Enabling SQL Server as a Vector Database for the Embedding Storage in the RAG Pattern
Zobrazit celý záznam
Není dostupný náhled
|
Název:
|
Enabling SQL Server as a Vector Database for the Embedding Storage in the RAG Pattern |
| Autor: |
Bossman, Mickson Bonsu
|
| Vedoucí: |
Beltran Prieto, Luis Antonio
|
|
Abstrakt:
|
This thesis explores the feasibility of adapting Microsoft SQL Server to function as a vector database for high-dimensional embeddings within Retrieval-Augmented Generation (RAG) systems. Traditionally reliant on specialized vector databases, RAG pipelines benefit from semantic search over embeddings. The research proposes a novel approach by using SQL Server with JSON support and stored procedures to store and query embeddings generated via OpenAI's API. A full-stack prototype was implemented, combining SQL Server, FastAPI, Semantic Kernel, and Azure OpenAI services. The system retrieves relevant document chunks based on cosine similarity and feeds them into a language model to generate grounded responses. Evaluation shows SQL Server can achieve effective semantic retrieval with sub-second latency, offering a viable alternative for organizations leveraging existing relational infrastructure. |
|
URI:
|
http://hdl.handle.net/10563/57686
|
|
Datum:
|
2024-10-27 |
|
Dostupnost:
|
Bez omezení |
|
Ústav:
|
Ústav informatiky a umělé inteligence |
|
Studijní obor:
|
Software Engineering |
Citace závěřečné práce
Soubory tohoto záznamu
|
K tomuto záznamu nejsou připojeny žádné soubory.
|
Tento záznam se objevuje v následujících kolekcích
Zobrazit celý záznam
Prohledat DSpace
Procházet
-
Vše v DSpace
-
Tato kolekce
Můj účet