
 

 

Tomas Bata University in Zlín 
Faculty of Applied Informatics 

 
 
 
 
 

Ing. Zuzana Oplatková 
 
 
 
 
 

Doctoral Thesis 
Metaevolution – Synthesis of Evolutionary 

Algorithms by means of Symbolic Regression 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Study-branch: Technical Cybernetics 
Supervisor: assoc. prof. Ivan Zelinka Zlín, Czech Republic, 2007 





 

Acknowledgements 
 
I would like to express my warm thanks to: 
 

 my supervisor, assoc. prof. Ivan Zelinka, for his support and 
invaluable discussions during my study and research on this thesis, 

 MSc. Donald Davendra who revised the English in this dissertation,  
 Radek Bernátík for his love which helps me a lot, 
 colleagues and friends, mainly František Můčka who disscussed 

with me for long hours on different topics concerned to this thesis, 
 and my parents who supported me during my studies 

 

 

 

 
 
 
 
 

 

 

 

 

 

 

...dedicated to hurried time... 
…to catch the eyewink in our lives as the global extreme of fast world... 



 

RESUMÉ 
Toto pojednání je zaměřeno na vysvětlení, jak může být Analytické 

programování použito pro vytvoření nových optimalizačních algoritmů, 
pravděpodobně evolučního charakteru. Evoluční algoritmy jsou nástrojem pro 
optimalizaci složitých úloh. Jedním z cílů práce je ukázat, že je možné 
syntetizovat účinný algoritmus, který bude založený na evolučních principech. 
Toto všechno se skrývá pod pojmem metaevoluce, jak ji chápeme z našeho 
pohledu. Metaevoluce podle předchozích přístupů znamená hledání nejlepších 
algoritmů, jejich operátorů a jejich nastavení pro daný problém. Prakticky to 
znamená, že nějaký algoritmus ladí jiný algoritmus pro nejlepší chování na 
daném problému. Náš přístup je jiný, nehledáme pouze nastavení algoritmu, 
ale používáme metaevoluci k vytvoření kompletně nového algoritmu. 

Nejprve jsou popsány současné metody pro regresi – Genetické 
programování, Gramatická evoluce a Analytické programování. Poslední 
z nich je použito pro simulace v této studii. V další sekci jsou popsány 
evoluční algoritmy, které byly použity pro simulace a také k porovnání jejich 
robustnosti. 

Následující část popisuje simulační experimenty, které byly provedeny 
Analytickým programováním. Nejprve jsou zachyceny simulace pro fitování 
dat, což znamená použití regrese k nalezení vhodného matematického zápisu. 
Tato formule, která je vystavěná z jednoduchých funkcí jako je plus, minus 
nebo proměnné x či konstanty, by měly proložit data co nejlépe. Simulace 
potvrdily, že AP je schopné pracovat s tímto typem problémů, dokonce 
s menším počtem ohodnocení účelové funkce než GP. Pro ukázku, že fitování 
dat funguje, byly provedené 4 studie - Quintic, Sextic, Three Sine and Four 
Sine problém. 

Druhou úlohou bylo navržení elektronických obvodů. Cílem bylo najít 
zapojení obvodu funkcí odpovídající dané pravdivostní tabulce. 
Z jednoduchých funkcí jako je And, Nand, Or a vstupů byly vytvořeny 
konečné výrazy k – symetrického a k – sudého problému. Hodnoty k byly 
postupně nastaveny na hodnoty 3 až 6 pro oba problémy. 

Poslední úlohou, která měla prokázat, že AP je schopné pracovat i s 
lingvistickými výrazy jako jsou např. příkazy pro robota, bylo nastavení 
optimální trajektorie pro robota. Na definované cestě bylo rozmístěno jídlo a 



 

také překážky. Umělý mravenec, který byl navržený v původní úloze Kozou, 
měl sníst všechno jídlo na této trase. Mravenec musel také překonat umístěné 
překážky, které v tomto případě byly políčka na cestě, které neobsahovaly 
jídlo.  

Tyto předpoklady vedly k hypotéze, že AP je schopno vytvořit i nový 
optimalizační algoritmus, pravděpodobně evolučního charakteru. Sekce 6 
popisuje vývoj od první studie tohoto druhu až po simulace s více operátory a 
ve vyšších dimenzích. Na začátku jsme si vybrali Diferenciální evoluci (DE), 
ze které jsme separovali její operátory na samostatně pracující moduly. Tyto 
operátory byly nastaveny jako jednoduché základní funkce pro AP. Během 
simulace byly vyšlechtěna jak úspěšná včetně originální DE, tak i neúspěšná 
řešení.  

Následující krok bylo použití více operatorů z dalších evolučních a 
stochastických algoritmů jako je SamoOrganizujícíc se Migrační Algoritmus 
(SOMA), Horolezecký algoritmus a Simulované žíhání. V tomto případě jsme 
také použili vylepšenou verzi účelové funkce. S ohledem na řád jednotlivých 
hodnot z testovacích funkcí jsme změnili výpočet hodnoty na rozdíl mezi 
nalezeným a globálním extrémem. To také umožnilo snadnější penalizaci 
týkajícíc se počtu ohodnocení účelové funkce. 

Simulace v této sekci byly provedeny v 2 dimensionálním prostoru. To 
vedlo k třetímu kroku a to použití benchmark funkcí ve vyšších dimenzích 
jako kritérium v AP. Obdržené výsledky z vícerozměrových testovacích 
funkcí - 4 nalezené algoritmy – byly aplikovány na 16 testovacích funkcí ve 2, 
20 a 100 dimenzionálním prostoru. Celkem bylo provedeno 192 simulací, 
z nichž každá byla 100krát zopakována. Výsledky jsou presentovány formou 
tabulek a grafů v příloze. 

Z výsledků lze usoudit, že nalezené algoritmy jsou schopné optimalizovat 
multimodální funkce. Není možno říci, který z nich zvítězil, jednak kvůli ne 
zcela totožný počtům ohodnocení účelové funkce, ale také proto, že žadný 
algoritmus nevyhrál ve všech testovacích funkcích. Soutěžili dokonce i 
v různých dimenzích v rámci jedné funkce.  

Budoucí výzkum je otevřený v oblasti přidávání operátorů, ladění 
parametrů nalezených algoritmů nebo syntéza nového evolučního operátoru.  

Klíčová slova: symbolická regrese, Analytické Programování (AP), 
evoluční algoritmy, nové evoluční algoritmy 



 

ABSTRACT 
This thesis is aimed at the explanation as to how Analytic Programming 

could be used for the creation of new optimizing algorithms, probably of 
evolutionary character. Evolutionary algorithms are tools for the optimization 
of difficult tasks. The principle of this thesis is to show that it might be 
possible to synthesize a powerful algorithm based on evolutionary ideas. The 
name of this thesis – metaevolution – covers all these ideas. Metaevolution is, 
according to previous approaches, determining the optimal evolutionary 
algorithm, best types of evolutionary operator and their parameter setting for a 
given problem. It means basically, that one evolutionary algorithm tunes 
another one. But this approach is novel. We use metaevolution for creating a 
new algorithm completely, not only for setting of its parameters. 

Firstly, tools for regression are described – Genetic Programming, 
Grammatical Evolution and Analytic Programming (AP); the last one is used 
in this study. Other tools, which are seen here, depict evolutionary algorithms 
which were used for simulations purposes in order to also to compare their 
robustness.  

The following part describes projects which were conducted by Analytic 
Programming. Firstly, simulations of fitting measured data are mentioned, 
which implies the use of regression to finding a suitable mathematical 
formula. This complex formula, based on simple functions like plus, minus or 
variables “x” and constants, should fit the data as closely as possible. The 
simulations proved that AP is able to perform such kinds of computations even 
in a smaller number of cost function evaluations compared to GP (four 
problems were carried out – Quintic, Sextic, Three Sine and Four Sine 
problem - to show that this type of regression works).  

The second task was to design electronic circuits. The aim was to find a 
configuration of circuits according to the truth table. Whole expression of k-
symmetry and even-k-parity problems were created from simple functions like 
And, Nand, Or and inputs. Values 3 to 6 for both types of problems were set 
up for k. 

The last task, which proved that AP is able to work also with linguistic 
terms like commands for robot, was setting of optimal trajectory for robot. In 
the defined problem trail pieces of food were placed including some obstacles. 



 

The artificial ant, originally defined by Koza, should eat all the food on such a 
trail while overcoming all obstacles. 

These presumptions led to the hypothesis that a new algorithm of 
evolutionary character can be created by Analytic Programming. Section 6 
describes the progress from the first study of the creation of a new 
evolutionary algorithm to the simulations with more operators and higher 
dimensional systems. At the onset Differential Evolution (DE) was taken and 
its operators were separated into modules which are able to work 
independently. These operators were set up as simple functions for successful 
evaluations of AP. During the run non successful solutions as well as the 
original Differential Evolution and other successful solutions were found.  

The next step continued with more operators from other evolutionary and 
stochastic algorithms such as Self-Organizing Migrating Algorithm, Hill 
Climbing and Simulated Annealing. In this case also a new design of cost 
function was. With respect to the order of obtained cost values, the 
measurement was changed to minimize the difference between found extreme 
and the global one. This also affords to apply penalization concerned to cost 
function evaluations. Simulations in this section were performed in 2 
dimensional space. This led to the third step, to use high dimensional 
benchmark functions as criterion in AP. The obtained results from higher 
dimensional test functions were then applied on 16 benchmark function in 2, 
20 and 100 dimensional space for 4 found algorithms. Altogether 192 
simulations were carried out in 100 times repetition, it means nearly 4 
milliards of cost function evaluations. Results are depicted in tables and 
graphs in the Appendix. 

 From results obtained, it can be stated that found algorithms are able to 
optimize multimodal functions. However, it is not possible to say which one 
was better because each won in some cases. They compete even inside one 
benchmark function in different dimensions. 

Future research is open to add more operators, to tune parameters of found 
algorithms or to try to synthesize a new evolutionary operator itself.  

 
Keywords: Symbolic Regression, Analytic Programming, evolutionary 

algorithms, new evolutionary algorithms 
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1. INTRODUCTION AND STATE OF ART 
 
Optimization is one of these words which is used almost every day in 

different fields of human activities. Everybody wants to maximize profit and 
minimize cost. This means optimizing in every task of industry, transportation, 
medicine, everywhere. For these purposes, we need to have suitable tools 
which are able to solve very difficult and complicated problems. As previous 
years proved, use of artificial intelligence and soft computing contribute to 
improvements in a lot of activities. One of such tools of soft computing are 
evolutionary algorithms [1]. 

Evolutionary algorithms are a group of algorithms which use their special 
operators as mutation, crossover and others to find an ideal solution. Possible 
candidates are defined by a cost function which arguments are values of each 
solution. The best one is in the global extreme – maximum or minimum [1], 
[2]. 

These evolutionary algorithms have been known for decades and live 
through the advancement from the weaker ones to more robust ones which are 
used with success in a lot of tasks nowadays. Since their first appearance there 
is quite long queue of representatives: Genetic Algorithms [3], Differential 
Evolution [4], Self-Organizing Migrating Algorithm [5], Particle Swarm 
Intelligence [6], Ant Colony Optimization [7], Artificial Immune system [8]. 
In optimization, algorithms belongs also to some stochastic and deterministic 
ones: Hill Climbing [9], Simulated Annealing [10], Monte Carlo [2] and a lot 
of others or their mutations [11]. 

These techniques promise fast optimization compared to classical 
mathematical approach. On the other hand, also between these optimization 
techniques is possible to find better and worse. Their behaviour were 
described in a lot of references. And the research in this area is still full of 
white places. There is wide field of possible applications as tuning of 
parameters, making of comparisons, trying to find new ones somehow. 

There exist special tools which are connected with evolutionary algorithms 
and are able to work with symbolic regression. Nowadays, mainly three are 
known for that – Genetic Programming [12] - [14], Grammatical Evolution 
[15] - [17] and superstructure of evolutionary algorithms –  Analytic 
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Programming [18] - [26]. These techniques can produce a complex formula 
from basic functions according to required behaviour of function in the case of 
mathematical data set, of an electronic circuit, trajectory of robots, etc. 

Also, some other approaches to the field of symbolic regression can be 
found – either based only on evolutionary techniques or hybrid ones. 
Interesting investigations using symbolic regression were showed by Johnson 
[27] working on Artificial Immune Systems and Salustowicz in Probabilistic 
Incremental Program Evolution (PIPE) [28] which generates programs from 
an adaptive probability distribution over all possible programs. To 
Grammatical Evolution foreruns GADS which solves the approach to 
grammar [29], [30]. Also from evolutionary algorithm artificial immune 
systems evolved the artificial immune system programming for symbolic 
regression [31]. Approaches which differ in representation and grammar are 
described in gene expression programming [32], multiexpression 
programming [33], meta-modelling by symbolic regression and pareto 
Simulated Annealing [34]. To the group of hybrid approaches, belongs mainly 
numerical methods connected with evolutionary systems, e.g. [35]. 

Then the idea to connect evolutionary algorithms with techniques for 
symbolic regression came up. The aim is to try to create new evolutionary 
algorithms which will be very robust and will be used for difficult tasks faster 
and with higher quality than current algorithms are able to do at present. 

This work is divided into five main numbered chapters.  
The first chapter gives overview in the research area of symbolic regression 

by means of tools of artificial intelligence and evolutionary algorithms 
whereas the second chapter formulates the main goals of this dissertation.  

The section number three is focused on the theoretical knowledge about the 
symbolic regression and its tools and similarly in section four description of 
evolutionary algorithms used in the work can be found. 

The fifth part of the work shows simulation results which had forerun the 
simulations themselves connected to the main topic of the dissertation – 
synthesis evolutionary algorithms by means of symbolic regression. 

 The sixth part offers the progress from the beginning to the final results of 
the creating evolutionary algorithms, the discussion of the obtained results and 
conclusion of the achieved goals in this work. 
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In the final part can be found the discussions and conclusions of achieved 
goals of dissertation and view to the future field in this research. 

Tables, figures and equations are numbered recursively within a chapter 
and literature is referred to in square brackets. 
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2. DISSERTATION GOALS 
The aim of the work is to apply and verify that it is possible to create new 

evolutionary algorithms by means of symbolic regression with a tool of 
artificial intelligence – Analytic Programming (AP). Preparation steps were 
done with several types of tasks chosen from literature to find out the 
performance of AP. After that we were able to run simulations to find new 
evolutionary algorithms.  

The steps leading to this dissertation could be summarized as follows: 
 to prove that Analytic Programming is able to do symbolic 

regression, 
 to prove that Analytic Programming is also able to work with 

linguistic terms not only with numeric values or mathematical 
operators, 

 to try to create a new optimization algorithm, probably of 
evolutionary character, possibly with AP, 

 to define several operators of evolutionary algorithms (like 
crossover, mutation, perturbation from SOMA, and others) which 
will be used as simple functions for AP, 

 to define restrictions in Cost Function such as the inclusion of the 
number of cost function evaluation into quality of solution, 

 to try to create an evolutionary algorithm which will be at least as 
robust as some current algorithms are and further to compare its 
behaviour with current ones, 

 to give comparisons between created and current evolutionary 
algorithms 

 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

THEORETICAL FRAMEWORK 
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3. SYMBOLIC REGRESSION 
In statistics, regression is a method of curve fitting, i.e. finding a curve 

which matches a series of data points and possibly also other constraints. It is 
done by means of regression analysis. Two types of regression are used – 
linear and nonlinear, which depend on data sets. The final formula, which fits 
data as close as possible, is done using classical mathematical and statistical 
techniques [36]. 

Symbolic regression in the context we use, implies to create a final formula 
from basic simple functions. This procedure can be used for mathematical and 
also for non mathematical fields. 

This approach was firstly introduced by John Koza in Genetic 
Programming [12] - [14], then in Grammatical Evolution [15] - [17] by Conor 
Ryan and also by Ivan Zelinka in Analytic Programming [18] - [25]. 

 
3.1. Genetic Programming 

Genetic programming was introduced at the end of the 1980’s by John 
Koza [12] - [14]. He suggested modification of genetic algorithm and he 
named it Genetic Programming. In this concept a new population is bred not in 
the normal numerical way but in an analytical way. It means that the solution 
of such breeding is not values of parameters but a function itself. 

According to genetic algorithms, each value is called gene, similarly to 
nature. Genes in GP are not represented by integers or real values but 
parameters in chromosome string are functions themselves. In the simplest 
version there are variables, constants, basic arithmetical functions and 
elementary functions. From this group a function, e.g. x*(1+x) can be made. 
This can be sought in a parse tree as seen in Fig.  3.1, where the top is called 
the root of the tree.  

Interpreting of the parse tree is easy. During the run the function x * (1 + x) 
is evaluated through this tree from the bottom to the top. 

In GP, operators of crossover and mutation are used as in genetic 
algorithms [37] - [39]. But here, whole parts of a tree are changed in the case 
of mutation (Fig.  3.2) or crossed (Fig.  3.3). 
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Fig.  3.1: Parse tree 

 
 

 
 

Fig.  3.2: Mutation in Genetic Programming 

 
Another approach to GP is enforcing dimensional constraints through 

formal grammar. It restricts GP search space to dimensionally admissible laws 
[40]. Another investigation which adjusts GP to achieve improved predictive 
performance and reliability of the induced expressions was presented in [41], 
[42]. 

 * 

 x   + 

 1  x 
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Fig.  3.3: Crossover in Genetic Programming 

 
 

3.2. Grammatical Evolution 
Grammatical evolution (GE) is another tool for doing symbolic regression 

by means of computers. The advantage of this tool, compared to GP, is that 
GE can evolve complete programs in an arbitrary programming language [15] 
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- [17] using a variable – length binary string. It uses Backus Naur Form 
grammar definition for mapping process to a program. GE performs the whole 
process on a variable – length binary strings. A mapping process is employed 
to generate programs in any language by using the binary strings to select 
production rules in a Backus Naur Form (BNF) grammar definition. The result 
is the construction of a syntactically correct program from a binary string that 
can then be evaluated by a fitness function [15]. 

Variable-length binary string genomes are used with each codon 
representing an integer value, where codons are consecutive groups of 8 bits in 
order to make the genetic code degenerate. The integer values are used in a 
mapping function to select an appropriate production rule from the BNF 
definition. The numbers generated always represent one of the rules that can 
be used at that time.  

Below is an example of BNF definition, where N is a set of nonterminals 
and T is set of terminals. 
 N ={expr, op, pre_op, var} 
 T = {Sin, + , - , / , * , X , 1.0}} 

 
and can be represented as: 
A) <expr>  :  :  =  <expr> <op> <expr>  (0) 
   | ( <expr> <op> <expr> ) (1) 
   | <pre-op> (  <expr>  )  (2) 
   | <var>    (3) 
 
B) <op>     :  :  =  + (0) 
   | - (1) 
   | / (2) 
   | * (3) 
 
C) <pre-op>     :  :  =  Sin 
 
D) <var>     :  :  =  X (0) 
   | 1.0 (1) 
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In Table 3.1, numbers of possibilities for each rule are given. The mapping 
starts with reading codons of 8 bits [15] to generate a corresponding integer 
value, from which an appropriate production rule is selected by using the 
mapping function (3.1). 

 
Table 3.1: The number of choices available from each production rule  

Rule type Choices 

A 4 

B 4 

C 1 

D 2 
 
 

 Rule = (Codon integer value)  
 MOD  
 (Number of choices for the current non-terminal) (3.1) 

 
Fig.  3.4 shows an example of the individual with content of integer values 

which were generated from 8 bit binary number (codon). 
 

220 40 16 203 101 53 202 203 102 55 220 202 19 130 37 202 203 32 39 202 203 102 

 Fig.  3.4: An example of an individual for GE 

The first codon is 220. If we apply eq. (3.1) we obtain value 0. That means 
we use rule A with its terminal 0. It represents an inscription A.0. Our program 
looks like 

 
<expr><op><expr> 
 
Then we continue with the left-most non-terminal which is <expr>. We 

take the second codon from the individual and apply the formula (3.1) again, 
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i.e. 40 MOD 4. We obtain 0. <expr> is replaced by <expr><op><expr>. The 
result is following 

 
<expr><op><expr><op><expr> 
 
The next step is again at the <expr>. For the third time we obtain by 

reading codon the rule A.0. 
 
<expr><op><expr><op><expr><op><expr> 
 
Now the left-most <expr> is determined by codon with value 203 which 

gives after formula (3.1) rule A.3 which is <var>.  
 
<var><op><expr><op><expr><op><expr> 
 
The next codon will then determine the value of var; there are 2 

possibilities. 101 MOD 2 gives then rule D.1 which has value 1.0. Our 
expression then results in  

 
1.0 <op><expr><op><expr><op><expr> 
 
Next codon will then determine what <op> will become. We have 53 MOD 

4 which is 1 which stands for minus. The next <expr> has to be expanded by 
the codon 202 that is 202 MOD 4 = 2. We get following 

 
1.0 - <pre-op>(<expr>)<op><expr><op><expr> 
 
Because <pre-op> has only one possibility we obtain 
 
1.0 – Sin (<expr>)<op><expr><op><expr> 
 
Then we can continue similarly as before until we end with this final 
formula. 
 
1.0 – Sin(x)*Sin(x) - Sin(x)*Sin(x) 
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The program is finished when all non-terminals are replaced by terminals. 
If codons are run out earlier then they are used cyclically from the beginning 
[15]. The above description is for mapping from codons to final formula in 
GE. During evolutionary process mutation and crossover operators are used 
like in genetic algorithms. 

 
 

3.3. Analytic Programming 

3.3.1. Description 
 
Basic principles of the AP were developed in 2001 [5]. Until that time only 

GP and GE and their mutations existed. GP uses Genetic Algorithms while AP 
can be used with any evolutionary algorithm, independently on individual 
representation. To avoid any confusion based on the use of names according to 
the used algorithm, name - Analytic Programming was chosen by the author, 
because AP stands for synthesis of analytical solution by means of 
evolutionary algorithms [18] - [25]. 

According to the authors of AP, it was inspired by numerical methods in 
Hilbert spaces (space with mutually orthogonal functions) [43] and by GP. 
Principles of AP [23] are somewhere between these two philosophies. From 
GP an idea of evolutionary creation of symbolic solutions is taken into AP 
while from Hilbert spaces an idea of functional spaces and building of 
resulting function by means of a searching process usually done by numerical 
methods like Ritz or Galerkin is adopted. AP as well as GP is based on a set of 
functions, operators and so-called terminals, which are usually constants or 
independent variables like for example:   

 
• functions: Sin, Tan, Tanh, And, Or  
• operators: +, -, *, /, dt,…  
• terminals: 2.73, 3.14, t,…  
 
All these “mathematical” objects create a set which AP tries to synthesize 

into an appropriate solution form. Main principle (core) of AP is based on 
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discrete set handling [5], originally proposed in [44], see Fig.  3.5 and Fig.  
3.6.  

Discrete set handling shows itself as universal interface between EA and a 
symbolically solved problem.  This is why AP can be used almost by any 
evolutionary algorithm.  

Briefly said, in AP, individuals consist of non-numerical expressions 
(operators, functions,…) as described above, which are in evolutionary 
process represented by their integer indexes (Fig.  3.5). The index then serves 
like a pointer into the set of expressions and AP uses it to synthesize resulting 
function-program for cost function evaluation [22]. 

 

 

 Fig.  3.5: Discrete set handling 

 

 

Fig.  3.6: Main principles of AP 
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The functionality of the discrete set handling can be on the concrete 
example in Fig.  3.6 described as follows. 

All simple functions and operators are in so called General Function Set 
(GFS) [22]. Each simple function, operator or variable is then divided into 
groups according to the number of arguments which can be inserted during the 
evolutionary process to subset GFS3arg, GFS2arg...GFS0arg (Fig.  3.7).  

 

 
Fig.  3.7: Example of set of General Functional Set and its subsets 

The individual consists of 6 arguments (indices, pointers to GFS). The first 
index is 1, meaning that + is taken from the set of functions GFSall.  Function 
plus has two arguments therefore indexes 6 and 7 are arguments of plus 
(expression (3.2). 

 
 6 + 7 (3.2) 

 
Index 6 is then replaced by Sin and index 7 by Cos (expression (3.3)).  
 

 Sin + Cos (3.3) 
 
Sin and Cos are one-argument functions. After index 7 follows index 8, 

which is replaced by Tan (expression (3.4)). Tan is also one-argument 
function.  

 
 Sin(Tan) + Cos (3.4) 

 
After index 8 the individual takes index 9, which is replaced by “t” and this 

is an argument of Cos (see expression (3.5)).  
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 Sin(Tan) + Cos(t) (3.5) 
 

If the last index is 9, the process would finish easily. Under this index 
would be a variable “t”, and this is an argument of Tan. The resulting function 
mapping by AP would be then expression (3.6).  

 
 Sin(Tan(t)) + Cos(t) (3.6) 

  
But in our case there is function Mod. This needs an argument to work 

properly. AP will not allow this. Instead of Mod the AP will jump into the 
subspace in this case directly to GFS0arg. In other cases it is counted as if it can 
be used also as an operator with more arguments. In the GFS0arg there was 
found 11th  element which is “t”. So we will obtain again the expression (3.6).  

This description was shown on mathematical operators and objects as 
functions, variables etc. for simplicity. But it can be used as linguistic terms 
which must then be suitably transformed in the cost function to the numerical 
value because of  evolutionary algorithms. The usage of algorithms to find a 
final formula is necessary as mentioned in the introduction. They need 
numerical value as the measurement of quality of the solution. 

 
Analytic programming was used for e.g. in solving following problems:  
- sextic, quintic, 3sine, 4sine problem [20] with the use of algorithms of 

Simulated Annealing (SA) [10], Genetic Algorithms (GA) [3], Differential 
Evolution (DE) [44], [4] and Self-Organizing Migrating Algorithm (SOMA) 
[5] 

-  Boolean symmetry and parity problems [21], [22], again with SA, GA, 
DE and SOMA 

- Solving of ordinary differential equations (ODE): u’’(t) = cos(t), u(0) = 1, 
u(π) = -1, u’(0) = 0, u’(π) = 0 [43], 100 times repeated, in that case AP was 
looking for suitable function, which would solve this case of ODE, by DE and 
SOMA in [18], [19] 

- Solving of ODE: ((4 + x)u’’(x))’’ + 600u(x) = 5000(x-x2), u(0)=0, 
u(1)=0, u’’(0)=0, u’’(1)=0, Again as in the previous case, AP was used to 
synthesize a suitable function – solution of this kind of ODE. This ODE was 
used from and represents a civil engineering problem in reality, [18] 
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- Setting an optimal robot trajectory [23], [24] with algorithms SOMA, DE 
and SA 

- Synthesis of neural networks [25] with algorithm SOMA 
- Chaos synthesis [26] 
 
 

3.3.2. Versions of AP 

Today, AP exists in three versions. In all three versions the same sets of 
functions, terminals, etc. as Koza use in GP [12] - [14] are necessary for the 
program synthesis. The second version (APmeta, lets call the first version 
APbasic) is modified in the sense of constant estimation. For example, when 
Koza uses in so called sextic problem [12], randomly generated constants, AP 
uses only one, called “K”, which is inserted into the formula at various places 
by evolutionary processing. The function can look like as in (3.7). 

 

 

! 

K

x + Kx
 (3.7) 

 
When the program is synthesized, then all “K” are indexed so that K1, K2, 

…, Kn, are obtained in formula (3.8), and then all Kn are estimated by second 
evolutionary algorithm.  

 

 

! 

K
1

x + K
2
x

 (3.8) 

 
Because EA “works under” EA (i.e. EAmaster►program►K indexing 

►EAslave►estimation of Kn), this version is called AP with metaevolution - 
APmeta. As this version was quite time consuming, another modification of 
APmeta was done extending the second version by estimation of K. It is done by 
suitable methods of nonlinear fitting from the environment Mathematica 
(www.wolframresearch.com) (APnf). This method has shown the most 
promising performance when unknown constants are present, so some 
comparative simulations were performed using third version - APnf in article 
[22].  
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3.4. Comparison 
The above described tools have some elements similar and some that are 

unique. To the same elements belongs the aim of the creation of the complex 
formula, which fits data or required behaviour as well as possible. Tools used 
evolutionary algorithms to their successful run. On the other hand, there are 
also some disadvantages within each tool. 

The first thing, which is different for these tools, is the use of evolutionary 
algorithms. GP can use only genetic algorithms; it is basically the same as 
genetic algorithm because the simple functions are directly set up inside the 
individuals. Then the operators of GA are applied. GE is different because it 
was not used with GAs only, but also with a few strategies with binary 
representation of individuals. The last tool, AP, is able to use arbitrary 
evolutionary algorithm because of its structure and techniques of manipulating 
with arguments in individuals – discrete set handling as described above. 

The programming language is related to this topic as well. GP was used in 
LISP programming language which enables easy manipulation with 
symbolically written function inside genetic algorithm. The other two tools are 
able to be implemented in any programming language.  

The fact, that AP can be implemented in arbitrary programming language 
and it can use arbitrary evolutionary algorithms (e.g. DE, SOMA, GA, SA) 
was the most important reason for the choice of AP for other experiments. The 
quality of results depends on the powerful evolutionary algorithm 
performance. The robustness of the method depends on the choice of 
evolutionary algorithm. From the experiments, we accomplished, it was found 
that Self-Organizing Migrating Algorithm [5] and Differential Evolution [44], 
[4] are very powerful algorithms which will be described in the next section. 
Also to show that AP is able to cooperate with other evolutionary algorithms 
in this work simulations with Simulated Annealing [2], [10] and Genetic 
Algorithms [37] - [39] will be also carried out. 

 
 

3.5. Other possible approaches 
Other interesting investigations using symbolic regression were showed by 

Johnson [27] working on Artificial Immune Systems and Salustowicz in 
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Probabilistic Incremental Program Evolution (PIPE) [28] which generates 
programs from an adaptive probability distribution over all possible programs. 

To Grammatical Evolution foreruns GADS which solves the approach to 
grammar [29], [30]. Also from evolutionary algorithms artificial immune 
systems came up the artificial immune system programming for symbolic 
regression [31].  

There are three other approaches – gene expression programming [32], 
multiexpression programming [33], meta-modelling by symbolic regression 
and pareto Simulated Annealing [34] and also hybrid methods which uses 
numerical methods with evolutionary approach [35]. 
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4. OPTIMIZATION ALGORITHMS - 
EVOLUTIONARY ALGORITHMS 

Optimization algorithms – mainly evolutionary algorithms are a necessary 
part of the above described tools and can be used independently. Here, an 
overview only of algorithms, which were used in further simulations, will be 
given. 

Division of optimization algorithms might be as follows. This is not the 
only one point of view on that [1]. 

 

 
 

Fig.  4.1: Division of evolutionary algorithms – taken from [1] 

Algorithms in stochastic and mixed group can have evolutionary features so 
we are talking often about evolutionary algorithms in this case. The feature are 
mainly in Mixed algorithms, but for e.g. Simulated Annealing can have elitism 
inside and then it might be called also as an evolutionary algorithm. 

In the following chapters we will discuss descriptions of several 
evolutionary and stochastic algorithms which were used in simulations. 
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4.1. Deterministic algorithm – Hill Climbing 
Hill Climbing (HC) algorithm belongs to one of the easiest algorithms. It 

searches the surface of the cost function in the direction of the biggest 
gradient. Therefore HC mostly ends in the nearest local optimum. 

Hill Climbing starts from the randomly generated point on the surface of 
the cost function. Then a point from the suitable neighbourhood is chosen. 
Cost values of both points are compared and the point with the better value is 
selected as the new startpoint. The better means in the case of finding 
minimum – lower value, in the case of finding maximum – higher value. The 
first version was for finding higher value and then the point seems to climb on 
the hill of the cost function surface. Therefore a name Hill Climbing [9]. 

Other version might be that depending on the user, not only one but a 
certain number of points is generated in the neighbourhood. In the case that 
the best cost value is in the start point this one is chosen for the next loop. This 
subroutine is repeated several times, dependent on the user.  

 
4.2. Stochastic algorithm - Simulated Annealing 

Simulated Annealing is one of older algorithms compared to SOMA and 
DE. SA can be referred to as the forerunner of evolutionary algorithms [2]. It 
was introduced by Kirkpatrick et al. for the first time in [10]. An inspiration 
for developing this algorithm was annealing of metal [2], [10]. In the process 
metal is heated up to a temperature near melting point and then it is cooled 
very slowly. The purpose is to eliminate unstable particles. In other words, 
particles are moved towards an optimum energy state. Metal is then in a more 
uniform crystalline structure. 

This approach was used in the case of the simulated annealing including 
those terms. Simulated annealing is a better variation of the Hill-Climbing 
algorithm [2]. Both start off from a randomly selected point. Compared to HC, 
simulated annealing offers a slightly different approach. It means that there is 
a chance to find a global optimum, not only a local one.  

The principle of accepting a solution during a run of Simulated Annealing 
is as follows: If the new cost value is better than the old one, the new one is 
accepted immediately. It means that the difference between these two cost 
values is negative. If the difference is positive (the new cost value is worse 
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than the old one) a number from interval <0, 1> is generated. If it is lower than 
the probability according to equation (4.1), the new point is accepted, 
otherwise the old one continues in the process. This is called the Metropolis 
criterion [2], [10]. 

 

 

! 

p(T) = e
"
#E

T  (4.1) 
 
where   
p(T)   - probability of transition for temperature T 
ΔE    - difference between cost values of previous and current      

  solution 
T    - current temperature – control parameter for cooling schedule 
 
The algorithm starts with high temperature T, which is decreased in steps. 

Equation (4.2) shows standard cooling function [2], [10]. 
 

 Tn+1 = α Tn  (4.2) 
where  
Tn+1   - temperature in the next step 
Tn   - temperature in the current step 
α  - cooling coefficient from interval <0, 1> 
 
Simulated Annealing offers finding a global optimum better than Hill-

Climbing because probability causes that also a worse solution than the 
previous can be accepted, which can mean finding a global optimum in the 
end. Hill-Climbing goes from a start point in the direction of the biggest 
gradient.  

 
4.3. Genetic Algorithms 

Genetic algorithms are a group of methods which are used to solve search 
and optimisation problems. The basics of GA were laid down in 1975 by John 
H. Holland [37].  

Genetic algorithms are based on natural principles of evolution, which were 
described by Charles Darwin. Many terms of natural genetics are also used in 
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genetic algorithms. Genetic algorithms work with the population of 
individuals. However, they work with parameters in binary code. According to 
the fitness function, which represents degree of quality, parents are chosen. 

 
4.3.1. Coding and fitness function 

As mentioned above, each individual has parameters called genes, which is 
then coded in binary form. All genes of one individual give a string called 
chromosome. In genetic terms, the set of parameters represented by a 
particular chromosome is referred to as a genotype. The genotype contains the 
information required to construct an organism which is referred to as the 
phenotype. The same terms are used in GA. Chromosome is the genotype and 
its cost value is phenotype [37] - [39]. The cost value says how successful the 
solution is. Another term connected with GA is a fitness function with the 
fitness value. This is used to choose parents because it says how much a 
particular solution is suitable. Kvasnička [2] defined the fitness as  
 

 

! 

F(ind) =
Fmax " Fmin

fmin " fmax
f (ind) +

fminFmin " fmaxFmax

fmin " fmax
 (4.3) 

where 
F(ind) – fitness value for an  individual ind 
fmin   – minimal value of cost function 
fmax   – maximal value of cost function 
Fmax  – rescaled value of cost function, value 1 
Fmin  – rescaled value of cost function, value 0 
 
Equation (4.3) assigns fitness to each individual in the population linearly 

in interval <0, 1> according to its cost value. The minimum value (best one) 
has fitness 1 and maximum value (worst one) has fitness 0. Fitness represents 
the interval on the unit circle or unit line [2], [37] - [39]. 

 
4.3.2. Reproduction 

In the first steps, reproduction requires choosing suitable parents first. It can 
be done quasi-randomly by means of Roulette Wheel on the unit circle or unit 
line mentioned above (Fig.  4.2 and Fig.  4.3). Individuals with the lower 
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(higher - it depends on the programmer) cost value are more likely to be 
selected than individuals with the higher (lower) cost value. Besides, to change 
finding from minimum to maximum it is enough to multiply cost function by 
minus one. Reselection is allowed too. Individuals with the good cost value 
can be selected to become parents more often. Selected parents go to the 

“mating pool”. In the mating pool two parents are randomly chosen to produce 
two offspring.  

 
Fig.  4.2: Scheme of RouletteWheel on unit circle 

Fig.  4.3: Scheme of unit line 

Their chromosomes are recombined by means of crossover and mutation 
[37].  

Crossover means cutting of chromosomes in a randomly chosen position 
and changing parts between parents (see Fig.  4.4). Mostly two versions of the 
crossover are used; 1-point or 2-point crossover. 1-point crossover is described 
above; in 2-point crossover there are 2 points randomly chosen and parents 
change part between these two points (Fig.  4.5). Also more than 2-point 
crossover is possible but most often 1-point or 2-point are used because they 
are sufficient [37]. 
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Fig.  4.4: Scheme of 1-point crossover 

 

Fig.  4.5: Scheme of 2-point crossover 
 
After crossover, each offspring goes to the process of mutation. One bit is 

mutated, i.e. if there is zero in the bit it is changed to one, and vice-versa. One- 
(Fig.  4.6) or two-bit mutation is recommended.  

   
 
 
 
 
 

 

Fig.  4.6: Scheme of 1-bit mutation  

 
4.4. Self-Organizing Migrating Algorithm 

(SOMA) 
SOMA has been in existence since 1999 and was developed by Ivan 

Zelinka [5]. SOMA works with groups of individuals (population) whose 
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    1          0         1         1         0         0          1         1 

Offspring 

The same 
offspring after   1 
bit - mutation 

Parent 1 

Parent 2 

Parent 1 

Parent 2 
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behaviour can be described as a competitive – cooperative strategy. The 
construction of a new population of individuals is not based on evolutionary 
principles (two parents produce offspring) but on the behaviour of social 
group, e.g. a herd of animals looking for food. This algorithm can be classified 
as an algorithm of social environment [45]. To the same group of algorithms 
particle swarm algorithm can also be put in, sometimes called swarm 
intelligence [6]. In the case of SOMA, no velocity vector works as in particle 
swarm algorithm, only the position of individuals in the search space is 
changed [5] during one generation, here called ‘Migration loop’.   

The rules are as follows: In every migration loop the best individual is 
chosen, i.e. individual with the minimum cost value, who is called Leader. An 
active individual from the population moves in the direction to Leader in the 
search space. At the end of the movement the position of the individual with 
minimum cost value is chosen. If the cost value of the new position is better 
than the cost value of an individual from the old population, the new one 
appears in new population. Otherwise the old one remains there. The 
movement is described by equation (4.4) and graphical explanation can be 
seen in Fig.  4.7.  

 
 

! 

xi, j
ML+1

= xi, j,START
ML

+ (xL, j
ML
" xi, j,START

ML
) * t *PRTVectorj  (4.4) 

where  

! 

xi, j
ML+1  - value of i–individual’s   j–parameter, in step t in next     

                                   migration loop ML + 1 

! 

xi, j ,START
ML   - value of i–individual’s   j-parameter, Start position in  

                                   actual migration loop 

! 

xL, j
ML      - value of  Leader’s  j– parameter in migration loop ML 

t           - step !  <0, by Step to, PathLength> 
PRTVector - is vector of ones and zeros depended on PRT. If 

random number from interval <0, 1> is less than PRT, 
then 1 is saved to PRTVector, otherwise it is 0.  

 
There exists four versions of SOMA – AllToOne, AllToOneRand, 

AllToAll, AllToAllAdaptive. In this work we use version AllToOne despite 
the fact that AllToAll and AllToAllAdaptive can be much better in searching. 
They can search a wider area of solutions and the possibility of finding the 
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global optimum is then more probable. On the other hand, these two variations 
of SOMA need more time for its successful end of evolution. Therefore for 
simulations, less time-consuming computing of AllToOne was used in this 
work. More details can be found in [1], [5]. 

 

 
 Fig.  4.7: SOMA example

PopSiz
e 
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4.5. Differential Evolution (DE) 
Differential Evolution has been known in the scientific world since 1995. 

Fathers of Differential Evolution are Ken Price and Rainer Storm [44], [4].  
Differential Evolution is robust, fast, and effective with global optimization 

ability. It does not require that the objective function is differentiable , and it 
works with noisy, epistatic and time-dependent objective functions. 

It is a population-based optimization method that works on real-number 
coded individuals [44], [4]. This algorithm works also with population of 
individuals but there is one exception compared to other evolution algorithms. 
Four parents are used to produce offspring, not only two parents as is usual. 
For each individual   

! 

r 
x 

i,G  in the current generation G, DE generates a new trial 
individual   

! 

r 
" x 
i,G  by adding the weighted difference between two randomly 

selected individuals  

! 

r 
x 

r1,G and  

! 

r 
x 

r2,G to a third randomly selected individual   

! 

r 
x 

r3,G . 
The resulting individual  

! 

r 
" x 
i,G is crossed-over with the original individual  

! 

r 
x 

i,G . 
The fitness of the resulting individual, referred to as perturbated vector   

! 

r 
u 

i,G +1, 
is then compared with the fitness of   

! 

r 
x 

i,G . If the fitness of   

! 

r 
u 

i,G +1 is greater than 
the fitness of   

! 

r 
x 

i,G ,   

! 

r 
x 

i,G  is replaced with   

! 

r 
u 

i,G +1, otherwise   

! 

r 
x 

i,G  remains in the 
population as   

! 

r 
x 

i,G +1. All these actions are repeated in each generation to find 
the best solution. More details can be found in [44], [4]. 

The behaviour can be seen in detail in Fig.  4.8 [1]. 
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 Fig.  4.8: DE example 
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5. EXPERIMENTS PERFORMED BY 
ANALYTIC PROGRAMMING 

Several simulation experiments with Analytic Programming were done 
over the last four years. They were of a different nature, essentially in order to 
prove that AP is able to solve problems in different fields. Firstly, an 
approximation of data was tested, then design of electronic circuits and also 
settings of robot trajectory were carried out. 

 
5.1. Data approximation 

Simulations with regression were carried out on four selected problems – 
Quintic, Sextic, ThreeSine and FourSine problems [20]. These problems were 
selected from Koza’s Genetic Programming [12] to compare these two 
methods. The aim was to find a suitable mathematical formula which fits 
measured data (generated from the defined functions) as well as possible. 

The following equations and figures show the four problems mentioned 
above in a practical way. Equations (5.1) - (5.4) are for Quintic, Sextic, Three 
Sine and Four Sine problems. The corresponding figures are given in Fig.  5.1. 
 
 x5 – 2x3 + x (5.1) 
 x6 – 2x4 + x2 (5.2) 
 Sin(x) + Sin(2x) + Sin(3x) (5.3) 
 Sin(x) + Sin(2x) + Sin(3x) + Sin(4x) (5.4) 

  

a)  b)  
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c)  d)  
 Fig.  5.1: Four problems – a) Quintic, b) Sextic polynomial in the 

interval [-1.0, +1.0],  
c) Three Sine, d) Four Sine problem in the interval [-π, +π] 

Fig.  5.2 shows examples of all 50 simulations in one picture for SOMA 
algorithm simulations. The nonlinearities in figures c) and d) are caused by 
measurement in some points not in the interval continuously.  

 

a) 

 

b) 

 
c) 

 

d) 

 
 Fig.  5.2: Examples of results – a) Quintic, b) Sextic polynomial, c) 

Three Sine, d) Four Sine problem for SOMA algorithm 
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During these tests, four evolutionary algorithms were used – SOMA, GA, 
DE, and SA. All simulations were done 50 times. It means that 4 problems 
times 4 algorithms times 50 repetitions times 500 to 18 000 cost function 
evaluations were carried out in total. 

Simulations showed that AP is faster than GP according to number of cost 
functions evaluations. While GP needed between 1 500 000 and 3 000 000 
cost function evaluations (CFE), AP was successful with only 500 to 18 000 
CFE as can be seen in Table 5.1. More details can be found in [20]. 

 
Table 5.1: Overview of results for approximation data 

 GP AP 

 GA GA SOMA DE SA 

Number of 
individuals in 

population 
 

4000 
 

40 (40)  

 
50 (150) 

 
50 (150) 

 
 
 

Dimension of 
an individual 

 
 

 
 

100 (120) 
 

100 (150) 
 

100 (150) 
 

40 (120) 
 

Number of 
evalutations of 
cost function 

 

<1500 000, 
3000 000> 

 

<500, 
18 000> 

 

<500, 
18 000> 

 

<500, 
18 000> 

 

<500, 
18 000> 

 

 
 

5.2. Logical circuits design  
 Also in this case we chose some examples from Koza’s Genetic 

Programming [12] – Boolean k-symmetry and even-k-parity problem. The aim 
was to find a suitable shape of circuits which would behave according to a 
given truth table. The even-k-parity problem means that the number of k 
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inputs with value true is even.  Even-3, 4, 5, 6-parity problems were carried 
out. For the symmetry problems the situation is different in that the true values 
in inputs should be symmetric. Also for k - symmetry problems we did 
simulations where k was 3, 4, 5 and 6 [12, 13]. Because of the dimensions of  
the truth tables, there are only 3 – parity (Table 5.2) and 3 – symmetry 
problems (Table 5.3) for illustration. 

 
Table 5.2: Truth table of 3- parity problem 

 
 Table 5.3: Truth table of 3- symmetry problem 

 

INPUT A INPUT B INPUT C OUTPUT 
True True True False 
True True False True 
True False True True 
False True True True 
True False False False 
False True False False 
False False True False 
False False False True 

INPUT A INPUT B INPUT C OUTPUT 
True True True True 
True True False False 
True False True True 
False True True False 
True False False False 
False True False True 
False False True False 
False False False True 
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Final output of the 3 parity problem is e.g. in (5.5) which has its earlier 
extended version in (5.6).  
 
  (5.5) 
 

In this case also 50 simulations for each configuration of k were carried out 
for symmetry and parity problems. For k = 3-symmetry problem the smallest 
number of cost function evaluations (CFE) was 79 for DE and the highest 
14 991 for SOMA algorithm in all 50 simulations for each algorithm. With 
increasing value of k the CFE was also increasing. For k = 6 the average value 
of CFE was around 200 000. The values were similar for even – k – parity 
problems. During simulations 49 or 50 out of 50 simulations were successful 
for different algorithms. More details can be found in [22]. 
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 (5.6) 
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5.3. Optimal setting of robot trajectory 
This task was used to prove that AP is able to work also with linguistic 

terms which in real words means some commands for robot like move 
straight-forwardly, turn left, turn right, look before and find what is there, etc. 
[23], [24]. To try to see, if it works, we chose a task Santa Fe Trail for 
artificial ant from Koza’s Genetic Programming [12].  

The problem was designed so that an artificial ant should go through a 
defined trail (Fig.  5.3) and eat all the food that was there. The trail was set up 
as 31 x 32 fields where black field means food, grey and white is basically the 
same, i.e. there is nothing. But the grey colour was used to highlight the 
problems on the way for the ant which are e.g.:  

– one simple hole (position [8,27] in Fig.  5.3)  
– two holes in the line (positions [13,16] and [13,17]) 
– three holes ([17,15], [17,16], [17,17]) 
– holes in the corners  

o one hole (position [13,8]] 
o two holes ([1,8],[2,8]) 
o three holes ([17,15], [17,16], [17,17]) 

  

 
Fig.  5.3: Santa Fe Trail for artificial ant 
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The cost function was set up as in (5.7) 
 

 CV = 89 – NumberFood (5.7) 
 

5.3.1. Set of functions 
 
The set of functions used for movements of the ant is following. As a set of 

variables GFS0arg [22], i. e. functions, which provide moving of an ant, without 
any argument which could be add during the process of evolution. 

The set consist of  
• GFS0 = {Left, Right, Move},  

where 
GFS0 – a set of variables and terminals, zero-arguments functions GFS0arg 

[22], 
Left – function for turning around in the anticlockwise direction 
Right – function for turning around in the clockwise direction 
Move – function for moving straight and if a bait is in the field where the 

ant is moved, it is eaten. 
 
This set of functions is not enough to make successfully a desired task. 

More functions are necessary. Then a GFS2 and GFS3 were set up.  
 
• GFS2 = {IfFoodAhead, Prog2} 
• GFS3 = {Prog3} 

 
Where the number in GFS means the arity of the functions inside, i.e. 

number of arguments which are needed to be evaluated correctly. Arguments 
are added to those functions during evolution process as described in chapter 
about AP. 

IfFoodAhead is a decision function – the ant controls the field in front of it 
and if there is food, the function in the field for truth argument is executed; 
otherwise function in false position is performed. 

Prog2 and Prog3 are the same function in the principle. They do 2 or 3 
functions in the same time. These two functions were originally defined also in 
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Koza’s approach but in AP it is necessary because of the structure of 
generating the program. 

 

5.3.2. Results 
 
50 simulations were performed for this task with three used algorithms. 

SOMA and DE were more successful with the same settings of cost function 
evaluations. SA was successful only in a third of the cases.  

The solutions obtained were also under 400 steps which was the request to 
eat all the food as can be seen in Table 5.4. The best was 367-step-solution 
found by DE. The limit of 400 steps was one of conditions for cost function 
defined by Koza [12]. But his solution showed that it did not fit this condition 
at all. It needed 545 steps [46] as also our simple simulation proved. 

 
Table 5.4: Number of steps for artificial ant 

Number of steps 
 

SOMA DE SA 

Minimum 396 367 406 

Maximum 606 604 605 

Average 547 540 535 

 
 
This task was time consuming which means that one simulation can 

hypothetically take 1 – 3 days on the computer with Athlon XP 1800+ 
processor, 256 MB RAM memory, Windows XP and Mathematica 5.2. It 
depends on a number of cost function evaluations. One cost function 
evaluation took 1 to 6 seconds. The time could be decreased by parallelization 
of the process, which is one of the further plans. Koza did parallelization in 
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GP as well. He uses GP activity computer-cluster consisting of hundreds of 
PCs [47]. But in our case we used only 1 computer for all simulations. 

 

5.3.3. Output from the simulations 
 
The output from the simulations was the rules of how to move on the grid 

with the food. The winner was DE with 367 steps to reach the final field as 
shown in (5.8) 

 
IfFoodAhead[ Move, IfFoodAhead[ Move, Prog2[ Prog2[ Right,  
IfFoodAhead[ Prog2[ IfFoodAhead[ IfFoodAhead[ Move, Move], Move], 
Move], Prog3[ IfFoodAhead[ Move, IfFoodAhead[ Prog3[ Right, Right, 
Prog2[ Left, Prog2[ IfFoodAhead[ Prog2[ Prog2[ Left, Move], Right], 
IfFoodAhead[ Move, Left]], Prog2[ IfFoodAhead[ Move, Move], Prog2[ 
IfFoodAhead[ Move, Right], Right]]]]], Left]], Left, IfFoodAhead[ Move, 
Right]]]], Move]]]  (5.8) 
 
This system of rules shows how the ant should behave on its way. This does 
not solve the concrete trajectory step by step. These rules should work also on 
other similar types of grids where the condition concerned to food is applied, 
i.e. food must be in the neighbourhood lines. There must not be a free line 
between them. The previously described problems might appear even in bigger 
number of holes in the same line. If we change the grid and placement of the 
food the number of steps will obviously change. Details  can be seen in [23], 
[24]. 

  
 

5.4. Local conclusion and discussion 
 
The previous three case studies showed that AP is able to work with 

numerical values, approximation data as well as with linguistic terms which 
were either operators for design of electronic circuits and setting of optimal 
trajectory for a robot. This presumptions leads to the conclusion that AP 
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should be able to work also with simple operators of evolutionary algorithms 
and create a new one. 

The proof  was also given in synthesis of chaos [26] and neural networks 
[25]. 
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6. CREATION OF EVOLUTIONARY 
ALGORITHMS - PROGRESS 

 
6.1. First experiments 

The objective was to try to create a new optimization algorithm, probably 
of evolutionary character, which could be robust and effective to optimize 
difficult problems in the world. This is a metaevolution in the context we use 
it. According to previous approaches, metaevolution is determining the 
optimal evolutionary algorithm, best types of evolutionary operator and their 
parameter setting for a given problem. It means basically, that one 
evolutionary algorithm tunes another one [9]. But our approach is different. 
We use metaevolution on higher level for creating a new algorithm 
completely, not only for setting of its parameters [11]. 

The research started with collecting of operators of known evolutionary 
algorithms like mutation or crossover. These operators are used as basic 
simple functions for Analytic Programming. 

The first step was to try to create an algorithm which is known from its 
basic operators. Differential Evolution was used because of its simple structure 
and its easy implementation. 

The original algorithm of DERand1Bin version of Differential Evolution 
[44], [4] is described in the section about evolutionary algorithms. 

For the purposes of creating DE back we extracted the following operators. 
SelectionDE – this is operator which chooses individuals from population 

for other instructions. In this case the output will be four individuals – one 
active individual and 3 randomly chosen ones.  

MutationDE - into this operator four individuals are coming from 
SelectionDE. Here mutation is produced as follows: one of the randomly 
chosen parents is subtracted from the second parent and so called differential 
vector is produced. This one is multiplied by a mutation constant and the result 
of this operation is a weighted differential vector. The third parent plus the 
weighted differential vector give a noise vector. The noise vector is the output 
of the MutationDE. 
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CrossoverDE – the active individual provides some arguments and the 
input individual to CrossoverDE gives some other arguments and the trial 
vector is also given.  

All operators are then applied on each individual in a sequence. The last 
operator which produces the complete algorithm is called FinalDE. Inside of 
this the output individual is compared with the active one and the one with 
better or the same value of cost function appears in the new population. 

The original Differential Evolution then appears like in the equation (6.1) 
consisting from the above described operators: 

 
 CrossoverDE(MutationDE(SelectionDE))) (6.1)  

 
This means in words, that firstly operator SelectionDE will be used. Its 

result will be put inside the operator MutationDE and at the end CrossoverDE 
will be applied. The algorithm DE is described also in section about 
evolutionary algorithms in detail. The inscription is also able to write as (6.2). 
But for further simulations we used type (6.1). 

 
 CrossoverDE ◦ MutationDE ◦ SelectionDE (6.2) 

 
Analytic Programming was then applied on DE operators. Parameter setting 

for AP is described in the next section. 

6.1.1. General Function Set 
Analytic Programming produces a final formula from elementary functions. 

In this case elementary functions are DE operators described above. In AP, 
subsets of simple functions according to the number of arguments are called 
GFS0arg, GFS1arg,GFS2arg etc. GFS stands for General Function Set which was 
described in [18] - [24]. 

The operators of DE are put into these subsets as follows. 
GFS0arg  -  Set of 0-arguments functions, so called terminals, contains  

SelectionDE which produces 4 individuals. 
GFS1arg - Set of 1-arguments functions contains MutationDE and 

CrossoverDE. Both need to have some individuals produced e.g. from 
SelectDE as input.  
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6.1.2. Cost Function 
When Analytic Programming creates a complex formula, it is necessary to 

assign some value that represents the suitability of the individual and its 
quality. In the case of creating a new evolutionary algorithm, benchmarking on 
some test functions is necessary. In the first preliminary study we concentrated 
to try the just generated algorithm on two test functions - whether it achieves 
the minimum in both test functions or not. Two cost functions were Sphere 
model, 1st De Jong as example of unimodal function and Schwefel as example 
of multimodal function [1] – Fig.  6.1 and Fig.  6.2. 

 

  

 Fig.  6.1: DeJong function – unimodal (left – 2 arguments and right – 1 
argument used) 

 
 

 Fig.  6.2: Schwefel function – multimodal (left – 2 arguments and right 
– 1 argument used) 
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1st De Jong and Schwefel functions are in analytical way as seen in 
equations (6.3) and (6.4). No other condition was applied.  

 

 

! 

f x( ) = xi
2

i=1

Dim

"  (6.3) 

 

 

! 

f x( ) = "xi # sin xi( )
i=1

Dim

$  (6.4) 

The value of the cost function was designed so that firstly the generated 
algorithm is verified as to the ability to find minimum on the easy unimodal 
function 1st De Jong. If the minimum is reached the Schwefel function is 
tested. Then the cost value is the output from Schwefel. If there is no 
successful result from 1st De Jong, the output value is the absolute value of 1st 
De Jong. The values were known because we used test functions with 2 
arguments. 

6.1.3. Results of the preliminary study 
The aim of the preliminary study and the aim of these simulations was to 

find the original Differential Evolution. The settings for parameters were done 
according to heuristic analysis during the use of it.  

The length of the individual in Analytic Programming was set up to 15 and 
the number of simple functions to 3. It means that there exists 32767 
possibilities of generated algorithms according to variations with repetition. 

And it is quite natural that also in the first population, randomly generated 
without any evolution, can be found algorithms which can fit the minimum. 
Following examples show successful and also unsuccessful individuals, i.e. 
generated algorithms. 

Examples of generated algorithms which were not successful  (6.5) - (6.7): 
 

 CrossoverDE(CrossoverDE(MutationDE(CrossoverDE(CrossoverDE(Selectio
nDE)))))  (6.5) 
 SelectionDE (6.6) 
 CrossoverDE(SelectionDE) (6.7)  

 
and also some successful examples (6.8) and (6.9): 
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 CrossoverDE(MutationDE(SelectionDE)) the original Differential Evolution 
  (6.8) 

 
 MutationDE(MutationDE(MutationDE(MutationDE(SelectionDE))) (6.9) 

 
The final (6.9) was tried in simulations of 100 times as the original DE with 

the same settings of parameters as the original DE. 
The following pictures Fig.  6.3 displays behaviour of algorithms during 

100 repeated simulations – a) original algorithm DE and b) a newly created 
one. 

 

a)  

b)  
 Fig.  6.3: 100 simulations for 1st De Jong a) original DE, b) new 

algorithm 
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The results are shown also for Schwefel function in Fig.  6.4. Comparison 
of minimal and maximal values during all 100 simulations is also in Table 6.1. 

 

a)  

b)  
 Fig.  6.4: History of best individual for Schwefel a) original DE and b) 

new algorithm 

As can be seen, the generated program was able to find minimum as well as 
the original DE. It is basically the same, only there are more mutations. In the 
unimodal function the convergence is faster than in original DE but in the case 
of Schwefel function it took more time to achieve the minimum on average. 
The more important is faster convergence in the multimodal functions because 
such problems are found in every day optimization. And the requirement is to 
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find the optimum as fast as possible, and of course, not to finish in the local 
optimum. 

 
Table 6.1: Comparison of results of original DE and generated algorithm 

 ORIGINAL DE GENERATED ALGORITHM 

 1st De Jong Schwefel 1st De Jong Schwefel 

Minimum 2.04492 x 10-8 -837.966 2.39949 x 10-16 -837.966 

Maximum 6.61369 x 10-6 -837.966 1.45227 x 10-14 -837.966 

Average 9.29224 x 10-7 -837.966 3.6897 x 10-15 -837.966 
 
In later analysis of the solution it was found that it is another version of the 

DE. There are only more individuals which are used for mutations to create a 
new individual for a new population.  

 
6.2. Design of new cost function 

 

6.2.1. New operators added and renamed 
 
For the purpose to create evolutionary algorithms by means of Analytic 

Programming, we extended algorithms from Differential Evolution from the 
previous section and [48] also to Self-Organizing Migrating Algorithm, Hill 
Climbing algorithm and Simulated Annealing. Details of these algorithms can 
be found in [4], [5], [9] and [10]. It was necessary to separate its operators like 
mutation, crossover and selection of parents. The following operators were put 
inside GFS sets according to the number of arguments. 

We had to also rename the operators since we used more versions of some 
algorithms. Therefore we need to distinguish between them. The name 
contains also connections to the appropriate versions [50]. 

 
GFS0arg= {SelectDE, SelectLeaderSOMA, SelectSOMARandLeader, 

SelectHC} 
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GFS1arg= { MutateDERand1, CrossDEExp, CrossDEBin, MutateDEBest2, 
MutateDERand2, MutateDECurrentToBest, MutateDEBest1, 
SOMAATOWithPRT, SOMAATOWithoutPRT, SOMAATORandWithPRT, 
SOMAATORandWithoutPRT, CompleteHC, CompleteSA } 

 
SelectDE – this is the operator which selects individuals from population 

for other instructions. In this case, the output will be 4 individuals – one active 
individual and 3 randomly chosen.  

 
MutateDERand1- here mutation is produced as follows: one of the 

randomly chosen parents is subtracted from the second parent and a so called 
differential vector is produced. This vector is multiplied by a mutable constant 
and the result of this operation is a weighted differential vector. The third 
parent plus the weighted differential vector produces a noisy vector. This 
noisy vector is the output of the MutateDERand1. 

 
MutateDEBest2, MutateDEBest1, MutateDERand2, 

MutateDECurrentToBest are mutation functions of other version of 
Differential Evolution.   

 
CrossDEBin – the active individual gives some arguments and the input 

individual to CrossDEBin gives some other arguments and the trial vector is 
created. This is given by crossover constant Cr. If random number from 
interval <0,1> is less than Cr the arguments from active individual is taken, 
otherwise it is from the individual which is input of CrossDEBin. 

 
CrossDEExp is similar crossover to CrossDEBin. The difference is in the 

choice of arguments into the trial vector. Until first case of random number 
from interval <0,1> is less than Cr, arguments from active individual are 
taken, then the rest from the input individual of CrossDEExp [49]. 

 
SelectLeaderSOMA – chooses the best individual in the population (with 

the minimal value of cost function). 
 
SelectSOMARandLeader – choses the random individual from population. 
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SOMAATOWithPRT – is the operator which create a table of new 
individuals which are in the direction from active individual to Leader in Steps 
and the best individual is selected as an output individual.  

 
SOMAATOWithoutPRT, SOMAATORandWithPRT, 

SOMAATORandWithoutPRT – are similar as the previous one, the only 
difference is in the use of PRTVector and best individual as Leader or random 
individual as Leader. 

 
SelectHC – chooses random point in the Cost Function. 
 
CompleteHC – is a process of Hill Climbing algorithm. If the randomly 

chosen point from the neighbourhood has less cost value, it is chosen as a new 
startpoint, otherwise the current start point is used again. 

 
CompleteSA – is a process of Simulated Annealing algorithm. If the 

randomly chosen point from the neighbourhood has less cost value, it is 
chosen as a new start point, otherwise the condition of probability of 
acceptance a worse solution is applied or the current start point is used again. 

 
All above described operators work as modules with some input and some 

output. The functionality is related to one active individual. Therefore for 
application for all individuals in the population FinalAlgorithm is set up as 
well. 

 
Original Differential Evolution of DERand1Bin version can be written as 

the equation (6.10). 
 CrossDEBin(MutateRand1(SelectDE)) (6.10) 

 
Original SOMA in version All To One is then used as equation (6.11). 
 

 SOMAATOWithPRT (SelectLeaderSOMA) (6.11) 
 
Hill Climbing has similar notation (equation(6.12)) 

 CompleteHC (SelectHC) (6.12) 
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Hence, Simulated Annealing has the same method of selecting individuals 
at the beginning as the HC we used for the notation (6.13) same operators.  
 
 CompleteSA (SelectHC) (6.13) 

 
 

6.2.2. Design of cost function 
The testing functions were the same as in the previous section – 1st De Jong 

and Schwefel. The value of Cost Function was designed so that initially the 
generated algorithm is observed if it is able to find the minimum value on the 
easy unimodal function 1st De Jong. Better said, it is testing the difference 
between global extreme and the extreme approached by a new generated 
algorithm. If the difference under 10-7 is reached, then the Schwefel function is 
tested similarly. We change the approach to the value in order to measure the 
difference as the optimization might be easier in that the order of the cost 
value will be the same for both functions and we can easily work with the 
penalization without any fear whether the values of some functions are 
suitable or not. 

If the algorithm is successful on both functions, the value is set as seen 
equation (6.14) in the case that number of cost function evaluations were less 
than the average. 

 
 |CFESchwefel – avgCFESchwefel| / SchwefelValue (6.14) 

 
where 
CFESchwefel is the number of cost function evaluations used to reach the 

SchwefelValue by the generated program 
avgCFESchwefel is the average value of the number of cost function 

evaluation reached by SOMA and DE in 100 times repeated simulations [48]. 
SchwefelValue is the value of reached extreme 
 
If the number of cost functions were higher, the value is behaving 

according to equation (6.15). 
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 SchwefelValue  |CFESchwefel - avgCFESchwefel| (6.15) 
 
In the case the algorithm was not successful in the Schwefel function but 

was successful in 1st De Jong function, the rules are similar as in the case of 
Schwefel function, as seen in equations (6.16) and (6.17). 

 
 |CFEDeJong – avgCFEDeJong| / DeJongValue (6.16) 

 
DeJongValue ( | CFEDeJong - avgCFEDeJong | + |CFEDeJong – 
avgCFEDeJong|)  (6.17) 
 

where 
CFEDeJong is the number of cost function evaluations used to reach the 

DeJongValue by the generated program: 
avgCFEDeJong is the average value of the number of cost function 

evaluation reached by SOMA and DE in 100 times repeated simulations [48]. 
DeJongValue is value of the reached extreme. 
 
In the case that the generated algorithm was not successful at all, the final 

equation is used (6.18). 
 

 DeJongValue  |CFEDeJong | (6.18) 
 
This is not the only way as to how to design a suitable cost function. This 

one differs from the previous one not only in including the number of cost 
function evaluations inside the CostFunction but also in the approach to the 
value of the extreme itself [48]. In previous cases, we used the original value 
of the extreme, but more suitable is to find the difference from the global 
extreme. Then we are close to zero value and it is more predictive. 

 

6.2.3. Results 
This section compares DE and SOMA with newly developed algorithms.  

All simulations here were performed with 2 dimensional benchmark functions. 
The following figures are histories of behaviour of the best individual in the 
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population - 100 times repeated for SOMA algorithms – 1st De Jong and 
Schwefel (Fig.  6.5). DE algorithms has its graphs of history in Fig.  6.3 a) for 
1st De Jong and in Fig.  6.4 a) for Schwefel. 

 
 

a)  

b)  

 
Fig.  6.5: 100times repeated for SOMA – a) 1st De Jong, b) Schwefel 

The following table (Table 6.2) show values of extremes for 1st De Jong 
and Schwefel which were found by DE and SOMA for all 100 simulations. 
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Table 6.2: Values of extremes found by DE and SOMA 

 Original DE Original SOMA 

 1st De Jong Schwefel 1st De Jong Schwefel 

Minimum 2.04492 x 10-8 -837.966 2.39949 x 10-16 -837.966 

Maximum 6.61369 x 10-6 -837.966 1.45227 x 10-14 -837.966 

Average 9.29224 x 10-7 -837.966 3.6897 x 10-15 -837.966 

 
During our simulation we found successful and also non successful 

solutions. 
As example, the following equations (6.19)  - (6.22) belong to non 

successful solutions. 
 

 SelectDE (6.19) 
 SelectLeaderSOMA (6.20) 
 CrossDEBin(SelectDE) (6.21) 
 CompleteHC(SelectDE) (6.22) 

 
The successful solution can be divided into two groups – which found 

subsolutions with requested diversity but the number of cost function 
evaluations were high and the final solution therefore was not so good 
(equations (6.23) and (6.24)). The second group contains solution which were 
successful in all conditions including original algorithms of SOMA and DE 
(equations (6.25) - (6.27)). 

 
 SOMAATOWithPRT(SOMAATORandWithPRT(SOMAATOWithoutPRT(M
utateDERand1(SelectSOMALeader))))  (6.23) 
 
 SOMAATOWithPRT(MutateDEBest1(MutateDERand1(MutateDECurrentTo
Best(MutateDEBest1(MutateDECurrentToBest(SelectSOMARandLeader))))))  
  (6.24) 
 
 CrossDEBin(MutateRand1(SelectDE)) (6.25) 
 SOMAATORandWithPRT (SelectDE) (6.26) 
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 MutateDEBest1(MutateDERand1(SelectSOMARandLeader)) (6.27) 
 
Following Fig.  6.6 show graphs for 100times repeated simulations of 

algorithm with notation in (6.27). 
 

a)  

b)  

 
Fig.  6.6: 100times repeated for new algorithm - a) 1st De Jong, b) Schwefel 

 
Table 6.3 shows values of extremes which were found by two new 

generated algorithms.  
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Table 6.3: Values of extremes for 1st De Jong and Schwefel found by new 
generated algorithms 

 Generated algorithm (6.23) Generated algorithm (6.24) 
 1st De Jong Schwefel 1st De Jong Schwefel 

Minimum 5.86771x 10-10 -837.966 7.05752 x 10-10 -837.966 
Maximum 1.53905 x 10-4 -800.053 5.90596 x 10-4 -799.892 
Average 9.06618 x 10-6 -835.993 3.24827x 10-5 -835.871 

 
The number of generations or migrations in new algorithms in the graph 

might be a little confusing. Number of cost function evaluations (CFE) in one 
loop for SOMA, DE and two new evolutionary algorithms are in equations 
(6.28) - (6.31). It means that 150 generations in DE means 3000 CFE if 
number of individuals is 20. Similar CFE (3109) in SOMA is for Migrations = 
6. In new algorithms, 5 loops means 8282 and 3227 CFE for (6.23) and (6.24). 

 
 (PopSize – 1) Migrations (PathLength / Step) (6.28) 
 NP Generations (6.29) 
 NP Generations (3 (PathLength / Step) + 1) (6.30) 
 NP Generations ((PathLength / Step) + 5) (6.31) 

 
As can be seen, the generated programs were able to find minimum values, 

along with DE and SOMA. But not in all cases as Table 6.3 shows even if 
CFE is higher than in SOMA and DE. On the other hand the connection of 
several evolutionary operators show the promising approach, and its advantage 
which might occur in higher dimensional problems.  

 
 

6.3. Higher dimensional problems 
Usually in real life problems there is a need to find more optimal arguments 

than only two. Therefore we need higher dimensional problems to add into the 
costfunction for creating new optimization algorithms. In literature there 
appear usually optimizations of testing function in 20 or 100 dimension space. 
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We used 20 dimensional test function 1st De Jong and Schwefel, the same 
functions as in previous case. The settings in the costfunction for penalization 
were the same as above. Obviously only the average number of cost function 
evalutations for DE and SOMA in 100 repeated simulations had to be 
increased according to behaviour in 20 dimensional problems. 20 dimensional 
problems are more time consuming then only 2 dimension ones. This was the 
reason that it took several days to obtain first results. For finding algorithms 
we used iMac with 1.9 GHz PowerPC G5 processor, 512 MB RAM, Mac OS 
X version 10.4.8 and Mathematica 5.2. 

Following tables (Table 6.4 - Table 6.7) shows settings for evolutionary 
operators as they were heuristically found as suitable in previous optimization 
tasks. 

 
Table 6.4: Settings for SOMA operators 

 
PathLengthIIII  3. 
StepIIII 0.11 
PRTIIII .1 
PopSizeIIII 60 
 

Table 6.5: Settings for DE operators 
 
CrIIII 0.8 
FIIII 0.8 
NPIIII 60 
 
 

Table 6.6: Settings for HC  
 
MaxIterIIII 500 
StepHCIIII 2.3 
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Table 6.7: Settings for SA 
 
TIIII 10 000 
TminIIII 0.000 01 
alphaIIII 0.91 
MaxIterIIII 500 
MaxIterTempIIII 100 
 
The notation IIII is added to avoid confusion between settings for 

algorithms who will take care to create new evolutionary algorithms and 
settings for the simple operators. 

In the case of synthesis, we cannot discuss about migrations or generations 
as this is unknown. We used marking iterations. Iterations were setup to 50. 
The process usually produce more complex structure and this is connected 
with one individual in the population. Although it is quite small number the 
cost function evaluations is then geometrically increased with usage of several 
operators in the line. 

For the evolution with AP we used SOMA with following settings as given 
in Table 6.8. 

 
Table 6.8: Settings for SOMA for AP 

PathLength  3. 
Step 0.22 
PRT .1 
PopSize 20 
Migrations 20 
 
There were performed 100 cost functions evaluations until we obtained 

several results. Some successful, some not successful. 
 
Examples of nonsuccessful algorithms according to conditions in cost 

function are given in following expressions (6.32) - (6.34): 
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 CrossDEExp(SelectSOMALeader) (6.32) 
 
 CrossDEBin(CompleteHC(MutateDEBest1(CompleteSA(MutateDEBest2( 
CrossDEBin(MutateDERand2(SOMAATOWithPRT(MutateDECurrentToBes
t(MutateDEBest2(SelectSOMARandLeader)))))))))) (6.33) 
 
 MutateDERand2(SelectSOMALeader) (6.34) 

 
 

The first expression (6.32) is nonsuccessful because only crossover 
between the best one and the current individual is not enough in the requested 
cost functions evaluations. The second (6.33) expression is too complex and 
Hill Climbing and Simulated Annealing probably increase the number of cost 
function evaluations that the algorithms is not suitable for fast optimization. 
The last one is a surprise because it is the version of the Differential Evolution 
without crossing. The problem is in the number of iterations. 50 iterations in 
the case of unattached Differential Evolution is not enough. It needs more 
iterations (generations). The suitable settings of parameters is very hard 
optimization problem, thus the field of suitable settings is an open research 
area. 

Into group of successful algorithms belongs (6.35) - (6.38): 
 
 SOMAATORandWithoutPRT(SOMAATORandWithPRT(SOMAATORand
WithPRT(MutateDECurrentToBest(SelectSOMALeader)))) (6.35) 
 
 
SOMAATOWithPRT(SOMAATOWithPRT(SOMAATORandWithPRT(Cros
sDEBin(SOMAATOWithPRT(SelectSOMARandLeader))))) (6.36) 
 
 
CrossDEBin(SOMAATOWithPRT(MutateDECurrentToBest(SelectSOMALe
ader)))  (6.37) 
 
 
 SOMAATOWithPRT(SelectSOMALeader) (6.38) 
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Firstly, it is obvious that (6.38) can be written as SOMAATO; this notation 

is used later in tests. 
The second view on this notations shows that Hill Climbing and Simulated 

Annealing were given out of these notations evolutionary. The local search 
increases the number of cost function evaluations. Presuambly, this is the 
reason why only Differential Evolution and SOMA remains in the generated 
algorithms. 

 

6.3.1. Results 
 
Algorithms in (6.35) - (6.38) were chosen for further simulations. We were 

interested in their behaviours in unimodal and multimodal benchmark 
functions in 2, 20 and 100 dimensional space. 

This led to large number of simulations. We performed 16 benchmark 
functions for 4 algorithms, for 3 study cases (2, 20 and 100 Dim). And each 
case was 100 times repeated to produce graphs of history and convergence to 
the extreme. Total number was 19 200 of runs each algorithm where the 
number of cost function evaluations were from 70 000 to 300 000. 

These simulations were taken on the XServe with 2x2 GHz Dual – Core 
Intel Xeon processors with 1 GB RAM, Mac OS X version 10.4.10 and 
gridMathematica 5.2. The whole machine contains 14 XServes, i.e. 56 
processors together. 

All graphs produced during the tests are shown in Appendix. Layout of the 
Appendix is as follows. Firstly the charts for 4 algorithms of 100 repeated 
simulations were recorded in sense of the best individual cost value per each 
iterations. The number on the x axis is given as the cost function evaluations 
(CFE) / number of iterations. CFE is there only for information because the 
most often comparing parameter between two evolutionary algorithms 
whereas the best individual was chosen in each iteration (generation, 
migration). The following lines are then indicated by the number of the 
algorithm (Algorithm 1 corresponds to (6.35), Algorithm 2 corresponds to 
(6.38), Algorithm 3 corresponds to (6.38) and Algorithm 4 corresponds to 
(6.38)). In each line, two graphs are shown. The one on the left side stands for 
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histograms of found extreme in each simulation. There is seen if the tests 
ended in the similar point or if the algorithm shows big diversity and then the 
irresponsibility.  

The second chart shows the diversity in the final population for each 
performance. There is shown the minimum, maximum and average of found 
cost values. The diversity in population shows if the evolution still might make 
some progress or not. If the maximum is basically in minimum that the 
evolution is finished. The result is either the global extreme or local one, 
however this depends on the cost value itself. 

In the case of 2 dimensional systems there are also figures of the functions 
itself in 3D charts. And on the right side there is contour plot with indicated 
points in the global extreme. 

The last notice is concerned mainly to SOMAATO, which is the one of the 
“rediscovered” algorithms. All performed simulations for benchmark 
functions were done with the same settings as it was in the cost function for 
AP. No changes were made. It is obvious, that some problems would need a 
bit more sensible settings, mainly in 100 dimension space. The performed 
simulation might help in further work to change settings. Or there is open field 
for research of settings for algorithms itself – either by heuristic methods, or to 
use other evolutionary algorithms to tune their parameters. 

 

6.3.2. Comments to behaviour of new algorithms itself 
 
To show the success of the algorithms besides graphs; the results are also 

shown in the following tables (Table 6.9 - Table 6.24). For each case (2, 20 or 
100 dimensional space) the minimal values were found in the final population. 
From this 100 values minimal, maximal and average value for each of 4 
algorithms were counted. 
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Table 6.9: 1st De Jong’s function 

  Alg. 1 Alg. 2 Alg. 3 SOMAATO 

Minimum 6.84058*10^-54 2.6887*10^-42 6.17178*10^-36 9.66931*10^-42 

Maximum 7.99154*10^-48 1.1667*10^-36 9.46824*10^-30 7.13651*10^-36 

2 

DIM 

Average 3.16793*10^-49 4.18871*10^-38 2.40994*10^-31 1.10491*10^-37 

Minimum 1.82206*10^-6 0.0000621393 0.000624075 0.0000526722 

Maximum 0.000011683 0.000237911 0.00267865 0.000252083 

20  

DIM 

Average 4.84876*10^-6 0.000133213 0.00143861 0.00012626 

Minimum 33.8511 2.47579 7.08902 2.48426 

Average 48.3372 4.32738 10.6768 4.25156 

100 

DIM  

Maximum 42.9626 3.37319 8.85669 3.16593 

 
 
 
 
 

Table 6.10: 2nd De Jong’s function 

  Alg. 1 Alg. 2 Alg. 3 SOMAATO 

Minimum 4.9499*10^-7 4.05763*10^-17 2.88213*10^-15 2.2027*10^-18 

Maximum 0.00632326 3.01539*10^-12 3.75052*10^-8 1.29338*10^-11 

2 

DIM 

Average 0.000471306 1.31109*10^-13 9.66692*10^-10 5.15334*10^-13 

Minimum 12.4956 10.7737 10.1272 10.128 

Maximum 23.0267 16.7656 18.6797 16.7789 

20  

DIM 

Average 17.8876 14.965 15.978 14.4295 

Minimum 1378.75 241.526 391.334 266.519 

Average 1861.5 472.805 614.45 457.46 

100 

DIM  

Maximum 1667.85 330.225 494.85 342.516 
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Table 6.11: 3rd De Jong’s function 

  Alg. 1 Alg. 2 Alg. 3 SOMAATO 

Minimum 1.24955*10^-27 3.5426*10^-22 1.07207*10^-18 4.82185*10^-22 

Maximum 8.96953*10^-25 1.03514*10^-19 3.75781*10^-16 2.95776*10^-19 

2 

DIM 

Average 8.06571*10^-26 1.45729*10^-20 3.2283*10^-17 2.26685*10^-20 

Minimum 0.0013398 0.00320009 0.0119396 0.00261852 

Maximum 0.00271373 0.00577972 0.0241444 0.00564708 

20  

DIM 

Average 0.00201386 0.00440167 0.0174949 0.004026 

Minimum 15.6232 3.05624 5.73294 3.16925 

Average 18.8215 3.99875 7.25107 3.99408 

100 

DIM  

Maximum 17.4289 3.5365 6.39571 3.58527 

 
 
 
 
 

Table 6.12: 4th De Jong’s function 

  Alg. 1 Alg. 2 Alg. 3 SOMAATO 

Minimum 4.4845*10^-109 4.70679*10^-83 1.05796*10^-70 1.08294*10^-85 

Maximum 9.29256*10^-97 8.45534*10^-75 1.70096*10^-61 6.2068*10^-74 

2 

DIM 

Average 1.07945*10^-98 5.10371*10^-76 5.95297*10^-63 1.02549*10^-75 

Minimum 1.51524*10^-14 8.08079*10^-10 6.5603*10^-8 6.27137*10^-10 

Maximum 2.54052*10^-12 1.5412*10^-8 1.19687*10^-6 1.14606*10^-8 

20  

DIM 

Average 5.94632*10^-13 5.8657*10^-9 2.94375*10^-7 4.56433*10^-9 

Minimum 9.64008 0.224742 0.929832 0.197471 

Average 16.8637 0.643675 2.59482 0.59221 

100 

DIM  

Maximum 13.6604 0.354862 1.47562 0.334238 
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Table 6.13: Rastrigin’s function 

  Alg. 1 Alg. 2 Alg. 3 SOMAATO 

Minimum -400. -400. -400. -400. 

Maximum -400. -400. -400. -400. 

2 

DIM 

Average -400. -400. -400. -400. 

Minimum -39093.5 -39984.5 -39714.1 -39969.7 

Maximum -38047.3 -39390. -38791.1 -39337.1 

20  

DIM 

Average -38617.2 -39808.5 -39264.4 -39846.3 

Minimum -441350. -764206. -698468. -761364. 

Average -372123. -695043. -611882. -700528. 

100 

DIM  

Maximum -406800. -731852. -647676. -728513. 

 
 
 
 

Table 6.14: Schwefel’s function 

  Alg. 1 Alg. 2 Alg. 3 SOMAATO 

Minimum -837.966 -837.966 -837.966 -837.966 

Maximum -837.966 -837.966 -837.966 -837.966 

2 

DIM 

Average -837.966 -837.966 -837.966 -837.966 

Minimum -8354.52 -8379.46 -8376.91 -8379.39 

Maximum -7953.3 -8378.27 -8365.21 -8376.88 

20  

DIM 

Average -8168.74 -8379.06 -8373.98 -8378.77 

Minimum -24743.3 -33298.5 -30765.1 -33726.4 

Average -21820.6 -30480.2 -27988. -30663.5 

100 

DIM  

Maximum -22875.9 -31852.3 -29258.7 -32152.6 
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Table 6.15: Griewangk’s function 

  Alg. 1 Alg. 2 Alg. 3 SOMAATO 

Minimum 7.88258*10^-15 0. 0. 0. 

Maximum 0.00739606 0. 0. 0. 

2 

DIM 

Average 0.00040858 0. 0. 0. 

Minimum 0.000104046 0.00144764 0.0235396 0.00214144 

Maximum 0.00565715 0.0303911 0.112688 0.0276332 

20  

DIM 

Average 0.00114136 0.00781872 0.0576792 0.00824393 

Minimum 4.81464 1.24312 1.71041 1.25355 

Average 5.83553 1.486 2.06934 1.41581 

100 

DIM  

Maximum 5.28724 1.31854 1.85161 1.32937 

 
 
 
 

Table 6.16: Sine Envelope Sine Wave function 

  Alg. 1 Alg. 2 Alg. 3 SOMAATO 

Minimum -1.4915 -1.4915 -1.4915 -1.4915 

Maximum -1.4915 -1.4915 -1.4915 -1.4915 

2 

DIM 

Average -1.4915 -1.4915 -1.4915 -1.4915 

Minimum -27.4598 -28.0079 -27.7075 -27.9034 

Maximum -26.2147 -27.3285 -26.5981 -26.9732 

20  

DIM 

Average -26.8827 -27.666 -27.1445 -27.6299 

Minimum -86.6907 -109.765 -103.331 88.3073 

Average -81.9419 -103.621 -97.0011 105.281 

100 

DIM  

Maximum -84.1054 -106.933 -100.009 98.189 
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Table 6.17: Stretched V sine wave function - Ackley 

  Alg. 1 Alg. 2 Alg. 3 SOMAATO 

Minimum 0.000287748 3.32245*10^-9 1.75195*10^-8 1.54957*10^-9 

Maximum 0.0151492 2.29097*10^-7 8.09508*10^-6 6.20052*10^-7 

2 

DIM 

Average 0.00412367 3.98908*10^-8 9.96666*10^-7 4.74844*10^-8 

Minimum 6.01572 1.65993 3.02977 1.45253 

Maximum 12.2744 2.72404 5.05216 2.74354 

20  

DIM 

Average 9.82864 2.13613 4.01447 2.08252 

Minimum 213.189 89.708 112.611 87.4909 

Average 236.091 104.556 133.619 105.114 

100 

DIM  

Maximum 225.393 96.8063 125.024 96.469 

 
 
 
 

Table 6.18: Ackley test function 

  Alg. 1 Alg. 2 Alg. 3 SOMAATO 

Minimum -2.60065 -2.60065 -2.60065 -2.60065 

Maximum -2.60065 -2.60065 -2.60065 -2.60065 

2 

DIM 

Average -2.60065 -2.60065 -2.60065 -2.60065 

Minimum -30.8076 -31.0918 -30.9659 -31.0887 

Maximum -29.5595 -30.0059 -29.2372 -30.284 

20  

DIM 

Average -30.165 -30.9384 -30.2435 -30.9482 

Minimum 294.8 -47.3369 37.991 -47.8128 

Average 350.958 -9.5177 96.2447 -8.01849 

100 

DIM  

Maximum 325.895 -29.0134 59.3382 -27.3333 
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Table 6.19: Ackley function 

  Alg. 1 Alg. 2 Alg. 3 SOMAATO 

Minimum -4.4409*10^-16 -4.4409*10^-16 4.44089*10^-16 -4.4409*10^-16 

Maximum -4.4409*10^-16 -4.4409*10^-16 3.15303*10^-14 -4.4409*10^-16 

2 

DIM 

Average -4.4409*10^-16 -4.4409*10^-16 4.88498*10^-15 -4.4409*10^-16 

Minimum 0.167231 0.237852 0.944661 0.220695 

Maximum 0.508953 0.561074 2.12588 0.483481 

20  

DIM 

Average 0.29824 0.362845 1.46952 0.359461 

Minimum 1017.82 323.812 474.656 323.165 

Average 1107.55 396.045 570.201 384.988 

100 

DIM  

Maximum 1067.62 358.892 513.635 357.177 

 
 
 
 

Table 6.20: Egg Holder function 

  Alg. 1 Alg. 2 Alg. 3 SOMAATO 

Minimum -959.44 -959.641 -959.641 -959.641 

Maximum -894.573 -956.915 -899.463 -956.897 

2 

DIM 

Average -948.715 -957.569 -956.261 -957.571 

Minimum -12555.8 -14371.8 -13357.8 -13820.1 

Maximum -10645.8 -11861.7 -10954.2 -11901. 

20  

DIM 

Average -11388.7 -12904.6 -12095.3 -12832.4 

Minimum -33656.1 -31642.2 -30322.2 -32689.2 

Average -28690.5 -27651.5 -26928.6 -27872.9 

100 

DIM  

Maximum -31210.6 -29342.3 -28592.4 -29488.6 
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Table 6.21: Rana‘s function 

  Alg. 1 Alg. 2 Alg. 3 SOMAATO 

Minimum -500.794 -500.802 -500.802 -500.802 

Maximum -477.938 -480.662 -494.164 -489.806 

2 

DIM 

Average -495.752 -499.691 -499.544 -499.354 

Minimum -7626.53 -7705.18 -7346.31 -7659.59 

Maximum -6481.92 -6885.89 -6686.58 -6833.08 

20  

DIM 

Average -6883.87 -7211.28 -6983.28 -7191.25 

Minimum -21918.9 -19703.8 -19309.7 -19732.9 

Average -18861.4 -17464.9 -17167.6 -17538.3 

100 

DIM  

Maximum -19801.7 -18483. -18181.4 -18360.5 

 
 
 
 

Table 6.22: Pathological function 

  Alg. 1 Alg. 2 Alg. 3 SOMAATO 

Minimum 7.52946*10^-9 1.44329*10^-14 1.93361*10^-11 0. 

Maximum 0.0000836098 0.0000705348 0.000251965 0.0000330035 

2 

DIM 

Average 8.09481*10^-6 2.30942*10^-6 7.72052*10^-6 1.40815*10^-6 

Minimum 2.87102 3.2142 3.51303 3.25255 

Maximum 4.22087 4.43468 4.72801 4.33404 

20  

DIM 

Average 3.55241 3.93989 4.2 3.88867 

Minimum 36.1381 37.6409 38.1266 37.9414 

Average 38.4161 39.5239 39.922 39.4065 

100 

DIM  

Maximum 37.5256 38.8196 39.1873 38.7657 
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Table 6.23: Michalewicz‘s function 

  Alg. 1 Alg. 2 Alg. 3 SOMAATO 

Minimum -1.8013 -1.8013 -1.8013 -1.8013 

Maximum -1.8013 -1.8013 -1.8013 -1.8013 

2 

DIM 

Average -1.8013 -1.8013 -1.8013 -1.8013 

Minimum -19.8189 -19.8187 -19.8176 -19.8187 

Maximum -19.8111 -19.8163 -19.796 -19.817 

20  

DIM 

Average -19.8183 -19.8181 -19.8127 -19.8182 

Minimum -71.9513 -92.2251 -87.684 -91.3573 

Average -67.2357 -88.3072 -83.8975 -88.3404 

100 

DIM  

Maximum -69.0707 -89.8767 -85.7371 -90.0936 

 
 
 
 

Table 6.24: Master’s cosine wave function 

  Alg. 1 Alg. 2 Alg. 3 SOMAATO 

Minimum -1. -1. -1. -1. 

Maximum -0.961233 -1. -1. -1. 

2 

DIM 

Average -0.998699 -1. -1. -1. 

Minimum -15.953 -18.1463 -16.8458 -17.9085 

Maximum -14.0282 -14.9099 -14.3835 -14.7218 

20  

DIM 

Average -14.7589 -16.3618 -15.4408 -16.2809 

Minimum -37.9154 -46.927 -40.2639 -45.1454 

Average -31.6508 -36.7738 -33.7774 -37.8305 

100 

DIM  

Maximum -34.3427 -40.5856 -36.7087 -40.9226 
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As the previous tables show it is hard to outline which algorithm is the best. 
The winners for each problem are divided according to dimensions and can be 
seen in Table 6.25. 

 
Table 6.25: Winner for each benchmark function. 

 Algorithm 1 Algorithm 2 Algorithm 3 SOMAATO 
2 D 1, 3, 4, 5, 6, 8, 

10, 11, 12, 15, 
16 

5, 6, 7, 8, 10, 
11, 12, 13, 15, 
16 

5, 6, 7, 8, 10, 
11, 12, 13, 15, 
16 

2, 5, 6, 7, 8, 9, 
10, 11, 12, 13, 
14, 15, 16 

20 D 1, 3, 4, 7, 11, 
14, 15 

5, 6, 8, 10, 12, 
13, 16 

2 9 

100 
D 

12, 13, 14 1, 2, 3, 5, 7, 8, 
15, 16, 

 4, 6, 9, 10, 11 

The numbers are for each benchmark problem as follows: 1- 1st De Jong’s 
function, 2 - 2nd De Jong’s function, 3 - 3rd De Jong’s function, 4 - 4th De 
Jong’s function, 5 - Rastrigin’s function, 6 - Schwefel’s function, 7 - 
Griewangk’s function, 8 - Sine Envelope Sine Wave function, 9 - Stretched V 
sine wave function - Ackley, 10 - Ackley test function, 11 - Ackley function, 
12 - Egg Holder function, 13 - Rana‘s function, 14 - Pathological function, 15 
- Michalewicz‘s function, 16 - Master’s cosine wave function. If the same 
number appears in more cells on the same row it means that algorithms 
finished in the same cost value.  

 
 
The algorithms compete between themselves. It is also almost impossible to 

say that one algorithm was the best one for the specific task. In some cases one 
algorithm was better in 20 dimensional problem but the second algorithm was 
better in 100 dimensions as is clearly visible from Table 6.25. 

There is also seen that Algorithm 2 was the most successful in different 
tasks compared to Algorithm 3 which has not won in higher dimensions 
except one case. 

The tables (Table 6.9 - Table 6.24 and Table 6.25) also showed that in 2 
dimension version of benchmark functions there was no problem in finding the 
global extreme.  In most case all four algorithms finished in the same cost 
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value. Some difficulties appeared in higher dimensions. In 20 dimenional 
space either Algorithm 1 or Algorithm 2 was the winner. In 100 dimension the 
most successful algorithm was Algorithm 2.  

The differences in quality of solutions might be also given by different cost 
functions evaluations. These was given by the setting in the AP as we 
mentioned above. We were interested in behaviour according to the settings in 
AP and nothing was changed. The number of cost function evaluations for the 
performed cases are in the Table 6.26. As can be seen the Algorithm 2 has the 
biggest number compared to Algorithm 3 and SOMAATO which had only 
around a quarter. As described above, there is the probably connection 
between these results and cost function evaluations. Despite this fact, 
SOMAATO was able to win in several cases even with less CFE. 

 
Table 6.26: Cost function evaluations for performed algorithms 

Algorithm 1 241414. 

Algorithm 2 321868. 

Algorithm 3 80554.5 

SOMAATO 80454.5 

 
The cost function evaluations is the most discussed parameter because we 

need to have fast convergence with very high quality and therefore to have 
CFE as less as possible. We might also setup higher number of iterations 
because as can be seen even in graphs in appendix, most of 100 dimension 
simulations showed that more cost functions evaluations could lead to better 
results. The convergence was not finished. 
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6.3.3. Possible approach to giving a name to new 
algorithms 

 
These were first simulations resulting in a small number of algorithms. 

Probably the system of giving names will be the sequence number. Later some 
of algorithms might get an additional name according the special properties. 
The future work suppose to prepare webpages with the description of the 
obtaining new optimization algorithms with evolutionary attributes where one 
of the sections will be also the list of generated algorithms with the sequence 
number and the notation of the algorithm. 
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CONCLUSIONS AND DISCUSSIONS 
The main aim of the dissertation was to show that it is possible to create 

new optimization algorithms, probably of evolutionary character, by means of 
symbolic regression and tools of artificial intelligence. 

The way to the main simulations went through several tasks which should 
prove that Analytic Programming which was chosen is able to work with 
symbolic regression and with linguistic terms as well as with numerical 
values. 

Firstly, approximations of data were carried out with 4 study cases and 4 
evolutionary algorithms as the optimizations tools which found the best fitting 
curve. To the group of selected cases for fitting data belongs: Quintic, Sextic 
problems as the representatives of polynomial functions of 5th and 6th order. 
The other two functions – Three Sine and Four Sine - contained also 
trigonometric functions Sin. However, all 4 functions were approximated by 
simple mathematical functions and operators like plus, minus, multiply, 
division and variable and constants. No trigonometric functions were inside. 
Although AP was able to find suitable curves which fitted data as well as 
possible, almost without any error. This was presented in 2003 [20].   

The second task worked with operators for design of logical electronic 
circuits. We carried tasks from literature out as 3 to 6 – even parity and 3 to 6 
– symmetry problems. In this task we proved that the AP is able to work with 
operators as AND, NAND, OR and inputs to design electronic circuit 
according requested behaviour which was give by truth tables. The article in a 
journal concerned to this topic was published in 2004 [22]. 

Third case was to show that we can use even functions for movement and 
synthesize a suitable trajectory for a robot. The robot has an aim to find a pick 
up all food on the defined grid. In this problem we even found better solutions 
then GP. At least, in the literature Koza give as an suitable example, which 
should be under requested number of steps, solution which does not fit it at all. 
We reached several times the requested number of steps. The paper was 
accepted in the international congress in 2005 [23] and also at the big 
conference concerned to evolutionary computation in 2006 [24]. 

The results of above described problems were comparable with known tool 
GP, but the performance was faster, probably because the AP can use arbitrary 



-90- 

evolutionary algorithms, not only genetic algorithms. This led to the choice of 
AP for further process of metaevolution – synthesis of evolutionary algorithms 
by means of symbolic regression.  

There were performed other tasks like synthesis of neural networks [25], 
chaos synthesis [26], or solutions of differential equations [18] besides the 
presented work. 

This work was concentrated into synthesis of optimization algorithms 
probably of evolutionary character. The first steps were published in Mendel 
2006 conference [48] and ECMS 2007 [50] where the paper was awarded best 
paper. 

Firstly, it was necessary to define operators of evolutionary algorithms. In 
first steps we have tried only to obtain one separated algorithm back into the 
whole. As described in section 6.1 we were successful because we obtained 
the differential evolution back. We also obtained another version of 
differential evolution as was found in later analysis. Performance of both 
algorithms are in the graphs, the new one had faster convergence in unimodal 
functions but slower in multimodal function. 

In the next simulations, a cost function was adopted. To avoid problems 
with different orders of cost value of benchmark function which were in cost 
function in AP, counting the values was changed. Instead of direct number we 
used difference from global extreme. The cost values then were differences 
between achieved value and the real extreme value. Both cases then should 
reach the zero.  

Consequently to that the penalization was added inside the cost function. 
The penalization supported less cost function evaluations then the average of 
SOMA and DE performance was found. 

We found the original DE and SOMA algorithm as well as others. But that 
case was carried out only in 2 dimension problems. The real world, compared 
to that, needs more dimensional systems. Therefore the next step was carried 
out using 20 dimensional system of benchmark functions. 

From these simulations, we obtained 4 algorithms which fulfil the request 
on cost function evaluations. Because the two benchmark functions used in AP 
were not enough to say that the algorithms are suitable, we carried out a big 
amount of simulations on 16 test functions, in 3 study cases – 2, 20 and 100 
dimension spaces for all 4 algorithms. Each of this cases was 100 repeated. 
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The total amount of simulations were 19 200. The simulations took from 
minutes in the 2 dimension space to long hours – even 26 in 100 dimension 
space. All simulations were carried in Mathematica 5.2 environment. 

The results are shown in tables and graphs in appendix. From that it is not 
possible to say if some algorithm is the winner. They compete not only in 
benchmark functions but even in the different dimensions in the frame of one 
of them. But on previous descriptions can be stated that all 4 algorithms were 
successful in 2 dimensions and all found the extreme. In higher dimensions 
there was a big competition, on the other hand all algorithms show the ability 
to optimize multimodal functions. 

Settings for algorithms was and has been the biggest question which is hard 
to answer exactly. Therefore there will be open research field to tune the 
algorithm parameters and their comparison with others.  

The total number of cost function evaluations during whole doctoral study 
in described cases was 4.011 milliards. The number consists of 4 millions of 
simulations for approximation data, 3.2 millions for Boolean parity and 
symmetry problems,  10.5 millions settings a trajectory for artificial ant, 150 
millions during searching of new algorithms, 3840 millions during testing 
benchmark functions in three dimensions. 

As the above described approach showed the AP is able to create new 
algorithms, however, this is not the only one of the point of view to synthesis 
of evolutionary algorithms by means of symbolic regression, i.e. to collect 
operators of known algorithms and try to create something new from them. 

Another approach is to go to the lower level of creating the algorithm and 
this is to create some operator itself. This might bring also new robust 
optimization algorithms to the world. All might be added in future research in 
this field because optimization algorithms of high quality and fast convergence 
to the global extreme will be the most desired request in the field of 
optimization. 
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The main goals stated at the beginning of this thesis are fulfilled in previous 
chapters in the following way. 

 
1. To prove that Analytic Programming is able to do symbolic 

regression and to prove that Analytic Programming is also able to 
work with linguistic terms not only with numeric values or 
mathematical operators 

The experimental part showed in chapters dedicated to approximation of 
data (section 5.1), design of electronic circuits (section 5.2) and setting of a 
suitable trajectory for a robot (section 5.3) that AP is working and able to 
perform symbolic regression. This goal has been reached. 

 
2. - to try that a creation of a new optimization algorithms, probably of 

evolutionary character, is possible with AP 
  - to define several operators of evolutionary algorithms (like 
crossover, mutation, perturbation from SOMA, and others) which will 
be used as simple functions for AP 
  - to define restrictions in Cost Function as inclusion of number of cost 
function evaluation into quality of solution 
 - to try to create an evolutionary algorithm which will be at least as 

robust as some current algorithms are and further to compare its 
behaviour with current ones 

 
The section 7 describes this points in detail. There is the progress from the 

first steps to the final results. This could be considered the main result of the 
thesis. 

 
3. to give comparisons between created and current evolutionary 

algorithms 
The last goal is fulfilled within 96 pages of graphs in appendix and 8 pages 

of tables in section 6.3.2 where results from 19 200 simulations are included. 
These point seems to be fulfilled too. 
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7. APPENDIX - TEST FUNCTIONS  
7.1. Sphere model, 1st De Jong‘s function – 2D 
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7.2. Sphere model, 1st De Jong‘s function – 20D 
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7.3. Sphere model, 1st De Jong‘s function – 100D 
 
 
 
 

  

  

Algorithm 1 

0 20 40 60 80 100

0

10

20

30

40

Hit  0 20 40 60 80 100

40

50

60

70

80

90

100

Hit  

 



-103- 

Algorithm 2 

0 20 40 60 80 100

0

1

2

3

4

Hit  0 20 40 60 80 100

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Hit  

Algorithm 3 

0 20 40 60 80 100

0

2

4

6

8

10

Hit  0 20 40 60 80 100

8

10

12

14

16

18

Hit  

SOMAATO 

0 20 40 60 80 100

0

1

2

3

4

Hit  0 20 40 60 80 100

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Hit  

 
 



-104- 

7.4. Rosenbrock‘s saddle, 2nd De Jong‘s function 
– 2D 
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7.5. Rosenbrock‘s saddle, 2nd De Jong‘s function 
– 20D 

 
 
 

  

  

Algorithm 1 

0 20 40 60 80 100

0

5

10

15

20

Hit  0 20 40 60 80 100

50

100

150

200

250

Hit  
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Algorithm 2 

0 20 40 60 80 100

0

5

10

15

Hit  0 20 40 60 80 100

50

100

150

Hit  

Algorithm 3 

0 20 40 60 80 100

0

5

10

15

Hit  0 20 40 60 80 100

50

100

150

Hit  

SOMAATO 

0 20 40 60 80 100

0

5

10

15

Hit  0 20 40 60 80 100

20

40

60

80

100

120

140

Hit  
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7.6. Rosenbrock‘s saddle, 2nd De Jong‘s function 
– 100D 

 
 
 

  

  

Algorithm 1 

0 20 40 60 80 100

0

500

1000

1500

Hit  0 20 40 60 80 100

1500

2000

2500

3000

3500

4000

Hit  
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Algorithm 2 

0 20 40 60 80 100

0

100

200

300

400

Hit  0 20 40 60 80 100

250

300

350

400

450

500

550

600

Hit  

Algorithm 3 

0 20 40 60 80 100

0

100

200

300

400

500

600

Hit  0 20 40 60 80 100

400

500

600

700

800

900

1000

Hit  

SOMAATO 

0 20 40 60 80 100

0

100

200

300

400

Hit  0 20 40 60 80 100

300

350

400

450

500

550

600

Hit  
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7.7. 3rd De Jong‘s function – 2D 

! 

f x( ) = xi
i=1

Dim

"  
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Algorithm 1 

0 20 40 60 80 100

0

2.¥10- 25

4.¥10
- 25

6.¥10
- 25

8.¥10
- 25

Hit  0 20 40 60 80 100

0

5.¥10- 21

1.¥10- 20

1.5¥10
- 20

2.¥10
- 20

Hit  

Algorithm 2 

0 20 40 60 80 100

0

2.¥10
- 20

4.¥10
- 20

6.¥10
- 20

8.¥10
- 20

1.¥10
- 19

Hit  0 20 40 60 80 100

0

2.¥10- 12

4.¥10
- 12

6.¥10- 12

8.¥10
- 12

1.¥10
- 11

Hit  

Algorithm 3 

0 20 40 60 80 100

0

5.¥10- 17

1.¥10- 16

1.5¥10
- 16

2.¥10- 16

2.5¥10
- 16

3.¥10
- 16

3.5¥10- 16

Hit  0 20 40 60 80 100

0

2.¥10
- 9

4.¥10
- 9

6.¥10- 9

8.¥10
- 9

1.¥10
- 8

1.2¥10
- 8

1.4¥10- 8

Hit  

SOMAATO 

0 20 40 60 80 100

0

5.¥10
- 20

1.¥10- 19

1.5¥10
- 19

2.¥10- 19

2.5¥10
- 19

3.¥10
- 19

Hit  0 20 40 60 80 100

0

5.¥10- 13

1.¥10
- 12

1.5¥10
- 12

2.¥10- 12

2.5¥10- 12

3.¥10
- 12

Hit  
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7.8. 3rd De Jong‘s function – 20D 
 
 
 
 

  

  

Algorithm 1 

0 20 40 60 80 100

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

Hit  0 20 40 60 80 100

0.005

0.010

0.015

0.020

Hit  
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Algorithm 2 

0 20 40 60 80 100

0.000

0.001

0.002

0.003

0.004

0.005

Hit  0 20 40 60 80 100

0.004

0.006

0.008

0.010

0.012

0.014

Hit  

Algorithm 3 

0 20 40 60 80 100

0.000

0.005

0.010

0.015

0.020

Hit  0 20 40 60 80 100

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Hit  

SOMAATO 

0 20 40 60 80 100

0.000

0.001

0.002

0.003

0.004

0.005

Hit  0 20 40 60 80 100

0.004

0.006

0.008

0.010

0.012

Hit  
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7.9. 3rd De Jong‘s function – 100D 
 
 
 
 

  

  

Algorithm 1 

0 20 40 60 80 100

0

5

10

15

Hit  0 20 40 60 80 100

16

18

20

22

24

26

28

Hit  
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Algorithm 2 

0 20 40 60 80 100

0

1

2

3

4

Hit  0 20 40 60 80 100

3.0

3.5

4.0

4.5

5.0

Hit  

Algorithm 3 

0 20 40 60 80 100

0

1

2

3

4

5

6

7

Hit  0 20 40 60 80 100

6

7

8

9

Hit  

SOMAATO 

0 20 40 60 80 100

0

1

2

3

4

Hit  0 20 40 60 80 100

3.5

4.0

4.5

5.0

Hit  
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7.10. 4th De Jong‘s function – 2D 

! 

f x( ) = ixi
4

i=1

Dim

"  
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Algorithm 1 

0 20 40 60 80 100

0

2.¥10- 97

4.¥10- 97

6.¥10
- 97

8.¥10
- 97

Hit  0 20 40 60 80 100

0

1.¥10- 78

2.¥10
- 78

3.¥10
- 78

4.¥10- 78

5.¥10
- 78

Hit  

Algorithm 2 

0 20 40 60 80 100

0

2.¥10
- 75

4.¥10- 75

6.¥10
- 75

8.¥10- 75

Hit  0 20 40 60 80 100

0

5.¥10
- 46

1.¥10
- 45

1.5¥10
- 45

2.¥10- 45

2.5¥10
- 45

Hit  

Algorithm 3 

0 20 40 60 80 100

0

5.¥10- 62

1.¥10
- 61

1.5¥10
- 61

Hit  0 20 40 60 80 100

0

1.¥10- 32

2.¥10- 32

3.¥10- 32

4.¥10- 32

5.¥10- 32

6.¥10- 32

7.¥10- 32

Hit  

SOMAATO 

0 20 40 60 80 100

0

1.¥10- 74

2.¥10
- 74

3.¥10- 74

4.¥10
- 74

5.¥10
- 74

6.¥10- 74

Hit  0 20 40 60 80 100

0

2.¥10
- 43

4.¥10
- 43

6.¥10
- 43

8.¥10
- 43

1.¥10
- 42

Hit  
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7.11. 4th De Jong‘s function – 20D 
 
 
 
 

 
 

  

Algorithm 1 

0 20 40 60 80 100

0

5.¥10
- 13

1.¥10
- 12

1.5¥10
- 12

2.¥10
- 12

2.5¥10
- 12

Hit  0 20 40 60 80 100

0

1.¥10
- 10

2.¥10
- 10

3.¥10- 10

4.¥10
- 10

5.¥10- 10

Hit  

 



-119- 

Algorithm 2 

0 20 40 60 80 100

0

5.¥10- 9

1.¥10
- 8

1.5¥10- 8

Hit  
0 20 40 60 80 100

0

1.¥10- 7

2.¥10
- 7

3.¥10
- 7

4.¥10- 7

5.¥10
- 7

Hit  

Algorithm 3 

0 20 40 60 80 100

0

2.¥10
- 7

4.¥10
- 7

6.¥10- 7

8.¥10
- 7

1.¥10- 6

1.2¥10
- 6

Hit  0 20 40 60 80 100

0

0.00001

0.00002

0.00003

0.00004

0.00005

Hit  

SOMAATO 

0 20 40 60 80 100

0

2.¥10
- 9

4.¥10- 9

6.¥10
- 9

8.¥10- 9

1.¥10
- 8

Hit  0 20 40 60 80 100

0

1.¥10
- 7

2.¥10- 7

3.¥10- 7

Hit  

 
 
 
 



-120- 

7.12. 4th De Jong‘s function – 100D 
 
 
 
 

  

  

Algorithm 1 

0 20 40 60 80 100

0

5

10

15

Hit  0 20 40 60 80 100

10

20

30

40

50

60

70

80

Hit  
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Algorithm 2 

0 20 40 60 80 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Hit  0 20 40 60 80 100

0.2

0.4

0.6

0.8

1.0

Hit  

Algorithm 3 

0 20 40 60 80 100

0.0

0.5

1.0

1.5

2.0

2.5

Hit  
0 20 40 60 80 100

1

2

3

4

5

Hit  

SOMAATO 

0 20 40 60 80 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Hit  0 20 40 60 80 100

0.2

0.4

0.6

0.8

1.0

Hit  
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7.13. Rastrigin’s function – 2D 

! 

f x( ) =10Dim + xi
2

"10cos 2#xi( )( )
i=1

Dim

$  
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Algorithm 1 

0 20 40 60 80 100

- 400

- 300

- 200

- 100

0

Hit  0 20 40 60 80 100

- 400

- 380

- 360

- 340

- 320

- 300

Hit  

Algorithm 2 

0 20 40 60 80 100

- 400

- 300

- 200

- 100

0

Hit  0 20 40 60 80 100

- 400

- 395

- 390

- 385

- 380

- 375

Hit  

Algorithm 3 

0 20 40 60 80 100

- 400

- 300

- 200

- 100

0

Hit  0 20 40 60 80 100

- 400

- 390

- 380

- 370

- 360

Hit  

SOMAATO 

0 20 40 60 80 100

- 400

- 300

- 200

- 100

0

Hit  0 20 40 60 80 100

- 400

- 395

- 390

- 385

- 380

- 375

Hit  
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7.14. Rastrigin’s function – 20D 
 
 
 
 

  

  

Algorithm 1 

0 20 40 60 80 100

- 30000

- 20000

- 10000

0

Hit  0 20 40 60 80 100

- 39000

- 38000

- 37000

- 36000

- 35000

- 34000

- 33000

- 32000

Hit  
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Algorithm 2 

0 20 40 60 80 100

- 40000

- 30000

- 20000

- 10000

0

Hit  0 20 40 60 80 100

- 40000

- 39500

- 39000

- 38500

- 38000

Hit  

Algorithm 3 

0 20 40 60 80 100

- 40000

- 30000

- 20000

- 10000

0

Hit  0 20 40 60 80 100

- 39500

- 39000

- 38500

- 38000

- 37500

- 37000

- 36500

Hit  

SOMAATO 

0 20 40 60 80 100

- 40000

- 30000

- 20000

- 10000

0

Hit  0 20 40 60 80 100

- 40000

- 39500

- 39000

- 38500

- 38000

Hit  
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7.15. Rastrigin’s function – 100D 
 
 
 
 

  

  

Algorithm 1 

0 20 40 60 80 100

- 400000

- 300000

- 200000

- 100000

0

Hit  0 20 40 60 80 100

- 450000

- 400000

- 350000

- 300000

- 250000

- 200000

Hit  
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Algorithm 2 

0 20 40 60 80 100

- 700000

- 600000

- 500000

- 400000

- 300000

- 200000

- 100000

0

Hit  0 20 40 60 80 100

- 750000

- 700000

- 650000

- 600000

Hit  

Algorithm 3 

0 20 40 60 80 100

- 700000

- 600000

- 500000

- 400000

- 300000

- 200000

- 100000

0

Hit  0 20 40 60 80 100

- 700000

- 650000

- 600000

- 550000

- 500000

- 450000

Hit  

SOMAATO 

0 20 40 60 80 100

- 700000

- 600000

- 500000

- 400000

- 300000

- 200000

- 100000

0

Hit  0 20 40 60 80 100

- 750000

- 700000

- 650000

- 600000

Hit  
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7.16. Schwefel’s function – 2D 

! 

f x( ) = "xi # sin xi( )
i=1

Dim

$  
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Algorithm 1 

0 20 40 60 80 100

- 800

- 600

- 400

- 200

0

Hit  0 20 40 60 80 100

- 800

- 750

- 700

- 650

- 600

Hit  

Algorithm 2 

0 20 40 60 80 100

- 800

- 600

- 400

- 200

0

Hit  0 20 40 60 80 100

- 837.966

- 837.966

- 837.966

- 837.966

Hit  

Algorithm 3 

0 20 40 60 80 100

- 800

- 600

- 400

- 200

0

Hit  0 20 40 60 80 100

- 840

- 820

- 800

- 780

- 760

- 740

- 720

Hit  

SOMAATO 

0 20 40 60 80 100

- 800

- 600

- 400

- 200

0

Hit  0 20 40 60 80 100

- 837.966

- 837.966

- 837.966

- 837.966

Hit  
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7.17. Schwefel’s function – 20D 

 
 
 
 

  

  

Algorithm 1 

0 20 40 60 80 100

- 8000

- 6000

- 4000

- 2000

0

Hit  0 20 40 60 80 100

- 8000

- 7500

- 7000

- 6500

Hit  
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Algorithm 2 

0 20 40 60 80 100

- 8000

- 6000

- 4000

- 2000

0

Hit  0 20 40 60 80 100

- 8350

- 8300

- 8250

- 8200

- 8150

Hit  

Algorithm 3 

0 20 40 60 80 100

- 8000

- 6000

- 4000

- 2000

0

Hit  0 20 40 60 80 100

- 8300

- 8200

- 8100

- 8000

- 7900

Hit  

SOMAATO 

0 20 40 60 80 100

- 8000

- 6000

- 4000

- 2000

0

Hit  0 20 40 60 80 100

- 8350

- 8300

- 8250

- 8200

- 8150

- 8100

Hit  
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7.18. Schwefel’s function – 100D 
 
 
 
 
 

  

  

Algorithm 1 

0 20 40 60 80 100

- 25000

- 20000

- 15000

- 10000

- 5000

0

Hit  0 20 40 60 80 100

- 24000

- 22000

- 20000

- 18000

Hit  
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Algorithm 2 

0 20 40 60 80 100

- 30000

- 25000

- 20000

- 15000

- 10000

- 5000

0

Hit  0 20 40 60 80 100

- 33000

- 32000

- 31000

- 30000

- 29000

- 28000

- 27000

Hit  

Algorithm 3 

0 20 40 60 80 100

- 30000

- 25000

- 20000

- 15000

- 10000

- 5000

0

Hit  0 20 40 60 80 100

- 31000

- 30000

- 29000

- 28000

- 27000

- 26000

- 25000

- 24000

Hit  

SOMAATO 

0 20 40 60 80 100

- 30000

- 25000

- 20000

- 15000

- 10000

- 5000

0

Hit  0 20 40 60 80 100

- 33000

- 32000

- 31000

- 30000

- 29000

- 28000

- 27000

Hit  
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7.19. Griewangk’s function – 2D 

! 

f x( ) =
xi
2

4000
i=1

Dim

" # cos
xi

i

$ 

% 
& 

' 

( 
) 

i=1

Dim

* +1 
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Algorithm 1 

0 20 40 60 80 100

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

Hit  0 20 40 60 80 100

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Hit  

Algorithm 2 

0 20 40 60 80 100

- 1.0

- 0.5

0.0

0.5

1.0

Hit  0 20 40 60 80 100

0.00

0.02

0.04

0.06

0.08

0.10

Hit  

Algorithm 3 

0 20 40 60 80 100

- 1.0

- 0.5

0.0

0.5

1.0

Hit  0 20 40 60 80 100

0.00

0.05

0.10

0.15

Hit  

SOMAATO 

0 20 40 60 80 100

- 1.0

- 0.5

0.0

0.5

1.0

Hit  0 20 40 60 80 100

0.00

0.02

0.04

0.06

0.08

Hit  
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7.20. Griewangk’s function – 20D 
 
 
 
 

  

  

Algorithm 1 

0 20 40 60 80 100

0.000

0.001

0.002

0.003

0.004

0.005

Hit  
0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Hit  
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Algorithm 2 

0 20 40 60 80 100

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Hit  0 20 40 60 80 100

0.00

0.05

0.10

0.15

0.20

Hit  

Algorithm 3 

0 20 40 60 80 100

0.00

0.02

0.04

0.06

0.08

0.10

Hit  0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

Hit  

SOMAATO 

0 20 40 60 80 100

0.000

0.005

0.010

0.015

0.020

0.025

Hit  0 20 40 60 80 100

0.00

0.05

0.10

0.15

0.20

0.25

Hit  
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7.21. Griewangk’s function – 100D 
 
 
 
 

  

  

Algorithm 1 

0 20 40 60 80 100

0

1

2

3

4

5

Hit  0 20 40 60 80 100

5

6

7

8

9

10

Hit  
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Algorithm 2 

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Hit  0 20 40 60 80 100

1.3

1.4

1.5

1.6

Hit  

Algorithm 3 

0 20 40 60 80 100

0.0

0.5

1.0

1.5

2.0

Hit  0 20 40 60 80 100

1.8

2.0

2.2

2.4

2.6

2.8

Hit  

SOMAATO 

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Hit  0 20 40 60 80 100

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.60

Hit  
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7.22. Sine envelope sine wave function – 2D 
 

! 

f x( ) = "
sin

2
xi+1
2 + xi

2( ) " 0.5
0.001 xi+1

2 + xi
2( ) +1( )

2
+ 0.5

# 

$ 

% 
% % 

& 

' 

( 
( ( i=1

Dim"1

)  
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Algorithm 1 

0 20 40 60 80 100

- 1.4

- 1.2

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

0.0

Hit  0 20 40 60 80 100

- 1.45

- 1.40

- 1.35

- 1.30

Hit  

Algorithm 2 

0 20 40 60 80 100

- 1.4

- 1.2

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

0.0

Hit  0 20 40 60 80 100

- 1.48

- 1.46

- 1.44

- 1.42

- 1.40

- 1.38

- 1.36

Hit  

Algorithm 3 

0 20 40 60 80 100

- 1.4

- 1.2

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

0.0

Hit  0 20 40 60 80 100

- 1.45

- 1.40

- 1.35

- 1.30

Hit  

SOMAATO 

0 20 40 60 80 100

- 1.4

- 1.2

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

0.0

Hit  0 20 40 60 80 100

- 1.45

- 1.40

- 1.35

- 1.30

- 1.25

Hit  
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7.23. Sine envelope sine wave function – 20D 
 
 
 
 

  

  

Algorithm 1 

0 20 40 60 80 100

- 25

- 20

- 15

- 10

- 5

0

Hit  0 20 40 60 80 100

- 27

- 26

- 25

- 24

- 23

- 22

Hit  
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Algorithm 2 

0 20 40 60 80 100

- 25

- 20

- 15

- 10

- 5

0

Hit  0 20 40 60 80 100

- 28

- 27

- 26

- 25

- 24

Hit  

Algorithm 3 

0 20 40 60 80 100

- 25

- 20

- 15

- 10

- 5

0

Hit  0 20 40 60 80 100

- 27

- 26

- 25

- 24

- 23

Hit  

SOMAATO 

0 20 40 60 80 100

- 25

- 20

- 15

- 10

- 5

0

Hit  0 20 40 60 80 100

- 28

- 27

- 26

- 25

- 24

Hit  
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7.24. Sine envelope sine wave function – 100D 
 
 
 
 

  

  

Algorithm 1 

0 20 40 60 80 100

- 80

- 60

- 40

- 20

0

Hit  0 20 40 60 80 100

- 86

- 84

- 82

- 80

- 78

- 76

- 74

- 72

Hit  

 



-145- 

Algorithm 2 

0 20 40 60 80 100

- 100

- 80

- 60

- 40

- 20

0

Hit  0 20 40 60 80 100

- 110

- 105

- 100

- 95

Hit  

Algorithm 3 

0 20 40 60 80 100

- 100

- 80

- 60

- 40

- 20

0

Hit  0 20 40 60 80 100

- 100

- 95

- 90

- 85

Hit  

SOMAATO 

0 20 40 60 80 100

0

20

40

60

80

100

Hit  0 20 40 60 80 100

90

95

100

105

110

115

120

Hit  
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7.25. Stretched V sine wave function (Ackley) – 2D 

! 

f x( ) = xi+1
2

+ xi
2( )

i=1

Dim"1

#
0.25

sin
2
50 xi+1

2
+ xi

2( )
0.1$ 

% 
& ' 

( 
) +1

$ 

% 
& 

' 

( 
)  
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Algorithm 1 

0 20 40 60 80 100

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Hit  0 20 40 60 80 100

0.0

0.5

1.0

1.5

Hit  

Algorithm 2 

0 20 40 60 80 100

0

5.¥10
- 8

1.¥10- 7
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- 7
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0.0

0.1

0.2

0.3
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0.3
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7.26. Stretched V sine wave function (Ackley) – 
20D 
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Algorithm 2 
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0.0
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2
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6
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7.27. Stretched V sine wave function (Ackley) – 
100D 
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0 20 40 60 80 100

0

50

100

150
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Hit  0 20 40 60 80 100

220
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Algorithm 2 

0 20 40 60 80 100

0

20

40
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90

100
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7.28. Test function (Ackley) – 2D 

! 

f x( ) = 3 cos 2xi( ) + sin 2xi+1( )( ) +
xi+1

2

+ xi
2

e
0.2

" 

# 

$ 
$ 

% 

& 

' 
' 

i=1

Dim(1
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Algorithm 1 

0 20 40 60 80 100

- 2.5

- 2.0

- 1.5

- 1.0

- 0.5
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Hit  0 20 40 60 80 100

- 2.5

- 2.0

- 1.5
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- 0.5
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0 20 40 60 80 100

- 2.5

- 2.0

- 1.5

- 1.0

- 0.5
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- 2.3

- 2.2
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7.29. Test function (Ackley) – 20D 
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0 20 40 60 80 100

- 30
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Hit  0 20 40 60 80 100
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Algorithm 2 

0 20 40 60 80 100

- 40

- 30

- 20

- 10

0

Hit  0 20 40 60 80 100

- 31.0

- 30.5

- 30.0

- 29.5

- 29.0

- 28.5

Hit  
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0 20 40 60 80 100

- 30

- 25
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0
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- 28

- 27

- 26
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Hit  
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0 20 40 60 80 100

- 30

- 25
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- 5

0

Hit  0 20 40 60 80 100

- 31.0

- 30.5

- 30.0

- 29.5

- 29.0

- 28.5
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7.30. Test function (Ackley) – 100D 
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0 20 40 60 80 100
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Algorithm 2 

0 20 40 60 80 100

- 40

- 30
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0

Hit  0 20 40 60 80 100

- 40

- 20

0

20

40

Hit  
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0 20 40 60 80 100

0
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40

60
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Hit  0 20 40 60 80 100

40

60
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100

120

140

160
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Hit  
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- 40

- 30
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0

Hit  0 20 40 60 80 100

- 40

- 20

0

20

40
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7.31. Ackley‘s function – 2D 

! 

f x( ) = 20 + e"20e
"0.2 0.5 xi+1

2
+xi

2( )
" e

0.5 cos 2#xi+1( )+cos 2#xi( )( )$ 

% 
& 

' 

( 
) 

i=1

Dim"1

*  
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Algorithm 1 

0 20 40 60 80 100

- 4.¥10
- 16

- 3.¥10- 16

- 2.¥10
- 16

- 1.¥10- 16

0

Hit  0 20 40 60 80 100

0

5.¥10- 11

1.¥10
- 10

1.5¥10
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2.¥10- 10

2.5¥10
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Hit  
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- 4.¥10
- 16

- 3.¥10- 16
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5.¥10
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3.¥10
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3.5¥10- 9
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7.32. Ackley‘s function – 20D 
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0 20 40 60 80 100
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Algorithm 2 

0 20 40 60 80 100

0.0

0.1

0.2

0.3

0.4

0.5

Hit  0 20 40 60 80 100

0.5

1.0

1.5
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0.0
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1.0

1.5
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4
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0 20 40 60 80 100

0.0

0.1

0.2

0.3

0.4
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1.0

1.2
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7.33. Ackley‘s function – 100D 
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0 20 40 60 80 100

0

200

400
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800
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Hit  0 20 40 60 80 100
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Algorithm 2 

0 20 40 60 80 100

0

100

200

300
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Hit  0 20 40 60 80 100

320

340

360
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420

440

460

Hit  
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0

100

200

300

400
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Hit  0 20 40 60 80 100
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700

Hit  

SOMAATO 

0 20 40 60 80 100

0

100

200

300

Hit  0 20 40 60 80 100

320

340

360

380

400

420

440

460

Hit  
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7.34. Egg Holder – 2D 

! 

f x( ) = " xi+1 + 47( )sin xi+1 +
xi

2
+ 47

# 

$ 
% % 

& 

' 
( ( + sin xi " xi+1 + 47( )( ) "xi( )

# 

$ 
% 
% 

& 

' 
( 
( 

i=1

Dim"1

)  
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Algorithm 1 

0 20 40 60 80 100

- 800

- 600

- 400

- 200

0

Hit  0 20 40 60 80 100

- 900

- 800

- 700

- 600

- 500

- 400

- 300

Hit  
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0 20 40 60 80 100

- 800

- 600

- 400

- 200

0

Hit  0 20 40 60 80 100

- 900

- 800

- 700

- 600

- 500

- 400

Hit  
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0 20 40 60 80 100

- 800
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- 400

- 200

0

Hit  0 20 40 60 80 100

- 900

- 800

- 700

- 600

- 500

- 400

Hit  
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- 800

- 600

- 400

- 200

0

Hit  0 20 40 60 80 100
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- 800

- 700
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- 400

Hit  
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7.35. Egg Holder – 20D 
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0 20 40 60 80 100

- 12000

- 10000
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- 6000

- 4000

- 2000

0

Hit  0 20 40 60 80 100

- 12000

- 11000

- 10000

- 9000

- 8000

- 7000
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Algorithm 2 

0 20 40 60 80 100

- 14000

- 12000

- 10000

- 8000

- 6000

- 4000

- 2000

0

Hit  0 20 40 60 80 100

- 14000

- 13000

- 12000

- 11000

- 10000

- 9000

- 8000

Hit  
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0 20 40 60 80 100

- 12000

- 10000

- 8000

- 6000

- 4000

- 2000

0

Hit  0 20 40 60 80 100

- 13000

- 12000

- 11000

- 10000

- 9000

- 8000

- 7000

Hit  
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0 20 40 60 80 100

- 14000

- 12000

- 10000

- 8000

- 6000

- 4000

- 2000

0

Hit  0 20 40 60 80 100

- 14000

- 13000

- 12000

- 11000

- 10000

- 9000
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7.36. Egg Holder – 100D 
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0 20 40 60 80 100

- 30000

- 25000
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- 5000

0
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- 22000
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Algorithm 2 

0 20 40 60 80 100

- 30000

- 25000

- 20000

- 15000
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0

Hit  0 20 40 60 80 100

- 32000

- 30000

- 28000

- 26000

- 24000

- 22000

- 20000

Hit  
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0 20 40 60 80 100

- 30000

- 25000

- 20000

- 15000
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0

Hit  0 20 40 60 80 100

- 30000

- 28000

- 26000

- 24000

- 22000

- 20000

Hit  

SOMAATO 

0 20 40 60 80 100

- 30000

- 25000

- 20000

- 15000

- 10000

- 5000

0

Hit  0 20 40 60 80 100

- 32000

- 30000

- 28000

- 26000

- 24000

- 22000

- 20000

Hit  
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7.37. Rana’s function – 2D 

! 

f x( ) =
xi+1 +1( )cos xi+1 " xi +1( )sin xi+1 + xi +1( )

+cos xi+1 + xi +1( )sin xi+1 " xi +1( )xi

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( i=1

Dim"1

)  
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Algorithm 1 

0 20 40 60 80 100

- 500

- 400

- 300

- 200

- 100

0
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- 300
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0
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- 500
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0 20 40 60 80 100
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- 400

- 300
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0
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- 500

- 450

- 400

- 350
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7.38. Rana’s function – 20D 
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- 5000
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Algorithm 2 
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- 4000

- 2000

0
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- 7000

- 6500

- 6000

- 5500

- 5000

Hit  
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- 5000
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- 3000
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- 1000

0
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- 6500
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7.39. Rana’s function – 100D 
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- 14000
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Algorithm 2 
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- 20000

- 15000
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- 5000

0
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- 14000
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Hit  
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- 19000
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- 15000

- 14000

- 13000

- 12000

Hit  
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0 20 40 60 80 100

- 20000

- 15000
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- 5000

0

Hit  0 20 40 60 80 100

- 19000

- 18000

- 17000

- 16000

- 15000

- 14000

Hit  
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7.40. Pathological test function – 2D 

! 

f x( ) =
sin

2
xi+1
2 +100xi

2( ) " 0.5
0.001 xi+1

2 " 2xixi+1 + xi
2( )
2

+1
+ 0.5

# 

$ 

% 
% % 

& 

' 

( 
( ( i=1

Dim"1
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Algorithm 1 
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Hit  0 20 40 60 80 100

0.0

0.1
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0.3
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7.41. Pathological test function – 20D 
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Algorithm 2 
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3
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6.0
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7.42. Pathological test function – 100D 
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Algorithm 2 
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40

41

42
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7.43. Michalewicz‘s function – 2D 

! 

f x( ) = " sin xi+1( )sin20
2xi+1

2

#

$ 

% 
& 

' 

( 
) + sin

20 xi
2

#

$ 

% 
& 

' 

( 
) sin xi( )

$ 

% 
& 

' 

( 
) 

i=1

Dim"1
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Algorithm 1 

0 20 40 60 80 100

- 1.5

- 1.0

- 0.5
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- 0.5
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0.0
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- 3.5
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- 1.5

- 1.0

- 0.5

0.0

Hit  
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- 0.5

0.0
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- 3.5
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- 2.5

- 2.0

- 1.5

- 1.0

- 0.5

0.0
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7.44. Michalewicz‘s function – 20D 
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- 10

- 5
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- 18.0
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Algorithm 2 
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- 5

0
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7.45. Michalewicz‘s function – 100D 
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Algorithm 2 
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Hit  0 20 40 60 80 100

- 91
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7.46. Master’s cosine wave function – 2D 
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7.47. Master’s cosine wave function – 20D 
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7.48. Master’s cosine wave function – 100D 
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