fourth quadrant. If 

(4.100) is satisfied, the curve passes through the fourth quadrant already for an 

infinitesimally small ω . The critical (marginal) case is characterized by Cω  and Cq  where 

the curve crosses the origin of the complex plane and a small change of q would cause that 

the overall phase change would be 2/π , see Remark 4.1. The limit “stable” case thus 

obviously means that ( ){ } 0jRe 2 >Cm ω  and ( ){ } 0jIm 2 >Cm ω  must hold simultaneously; 

here the following relations can be used 

 ( ){ } ( ) ( )τωϑωω coscosjRe 2 kqam +=  (4.129) 

 ( ){ } ( ) ( )τωϑωωω sinsinjIm 2 kqam −−=  (4.130) 

Consider case a) in the theorem and take ( ) 0cos >Cτω . Since ( ) 0sin =Cτω , we can 

not deal with (4.130), whereas (4.129) gives (4.124) immediately. Analogously, a case 

when ( ) 0cos <Cτω  results in the right-hand side of (4.125). 

If conditions b) hold, inequalities (4.126) and (4.127) are obtained from (4.130) in 

the similar way as in the previous paragraph. 
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In the case c), condition ( ){ } 0jRe 2 >Cm ω  using (4.129) yields results (4.124) and 

(4.125) which are as the same as conditions (4.127) and (4.126), respectively, obtained 

from ( ){ } 0jIm 2 >Cm ω  with (4.130). 

The most involved cases in the theorem are d) and e) since conditions 

( ){ } 0jRe 2 >Cm ω  and ( ){ } 0jIm 2 >Cm ω  collide here – one gives the upper limit 

for q whereas the second yields the lower one. To decide which of them is valid, one has to 

test the sensitivity of the Mikhaylov plot in the vicinity of Cqq = . If the infinitesimal 

change of the curve in the real axis is higher than that in the imaginary one, condition 

( ){ } 0jRe 2 >Cm ω  establishes the behavior of the curve near the origin. Contrariwise, if the 

plot shifts in the imaginary axis faster than in the real one, the stability is given by 

condition ( ){ } 0jIm 2 >Cm ω  because it influences the Mikhaylov plot near the critical point 

more. 

Hence, if 

( ){ } ( ){ }

( ) ( ) ( ) ( )CCCCCC kqakqa

mm
CC

τωτϑωϑτωτϑωϑ

ω
ω

ω
ω ωωωω

coscos1sinsin

jIm
d

d
jRe

d

d
22

−−>−−

⎥⎦
⎤

⎢⎣
⎡>⎥⎦

⎤
⎢⎣
⎡

==  (4.131) 

then (4.129) decides about the behavior of the Mikhaylov plot near the origin, which 

results in (4.124) for ( ) 0cos >Cτω  and in (4.125) for ( ) 0cos <Cτω , respectively. 

Otherwise, if (4.131) does not hold, the imaginary part (4.130) of the 

quasipolynomial (4.76) dominates in the critical point, which gives (4.126) for 

( ) 0sin >Cτω  and  (4.127) for ( ) 0sin <Cτω . 

 Sufficiency. Bound (4.79) included in (4.124) - (4.127) guarantees that the 

Mikhaylov curve initiates on the positive real axis, see Lemma 4.15. Lemma 4.16 verifies 

that the curve reaches infinity in the imaginary axis for ω → ∞, and Lemma 4.17 states 

that it is bounded in the real axis. Moreover, if (4.99) holds, the Mikhaylov curve tends to 

move to the first quadrant and, consequently, to the fourth quadrant for 0=ω ; otherwise, 

it moves to the fourth quadrant for Δ=ω  when (4.100) is satisfied. For the 
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quasipolynomial “stability”, expressed by the overall phase shift π/2, it is now sufficient to 

show that the curve does not encircle the origin of the complex plane in the clockwise 

direction.  

Let the critical stability case be expressed by Cω  and qC and consider case a) first. 

Since ( ) 0sin =Cτω , condition ( ){ } 0jIm 2 >Cm ω  could not be guaranteed from (4.130) and  

( ){ } 0jIm 2 =Cm ω  remains for any q. However, inequalities (4.124) and (4.125) yield 

( ){ } 0jRe 2 >Cm ω  from (4.129) using ( ) 0cos >Cτω  and ( ) 0cos <Cτω , respectively, for a 

particular q > qC and q < qC, respectively. Thus, it means that the real axis is crossed in the 

positive semi-axis first on the critical frequency and thus, with respect to Remark 4.1, the 

origin is encircled in the anti-clockwise direction with the overall phase shift π/2. 

Second, assume the case b). Similarly as in the previous paragraph, ( ) 0cos =Cτω  

gives ( ){ } 0jRe 2 =Cm ω  for any q. Inequalities (4.126) and (4.127) together with 

( ) 0sin >Cτω  and ( ) 0sin <Cτω , respectively, result in ( ){ } 0jIm >Cm ω , from (4.130). Thus, 

the overall phase shift is π/2 again. 

In c), pairs of conditions (4.125) and (4.126), (4.124) and (4.127:), agree with 

( ){ } 0jRe 2 >Cm ω  and ( ){ } 0jIm 2 >Cm ω simultaneously for ( ) 0sin >Cτω  and ( ) 0cos <Cτω , 

( ) 0sin <Cτω  and ( ) 0cos >Cτω , respectively, which implies the desired phase shift for the 

“stability”. 

Condition (4.128) in d) and e) expresses the fact that the absolute value of a 

derivative of the Mikhaylov curve in the critical point is higher in the real than in the 

imaginary one. Thus, condition ( ){ } 0jRe 2 >Cm ω  is stricter than ( ){ } 0jIm 2 >Cm ω  when 

decision about the behavior of the plot in the vicinity of the origin for Cω . Inequalities 

(4.124) and (4.125) correspond to ( ){ } 0jRe 2 >Cm ω  for ( ) 0cos >Cτω  and ( ) 0cos <Cτω , 

respectively, which means that the critical point is not encircled. 

In the contrary, if (4.128) does not hold, i.e. ( ){ } 0jIm 2 >Cm ω  decides about the 

critical behavior, inequalities (4.126) and (4.127) correspond to ( ){ } 0jIm 2 >Cm ω  for 

( ) 0sin >Cτω  and ( ) 0sin <Cτω , respectively, which guarantees the stability again. □ 
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Remark 4.2 

Definition 4.4 and Theorem 4.5 suggest situations when the quasipolynomial 

stabilization by the suitable choice of q is not possible. These are two unpleasant 

possibilities: 

1) If Cω  does not exist. Thus, although 0Ω  is non-empty set, it may not contain 

Cωω =0 . 

2) If q could not satisfy (4.125) or (4.126), i.e. if 

( )
( ) k

a

k

a

C

CC −≤−
τω
ϑωω

sin

sin
 (4.132) 

or 

( )
( ) k

a

k

a

C

C −≤−
τω
ϑω

cos

cos
 (4.133) 

depending on the particular case from Theorem 4.5. 

This case is, however, not very likable since the continuity of the Mikhaylov curve 

with respect to q supposes that there is a “stabilizing” q in the neighborhood of the 

marginal case q = qC. ■ 

The following example demonstrates Remark 4.2. 

Example 4.9 

Consider quasipolynomial (4.76) with a = -5, 1,2.0 == ϑτ , k = 1, which gives the 

following set of crossover frequencies according to (4.119): 

{ },...27.39,562.23,244.10,855.7,663.40 =Ω , giving rise to crossover gains calculated from 

(4.122) as q0 ∈{-0.4112, 12.855, 7.423, -18.562, 44.27,...}. One can verify by drawing the 

appropriate Mikhaylov plot that no 00 Ω∈ω  is the critical frequency. ■ 

Observation 4.2 

Numerical experiments showed that if ( ) 0sin 0 <τω , then Cωω ≠0 , which might 

render condition (4.127) useless. ■ 
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Note that the investigated quasipolynomials were analyzed already e.g. in [7], [25]; 

however, different approaches were utilized in these papers. 

4.6 Generalized Nyquist criterion for TDS 

The Mikhaylov criterion is closely related to the Nyquist criterion for control 

feedback stability conditions. The both criteria are based on the argument principle which 

is a rather more involved compared to a finite-dimensional case due to the infinite 

spectrum of TDS and the existence of common roots in the transfer function numerator and 

denominator (because of distributed delays). In the following subchapters, the Nyquist 

criterion is revised for both retarded and neutral TDS and the question whether the 

notorious axiom about the number of unstable poles and the corresponding number of 

encirclements is answered. Moreover, the results are useful when testing robust stability 

and robust performance, particularly for the TFC structure. 

4.6.1 1DoF control structure 

As usual, the Nyquist criterion gives information about the closed-loop stability 

based on the knowledge of the overall phase shift (argument increment) of the open-loop 

transfer function ( )sGO  around the critical point -1. 

Consider a simple control system as in Fig. 2.1 and notation ( ) ( ) ( )sasbsG /= , 

( ) ( ) ( )spsqsG /=  where ( )sa , ( )sb , ( )sq , ( )sp  are retarded quasipolynomials and ( )sG  is 

strictly proper and ( )sGR  is proper. Then the corresponding closed loop reference-to-

output (i.e. complementary sensitivity) transfer function reads 

( ) ( )
( )

( ) ( )
( ) ( )

( )
( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( )sasp

sbsqsasp
sasp

sbsq

sG

sG

sGsG

sGsG

sW

sY
sG

R

R
WY +=

+
=

+
==

0

0

11
 (4.134) 

where the characteristic quasipolynomial ( )sm  is 

( ) ( ) ( ) ( ) ( )sbsqsaspsm +=  (4.135) 
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Recall that in the case of input-output or internal distributed delays, zeros of 

(4.135) do not agree with poles of (4.134) since there are some common roots of ( )sa , ( )sb  

and/or those of ( )sq , ( )sp  in  + . 

Study now retarded and neutral systems with lumped delays only as first. Then, 

those with distributed delays will be included. 

For retarded TDS without distributed delays we can formulate and prove the 

following theorem. 

Theorem 4.6  

Let the plant and the controller have transfer functions as in (4.134) without 

distributed delays and the control system be in a simple form as in Fig. 2.1. Let retarded 

quasipolynomials ( )sa  and ( )sp  have no root on the imaginary axis, i.e. ( ) ( ) 0,0 ≠≠ spsa  

for any ωj=s , ∈ω . 

Then, if 

)
( ) ( ) ∈=Δ

∞∈=
llsasp

s
,2/arg

,0[,j
π

ωω
 (4.136) 

then the closed-loop system is asymptotically stable if 

)
( )( ) ( )

2
1arg

,0[,j

π
ωω

lnsGO
s

−=+Δ
∞∈=

 (4.137) 

where ∈n  is the highest s-power in the closed-loop characteristic quasipolynomial ( )sm  

as in (4.135) which equals the sum of the highest s-powers of  ( )sa  and ( )sp . ■ 

Proof. The highest s-power, n, of ( ) ( ) ( ) ( ) ( )sbsqsaspsm +=  equals that of ( ) ( )sasp  

due to the properness. If 

)
( ) 2/arg

,0[,j
π

ωω
nsm

s
=Δ

∞∈=
 (4.138) 

then the closed-loop system is asymptotically stable according to (2.36) (i.e. its 

characteristic quasipolynomial has all zeros in  −
0 ), and, simultaneously, since retarded 

quasipolynomials are analytic functions, it holds that 
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)
( ) ( ) ( )( ) 2/2//arg

,0[,j
ππ

ωω
lnspsasm

s
−=Δ

∞∈=
 (4.139) 

Moreover, from (4.134) it is obvious that 

)
( ) ( ) ( )( )

)
( )( )sGspsasm O

ss
+Δ=Δ

∞∈=∞∈=
1arg/arg

,0[,j,0[,j ωωωω
 (4.140) 

and the proof is finished. □ 

Thus, to test the closed-loop asymptotic stability, one can figure the Nyquist plot 

of ( )sGO  and count its overall number of encirclements around the critical point -1, or 

more precisely, the overall phase shift of the curve around the point. 

Now, the natural question is whether the notorious precept about the number of 

unstable poles of ( )sGO  (as for delay-free systems) can be used. The answer is the 

following modification of Theorem 4.6. 

Theorem 4.7  

Let the prerequisities for Theorem 4.6 hold. 

Then, the closed-loop system is asymptotically stable if 

)
( )( ) π

ωω
UO

s
NsG =+Δ

∞∈=
1arg

,0[,j
 (4.141) 

where NU is the number of poles of ( )sGO  in  + . ■ 

Proof. Assume results from Theorem 4.6. If there in no pure complex conjugate 

pair of poles of ( )sGO  (i.e. roots of ( ) ( )spsa ), all its unstable poles have positive real 

parts, the number of which is given by (2.35). If notations (4.136) and (4.137) are taken 

into account, one can write 

( )
UU Nnl

ln
N 2

2
−=⇒

−=  (4.142) 

Substitution (4.142) into (4.137) yields (4.141), finally. □ 

If the plant or the controller is of a neutral type, the Nyquist criterion satisfying 

both the asymptotic and strong stability can be easily formulated in the light formulas 
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(2.37) and (2.38) and the knowledge of relation between strong and formal stability and the 

number of unstable quasipolynomial zeros, described in Subchapter 2.2. 

Theorem 4.8 

Let the plant and the controller have transfer functions as in (4.134) with lumped 

delays only and let the control system be of the scheme as in Fig. 2.1. Let neutral 

quasipolynomials ( )sa  and ( )sp  have no root on the imaginary axis, i.e. ( ) ( ) 0,0 ≠≠ spsa  

for any imaginary ωj=s , ∈ω , and define the denominator of ( )sGO  as 

( ) ( ) ( ) ( )∑∑
= =

−+==
n

i

h

j
ij

i
ijap

n
ap

iap

ssmssaspsm
0 1

,

,

exp η  (4.143) 

for which (2.25) holds. 

Then, if 

)
( ) ( )apapap

s
llsm Φ+Φ−∈Δ

∞∈=
2/,2/arg

,0[j,
ππ

ωω
 (4.144) 

where 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Φ ∑

=

naph

j
njapap m

,

1
,arcsin  (4.145) 

then the closed-loop system is asymptotically stable if (4.137) holds true. Note that n is the 

highest s-power in the closed-loop characteristic quasipolynomial ( )sm  as in (4.137), 

which equals the highest s-power of the ( )sGO  denominator ( )smap . ■ 

Proof. If the quasipolynomial is formally stable, i.e. it has only a finite number of 

zeros located in  + , the number of such unstable zeros is given by formula (2.35). 

Condition (2.25) ensures i.a. that the argument change Φ  in (2.38) is finite (see proof of 

Theorem 1 in [208]), more precisely, ( )2/,0 π∈Φ . If (2.25) does not hold true, the 

quasipolynomial is not strongly stable, yet it can be formally stable. Thus, (2.25) is a 

sufficient condition for formal stability of the neutral quasipolynomial and it implies that 

(2.35) can be utilized for the relation between the “main” part of the argument change 

(divisible by 2/π  and ignoring Φ ) and the number of unstable roots. 
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Follow now the proof of Theorem 4.6. If  
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 (4.146) 

then the closed-loop system is asymptotically and strongly stable according to (2.37) and 

(2.38). Since ( )smdeg ( ) nsmap == deg , apΦ=Φ , and (4.145) ensures the strong stability 

of both ( )sm , ( )smap . Because of the fact that neutral quasipolynomials are analytic 

functions, it holds using (4.134) that 

)
( ) ( ) ( )
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πππ m
 (4.147) 

 □ 

As was mentioned, since strong stability condition (2.25) ensures that the number 

of unstable zeros of a neutral quasipolynomial is finite, the relation between the main part 

of the overall argument shift (that divisible by 2/π ) and the number of unstable zeros is 

given by (2.35). If we use this fact on (4.147) and ( )smap , one can easily prove that (4.141) 

from Theorem 4.7 holds also for formally stable neutral systems with lumped delays. 

In the case of input-output distributed delays, there are some zeros of ( )sa  in  +  

that are those of ( )sb . Let us study the stability of the characteristic meromorphic function 

first. Hence 

( ) ( )[ ] ( )
( )sm

sm
sssM

d

n=−= AIdet  (4.148) 

where ( )smn  is a (retarded or neutral) quasipolynomial of degree nm and ( )smd  is a 

polynomial of a degree dm with Num zeros in  + which are those of ( )smn . Then the 

following theorem can be formulated. 
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Theorem 4.9  

Consider the meromorphic function ( )sM  as in (4.148) where 

( ) ( ) 0,0 ≠≠ smsm dn  for any imaginary ωj=s , ∈ω . Then 

a) If ( )smn  is a retarded quasipolynomial, ( )sM  has no zero in  + if and only if 

( )
)

( )
2

arg
,0[,j

π
ωω
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s

dn
sM

−=Δ
∞∈=

 (4.149) 

b) If ( )smn  is a neutral quasipolynomial satisfying (2.25), ( )sM  has no zero in  +  

and it is strongly stable if and only if 
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 ■ 

Proof. Let us make a proof of the case a). The second part of the proof can be done 

analogously using the fact that ( )smn  is strongly stable and (2.35) can be taken into 

account. 

Assume two cases. First, let (quasi)polynomials ( )smn , ( )smd  have all their zeros 

located in  −
0 . Since both functions are analytic, from (2.36) it holds that 

[ )
( )

[ )
( )

[ )
( ) ( )

2
jargjargjarg

,0,0,0

πωωω
ωωω

mmdn dnmmM −=Δ−Δ=Δ
∞∈∞∈∞∈

 (4.152) 

Second, let all Num zeros of ( )smd  in are those of ( )smn  and there is no other one 

in ( )smn . From (2.35) we have 
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which gives (4.149) and (4.152) again. 

The inverse can be proved analogously (by steps in reverse order). □ 

Consider now a feedback system as in Fig. 2.1 with a plant affected by distributed 

delays. 

Theorem 4.10 

Let the plant and the controller have transfer functions as in (4.134) with 

distributed delays (and possibly lumped ones) and let the control system be of the scheme 

as in Fig. 2.1. Let quasipolynomials ( )sa  and ( )sp  have no root on the imaginary axis, i.e. 

( ) ( ) 0,0 ≠≠ spsa  for any ωj=s , ∈ω , and define the denominator ( )smap  of ( )sGO  as 

in (4.143). Then 

a) If ( )smap  is a retarded quasipolynomial with  

)
( ) 2/arg

,0[,j
π

ωω
lsmap

s
=Δ

∞∈=
 (4.154) 

then the closed-loop system is asymptotically stable if  

)
( )( ) ( ) ππ

ωω
apuuO

s
NNlnsG ,

,0[,j 2
21arg =−−=+Δ

∞∈=
 (4.155) 

holds where n is the highest s-power in ( )smap , uN  is the number of common zeros of the 

numerator and denominator of ( )sGO  in  +  and apuN ,  stands for the number of unstable 

zeros of ( )smap  which are not included in the numerator of ( )sGO . 

b) If ( )smap  is a neutral quasipolynomial with (4.144) and (4.145) satisfying 

(2.25), then the closed-loop system is asymptotically and strongly stable if (4.155) holds.■ 

Proof. Consider a general case for retarded TDS. Formulation b) of Theorem 4.10 

can be proved in a similar way. 
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Let the numerator and denominator (i.e. ( )smap ) of ( )sGO  have exactly uN  

common zeros in  + . From (4.134) it arises that these roots are zeros of ( )sm as well, 

hence, they are not the system poles since are canceled just by ( )smap . 

Thus, the number apuN ,  
of all “unstable zeros” of ( )smap  is given by (2.35) as 
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and those of ( )sm  as 
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From (4.134), (4.135), (4.154), (4.156) and (4.157) we finally have 
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 □ 

Clearly, Theorem 4.7 holds true as well. Examples of the usage of criteria above 

can be found in [127]. 

4.6.2 TFC control structure 

Regarding the TFC control structure as in Fig. 2.2., there are more possibilities 

how to define the criterion since it depends on how the feedback is viewed. Consider the 

following two possibilities 

( ) ( )
( )

( ) ( )
( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )sGsGsGsG

sGsGsG

sGsG

sW

sY
sG QRO
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R
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++
== ,

1
 (4.159) 
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The former form, i.e. (4.159), respects perturbations of the plant and the sum of 

controllers’ transfer functions. Contrariwise, the letter form, i.e. (4.160), is quite natural in 

the sense of 1DoF structure since the left-hand side factor in ( )sGO  represents the inner 

feedback loop. 

For the further text, structure (4.159) is taken into account because separate 

perturbations of the plant and both controllers are more natural in practice than separate 

perturbations of the outer controller and the whole inner feedback loop as in (4.160). 

Now theorems from the preceding subsection can be used directly by substituting 

( ) ( ) ( ) ( )( )sGsGsGsG QRO +=  instead of ( ) ( ) ( )sGsGsG RO = . However, the notions of robust 

stability and robust performance are much more involved that in 1DoF case, as presented 

in Subchapter 7.6. 

4.7 Examples 

Several examples demonstrating the controller design procedure introduced in 

Subchapters 4.3 and 4.4 are presented in this subchapter. 

4.7.1 Stable system 

Example 4.10 

Consider a stable TDS giving rise to the transfer function 
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 (4.161) 

where the stability condition reads 
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 ( )2/,0 πϑ∈a  (4.162) 

see e.g. [47], [199]. Clearly, ( )sA , ( )sB  are coprime. 

Let both external signals be stepwise functions, i.e. 
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where ( )smw , ( )smd  are suitable “stable” (quasi)polynomials of the first order, e.g. for the 

simplicity, let ( ) ( ) 0mssmsm dw +== again. Consider 1DoF control structure.  

 A particular stabilizing solution provides the Bézout identity (4.33) as 
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For ( ) 10 =sQ , one gets 
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Alternatively, the generalized Euclidean algorithm can be used. 

Parameterization (4.34) reads 
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 (4.166) 

For reference tracking and disturbance rejection, it is necessary to choose ( )sZ , so 

that ( )sFW | ( ) ( )( )sPsA  and ( ) ( ) ( )( )sPsBsFD | . Equivalently, the numerator of ( )sP  must 

contain at least one zero root. To obtain ( )sP  in a simple form, let 
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see (4.51) – (4.54), which give 

 ( ) ( )( )
( ) b

m
Q

sas

sms
sP 00 ,

exp

exp1 =
−+
−−+=
ϑ
τ

 (4.168) 

 The controller transfer function hence reads 
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The controller is of the so-called anisochronic type (i.e. with internal delays), 

which is obvious from its MATLAB/Simulink structure, see Fig. 4.7  

 

Fig. 4.7 MATLAB/Simulink scheme of controller (4.169) 

Note that it is naturally possible to take ( )sm  as a quasipolynomial instead of 

polynomial; however, this option would make a controller more complicated. The 

importance of ( )sm  reveals from the closed loop transfer function 

 ( ) ( )
( )

( )
0

0 exp

ms

sm

sW

sY
sGWY +

−== τ
 (4.170) 

The obtained control structure can be easily compared with the well-known Smith 

predictor structure (Fig. 4.8), see e.g. in [121]. 
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Fig. 4.8 Smith predictor structure 

If the model is exact, it holds that 
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 (4.171) 

which gives 

 ( ) ( )
s
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m
sR

ϑ−+= exp0  (4.172) 

Hence, ( )sR  represents a generalized (delayed) PI controller in the Smith structure.■ 

4.7.2 Integration system 

The following example was thoroughly studied in (Pekař and Prokop, 2008b). 

Only the basic and selected results are presented here. 

Example 4.11 

Let an integral plant be described by the transfer function 
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where ( )sm  is an appropriate stable quasipolynomial of degree one. Consider TFC control 

system as in Fig. 2.2 and external inputs let be form the class of stepwise functions as in 

(4.163). 

Present now the “direct” controller design according to (4.60) – (4.73). 

Stabilizing Bézout identity reads 

 ( ) ( ) ( )
( ) ( ) 1

exp
00 =−+ sT

sm

sb
sP

sm

s τ
 (4.174) 

Without loss of generality, let 0T  = α∈ and ( ) 00 PsP =  = 1, and the remaining 

task is to find a suitable stable quasipolynomial ( )sm . Hence, (4.174) results in 
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The claim is α to be real; therefore the simplest ( )sm  has to be of the form 

 ( ) ( )sbssm τα −+= exp  (4.176) 

Stability condition (4.162) yields 
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The convenient option of ( )sZ  in the parameterization (4.61) enables to find the 

solution of (4.60), so that requirements of reference tracking and load disturbance rejection 

are accomplished. To solve reference tracking, if the reference signal is considered as a 

stepwise function (4.163), the numerator of ( )sQ  must have the “derivative” pattern (the 

zero root of ( )sFW  is not included in ( )sB ); however, there is not placed any condition on 

( )sP , since the zero root is already included in ( )sA . Nevertheless, the load disturbance 

rejection condition ( ) ( ) ( )( )sPsBsFD |  requires ( )sP  containing the zero root. 

There are more possibilities how to choose ( )sZ . For instance, ( ) α=sZ  gives 
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 (4.178) 
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where [ ]1,0∈γ . Whereas an alternative option 
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where 00 >m , which agrees with philosophy of (4.51) – (4.54), yields 
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In both cases, there is a number 1=ΔN  of free parameters, i.e. γ , which can be 

tuned suitably (implicitly, 101 =γ , see (4.63)). 

Characteristic quasipolynomial are 
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respectively. The quasi-optimal tuning guaranteeing multiple dominant real zeros (i.e. the 

“leftmost” possible real system poles) of the factor ( ) ( )sbssm τα −+= exp1  is satisfied if 
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α
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see details in [118], [122]. 

 Simulation comparative results for controllers (4.180) and (4.183) follow. As a 

comparative strategy, LQ polynomial method minimizing the functional - Integrated 

Squared Error (ISE) criterion - 

 ( ) ( )[ ]∫
∞

+=
0

22
ISE dttuteJ &ϕ  (4.186) 

is used, see e.g. [32]. This method utilizes a rational approximation of delay terms in the 

plant model, namely, the first order Padé approximation. We test also results of another - 

Integrated Squared Time Error (ISTE) – criterion 

 ( ) ( )[ ]∫
∞

+=
0

22
ISTE dttutetJ &ϕ  (4.187) 

as a benchmark. 

 Let 1=b , 5=τ . The reference signal is ( ) 1=tw  for 1000 <≤ t  and ( ) 2=tw  for 

300100 ≤≤ t . The step input disturbance ( ) 1.0−=td  enters at time 200=t ; hence, the 

process of restoration of zero control error due to the input disturbance influences ISTE 

criterion significantly. The quasi-optimal tuning (4.185) gives 0736.0=α  with dominant 

poles 2.03,2,1 −=σ , For the comparison, assume other two settings: 0835.0=α  with 

j1.018.05,4 ±−=σ , and 125.0=α  with j2.013.07,6 ±−=σ . Let 4.00 =m  in (4.183) and 

set e.g. 75.0=γ . Figs. 4.9 – 4.11 display the simulation responses and Tabs. 4.1 – 4.3 

provides the corresponding values of ISEJ  and ISTEJ with 500=ϕ . 

Tab. 4.1 ISE and ISTE criteria values for 1=b , 5=τ , 75.0=γ , 500=ϕ  using controllers 
(4.180) 

α 
ISEJ  ISTEJ  

0.0736 22.21 765.6 
0.0835 22.307 736.061 
0.125 24.933 746.489 
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Fig. 4.9 Simulation control responses of ( )tu0  (left) and ( )ty  (right) for 1=b , 

5=τ , 75.0=γ  using controllers (4.180) 

Tab. 4.2  ISE and ISTE criteria values for 1=b , 5=τ , 75.0=γ , 4.00 =m , 500=ϕ  using 
controllers (4.183) 

α 
ISEJ  ISTEJ  

0.0736 20.671 1448.2 
0.0835 18.42 1153.8 
0.125 19.679 913.7 

 

 

Fig. 4.10 Simulation control responses of ( )tu0  (left) and ( )ty  (right) for 1=b , 

5=τ , 75.0=γ , 4.00 =m , 500=ϕ  using controllers (4.183) 
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Tab. 4.3 ISE and ISTE criteria values for 1=b , 5=τ , 75.021 == γγ , 

4.00 =m , 500=ϕ using polynomial approach with optimal LQ controllers 

ϕ  
ISEJ  ISTEJ  

200 88.582 1062.2 
500 38.879 812.107 
900 26.652 789.973 

 

 

Fig. 4.11 Simulation control responses of ( )tu0  (left) and ( )ty  (right) for 1=b , 

5=τ , 75.021 == γγ , 4.00 =m , using polynomial approach with optimal LQ 
controllers 

Note that meaning of 21 γγ =  is analogous toγ . As can be seen, the both 

controllers (4.180) and (4.183) give comparable results where the higher values of α  yield 

higher overshoots yet with a better damping factor. Obviously, controllers designed in RMS 

provide even better results compared to the optimal LQ polynomial method.  

Now, design controllers by a quasi-finite spectrum assignment methodology 

described in Subsection 4.4.4. Consider the pre-stabilizing proportional controller 

 ( ) ∈== αQQ GsG  (4.188) 

then the transfer function of the inner pre-stabilized feedback loop is 

 ( ) ( )
( )sbs

sb
sG

τα
τ
−+

−=
exp

exp
0  (4.189) 
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see Fig. 4.12, where ( )bτπα 2/0 <<  according to (4.177). 

 

Fig. 4.12 Reconfigured TFC control system structure 

Stable system ( )sG0  is considered as a controlled one in 1DoF structure in the 

sequel. Hence, e.g. 

 ( )
( )

( )
0

0
0 exp

exp

ms

sbs
ms

sb

sG

+
−+

+
−

= τα

τ

 (4.190) 

and the stabilizing Bézout identity reads 

 
( ) ( ) ( ) ( ) 1

expexp
0

0
0

0

=
+
−+

+
−+

sR
ms

sb
sP

ms

sbs ττα
 (4.191) 

whose particular solution e.g. reads 

 ( ) ( ) ( )
( )sbs

sbms
sPsR

τα
τ

−+
−−+==

exp
exp

,1 0
00  (4.192) 

Let  

 ( )
( )
( )sbs

ms
b

m

sZ
τα −+

+⎟
⎠
⎞

⎜
⎝
⎛ −

=
exp

1 0
0

 (4.193) 

in the parameterization (4.34) according to the principle (4.51) – (4.53) satisfying load 

disturbance rejection and reference tracking giving rise to 
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 ( ) ( )
( ) ( )( )

( )

( )
( )( )sms

sbs

b

m

sbs

sms
b

m

sP

sR
sGR τ

τα

τα
τ −−+

−+=

−+
−−+==

exp1

exp

exp

exp1
0

0

0

0

 (4.194) 

Set 0736.0=α , 0835.0=α , 125.0=α , respectively, and 4.00 =m  again. The 

corresponding simulation control responses and values of ISEJ , ISTEJ , are displayed in Tab. 

4.4 and Fig. 4.13, respectively. 

Tab. 4.4  ISE and ISTE criteria values for 1=b , 5=τ , 4.00 =m , 500=ϕ  using controllers 
(4.188) and (4.194) 

α  
ISEJ  ISTEJ  

0.0736 28.617 959.431 
0.0835 28.353 725.04 
0.125 28.229 702.907 

 

 

Fig. 4.13 Simulation control responses of ( )tu0  (left) and ( )ty  (right) for 1=b , 5=τ , 

4.00 =m  using controllers (4.188) and (4.194) 

Clearly, the objective values of ISEJ  and ISTEJ  are close to the ones introduced in 

Tabs. 4.1 – 4.3, yet subjectively, the simulation responses seem better mainly due to the 

aperiodical reference-to-output response. However, reactions to the disturbance is 

periodical again because of zeros right from the poles of the corresponding transfer 

functions. This can be clear from the following transfer functions. 
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 ( ) ( )
( )

( ) ( ) ( )
( )

( )( )
0

0

0

0 exp1
,

exp
ms

sms

sW

sD
sG

ms

sm

sW

sY
sG DYWY +

−−+==
+

−== ττ
 (4.195) 

A disadvantage of the methodology is that there are no free “weighting” 

parameters in the controller. ■ 

4.7.3 Unstable system 

Example 4.12 

Consider a plant described by model (4.161), yet with ( )2/,0 πϑ∉a , i.e. the 

controlled system is purely (asymptotically) unstable. Let both external signals be stepwise 

functions again and assume 1DoF control structure, for the simplicity. Study now solutions 

for two different setting of the common quasipolynomial ( )sm . 

As first, let the claim be that the particular stabilizing solution of (4.33) is a real 

number, say again ( ) α=sQ0 , ( ) 10 =sP . Analogously to (4.174) – (4.176), it leads to 

 ( ) ( ) ( )sbsassm ταϑ −+−+= expexp  (4.196) 

Here, results of Theorem 4.5 can be utilized. Parameterization setting 

 ( ) ( ) ( )
0

0 expexp
ms

sbsas

b

m
sZ

+
−+−+= ταϑ

 (4.197) 

where 00 >m  is a free parameter, gives 

 ( ) ( ) ( )( )
( ) ( ) ( )( )

0

0

0

00 exp1
,

exp
ms

sms
sP

msb

sabmsbm
sQ

+
−−+=

+
−+++= τϑαα

 (4.198) 

and hence 

 ( ) ( )
( )

( ) ( )( )
( )( )sms

sabmsbm

bsP

sQ
sGR τ

ϑαα
−−+

−+++==
exp1

exp1

0

00  (4.199) 

The reference-to-output transfer function reads 

 ( ) ( )
( )

( ) ( )( )
( ) ( ) ( )( ) ( )s

sbsasms

sabmbms

sW

sY
sGWY τ

ταϑ
ϑαα −
−+−++

−++++== exp
expexp

exp

0

00  (4.200) 
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As second, try to take customary option ( ) 0mssm += . However, stabilizing 

solution (4.165) can not be used now since ( )sA  is not invertible in RMS. Thus, the 

generalized Euclidean algorithm (4.15) and (4.18) is a suitable tool for the solution of 

(4.164). This scheme results in 

 ( ) ( )
( ) ( ) ( ) ( ) ( )sassby

ms
sP

sassby

msy
sQ

ϑτϑτ −++−
+=

−++−
+=

expexp
,

expexp 0

0
0

0

00
0  

  (4.201) 

where a simple choice ( ) ( ) ∈== 0,1 ysYsX  has been used in (4.15). Naturally, it is 

supposed that the denominator quasipolynomial in (4.201) has all its zeros in  −
0 . 

 Let 

 ( ) ( ) ( )sbysas

ms

b

m
sZ

τϑ −+−+
+=

expexp 0

00  (4.202) 

which agrees with the idea of (4.51) – (4.53), then 

 ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( )sassby

sms
sP

sassby

sabmsbym
sQ

ϑτ
τ

ϑτ
ϑα

−++−
−−+=

−++−
−+++=

expexp

exp1
,

expexp

exp

0

0

0

000  

  (4.203) 

which yields the controller (4.199) with 0y  instead of α . Nevertheless, the generalized 

Euclidean algorithm enables to use other (different) ( ) ( )sYsX ,  than was used above, to get 

more complex controller structure or to satisfy that ( ) ( )∈sPsQ 00 , RMS. ■ 

4.7.4 Non-stepwise reference and/or disturbance 

The following two examples are focused on the demonstration of controller design 

for non-stepwise external input(s). To provide the reader with a deep insight, the notation 

of Subsections 4.3 and 4.4 is adopted. 

Example 4.13 

Consider the stable plant (4.161), yet with a linearwise reference signal and a 

stepwise input disturbance, hence 
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 ( ) ( )
( )

( )

( )

( ) ( )
( )

( )

( )sm

s
sm

d
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sH
sD

sm

s

sm

w

sF

sH
sW

d

d

D

D

w

w

W

W

0

2

0

, ====  (4.204) 

where ( )smW  and ( )smD  are arbitrary “stable” (retarded) (quasi)polynomials of degree two 

and one, respectively, and ( )sHW , ( )sH D , ( )sFW , ( ) MSD RsF ∈ . 

Let TFC structure be utilized here. 

Stabilization formula (4.60) for the choice 10 =T  yields ( )sP0  as in (4.165). 

Parameterization (4.61) is given by (4.66), yet with ( )sT  instead of ( )sQ . Analyze now the 

number of free parameters in ( )sZ  by following (4.41) etc., thus, { }0=ΩW , 21, =Wm , 

∅=Ι
WA , ∅=Ω

WA , then 1,1, WW mm = . Moreover, { }0=ΩD , 11, =Dm , ∅=Ι
DB , ∅=Ω

DB , 

1,1, DD mm = . This gives { }0=ΩWD  with 21, =WDm . Since ∅=Ι
Dp , ∅=Ω

Dp , then 

21,1, == WDWD mm . It means that it is necessary to place one double zero root into ( )spN , 

i.e. 2== NM , ( ) ( )21,, ααspsp NN = . Sign 2110 , αβαβ == . To obtain ( )sP  in a 

relatively simple form, let 

 ( ) ( ) 1

010

exp ms

s

sas

ms
sZ

+
+

−+
+= ββ

ϑ
 (4.205) 

where 01 >m , then 

 ( ) ( ) ( ) ( ) ( )
( )( )( )1

0110110
2

exp

exp1

mssas

mbmmssbsmms
sP

+−+
−++−−+++=

ϑ
βτβ

 (4.206) 

 According to (4.59), one has to solve the following set of algebraic equations for 

reference tracking and disturbance rejection 

 
( ) ( ) ( ) ( )[ ]

( ) ( ) ( ) ( )[ ] 0exp1
d

d

0exp1

00110110
2

00110110
2

=−++−−+++

=−++−−+++

=

=

s

s

mbmmssbsmms
s

mbmmssbsmms

βτβ

βτβ
 (4.207) 

The solution of these equations gives 
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 ( ) ( )( )010
1

101
1

0 1, mmmbbmbmb τββ +−−=−= −−  (4.208) 

From (4.61) and (4.205), ( )sT  reads 

 ( ) ( )
1

0111
ms

ms
sT

+
−+−= ββ

 (4.209) 

For reference tracking, it is necessary to o the decomposition (4.63) so that 

( ) ( ) ( )( )sQsBsFW | . Follow the procedure starting from (4.65). Hence, for instance, 

 
( ) ( ) ( ) ( )( ) ( )( )

( ) ( )sQsR

ms

ms

ms

ms
sT

+=
+

−−+−−+
+

−+−=
1

01011

1

01011 1111 βγβγβγβγ
 (4.210) 

Because of ∅=Ω∅=Ι
WW BB , , then 21, =WBm  for a zero root; and similarly 

∅=Ω=Ι
DD tt , hence 21, ==

DD WBtWBt Mm . The number TN  of (free) parameters is also 2 

(i.e. 10 , γγ ), therefore these parameters can be determined unambiguously by the solution 

of 

 
( )( ) ( )( )[ ]

( )( ) ( )( )[ ] 0111
d
d

0111

001011

001011

=−−+−−

=−−+−−

=

=

s

s

ms
s

ms

βγβγ

βγβγ
 (4.211) 

The only solution is trivial, i.e. 101 == γγ , yielding ( ) ( ) ( )sTsRsQ == ,0 , which 

means that a simple feedback loop (1DoF) is obtained with the controller 

 ( ) ( )
( )

( )( ) ( ) ( )( )
( ) ( ) ( ) ( )0110110

2
011

exp1

1exp

βτβ
ββϑ

−++−−+++
−+−−+==

mbmmssbsmms

mssas

sP

sR
sGR  (4.212) 

To overcome this dull result, try to take ( )sZ  with more free parameters, say 

3=N , to get some degrees of freedom, i.e. 

 
( ) ( ) ( )( )

0,

exp

21

21

01
2

20

>
++
++

−+
+=

mm

msms

ss

sas

ms
sZ

βββ
ϑ  (4.213) 

The reader can verify that after some calculations it is obtained 
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( ) ( ) ( )( )
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,

0122

212102121
1

1021
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0

==−−
++−−+=−= −−

γγγβ
τββ mmmmmmmmmbbmbmmb

 (4.214) 

where 3=TN . We obtained two degrees of freedom 22,γβ , whereas the rest must be set as 

in (4.214). Final (a rather complex) controllers’ structures are given by transfer functions 
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  (4.215) 

Suppose a plant model in the form (4.161) with ,3.15,105.6 2 =⋅== − τba  7.6=ϑ , 

see [207]. A comparison of both results, i.e. (4.212) and (4.215), for the particular case, is 

displayed in Fig. 4.14, where 2
210 105 −⋅=== mmm , 5.022 ==γβ . 
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y(t) - Controller (4.212)

y(t) - Controller (4.215)

d(t)

 

Fig. 4.14 Simulation control responses of ( )tu0  (left) and ( ) ( )twty ,  (right) for 
2105.6 −⋅== ba , 3.15=τ , 7.6=ϑ using controllers (4.212) and (4.215) 

Note that inversed values of 210 ,, mmm  appear as closed loop systems poles. 

Apparently, controller (4.212) offers faster control response in the example; however, two 

degrees of freedom can be used to tune the controller (4.215). 

Alternatively, as another possibility, one can use ( )sZ  as in (4.205) followed by 
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+
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+
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s

s
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ms
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1

0111
 (4.216) 

with 0>γ  as another semi-limited tuning parameter. ■ 

Example 4.14 

Again, let the controlled plant be described by (4.161) with a stepwise reference 

signal and a harmonic load disturbance, which gives rise to 

 ( ) ( )
( )

( )

( )
( ) ( )

( )
( )

( )sm

s
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d

sF

sH
sD
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s
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W
22

00

,
ω+

====  (4.217) 

where ( )smw  and ( )smd  are arbitrary stable retarded (quasi)polynomials of degree one and 

two, respectively. Consider the use of 1DoF control system. Follow the steps introduced in 

Subsection 4.3 using the notation utilized therein. 

 Stabilizing particular solution agrees with (4.165). It holds that { }0=ΩW , 11, =Wm , 

∅=Ι
WA , ∅=Ω

WA , then 1,1, WW mm = . However, { }j,j ωω −=ΩD , 12,1, == DD mm , ∅=Ι
DB , 

∅=Ω
DB , 1,1, DD mm = . This gives { }j,j,0 ωω −=ΩWD  with updated values of multiplicities 

13,2,1, === WDWDWD mmm . Since ∅=Ι
Dp , ∅=Ω

Dp , then iWDiWD mm ,, = , 3,2,1=i . It means 

that it is necessary to place three single roots into ( )spN  (or a real root and a complex 

conjugate pair of roots). Hence, it is possible to take e.g. 

 ( ) ( ) ( )( )21

01
2

20

exp msms

ss

sas

ms
sZ

++
++

−+
+= βββ

ϑ
 (4.218) 

where 0, 21 >mm  are restricted parameters. Then 
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=
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 (4.219) 

The remaining parameters ∈210 ,, βββ  are calculated from these three conditions  
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 ( )[ ] ( )[ ] ( )[ ] 0,,,,0,,,,0,,, j210j2100210 === −=== ωω βββββββββ sNsNsN spspsp  

  (4.220) 

which are coincident with 

 
( )[ ]

( ){ }[ ] ( ){ }[ ] 0,,,Im,0,,,Re

0,,,
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==
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==
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ωω ββββββ
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sp
 (4.221) 

The solution of (4.220) or (4.221) is rather complex which is the reason why it is 

not displayed here. Notice that ( )spN  does not contain ϑ  and thus the solution is 

independent on this delay. 

The final controller structure reads 

 ( ) ( )( ) ( )( ) ( )
( )( ) ( )( ) ( ) DDD

DDD
R psppspspspss
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001122
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ϑϑϑ
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  (4.222) 

where 
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,,,,,1
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 (4.223) 

As can be seen, the final controller has a complicated structure. 

If the plant parameters are given as in Example 4.13, ( ) ( )ttd 1.0sin=  and 

1.010 == mm , 05.02 =m , then 432.12 =β , 495.01 −=β , 3
0 102.2 −⋅−=β . Simulation 

results are displayed are in Fig. 4.15. 
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Fig. 4.15 Simulation control responses for 2105.6 −⋅== ba , 3.15=τ , 7.6=ϑ  using 
controller (4.222) 
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5 TUNING OF ANISOCHRONIC CONTROLLERS 

Final controllers obtained by the algebraic methodology described above contain 

free (selectable) real parameters which ought to be set appropriately. A sub-optimal 

controller tuning idea based on the desired or ultimate position of the rightmost feedback 

poles is the topic of this chapter. Its presentation is supported by a concise description of 

two numerical (iterative) optimization algorithms. 

5.1 Estimation of a step response overshoot 

The tuning algorithm stems from the dependence of the maximum relative step 

response overshoot and the relative time-to-overshoot on the position of poles and zeros of 

a finite-dimensional model. It is usable in the case of infinite-dimensional reference-to-

output transfer function. The methodology will be demonstrated on a second order model. 

Hence, let the prescribed (desired) closed-loop model be  

 ( ) ( )( )11

1

01
2

01
, ssss

zs
k

asas

bsb
sG mWY −−

−=
++

+=  (5.1) 

where ∈≠ 0,,,, 0101 aabbk  are model parameters ∈1z  −
0  stands for a model zero and 

∈1s  −
0  is a model stable pole where 1s  expresses its complex conjugate. To obtain the 

unit static gain of ( )sG mWY ,  it must hold that 

 
1

2

1

0

0 ,1
z

s
k

a

b −==  (5.2) 

Sign 0,0,j1 ≥<+= ωαωαs  and calculate the impulse function ( )tg mWY ,  of 

( )sG mWY ,  using the Matlab function ilaplace as 

 ( ) ( ) ( ) ( )⎥⎦
⎤

⎢⎣
⎡ −−= t

z
ttktg mWY ω

ω
αωα sincosexp 1

,  (5.3) 

Since ( ) ( )thti mWYmWY ,,
&= , where  ( )th mWY ,  is the step response function, the 

necessary condition for the existence of  a step response overshoot at time tO is 
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 ( ) 0,0, >= OOmWY tti  (5.4) 

The condition (5.4) yields these two solutions: either −∞→Ot  (which is trivial) or 
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when considering ( ) ( ) [ ] 0,,0arctan,arccos >∈⋅⋅ ωπ . Obviously, (5.5) has infinitely many 

solutions. If 0,0 1 << zα , the maximum overshoot occurs at time 

 ( )Ott minmax =  (5.6) 

One can further calculate the step response function ( )th mWY ,  as 
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Define now the maximum relative overshoot as 
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=Δ
mWY
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,max,
max,, :  (5.8) 

see Fig. 5.1. 

Using definition (5.8) one can obtain 
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Obviously, max,,mWYhΔ  is a function of three parameters, i.e. ωα ,,1z , which is not 

suitable for a general formulation of the maximal overshoot. Hence, let us introduce new 

parameters zξξα , as 

 
ω

ξ
ω
αξα 1,

z
z −=−=  (5.10) 

which give rise from (5.5), (5.6) and (5.9) to 
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  (5.11) 

where normtmax,  represents the normalized maximum-overshoot time. 

We can successfully use Matlab to display function ( )zmWYh ξξα ,max,,Δ  and 

( )znormt ξξα ,max,  graphically, for suitable ranges of zξξα ,  as can be seen from Fig. 5.2 – 

Fig. 5.6. 

 

Fig. 5.1 Reference-to-output step response characteristics and the maximum overshoot 
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Fig. 5.2 Maximum overshoots ( )zmWYh ξξα ,max,,Δ  (left) and normalized maximum-overshoot 

times ( )znormt ξξα ,max,  (right) for [ ]2,1.0=αξ , { }1,8.0,6.0,4.0,2.0=zξ  

 

 

Fig. 5.3 Maximum overshoots ( )zmWYh ξξα ,max,,Δ  (left) and normalized maximum-overshoot 

times ( )znormt ξξα ,max,  (right) for [ ]2,1.0=αξ , { }10,5,4,3,2=zξ  
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Fig. 5.4 Maximum overshoots ( )zmWYh ξξα ,max,,Δ  (left) and normalized maximum-overshoot 

times ( )znormt ξξα ,max,  (right) for [ ]10,2=αξ , { }1,8.0,6.0,4.0,2.0=zξ  

 

 

Fig. 5.5 Maximum overshoots ( )zmWYh ξξα ,max,,Δ  (left) and normalized maximal-overshoot 

times ( )znormt ξξα ,max,  (right) for [ ]10,2=αξ , { }10,5,4,3,2=zξ  
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Fig. 5.6 Maximum overshoots ( )zmWYh ξξα ,max,,Δ  (left) and normalized maximal-overshoot 

times ( )znormt ξξα ,max,  (right) for [ ]5.4,5.1=αξ , { }6.3,4.3,2.3,3,8.2=zξ  - A 

detailed view on “small” overshoots 

The procedure of searching suitable prescribed poles can be done e.g. as in the 

following way. A user requires 03.0max,, =Δ mWYh (i.e. the maximal overshoot equals 3 %), 

4=αξ  (i.e. “the quarter dumping”) and 5max =t s. Fig. 5.6 gives approximately 9.2=zξ  

which yields 2.1max, ≈normt . These two values together with (5.10) and (5.11) result in 

,j24.096.01 +−=s 7.01 −=z . 

5.2 Continuous pole placement for desired overshoot 

The idea now is to gradually shift the rightmost (dominant) poles of the infinite-

dimensional reference-to-output transfer function to the prescribed positions found by the 

procedure introduced in the preceding subchapter. 

The algorithm, called the Pole-Placement Shifting based controller tuning Algorithm 

(PPSA), is based on the QCSA described in Subchapter 2.6.3. The submethod based on [90] 

is utilized below; however, the PPSA can be easily modified to the use of the calculations by 

Vyhlídal [171]. Moreover, only retarded TDS are considered in Algorithm 5.1 – the 
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extension to neutral systems can be made by analogously to Algorithm 2.1 and remarks 

about neutral TDS introduced in Subchapter 2.6.3. 

Algorithm 5.1 

Input: Closed-loop reference-to-output transfer function ( )sGWY  with the number 

of r parameters in the set dennum KKK ∪= , where numK  is its subset of numr  parameters in 

the numerator, whereas denK  means the subset with the number of denr  parameters in the 

denominator. Let ( ) nddennumnumndr KKKK == I\ . 

Step 1: Choose a simple model of a stable finite-dimensional system with the unit 

static gain in the form of the transfer function ( )sG mWY ,  with a numerator of degree 

ndnum rn ≤  and the denominator of degree denden rn ≤ . Calculate step response maximum 

overshoots of the model for a suitable range of its numn  zeros and denn  poles (including 

their multiplicities). 

Step 2: Prescribe all poles of the model with respect to the calculated maximum 

overshoot (and the maximal overshoot time). If the poles are dominant (i.e. the rightmost), 

the procedure is finished. Otherwise do following steps. 

Step 3: Initialize the counter of currently shifted poles as densp nn = . Shift the 

rightmost poles to the prescribed locations successively using the QCSA. If necessary, 

increase spn . If denspden rnn ≤< , try to move the rest of dominant (rightmost) poles to the 

left, again e.g. using the QCSA.  

Step 4: If all prescribed poles are dominant, the procedure is finished. Otherwise, 

select a suitable cost function reflecting the distance of dominant poles from prescribed 

positions and distances of spectral abscissas of both, prescribed and dominant poles. 

Minimize the cost function. 

Step 5: Do Steps 2-4 for prescribed zeros, where it holds for the number szn  of 

currently shifted zeros that ndsznum rnn ≤≤ , to update the values of ndK . 
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Output: The vector of controller parameters K  and the positions of the rightmost 

poles. ■ 

Some remarks on the algorithm follow. First of all, the presented version of the 

PPSA prefers the positions of feedback poles at the expense of zeros. Once the set denK  is 

found, these values are fixed in the numerator and ndK  is to be found subsequently. 

Alternatively, it is possible to “merge” the shifting of zeros and poles, which may, 

however, lead to problems when reaching control system stability because of the “weight” 

put on zeros. 

In case of multiple shifted poles, it is convenient to consider them as two (or more) 

close single poles. 

The rightmost shifted pole (zero) goes toward the rightmost prescribed pole etc. 

Problem appears e.g. when a complex conjugate pair ought to be shifted to a real position, 

and viceversa. In both cases, a complex pair must be perceived as two separate poles. 

Since the shifting comes to pass not only in the real axis, formula (2.95) can not be 

used in general. The following approximation ought to be used instead 

 { }σSK Δ≈Δ +Re  (5.12) 

or try to utilize 
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in the sensitivity matrix for real jKΔ . 

The number [ ]dendensp rnn ,∈  or [ ]ndnunsz rnn ,∈  is incremented whenever the 

approaching starts to fail for any pole or zero, respectively. 

The optimization of the cost function from Step 4 can be done using several 

methods. Two advanced iterative algorithms are described in the following two 

subchapters. They can be useful for the spectral abscissa minimization introduced in 

Subchapter 2.6.4 as well, see e.g. [133]. 
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5.3 Self-Organizing Migration Algorithm 

The Self-Organizing Migration Algorithm (SOMA) is ranked among evolution 

algorithms, more precisely genetic algorithms, dealing with populations similarly as 

differential evolution does, see e.g. [192]. The algorithm is based on vector operations over 

the space of feasible solutions (parameters) in which the population is defined. In the 

SOMA, every single generation, in which a new population is generated, is called a 

migration round. Population specimens cooperate while searching the best solution (the 

minimum of the cost function) and, simultaneously, each of them tries to be a leader. They 

move to each other and the searching is finished when all specimens are localized on a 

small area. 

The method converges very fast; however, the number of function evaluations 

within iteration can be very high - depending on the number of specimens and step length 

when moving on the hyperspace. 

The main steps of the basic algorithm strategy called “All to One” can be 

formulated as follows. 

Algorithm 5.2 

Input: Objective function ( )KΦ . 

Step 1: Set control and termination parameters. Generate a population based on a 

selected prototypal specimen. 

Step 2: Find the best specimen (leader), i.e. that with the minimal function value. 

Step 3: Move all other specimens towards the leader and evaluate their function 

values in each step. 

Step 4: Select the new population and test the minimal divergence of the 

population. If it succeeds, stop. Otherwise, go to Step 2. 

Output: The leader and its function value. ■ 

Look at these steps in more details. A population described below in a separate 

subsection must be generated based on a prototypal specimen. This specimen is a vector of 



- 187 - 

controller (free) parameters K  which can be found e.g. by the quasi-continuous poles 

shifting algorithm. 

Specific control and termination parameters, which have to be set before the rest of 

the algorithm starts, are explained in this subchapter. Two parameters, the initial radius 

(Rad) and the size of the population (PopSize), control the construction of an initial 

population based on the prototypal specimen. Rad > 0 should be chosen high enough to 

cover the range of all acceptable parameters. PopSize > 0 means the number of specimens 

in the population – the higher value yields a higher chance to find a global minimum yet 

the computational time increases. 

The moving of specimens on the hyperspace of searched parameters is given by 

four control parameters: PathLength, Step, PRT and PRTv . PathLength should be within 

the interval ]5,1.1[  and it expresses the length of the path when approaching the leader. 

For instance, PathLength = 1 means that the specimen stops its moving exactly at the 

position of the leader. The value of Step ],11.0[ PathLength∈  represents the sampling of 

the path. E.g. a pair of settings PathLength = 1 and Step = 0.2 agrees with that the 

specimen makes five steps until it reaches the leader. [ ]1,0∈PRT  enables to calculate the 

perturbation vector PRTv  which indicates whether the active specimen moves to the leader 

directly or not. PRTv  is defined as 

 

[ ] { }

rj

v

PRTrndv

vvv

jPRT

jjPRT

rT
rPRTPRTPRTPRT

1,2,...,

else0
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,2,1,

=

=

<=

∈=v

 (5.14) 

where [ ]1,0∈jrnd  is a randomly generated number for each coordinate of a specimen. The 

perturbation vector enters stochasticity to the specimens moving. 

There are two termination parameters in the algorithm: M, MinDiv. The value of M 

means the maximal number of migration rounds defined by the user, and MinDiv expresses 

the selected minimal diversity, i.e. the algorithm running is terminated if  
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 ( ) ( ) MinDivΦΦ ji
j

ji
j

<− ,, minmax KK  (5.15) 

where a subscript i means the current iteration (migration round) and j denotes the jth 

specimen in the current population. 

As mentioned above, population { }PopSizeP ΚΚΚ ,...,, 21=  has to be generated 

based on a prototypal specimen controlled by parameters Rad and PopSize. Let 1Κ  be the 

prototypal specimen, then other specimens can generated as 

 [ ] PopSizejrndrndrndRad T
rj ,...,3,2,,...,, 211 =+= ΚΚ  (5.16) 

where [ ] rirndi ,...,2,1,1,1 =−∈ , is a random number. Each specimen in the population is 

then evaluated by the cost function. 

Once the population is generated (or generally after every migration round in the 

ith iteration) the best valued specimen, so called leader, Li ,Κ , which is determined as 

 ( ) PopSizejΦ ji
j

Li ,...,2,1,minarg ,, == ΚΚ  (5.17) 

All other specimens are then moved towards the leader during the migration round. 

The movement randomness is given by PRTv . Although the authors of the SOMA suggest 

to calculate PRTv  only once in migration round for every specimen, we try to do this in 

every step of the moving to the leader. Hence, the path is given by 

 
( )( ) ( )( )[ ]

( )StepPathLengthkLPopSizej

kStep jiLiPRTjiLijikji

/round,...,2,1;,...2,1

diag1 0,,,0,,,0,,,,

=≠=

−+−−+= KKvKKKK
 (5.18) 

where ( )PRTvdiag  means the diagonal square matrix with elements of PRTv  on the main 

diagonal and k is the k-th step in the path of the jth specimen in the current population (in 

ith iteration). 

The role of PRTv  is evident, for instance, if [ ]TPRT 1,...,1,1=v , the active specimen 

goes to the leader directly without “zig-zag” moves. 
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For every specimen of the population in a migration round, the cost function (i.e. 

value of the specimen) is calculated in every single step during the moving towards the 

leader. If the current position is better then the actual best, it becomes the best now. Hence, 

the new position of an active specimen for the next migration round is given by the best 

position of the specimen from all steps of moving towards the leader within the current 

migration round, i.e. 

 ( ) ( )StepPathLengthkΦ kji
k

ji /round,...,1,0,minarg ,,,1 ==+ ΚΚ  (5.19) 

These specimens then generate the new population for the next migration round 

(iteration). 

5.4 Nelder-Mead iterative optimization algorithm 

The Nelder-Mead (NM) algorithm belonging to the class of comparative (direct 

search) algorithms, also called irregular simplex search algorithm, was originally published 

in [105]. This easy-to-use method does not require derivatives of the objective function 

and thus it is suitable for non-smooth functions. It is very popular and can be implemented 

in many different ways. 

The method typically requires only one or two function evaluations per iteration, 

which is useful especially in applications where each function evaluation is time-

consuming. On the other hand, the algorithm can fail since the convergence for non-

smooth or discontinuous functions have not been proved yet [152]. It can also require an 

enormous amount of iterations to obtain a significant improvement in function value. 

Consider a nonlinear objective function ∈K  ( )∈→ KΦ r to be minimized. The 

basic steps of the general algorithm can be done as follows. 

Algorithm 5.3 

Input: Objective function ( )KΦ . 

Step 1: Construct the initial working simplex S, set transformation and termination 

parameters. 
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Step 2: Calculate the termination test information. If the test is satisfied, stop the 

algorithm. 

Step 3: Order simplex vertices as the worst, second worst and the best one. 

Step 4: Calculate the central point and reflex the worst vertex. If the reflection is 

successful, accept the reflected point in the new working simplex and go to Step 3. 

Step 5: Try to use contraction or expansion. If this succeeds, the accepted point 

becomes the new vertex; otherwise, shrink the simplex towards the best vertex. Go to Step 3. 

Output: The best vertex and its function value. ■ 

Let us describe each step of the algorithm in more details. A simplex S in r is a 

convex hull of 1+r  vertices ∈+121 ,..., r, KKK r 

 { }121 ,...,conv += r,S KKK  (5.20) 

The initial (non-degenerate) simplex can be constructed either as a regular or as a 

right-angled simplex. The latter is easier to handle as 

 1,...,2,1 +=+= rjh jjj eKK  (5.21) 

where 1K is a “starting” point, jh  stands for a stepsize and je  is a unit (Euclidean) vector 

in r. 

During the minimization, the simplex changes in its size and shape as well. The 

algorithm terminates when either the simplex is sufficiently small or the function values at 

the vertices are close to each other or the number of iterations reaches the prescribed 

number. Usually some of these three conditions are combined together and the procedure 

ends when at least one of the conditions becomes true. We use the limit number of 

iterations, say ni. Moreover, for discontinuous functions, the termination test has to include 

the information of the simplex size [152] whereas the function values test is useless. Let 

Sε is the limit simplex size defined by the user, and then the termination test related to the 

simplex size can be formulated as 

 S

r

i
i ε<−∑

+

=

1

2
1KK  (5.22) 
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Determine the best (Kmin), second worst (Ks) and the worst vertex (Kmax) as 

 ( ) ( ) ( )i
maxi

si
i

maxi
i

min ΦΦΦΦΦΦ KKK
≠

=== max,max,min  (5.23) 

The central point can be imagined as the “mean” coordinate of all vertices except 

the worst one, i.e. 

 ∑
≠
=

=
r

maxi
i

ic r 1

1
KK  (5.24) 

The calculation of the new simplex then continues by reflecting Kmax over cK to a 

new position Kref according to the formula 

 ( )maxccref KKKK −+= α  (5.25) 

where 0>α  is a reflection control parameter, usually 1=α . 

If it holds that srefmin KKK <≤ , the iteration is finished and refK
 
becomes a new 

simplex point instead of maxK . 

If the reflection does not succeed, one has to perform expansion or contraction, 

depending on the value of ( )refΦ K  relation to ( )minΦ K , ( )sΦ K  and ( )maxΦ K . Hence, if 

( ) ( )minref ΦΦ KK < , i.e. the reflected point is the best one, the expansion point is computed 

as follows 

 ( )crefcexp KKKK −+= β  (5.26) 

where 1>β  is an expansion control parameter, usually 2=β . There are more ways how 

to construct the new working simplex; however, to avoid premature termination of 

iterations for non-smooth functions, see [147], expK  becomes the new simplex vertex if 

( ) ( )minexp ΦΦ KK < . Otherwise, refK is accepted. 

There are two types of contractions; first, if ( ) ( ) ( )maxrefs ΦΦΦ KKK <≤ , compute 

the contracted point as 
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 ( )crefccon KKKK −+= γ  (5.27) 

where 10 << γ  is a contraction control parameter mostly set as 5.0=γ . If 

( ) ( )refcon ΦΦ KK < , conK  becomes a vertex in the new working simplex; otherwise, 

shrinkage has to be made. On the contrary, if ( ) ( )maxref ΦΦ KK ≥ , i.e. refK  is the worst 

point, one ought to perform contraction according to 

 ( )cmaxccon KKKK −+= γ  (5.28) 

If it holds that ( ) ( )maxcon ΦΦ KK < , accept conK ; otherwise, perform shrinkage. 

In the case that expansion or contraction fails, one has to shrink the current 

simplex towards the best vertex minK . This operation is given by the formula 

 ( ) minriminimini ≠+=−+= 1,...,2,1,KKKK δ  (5.29) 

Experiences with the algorithm show that shrink transformations almost never 

happen in practice [152]. A non-shrink iteration of the algorithm is fast, since only one or 

two function values are computed. 

5.5 Study case: A skater on the swaying bow 

The presented example demonstrates the algebraic controller desing in the RMS ring 

for an unstable retarded TDS plant followed by the tuning process and setting according to 

the PPSA and the spectral abscissa optimization via some iterative algorithms. The aim is 

to test and verify tuning approaches primarily, thus, the 1DoF control structure is utilized 

here instead of TFC which would give a better controller structure (i.e. quasi-finite 

spectrum assignment). 

Consider an unstable system as in Fig. 5.7 expressing the roller skater a controlled 

swaying bow. In [202] it has been stated that the transfer function of the system reads 

 ( ) ( )
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+−==
exp
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22

 (5.30) 
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where ( )ty is the skater’s deviation from the bow symmetry axis, ( )tu  expresses the slope 

angle of a bow caused by force P, delays ϑτ ,  means the skater’s and servo latencies, 

respectively, and b, a are real parameters. Skater controls the servo driving by remote 

signals into servo electronics. As presented in the literature, let b = 0.2, a = 1, 3.0=τ s, 

1.0=ϑ s. 

 

Fig. 5.7 Roller skater on a controlled swaying bow 

5.5.1 Controller structure design 

First of all, factorize the plant transfer function as 
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 (5.31) 

where 00 >m  is a selectable real parameter. Consider the reference and load disturbance in 

the form of stepwise functions, hence their Laplace forms are respectively 
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where w0, d0∈R, ( )smW  and ( )smW  are arbitrary stable (retarded) (quasi)polynomials of 

degree one and ( )sHW , ( )sH D , ( )sFW , ( )sFD MSR∈ . 
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Stabilization formula (4.33) using the generalized Euclidean algorithm yields e.g. 
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 (5.33) 

where p2, p1, p0, q3, q2, q1, q0∈ are free parameters. Notice that numerical experiments 

shown that a smaller number of parameters could not satisfy denominator stability. 

In order to satisfy tasks of stepwise reference tracking and load disturbance 

rejection, parameterization (4.34) can be used so that both, ( )sFW  and ( )sFD , divide ( )sP ; 

hence, the numerator of ( )sP  satisfies ( ) 00 =P . To make ( )sP  as simple as possible, 

choose 
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where ∈0z  is a selectable parameter. Both divisibility conditions are satisfied if  
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This results in the final anisochronic controller transfer function 
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The reference-to-output transfer function reads 
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which gives rise to the characteristic quasipolynomial 
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Obviously, there are two factors in (5.38), a polynomial and a quasipolynomial 

one. Since the spectral assignment for the polynomial factor is trivial, the goal is to set up 

dominant roots or minimize the spectral abscissa, respectively, of the quasipolynomial 

factor with seven unknown parameters. To cancel the impact of the quadruple real 

pole 01 ms −= , it must hold that ( )Kα−>>0m . 

5.5.2 Desired maximum overshoot 

Follow now the methodology introduced in Subchapter 5.2. Clearly, 7== denrr , 

5=numr , 0=ndr , Tpppqqqq ],,,,,,[ 0120123=K  and consider ( )sG mWY ,  according to (5.1). 

Now, there are two possibilities – either set zero exactly to obtain constrained 

controller parameter (then rden = 6) or to deal with the numerator and denominator of (5.37) 

together – we decided to utilize the former one first (version 1). Generally, one can obtain 

from (5.37) 
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Choose  5.0max,, =Δ mWYh , 5.0=αξ  and 10max =t s. From Fig. 5.2 we have 9.0=zξ , 

2max, ≈normt  which gives 1.0,18.0,2.0 1 −=−== αω z . Then take e.g. 50 =m . Inserting 

plant parameters in (5.39) yields 
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 ( )32100 005832.00324.018.04078.5 qqqqp −+−=  (5.40) 

The particular quasipolynomial which roots are being set, thus, reads 
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 (5.41) 

Initial direct pole placement results in controller parameters as 

 [ ]T2411.0,7.0,113.1,0171.0,0113.0,9852.0,1014.10 −=K  (5.42) 

which gives the rightmost spectrum of poles 

 { }0114.1,j5029.05201.0,j2.01.0,1445.0,8959.00, −±−±−=Ω p  (5.43) 

and zeros 

 { }j4523.8.03507.2,0822.1,18.0,j1536.01373.00, ±−−−±−=Ω z  (5.44) 

Hence, the prescribed poles and zeros are not dominant ones. The process of the 

PPSA is described by the evolution of controller parameters, the spectral abscissa (i.e. the 

real part of the rightmost pole pair 11,σσ ) and the distance of the dominant pole from the 

prescribed one 11 s−σ , as can be seen in Fig. 5.8 – Fig. 5.9, respectively. Note that p0 is 

related to shifted parameters according to (5.40). 
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Fig. 5.8 Evolution of K using the PPSA – version 1 



- 197 - 

0 500 1000 1500
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Iteration

α(
K

)

 
0 500 1000 1500

0

0.5

1

1.5

2

2.5

3

3.5

Iteration

| σ
1 -

 s
1 |

 

Fig. 5.9 Evolution of  ( )Kα  (left) and 11 s−σ  (right) using the PPSA – version 1 

The rightmost pole reaches the vicinity of the desired position in the iteration 

number i = 1440. The peak in Fig. 5.9 (left) is caused by a bifurcation of a double real root 

to a complex conjugate pair. The final controller parameters from the PPSA (version 1) are 

the following 

 [ ]T039.40,0865.8,8427.7,0171.0,0754.2,083.11,076.259,566.1831440 =K  (5.45) 

giving rise to the spectrum (poles) 

 { }j4563.1298.0,j7574.01449.0,j1989.00999.01440, ±−±−±−=Ω p  (5.46) 

and zeros 

 { }j5435.84832.2,9768.0,18.0,j1817.00091.01440, ±−−−±=Ω z  (5.47) 

In order to improve this result, an optimization procedure minimizing the objective 

(cost) function 

 ( ) ( )KK rsΦ λασ +−= 11  (5.48) 

has been performed where 1σ  is a pole from the dominant pair in (5.46), 1s  stands for a 

pole from the prescribed pair of poles, ( )Krα  means the spectral abscissa of the rest of 

poles except the dominant pair and λ  represents a weighting parameter (here 01.0=λ  has 

been chosen). The optimization results via the SOMA are then the following 



- 198 - 

 

[ ]
{ }
{ }j5423.84821.2,9787.0,18.0,j1822.00093.0

j4552.12609.0,j7565.01712.0,j2.00999.0

946.39,9451.7,7535.7,0971.2,253.11,114.259,202.185

,1440,

,1440,

,1440

±−−−±=Ω

±−±−±−=Ω

=

optz

optp

T
optK

 (5.49) 

Unfortunately, the prescribed zero is not the dominant one in both cases; therefore, 

the obtained results are useless since their dynamic characteristics (e.g. the step responses) 

are far from the desired one. 

As a second (version 2), simultaneous shifting of poles and zeros of (5.37) to the 

desired positions has been performed. It must hold that nddensnumden rrnnn +≤≤+ , where 

sn  means the cumulative number of shifted (controlled) zeros and poles, here. 

The initial setting of 0K  and the corresponding spectra of poles and zeros are 

given by (5.42) – (5.44). The process of evolution of K  is depicted in Fig. 5.10. 
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Fig. 5.10 Evolution of K using the PPSA – version 2 

The final parameters’ values using the PPSA (version 2) are 

 [ ]T866.954,7838.1,3117.32,9573.78,105.1046,946.9734,788.505120636 =K  (5.50) 

Evolutions of ( )KPα  and ( )KZα  of poles and zeros, respectively are presented in 

Fig. 5.11, and the distance of the dominant pole, 1σ , from the prescribed one 11 s−σ  and 

that of the dominant zero, 1ζ , from the prescribed one 11 z−ζ  can be seen in Fig. 5.12. 
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Fig. 5.11 Evolution of 11 s−σ  (left) 11 z−ζ  (right) using the PPSA – version 2 
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Fig. 5.12 Evolution of ( )KPα  (left) ( )KNα  (right) using the PPSA – version 2 

Obviously, we tried to keep the rightmost zero as close to the prescribed one as 

possible, while to shift the rightmost pole. However, the distance is cyclically changed so 

that there is not possible to get closer without exceeding values of controller parameters. 

The obtained spectra read 

 { }j0275.5118.0,j0697.01168.0,j1778.10945.020636, ±−±−±−=Ω p  (5.51) 

 { }j2997.87809.2,7546.0,j1187.022.0,1804.020636, ±−−±−−=Ω z  (5.52) 

Similarly as for version 1, the objective function 

 ( ) ( ) ( )KKK zrprzsΦ ,2,11111 αλαλζσ ++−+−=  (5.53) 
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using the SOMA is minimized, where ( )Kpr ,α  means the spectral abscissa of the rest of 

poles except the dominant pair, ( )Kzr ,α  has the same meaning yet for zeros and 

01.021 == λλ . The results are then the following 

 

[ ]
{ }
{ }j1939.8817.2,7607.0,j1032.02247.0,1801.0

j2103.11211.0j,1163.51161.0,j0674.01158.0

517.947,763.1,9684.30,2405.78,87.1060,219.9829,169.5235

,1440,

,20636,

,20636

±−−±−−=Ω

±−±−±−=Ω

=

optz

optp

T
optK

 (5.54) 

The comparison of step responses of the original model having the desired location 

of poles and zeros with four results using the PPSA and the SOMA is presented in Fig. 

5.13. 
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Fig. 5.13 Step responses comparison of results of the PPSA 

It is apparent that the desired model has not been reached, nevertheless it can be 

stated that version 2 has given better results and the optimization (SOMA) procedure has 

slightly improved poles and zeros distribution. This example hence also demonstrated that 

it is not always possible to meet the prescribed rightmost poles and zeros due to the 

complexity of the spectrum of TDS and delayed control feedbacks. 
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5.5.3 Spectral abscissa minimization 

Assume controller (5.36) and the characteristic quasipolynomial ( )sm  as in (5.38), 

and formulate now the following minimization problem 

 

( )
( )[ ]{ }0:Reminarg

minarg],,,,,,[ 0123012

==

==

= issi

T
optopt

sms

qqqqppp

K

K
KK α

 (5.55) 

instead of shifting poleas nad zeros to the prescribed positions. 

 Four optimization algorithms and techniques are benchmarked and verified, 

namely, the QCSA (see Subsection 2.6.3), the EGSA [166], the SOMA (Subsection 5.3) 

and the NM algorithm (Subsection 5.4). 

 Let the minimization starts by the QCSA from the point T]1,1,1,1,1,1,1[0 =K  

defined in (5.55). This initial setting gives rise to the spectrum Ω0 (system poles is  are 

from the region with Re is > -2) 

 { }1- 0.820218,- 0.604644,- 1, 1, 0.477189, 0.849185,0 =Ω  (5.56) 

Obviously, the feedback system is unstable with ( ) 0.849185=Kα . The QCSA is 

capable to move some controlled poles to the left. Unlike the original paper [90], the 

number of controller poles is not increased gradually here, however, this quantity is 

changed depending on poles locations. More precisely, whenever the dominant root of 

(5.38) (or a bunch of dominant roots) secedes from the rest of the spectrum and the number 

of currently controlled roots is higher then the number of seceded ones, the number of 

controlled roots decreases so that only of seceded roots are controlled. 

The evolution of system poles is displayed in Fig. 5.14 where the controlled ones 

are in bold lines. Notice that in an iterations range approximately of i = 600-1750, there is 

a huge number of bifurcations of a complex pair of roots or that a double real root into a 

pair of single real roots, and viceversa. This yields many changes in the number of 

controlled roots. Whenever a root remains uncontrolled, it eventually reaches the 
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controlled rightmost bunch of roots. A detailed view on the iterations range of i = 600-

1750 is in Fig. 5.15. 

 

Fig. 5.14 Evolution of real parts of the rightmost roots of (5.38) using the QCSA 

 

Fig. 5.15 A detailed view on Fig. 5.14 for the iterations range of  i = 600-1750 

The overall development of K  can be seen in Fig. 5.16 (left); however, due to the 

noticeable rise in values for i > 1700, the detailed view on the iterations range of 1-1700 is 

in depicted Fig. 5.16 (right). 
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Fig. 5.16 Evolution of  K  for (5.38) and (5.55) using the QCSA 

From Fig. 5.14 it is obvious that the procedure can adjust the spectral abscissa such 

that ( ) 1.5−<Kα  and it seems that this improvement may continue long. The comparison 

of the three remaining methods together with the evolution of K  for i = 1-3000 has been 

presented in [133]. In the cited literature, it has been stated that the NM algorithm gives a 

fast (≈ 8 s per iteration on Intel Core2 Duo CPU E8500@3.16 GHz, 4BG RAM) and 

noticeable cost function improvement qualitatively comparable with the SOMA which is a 

rather slower (1 iteration step of SOMA lasts 70 iterations of the NM). However, the 

QCSA is approximately as fast as the NM and it has provided much better decline of the 

cost function. On the contrary, the EGSA has not brought a significant improvement (i.e. a 

sufficient decreasing) of ( )Kα . Moreover, the method is eight times more time 

consumptive then the NM, since it requires (in the worse case) 

( ) ( )( )1111 ++=+⋅++ kllkl  spectrum calculations per iteration, where l  is the number of 

points where the gradient is estimated and k  stands for the maximum number of discrete 

steps when searching the suitable gradient length, see details in Chyba! Nenalezen zdroj 

odkazů.. To sum up, it has seemed that the three remaining algorithms can serve for 

searching the local minimum rather then the global optimum when solving the spectral 

abscissa of TDS. 

 However, later we found out that the improvement is limited by trying to perform 

a new test consisting in continuation of iterations via the QCSA. Results for the iteration 

range [ ]3520,3000∈i  can be seen in Fig. 5.17. 
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Fig. 5.17 Evolution of real parts of the rightmost roots of (5.38) using the QCSA within the 
iteration range [ ]3520,3000∈i  

It is clear that the improvement of the spectral abscissa terminates at 3305=i . The 

values of K and the corresponding spectrum (its dominant part, more precisely) in this 

iteration step read 

 
T]5617613,26247749,106523133

,8222650,10560107,640264.2,469418.2[3305 =K
 (5.57) 

 { }27345,-1.801.6745,-1.- , 61871.5617,-1.- 1.5056,- 1.4454,-3305 =Ω  (5.58) 

The NM algorithm yields the development of ( )Kα  as in Fig. 5.18 

 

Fig. 5.18 Evolution of  ( )Kα  using the NM for hj = {1, 10, 100} from i = 3305 
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As can be seen from (5.57), values of K are very high and unusable in practice. 

However, we try to test the remaining algorithms starting in this local minimum, i.e. from 

3305=i . Fig. 5.18 indicates that a longer initial simplex edge results in a slower but much 

better minimization since it brings more possibilities how to escape from the local 

minimum and prevents the premature termination due to the simplex size. It is substantial 

that the local minimum from the QCSA has been improved by the NM. 

The EGSA gives results displayed in Fig. 5.19. where λΔ  means the discretization 

step when searching a suitable gradient length. 

 

Fig. 5.19 Evolution of ( )Kα  using  the EGSA for 510−=Δλ  from i = 3305 

It is questionable whether the result can be improved by decreasing of the 

sampling radius for numerical estimation of the steepest descent direction, ρ , or that of 

λΔ ; however, in [133] we observed that a variation in λΔ  within one order does not bring 

a satisfactory result. Contrariwise, a lower value of ρ  results in a higher gradient norm, 

which implies numerical difficulties. 

Finally, the development of ( )Kα  using the SOMA for two different initial 

population radii, Rad, is shown in Fig. 5.20. A higher value of Rad  enables to scan the 

parameters space more effectively resulting in a faster decrease of ( )Kα . The result is 

almost comparable with the NM method, yet, the iteration process is much slower 

compared to this classical optimization method. Meanwhile the NM has approximately 2 

or 3 spectrum calculations per iteration, the SOMA requires 
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( )( )StepPathLengthPopSize /1round ⋅−  enumerations. This fact is clear from Fig. 5.21 

where the best results from all the three methods are compared in the time range. 
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Fig. 5.20 Evolution of ( )Kα  using the SOMA for { }10,1=Rad  from i = 3305 

 

Fig. 5.21 Evolution of ( )Kα  using the NM (dj = 100), EGSA ( 510−=Δλ ) and SOMA 
(Rad = 10) in the calculation time range starting from i = 3305 

To sum up, the best result with the minimal value of ( )Kα  obtained by the NM 

gives the following position of the rightmost poles 

 { }.88040.1459j,-1.71970.0168j,-1.51080.0168j,-11.5108-,3305 ±±±=Ω NM  (5.59) 
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The corresponding values of K do not differ significantly from (5.57). Simulated 

control responses are not displayed here due to the numerical problems with simulation 

program (caused by high values of controller parameters). 
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6 RELAY FEEDBACK IDENTIFICATION TEST 

Low order modelling constitutes one of possible principles how to deal with 

modelling and, consequently, control of high order systems [171], [207]. This chapter aims 

anisochronic low order modelling and identification of a plant by means of relay-feedback 

test, see Subchapter 2.8. A rather more complex plant model is utilized compared to the 

references above and, moreover, a novel, simple and intuitive, time-domain assembling of 

identification equations of type (2.127) is presented [123]. 

In particular, consider a plant model 

 ( ) ( )
( )saas

sb
sGm ϑ

τ
−++

−=
10

0 exp
 (6.1) 

and the task is to find conditional equations for identification of model parameters by 

means of a relay feedback test with an on-off and saturation relay. There five unknown real 

parameters in the model, i.e. ϑτ ,,,, 100 aab ; however, two of them can be estimated not 

from the knowledge of the ultimate gain and frequency. Namely, the static gain 10 / abk =  

can be calculated from (2.126) and the value of input-output delayτ  can be estimated from 

Fig. 2.10. Hence, in the first step, a biased on-off relay with hysteresis is used to estimate 

these two parameters. Then, a simple (symmetrical) on-off relay and/or a saturation relay 

can be utilized to calculate the remaining parameters from (2.127) and the use of an 

artificial delay +τ , see Subchapter 2.8.4. Four conditional equation can be obtained from 

(2.127) by doing this, therefore one may improve the estimation of k  or τ . 

6.1 Frequency-domain solution 

Consider a symmetrical on-off relay first. Conditions (2.127) with respect to 

(2.125) read 
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In addition, the use of an artificial delay element +τ  (characterized by a phase leg 

Dφ  on the ultimate frequency uω~ ) yields 
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where A
~

 means the amplitude of ( )ty  under the additional delay. 

 Analogously, for the saturation relay governed by (2.128), it holds 
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 0: 1222 == ff  (6.7) 

and 
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 0: 1424 == ff  (6.9) 

6.2 Time-domain solution 

This subsection offers an alternative assembling of the identification nonlinear 

algebraic equations. 
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The simple idea stems from the fact that rectangular waves on a plant input can be 

approximated by (or viewed as) sinus waves using linearization (2.125) or (2.128). Hence, 

using on-off relay, the approximating input sinus signal is 

 ( ) ( )ut
B

tu ω
π

sin
4=  (6.10) 

Note that in case of biased relay where −+ ≈ BB , one can take ( )−+ += BBB 5.0 . 

Since the ideal relay does not evoke a phase shift, a plant output has a phase shift –π, in other 

words, a plant output is given by 

 )sin()( utAty ω−=  (6.11) 

Model transfer function agrees with the FDE  

 )()()()( 010 τϑ −=−++′ tubtyatyaty  (6.12) 

thus (6.12) with respect to (6.10) and (6.11) reads 

  ( ) ( ) ( )( )( ) ( )( )uuuuu t
B

btatatA ωτ
π

ωϑωωω −=−++− sin
4

sinsincos 010  (6.13) 

Now placing the appropriate time values into (6.13), relations for the unknown 

model parameters can be derived. Since one point on the Nyquist curve can determine the 

values of two unknown parameters, two particular arguments can be chosen. 

First, let ( ) ∈= − kkt u ,21 πω  +
0 , and k be chosen so that { }ϑτ ,max>t  and the limit 

cycle is stable (settled). Then (6.13) gives 

 ( )( ) ( ) 0sin
4
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B
baAf τω

π
ϑωω  (6.14) 

As second, let ( )( ) ∈+= − kkt u ,25.01 πω  +
0 , then 

 ( )( ) ( ) 0cos
4

cos: 01032 =−+−= uu

B
baaAf τω

π
ϑω  (6.15) 

The use of an additional delay element gives rise to the following FDE 
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instead of (6.13). Inserting ( )Du kt φπω −= − 21  and ( )( )Du kt φπω −+= − 25.01  into (6.16) 

gives 
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and 
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respectively. 

 The application of the saturation relay leads analogously to the following 

conditions 
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7 REAL PLANT APPLICATION EXAMPLE 

A complex theoretical and practical example comprising mathematical modelling 

and identification of a laboratory heating plant with internal delays, controller design in 

RMS for the obtained model, relay feedback identification test for a simplified model, 

controller tuning, robust analysis, discretization and real-time verification follows and 

finalizes this dissertation thesis. 

7.1 Description of a laboratory heating circuit system 

The plant to be mathematically modelled and control in this section was assembled 

at the Faculty of Applied Informatics of Tomas Bata University in Zlín in order to verify 

several control algorithms for systems with delays. Originally, it was intended to control 

input-output delays only; however, as it is shown below, the plant contains internal delays 

as well, and thus it is suitable also for testing control approaches for TDS. The plant 

dynamics is based on the principle of heat transferring from a source through a piping 

system using a heat transferring media to a heat-consuming appliance. External appearance 

of the plant and a schematic sketch of the model are shown in Fig. 7.1 [34]. 

 

Fig. 7.1 A photo (left) and a scheme (right) of a laboratory heating model 
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Let us describe the plant according to a schematic sketch depicted in Fig. 7.1. The 

heat transferring fluid (namely distilled water) is transported using a continuously 

controllable DC pump {6} into a flow heater {1} with maximum power of 750 W. The 

temperature of a fluid at the heater output is measured by a platinum thermometer giving 

value of HOϑ . Warmed liquid then goes through a 15 meters long insulated coiled pipeline 

{2} which causes the significant delay in the system. The air-water heat exchanger (cooler) 

{3} with two cooling fans {4, 5} represents a heat-consuming appliance. The speed of the 

first fan can be continuously adjusted, whereas the second one is of an on/off type. Input 

and output temperatures of the cooler are measured again by platinum thermometers giving 

CIϑ  and COϑ , respectively. The expansion tank {7} compensates for the expansion effect 

of the water.  

This small scale model can represent the dynamics of real heating systems, e.g. a 

cooling circuit system in cars, heating systems in buildings, etc. The laboratory model is 

connected to a standard PC (Intel Core2 Duo CPU E8500 @ 3.16 GHz, 4BG RAM) via 

serial bus RS232 and a portable data acquisition unit. All tasks relating to the monitoring 

and control of the plant are served by software running in Matlab 7.11 (R2010b) 

environment. 

Recently, the computer has been equipped with the data acquisition card AD622 

and Real-Time Toolbox for Matlab, which offers higher user and programming comfort 

[68]. 

7.2 Model of a laboratory heating circuit system 

In this subsection, a possible mathematical model of the plant is proposed [128]. 

Obviously, an accurate mathematical model of the plant would be rather complicated due 

to the existence of components causing distributed delays in the system. However, the aim 

is not to find an exact description of the model, but a sufficiently simple mathematical 

model which can be used for the verification of control algorithms. 

The methodology is based on comprehension of all significant delays and latencies 

in the model which is built in two steps: First, models of separate functional parts of the 
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plant are found; secondly, the separate models are combined by means of their common 

physical quantities. 

Let us introduce notation for process quantities first: 

c [J·kg-1·K-1] – the specific heat capacity of water 

( )tm&  [kg·s-1] – the mass flow rate of water 

MH [kg] – the overall mass of water in the heater 

MC [kg] – the overall mass of water in the cooler 

MP [kg] – the overall mass of water in the pipeline 

( )tHOϑ  [°C] – output temperature of the heater 

( )tCIϑ  [°C] – input temperature of the cooler 

( )tCOϑ  [°C] – output temperature of the cooler 

( )tHIϑ  [°C] – input temperature of the heater 

Aϑ  [°C] – ambient temperature 

( )tP  [W] – the power of the heater 

Hτ  [s] – the delay of a water flow through the heater 

HCτ  [s] – the delay of a water flow between the heater and the cooler 

Cτ  [s] – the delay of a water flow through the cooler 

KCτ  [s] – the delay between a control signal to the cooling fan and the output 

temperature of the cooler 

CHτ  [s] – the delay of a water flow between the cooler and the heater 

( )tuP  [V] – a voltage input to the pump 

( )tuC  [V] – a voltage input to the cooling fan 
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( )tKH  [W·K-1] – the overall heat transmission coefficient of heater wastage energy 

( )tKC  [W·K-1] – the overall heat transmission coefficient of the cooler 

PK  [W·K-1] – the overall heat transmission coefficient of the long pipeline 

h0, h1, h2, h3, h4, h5 – weighting coefficients for the estimation of the overall heat 

transmission coefficient of the heater 

c0 [W·K-1], c1[W·K-1·V-1], c2 – weighting coefficients for the estimation of the 

overall heat transmission coefficient of the cooler 

p0 [m
3·s-1], p1 [V], p2 – weighting coefficients for the estimation of the mass flow 

rate of water 

7.2.1 Analysis of the model plant dynamics 

Let model the heater first. The energy balance equation is used for the description 

of the heater 
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where the arithmetical mean temperature difference is taken for heat losses and a heating 

body is assumed to perform heat energy in the middle of the heater. Input temperature, 

( )tHIϑ , is estimated by “the nearest” measured one, ( )tCOϑ , as 

 ( ) ( )CHCOHI tt τϑϑ −=  (7.2) 

due to the fact that the fluid transport between the cooler output and the heater input is fast 

enough so that these two temperatures almost do not differ, except for a time delay. The 

overall heat transmission coefficient of the heater, ( )tKH , is numerically approximated by 

the relation 
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Regarding to the model of a coiled insulated pipeline, a transportation delay in the 

piping has a decisive influence on the behavior of the system. Consider the energy balance 

equation again where heat losses are supposed to be linear along the pipeline 
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Notice that input and output temperatures are not considered in the same time 

since the thermal effect of the water inlet affects the outlet after some dead time. Heat 

transmitting coefficient is considered as a low valued constant, thanks to the very good 

isolation. 

The mass of the piping is neglected in the model due to the fact that the specific 

heat capacity of the material of the pipeline (copper ≈ 385 J·kg-1·K-1) is much smaller than 

that of water (≈ 4180 J·kg-1·K-1), and because of the fact that the mass of used copper is 

lower than that of the fluid (water) inside the piping. 

Time delays in the air-water exchanger are of a distributed nature, thus they have 

not an important role in system behaviour. On the other hand, the cooler significantly 

affects water temperature because of its high heat transmission coefficient supported by 

fans. The energy balance equation reads 
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The dynamics of the air part of the cooler is much faster in comparison with the 

water one, thus this dynamics is neglected. The heat transmission coefficient, ( )tKC , is 

attempted to be approximated by a quadratic function 

 ( ) ( ) ( ) 01
2

2 ctuctuctK KCCKCCC +−+−= ττ  (7.6) 

Changes in the fan speed affect ( )tKC . Notice that there is a delay between the 

control input voltage to the continuously controllable cooling fan, ( )tuC , and a change of 

( )tKC , in the model. There is no attempt to use models of all electrical and electronic 

equipments (e.g. the fan motor), and thus coefficients c0, c1, c2 are determined 

experimentally. 
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Dealing with the pump - the influence of the voltage input to the pump, ( )tuP , 

upon the mass flow rate of water, ( )tm& , can be described by a static characteristic 

 ( ) ( )[ ] 2

10
p

P ptuptm +=&  (7.7) 

see [85]. The pump dynamics is omitted comparing to the whole process dynamics. 

Changes of process delays caused by the change of ( )tm&  are neglected as well, in order to 

avoid a rather complicated mathematical description of the plant dynamics, although these 

changes influence process delays significantly. 

7.2.2 Linearization of the model in the vicinity of the operation point 

From the modelling above, a nonlinear MIMO model of the plant is obtained. 

Measured temperatures ( )tHOϑ , ( )tCIϑ , ( )tCOϑ  are taken as system outputs, whereas 

analog input voltages ( )tuP , ( )tuC  and the power ( )tP  are considered as system inputs. To 

obtain a linearized model, the first two terms of the Taylor series expansion at an operation 

point are used. 

Equations (7.1) - (7.3) and (7.7) give 
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where 
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Additional index (·)0 denotes the appropriate quantity value in the steady state (an 

operation point) and symbol Δ  stands for a deviation from an operation point. 

From (7.4) and (7.7) it is obtained 
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Linearization of (7.5) - (7.7) gives 
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A linearized state space model in an operation point then reads 
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Symbol Δ  for the linearized model is omitted hereinafter. Assuming zero initial 

conditions (i.e. a steady state in the operation point), the Laplace transform of (7.22) is 

given by 
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where the capital letters stand for transformed variables denoted with corresponding lower 

case letters. The transfer matrix of the model thus reads 
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where 
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with 
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7.2.3 Parameters identification 

Prior to solving the task of the estimation of model parameters, let us display how 

unconventional the step response of the system is. Consider the step change of ( )tP  

resulting in changes of system output temperatures, as it is pictured in Fig. 7.2. An 

interesting feature of the step response is the existence of “stairs” (“quasi” steady states) in 

the plot. 

 

Fig. 7.2 Heater power step change responses 

The existence of these multiple “quasi” steady states can be explained as follows: 

Temperature of water at the heater output, ( )tHOϑ , increases until the energy inlet and 

outlet of the heater equal. In the meanwhile, the “hot” water flow goes through the long 

pipe to the cooler, and, after some dead-time, HCτ , it affects input, ( )tCIϑ , and output, 

( )tCOϑ , temperatures of the cooler. At this time, the heater input temperature remains 

constant, because the water flow has not gone a round yet, and ( )tCOϑ  becomes constant. 

Then “cold” water goes back to the heater and closes a circuit. Again, the closed loop dead 

time between the cooler output and cooler input, HCHCH ττττ ++= , is long enough so that 

( )tCIϑ  and ( )tC0ϑ  become almost constant. 
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There were made no attempts to determinate measure the mass flow rate of water 

by measuring of the diameter of the pipeline, the water-flow velocity, etc. Steady state data 

in Tab. 7.1 can be used for evaluation of ( )tm&  by taking into account the fact that more 

than one steady state can usually be found in a step response of the system. 

Tab. 7.1 Measurements of steady-state temperatures for V3=Cu  

Pu [V] P [W] 0HOϑ [°C] 0CIϑ [°C] 0COϑ [°C] Aϑ [°C] 

4 225 38.1 38.0 31.3 22 
4 225 41.8 41.5 35.1 26 
5 225 39.4 39.3 32.9 25 
5 225 40.9 40.7 34.5 27 
6 225 39.5 39.3 32.9 25.5 
6 225 38.0 37.9 33.0 23.5 
4 300 43.5 43.2 34.9 25 
4 300 42.6 42.5 33.7 23 
5 300 41.9 41.8 33.3 22.5 
5 300 44.1 43.8 36.0 25 
6 300 43.3 42.8 35.2 24 
6 300 43.4 43.1 35.3 24 
4 375 48.1 47.9 37.1 24 
4 375 47.8 47.3 36.8 23.5 
5 375 48.8 48.5 38.7 25.5 
5 375 49.9 49.7 40.0 26 
6 375 48.2 47.8 38.3 23 
6 375 49.1 48.9 39.5 26.5 
4 400 51.2 50.9 37.7 24 
5 400 52.2 52.0 39.9 24 
6 400 49.9 49.8 38.2 23 

 

The steady state of (7.1) reads 

 [ ] ⎥⎦
⎤

⎢⎣
⎡ −+−−+= A

HIHO
HHOHI KmcP ϑϑϑϑϑ

2
0 00

00000 &  (7.34) 

i.e. the derivative is assumed identically zero. There are two unknown static parameters in 

(7.34), 0m&  and 0HK , for a particular setting of inputs. Mass flow rate, ( )tm& , as a function 

of ( )tuP  influences mainly system delays, whereas ( )tKH  given by (7.3) impresses a 



- 224 - 

“height” of the “first” steady state of ( )tHOϑ , see Fig. 7.2 (A). Tab. 7.2 contains the “first” 

steady state values of temperatures ( )tHOϑ  and ( )tHIϑ = ( )CHCO t τϑ − . These data together 

with data from Tab. 7.1 enable to estimate 0m&  and 0HK  for a particular setting of input 

values by inserting these data into (7.34), thus, we have two independent equations (7.34) 

for a particular setting of inputs. The final values of 0m&  and 0HK  are taken as the 

arithmetical mean of all calculated values from these tables for a particular (same) setting. 

There can be then estimated unknown parameters of 0m&  and 0HK  in (7.3) and (7.7), from 

these values. 

Tab. 7.2 Measurements of “quasi” steady-state temperatures for V3=Cu  

Pu [V] P [W] 0HOϑ [°C] 0CIϑ [°C] 0COϑ [°C] Aϑ [°C] 

4 225 28.8 21.7 22 22 
4 225 33.0 26.1 26 26 
5 225 31.2 24.7 25 25 
5 225 33.8 26.9 27 27 
6 225 31.8 25.6 25.5 25.5 
6 225 29.6 23.1 23.5 23.5 
4 300 33.9 24.5 25 25 
4 300 30.7 21.7 23 23 
5 300 33.9 25.4 25.5 22.5 
5 300 33.9 25.1 25 25 
6 300 32.1 23.6 24 24 
6 300 32.7 24.1 24 24 
4 375 35.5 24.1 24 24 
4 375 35.3 23.6 23.5 23.5 
5 375 36.4 25.2 25.5 25.5 
5 375 36.7 25.7 26 26 
6 375 29.2 22.9 23 23 
6 375 32.8 26.5 26.5 26.5 
4 400 38.2 23.5 24 24 
5 400 38.9 25.2 24 24 
6 400 36.3 23.3 23 23 
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Hence, equation (7.7) together with data in Tabs. 7.1 - 7.2 results in 0m&  as in 

Tab. 7.3, and 0HK  as in Tab. 7.4 where the water density was chosen as 993=ρ  kg·m-3, 

and c = 4180 J·kg-1·K-1. 

Tab. 7.3 Measured relation ( )Pum0&   

Pu  [V] 3 4 5 6 

0m&  [m3·10-4] 69.8 76.1 80.9 83.0 

 

Tab. 7.4 Measured relation ( )PuK PH ,0  [W·K-1] 

         Pu [V] 

P[W] 

4 5 6 

225 1.07 1.37 1.40 
300 1.59 1.54 1.24 
375 1.46 2.14 2.04 
400 2.31 2.76 2.63 

 

The evaluation of these data with respect to (7.3) and (7.7) results in the following 

numeric estimation (made in MS Excel Solver): h0 = 8.4925, h1 = -0.0017, h2 =         -

14999, h3 = -12998, h4 = 1507.988, h5 = 77.766; p0 = 5.077·10-3, p1 = 0.266, p2 = 0.274. A 

graphical comparisons of measured and calculated data are in Fig.7.3 and Fig.7.4. 

 

 

Fig. 7.3 Comparison of measured and calculated 0HK  
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Fig. 7.4 Comparison of measured and calculated 0m&  

One can see that ( )PuK PH ,0  is nearly not depended on the setting of Pu  and thus a 

linear relation ( )PKH 0  could be enough to take. The important disadvantage of these 

estimations is the fact that the results are strongly sensitive to the measurement of the 

ambient air temperature. 

Data in Tab. 7.1 together with the static equation obtained from (7.4) can be also 

used for the evaluation of the (constant) heat transmission coefficient PK  which 

characterizes especially a “height” of the “quasi” steady state of ( )tCIϑ , see Fig. 7.2 (C). 

From (7.4) we have 

 [ ] ⎥⎦
⎤

⎢⎣
⎡ −+−−= A

HOCI
PCIHO Kmc ϑϑϑϑϑ

2
0 00

000&  (7.35) 

The final value of PK  is taken as the arithmetical mean again as 39.0=PK  W·K-1. 

Obviously, the pipeline is insulated very well and this coefficient does not affect the 

system dynamics significantly. The measurement is sensitive to Aϑ  again, and the A/D 

converter resolution (cca 0.1 °C) disables to find a more accurate value of PK . Moreover, 

the effect of secondary heating (due to the material of the pipeline) makes a measurement 

of 0HOϑ  and 0CIϑ  more difficult. 
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As for the estimation of 0CK , steady state yields (7.5) of the form 

 [ ] ⎥⎦
⎤

⎢⎣
⎡ −+−−= A

CICO
CCOCI Kmc ϑϑϑϑϑ

2
0 00

0000&  (7.36) 

This equation together with data in Tab. 7.5 gives the estimation of 0CK , which 

characterizes especially a “height” of the “quasi” steady state of ( )tCOϑ , see Fig. 7.2 (C), 

for a particular setting of Cu , similarly as it was proceeded above. 

Tab. 7.5 Measurements of steady-state temperatures for various Cu , W300=P , V5=Pu  

Cu [V] 0HOϑ [°C] 0CIϑ [°C] 0COϑ [°C] Aϑ [°C] 

1 48.1 47.9 40.0 24 
1 45.3 45.0 36.2 21.5 
1 46.5 46.3 38.2 25 
2 43.3 42.9 34.7 22.5 
2 43.3 42.8 34.9 23.5 
2 44.5 44.3 35.8 23 
4 39.8 39.3 30.0 20.5 
4 42.3 42.2 32.7 23 
4 43.1 42.8 34.5 25.5 
5 39.6 39.3 31.0 21 
5 39.9 39.6 31.6 22 
5 40.9 40.6 32.3 24 
6 40.6 40.5 32.2 23 
6 41.1 40.9 32.6 24.5 
6 38.6 38.4 30.2 21 

 

Note that temperature values for V3=Cu are omitted in Tab. 7.5 since they can be 

obtained from Tab. 7.2. 

The arithmetical mean of particular measured values of 0CK  results in relations as 

in Tab. 7.6. 
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Tab. 7.6 Measured relation ( )CC uK 0  

Cu [V] 0CK  [W·K-1] 

1 14.2 
2 16.9 
3 18.2 
4 19.5 
5 21 
6 21.4 

 

By means of the numerical optimization (MS Excel) one can obtain coefficients of 

(7.6) as 

 c0 = 11.8, c1 = 2.755, c2 = -0.19 (7.37) 

A graphical comparison of measured and calculated ( )CC uK 0  is in Fig. 7.5. 

 

Fig. 7.5 Comparison of measured and calculated 0CK  

All the above presented data enable to draw up the static characteristics of the 

studied model. Static relations between Pu  and all output temperatures, for P = 300 W, 

V3=Cu , C24°=Aϑ , are displayed in Fig. 7.6 
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Fig. 7.6 Static characteristics ( ) ( ),, PCIPHO uu ϑϑ  ( )PCO uϑ , for P = 300 W, V3=Cu , 

C24°=Aϑ  

Static characteristics ( ) ( ),, CCICHO uu ϑϑ ( )CCO uϑ  are presented in Fig. 7.7 , for P = 

300 W, V5=Pu , C24°=Aϑ , and relations ( ) ( ),, PP CIHO ϑϑ ( )PCOϑ  are depicted in Fig. 

7.8, for V5=Pu , V3=Cu , C24°=Aϑ . 

 

Fig. 7.7 Static characteristics ( ) ( ),, CCICHO uu ϑϑ  ( )CCO uϑ , for P = 300 W, V5=Pu , 

C24°=Aϑ  
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P [W] 

Fig. 7.8 Static characteristics ( ) ( ),, PP CIHO ϑϑ  ( )PCOϑ , for V5=Pu , V3=Cu , C24°=Aϑ  

The figures indicate a very good linearity of the model. 

Delays can be estimated graphically from dynamic data (step responses) for 

appropriate system input changes; see Fig. 7.2 (B). The delay of the control action of the 

heat exchanger (cooler), KCτ , was obtained from the cooling curve (not displayed here). 

Results are dependent on the particular mass flow rate; as it can be seen from Tab. 7.7. 

Tab. 7.7 Measured delays as functions of Pu  

Pu  [V] 2 3 4 5 6 

Hτ [s] 3 3 3 3 3 

HCτ [s] 125 125 120 110 105 

Cτ [s] 24 23 22 21 20 

KCτ [s] 14 13 12 12 11 

CHτ [s] 10 10 9 9 8 

 

Since the model does not reflect the influence of ( )tuP  upon the delays, 

arithmetical mean values were taken in the final (i.e. for V4=Pu ). Delay in the 

heater, Hτ , is short enough so that it can be omitted in the model, if one wants to. 

 s9,s12,s22,s110,s3 ===== CHKCCHCH τττττ  (7.38) 
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Overall masses of water in the heater, the cooler and in the long pipeline were 

estimated graphically and numerically from dynamic characteristics, so that measured and 

calculated model give a good agreement. They influence mainly “slopes” of the steepest 

ascents in the particular step responses. For example, MH influences the initial slope of the 

step response of ( )tP  to ( )tHOϑ  mainly. An initial estimation had been made by graphical 

comparison of (model) simulated and measured responses 

Final results obtained by the evaluation of the least mean squares criterion are the 

following 

 kg 27.0,kg 22.0,kg08.0 === CPH MMM  (7.39) 

The final comparison of measured step responses and the calculated ones is 

depicted in Fig. 7.9. 

 

Fig. 7.9 Comparison of measured (dotted) and calculated (solid) step responses for the 
settings V5=Pu , V3=Cu , W300=ΔP , on/off fan is on 

7.3 Design of a controller for the plant in RMS 

The derivation of two different controllers’ structures for the heating plant 

described above using the algebraic approach in RMS for various external inputs and 

feedback loops is the subject matter of this subsection. Because of the plant is MIMO, only 

one manipulated input and one measured output are chosen while the rest serve for 
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defining of the operation point. Namely, the intention is to control ( )tCOϑ  by means of 

( )tP . From model (7.25), (7.32) and (7.33), it can be obtained 
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Let ( )tP  be relabeled to ( )tPH  to avoid the confusion with the controller 

denominator. 

7.3.1 1DoF control structure 

Consider the 1DoF control system as in Fig. 2.1 and let the external inputs be from 

the class of stepwise functions (4.204) with ( ) ( ) 0mssmsm dw +== , >0m 0, for the 

simplicity. Utitlize now the methodology described in Subsection 4.3. 

The plant transfer function can be factorized as 

 ( )
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 (7.41) 

where ( )sm  is a stable (quasi)polynomial of degree three, for instance, ( ) ( )30mssm += , 

again for the simplicity. Naturally, there are other possibilities how to select ( )sm , e.g. as 

( ) 01
2

2
3 msmsmssm +++= , which would bring more degrees of freedom (free selectable 

controller parameters). 

The primary aim is to stabilize the control feedback loop using (4.33). If ( ) 10 =sQ , 

the following particular stabilizing solution is obtained 

 ( ) ( ) ( )( ) ( )
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sbsbms
sP

D

D

ϑ
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exp
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2
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For reference tracking and disturbance rejection, condition (4.40), i.e.  

( ) ( ) ( )( ) ( ) ( ) ( )( )sPsBsFsPsAsF DW || ∧ . Equivalently, ( )sP  must include at least one zero 

root which can be expressed by the condition 

 ( ) 00 =P  (7.43) 

Thus, try to choose the following structure 

 ( ) ( )
( ) 0

001
2

2
3

3
0

exp
Z
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ms
sZ

D ϑ−++++
+=  (7.44) 

where ∈0Z , to obtain ( )sP  in an arbitrarily simple form. Condition (7.43) results in 
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 (7.45) 

Finally, the controller structure is given by inserting (7.45), (7.44) and (7.42) into 

(4.34) as 

 ( ) ( )( )
( )( ) ( )( ) ( )sbsbmmsbb

saasasasm
sG

DD

D
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ττ
ϑ

−+−−++
−++++=

expexp

exp

000
3
0

3

000

001
2

2
33
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The controller contains only one selectable (free) parameter 0m  and it has 

anisochronic structure including internal delays; however, it is simply realizable by 

integrators and delay elements, see the MATLAB/Simulink scheme as in Fig. 7.10. The 

value of 0m  is going to be chosen according to the robust analysis, see Subsections 7.6 and 

7.7. 

7.3.2 TFC control structure 

The TFC control system (Fig. 2.2) is utilized in this subsection to determine the 

controller law for different external inputs via the methodology described in Subsection 4.4. 
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Fig. 7.10 MATLAB/Simulink scheme of controller (7.46) 

Let the external inputs be described by (4.204), i.e. the reference is from the set of 

linearwise functions, whereas the disturbance has a stepwise character. Plant coprime 

factorization is given by (7.41). 

Closed-loop stabilization according to (4.60) yields e.g. 
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which is equivalent to (7.42). Since it must hold that ( ) ( ) ( )( ) ( ) ( ) ( )( )sPsBsFsPsAsF DW || ∧  

giving rise to two conditional equations (4.59) for ( )sP , select ( )sZ  with two free real 

parameters 0z , 1z  as 
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Then the numerator of ( )sP  reads 

 ( ) ( ) ( )( ) ( ) ( )( )001000
4
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Conditional equations 
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result in 
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and consequently 
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Decomposition (4.63) must be done so that ( ) ( ) ( )( )sQsBsFW | ; however, as ( )sT  in 

(7.52) is of the first order numerator polynomial, it is not possible to meet the requirement. 

Nevertheless, one can make the following extension 
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and the decomposition obviosly reads 
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To sum up, the controllers’ transfer functions are 
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In this case, there are two real selectable controller parameters. A simple 

suboptimal tuning idea is presented in Subsection 7.7. 

7.4 Relay feedback identification test 

We attempted to simplify model (7.40) by the use of the relay-feedback 

experiment, see Subchapter 2.8 and Chapter 6, and to compare control responses using the 

original mathematical model and that obtained from the relay test. Hence, consider model 

(6.1) and try to identify its parameters. Three different set of algebraic equations (6.6) – 

(6.9), (6.19) – (6.22) and (2.131) – (2.133), respectively, were solved by means of 

a) the well-known Levenberg-Marquardt (LM) method (which is close to the 

Gauss-Newton one), see e.g. [78], 

b)  the NM algorithm, see Subchapter 5.4, and 

c) the MS Excel Solver. 

Note that for the operating point 

 [ ] [ ]C24C,36,C8.43C,1.44,W300,V3,V5,,,,,, °°°°=ACOCIHOHcp Puu ϑϑϑϑ  (7.56) 

the parameters in (7.40) are the following 
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Look at simulation results via several techniques in more details. 

7.4.1 Frequency-domain solution 

The relay test was performed with a biased on-off relay, ]W[180,220 == −+ BB , 

first, to get the estimation of the static gain according to (2.126) and that of the ultimate 

gain as in (2.125) for a saturation relay test. The results were the following: 

][9975.11 CA °= , ][8.3641, sTu = , which gives min1, 48.127 kku == , 

( ) 0325.0/ 100 =+= aabk . Dead time was estimated according to Fig. 2.10 as 7.136=τ . 

Then we tried to perform the saturation-relay test with min2, 4.1 kku = ; however, the 

restoration of limit cycles took a long time and there was an obvious margin in the setting 

of the saturation relay. Thus, the option 426.123.1401.1 2min2, =⇒== Akku  resulted in 

4.3732, =uT , 9245.12 =A . These results enable to estimate two model parameters.  

Hence, introduce an artificial delay element with ( )uωπτ 12/5=+  

8.7724/5 2, == uT . Again, the procedure started with a (symmetrical) on-off relay 200=B  

yielding 14.82
~~

,3.555
~

,1.3
~

min1,1,1 ==== kkTA uu . Since min2,

~
1.1

~
kku =  did not cause limit 

cycles, 7391.1
~

115
~

4.1
~

2min2, =⇒== Akku  were taken for the saturation-relay test which 

gave 8.597
~

,52.2
~

2,2 == uTA . 

Solutions of the set (6.6) – (6.9) via various techniques are introduced in Tab. 7.8. 

The static gain value 0325.0=k  is fixed and the initial parameters estimation reads 

013.0/5.0 2,10 === uTaa , 7.136==ϑτ . 

Note that NM algorithm and the MS Excel Solver minimize the sum of squares of 

the left-hand sides of (6.6) – (6.9), which agrees with error e  in the table. 
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Tab. 7.8 Frequency-domain solution with saturation relay and artificial delay 

 LM method NM method Excel Solver 

0a  210751567.1 −⋅  3109301645.9 −⋅  210422509.4 −⋅  

1a  31008719.9 −⋅−  3109951297.3 −⋅−
 

2104479.2 −⋅−  

τ  83.102  83.159  92.140  

ϑ  49.131  75.130  2.155  

e  21027.1 −⋅  201025.3 −⋅  41006.8 −⋅  

7.4.2 Time-domain solution 

Simulation experiment results from the preceding subchapter can be used for 

alternative, time-domain, solution of the relay identification problem given by the set 

(6.19) – (6. 22). Again, the results are summed up in Tab. 7.9. 

Tab. 7.9 Time-domain solution with saturation relay and artificial delay 

 LM method NM method Excel Solver 

0a  3109301645.9 −⋅  3109301645.9 −⋅  3109301645.9 −⋅  

1a  3109951297.3 −⋅−
 

3109951297.3 −⋅−
 

3109951297.3 −⋅−
 τ  83.159  83.159  83.159  

ϑ  75.130  75.130  75.130  

e  131082.1 −⋅  251038.3 −⋅  211011.2 −⋅  

Obviously, the three computational techniques provide (almost) the same results 

identical with that obtained by the frequency-domain solution via NM algorithm. 

7.4.3 Use of relay transient 

Finally, try to use the relay transient introduced in Subsection 2.8.5. Limit cycles 

from the experiment with on-off relay were utilized. Exponential decaying function was 

chosen as ( )t01.0exp − , the sampling period for the DTFT was set to 1.00 =T  and the final 

time was taken as 2000=ft . These values give rise to discrete frequencies 

∈= lll ,0031.0ω  on which the DTFT is calculated and, subsequently, model parameters 

are estimated according to (2.131) – (2.133). 
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For 1=l , ( ) j103348.3101139.1j 24
1 ⋅+⋅−=ωU , ( ) j1697.20j 1 +=ωY  and 

( ) ( ) ( ) 3
11 10j379.1924.1j/j −⋅−=ωω UY . 

For 3=l , ( ) j1052541.210285243.1j 34
3 ⋅+⋅−=ωU , ( ) j188.25208.11j 3 +=ωY  

and ( ) ( ) ( ) 3
33 10j49819.08087.1j/j −⋅−−=ωω UY . 

Inserting these values into (2.132) for model (6.1), optimization techniques yield 

results introduced in Tab. 7.10. 

Tab. 7.10 Solution by the use of the relay transient 

 LM method NM method Excel Solver 

0a  21006598277.3 −⋅  21006598277.3 −⋅  310410418.7 −⋅  

1a  2107487959.1 −⋅−  2107487959.1 −⋅−  310607269.2 −⋅−  

τ  42.143  42.143  7.136  

ϑ  08.158  08.158  69.136  

e  141019.3 −⋅  151059.1 −⋅  81029.1 −⋅  

Thus, LM and NM techniques provided comparable results. 

7.4.4 Comparison of the results 

To sum up the relay experiment, results from Tabs. 7.8 – 7.10 are compared via 

step responses and Nyquist plots of original and approximating models. Concurrently, ISE 

and ISTE criteria – analogous to (4.186) and (4.187) with 0=ϕ  – are calculated for step 

responses for the time range [ ]2000,0∈t  with the step 1.0=Δt , and Nyquist plots are 

assessed using the criterion 

 ( ) ( )∑ −=
i

iiNyq GGJ
ω

ωω  (7.58) 

where G  is the original model (7.40), G  means the approximating one (6.1) and iω  are 

discrete frequencies, here [ ]1.0,0∈ω  with 4
1 10−
− =−=Δ ii ωωω . 

 Figs. 7.11 and 7.12 provide a graphical comparison, whereas Tab. 7.11 gives 

criterial results.  
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Results from Tabs. 7.8 – 7.10 are labelled as follows: 

 a) “Result 1” – NM from Tab. 7.8, all results from Tab. 7.9. 

 b) “Result 2” – LM from Tab. 7.8 

 c) “Result 3” – Excel Solver from Tab. 7.8 

 d) “Result 4” – LM and NM from Tab. 7.10 

 e) “Result 5” – Excel Solver from Tab. 7.10 

As can be seen from Tab. 7.11, the use of the relay transient solved by the LM and 

NM methods gives the best result. Especially, the Nyquist curves of the original model and 

the approximating one obtained by this way almost coincide for low frequencies (up to the 

ultimate frequency). The time-domain solution and the NM technique, generally, provide 

good approximation as well. 
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Fig. 7.11 Step responses of the original model (7.40) vs. approximating models (6.1) via 

relay-feedback test 
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Fig. 7.12 Nyquist plots of the original model (7.40) vs. approximating models (6.1) via 

relay-feedback test 

Tab. 7.11 Comparison of relay experiment results 

Result 
ISEJ  ISTEJ  NyqJ   

Result 1 1.363 845.2 3.227 

Result 2 6.304 3704 4.475 

Result 3 1.795 1063.4 4.472 

Result 4 0.607 450.2 2.835 

Result 5 1.015 713.7 2.852 

 

7.4.5 Design of controllers in RMS for the relay-identified model 

Without superfluous details, let us present controllers derived for model (6.1), 

analogously to the procedure introduced in Subsections 7.3.1 and 7.3.2. The reader is 

referred therein for details. 

For the 1DoF controller structure with stepwise inputs, i.e. reference and load 

disturbance, the final controller can be obtained e.g. as 
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 ( ) ( )
( )( ) 0,

exp1
exp

0
0

10

0

0 >
−−+
−++= m

sms

saas

b

m
sGR τ

ϑ
 (7.59) 

If the TFC control system is considered and it is supposed that the reference signal 

is linearwise and load disturbance is from the class of stepwise functions, the eventual 

controllers’ transfer functions read 
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  (7.60) 

Recall that another coprime factorization of the plant model, particular solution of 

the Bézout identity or choice of the form of parameterization term ( )sZ  can lead to a 

different controller. 

7.5 Controllers simplification 

As can be seen from (7.46), (7.55), (7.59) and (7.60), the obtained controller 

structures are a rather complex. Thus, for the engineering practice, it would be desirable to 

simplify them, namely, to reach a finite-dimensional approximation of the control law. 

In recent decades a huge number of papers and works have been focused on model 

reduction or rational approximation of TDS, see e.g. [4], [80], [81]. A fair overview of 

some methods and approaches has been published in [114]. An overwhelming majority of 

these methods, however, deals with input-output delays only ignoring internal or state 

delays on the left-hand side of differential equations, i.e. those transfer functions with 

exponential terms in the denominator. Moreover, the obtained controller structures would 

be of a very high order, as it is presented in [120] for some particular cases. 
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Hence, in this subchapter, two possible simple (intuitive) methods for a low-order 

finite-dimensional approximation of anisochronic controllers are suggested and, 

consequently, applied to original controllers (7.46) and (7.55). 

Namely, consider a proportional-integral-derivative controller governed by the 

transfer function(s) 

 ( ) ( )
( ) ( ) ( ) ( )

( ) ( )0

01
2

2

0

01
2

2 ,
pss

qsqsq

sP

sQ
sG

pss

rsrsr

sP

sR
sG QR +

++==
+

++==  (7.61) 

and a proportional controller 

 ( ) ( )
( ) 0q
sP

sQ
sGQ ==  (7.62) 

as approximating models. 

7.5.1 Using dominant poles and zeros 

Intuitively, it is possible to preserve dominant (right-most) controller zeros and 

poles and asymptotic controller behavior, i.e. the slope of a step response direction at 

infinity for an integral controller and/or an initial point of a step response for a derivative 

one. This task can be defined as to find { }21, ss , { }21, QQ zz , { }∈21, RR zz 2 such that 

 { } ( ) ( ) ( ) ( ) ( ) ( ) ⎪⎭

⎪
⎬
⎫
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⎨
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======

≠≠≥≥
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and to satisfy the following conditions 
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 (7.66) 
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for controllers with integral behavior (or for those tracking or rejecting harmonic signals) 

and  

 ( ) ( )sGsG ss ⋅→∞⋅→∞ = limlim  (7.67) 

for derivative-like controllers. The lower index ” ⋅ ” means either R  or Q . 

The application of the procedure to the original controllers (7.46) and (7.55) with a 

selected 0m  is introduced in Subsection 7.7. 

7.5.2 Using the Padé approximation 

The transfer function rationalization via the Padé approximation is usually 

performed in such a way that the approximation is applied to exponential terms only. This 

technique leads to high-order approximation models. A different approach, used here, rests 

in the approximation of the whole transfer function based on the Taylor (Maclaurin) series 

expansion of the approximated and approximating model and matching of some (low-

degree) coefficients, which agrees with conditions 
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 (7.68) 

Notice that it is possible to calculate identities (7.68) at a different point from 

0=s , e.g. in the neighborhood of a frequency where a good approximation is desired. If 

any of derivatives does not exist, substitute ( )sG⋅  by ( )sG⋅/1 , which is the case of 

controllers derived above as well. The value of k (usually) equals the number of 

approximating model parameters.  

For this method, we can derive particular conditional equations for approximated 

models (7.46) and (7.55) and the approximating ones (7.61) and (7.62) directly. However, 

these algebraic equations are rather complex; therefore, they are not displayed in this 

thesis. Particular values of parameters in (7.61) and (7.62) are calculated in Subsection 7.7. 

Some notes to the general calculation follows. 
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Consider controller (7.46) first. Since ( ) ∞→0RG , the derivatives in (7.68) are 

calculated for ( )sGR/1  and model (7.61) is chosen. Moreover, condition 

( )[ ] ( )[ ]
0

/1/1 0 =
== s

sGsG RsR  leads to identity 00 =  directly, which implies no useful result. 

Therefore, let 4=k  rather than 3=k . 

As second, controller ( )sGQ  in (7.55) has no pole at zero, hence, 1=k  and model 

(7.62) is considered here. Finally, ( )sGR  owns a double zero pole and 

( )[ ] ( )[ ] 00/1/1
00 =⇒=

== s
sGsG RsR  again, therefore take 4=k  and model (7.61). 

7.6 Robust analysis of controllers 

Now let us analyze the robustness, i.e. robust stability and performance, of the 

designed controllers for various settings of selectable controller parameters. To 

demonstrate the procedure introduced in Subchapter 2.7, consider original controllers 

(7.46) and (7.55) only – controllers designed for a relay-test based model, i.e. (7.59) and 

(7.60) and approximating controllers (7.61) can be assessed analogously. 

First, it is necessary to determine the family of plant transfer functions which is 

obtained by variations within the ranges of selected model parameters. We have selected 

three parameters the values of which are affected by measurements uncertainties or 

ambient conditions, namely, KC, KP and Aϑ . Intervals for KC and KP have been chosen on 

the basis of two identification measurements, see [128], [162], and Aϑ  has been selected 

according to room temperature variations during the year. Hence, the intervals are the 

following 

 [ ] [ ] [ ]30,16,22,15,5.0,1.0 ∈∈∈ ACP KK ϑ  (7.69) 

The set of Bode plots ( ) ( ) 1j/j 0 −ωω GG  for all eight combinations of margin 

values in (7.69) is depicted in Fig. 7.13. This set was covered by a plot expressing 

( )ωjMW  given by the transfer function (7.70). 

 ( ) ( )( )
( )( ) 13555100

36.06.75720

1151340

1101200
36.0

2

2

++
++=

++
++=

ss

ss

ss

ss
sWM  (7.70) 
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Fig. 7.13 Determination of ( )ωjMW  

Consider now the 1DoF and TFC control systems separatelly. 

7.6.1 1DoF control structure 

Theoretical background for robust analysis of the 1DoF control system has been 

presented in Subchapter 2.7. Verification of the robust stability criterion (2.116) for several 

settings of 0m  is displayed in Fig. 7.14. 

 The weighting function ( )ωjPW  has been chosen so that the nominal performance 

condition (2.115) holds for a selected range of 0m , as 

 ( ) ( )
( )( ) 144031500

90036000

1901350

140
900/1

2

2

++
+=

++
+=

ss

ss

ss

ss
sWP  (7.71) 

see Fig. 7.15. 
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Fig. 7.14 Robust stability verification for 1DoF 

 

Fig. 7.15 Nominal performance – determination of ( )ωjPW  for 1DoF 

Obviously, the decreasing of 0m  would lead to poor nominal performance at lower 

frequencies, whereas its increasing would cause the same effect at middle frequencies. 

Finally, test the robust performance condition (2.119) with ( )sWM  and ( )sWP  

given by (7.70) and (7.71), respectively, as it is depicted in Fig. 7.16. The results indicate 

that for 005.00 =m  and 02.00 =m  the feedback system has poor robust performance. 
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Hence, the eventual range ]012.0,008.0[0 ∈m  has been chosen for controller tuning, 

simulations and real experiments. 

 

Fig. 7.16 Robust performance test for 1DoF 

7.6.2 TFC control structure 

As was mentioned e.g. in Subchapter 2.7.3, robust stability and robust performance 

conditions (2.116) and (2.119) hold for the 1DoF control structure; however, other 

structures require the derivation of specific conditions. While making effort to do this, it is 

possible to use principles demonstrated in Figs. 2.5 and 2.6, condition (2.118) and the 

Nyquist criterion the basis of which is formulated in (4.159). Let us introduce theorems 

about robust stability and robust performance for the TFC control system. 

Theorem 7.1 

If the open loop ( ) ( )sGsL O=0  is stable, the TFC control system is robustly stable 

if and only if 
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Proof. Robust stability principle based on the Nyquist criterion (see Theorem 

4.10), graphically expressed in Fig. 2.5 and analytically formulated in (2.117), with respect 

to (4.159) reads 
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Since 
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 (7.74) 

condition (7.73) can be written as 
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  □ 

The obtained result corresponds with (2.116) since ( ) 0=sGQ  for the 1DoF system. 

A theorem dealing with robust performance follows. 

Theorem 7.2 

If the open loop ( ) ( )sGsL O=0  is stable, the TFC control system meets robust 

performance if and only if 
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Proof. The requirement of robust performance is satisfied if (2.118) holds. Follow 

the sketch of proof of (2.119) for the 1DoF control system in (2.120) – (2.122) 

analogously. 

Because of 
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the right-hand side condition in (2.118) reads 
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 Using (7.74) and (7.77) it holds that 
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The worst case is 
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Finally, by applying (2.118) and (7.72) on (7.80), condition (7.76) is obtained. □ 
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Again, if ( ) 0→sGQ , condition (7.76) convergates to (2.119) – for 1DoF. 

Robust stability criterion (7.72) test for several settings of 0m  is displayed in Fig. 

7.17, whereas our calculations show that neither 1m  nor γ  affect the robust stability 

condition. 

 

Fig. 7.17 Robust stability verification for TFC 

Obviously, the higher the value of 0m  is, the worse robust stability is at middle 

frequencies. Here, the criterion is satisfied for approximately [ ]09.0,00 ∈m . 

The weighting function ( )ωjPW , has been chosen so that the nominal 

performance condition (2.115) holds for a selected ranges of 0m , 1m , γ  again. Plots of 

( )ωj0S  for particular values of controller coefficients are presented in two bunches of 

figures titled as Fig. 7.18 and Fig. 7.19 and a cumulative graph with the desired curve of 

( )ωj/1 PW  is displayed in Fig. 7.20. As can be seen from the figures, higher values of 0m  

improves nominal performance at low frequencies but make it worse at middle ones. The 

same statement holds for 1m , whereas higher values of γ  slightly worsen this feature at all 

frequencies.   

The transfer function of ( )ωj/1 PW  has been chosen as 



- 252 - 

 ( ) ( )
( )( )( ) 110901008.9108

5.1
109

11018011000
15.1

109/1 2435

23
5

2
5

++⋅+⋅
+⋅=

+++
+⋅=

sss

ss

sss

ss
sWP  

  (7.81) 

Finally, let us verify robust performance given by the criterion (7.76) for the 

calculated value of ( )ωjMW  as in (7.70) and the selected form of ( )ωjPW  introduced in 

(7.81). The set of results is provided in Fig. 7.21. 

The figures can be analyzes as follows: The higher 0m  is, the higher the peak 

frequency is, yet, the peak value is improved only for a limited range of 0m . Higher values 

of 1m  tend to improve robust performance at lower frequencies where the peak is shifted to 

the right, whereas they deteriorate the feature at middle frequencies where the peak moves 

to the left. Finally, γ  has the same effect on robust performance (the peak value) as 1m ; 

however, its higher values yield the peak frequency lower at lower frequencies and higher 

at middle frequencies. 

 

Fig. 7.18  Nominal performance ( )ωj0S  [dB]  for various 0m , 1m , γ  for TFC – part 1 
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Fig. 7.19  Nominal performance ( )ωj0S  [dB]  for various 0m , 1m , γ  for TFC – part 2 

 

Fig. 7.20 Nominal performance – determination of  ( )ωjPW  for TFC 
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Fig. 7.21 Robust performance test (7.76) for TFC 
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The decision about the criterion (7.76) is clearly presented in Tab. 7.12. It is 

evident from the table that robust performance is satisfied only for a narrow range 

(domain) of controllers’ parameters. As a solution of this problem, it is possible to set 

( )ωjPW  more conservatively.  

Tab. 7.12 Robust performance fulfillment for TFC – yes (Y), no(N) 

        γ  

0m  
1m  

0.3 0.5 0.8 

0.001 N Y Y 
0.005 N Y Y 

0.01 

0.01 N Y Y 
0.001 Y Y N 
0.005 Y Y N 

0.05 

0.01 Y N N 
0.001 N N N 
0.005 N N N 

0.1 

0.01 N N N 

7.7 Controllers tuning and simulation experiments 

This subchapter strives to select suitable free controllers’ parameters, i.e. the value 

of 0m  for the 1DoF control system represented by controller (7.46) and the triplet 

γ,, 10 mm  for the TFC structure with controllers (7.55), with respect to robust analysis 

results. Controllers derived in Subchapter 7.4.5 for relay-test plant models are then tested 

via MATLAB/Simulink experiments. Moreover, simplified controllers‘ structures 

according to Subchapter 7.5 are then calculated and benchmarked as well.  

Let us consider the 1DoF structure first. Since the reference-to-output transfer 

function reads a relatively simple form 

 ( ) ( )( ) ( )
( )( )3000

000
3
0 expexp

msbb

sbsbm
sG

D

D
WY

++
−+−= ττ

 (7.82) 

and 0m  impacts the triple real pole, we decided to choose the value of the parameter by 

simulations only. Note that robust analysis yields the required restriction ]012.0,008.0[0 ∈m . 
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Control responses are displayed in Fig. 7.22 where ( ) ( )tPtu HΔ=Δ 0  and 

( ) ( )tty COϑΔ=Δ  denote the difference of a corresponding quantity from the operating point 

(7.56). 

 

Fig. 7.22 Simulation control responses of ( )tu0 (left) and ( )ty  (right) for 1DoF structure) 
with controller (7.46) 

As it results from the figures, higher values of 0m  lead to faster yet higher control 

actions; namely, 012.00 >m  yields 450max,0 >Δu W which is not physically acceptable 

since 750max, =HP W while operation point reads 3000, =HP W. Real time steering, for 

these cases, would claim the use of anti-windup control action calculations. Hence, it 

seems that 012.00 =m  is a convenient option, which confirms Tab. 7.13 incorporating values 

of the ISE and ISTE criteria, according to (4.186) and (4.187), respectively, with 10=ϕ . 

Apparently, the value of 012.00 =m  provides the best criteria values for the selected range of 

discrete values of 0m . Another choice of ϕ , naturally, would lead to a possibly different 

criteria grades. 

Tab. 7.13 ISE and ISTE criteria values for controller (7.46) with 10=ϕ  

0m  ISEJ  ISTEJ  

0.008 4.3583·104 4.3583·107 
0.01 4.0582·104 9.1137·106 
0.012 3.9875·104 8.2889·106 
0.016 4.2634·104 1.0483·107 
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In the case of  the TFC control structure, ( )sGWY  is rather more complex 

 ( ) ( )
( )( ) ( )( )

( ) ( ) ( )s
msms

mtstmtstbsb

bb

m
sG D

D

WY τγτ −
++

++++−
+

= exp
exp

1
4

0

10011
2

1000
2

00

3
0  (7.83) 

We tried to adopt the following idea: It is well known that a stable system with real 

poles ip  inflicts an overshoots if there exist a zero (or zeros) z  of ( )sGWY  with 

 maxRe pz >  (7.84) 

where { }jipppp iji ≠∀≤= ,:max , see e.g. [87]. Hence, the intent is to find the triplet 

γ,, 10 mm  such that (7.84) does not hold, or the value of  

 maxRe pz −=δ  (7.85) 

or that of 

 0Re,Re/max <= zzpρ  (7.86) 

is minimal. Since zeros ∈±= kkz k j,1888.45912.1,1  of the factor ( ) 000 exp bsb D +−τ  can 

not be influenced, the aim is to affect zeros of the second factor in the numerator within 

ranges [ ]1.0,01.00 ∈m , [ ]01.0,001.01∈m , { }75.0,5.0,25.0∈γ . It has been found 

numerically that (7.84) holds true for all the ranges. Optimal values are given in Tab. 7.14. 

Tab. 7.14 Values of  δ  and ρ  according to (7.85) and (7.86), respectively 

γ  δ  ρ  optm ,0  optm ,1  

0.25 4.6929·10-5 1.0492 0.1 0.001 
0.5 8.5692·10-5 1.0937 0.1 0.001 
0.75 1.1864·10-4 1.1346 0.1 0.001 

 The results in Tab 7.14 can be interpreted in such a way that both criteria are 

improved if low values of γ  and 1m  and a high value of 0m  are selected. Graphical results 

for 25.0=γ  are presented in Fig. 7.23 which indicates that there is a higher sensitivity of 

this issue to changes in 1m  rather then 0m  except for a domain 00 →m . 
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Fig. 7.23 Values of δ  and ρ  according to (7.85) and (7.86), respectively, for 25.0=λ  

Simulation control responses for controllers (7.55) with { }03.0,02.00 ∈m , 

{ }007.0,003.01∈m , { }8.0,4.0∈γ  are displayed in Figs. 7.24 and 7.25. Note that higher 

values of 0m  have not been benchmarked because of numerical instability of 

MATLAB/Simulink calculations. 

Results from the figures confirm the analysis above only partially. Detailed view 

on overshoots of ( )tyΔ for a linear to constant change of ( )tw , a response to ( )td  and step 

change in ( )tw , respectively, are presented in bunches of figures labeled as Fig. 7.26 and 

Fig. 7.27.  

 

Fig. 7.24 Simulation control responses of ( )tu0Δ  (left) and ( )tyΔ  (right) for the TFC 

structure with controllers (7.55) - 4.0∈γ  
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Fig. 7.25 Simulation control responses of ( )tu0Δ  (left) and ( )tyΔ  (right) for the TFC 

structure with controllers (7.55) - 8.0∈γ  

 

 

Fig. 7.26 A detailed view on overshoots of ( )tyΔ  from Fig. 7.24 
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Fig. 7.27 A detailed view on overshoots of ( )tyΔ  from Fig. 7.25 

Figures above indicate that a higher value of 0m  tends to reduce the initial 

overshoot in ( )tyΔ , yet blows the two rest overshoots (undershoots) up. Parameter 1m  has 

almost the same impact; however, it does not influence the reaction to load disturbance. 

Finally, the rising of γ  results in a slightly reduction of the initial overshoot and a 

conspicuous undershoot while step-step changing of ( )tw . It also decreases the sensitivity 

of the responses to changes of the rest two parameters. 

The effect of coefficients to ( )tuΔ  must be taken into account as well. Similarly as 

for the 1DoF structure, some controller parameters’ values are physically unacceptable, 

namely, the option 8.0=γ  yields control action 300min,0 −<Δu W, i.e. 0min, <HP W. 

Taking into account the robust analysis, the quasi-optimal (overshoot) reduction 

idea and the simulation results above, we decided to set: 4.0,005.0,02.0 10 === γmm . 
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Now the task is to perform and benchmark controllers (7.59) and (7.60) derived for 

a simplified (yet infinite-dimensional) plant model (7.40), parameters of which are 

identified via the relay-feedback test, namely, using the relay transient given in Tab. 7.10. 

Robust analysis is omitted here since the aim is to demonstrate the usability of simplified 

controllers instead of their thorough analysis. 

For the 1DoF control system with controller (7.59), the selected value 012.00 =m  

can not be chosen because of a very high control action. We finally chose 005.00 =m , see 

Fig. 7.28. A comparison with the use of the original controller (7.46) is presented in the 

figure as well. 

 

Fig. 7.28 Simulation control responses of ( )tu0Δ  (left) and ( )tyΔ  (right) for the 1DoF 
structure with controllers (7.46) vs. (7.59) 

 Regarding the TFC structure with controllers (7.60), the following controllers’ 

parameters values have been selected 4.0,005.0,01.0 10 === γmm . The original setting 

02.00 =m  could not be used because of numerical instability of the MATLAB/Simulink 

experiment. Simulation results can be seen in Fig 7.29. 

 Both cases, i.e. 1DoF and TFC one, validate the usability and efficiency of 

controllers (7.59) and (7.60), respectively. Their structures are rather simpler compared to 

the original ones, i.e. (7.46) and (7.55), yet they provides comparable and satisfactory 

control responses. 
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Fig. 7.29 Simulation control responses of ( )tu0Δ  (left) and ( )tyΔ  (right) for the TFC 

structure with controllers (7.55) vs. (7.60) - 4.0,005.01 == γm  

 Finally, follow now Subchapter 7.5 to benchmark finite-dimensional controllers 

(7.61) and (7.62). The use of dominant poles and zeros proposed in Subchapter 7.5.1 

makes structure (7.61) for the 1DoF structure impossible, since the rightmost controller 

zeros are  

 { } { }j10077622.31043535.6,1097619.2,, 233
321

−−− ⋅±⋅−⋅−=RRR zzz  (7.87) 

 Hence, consider a more general approximating linear finite-dimensional controller 

structure 

 ( ) ( )01
2

01
2

2
3

3

pspss

rsrsrsr
sGR ++

+++=  (7.88) 

rather then (7.61). Because of 

 { } { } ( ) 10978.0lim,j10346829.21074644.6,0,, 0
23

321 =⋅±⋅−= →
−− ssGsss Rs  (7.89) 

the approximating controller reads 

 ( ) ( )422

5223

1096275.5103493.1
10546.6102846.235256.02481.22

−−

−−

⋅+⋅+
⋅+⋅++=

sss

sss
sGR  (7.90) 

However, this controller causes a very high control action, as can be seen in Fig. 

7.30, therefore, a reduced controller gain as ( ) ( )sGsG RR 75.02 =  has been set eventually. 
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Fig. 7.30 Simulation control responses of ( )tu0Δ (left) and ( )tyΔ  (right) for 1DoF 
structure with controllers (7.46) vs. (7.90) 

 Regarding the TFC case, ( )sGQ  can be approximated by a proportional model 

(7.62) where the identity ( ) ( )sGsG QsQs 00 limlim →→ =  is taken as an objective, hence 

 ( ) 6114.24== QQ GsG  (7.91) 

Dominant poles and zeros of ( )sGR  in (7.55) are the following 

 

{ } { }
{ }
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⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⋅±⋅−
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⋅±⋅−=

−−

−−

−−

j10077622.31043535.6

,109761945.2,100971272.2
,,,

j10917941.2105421755.1,0,0,,

23

33

4321

24
321

RRRR zzzz

sss

 (7.92) 

which implies that model (7.61) can be used here as 

 ( )
2

42 1016545.650115395.07822.98

s

ss
sGR

−⋅++=  (7.93) 

where the condition ( ) ( ) 42
0

2
0 1016545.6limlim −

→→ ⋅== sGssGs RsRs  is considered in 

addition. 

 However, control process with controllers (7.91) and (7.93) is unstable (and hence 

not displayed here); therefore, we have changed controllers‘ gains as QQ GG 5.02 = , 

( ) ( )sGsG RR 5.02 =  - the corresponding control responses are depicted in Fig. 7.31. 
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Fig. 7.31 Simulation control responses of ( )tu0Δ  (left) and ( )tyΔ  (right) for the TFC 
structure with controllers (7.55) vs. (7.91) and (7.93) 

As for the relay-based model, approximating controllers derived on the basis of a 

requirement of equality of controllers’ poles and zeros provide satisfactory control 

responses that are a bit slower then the ones obtained by the algebraic approach in the RMS 

ring, yet with reduced overshoots. Nevertheless, controllers’ gains had to be adjusted. 

The method presented in Subchapter 7.5.2, i.e. the use of the Padé approximation, 

gives the following approximation of controllers (7.46) and (7.55) by models (7.61) and 

(7.62) 

 ( ) ( )2

32

1059065.3

1091172.2871844.0873.36
−

−

⋅+
⋅++−=

ss

ss
sGR  (7.94) 

for the 1DoF structure and 

 
( )
( ) 6114.24

1016545.6416887.02676.47
2

42

=

⋅++=
−

sG

s

ss
sG

Q

R  (7.95) 

for the TFC system, respectively. The corresponding simulation control responses are 

pictured in Figs. 7.32 and 7.33, respectively. 

 Obviously, this type of approximation provides a very good result closely 

matching the original control responses curves without changing of controllers’ settings. 

Its disadvantage can be viewed in rather complex calculations of (7.68). 
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Fig. 7.32 Simulation control responses of ( )tu0Δ  (left) and ( )tyΔ  (right) for the 1DoF 
structure with controllers (7.46) vs. (7.94) 

 

 

Fig. 7.33 Simulation control responses of ( )tu0Δ (left) and ( )tyΔ  (right) for TFC structure 
with controllers (7.55) vs. (7.95) 

7.8 Discrete-time implementation 

As mentioned in Subchapters 2.9 and 7.1, we initially intended to verify the results 

above via a PC equipped with RS232 and CTRL V3 unit [34] which can work with 

discrete-time samples only (approx. sTs 1> ); however, later, the PC has been enhanced by 

the data acquisition card AD622 and Real-Time Toolbox for Matlab, which enables to use 

quasi-continuous algorithms (e.g. sTs 01.0≈ ). Nevertheless, to demonstrate the usability of 

the discretization approach based on delta models introduced in Subchapter 2.9, namely by 
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(2.134), (2.151) – (2.153), the discrete-time versions of control algorithms follow. The 

reader is free to use them if necessary. 

A general solution will not be presented mainly due to its complexity caused by 

the assumption of interpolation (2.134). Hence, set sTs 1= , then the discrete-time rule of 

controller (7.46) reads 

 ( ) ( )
( )zP

zQ
zG

D

D
RD =  (7.96) 
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The discretization of controllers (7.55) yields a very intricate form of 
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with 

 

( )

( )

( )
138

138
137

137
136

136
135

135
134

134
133

133

132
132

131
131

6
6

5
5

4
4

3
3

2
2

1
10

149
149

148
148

147
147

146
146

145
145

144
144

143
143

6
6

5
5

4
4

3
3

2
2

1
10

149
149

148
148

147
147

146
146

145
145

144
144

143
143

6
6

5
5

4
4

3
3

2
2

1
10

−−−−−−

−−−−−−−−

−−−−−

−−−−−−−−

−−−−−−

−−−−−−−

++++++

++++++++=

+++++

++++++++=

++++++

+++++++=

zpzpzpzpzpzp

zpzpzpzpzpzpzpzppzP

zrzrzrzrzr

zrzrzrzrzrzrzrzrrzR

zqzqzqzqzqzq

zqzqzqzqzqzqzqqzQ

D

D

D

 



- 267 - 

( ) ( ) ( )( )

( ) ( )
( ) ( )
( ) ( )
( ) ,/25.042

,/4162,/235.0202

,/822,/235.0202

,/4162,/25.042

,,2,,4,

,2,5.1324131412

01492100

014920101492102

014920301492104

014920501492106

149143149144149145149146149147

1491480000
3
00149

D

DD

DD

DD

DD

aqaaaq

aqaaqaqaaaq

aqaaqaqaaaq

aqaaqaqaaaq

qqqqqqqqqq

qqmbmbmaq

+++=
−+−=−−−=

+=−+−−=
−+=+−+−=
==−=−=−=

=+++−= γ

 

( )( )
( )( )
( )( )
( )( )
( )( )
( )( )

( )( )
( )( )

( )( )
( )( )
( )( )
( )( )

( )( )
( )( )

( )( )

( )

( )( )

( )

( )( )

( )

( )( )

( ) ⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−

−+−−
++−−+

++−+−
+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−

−+−−
++−−+

++−+−

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−

+−+−
+−+−+

+++−−+−−
+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−

+−+−
+−+−+

+++−−+−−

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++++
++++

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++++
++++

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−−++
++−−+

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−−+
+−−

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−−+−+
−−−−+−

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−++−+
−−++−

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−++−+
−−++−

=

121110

110
0101

000202

0

121110

110
0101

000202

0

3
05

121110

1210
02101

000201021

0

121110

1210
02101

000201021

0

3
06

101000

1010003
00143

101000

1010003
00144

101000

1010003
00145

1000

10003
00146

101000

1010003
00147

101000

1010003
00148

101000

1010003
00149

4520521

20964416
161664

524162096838464256

4526527

21204416
161664

530162120848064256

5222615.130

1044428
168432

262810485242096321664

528264132

1056428
168432

265810605302120321664

,
5.13142628

13342658

,
52716524164

53316530164

,
5.6622026285

6702026585

,
10104832

10106032

,
5.6472026285

6552026585

,
52116524164

52716530164

,
5.13042628

13242658

mamama

maa
maam

mamama

b

mamama

maa
maam

mamama

b

mr

mamama

maaa
maaam

mamamamaa

b

mamama

maaa
maaam

mamamamaa

b

mr

mmmmmb

mmmmmb
mar

mmmmmb

mmmmmb
mar

mmmmmb

mmmmmb
mar

mmmb

mmmb
mar

mmmmmb

mmmmmb
mar

mmmmmb

mmmmmb
mar

mmmmmb

mmmmmb
mar

D

D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

γ

γ

γ

γ

γ
γ
γ
γ
γ
γ

γ
γ

γ
γ
γ
γ
γ
γ

 



- 268 - 

 

( )( )

( )

( )( )

( )

( )( )
( ) ( )

( )( )
( ) ( )

( )( )

( )

( )( )

( )

( )( )

( )

( )( )

( )

( )( )

( )

( )( )

( ) ⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++

++++
+++++

+++++++
+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++

++++
+++++

+++++++

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++

−++−
+++−+

++−−−−
+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++

−++−
+++−+

++−−−−

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+
−−−+−

+−−+−+

+−−−+−−
+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+
−−−+−

+−−+−+

+−−−+−−

=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−++−+−+

+−+
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−++−+−+

+−+

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−−
−+−−−

++−−−+

+−−+−−+−
+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−−
−+−−−

++−−−+

+−−+−−+−

=

121110

1210
02101

000201021

0

121110

1210
02101

000201021

0

3
00

121110

110
0101

000202

0

121110

110
0101

000202

0

3
01

121110

1210
02101

000201021

0

121110

1210
02101

000201021

0

3
02

12111011011

00022
0

12111011011

00022
0

3
03

121110

1210
02101

000201021

0

121110

1210
02101

000201021

0

3
04

5262635.131

1052428
168432

262810485242096321664

532266133

1064428
168432

265810605302120321664

4528527

20964416
161664

524162096838464256

4534533

21204416
161664

560162120848064256

15742575.662

106012258
4882032

262810481572104803248320

1592260670

107212258
4882032

265810601590106003248320

8104810419283232128

1048324192128

8106010424083232128

1060324240128

15702675.647

103612258
4882032

262810481570104803248320

1588270655

104812258
4882032

265810601590106003248320

mamama

maaa
maaam

mamamamaa

b

mamama

maaa
maaam

mamamamaa

b

mr

mamama

maa
maam

mamama

b

mamama

maa
maam

mamama

b

mr

mamama

maaa
maaam

mamamamaa

b

mamama

maaa
maaam

mamamamaa

b

mr

mamamamamam

mamaa
b

mamamamamam

mamaa
b

mr

mamama

maaa
maaam

mamamamaa

b

mamama

maaa
maaam

mamamamaa

b

mr

D

D

D

D

D

γ

γ

γ

γ

γ

γ

γ

γ

γ

γ

 

( )( ) ( )( )( )
( )( ) ( )( )

( )( )
( )( ) ( )( )

( )( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

++++
+++++−++−

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+−++−+
+−++−++−++−

=

+−++−++−++−=

10100

101
2
0101

2
03

0136

10100

101
2
0101

2
03

0137

10101010
3
00138

10415263216

520106416325215201616

9137822824

79052424165.13026148

264528816261522816

mmmbb

mmmbmmmb
mp

mmmbb

mmmbmmmb
mp

mmmbmmmbmbp

D

D

D

D

DD

 

 



- 269 - 

 

( )( ) ( )( )
( )( )

( )( ) ( )( )
( )( )

( )( ) ( )( )
( )( )
( )( ) ( )( )( )

( )( ) ( )( )( )
( ) ( )( )( )
( ) ( ) ( )( )
( ) ( )( ) ( )

( )
( ) ( )( )
( ) ( )( ) ( )

( )
( ) ( ) ( )( )
( ) ( )( )( )1

4
0

3
0

2
001

2

000

1
4
01

3
01

2
001

2

001

1
3
0

1
2
01

4
0012

002

1
4
0

3
01

2
001

2

003

1
3
0

1
2
01

4
0012

004

1
4
01

3
01

2
001

2

005

1
4
0

3
0

2
001

2

006

10101010
3
00131

10101010
3
00132

10100

101
2
0101

2
03

0133

10100

101
2
010

2
03

0134

10100

101
2
0101

2
03

0135

25.041216816

3411624641664

524

612325.216880

102381632

524

612325.216880

3411624641664

25.041216816

133266485.13126348

53353416165275281616

933266288

2665328165.662257208

8015302416

800536241610104832

1211314440

540105616325.647267208

mmmmmmbbp

mmmmmmmmbbp

mm

mmmmmm
bbp

mmmmmmmbbp

mm

mmmmmm
bbp

mmmmmmmmbbp

mmmmmmbbp

mmmbmmmbmbp

mmmbmmmbmbp

mmmbb

mmmbmmmb
mp

mmmbb

mmmbmmb
mp

mmmbb

mmmbmmmb
mp

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

+−+−+++=

+++++−−−+=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+−+

+−++−+−−
+=

+−−++=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+−

−++−++−−
+=

+−+−++−−+=

−−+−++−+=

+++++++−=

+++++++−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+++−
+++−−+−

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

++−+
+++−−+

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

++++
−+−++++

=

 

  (7.99) 

Simulated control responses of original (continuous-time) controllers versus the 

discrete ones almost coincide, thus, these plots are not displayed here. 

7.9 Feedback control applied to the laboratory plant 

Last of all, selected simulated results from Subchapter 7.7 are going to be 

concisely verified by taking real measurements on the laboratory circuit heating plant. 

Namely, parameters of relay test based models (6.1) obtained by the use of a saturation 

relay with the time-domain solution and the relay transient, respectively, are identified. 

Then, controllers (7.46) and (7.55) derived by the algebraic approach in the RMS ring for 

model (7.40) are compared with those designed for relay-based model, i.e. (7.59) and 

(7.60), and with the ones simplified by the Padé approximation, i.e. (7.94) and (7.95). 
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7.9.1 Original controllers using the RMS ring 

Control responses for the original controller (7.46) incorporated in the 1DoF 

structure are displayed in Figs. 7.34. and 7.35. As can be seen from the figures, both 

stepwise reference tracking and disturbance rejection are accomplished well. The measured 

control action is asymptotically lower then the expected one, likely due to an imperfect 

temperature sensors calibration (we suppose that 300=u  W implies 36=y  °C).  

The use of the TFC control system with controllers (7.55) yields responses in Figs. 

7.36 and 7.37. Contrariwise to the 1DoF test, the real manipulated input is higher then the 

simulated one. We suppose that this is because of very low temperature in a laboratory 

room during the measurement (approx. 18 °C), which causes a lower plant static gain and 

possibly incorrect sensors calibration. However, a new plant model (operation point) has 

not been calculated to demonstrate the robustness of the control system. Undisturbed 

stepwise and linearwise reference tracking is satisfied very well; nevertheless, the reaction 

to a stepwise disturbance introduces oscillating modes. 

 

Fig. 7.34 Measured vs. simulated control responses of ( )tu0Δ  for the 1DoF structure with 

controller (7.46) 
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Fig. 7.35 Measured vs. simulated control responses of ( )tyΔ  for the 1DoF structure with 

controller (7.46)  

 

 

Fig. 7.36 Measured vs. simulated control responses of ( )tu0Δ  for the TFC structure with 

controllers (7.55) 
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Fig. 7.37 Measured vs. simulated control responses of ( )tyΔ  for the TFC structure with 

controllers (7.55) 

7.9.2 Relay test based controllers using the RMS ring 

Let us use the relay test to identify parameters of plant model (7.40). A comparison 

of simulated and measured data from the relay test with a symmetrical and biased on-off 

relay, saturation relay and those with an artificial delay element are presented in Tab. 7.15, 

see also Subchapter 7.4.1. 

There emerges a problem of a shifted stationary component ( 0y ) of limit cycles, 

see Fig. 7.38, here that is caused likely by process nonlinearity. It brings about 

inconveniencies mainly for the static gain evaluation using a biased relay (Fig. 7.39) and 

for the relay transient test since it is not clear whether to take 360 =y  (i.e. the steady state 

before the entrance of a symmetrical relay output) or 38.350 =y  which is the arithmetical 

mean value of maximum and minimum outputs within the period of limit cycles. Both 

possibilities are benchmarked within the static gain evaluation and the relay transient 

procedure below. 
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Tab. 7.15 Comparison of simulated and measured relay tests data 

Quantity Measured data Simulated data 

1A  [°C] 1.85 1.9975 

1,uT  [s] 377.9 364.8 

1,uk [W·°C-1] 137.65 127.48 

τ  [s] 129.6 136.7 

2,uk  [W·°C-1] 151.42 140.23 

2A  [°C] 1.32 1.426 

2A  [°C] 1.59 1.9245 

2,uT  [s] 380.6 373.4 

+τ  [s] 78.7 77.8 

1

~
A  [°C] 2.72 3.1 

1,

~
uT  [s] 579.9 555.3 

1,

~
uk  [W·°C-1] 93.62 82.14 

2,

~
uk  [W·°C-1] 131.07 115 

2

~
A  [°C] 2.55 2.52 

2

~
A  [°C] 1.53 1.7391 

2,

~
uT  [s] 616.7 597.8 

 

 

Fig. 7.38 Symmetrical on-off relay test 
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Fig. 7.39 Biased relay test 

If 360 =y  is taken, the static gain according to (2.126) results in 0133.0−=k , 

which is a physical nonsense. For 38.350 =y , 0078.0=k  is obtained, which is much 

closer to the reality, yet still too far from the “real” gain 0325.0=k . If this value were 

required to be reached, the value 65.340 =y  would be set. 

Time-domain solution, see Subchapter 7.4.2, of limit cycles data via the NM 

method (starting from the initial parameters estimation 013.0/5.0 2,10 === uTaa , 

6.129==ϑτ ) is introduced in Tab. 7.16, where i  stands for the iteration step. These steps 

are chosen so that they provide substantially diverse model parameters estimations. Note 

that all parameters sets give stable models and ( ) 0325.0/ 100 =+= aabk  is taken from a 

step response. 

Apparently, the estimation for 40=i  gives a better result than the converged one, 

see Fig. 7.40 for the comparison of step responses, that is comparable to the best simulated 

result (in Tab. 7.11). 

Consider now the use of the relay transient with the same settings as in Subchapter 

7.4.3. Data for 360 =y  then (using the NM optimization) provide parameters estimations 

that mostly give unstable plant models (e.g. for 1800,40,20=i ). Exceptional “stable” 

values are presented in Tab. 7.16.  
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Tab. 7.16 Time domain solution via NM method 

i  8 20 40 1800 

0a  210192334.2 −⋅  2106925505.1 −⋅  210570412.1 −⋅  210815484.3 −⋅  

1a  210754199.1 −⋅−
 

210069627.1 −⋅−  310513952.8 −⋅−  210677777.2 −⋅−  

τ  71.137  59.134  45.134  88.78  

ϑ  71.137  34.139  84.139  55.132  

e  31004.1 −⋅  51003.8 −⋅  61056.3 −⋅  331047.1 −⋅  

ISEJ  96.95 5.601 0.321 2.291 

ISTEJ

 
82175 3341.2 183.85 1331.1 

 

 

Fig. 7.40 Step responses comparison of measured data vs. relay based model using the 

time domain solution 

If it is considered that 38.350 =y , the NM method converges as well; however, 

almost all estimations give unstable models except for 12=i , with 3007063.00 =a , 

2233959.01 −=a , 15.157=τ , 79.101=ϑ , 31064.1 −⋅=e , 165.16=ISEJ , 9900=ISTEJ . 

 



- 276 - 

Tab. 7.17 Results of the use of the relay transient with 360 =y  

i  8 20 

0a  210396924.9 −⋅  210576783.5 −⋅  

1a  210905566.6 −⋅−
 

210101127.3 −⋅−  

τ  95.177  2.165  

ϑ  17.158  21.145  

e  21009.1 −⋅  31069.6 −⋅  

ISEJ  324.28 4.002 

ISTEJ

 
26016 1591 

 

Step responses for the best results of both variants ( 360 =y  vs. 38.350 =y ) 

compared to the measured response are pictured in Fig. 7.41. It seems that 360 =y  is a 

more suitable choice. 

 

Fig. 7.41 Step responses comparison of measured data vs. relay based model using the 

time domain solution 
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As it is clear from Figs. 7.40 and 7.41, the time-domain evaluation of limit cycles 

from on-off and saturation relay tests gives better plant model parameters estimations in 

comparison with the use of relay transient, although simulation benchmark has given 

rather different results. The letter methodology is sensitive to signal noise and the 

estimation of a stationary component of the signal. Therefore, as plant model parameters, 

the data in the third column in Tab. 7.16 are taken. Control responses for the 1DoF system 

with controller (7.59) are presented in Figs. 7.42 and 7.43, whereas those for the TFC 

system with controllers (7.60) can be seen in Figs. 7.44 and 7.45. For particular controllers 

settings, see Subchapter 7.7. 

Regarding to a peak of the real control response in Fig. 7.42 and output 

insufficiency in Fig. 7.43 within the time range approx. [ ]2000,1000∈t , these 

unsatisfactory data are caused probably by temporarily decreased room temperature. The 

same problem is apparent in other two figures. Amazingly, the real reaction to a step 

change in the reference signal is better then in the case of the original controllers (7.55) 

because of less oscillating output. 

 

Fig. 7.42 Measured vs. simulated control responses of ( )tu0Δ  for the 1DoF structure with 

controller (7.59) 



- 278 - 

 

Fig. 7.43 Measured vs. simulated control responses of ( )ty  for the 1DoF structure with 

controller (7.59) 

 

Fig. 7.44 Measured vs. simulated control responses of ( )tu0Δ  for the TFC structure with 

controllers (7.60) 
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Fig. 7.45 Measured vs. simulated control responses of ( )ty  for the TFC structure with 

controllers (7.60) 

Overall, there is a very good agreement between simulated and measured data in 

the figures even though plant models (parameters) rather differ (compare Tabs. 7.10 and 

7.16). 

7.9.3 Simplified controllers using the Padé approximation  

Finally, verify the usability of controllers (7.94) and (7.95) that has arisen from the 

simplification of controllers (7.46) and (7.55) using the Padé approximation. The 

corresponding comparison of simulated and measured control responses are displayed in 

Figs. 7.46 – 7.49. 

To avoid the abrupt change in the control action at the beginning of Fig. 7.46, we 

would suggest using a low-pass filter on the reference signal (similarly as for the preceding 

subchapter). Other undesirable effect can be seen near the end of the measurement where 

due to rapidly decreasing ambient temperature the control action increases whereas 

controlled temperature can not reach the reference value. 
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Fig. 7.46 Measured vs. simulated control responses of ( )tu0Δ  for the 1DoF structure with 

controller (7.94) 

 

Fig. 7.47 Measured vs. simulated control responses of ( )ty  for the 1DoF structure with 

controller (7.94) 
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Fig. 7.48 Measured vs. simulated control responses of ( )tu0Δ  for the TFC structure with 

controllers (7.95) 

 

Fig. 7.49 Measured vs. simulated control responses of ( )ty  for the TFC structure with 

controllers (7.95) 
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Although real control responses are not as satisfactory as in the case of original 

and relay-test based controllers derived using the RMS ring, figures above prove the 

usability and applicability of simplified finite-dimensional controllers as well. Particularly, 

the reaction to the load disturbance when using the TFC structure is surprisingly good. 

7.10 Discussion and summary 

To sum up, the above presented practical experiment of control of a laboratory 

circuit heating plant (i.e. temperature driven by the heater power) has proven the usability 

and applicability of identification and control algorithms described in this thesis, in real 

conditions. Naturally, there emerge some problems related to the sensitivity to ambient 

temperature, measurements uncertainties, unexpected environmental influences or the 

estimation of a stationary component for relay-based model parameters identification. 

However, all the designed controllers and their performance have affirmed the robustness 

of the designed approaches, particularly, those based on the RMS ring together with the 

Bézout identity and the Youla-Kučera parameterization. 
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8 CONTRIBUTIONS AND FURTHER DIRECTIONS 

The primary contribution of this thesis has been a diminutive development and 

enhancement of some magnificent theoretical ideas of algebraic control of linear dynamic 

continuous systems with delays or latencies, regardless of whether in an input-output or 

internal relation. Practical aspects have not been omitted as well, as demonstrated in the 

final part of the thesis. 

In the first part of the thesis, a concise classification of mathematical models of 

linear systems with delays has been presented. Dynamic properties of these models are an 

inseparable part of their description; therefore, poles, zeros, stability and related notions 

have followed the models classification. Without any attempt to be exhaustive, as the 

emphasis has been put to algebraic control approaches, an overview of their contemporary 

state supported by the enumeration of basic algebraic notions and their mutual relations 

has been introduced afterwards. The work has then also purveyed control system structures 

and controller tuning principles to be used, unstructured robust stability and performance 

analysis tools, fundamentals of relay-feedback autotuning and it has briefly outlined 

possibilities of anisochronic controller discretization as well.  

This introductory survey part of the thesis has intended to familiarize the reader 

with basic and/or recent ideas and approaches which can be useful throughout the work. 

One of educational and didactic contributions consists in many examples, introduced here, 

elucidating presented facts to even non-experts. 

The crucial section of the thesis which has brought about new ideas and enhanced 

existing ones about algebraic controller design in the ring of (retarded) quasipolynomial 

meromorphic functions, RMS, then has followed. The extension of the ring to neutral 

delayed systems, proofs of some basic properties of the revised ring formulation, a 

constructive methodology for controller design, the investigation of a quasi-finite spectrum 

assignment procedure, stability analysis of selected retarded quasipolynomials, an original 

pole-placement-like optimal tuning algorithm or a generalization of the Nyquist criterion 

and robust stability and performance conditions belong to the most important and 

interesting results from the theoretical point of view. 
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A novel combination of the use of a saturation relay and an anisochronic plant 

model together with unordinary data evaluation for controlled system modelling and 

identification can be attributed to the theoretical merit of this thesis as well. Delayed 

controllers’ simplification proposal has been a minor yet integral part of this work. 

From the practical point of view, most of theoretically described and developed 

procedures and ideas have been verified on control of temperature of a laboratory 

appliance representing a circuit heating system with significant input-output as well as 

internal delays. The results and subsequent discussion indicate both pros and cones of 

introduced controller design and tuning. Practical test have proven the usability and 

applicability of controllers calculated using the RMS ring for both original and relay-based 

plant models, and also of simplified versions of final controllers. Although there is a 

significant difference between simulated and real-measured control responses, all 

controllers have shown their robustness that was calculated before. 

There are many possible ways how to utilize and extend the obtained results. For 

instance, proofs of other RMS ring properties, a more constructive stabilizing procedure, the 

use of other control system structures or the development of efficient and optimal tuning 

algorithms can be some of further theoretical contributions. From the practical point of 

view, the assembling and programming of a compact embedded industrial controller 

interpreting the core of this thesis can be a challenging task.  
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9 CONCLUSION 

Systems with delays or latencies of any type can be found all around us, in the 

everyday use, therefore there is a natural necessity to control them. However, delays 

depreciate control feedback performance due to the infinite spectrum of the control system 

that appears when using conventional finite-dimensional controllers, which can lead up to 

feedback instability. Thus, it is no wonder that problems of systems with delays have been 

considered in control theory for decades. There have been developed a great many 

algorithms and approaches dealing with this task; however, there is still a lack of those 

taking advantages of input-output models or dealing with internal delays. The use of 

algebraic structures, such as rings, can be fruitful in the effort to cope with this issue.  

This doctoral thesis has been focused on issues of continuous-time algebraic 

control design for time-delay systems as well as relay-based identification of anisochronic 

models and controllers’ parameters tuning, to name the main topics. First, it has provided a 

relatively detailed overview of analysis and control methods for linear time-invariant 

systems with delays concerning algebraic ones and related notions. Tuning of delayed 

controllers, their robustness as well as principal issues of relay-based identification and 

autotuning and possible controller discretization approaches have followed as a next 

descriptive part of the work. 

A novel or beneficial section of the thesis has introduced a revision version of the 

RMS ring accompanied by its basic properties, a detailed controller design procedure based 

on the Bézout identity and the Youla-Kučera parameterization for two distinct control 

system structures using the ring, some stability issues usable also for robust stability and 

performance analysis and supported by a relatively original relay-based identification idea 

for time-delay plant models. The approach provides a quasi-finite spectrum assignment for 

one of control structures. A suboptimal algorithm for controllers’ parameters settings via 

poles shifting has been proposed in addition. For practical reasons, some suggestions of 

anisochronic controller’s simplification have not been omitted. Many ideas and approaches 

have been supported by illustrative examples. The main disadvantages of the proposed 

controller design method can be considered in the fact that there it is not always possible to 
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perform Bézout coprime factorization. On the other side, the procedure is easy-to-handle, 

robust and applicable to a wide range of time-delay systems, including neutral ones. 

The final, practical, part of the work has shown relay-based identification and 

algebraic control experiments on a circuit heating laboratory model. Although some of 

relay-based identification submethods has shown to be sensitive to the estimation of the 

stationary signal component, all designed controllers proved to be practically applicable 

and robust even to a very inaccurate estimation of ambient temperature. 
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