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Abstract 

Past few years, Big Data and cloud computing have become buzzwords in IT 

region, and we have been seeing that data are generated in massive amounts and at 

an increasing rate in all domains. The reliability and efficiency of distributed 

systems have always been a major concern of the service providers and users. 

Therefore, fault tolerance is among the most essential issues in distributed clouds to 

deliver reliable services to customers. 

In Big Data domain, scientific workflows are increasingly used for Big Data 

analysis, processing, and management. With movement the world to Big Data, 

single-site processing becomes unsuitable and Big Data scientific workflows can no 

longer be accommodated within a single computing system, and ensuring a level of 

reliability for a scientific workflow execution is a complex task that will tend to 

increase the cost. 

Replication of tasks increases redundancy and thereby the reliability, which is 

achieved by parallel execution of a task on multiple virtual machines simultaneously 

to guarantee a viable result, which leads to a high cost. 

This doctoral Thesis presents a fault-tolerant model with two approaches that 

optimize the reliability and execution cost of Big Data scientific workflows on cloud 

computing environments and ensure a predefined level of reliability by replicating 

tasks.  

Finally, the model was implemented using WorkflowSim, it is extension of the 

CloudSim simulator framework that is used for modelling and simulation of cloud 

computing infrastructures and services. 
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Abstrakt 

V posledních několika letech se v oblasti IT staly hesly Big Data a cloud 

computing a my jsme svědky toho, že data jsou generována resp. zpracovávána v 

obrovských objemech a stále rychleji ve všech oblastech. Spolehlivost a bezpečnost 

distribuovaných systémů byla vždy hlavním zájmem poskytovatelů služeb i 

uživatelů. Proto patří odolnost proti výpadkům a chybám mezi klíčové požadavky na 

provoz cloudových systému, podmiňující spolehlivost a použitelnost služeb pro 

zákazníky. 

V oblasti velkých dat se pro analýzu, zpracování a správu velkých dat stále častěji 

používají metody vědeckotechnické analýzy (matematické a statistické metody, 

aplikace umělé inteligence apod). S přechodem uživatelských aplikací ke zpracování 

velkých dat je použití distribuovaných cloudových řešení stále častěji jediným 

ekonomicky přijatelným řešením. 

Jednou z metod, které cloudový systém nabízí je replikace úloh, která zvyšuje 

redundanci, a tím i spolehlivost paralelním prováděním úlohy na více virtuálních 

strojích současně. Tak lze zaručit přijatelné řešení, avšak za cenu vysokých nákladů. 

Tato disertační práce představuje model odolný proti poruchám se dvěma 

přístupy, které optimalizují spolehlivost a náklady na provádění vědeckých 

pracovních postupů s velkými objemy dat v prostředí cloudového systému a zajišťují 

předem definovanou úroveň spolehlivosti replikací úloh.  

Navržený model byl implementován pomocí WorkflowSim, což je rozšíření 

simulátorového rámce CloudSim, který se používá pro modelování a simulaci 

infrastruktur a služeb cloudovho systému. 
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1. INTRODUCTION 

Cloud computing systems have become mature sufficient to manage and handle a 

huge volume of heterogeneous data that is rapidly changing. However, failures are 

unavoidable in cloud computing systems as they are composed of a large number of 

hardware resources (e.g., CPU, storage, and network). 

Scientific workflows allow users easily to express multi-step computational tasks, 

for example, retrieve data from a database, reformat the data, and run an analysis. A 

scientific workflow usually describes the dependencies between the tasks. In most 

cases, the workflow is described as a directed acyclic graph (DAG), where the nodes 

are tasks and the edges denote data dependencies between tasks [1]. 

Scientific workflows demand massive resources from diverse computing 

infrastructures to process a massive amount of Big Data. Automatic provisioning of 

such Big Data applications on the cloud platform is challenging since current 

resource management and scheduling approaches may not be able to scale well, 

especially under highly dynamic conditions [2]. 

Fault tolerance to failures is of major importance when running on cloud 

computing systems, where a predefined level of reliability is required for long-

running applications and services, to ensure that level of reliability, the cloud should 

be uncommonly fault tolerant. 

One of the best ways for increasing the reliability is by replication tasks. 

Task replication is a proficient technique in case of a task running on an unreliable 

execution environment. The goal of the replication is to ensure that at least one 

replica is always able to complete the computation in case the others fail [3]. 

On the other hand, the cost of reliability improvements are paid by a reduction in 

failure, this issue is not quite so simple for many failures, nevertheless, there is 

never an endless budget for improving the reliability and some consideration of cost 

is inevitable [4]. 

AWS, Microsoft Azure, and Google Cloud Platforms provide many services. One 

thing is constant over all companies: the cloud cost is a headache to predict and 

control. A fresh Forbes article included an interesting statistic that 30 percent of 

cloud spend is wasted! This waste is due to using duplicate services; give up 

services and reckless buying [5]. 

According to a survey by Spiceworks company (April 2018), the reliability and 

cost are at the top as extremely important factors when evaluating cloud-based IT 

services. (Figure 1.1) shows a priority of IT decision-makers when they buy services 

cloud. 

This Thesis primarily addresses to optimize the reliability and execution cost of 

Big Data scientific workflows on cloud computing environments by a model with 

fault tolerance is offered. We propose two approaches to optimize the reliability and 
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cost of scientific workflows on cloud computing environments. In Addition, the 

thesis reviews former researches in the same field, and evaluate them by results 

comparison. 

 

Fig. 1.1:  Most important factors of cloud-based IT services 1 

The rest of the thesis is organized as follows: 

• Chapter 2 presents a state of the art of algorithms that have been proposed 

to improve the reliability and cost of performance in distributed 

environments. 

• Chapter 3 presents the goals and benefits of the thesis. 

• Chapter 4 proposes a fault tolerance model for scheduling and processing 

scientific workflows on computing cloud environments 

• Chapter 5 presents the first approach which we proposed for scheduling 

scientific workflows on computing cloud environments using the genetic 

algorithm. 

• Chapter 6 presents the second approach that guarantees predefined level of 

reliability for scheduling scientific workflows with minimum execution 

cost by the greedy algorithm. 

• Chapter 7 provides our achievements in this Thesis. 

• Chapter 8 concludes this thesis with a summary of contributions and the 

perspectives brought by our solutions. 

 

 

 

 
                                                           
1 https://www.spiceworks.com/ 
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2. STATE OF THE ART 

Although the cloud computing systems themselves promise high reliability, 

ensuring a high quality of service is still one of the challenging and critical research 

problems, and it has gained increasing attention recently [6]. 

The cloud computing systems are often made up of heterogeneous resources and 

ensuring reliability is a complex task, therefore fault tolerance mechanism operates 

as a backbone of distributed systems and has an important role in the reliability of 

enterprise distributed applications [7]. 

Many scheduling techniques and algorithms have been proposed to improve the 

reliability of performance in distributed environments, and ensuring a predefined 

level of reliability under various constraints such as task deadline or execution cost, 

and improving the economic aspect of scheduling in distributed systems.  

Fault-Tolerant Scheduling Algorithm FTSA [8] is proposed which aims to 

tolerate multiple processor failures. FTSA is based on an active replication scheme 

to mask failures, in this approach we don't need for detecting and handling failures. 

Multiple copies of each task are mapped on different processors, which are run in 

parallel to tolerate a fixed number of failures. It assumes that some processors are 

reserved only for realizing fault tolerance, i.e., the reserved processors are not used 

for the original scheduling, and a static number of replicas are used of each task on 

processors. 

 In FTSA, the processor is selected for replication which has a minimum finish 

time. We can see that in FTSA we can increase reliability but sometimes we cannot 

satisfy the required reliability. 

Other attempts for designing fault-tolerant systems by the use of replication have 

been made, the MaxRe algorithm (Max Reliability) [9] focused to satisfy the user's 

reliability requirement with minimum resources, and the number of replicas for each 

task should be as few as possible. The MaxRe algorithm transfer the reliability 

requirement of the workflow to the sub-reliability requirement of each task, and 

iteratively select available replicas and VMs with the maximum reliability value for 

each task to minimize the number of replicas, and thereby to reduce execution cost, 

until the sub-reliability of the task is satisfied. 

The RR Algorithm (Reliability Requirement) [10] uses the same approach of 

MaxRe algorithm in selection VMs with the maximum reliability and transfers the 

reliability requirement of the workflow to the sub-reliability requirement, whereas 

the sub-reliability requirement of the entry task is still calculated same equation, but 

the sub-reliability requirement of other tasks is calculated by a different way. 

Optimizing the makespan and reliability for workflow applications by genetic 

algorithm [11] has been proposed. The reliability-driven RD reputation can be used 

to effectively evaluate the reliability of a resource in distributed systems. And it 
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proposed the genetic algorithm which utilizes the RD reputation to optimize both the 

makespan and the reliability of a workflow. 

A fault tolerant framework with deadline guarantee FTDG [12] has been proposed 

to achieve high fault tolerance and low response time in a Big Data stream 

computing environment, and obtain the conditions to meet the high reliability and 

low response time. 

Another approach to enhance reliability on heterogeneous computing systems by 

the use of replication is proposed in [13], in this approach, the main objective is to 

propose a replication-based algorithm that maximizes the system reliability while 

considering the communication between tasks. 

In [14], a model with dynamic fault tolerance is presented, which ensures the 

required reliability is met by replicating tasks. By dynamically adapting to changing 

attributes of the system and resources, it also ensures that the optimal numbers of 

replicas are used. The model ensures a minimized use of resources by not using 

more replicas than needed, and by minimizing the number of resources needed. This 

was achieved by placing replicas on the most reliable resources first and foremost. 

In [15], the authors proposed the quantitative fault-tolerance with minimum 

execution cost QFEC and QFEC+ algorithms for a workflow. QFEC is implemented 

by iteratively choosing available replicas and VMs with the minimum execution 

time (Makespan) for each task until its sub-reliability requirement is satisfied. On 

another side, QFEC+ is implemented by filtering out partial QFEC opted replicas 

and VMs for each task with less redundancy (remove some replicas) while still 

satisfying its sub-reliability requirement. 
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3. THESIS GOAL  

The following items are proposed as aims of the thesis: 

1. Exploring and a comprehensive survey of the state-of-the-art algorithms of 

fault tolerance for Big Data scientific workflows in cloud computing 

environments. 

2. Critical overview and evaluate former researches by comparison in the 

experiments. 

3. Identification of the important objectives for scheduling scientific 

workflows on cloud computing according to the latest researches. 

4. Creation of a model with two fault-tolerant approaches for scheduling 

scientific workflows on the cloud, the first approach uses a genetic 

algorithm and the second one uses the greedy algorithm. 

5. Evaluating the model on different sizes and types of scientific workflows 

to validate the effectiveness of the proposed methods. 

6. Deep analysis of the results, summarizing the results, benefits, and 

drawbacks of the proposed approaches, formalizing the recommendations 

for future development in the related researches.  

The methods to fulfil the proposed aims of the thesis include: 

Analysis: 

• Identification of the state-of-the-art in improving the reliability of 

performance in distributed environments. 

• Overview of the wide range of algorithms and techniques, with a focus on 

the most popular and used methods. 

Implementation: 

• Using WorkflowSim, which is an extension of the CloudSim framework 

that is completely written in Java, for modelling and simulation of cloud 

computing environments. 

• The selected state-of-the-art algorithms will be coded in java alongside our 

proposed algorithms in CloudSim framework. 

• Using scientific workflows that are taken from diverse domains such as 

astronomy, earthquake science, and biology, and are similar to real 

workflows. 

• Simulation results will be handled and examined in the Excel spreadsheet. 
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Testing: 

• Testing each individual component of the code to see if these components 

are working properly, then testing them as a collective group to see if there 

are potential errors and malfunctions. 

Evaluation: 

• All the simulation results will be collected in an appropriate manner for 

analysing them in the Excel spreadsheet. 

• The proposed methods will be assessed by their influence on improving 

multi objectives of scheduling scientific workflows on cloud.  

• Based on the analysis of the simulation results, the pros and cons of the 

proposed methods will be determined. 

• The general recommendations and suggestions for good practice in fault-

tolerant scheduling of scientific workflows will be formulated for use in 

relevant researches. 
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4. FAULT TOLERANCE MODEL 

4.1 System model. 

The system architecture is presented in (Figure 4.1). The workflow engine acts as 

a middle layer between the Big Data management systems and the cloud. Workflow 

submitted into the engine which schedules the workflow tasks, provide fault 

tolerance mechanism, and allocate resources in a manner for achieving a trade-off 

between reliability and cost or fulfilling required reliability with minimum cost. 

 

 

Fig. 4.1: System architecture. 

Fault-Tolerant Mechanism (FTM): the cloud is prone to failures and an 

efficient fault-tolerant strategy is critical for increasing the reliability of unreliable 

execution environment. In this Thesis, we use replication mechanism as a fault 

tolerant strategy and offer two approaches for that, first one depends on genetic 

algorithm and the second one depends on greedy algorithm for optimizing the 

reliability and execution cost. 

The Resource Manager (RM): acts as a broker for the available computing 

resources in the cloud.  This module allocates the appropriate resource (virtual 

machine) for every task as chosen by the task scheduler.   

The Task Scheduler (TS): can schedule workflow tasks to different resources. 

According to the scheduling information, the task scheduler employs a scheduling 

algorithm to find a suitable resource for every task. 

The Task Monitor (TM): detect if a task ti on virtual machine vk successfully 

completes or fails before completion, and it sends a report about virtual machine vk 

to the reliability assessor RA.  

Reliability Assessor (RA): can maintain and recalculate the failure rate λ for 

each resource, which can be used to schedule the next workflow. 

4.2 Workflow model 

A scientific workflow with dependent tasks is modelled by a directed acyclic 

graph (DAG). Let consider that V represents a set of heterogeneous virtual machines 
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(VMs) on cloud, each individual virtual machine is denoted by Vk ,V= {V1,V2,…, 

Vk}[9][10][11][13][15][16][17][18][19]. We also presume that communication can 

be overlapped with computation, which means data can be transmitted from one 

virtual machine to another while a task is being executed on the recipient virtual 

machine [9][10][15]. 

In this thesis a DAG is defined as G= (T, W, Din, Dout , E, C). 

• T is the set of scientific workflow tasks, each individual task is denoted by ti,  

T= {t1,t2,…,ti}. Each node ti∈T is a task with different execution times on 

different VMs. pred(ti) is the set of immediate predecessor tasks of ti, while 

succ(ti) is the set of immediate successor tasks of ti. Tasks without predecessor 

tasks are denoted by tentry, and tasks with no successor tasks are denoted by texit 

[15][16][17][19].  

• W =|T|×|V| represents matrix, where wi,k∈ W denotes the execution time of 

task ti running on VM vk. 

•  Din is the set of input datasets for all workflow. Each task ti has input datasets 

is denoted by d_ini,j= {d_ini,1, d_ini,2,…, d_ini,j}. 

• Dout is the set of output datasets for all workflow. Each task ti has output 

datasets is denoted by d_outi,j= {d_outi,1, d_outi,2,…, d_outi,j}. 

• E represents the set of directed edges among tasks in the workflow. Each 

individual an edge  ep,c ∈ E means that a part or all of the output data of task tp 

is the input data of tasks tc. 

• C represents the set of the communication time of data between tasks. cp,c∈ C 

represents the communication time  of  data between task tp and tc. 

4.3 Reliability model 

Faults can be classified into three major types (according to duration) as transient, 

intermittent and permanent [20][21]. In this Thesis considers the transient failure of 

VMs.The mean time between failures (MTBF) for a VM is the average time between 

successive failures for that VM [22]. 

The MTBF can be calculated as: 

 𝑀𝑇𝐵𝐹 =
𝑇𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠
 (E.1) 

The failure rate λ calculate: 

 𝜆 =
1 

𝑀𝑇𝐵𝐹 
 (E.2) 



14 
 

The models using the Poisson distribution to model the probability of failure 

assume constant failure rates. And the reliability for VM can be calculated as 

[9][10][13][15][18][19][22][23][24] 

 𝑅(𝑡) = 𝑒−𝜆𝑡 (E.3) 

The probability of fail during a time interval of length t for VM is 

 𝐹(𝑡) = 1 − 𝑒−𝜆𝑡 (E.4) 

The reliability of task ti executed on VM vk in its execution time is denoted by 

 𝑅(ti,vk)= 𝑒−𝜆𝑘𝑤𝑖,𝑘 (E.5) 

Where, 𝜆𝑘 is the failure rate of vk and  𝑤𝑖,𝑘 is the execution time of the task ti on 

the VM vk. And the failure probability for ti is 

 F(ti,vk)= 1-𝑅(ti,vk)=1-𝑒−𝜆𝑘𝑤𝑖,𝑘 (E.6) 

When we use replication, the reliability of a task ti with m replicas placed on m 

different VMs is 

 𝑅(𝑡𝑖) = 1 − ∏ 𝐹𝑘(𝑡𝑖)

𝑚

𝑘=1

 (E.7) 

The reliability of the workflow with all tasks should be 

 𝑅(𝐺) = ∏ 𝑅(𝑡𝑖)

𝑡𝑖∈𝑇

 (E.8) 

In this Thesis, we assume communication networks between VM provide fault-

tolerance for themselves. 

4.4 Cost model 

Cloud computing environment contains many resources (datacentres), which 

include a number of hosts, where each host has a number of VMs with various 

configurations (CPU, memory, bandwidth, and storage) [25]. The cost includes 

execution cost, bandwidth cost, memory cost and storage cost [25][26][27][28][29] 

[30][31][32]. The cost model in this Thesis is based on a pay-as-you-go pricing 

model. The users are charged according to the amount of time and data that they 

have used computing resources [25][33]. 

The execution cost which computes the cost for the execution of the task ti on the 

VM vk is 

 𝐶𝑜𝑠𝑡𝐸(𝑡𝑖)𝑣𝑘
=

𝐿(𝑡𝑖)

𝑆(𝑣𝑘)
× 𝐶𝑒,𝑣𝑘

 (E.9) 
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Where L(ti) is the length of task ti and S(vk) speed of VM vk in millions of 

instructions per second (MIPS) and 𝐶𝑒,𝑣𝑘
 is the cost of using processing on VM vk. 

The bandwidth cost of task ti on VM vk is 

 𝐶𝑜𝑠𝑡𝐵(𝑡𝑖)𝑣𝑘
=

(∑ 𝑆(𝑑𝑖𝑛𝑖,𝑛
) + ∑ 𝑆(𝑑𝑜𝑢𝑡𝑖,𝑚

)) × 8𝑚𝑛

𝐵𝑊𝑣𝑘

× 𝐶𝑏,𝑣𝑘
 (E.10) 

Where 𝑆(𝑑𝑖𝑛𝑖,𝑛
) and 𝑆(𝑑𝑜𝑢𝑡𝑖,𝑚

) are size of input and output dataset respectively 

(MB) of task ti, 𝐵𝑊𝑣𝑘
is bandwidth of VM vk in Mbps and 𝐶𝑏,𝑣𝑘

 is the cost of using 

bandwidth on VM vk. 

The memory (RAM) cost of task ti on VM vk is 

 𝐶𝑜𝑠𝑡𝑅(𝑡𝑖)𝑣𝑘
= (∑ 𝑆(𝑑𝑖𝑛𝑖,𝑛

) + ∑ 𝑆(𝑑𝑜𝑢𝑡𝑖,𝑚
))

𝑚𝑛

× 𝐶𝑟,𝑣𝑘
 (E.11) 

Where 𝑆(𝑑𝑖𝑛𝑖,𝑛
) and 𝑆(𝑑𝑜𝑢𝑡𝑖,𝑚

) are sizes of input and output dataset respectively 

of task ti and 𝐶𝑟,𝑣𝑘
 is the cost of using memory on VM vk. 

• The storage cost of task ti on VM vk is 

 𝐶𝑜𝑠𝑡𝑆(𝑡𝑖)𝑣𝑘
= (∑ 𝑆(𝑑𝑖𝑛𝑖,𝑛

) + ∑ 𝑆(𝑑𝑜𝑢𝑡𝑖,𝑚
))

𝑚𝑛

× 𝐶𝑠,𝑣𝑘
 (E.12) 

Where 𝑆(𝑑𝑖𝑛𝑖,𝑛
) and 𝑆(𝑑𝑜𝑢𝑡𝑖,𝑚

) are sizes of input and output dataset respectively 

of task ti and 𝐶𝑠,𝑣𝑘
 is the cost of using storage in VM vk. 

The total cost of processing for mapped task ti on VM vk is 

 𝐶𝑜𝑠𝑡(𝑡𝑖)𝑣𝑘
= 𝐶𝑜𝑠𝑡𝐸(𝑡𝑖)𝑣𝑘

+ 𝐶𝑜𝑠𝑡𝐵(𝑡𝑖)𝑣𝑘
+ 𝐶𝑜𝑠𝑡𝑅(𝑡𝑖)𝑣𝑘

+ 𝐶𝑜𝑠𝑡𝑆(𝑡𝑖)𝑣𝑘
 (E.13) 

The cost of all tasks on workflow is  

 𝐶𝑜𝑠𝑡(𝐺) = ∑ 𝐶𝑜𝑠𝑡(𝑡𝑖)𝑣𝑘

𝑡𝑖∈𝑇,𝑣𝑘∈𝑉

 (E.14) 

4.5 Task scheduling 

Task scheduling for a DAG-based workflow includes two phases:  

• Task prioritization: this phase orders tasks based priorities. 

• Task allocation: this phase allocates each task to the appropriate VM, (see 

Figure 4.2). 

Both task scheduling phases for a DAG-based workflow are NP-hard problem 

[9][10][11][13][15][17][24][25][34]. 
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Fig. 4.2: Task prioritization and Task allocation for workflow 

4.5.1 Task prioritization 

Heterogeneous earliest finish time (HEFT) is one of the most famous scheduling 

algorithms for its low complexity, it is a classical static list scheduling algorithm 

[1][15][18][36][37]. HEFT uses the mean value of the computation cost and the 

mean value of communication cost as the rank value to determine the scheduling 

sequence [16], and it maintains a list of tasks sorted in decreasing order of their 

upward rank [17]. The tasks on the workflow are ordered by descending order of 

ranku [9][10][15][17][37][38][39], which is obtained by next equation . 

 𝑟𝑎𝑛𝑘𝑢(𝑡𝑖) = �̅�𝑖 + 𝑚𝑎𝑥𝑡𝑗∈𝑠𝑢𝑠𝑠(𝑡𝑖){𝑐𝑖,𝑗 + 𝑟𝑎𝑛𝑘𝑢(𝑡𝑗)} (E.15) 

Where �̅�𝑖 represents the average execution times of task ti, it is calculated by 

 �̅�𝑖 =
∑ 𝑤𝑖,𝑘

|𝑉|
𝑘=1

|𝑉|
 (E.16) 

Where 𝑤𝑖,𝑘is the execution time of the task ti on the virtual machine vk ,each task has 

variable computation time on a different virtual machine, and ci,j is communication 

time of a data between two  tasks ti ,tj ,it is calculated by 

 𝐶𝑖,𝑗 =
(∑ 𝑆(𝑑𝑜𝑢𝑡𝑖,𝑛

) + ∑ 𝑆(𝑑𝑖𝑛𝑗,𝑚
)) × 8𝑚𝑛

𝐴𝑉𝑅(𝐵𝑊)
 (E.17) 

Where ∑ 𝑆(𝑑𝑜𝑢𝑡𝑖,𝑛
) is the size of output datasets of task ti and ∑ 𝑆(𝑑𝑖𝑛𝑗,𝑚

) is the 

size of input datasets of task tj in MB. 

𝐴𝑉𝑅(𝐵𝑊)  is the average bandwidth of all virtual machines in Mbps, it is 

calculated by 

 𝐴𝑉𝑅(𝐵𝑊) =
∑ 𝐵𝑊𝑣𝑘

|𝑉|
𝑘=1

|𝑉|
 (E.18) 
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4.5.2 Task allocation 

Scheduling tasks find the solving which virtual machine resource that will be 

allocated to which task, for increasing the reliability and decreasing the execution 

cost [15][25][35][40][41][42][43]. We assume that we have a scientific workflow G 

and a set of heterogeneous virtual machines VM. The problem is to assign replicas 

and corresponding VMs for each task ti; at the same time, we must ensure to 

minimize the execution cost of the workflow and ensure also that the obtained 

reliability value R)G) satisfies required reliability Rreq(G). 

The replica set of ti is {𝑡𝑖
1, 𝑡𝑖

2, … , 𝑡𝑖
𝑛𝑖}, where 𝑡𝑖

1 is primary and the remainder is the 

backups. The total number of replicas for the workflow is 

 NRep(G)=∑ 𝑛𝑖
|𝑇|
𝑖=1   (E.19) 

Let's suppose that, we want to execute workflow G at reliability level is (0.995), 

Rreq(G)=0.995. The problem is to find the minimum execution cost of the workflow 

when assigning replicas and corresponding VMs for each task in a workflow. 

𝐶𝑜𝑠𝑡(𝐺) = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚(∑ 𝐶𝑜𝑠𝑡(𝑡𝑖)𝑣𝑘𝑡𝑖∈𝑇,𝑣𝑘∈𝑉𝑀 )  

AND 

 R)G)= Rreq(G)=0.995 
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5. RELIABILITY DRIVEN WORKFLOW SCHEDULING 

USING GENETIC ALGORITHM. 

In this thesis, we propose an approach to optimise reliability and cost for Big Data 

scientific workflows in cloud computing environments using a genetic algorithm. 

We offer an idea to form chromosome structure, approach to encoding solution and 

build of genetic operators. The genetic algorithms can give several satisfying 

solutions by iterative evolutions over the first random generation of workflow 

scheduling. 

To ensure fault-tolerant scheduling and improve the reliability and cost, each task 

is assigned on m distinct virtual machine (VM) resources. In this Thesis case m=2, a 

chromosome is a data structure in which a scheduling solution is encoded. As 

illustrated in (Figure 5.1), we use a two-dimensional string to represent a scheduling 

solution. One dimension of the string represents the first allocation of task ti on 

virtual machine vk, while the other dimension denotes the second allocation of task ti 

on virtual machine vj, where vk ≠ vj. 

The fitness function is used to measure each scheduled chromosome (solution). 

One of the most often used assessment methods is the weighted sum (as fitness 

function), which aggregates the objective values to a single quality measure. As the 

objective functions frequently have different scales, they are usually normalized 

[44]. This can be done for example by using equations (E.20) or (E.21) when 

minimizing and maximizing the objectives respectively: 

 𝑓𝑛𝑜𝑟𝑚 =
𝑓−min (𝑓)

max(𝑓)−min (𝑓)
  for objectives to be minimized  (E.20) 

 𝑓𝑛𝑜𝑟𝑚 = 1 −
𝑓−min (𝑓)

max(𝑓)−min (𝑓)
  for objectives to be maximized  (E.21) 

In our Thesis, the fitness function is defined as: 

 𝑓(𝑠) = 𝑊𝑐 × (
𝐶𝑜𝑠𝑡(𝐺)−Min _𝐶𝑜𝑠𝑡(𝐺)

Max _𝐶𝑜𝑠𝑡(𝐺)−Min _𝐶𝑜𝑠𝑡(𝐺)
) + 𝑊𝑅 × (1 −

𝑅(𝐺)−Min _𝑅(𝐺)

Max _𝑅(𝐺)−Min _𝑅(𝐺)
)   (E.22) 

Both cost and reliability are assigned weights WC and WR respectively, according 

to the trade-off requirement of the user, where WC+WR=1, to calculate reliability 

R(G) and cost Cost(G) of the workflow we use the equations (E.8) and (E.14) 

respectively. 
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Fig. 5.1: Chromosome Structure 

5.1 Experimental results of GA 

The simulation is carried out by WorkflowSim, we create one datacenter, 6 hosts 

and 40 VMs; each host has several VMs based on its power. (Table 5.1) shows the 

characteristics of the resources used for the simulation.  

Table 5.1 Characteristics of Resources 

Virtual Machines 

MIPS of VM VM memory Bandwidth MTBF of VMs 

1000-3000 MIPS 512-1048MB 500-1000mbps 104  - 105 h 

Virtual Machines Cost per unit 

Processing Memory Bandwidth Storage 

1.5-2.0 0.01-0.05 0.1-0.05 0.01-0.05 

 

And we use three different sizes of the CyberShake workflow, Small (30 tasks), 

medium (100 tasks), and large (1000 tasks), (see Figure 5.2), and relative weights 

WC and WR are set as (Table 5.2).   

Table 5.2 Relative Weights Values Used 

WC 0.99999 0.70000 0.50000 0.30000 0.00001 

WR 0.00001 0.30000 0.50000 0.70000 0.99999 

(Figure 5.3, Figure 5.5 and Figure 5.7) present the reliability of the small, 

medium, and large CyberShake workflow respectively, and (Figure 5.4, Figure 5.5 

and Figure 5.8) present the cost of the small, medium, and large CyberShake 

workflow respectively, according to previous relative weights and after 1000, 2500 

and 50000 generations.  
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Fig. 5.2:  The structures of some scientific workflows types. 

Even though we achieved fast convergence of the solution to a close optimal level 

according to relative weights for small workflow (30 tasks), but for large workflow, 

we need to a larger number of generations to achieve optimization and stability in 

the output. 

The number of generations set to 1000 for small workflows (30 tasks) and 25000 

from the medium workflows (100 tasks) and 50000 for large workflows (1000 

tasks). We kept the population size fixed for all workflow sizes under all choices for 

the number of generations and the number of virtual machines, in order to observe 

stability in the output. On another side, the number of virtual machines will have an 

important role to achieve optimization and stability in the output, for large 

workflows (1000 tasks), we achieve convergence of the solution to a close optimal 

level after 1000 generations when we use less number of virtual machines for 

allocating tasks, (see Figure 5.9 and Figure 5.10) 

 

Fig. 5.3: The reliability of small CyberShake workflow (30 tasks) 
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Fig. 5.4: The cost of small CyberShake workflow (30 tasks) 

 

 

Fig. 5.5: The reliably of medium CyberShake workflow (100 tasks) 

 

 
Fig. 5.6: The cost of medium CyberShake workflow (100 tasks) 
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Fig. 5.7: The reliability of large CyberShake workflow (1000 tasks) 

 

 

Fig. 5.8: The cost of large CyberShake workflow (1000 tasks) 

 

 

Fig. 5.9: The reliability of large CyberShake workflow after 1000 generations 
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Fig. 5.10: The cost of large CyberShake workflow after 1000 generations 

5.2 Multi-objective optimization using NSGA-II 

In this thesis, we propose NSGA-II to optimize reliability and cost for scheduling 

scientific workflows in the cloud computing, to calculate reliability R(G) and cost 

Cost(G) of the workflow we use the equations (E.8) and (E.14) respectively.  

Each individual or chromosome is represented as a vector of length equal to the 

number of tasks (1x100), the values specified in this vector are in the range (1, 

number of virtual machines (40)), the value corresponding to each position in the 

vector represents the VM to which task T is allocated.  

5.3 Experimental results of NSGA-II 

We create one datacenter, 6 hosts and 40 VMs; each host has several VMs based 

on its power. (Table 5.1) shows the characteristics of the resources used for the 

simulation, and we use three types of workflows, namely, CyberShake, Montage, 

and LIGO Inspiral workflows to validate the effectiveness of the proposed 

algorithm.  

As it is noticeable in (Figure 5.11), (Figure 5.12) and (Figure 5.13) NSGA-II is 

capable to yield better optimal solutions to maximize reliability and minimize the 

cost for scheduling different types of workflows, where it gives consistent 

performance and has a good spread Pareto optimal set of solutions.  

Sometimes, as well, MOO could give close results to single-objective 

optimization (reliability or cost) when achieves a trade-off between them. (Figure 

5.14), (Figure 5.15) and (Figure 5.16) show a comparison of single-objective 

optimization of reliability, cost, and optimal solutions from MOO to schedule three 

different workflows; we can notice that some trade-off solutions are close to values 

of single-objective optimization. So, we can consider, the Pareto front of (reliability, 

cost) is a good option to make a decision regarding the optimized solution of 

scheduling big data scientific workflows on cloud computing. 
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Fig. 5.11: Pareto-optimal solutions for scheduling CyberShake workflow 

 

 

Fig. 5.12: Pareto-optimal solutions for scheduling Montage workflow 

 

Fig. 5.13: Pareto-optimal solutions for scheduling Inspiral workflow 
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Fig. 5.14: Single objective against Multi-objective solutions for CyberShake workflow 

 

 

Fig. 5.15: Single objective against Multi-objective solutions for Montage workflow 

 

Fig. 5.16: Single objective against Multi-objective solutions for Inspiral workflow 
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6. DYNAMIC FAULT TOLERANCE USING GREEDY 

ALGORITHM 

In this Thesis, we also propose the greedy scheduling algorithm that moves the 

reliability requirement of the workflow to the sub-reliability requirement of each 

task and finding replicas that satisfy sub-reliability with minimum execution cost. 

The use a static approach to determine how many copies are required to reach a 

certain level of reliability is impractical and insufficient. 

6.1 Satisfying required reliability 

Many algorithms were presented to transfer the reliability requirement of the 

workflow to the sub-reliability requirement of each task [9][10][14][15].  

 Older algorithms as MaxRe [9], the sub-reliability requirement of each task is 

calculated by 

 𝑅𝑟𝑒𝑞(𝑡𝑖) = √𝑅𝑟𝑒𝑞(𝐺)
|𝑇|

 (E.23) 

Later algorithms as RR [10] and QFEC+ [15], where the sub-reliability 

requirement of the entry task tentry (t1) is calculated by (E.23) 

 𝑅𝑟𝑒𝑞(𝑡1) = √𝑅𝑟𝑒𝑞(𝐺)
|𝑇|

 (E.24) 

In RR algorithm, the sub-reliability requirements of the remainder of tasks (non-

entry tasks) are calculated continuously based on the actual reliability achieved by 

previous allocations: 

 𝑅𝑟𝑒𝑞(𝑡𝑗) = √
𝑅𝑟𝑒𝑞(𝐺)

∏ 𝑅(𝑡𝑥)
𝑗−1
𝑥=0

|𝑇|−𝑗

 (E.25) 

And QFEC+ algorithm, the sub-reliability requirements of the remainder of tasks 

(non-entry tasks) are calculated also based on the actual reliability achieved by 

previous allocations: 

 𝑅𝑟𝑒𝑞(𝑡𝑗) =
𝑅𝑟𝑒𝑞(𝐺)

∏ 𝑅(𝑡𝑥)
𝑗−1
𝑥=1 × ∏ 𝑅𝑢𝑝𝑝𝑒𝑟 _𝑟𝑒𝑞(𝑡𝑦)

|𝑇|
𝑦=𝑗+1

 (E.26) 

Where Rupper-req(ti) is the upper bound on the reliability requirement of the task ti, 

that is calculated by 

 𝑅𝑢𝑝𝑝𝑒𝑟_𝑟𝑒𝑞(𝑡𝑖) = √𝑅𝑟𝑒𝑞(𝐺)
|𝑇|

 (E.27) 

MaxRe and RR choose replicas and VMs with the maximum reliability for each 

task to minimize the number of replicas until the sub-reliability of the task is 
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satisfied, thereby to reduce execution cost. On another side, QFEC+ algorithm 

selects replicas and VMs with the minimum execution time value for each task, 

thereby to reduce execution cost until the sub-reliability of the task is satisfied, then 

it removes some replicas that have minimum reliability while still satisfying its sub-

reliability requirement. However, the minimum number of replicas does not mean 

minimum execution cost because of the heterogeneity of VMs. 

In this Thesis, we use equation (E.26) to calculate sub-reliability for each task ti, 

and we propose a novel approach which selects replicas and VMs with the minimum 

execution cost value and satisfies the sub-reliability for each task, therefore satisfies 

the reliability requirements of the workflow. 

6.2 The DFTGA algorithm 

In our algorithm DFTGA the reliability requirement of the workflow is 

transferred to the sub-reliability requirement of each task. Then, DFTGA simply 

locates replicas with the minimum execution cost on VMs for each task and sub-

reliability requirement should be satisfied. 

The main steps are as follows: 

1. In lines 1-5, finding a possible maximum number of replicas M. 

2. In line 6, If M larger than an allowed maximum number of replicas MaxRep 

then remove 𝑉𝑚𝑖𝑛 _𝑅 that has minimum reliability from the cloud and go to 2. 

3. In line 7, we order tasks descending according to ranku, using the equation 

(E.15). 

4. In lines 10-11, we calculate reliability and cost of ti on each virtual machine, 

using the equations (E.5) and (E.13) respectively. 

5.  In line 14, we calculate the sub-reliability requirement of the entry task t1 

𝑅𝑟𝑒𝑞(𝑡1), using the equation (E.24).  

6. In line 16, we calculate the sub-reliability requirement of non-entry 

tasks 𝑅𝑟𝑒𝑞(𝑡𝑖) 𝑤ℎ𝑒𝑟𝑒 𝑖 ≠ 1, using the equation (E.26). 

7.  In line 18, for task ti, create a set M of minimum execution cost of replicas on 

virtual machines. 

8. In line 19, finding the sub-set SM of replicas from M, which achieve the 

minimum cost of task ti and sub-reliability requirement is satisfied, and 

calculate R(ti),  𝐶𝑜𝑠𝑡(𝑡𝑖)𝑣𝑘
and  ni. 

9. In line 21, DFTGA calculates the real reliability value R(G), execution cost 

cost(G) and the number of replicas NRep(G) of the workflow, (see Figure 6.1). 
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Input: G= (T, W, Din, Dout , E, C),V ,Rreq(G), MaxRep. 

Output: Cost(G) , R(G) , 𝑁𝑅𝑒𝑝(G). 

1: Finding a virtual machine 𝑉𝑚𝑖𝑛 _𝑅 that has minimum reliability. 

2: Finding the task that has maximum length  𝑡𝐿. 

3: Calculate 𝑅𝑟𝑒𝑞(𝑡𝐿) , using the equation (E.24). 

4: Calculate 𝑅(tL,vmin_R) , using the equation (E.5). 

5: Finding M, the number of replicas of  𝑡𝐿 that satisfy 𝑅𝑟𝑒𝑞(𝑡𝐿) 𝑜𝑛 𝑉𝑚𝑖𝑛 _𝑅 

6: If M > MaxRep  then 

  Call_Proc: Remove  𝑉𝑚𝑖𝑛 _𝑅   from  V ,  Call_Proc: Add new VM, 

  Go to 2: 

End if 

7: Sort(Tasks), descending order of ranku, using the equation (E.15). 

8: For(i=1; i≤|T| ; i++)  

9:      For(k=1; k≤|V| ; K++) 

10:           Calculate 𝑅(ti,vk) ,using the equation (E.5). 

11:           Calculate 𝐶𝑜𝑠𝑡(𝑡𝑖)𝑣𝑘
 ,using the equation (E.13). 

12:      End for 

13:      If (i==1) then 

14:           Calculate 𝑅𝑟𝑒𝑞(𝑡1), using the equation (E.24). 

15:      Else 

16:           Calculate 𝑅𝑟𝑒𝑞(𝑡𝑖), using the equation (E.26). 

17:      End if 

18:      Create a set |M| of minimum execution cost of ti 

19:      finding the sub-set SM of replicas from M, where  

      𝑀𝑖𝑛𝑖𝑚𝑢𝑚(∑ 𝐶𝑜𝑠𝑡(𝑡𝑖)𝑣𝑘𝑡𝑖∈𝑇,𝑣𝑘∈𝑆𝑀 ) and 𝑅(𝑡𝑖) >= 𝑅𝑟𝑒𝑞(𝑡𝑖) 

    Calculate 𝑅(𝑡𝑖), using the equation (E.7). 

    Calculate 𝐶𝑜𝑠𝑡(𝑡𝑖)𝑣𝑘
 , using the equation (E.13). 

     ni=|SM| 

20: End for 

21: Calculate 𝑅(𝐺), using the equation (E.8). 

Calculate 𝐶𝑜𝑠𝑡(𝐺), using the equation (E.14). 

Calculate 𝑁𝑅𝑒𝑝(𝐺), using the equation (E.19). 

Fig. 6.1: The DFTGA algorithm 
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6.3 Experimental results and performance evaluation of DFTGA 

We use WorkflowSim to measure the performance of the proposed algorithm and 

compare with MaxRe, RR and QFEC+. WorkflowSim can use scientific workflows 

generated by Pegasus workflow management system [45]. The workflow 

characteristics are taken from diverse domains such as astronomy, earthquake 

science, and biology resemble real workflows [46]. 

We create one datacenter, 6 hosts and 40 VMs; each host has several VMs based 

on its power. Table 5.1 shows the characteristics of the resource. And we use five 

types of workflows, namely, Montage, Sipht, LIGO Inspiral CyberShake, and 

Epigenomics workflows (see Figure 6.2), and use several level of required reliability 

Rreq(G) (0.99900 to 0.99999) to validate the effectiveness of the proposed algorithm 

, and MaxRep=8. 

 (Figure 6.2A), (Figure 6.3A), (Figure 6.4A), (Figure 6.5A) and (Figure 6.6A) 

show the results of execution costs of five workflows types for varying reliability 

requirements, the execution costs increase with the increase in reliability 

requirements. In all cases, DFTGA produces minimum execution costs followed by 

QFEC+, RR, MaxRe, as we see, the results indicate that DFTGA is more effective in 

reducing execution cost than all previous algorithm. (Figure 6.2B), (Figure 6.3B), 

(Figure 6.4B), (Figure 6.5B) and (Figure 6.6B)  show the results of the number of 

replicas of five workflows types for varying reliability requirements, the number of 

replicas increases with the increase in reliability requirements. The following 

observations are taken:  

• In Sipht workflow, DFTGA produces a minimum number of replicas. 

• In Montage workflow, DFTGA produces a minimum number of replicas in 

case low and medium reliability requirements. 

In LIGO Inspiral, CyberShake and Epigenomics workflows, RR produces a 

minimum number of replicas. 

  

(A) Cost (B) Number of Replicas 

Fig. 6.2: Cost and number of replicas of Montage workflow 
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(A) Cost (B) Number of Replicas 

Fig. 6.3: Cost and number of replicas of Sipht workflow 

  

(A) Cost (B) Number of Replicas 

Fig. 6.4: Cost and number of replicas of LIGO Inspiral workflow 

  

(A) Cost (B) Number of Replicas 

Fig. 6.5: Cost and number of replicas of CyberShake workflow 
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(A) Cost (B) Number of Replicas 

Fig. 6.6: Cost and number of replicas of Epigenomics workflow 
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7. THESIS OUTCOMES 

The challenges brought by the fault tolerance paradigm for execution Big Data 

scientific workflows reveal varied limitations such as the cost of execution. 

Providing fault-tolerant technologies for scientific workflow, a trade-off between the 

reliability and the cost and ensuring a predefined level of reliability with minimum 

cost are some of the issues identified in this work. The faults and the cost of fault 

tolerance prevent to fully benefit from the advantages brought by cloud computing 

such as elasticity and scalability.  

In this Thesis, we addressed these issues by proposing two approaches that 

enhance the reliability to execute Big Data scientific workflow and reduce the cost 

within cloud computing. We demonstrated the advantages of our contributions by 

applying and compare them to state-of-the-art solutions, and consequently 

improving their performance, for tackling Big Data scientific workflows. 

Model of fault tolerance for Big Data scientific workflows 

The main objective of our work was to propose a fault tolerance paradigm and 

fulfill the reliability of Big Data scientific workflows on cloud computing. Because 

of the complexity of cloud computing, executing Big Data scientific workflows 

reliably is a challenge, we have developed a fault tolerance model that uses a 

replication mechanism for reliable execution of workflows on the cloud. It takes into 

consideration the cost of execution to determine the best fault tolerance strategy. 

A trade-off between the reliability and the cost 

Reaching a level of reliability to execute workflows on cloud computing is the 

main objective of the cloud providers and users. However, the costs users are willing 

to pay to execute these workflows and the reliability levels they seek are specific to 

each scenario. Therefore, an important focus of this work was to provide fault 

tolerant scheduling approach which optimizes for trade-offs between the cost and 

reliability. 

To this purpose, we modeled the relation between cost and reliability for 

customizable levels of reliability according to cost constraints. As an intelligent 

search optimization technique, we have used a genetic algorithm which is 

considered an important approach to NP-hard and complex nature optimization 

problems, the results showed that our solution is able to optimize and the trade-off 

between cost and reliability. 

Ensuring a predefined level of reliability with minimum cost 

Replication is an important fault-tolerant technique applied to satisfy the 

reliability requirement. A static approach of fault tolerance to determine how many 

copies are required to reach a certain level of reliability is not the best fit for the 

dynamic environment of the cloud, due to the scientific workflows usually are 

executed in highly heterogeneous distributed environments. 
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Therefore, we proposed dynamic fault-tolerant scheduling for scientific workflow 

in the cloud computing environment. The purpose of DFTGA algorithm is to ensure 

a predefined level of reliability with minimizing cost which is based on tasks 

replication method that is one of the widely used faults tolerant mechanisms. The 

simulation results with real-world scientific workflow models show that DFTGA 

algorithm can offer best results compare with former researches in the same field. 
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8. CONCLUSIONS  

The main goal of this thesis is to devise methods for improving the reliability of 

executing Big Data scientific workflows in cloud computing environments and 

reduce the cost that produces by the fault-tolerance mechanism. To accomplish this; 

this thesis described a model with two fault-tolerant approaches that manage 

scientific workflows on cloud computing with an objective to minimize execution 

cost, the first one was based on a genetic algorithm and the second one was built on 

a greedy algorithm.   

The thesis formally described and defined the scheduling problems in the context 

of Big Data scientific workflows on the cloud, and provided an overview of 

scientific workflows, motivated by real-world examples that we used to evaluate our 

model. Following the problem definition based on motivational examples, this thesis 

presented state-of-the-art techniques to schedule workflows in distributed systems 

and described several works, and identified their contributions and shortcomings. 

The thesis provided a background of faults that are common in cloud computing, 

and discuss the fault tolerance techniques and tools used for implementing fault 

tolerance techniques in cloud computing to execute scientific workflows. 

The objective was also to propose a platform to be used to further experiments 

and evaluations because researchers often cannot reach the real cloud environment, 

and this was accomplished by implementing and evaluating our experiments using 

the WorkflowSim platform. 

We have increased the reliability by the replication of tasks and at the same time 

achieved a trade-off between the reliability and cost to execute workflow on cloud 

computing by genetic algorithm. As well, this study experimentally demonstrates the 

positive impact of NSGA-II to support decision-makers in solving multi-objective 

problems by providing a set of final solutions. As a Pareto-based method, it provides 

a set of solutions that show different trade-offs between multiple objectives. 

In DFTGA, we transferred the reliability requirement of the workflow to sub-

reliability requirement of each task. And the required sub-reliability is ensured by 

creating enough replicas with the minimum execution cost. Simulation results show 

the improvement in the cost of workflows comparing to the other algorithms. In 

previous works, selecting VM depends on the reliability and ignores VM that has 

low reliability, but in DFTGA we improved the reliability of the cloud by removing 

VM with minimum reliability and add new VM, but more effort and further research 

are needed to optimize numbers of replicas. 

Finally, this thesis demonstrated the applicability of a fault-tolerant model on 

scientific workflow applications and made significant contributions toward the 

advancement of the field, and formalized the model of the cloud computing 

environment. 
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